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Chapter 1

Introduction

High-tech industries depend on complex software-intensive systems that must continuously
adapt to rapidly changing market demands. However, this ongoing evolution often results
in the build-up of technical debt, complicating maintenance efforts. These systems are often
long-lived and outdated when compared to modern standards. We call these older systems,
legacy systems. This issue with legacy code underscores the need for effective strategies to
maintain the adaptability and functionality of these systems.

Legacy systems, maintained for many years, are often too costly to rewrite due to the
departure of original developers with specialized knowledge. Making significant changes is
risky and expensive, leading to updates through workarounds or wrappers. This increases
the codebase’s size and complexity, raising technical debt and the cost of the maintenance
process.

Understanding the system is already the biggest time-sink of the maintenance process
for developers (Minelli, Mocci, and Lanza 2015). It is estimated that 80% of the costs in a
software life cycle are spent on maintenance (Telea and Voinea 2011). The US government
spent 75% of its 2020 IT budget on legacy systems, of which two-thirds is estimated to be
"waste” (Krasner 2021). Waste is defined as a lean term that means all non-value-added
activities in an IT organization.

Technical debt (De Groot et al. 2012) consists of the cost of repairing the system to reach
an ideal code quality level (debt) and the additional maintenance costs of maintaining a sys-
tem that is not on an ideal code quality level (interest). This debt makes future development
riskier and more expensive, creating a cycle of increasing technical debt. To break this cycle,
long-term changes to the legacy system are necessary.

Refactoring, or restructuring code without changing its behaviour, can reduce technical
debt. Legacy code often has lower quality due to outdated practices and technologies. The
goal of refactoring is to improve the code structure while maintaining its behaviour. However,
manual refactoring is repetitive and error-prone, highlighting the need for better methods to
improve legacy code quality.

The repetitive nature of refactoring operations makes it an ideal venue for automation.
Various refactoring tools (Laar and A. Mooij 2022; Moderne 2024; Schuts et al. 2022) exist
that allow for large-scale automatic refactoring, but the issue is that they are usually tailored
specifically to one language or a selection of a few.

For example, Renaissance (Laar and A. Mooij 2022) is a tool developed by TNO for large-
scale code refactoring and analysis. It is a language-specific tool that currently works only
in a selection of a few languages. It has been used at the industrial level in companies such
as Philips (A.]J. Mooij, Eggen, et al. 2015) and Nexperia ITEC (Laar and A. Mooij 2022) to
refactor their legacy systems. It can be used to search for repeating code fragments and
rewrite them. It does this by allowing users to specify a concrete syntax pattern, which is a
pattern that looks like a piece of code. This pattern can then contain placeholders to capture
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1. INTRODUCTION

variables, values, or statements to use later in the rewriting stage. Using a concrete syntax
pattern is more intuitive for software engineers because it looks similar to code that would
normally be written. Concrete syntax patterns will be explained in more detail in Section
3.1.

Another example is CLAIR (Schuts et al. 2022), which has been used to perform semi-
automated migration of legacy test code written in C and C++. The system to be refactored at
hand used two different testing frameworks, a newer one being used for modern components
and an older one for legacy components. The goal was to migrate from the older testing
framework to the newer one. Without the automation of the process, this migration would
not have been conducted, and this is due to several risks such as risk of introducing errors,
risk of unexpected rework and a risk of loss of productivity. The language engineers were
able to use CLAIR and fit it to their problem at hand, perform automatic transformations.
This shows a need for this type of language tool that can perform automated refactoring.

At the core of these tools is a parser that converts source code into an Abstract Syntax
Tree (AST), a tree representation where each node corresponds to a code construct like if-
statements or for-statements. There are two main types of parsers: black-box parsers, which
are handwritten and language-specific, and generated parsers, which are created from a
parser generator that uses a grammar to generate a parser. Black-box parsers handle industrial-
level legacy code better but are more irregular, while generated parsers produce structured,
generic ASTs but struggle with complex legacy code.

The refactoring tools operate on the AST provided by the parser, which can vary in form
and information. Two types of ASTs are discussed: rich ASTs, which embed syntactic infor-
mation in the nodes of the tree itself, and property-based ASTs, which have generic nodes
with properties containing syntactic information. Both types store similar information dif-
terently, affecting how automatic tools are created based on them. A detailed explanation of
these two types and the differences and advantages of both and how property-based ASTs
can help make refactoring tools language-parametric is provided in Chapter 2.

The goal of this research is to make language tools more language parametric. Language
parametric (or agnostic) refers to being able to perform the same operations regardless of
language. If the tool requires zero input and additional effort from the user to work in dif-
ferent languages, we consider it to be language agnostic. If some effort has to be put in
(parameters have to be provided), we consider the tool to be language parametric. Ideally,
we want the tools we use to be language agnostic, but realistically, language parametric is a
more achievable approach.

