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Abstract

This thesis studies the evolution of N-body Keplerian systems (N=500) using an algorithm [11] developed by
P.M. Visser that mathematically predicts when a close encounter occurs. It attempts to address 3 questions:
(1) The influence of the spread in orbital eccentricities on the number of scatterings nmax required for a stable
system, (2) the time dependence of the number of scatterings nscatt(t ) (3) predicting the number of scatterings
nmax required for a system to reach a stable configuration in which no more scatterings occur. Simulations
show that as ϵmax increases, nmax also increases. The relative uncertainty in nmax also decreases as ϵmax in-
creases, indicating randomness playing less of a role for higher eccentricities. The results also indicate that
there is a relation between nscatt and t that very accurately describes the evolution of systems throughout time
defined by nscatt(t ) = nmax − ae−t/τ which can be rewritten as nscatt(t ) = nmax

(
1−e(t−t0)/τ

)
. Here, t0 is a time

offset in years, and τ is the timescale of the system, also given in years. This formula accurately describes
every single simulation ran in this paper, increasing in accuracy as nmax increases. Finally, no clear method
was found to predict the number of scatterings nmax needed for a system to become stable. This is due to
the chaotic nature of the system, where very small changes in initial conditions cause massively different out-
comes. Because 500 planets interact with each other, mutating each other’s orbits, a very small change can
result in different planets colliding at different times. These planets then in turn also collide with other plan-
ets, quickly diverging from other initial conditions. The paper discusses limitations of the algorithm, such as
a lack of conservation of momentum and energy and an arbitrary cutoff for the fitted function. This research
aims to further implement the algorithm [11] developed by P.M. Visser and simulate systems until they be-
come practically stable, after which the result of many gravitational and direct scatterings can be analyzed in
detail.
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1
Introduction

A Keplerian system describes any system in space where the objects in said system follow the planetary laws
of motion derived by the astronomer Johannes Kepler in the 17th century. These laws assume that all objects
orbit a central stationary body, as is the case in our Solar System. Said objects can be various celestial objects
such as moons, stars, planets or comets. These celestial objects of course also interact with each other through
gravity, influencing each other’s orbit. By studying these Keplerian systems, we can not only predict the evo-
lution of these systems and it’s respective objects, but also deduce how the system evolved to its current state.
This will further our understanding of the formation and evolution of our own Solar System. As described in
the previous paragraph, the laws of Kepler assume that an object is orbiting a central mass, neglecting the
gravitational pull between other objects. This simplification is based on the assumption that the gravitational
pull of the central mass is much larger than the gravitational pull between the other objects. However, as ob-
jects get very close to each other, this assumption does not always hold up. Due to the chaotic N-body nature
of these systems, small deflections in just a single object’s orbit can significantly affect the evolution of said
system. Therefore we are interested in a simulation where gravitational forces between all objects are taken
into account.

In this research, we will combine and expand upon the code of previous studies by Jort Koks [9] and Martijn
Moorlag [6], who implemented gravitational scatterings and direct collisions respectively. A gravitational scat-
tering is an elastic interaction between two bodies where they get close enough to each other to alter each
other’s orbits, whereas a direct collision is an inelastic interaction in which two bodies collide and merge to
form a new body. Both studies use the same algorithm [11] to detect when a scattering occurs, which can then
either be a direct collision or gravitational scattering. The cases are treated separately within the code. N-
body systems will be randomly generated according to a set of parameters, where the maximum eccentricity
ϵmax ∈ {0.1,0.2,0.4} is varied between simulations, limiting ourselves to realistic values for asteroid belts such
as the Kuiper belt as can be seen in Figure 1.1. The systems will have a homogeneous disk of particles and a
mass distribution similar to those found in asteroid belts.

Since both studies [9] [6] did not run the algorithm until the systems become effectively stable, we will be
attempting to answer a few questions related to the evolution from an initial system to its effectively stable
final state. The questions are as follows:

1. How does the total amount of scatterings nmax needed for a system to become effectively stable relate to the
maximum eccentricity ϵmax?

2. Is the total amount of occurred scatterings nscatt related to the elapsed time t? If so, can we find a general
closed form formula nscatt(t ) to fit the data?

3. Can the total amount of scatterings required for practical stability nmax be predicted based on the simula-
tion parameters?

Chapter 2 of this thesis will explain the existing theory of Kepler’s laws of motion, Newtonian gravity and the
theory related to the algorithm used to detect and simulate interplanetary interactions. Chapter 3 will describe
the initialization of the generated systems and the theory behind the main loop of the algorithm. Chapter 4
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Figure 1.1: Semi-major axis in astronomical units AU versus eccentricity structure of the Kuiper belt. Note the value of ϵmax that can be
observed. [10]

will showcase the results obtained by the simulations. The results will then further be discussed in Chapter
5. Finally, in chapter 6 the thesis will be concluded by summing up the important outcomes and their con-
sequences. This thesis is part of the BSc programme Applied Mathematics and Applied Physics of the Delft
University of Technology.
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2
Theory

In the following chapters we will discuss the theory required to properly discuss Visser’s algorithm [11] with
gravitational scatterings and direct collisions.

2.1. Kepler Orbits
Kepler orbits describe the motion of a body relative to a body that is assumed to be stationary. This stationary
assumption holds when the mass of the orbiting planet is much smaller than the central mass, so for example
the Earth compared to the Sun. Another example would be the asteroid belt between Mars and Jupiter. Ke-
plerian orbits of a body can be described completely through its angular momentum L, eccentricity ϵ, mass
m and semi-major axis a. Here ϵ has magnitude ϵ and points from the center of the orbit towards the closest
point of approach of the central body, also known as the periapsis. From L and ϵ, we can determine the 5
conserved orbital parameters: the semi-major axis a, the eccentricity ϵ, the argument of periapsisω, longitude
of the descending nodeΩ, and the inclination I (See figure 2.1).

Figure 2.1: Diagram showing the orbital parameters [7]

3



The equations to determine the remaining 5 orbital parameters are as follows, where R is a constant rotation
matrix [11]:

L = LR

0
0
1

= L

 sinΩsin I
−cosΩsin I

cos I

 (2.1)

ϵ= ϵR
1

0
0

= ϵ
cosωcosΩ− sinωsinΩcos I

cosωsinΩ+ sinωsinΩcos I
sinωsin I

 (2.2)

R =
cosΩ −sinΩ 0

sinΩ cosΩ 0
0 0 1

1 0 0
0 cos I −sin I
0 sin I cos I

cosω −sinω 0
sinω cosω 0

0 0 1

 (2.3)

We can find L through the equations L = mωab, where ω=
√

GM⊙
a3 and b = a

p
1−ϵ2. From L3 in equation 2.1

we can find I , which we can then use to deduceΩ from either L1 or L2. Finally, to determine ω, we can look at
equation 2.2 to deduce it from ϵ3.