Enabling refactoring tools to be language parametric is important for several reasons.
Having different tools for different languages results in requiring more manpower to main-
tain all these tools. New features also need to be implemented in multiple tools, even if they
share similar logic across languages. Software engineers that want to use the tools also have
to learn and understand using a new tool every time if they are refactoring different lan-
guages. Having ”one tool to rule them all” would result in more centralized development,
easier maintenance, and tool knowledge that carries over between languages for the engi-
neers using the tool. It would allow for a feature to be developed and be rolled out to mul-
tiple languages simultaneously instead of having to redevelop that feature. Having one tool
for all the languages imaginable is too idealistic, but concentrating tool development efforts
still remains a valuable cost-saving activity because of the aforementioned reasons. A tool
that would work on Java and C++, would allow the engineer to refactor one project in Java
and another in C+4 without having the extra burden of learning how a tool specific to C++
works. On the tool development side, hypothetically, if a new language feature is released in
Java that already exists in some form in C++ and already has tool support, developing that
feature for Java would require less effort.

What we aim to demonstrate is that using a property-based AST as the basis for a refac-
toring tool will make it easier for that tool to be extended with new languages. The transfor-
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mation that this tool provides is not guaranteed to be correct by construction. The burden of
checking for compilability and correctness should be delegated to the compiler/type-checker
and tests. These should follow the refactoring in the development flow. A compiler will al-
ready exist for a working language. Additionally, for large industrial projects, tests already
exist to test the code, so they can be reused after refactoring to check for correct behaviour.
If these tests do not exist, the project could be broken anyhow by any change, manual or au-
tomated. We demonstrate the feasibility and effort required of using a property-based AST
by adapting Renaissance with Tree-Sitter.

Tree-Sitter (Brunsfeld 2024) is a parser generator that can be used to create parsers for
a programming language given a grammar for that language. There are many grammars
available for popular programming languages. If there is a grammar for the language we
wish to use, the effort of using Tree-Sitter is almost negligible. The AST returned by a parser
generated from Tree-Sitter can be classified as property-based ASTs.

We adapt Renaissance to use Tree-Sitter as its parser. We then perform an evaluation on
the adapted Renaissance, comparing it to the original for validation of results. We measure
the effort it takes to use a new language in the adapted Renaissance in terms of lines of code.
We also measure the effort taken for the adaptation, factoring in time and effort to understand
the Renaissance codebase.

The results of this evaluation show us that a property-based AST does in fact allow for
increased extensibility of the tool and it mostly performs as expected. Some incorrect be-
haviour is observed, but this is not due to the approach of using a property-based AST, but
rather due to implementation issues within Tree-Sitter.

1.1 Research Questions

The main goal of this thesis is to explore the possibilities of making refactoring tools language
parametric. This allows for easier extension with newer languages as well as centralized
development for language refactoring support for multiple languages. We have narrowed
it down to focus on the intermediate representation of the target code on which such tools
would work. In this case, the AST is the intermediate representation. For this, we have the
following research questions:

1. What AST is best to simplify the addition of new languages in language tools or work-
benches? We want to maintain the same functional behaviour whilst we want it to be
easy to extend the tool with a new language. What properties do we need to extract
from the original AST for the tool components to remain functional?

e What is the right format for the intermediate AST representation to ensure tool
component interoperability without sacrificing performance?

e Does the needed structure and format of the AST intermediate representation dif-
fer for generated parsers and handwritten parsers?

e What information is lost during this process of mapping information from one
representation to another?

2. How do we adapt language tools and workbenches to make them more language para-
metric? Specifically, how do we make it effective and efficient to provide support for
new languages in such tools and workbenches?

1.2 Contributions

To answer these research questions, we make the following contributions:
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e We introduce a notion of an intermediate representation (property-based AST) for the
refactoring tool to use. We compare this to existing representations and show advan-
tages and disadvantages.

e We investigate how Renaissance (and similar tools) have to be adjusted to make them
more language parametric.

— We provide a proof of concept adapting Renaissance to Tree-Sitter.

— This proof of concept is used to give an estimate of the amount of effort it took to
adapt the existing tool.

— This also shows possible features that can be achieved with this property-based
AST. Features include using concrete syntax patterns to find and replace blocks
of code, and rewriting code based on code offsets which helps preserve layout
information.

— We analyse performance of the adapted Renaissance in comparison to the original
Renaissance in terms of speed, memory usage and correctness.

- We also give a rough estimate of how much effort was required for the adaptation
in terms of lines of code changed and time taken.

1.3 Overview

The rest of this thesis is split up as follows. Firstly, we explain the rich ASTs and property-
based ASTs in more detail and highlight differences and advantages of the property-based
AST in Chapter 2. We then dive into our proof of concept that we have built upon these
ideas in Chapter 3. Afterwards, we provide an outline of experiments done on this proof of
concept and some evaluation based on the outcome of these experiments in Chapter 4. We
then go over related works in Chapter 5. We will discuss our findings in Chapter 6. Lastly,
we conclude and recommend future work in Chapter 7.