The orbit is parametrized by the true anomaly ν or the eccentric anomaly E . The position vector and the
velocity vector can now be expressed as follows:

r =
x

y
z

= r R

cosν
sinν

0

=R

a cosE − c
b sinE

0

 (2.4)

v = ṙ = ωa

b

 −a sinν
a cosν+ c

0

= ωa

r
R

−a sinE
b cosE

0

 (2.5)

Finally, we use Kepler’s equation to describe the relation between the eccentric anomaly E , mean anomaly M
and the time t since periapsis:

M =ωt = E − sinE ⇔ t = E − sinE

ω
(2.6)

2.2. Gravitational sphere of influence
Since every particle in our Kepler system has a mass, they all influence each other through the gravitational
force. However, due to the gravitational force applied by the large central mass that all planets orbit, the grav-
itational force between non-central particles is often negligible. We are interested in the case where the force
between non-central planets is not negligible. For this we will use the Laplace sphere of influence, defined as:
The radius of a spherical region where the perturbing effect of the Sun on the particle’s planetocentric orbit is
lower than the perturbing effect of the planet on the particle’s heliocentric orbit [3]. When a particle enters said
sphere of influence, the interplanetary gravitational force is stronger than the force between the particle and
the central mass. In this scenario, we perform a scattering event within the CM-frame of the planet and the
particle. During this scattering event the gravitational force of the Sun is not neglected. The same assumptions
required to derive the Laplace sphere of influence will be applied to the Center-of-Mass (CM) frame to show
that the gravitational force of the Sun is indeed negligible during the scattering event.

We shall now derive the expression for the Laplace sphere of influence of a planet. To start off, consider a 3-
body problem with a Sun, a planet and a satellite (see Figure 2.2). The Laplace sphere of the planet is then the
region in space in which we consider the planet to be the central body that the satellite is orbiting, instead of
the Sun.

We start by considering the equations of motion for the satellite in the reference frame of the Sun and of a
planet. For the planetary frame, we consider the planet with mass m to be the main mass dictating the attrac-
tion with a perturbation caused by the Sun M⊙. The equation of motion for the satellite therefore is [2]:
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Figure 2.2: Geometry of the three-body problem (not to scale). r1 and r are the heliocentric position vectors of the planet and the satellite,
respectively. In the reference frame attached to the planet, the position vector of the satellite is ∆= r− r1 [3]

∆̈=−Gm

∆3 ∆−GM⊙

[
r

r 3 − r 1

r 3
1

]
= A1 +F 1 (2.7)

Here, ∆= r − r1. A1 is the central acceleration of the satellite caused by the Planet and F 1 is the perturbation
caused by the Sun. For intuition’s sake, this force F 1 is the tidal interaction between the Sun and the Satellite
which causes slight perturbations in the Satellite’s orbit.


A1 =−Gm

∆3 ∆, A1 = Gm
∆2 ,

F 1 =−GM⊙

[
r

r 3 − r 1

r 3
1

]
, F1 ≃ GM⊙∆

r 3
1

√
1+3cos2φ,

(2.8)

Now for the heliocentric frame, we see that for the equation of motion, acceleration and magnitude we have
the following set of equations:

r̈ =−GM⊙
r 3 r −Gm

[
∆

∆3 + r 1

r 3
1

]
= A +F (2.9)


A =−GM⊙

r 3 r , A = GM⊙
r 2 ≃ GM⊙

r 2
1

,

F =−Gm

[
∆

∆3 + r 1

r 3
1

]
, F ≃ Gm

∆2 ,
(2.10)

Following the same logic, A is the central acceleration of the satellite caused by the Sun, and F 1 is the tidal
interaction caused by the Planet.

In equation 2.8, cosφ= r 1·∆
r1∆

. F and F1 are derived by writing
∥∥∥ ∆
∆3 + r 1

r 3
1

∥∥∥ and
∥∥∥ r

r 3 − r 1

r 3
1

∥∥∥ as functions of u = ∆
r1

and

cosφ. Since u can be considered small, we truncate the expressions to the 0th order in u. The full derivation
of the magnitudes of F and F 1 is extensive and can be found in the paper by Chebotarev [4]. To obtain the
naturally bounding surface of the sphere of influence, we equate the ratio of Solar accelerations to the ratio of
Planetary accelerations:

A

F
= A1

F1
(2.11)

The sphere of influence is then the area where A1
F1

> A
F holds. Intuitively, we are looking for the surface in space

where the gravitational force exerted by the Planet on the Satellite is larger than the gravitational force exerted
by the Sun on the Satellite. This will give us a volume space in which the gravitational force of the Planet on the
Satellite becomes significant enough to account for in gravitational interactions. Substituting equations 2.10
and 2.8 into 2.11 now gives us:

sinf = r1

(
m2

M 2⊙

)1/5
1

(1+3cos2φ)1/10
(2.12)

Now since 1 ≤ (1+ 3cos2φ)1/10 ≤ 21/5 ≃ 1.15, we approximate this value by 1. This now results in the final
expression for the Laplace sphere of influence:
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sinf = r1

(
m

M⊙

)2/5

(2.13)

2.3. Elastic collisions using hyperbolic orbit
In a later section we will show that during the encounter, the gravitational force of the Sun is actually not
completely neglected in the following derivation, but that the gravitational force of the Sun cancels out for the
relative coordinate u between the colliding planets if approximated by a homogeneous field. Thus we shall
only include the gravitational force between the respective planets. The problem then simplifies to a classical
two-body problem. Since the planets do not collide in this case, energy is conserved and we can model this
scenario as an elastic collision. The planets will be tracing a hyperbolic trajectory during the collision, as can
be seen in figure 2.3.

Figure 2.3: Hyperbolic trajectory of a close encounter with the large central mass and asymptotes of the relative coordinate. In this figure,
S is the central mass. D is the shortest distance of the incoming asymptote to the origin, a is the semi-transverse axis, c is the semi-focal
separation, rp is the distance between the trajectory and the central mass at periapsis (y = 0), θ is the angle between the x-axis and the
incoming asymptote and δ is the angle through which the relative coordinate’s path is deflected by the gravitational attraction of the
central mass [9]

Consider two particles m1 and m2 moving on elliptical orbits, with position vectors r 1 and r 2 and velocity vec-
tors v 1 and v 2 respectively. The interaction between the particles can be described by the relative coordinate
d = r 2−r 1. The relative coordinate moves in a hyperbolic orbit with velocity u = v 2−v 1 in the center-of-mass
frame [11]. The trajectory of the relative coordinate will be approximated using its asymptotes. Before the scat-
tering event, the relative coordinate moves on a straight line d i (t ) with constant velocity u1. By conservation
of momentum, we immediately find that the magnitude of the velocity vector is conserved, hence u f = ui = u.

The shortest distance between the two masses is reached when d i ⊥ ui , and we define d⊥
i for the position vec-

tor where this is the case (equal to the dashed line with length D in 2.3). At this point, the scattering event gets
executed by rotating the direction of the position and velocity both by an angle δ = π−2θ. The particle then
continues its trajectory with velocity u f , starting from d⊥

f , which is similarly defined as the position vector

where d f ⊥ u f . By conservation of angular momentum, d i ⊥ ui ×d f ⊥ u f . Hence d⊥
f = d⊥

i = d⊥.

From the geometry of Figure 2.4, we see that tanθ = b
a . Since θ = π

2 − δ
2 and tan

(
π
2 − δ

2

)
=

(
tan δ

2

)−1
, it follows

that δ = 2arctan a
b . Letting d = |d |, the conservation of energy equation for a hyperbolic Keplerian orbit is

given by the vis-visa equation (where a is defined to be positive) [8].

u2 =G(m1 +m2)

(
2

d
+ 1

a

)
(2.14)

When d →∞, we find that a = G(m1+m2)
u2 . Since c2 = a2 +b2, we find two angle-angle-side

(
pi
2 ,θ,c

)
congruent

triangles from which it follows that b = D . From the geometry of Figure 2.4 it follows that D is equal to the

6



Figure 2.4: Geometry of a hyperbola. In this figure, a is the semi-transverse axis, b is the semi-conjugate axis, c =
√

a2 +b2 is the semi-
focal separation, θ is the angle between the x-axis and the incoming asymptote. F1 and F2 are the focal points with vertices V1 and V2
respectively. C = (c,0) is the centre of the hyperbole. [1]

shortest distance of the incoming asymptote to the origin, which is the length d⊥ of the vector d⊥
i that is

perpendicular to ui . Hence b = d⊥. We can now compute the rotation by using:

[
d⊥

f

u f

]
=Rδ

[
d⊥

i
u⊥

i

]
(2.15)

where

R =
[

cosδ b
u sinδ

−u
b sinδ cosδ

]
=

[
b2−a2

c2
2ab2

uc2

− 2au
c2

b2−a2

c2

]
(2.16)

The placement of the plus or minus signs on the off-diagonal elements follows from the fact that the force
acting on the relative coordinate is attractive.

2.4. Direct inelastic collisions between bodies
It is also possible for two particles i and j to directly collide and merge with each other (we assume the planets
do not fragment). In this case, kinetic energy is not always conserved, with the remaining energy for example
resulting in heat or sound. However, (angular) momentum is conserved. Using these laws of conservation, the
orbit of the newly formed planet can be determined. Here, s is the radius of the particle, m is its mass, r the
position vector, v is the momentum, L is the angular momentum, ℓ is the semi-latus rectum of the orbit, r is
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the radial distance, ϵ is the eccentricity vector and ϵ is the total eccentricity:

snew = 3
√

s3
i + s3

j , (2.17)

mnew = mi +m j (2.18)

r new = mi r i +m j r j

mnew
(2.19)

v new = mi v i +m j v j

mnew
(2.20)

Lnew = Li +L j (2.21)

ℓnew = Lnew ·Lnew

GMm2 (2.22)

rnew =p
r new · r new (2.23)

ϵnew = v new ×Lnew

GMmnew
− r new

rnew
(2.24)

ϵnew =p
ϵ ·ϵ (2.25)

2.5. Effect of the Sun’s gravitational pull during close encounter
We further continue using the situation described in Section 2.2. Suppose the Satellite and Planet are such
that they are within each other’s spheres of influence and that the assumptions made in 2.2 hold (r ≃ r1 and
r1 ≫∆). Let the mass of the Planet be m1, Satellite be m2 and Star be M⊙. The equations of motion for m1 and
m2 are as follows:

a1 =−GM⊙
r 2

1
r̂ 1 + Gm2

∆2 ∆̂

a2 =−GM⊙
r 2 r̂ − Gm1

∆2 ∆̂

(2.26)

Here the first term in 2.26 represents the gravitational acceleration exerted on the planet by the central mass
M . To now obtain the equation of motion for the relative coordinate u = v 2 − v 1 in the center-of-mass frame,
we subtract the top equation from the bottom equation. This gives us:

a2 −a1 =−GM

(
1

r 2 r̂ − 1

r 2
1

r̂ 1

)
− G

∆2 (m2 +m1)∆̂ (2.27)

Since we use the same assumptions made in 2.2, namely that r ≃ r1 and r1 ≫∆, we can further simplify equa-

tion 2.27. The term

∣∣∣∣ 1
r 2 r̂ − 1

r 2
1

r̂ 1

∣∣∣∣≈ 0 as we apply r ≃ r1, leaving us with:

a2 −a1 =− G

∆2 (m2 +m1)∆̂+O

(
1

r 3

)
(2.28)

We see here that the term representing the gravitational force of the central mass M⊙ on the planets has been
canceled. Since the relative coordinate u = v 2 − v 1 is just an integrated version of equation 2.28, we see that
the equation of motion simplifies to a situation without the central mass M⊙ exerting any force on the relative
coordinate u. This means that our assumption made in section 2.3 is justified, seeing as we are not actually
"pretending" the Sun does not exist during the elastic collision, but merely that its influence on the elastic
collision is negligible.

2.6. Initial state: a flat circular disk
To accurately simulate an N-body Kepler system, we require realistic distributions for certain physical pa-
rameters. In the simulation, every particle has a mass mi ∈ [mmin,mmax] , semi-major axis ai ∈ [amin, amax]
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an inclination Ii ∈ [0, Imax] and eccentricity ϵi ∈ [0,ϵmax]. The volume in which all the particles exist is given
by:

V =
∫ 2π

0

∫ π/2+Imax

π/2−Imax

∫ amax

amin

r 2 sinθdr dθdφ= 4π

3
(a3

max −a3
min)sin Imax (2.29)

For the distribution of the radii s of the particles, we take d N /dS ∝ s−3, which is about equal to the distribution
of an asteroid belt [5]. Assuming that every particle has the same density of mass, we have that m ∝ s3 and
therefore d N /dm ∝ m−5/3. To determine the probability distribution of the particle mass p(m), we must have
that

∫ mmax
mmin

p(m)dm = ∫ mmax
mmin

Am−5/3dm = 1. From this, it follows that:

p(m) = 2

3

(mmaxmmin)2/3

m2/3
max −m2/3

min

m−5/3 (2.30)

To ensure that the system has a uniform particle density for its entire volume, we require that d N /d a ∝ a2

and d N /d I ∝ sin I . Since
∫ amax

amin
p(a)d a = ∫ amax

amin
B a2d a = 1, we have that:

n(a) = 3

a3
max −a3

min

a2 (2.31)

Then for the inclination it follows from
∫ Imax

0 p(I )d I = ∫ Imax
0 C sin I d I = 1 that:

p(I ) = 1

1−cos Imax
sin I (2.32)

The eccentricity is drawn from a uniform distribution U [0,ϵmax], and therefore p(ϵ) has a constant value in
this interval. In Figure 4.2 the theoretical distributions with values given in Table 3.2 and ϵmax = 0.1 are shown
with orange dotted lines. To more clearly visualize the nature of the distribution of objects, Figure 2.5 shows a
top-down view of the planets in their initial state.
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Figure 2.5: Top-down scatterplot of the planets in the initial state of a simulation with values given in Table 3.2 and ϵmax = 0.1. The inner
black circle has a radius rmin = amin(1− ϵmax), whereas the outer black circle has a radius rmax = amax(1+ ϵmax). All planets fall neatly
between these inner and outer circles.
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3
Simulation Method

In this chapter we will completely describe the algorithm used to predict, execute and appropriately handle
both close encounters, direct collisions and particle ejections due to particle interactions. This will further
build upon Visser’s algorithm [11], Jort Koks’ close encounters [9] and Moorlag’s direct collisions [6]. The sys-
tem is initialized in the same way as in the research paper by Jort Koks [9], after which the main loop of Visser’s
algorithm [11] will be described which the system uses to evolve in time. At last, the separate cases of close
encounters and direct collisions between particles will be elaborated. These cases include the handling of
possible ejection of particles from the system.

3.1. Initialization
As mentioned before, the initialization process is the exact same as the paper by Jort Koks [9], and therefore
this paper will not go into much detail regarding said process. In short, we number every particle i = 1, . . . , N .
For every particle, we store the following set of variables:

{
t 0

i , ai ,ci , si ,mi ,r 0
i ,Li ,ϵi ,ωi , v 0

i

}
(3.1)

These variables are determined by choosing the six orbital parameters ai ,ϵi , Ii ,ϖ,Ωi and Mi such that they
form a uniform particle disk. The exact processes and distributions used are described by Jort Koks [9].

Parameter Domain
mi mmin[1−ξ(1− (mmin/m2/3

max]−3/2

ai
3
√

a3
min +ξ

(
a3

max −a3
min

)
ϵi ϵmaxξ

Ii arccos(cos Imax +ξ (1−cos Imax))
ω 2πξ
Ωi 2πξ
Mi 2πξ

Table 3.1: Initialization domains of the particles in the system. We let ξ ∼ U [0,1] randomly for the parameters of each particle. See Jort
Koks [9] for derivations of the shown expressions.
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Parameter Standard value Test domain
N 500
mmax 10−7 M⊙
mmin 10−10 M⊙
amax 4 AU
amin 1 AU
ϵmax 0.1 {0.1, 0.2, 0.4}
Imax 0.1

Table 3.2: Boundaries of the initialization domains. The values of each of the parameters are picked within the set of their test domains,
while keeping all other parameters fixed at their standard value.

3.2. Main loop of the algorithm
The general algorithm used in the simulation is described in Visser’s paper [11]. This time the algorithm in-
cludes both direct collisions and close encounters between particles. The case of particle ejection due to in-
teractions is also appropriately handled.

1. If the scattering list is empty, end the simulation.

2. Take the pair (i , j ) with the soonest scattering, that being the first scattering in the list. If the time to wait
for this scattering event is longer than 0.2 ·106 y, end the simulation. Else, perform the scattering event,
differentiating between a direct collision or close encounter.

3. Update the time t to the time t 1
(i , j ) of the scattering.

4. Remove any pair containing i and any pair containing j from the list of scattering pairs.

5. Remove the particles i and j from the particle list.

6. Check if the orbit(s) of the new particle(s) intersect the central mass or are ejected:

(a) If the interaction is a direct collision where the new planet intersects the central mass or is ejected,
go to the next scattering on the list. (no particle is added)

(b) If the interaction is a close encounter where both separate planets either intersect the central mass
or get ejected, go to the next scattering on the list. (no particle is added)

7. For the retained particles, create new particles i ′ and/or j ′ (in case of a close encounter with both parti-

cles conserved) defined by
{

t 1
i , ai ,ci , si ,mi ,ri

0,Li ,ϵi ,ωi , v 0
i

}
and/or

{
t 1

j , a j ,c j , s j ,m j ,r 0
j ,L j ,ϵ j ,ω j , v 0

j

}
.

8. For any new particle, consider the other particles and determine the new scatterings caused by adding
new particle(s) to the system. Determine the time of these scatterings.

9. Merge the times of the new scatterings with the pre-existing scattering time list (with scatterings involv-
ing i and j now removed).

10. Sort the merged list of scattering times, the soonest scattering event being first. Also add the new parti-
cles i ′ and/or j ′ to the list of all particles.

3.3. Scattering Detection
To obtain the list of scatterings used in the main algorithm, we first have to detect these scattering pairs and
then sort them by the time at which they occur. The methods described for detecting these scattering events
are based on results from [11].

3.3.1. Determining scattering pairs
For a particle i , we first determine the gravitational sphere of influence sinf

i = ai
( mi

M

)2/5
. The interval of inter-

action for a particle ranges from periapsis to apoapsis: [ai −ci −sinf
i , ai +ci +sinfz

i ]. For an encounter to even be

possible with a particle j , we must have that the intervals of i and j overlap such that ai +ci +sinf
i ≥ a j −c j −sinf

j .

Suppose we found a pair (i , j ) = (1,2) with a1 > a2 which meets the following criteria. We then compute the
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direction of the nodal line K and its magnitude K :

K = L1 ×L2, K =
p

K ·K (3.2)

For the particles (1,2) we then further compute the semi-latus rectum ℓ, the two intersection points with the
nodal line r ± and the velocities v± at these points:

ℓ1 = L1 ·L1

GMm2
1

, ℓ2 = L2 ·L2

GMm2
1

(3.3)

r 1,± = Kℓ1

±K +ϵ1 ·K
, r 2,± = Kℓ2

±K +ϵ2 ·K
(3.4)

r1,± =p
r 1,± · r 1,±, r2,± =p

r 2,± · r 2,± (3.5)

v 1,± = L1

m1ℓ1
×

(
ϵ1 +

r 1,±
r1,±

)
, v 2,± = L2

m2ℓ2
×

(
ϵ2 +

r 2,±
r2,±

)
(3.6)

To then determine the minimal orbit intersection distance (MOID), we consider the tangent lines of the orbits
at the points r 1,± and r 2,±. The minimal distance r min

1,± and r min
1,± between these lines can then be found. The

positions can be written as:

r min
1,± = r 1,±+

[
(r 2,±− r 1,±) · v 2,±× (v 1,±×v 2,±)∣∣v 1,±×v 2,±

∣∣2

]
v 1,± (3.7)

r min
2,± = r 2,±+

[
(r 2,±− r 1,±) · v 1,±× (v 1,±×v 2,±)∣∣v 1,±×v 2,±

∣∣2

]
v 2,± (3.8)

The shortest distance between the two lines is then:

d min
± = |r min

2,± − r min
1,± | =

∣∣∣∣(r 2,±− r 1,±) · (v 1,±×v 2,±)∣∣v 1,±×v 2,±
∣∣
∣∣∣∣ (3.9)

In the case of d min
± ≤ max {s1, s2}, we perform a direct collision scattering. Else, if d min

± ≤ max
{

sinf
1 , sinf

2

}
, we

perform a close encounter.

3.3.2. Calculating the time of a scattering
Suppose we have two particles (i , j ) = (1,2) such that either expression above holds. To calculate the time at
which any scattering occurs (both collision and close encounter), we first need to know the time for which the
particles first cross the nodal line K . Let these times be t 1

1 and t 1
2 respectively. For every set of particles, we

only need to know the difference in eccentric anomaly ∆E = E 1 −E 0 between the position vectors r 1 and r 0.
The angle ∆E can be written as the argument of a complex number as follows [11].

∆E = arg

[(
r 1

a
− i r 1v 1

a2ω

)
·
(

r 0 −ϵϵ · r 0

a −ϵ2a
+ϵ

)
+ r 0 ·ϵ

a
+ϵ2

]
(3.10)

The scattering time tk,l is then the time where particles 1 and have completed an integer k and l number of or-
bits respectively after reaching their first intersection with the nodal line. This tk,l is computed by [11]:

tk,l = kT + t 0 + ∆E

ω
− ϵ× (r 1 − r 0)

ωb
· L

L
(3.11)

where 0 ≤∆E < 2π due to it being the argument. The algorithm to determine the values of k and l is described
in Chapter 6 of [11]. At the time tk,l , we will then have our particles situated close enough to r min

1,± and r min
2,± to

perform either a direct collision or close encounter.
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3.4. Performing a close encounter event
In this section, step 2 of the main loop is elaborated upon. When planets get very close to each other, their
gravitational pull can no longer be ignored and has to be accounted for. It is very computationally expensive
to account for this gravitational pull dynamically, which is why planet trajectories are linearized. The process
is divided into 3 phases: The period before the scattering event, the scattering event and the period after the
scattering event.

3.4.1. Before scatter event
As was shown in equation 3.11, the scattering time can be calculated. The initial trajectory of the orbits of
particles m1 and m2 is linearized around their respective positions r 1 = r 1(tk,l ) and r 2 = r 2(tk,l ) at the time
tk,l (± subscripts will be ignored in this section):

r 1,i (t ) = r 1 + (t − tk,l )v 1,i , r 2,i (t ) = r 2 + (t − tk,l )v 2,i , (3.12)

v 1,i = v (r 1), v 2,i = v (r 2) (3.13)

Here, r 1 and r 2 follow from equation 2.4 and v 1,i and v 2,i follow from equation 2.5. Since the scatter event
theory is derived in a center-of-mass frame, we need to transform these coordinates. Before the scatter event,
the relative mass µ= m1m2

m1+m2 has initial position d i and velocity ui :

d i (t ) = r 2,i (t )− r 1,i (t ), ui = v 2,i −v 1,i (3.14)

The scatter event will be performed at the time t⊥, when the distance from d i (t ) is minimized. This occurs
when d i (t ) ·ui = 0. Solving this equation for t⊥ gives:

t⊥ = tk,l −
(r 2 − r 1) ·ui

u2 (3.15)

which then gives us the position of the relative mass µ at this time t⊥ as:

d⊥
i = d i (t⊥) = r 2 − r 1 − (r 2 − r 1) ·ui

u2 ui (3.16)

where the superscript is a result of the fact that d⊥
i ⊥ ui . Therefore

{
d⊥

i
d , ui

u

}
forms an orthonormal basis in R2.

The centre-of-mass m1 +m2 moves with position Ri (t ) and velocity Vi :

Ri (t ) = m1r 1,i (t )+m2r 2,i (t )

m1+m2
, Ri (t ) = m1v 1,i +m2v 2,i

m1+m2
(3.17)

Since Ri (t ) is constant, we can choose the inertial reference frame such that the CM is at rest in the origin
and the total momentum is zero. This means that the particles m1 and m2 are moving, but with equal and
opposite momenta. This situation then simplifies to the same situation as a single particle with mass equal to
the reduced mass µ.

3.4.2. The scatter event
Since it is an ellastic collision, no energy loss takes place. The relative coordinate describes a hyperbolic orbit
with parameters:

a = G(m1 +m2)

u2 , b = d = |d⊥
i |, c2 = a2 +b2 (3.18)

where u = |ui | = |u f | due to conservation of momentum. The entering asymptote has direction ui and the
exiting asymptote has direction u f . Due to the gravitational scattering, a rotation of the position and velocity
vector of the reduced mass µ of an angle δ = 2arctan(a/b) occurs. From equations 2.15 and 2.16, we see
that:

d⊥
f = b2 −a2

c2 d⊥
i + 2ab2

uc2 ui (3.19)

u f =
−2au

c2 d⊥
i + b2 −a2

c2 ui (3.20)
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3.4.3. After scatter event
The motion of the relative massµ has now been set to velocity u f and position d f (t ) = d⊥

f +(t−t⊥)u f . Now the

particles need to be transformed from the CM frame back to the particle coordinates m1 +m2 and µ= m1m2
m1+m2

.
The equations for the velocities v 1, f and v 2, f after the scattering are:

v 1, f =V i − m2

m1 +m2
u f , v 2, f =V i − m1

m1 +m2
u f (3.21)

The particles now travel along two straight lines given by:

r 1, f (t ) = R i (t )− m2

m1 +m2
d f (t ) (3.22)

r 2, f (t ) = R i (t )+ m1

m1 +m2
d f (t ) (3.23)

Immediately after the scattering event, we see that:

r 1, f (t⊥) = R⊥
i (t )− m2

m1 +m2
d⊥

f (t ) (3.24)

r ⊥
2, f (t ) = R i (t⊥)+ m1

m1 +m2
d⊥

f (t ) (3.25)

3.5. Finding new scattering possibilities
After the scatter event, particles involved before the scatter event are removed. The new particles have their
parameters as shown in equation 3.1 updated according to the following equations:

L = mr ×v , (3.26)

ℓ= L ·L

GMm2 , (3.27)

r =p
r · r , (3.28)

ϵ= v ×L

GMm
− r

r
, (3.29)

ϵ=p
ϵ ·ϵ (3.30)

The particle only stays in an elliptical orbit around the central mass and does not collide with it when ϵ< 1 and
ℓ > (1+ ϵ)S, where S is the radius of the central body. If these inequalities hold, then the particle stays in the
system. Else it is ejected/destructed.
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4
Results

In this chapter, the results are presented of 3 sets of 5 simulations. The maximum eccentricity ϵmax ∈ {0.1,0.2,0.4}
is varied while keeping the other parameters as described in Table 3.2.

4.1. Maximum eccentricity of 0.1
In Figure 4.1, 5 simulations with ϵmax = 0.1 are shown, plotting the total scatter count nscatt versus the time t in
years.

Figure 4.1: For five simulations with ϵmax = 0.1, the total number of scatterings nscatt is plotted versus the time t in years. Other relevant
parameters are distributed as described in Table 3.1. The simulations stopped when the next scattering was more than 105y in the future
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To further research the effects of many scatterings, we pick the system with the highest number of scatterings
nmax. In this case we will proceed using system 2 with nmax = 2647. In Figure 4.2 the initial distributions of the
parameters m, a, I and ϵ of the particles of system 2 are plotted with their theoretical distribution according to
Table 3.1.

(a) (b)

(c) (d)

Figure 4.2: Density histograms showing the initial distributions of important parameters m, a, I and ϵ for system 2 for ϵmax = 0.1. The
orange lines indicate theoretical distributions from which the values for mi , ai , Ii and ϵi were generated for every particle 1 ≤ i ≤ 500
using the formulas found in Table 3.1. (a): Density histogram log-log plot of the planetary masses mi (M⊙). (b) Density histogram plot of
the Semi-Major Axis ai (AU). (c) Density histogram plot of the Inclination Ii (rad). (d) Density histogram plot of the Eccentricity ϵi .
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In order to showcase the effect of scatterings on the distribution of the eccentricity ϵ, the eccentricity distribu-
tion of the particles of system 2 is plotted at the start (nscatt = 0) and at the end of the simulation (nscatt = nmax).
In Figure 4.3 we compare the eccentricity distribution in the initial and final state of system 2.

Figure 4.3: Above: Density histogram of the eccentricity of the initial particles in system 2. The orange line indicates the theoretical
distribution used to generate ϵi found in Table 3.1. Below: Density histogram of the eccentricity of the final particles in system 2 at
nscatt = nmax = 2647 or after t = 2.5My. Here, the orange line of the initial eccentricity distribution is still drawn to more clearly showcase
the change in distribution. Note that the total amount of planets is lower in the final state due to ejections.
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To get an idea of the shape and distribution of the orbits of particles in system 2, both in the initial and final
state, astronomy commonly uses (ϵ, a) plots. In Figure 4.4, we see scatter-plots of the particles of system 2 in
both its initial and final state.

Figure 4.4: (ϵ, a) scatterplots of the particles in the disk. The minimum and maximum values of both ϵ and a can clearly be identified using
the upper scatterplot by observing the box that all particles are contained by. This box is [amin, amax]× [ϵmin,ϵmax] as expected from the
initial distribution parameters. Below: (ϵ, a) scatterplot of the particles in the final state of system 2 (nscatt = nmax = 2647). Note that the
particles are no longer contained by the box [amin, amax]× [ϵmin,ϵmax]. An orange dot on top of a blue dot means that that particle still
has the same eccentricity and semi-major axis as in its initial state, indicating that it was not involved in any scattering events. We see that
below 3AU, most particles have not been scattered, while above 3AU many particles have been scattered into high eccentric orbits.
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As can be seen in the report made by Jort Koks [9], the simulations go through an initial phase where the scatter
frequency is increasing. This is showcased for all systems in Figure 4.5.

Figure 4.5: nscatt plotted versus the time t in years for nscatt ≤ 200 for all systems with ϵmax = 0.1. nscatt = 200 was chosen due to all
simulated systems entering a phase of roughly constant scatter frequency after this scatter count. Some simulations take longer to enter
this linear phase of the graph, while other systems start off almost linear already.

After nscatt = 200, all systems go through a roughly linear period of growth. All systems exhibit a trend of
decaying growth for nscatt ≥ 200, to which a curve can be fitted. The curve that most closely matches the
shapes of the systems’ (t ,nscatt) plots is nscatt(t ) = nmax−ae−t/τ. In Figure 4.6 the resulting curve-fit for system
2 can be found, fitted to values 200 ≤ nscatt ≤ nmax.

Figure 4.6: Number of scatterings of system 2 (200 ≤ nscatt ≤ nmax = 2647) plotted versus the time t in years. The dashed orange line
represents the results of a curve of shape nscatt(t ) = nmax − ae−t/τ fitted to the data. nmax can only be determined after the simulation
has been fully executed. The resulting fit parameters are a = 3344±5 and τ= (510±1) ·103y.
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4.2. Maximum eccentricity of 0.2
In Figure 4.7, 5 simulations with ϵmax = 0.2 are shown, plotting the total scatter count nscatt versus the time t in
years.

Figure 4.7: For five simulations with ϵmax = 0.2, the total number of scatterings nscatt is plotted versus the time t in years. Other relevant
parameters are distributed as described in Table 3.1. The simulations stopped when the next scattering was more than 105y in the future
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To further research the effects of many scatterings, we pick the system with the highest number of scatterings
nmax. In this case we will proceed using system 3 with nmax = 16057. BIn Figure 4.8 the initial distributions of
the parameters m, a, I and ϵ of the particles of system 3 are plotted with their theoretical distribution according
to Table 3.1.

(a) (b)

(c) (d)

Figure 4.8: Density histograms showing the initial distributions of important parameters m, a, I and ϵ for system 2 for ϵmax = 0.1. The
orange lines indicate theoretical distributions from which the values for mi , ai , Ii and ϵi were generated for every particle 1 ≤ i ≤ 500
using the formulas found in Table 3.1. (a): Density histogram log-log plot of the planetary masses mi (M⊙). (b) Density histogram plot of
the Semi-Major Axis ai (AU). (c) Density histogram plot of the Inclination Ii (rad). (d) Density histogram plot of the Eccentricity ϵi .
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In order to showcase the effect of scatterings on the distribution of the eccentricity ϵ, the eccentricity distribu-
tion of the particles of system 3 is plotted at the start (nscatt = 0) and at the end of the simulation (nscatt = nmax).
In Figure 4.9 we compare the eccentricity distribution in the initial and final state of system 3.

Figure 4.9: Above: Density histogram of the eccentricity of the initial particles in system 3. The orange line indicates the theoretical
distribution used to generate ϵi found in Table 3.1. Below: Density histogram of the eccentricity of the final particles in system 3 with
nscatt = nmax = 16057. Here, the orange line of the initial eccentricity distribution is still drawn to more clearly showcase the change in
distribution. Note that the total amount of planets is lower in the final state due to ejections.
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To get an idea of the shape and distribution of the orbits of particles in system 3, both in the initial and final
state, astronomy commonly uses (ϵ, a) plots. In Figure 4.10, we see a scatter-plot of the particles of system 3 in
its final state.

Figure 4.10: (ϵ, a) scatterplot of the particles in the final state of system 3 (nscatt = nmax = 16057). Note that the particles are no longer
contained by the box [amin, amax]×[ϵmin,ϵmax]. An orange dot on top of a blue dot means that that particle still has the same eccentricity
and semi-major axis as in its initial state, indicating that it was not involved in any scattering events. We see that below 3AU, most particles
have not been scattered, while above 3AU many particles have been scattered into high eccentric orbits.
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As can be seen in the report made by Jort Koks [9], the simulations go through an initial phase where the scatter
frequency is increasing. This is showcased for all systems in Figure 4.11.

Figure 4.11: nscatt plotted versus the time t in years for nscatt ≤ 200 for all systems with ϵmax = 0.2. nscatt = 200 was chosen due to all
simulated systems entering a phase of roughly constant scatter frequency after this scatter count. Some simulations take longer to enter
this linear phase of the graph, while other systems start off almost linear already.

After nscatt = 200, all systems go through a roughly linear period of growth. All systems exhibit a trend of
decaying growth for nscatt ≥ 200, to which a curve can be fitted. The curve that most closely matches the shapes
of the systems’ (t ,nscatt) plots is nscatt(t ) = nmax −ae−t/τ. In Figure 4.12 the resulting curve-fit for system 3 can
be found, fitted to values 200 ≤ nscatt ≤ nmax.

Figure 4.12: Number of scatterings of system 3 (200 ≤ nscatt ≤ nmax = 16057) plotted versus the time t in years. The dashed orange line
represents the results of a curve of shape nscatt(t ) = nmax − ae−t/τ fitted to the data. nmax can only be determined after the simulation
has been fully executed. The resulting fit parameters are a = 16903±6 and τ= (1660±1) ·103y.
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4.3. Maximum eccentricity of 0.4
In Figure 4.13, 5 simulations with ϵmax = 0.4 are shown, plotting the total scatter count nscatt versus the time t
in years.

Figure 4.13: For five simulations with ϵmax = 0.4, the total number of scatterings nscatt is plotted versus the time t in years. Other relevant
parameters are distributed as described in Table 3.1. The simulations stopped when the next scattering was more than 105y in the future
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To further research the effects of many scatterings, we pick the system with the highest number of scatterings
nmax. In this case we will proceed using system 3 with nmax = 29017. In Figure 4.14 the initial distributions of
the parameters m, a, I and ϵ of the particles of system 3 are plotted with their theoretical distribution according
to Table 3.1.

(a) (b)

(c) (d)

Figure 4.14: Density histograms showing the initial distributions of important parameters m, a, I and ϵ for system 3 for ϵmax = 0.4. The
orange lines indicate theoretical distributions from which the values for mi , ai , Ii and ϵi were generated for every particle 1 ≤ i ≤ 500
using the formulas found in Table 3.1. (a): Density histogram log-log plot of the planetary masses mi (M⊙). (b) Density histogram plot of
the Semi-Major Axis ai (AU). (c) Density histogram plot of the Inclination Ii (rad). (d) Density histogram plot of the Eccentricity ϵi .

27



In order to showcase the effect of scatterings on the distribution of the eccentricity ϵ, the eccentricity distribu-
tion of the particles of system 3 is plotted at the start (nscatt = 0) and at the end of the simulation (nscatt = nmax).
In Figure 4.15 we compare the eccentricity distribution in the initial and final state of system 3.

Figure 4.15: Above: Density histogram of the eccentricity of the initial particles in system 3. The orange line indicates the theoretical
distribution used to generate ϵi found in Table 3.1. Below: Density histogram of the eccentricity of the final particles in system 3 with
nscatt = nmax = 29017. Here, the orange line of the initial eccentricity distribution is still drawn to more clearly showcase the change in
distribution. Note that the total amount of planets is lower in the final state due to ejections.
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To get an idea of the shape and distribution of the orbits of particles in system 3, both in the initial and final
state, astronomy commonly uses (ϵ, a) plots. In Figure 4.16, we see a scatter-plot of the particles of system 3 in
its final state.

Figure 4.16: (ϵ, a) scatterplot of the particles in the final state of system 3 (nscatt = nmax = 29017). Note that the particles are no longer
contained by the box [amin, amax]×[ϵmin,ϵmax]. An orange dot on top of a blue dot means that that particle still has the same eccentricity
and semi-major axis as in its initial state, indicating that it was not involved in any scattering events.
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Since Figure 4.16 does not clearly visualize what happens in the domain of the initial simulation values a×ϵ=
[0,4]× [0,0.4], Figure 4.17 zooms in on this domain which lets us easily see what particles were involved in a
scatter event.

Figure 4.17: (ϵ, a) scatterplot of the particles in the final state of system 3 (nscatt = nmax = 29017). The minimum and maximum values of
both ϵ and a form a box that all initial particles are contained by. This box is [amin, amax]× [ϵmin,ϵmax]. Due to the many scatterings that
have taken place in system 3 (nmax = 29017), particles have exited this box. An orange dot on top of a blue dot means that that particle
still has the same eccentricity and semi-major axis as in its initial state, indicating that it was not involved in any scattering events.
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As can be seen in the report made by Jort Koks [9], the simulations go through an initial phase where the scatter
frequency is increasing. This is showcased for all systems in Figure 4.18.

Figure 4.18: nscatt plotted versus the time t in years for nscatt ≤ 200 for all systems with ϵmax = 0.4. nscatt = 200 was chosen due to all
simulated systems entering a phase of roughly constant scatter frequency after this scatter count. Some simulations take longer to enter
this linear phase of the graph, while other systems start off almost linear already.

After nscatt = 200, all systems go through a roughly linear period of growth. All systems exhibit a trend of
decaying growth for nscatt ≥ 200, to which a curve can be fitted. The curve that most closely matches the shapes
of the systems’ (t ,nscatt) plots is nscatt(t ) = nmax −ae−t/τ. In Figure 4.19 the resulting curve-fit for system 3 can
be found, fitted to values 200 ≤ nscatt ≤ nmax.

Figure 4.19: Number of scatterings of system 3 (200 ≤ nscatt ≤ nmax = 29017) plotted versus the time t in years. The dashed orange line
represents the results of a curve of shape nscatt(t ) = nmax − ae−t/τ fitted to the data. nmax can only be determined after the simulation
has been fully executed. The resulting fit parameters are a = 29802±3 and τ= (15483±3) ·102y.

4.4. Comparing different values for ϵmax
In Table 4.1 the results for 5 simulations per value of ϵmax ∈ {0.1,0.2,0.4} are compared. Using the fact that
nscatt(t ) = nmax − ae−t/τ can be rewritten as nscatt(t ) = nmax

(
1−e(t−t0)/τ

)
without loss of generality with t0 =

τ ln(a/nmax), we can find a time offset t0 for every simulation. The increases in final eccentricity due to scatter
events are shown in Table 4.2.
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ϵmax 〈nmax〉 〈a〉 〈t0〉 (y) 〈τ〉 (y)
0.1 (1.9±0.6) ·103 (2.6±0.5) ·103 (1.4±0.6) ·105y (4.3±0.9) ·105y
0.2 (9±5) ·103 (1.0±0.5) ·104 (1.1±0.4) ·105y (1±0.4) ·106y
0.4 (2.4±0.3) ·104 (2.5±0.3) ·104 (0.8±0.5) ·105y (1.8±0.3) ·106y

Table 4.1: Table with the mean values of various variables acquired by fitting a curve to the data showcased in Figures 4.1, 4.7 and 4.13. 3
values for ϵmax were used, running 5 simulations per value.

ϵmax 〈nmax〉 〈ϵ〉 f 〈ϵ〉 f /〈ϵ〉i

0.1 (1.9±0.6) ·103 (5.2±0.1) ·10−2 1.04±0.02
0.2 (9±5) ·103 (1.06±0.08) ·10−1 1.06±0.08
0.4 (2.4±0.3) ·104 (2.2±0.2) ·10−1 1.1±0.1

Table 4.2: Table with the mean eccentricity of the final state of multiple simulations. 3 values per value of ϵmax were used, running 5
simulations per value for a total of 15 simulations. Since ϵ is uniformly distributed, 〈ϵ〉i = ϵmax/2
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5
Discussion

In this section, the three main questions will be discussed. Furthermore, the shortcomings and oversights of
the Keplerian model and algorithm [11] will also be discussed. Since the research mainly focused on simulating
the generated systems until they became practically stable and then analyzing the results, we did not go into
the research with any expectations stemming from theory.

1. How does the initial maximum eccentricity ϵmax of a system relate to the total number of scatterings nmax

needed for a system to become effectively stable?

For the values of ϵmax ∈ {0.1,0.2,0.4}, 5 simulations were ran as can be seen in Figures 4.1, 4.7 and 4.13.
The value of 〈nmax〉 increases as the maximum eccentricity ϵmax increases as can be seen in Table 4.2.
This can be explained by an increasing eccentricity resulting in more orbits overlapping each other, as
the elliptical orbits get "flattened out" due to the increased eccentricity. A lower eccentricity means that
orbits are more circular, meaning that the difference in semi-major axis a between two objects needs to
be smaller for spheres of influence to intersect. The chance of this happening is low, as can be observed
in Figure 4.2b.

2. Is the total number of occurred scatterings nscatt related to the elapsed time t? If so, can we find a general
closed form formula nscatt(t ) to fit to the data?

As can be observed in Figures 4.6, 4.12 and 4.19, there is a closed form formula for nscatt(t ) that accu-
rately fits the data when fitted to nscatt ≥ 200. This formula is nscatt(t ) = nmax − ae−t/τ, where a is a
dimensionless parameter that has a value close to nmax, and τ is the time constant of the simulation
in years. As nmax increases, the error of the fit decreases as can be seen when comparing the standard
deviation for the fit parameters a and τ in the captions of Figures 4.6, 4.12 and 4.19. When rewriting the
formula to nscatt(t ) = nmax

(
1−e(t−t0)/τ

)
and looking at the value for t0 as seen in Table 4.1, we see that t0

is decreasing. This implies that for nscatt ≤ 200, we have a higher rate of collision as the ϵmax increases .
We also see that 〈a〉 approaches 〈nmax〉 as ϵmax increases, which makes sense when you consider that in
nscatt(t ) = nmax

(
1−e(t−t0)/τ

)
, nmax is the asymptote that the function nscatt(t ) approaches as it becomes

practically stable. The timescale 〈τ〉 also increases as ϵmax increases since it takes more time to reach an
effectively stable configuration. This implies that a higher value of ϵmax results in a longer simulation
runtime.

3. Can the total number of scatterings required for practical stability nmax be predicted based on the simula-
tion parameters?

From Figures 4.1, 4.7, 4.13 and Table 4.2, we see that for the 5 simulations per ϵmax, the value of nmax

varies wildly. This is due to the random and chaotic nature of the N-body system and the algorithm used
to evolve it throughout time. Since just a single collision mutates the orbital parameters of 1 or 2 planets,
this starts a domino effect where the mutated planet(s) now also interact with other planets. This implies
that we can not predict nmax based on the simulation parameters, or even give an interval in which nmax

lies. By running more simulations per value of ϵmax, it could be possible to find a confidence interval
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for the value of nmax, however these values strongly depend on the simulation parameter values and are
therefore specific to this set of parameter values.

Early behavior of initial state

As can be seen in Figure 4.5, Figure 4.11 and Figure 4.18, during the first 200 scatterings there is an increasing
rate of collision dnscatt

d t . However, the system was generated to be a uniformly homogeneous disk. This implies

that we do not expect dnscatt
d t to be initially increasing. It is not clear why the system always starts with an

increasing rate of collision, but it could have to do with the fact that the system is randomly generated. Physical
systems do not suddenly come into existence, and evolve towards this initial state, whereas in a simulation the
system is artificially created at an initial time t .

Arbitrary cutoff for formula fit

The cutoff for the early behavior of the initial state is arbitrarily set at nscatt = 200, without any further mo-
tivation besides empirical observations. This therefore is not supported by any theory or formulae, and the
exact cutoff for the early behavior can vary depending on the value of ϵmax or even the random generation of a
simulation. More simulations would need to be ran for the minimum value of ϵmax to figure out the minimal
nscatt needed.

Elastic gravitational scattering of close encounters

For close encounters, we simulate until the time t ′ of MOID (minimal orbit intersection distance). Once we
reach t ′, the new orbital parameter values of the planets involved are determined and updated to this new set
of parameters. This of course is not realistic, as it assumes that the planets do not exert any gravitational force
upon each other as they are getting closer and closer to the point of MOID. It therefore neglects interplanetary
gravitational forces up to a certain point, but this also has greater consequences for the simulation itself due
to it’s chaotic nature. If these interplanetary gravitational forces were taken into account during the approach
to the MOID, what would be simulated as a close encounter could physically end up as a direct collision. Due
to the chaotic nature of these systems, we could see significantly different results.

Linearisation of collision detection

To simplify a lot of the calculations necessary to run the algorithm and determine the evolution of the Keple-
rian system, interactions such as the gravitational scattering, direct collision and calculation of the MOID are
linearized. By calculating the MOID, we check if planets will even be involved in a scattering event. Due to the
chaotic nature of an N-body system, these seemingly inconsequential approximations quickly add up.

Inelastic direct encounters

It is assumed that any direct encounter between 2 bodies results in the merging of the bodies involved, with no
encounters resulting in fragmentation of a body. Another assumption made is that the direct collisions don’t
result in any change in axial spin of the merged planet, since the planets do not have a spin parameter. Spin
of course requires energy, which would mean that the resulting orbital parameter values would differ from the
collision without spin. It is also assumed that the bodies are spherical, which of course would not always be
the case after a collision between two bodies.

Planet ejection/destruction after scatter event

It is possible for scatter events of both kinds (close encounter and direct collision) to result in the ejection/destruction
of a planet. In the case of a destruction, the orbit would result in hitting the central mass, whereas an ejection
means that the planet no longer orbits the central mass. In both cases, a planet could undergo interactions
with other planets as it flies into the central mass/exits the solar system. This however is not accounted for in
the simulation. The simulation also does not take into account for the conservation of (angular) momentum
when such an ejection/destruction occurs.

Laplace sphere of influence

The Laplace sphere of influence sinf = r1
( m

M

)2/5 is not the only theoretical sphere of influence that determines
when the gravitational pull of the smaller body exceeds that of the central mass. The Laplace sphere is also
approximated to be spherical and uses an approximation resulting in a slightly bigger radius. The Laplace
sphere of influence decides when planets are close enough to meaningfully scatter each other through gravity,
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which combined with the chaotic nature of the N-body system heavily influences its evolution throughout
time.

Long-range gravitational interactions

The simulation does not take into account the effects of long-range gravitational interactions between objects.
An improvement to the simulation would be to take these gravitational forces into account. For an asteroid
belt there are not many significantly heavier masses, but as the relative difference between the lightest and
heaviest mass increases, the influence of the long-range gravitational interactions also increases. This has an
effect on the orbits of all planets, attracting the objects and their orbitals as time progresses.

Random nature of initial state generation

Due to the random nature of the generation of the initial states and chaotic nature of the algorithm, it is hard
to predict what the exact evolution of the (nscatt, t ) will look like. It is also not possible to fit a closed formula
function n(t ) before the value of nmax is determined by a simulation. This means that the simulation needs to
be ran until completion before we can have any clue about its properties.
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6
Conclusion

The goal of this research was to answer three questions related to the evolution of a generated initial N-body
Keplerian system, similar to an asteroid belt. Since the evolutions of the simulations completely depend on
the simulation parameters as described in Table 3.2 and the randomness, exact values of fit parameters or
values of nmax are not very useful. What is valuable however, is the patterns and correlations that can be
deduced from varying initial simulation parameters. We have shown that the number of total scatterings nmax

required for an effectively stable configuration varies significantly for identical initial simulation parameters.
The value of 〈nmax〉 does increase as ϵmax increases. Despite this variance, there exists a closed form formula
nscatt(t ) = nmax

(
1−e(t−t0)/τ

)
that accurately fits the data for every simulation.

Further research could vary the inclination Imax and semi-major axis [amin, amax] to see if these are also related
to nmax. Despite the fact that the inclination Imax and semi-major axis [amin, amax] are distributed in such a way
that the distribution always results in a uniform homogeneous disc, I suspect that a higher value of Imax and
larger interval [amin, amax] will result in a lower 〈nmax〉. This would be due to the sphere of influence staying
the same radius (same mass distribution), as the total volume of allowed space increases.
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