Chapter 2

Rich ASTs versus Property-Based
ASTs

In this chapter we describe our conceptual contribution, the definition of property-based
ASTs. Section 2.1 will explain what an AST is in the most generic sense. Section 2.2 will
explain what a rich AST is. Finally, Section 2.3 will explain what a property-based AST is,
highlight its advantages, and compare it to rich ASTs.

2.1 Abstract Syntax Tree (AST)

Source code can be represented in different ways. The representation in which humans cre-
ate and modify source code is a text string inside some text editor or IDE. This is great for
humans because we are able to read the code clearly and make changes easily. Code is inher-
ently structured. For example, in an object-oriented programming language such as Java, we
write code in files, that consist of classes. Classes contain field declarations, methods, and
constructors. There is a clear structure to the way we write code. The issue for any compiler,
or tool, that has to perform operations or analysis on source code is that a text string is not
structured, so we need a representation in which we are able to utilize this structure.

A structured and formal way of capturing the syntax of a code string is called an Abstract
Syntax Tree (AST). An AST is a tree structure that represents the syntactic structure of the
code. An AST consists of nodes in this tree structure. A node can have children, with these
children representing smaller pieces of information. Each tree node represents a code con-
struct, such as a declaration or if statement, in the parsed code. We can use parsers to parse
code and retrieve an AST as the output of the parser. For example, an AST could have a file
as the top node, with classes in the file as the children of that top node. Those classes would
each be represented as a node, and would then have their respective children for their field
declarations, methods and constructors. A simple AST is shown in Figure 2.1. In this figure,
we can see that a variable assignment statement is split up into its constituent parts in the
tree.

ASTs were originally designed for static code analysis such as syntactical and semantic
checks on a program. However, as a secondary development, ASTs have been used as a basis
for pattern matching to enhance what can be achieved with only regular expressions. This
is because ASTs usually represent context-free languages, which are a superset of regular
languages. Pattern matching involves a pattern, and an instance or some source to match
against. The instance is often source code on which we are working. The pattern is some
smaller snippet of code that we want to find in this source code and that is specified by the
user. The pattern can have placeholder variables that match on anything. This allows the user
to specify repetitive generic pieces of code for the pattern. Both pattern code and instance
code are parsed to ASTs and we can then compare the nodes in these ASTs to see if they are
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2. Ricu ASTs versus PrRoPERTY-Basep AST's

Figure 2.1: Example of a generic AST representing an assignment to the variable x

matching or not. Because of the structure of an AST, this is very efficient. Once a mismatch is
detected, we immediately know that there is no match and we can stop searching. Another
advantage is that pattern matching can be done with arbitrarily large patterns because of
the recursive structure of ASTs. The specific type of pattern matching we are interested in
is called concrete syntax pattern matching and will be explained in more detail with code
examples in Section 3.1.1.

ASTs abstract away details so that the code can be used for a further purpose such as
compiling, or in our case, refactoring. How much gets abstracted away also differs per parser
and this is also one of the challenges we face. An example is layout information. Layout
includes things such as comments, whitespaces, indentation and parentheses. Layout does
not contain any semantical information so this is often lost during parsing because it is not
relevant to the functionality of the code. An AST is provided by a parser and is specific to
the language, and even to the parser. Different parsers for the same language can return
different ASTs. Some examples of parsers are Eclipse C/C++ Development Tooling (CDT)
(Foundation 2024) for C++ and libadalang for Ada (AdaCore 2024; TNO 2024).

2.2 Rich ASTs

We define rich ASTs to be ASTs that have syntactic information embedded in its structure.
This comes in the form of the types of the nodes itself, as well as the possible children and
attributes of those nodes. An example of an attribute could be the visibility of a class dec-
laration (public, private, protected). What attributes and types of children a node will have
will depend on the type of the node. For example, not all code constructs will have a visibil-
ity specifier so not all node types will contain that attribute. An example of an if-statement
can be seen in Figure 2.2. In the figure, we can see that the type of the node itself contains
syntactic information and that the relations between the parent and child are defined ex-
actly, and are dependent on the parent node. The node is forced to adhere to some contract
that we have defined. One of the means through which we can define this contract is a Java
interface or class. An example of a Java class definition of this if statement can be seen in
Listing 2.1. When dealing with this if-statement, we know exactly beforehand what possible
children there are and what attributes the if-statement can have. These types of ASTs are
parser-specific. The syntactic information is efficiently represented in the structure, and this
also allows for efficient and powerful code analysis, rewriting, and optimization. The draw-
back is that this hinders the language-extensibility of a tool chain using them, since they are
specific to one parser and therefore to one language.

6
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~ Conditional \

Statement

/ Compound
Statement

/ Compound N

Statement ‘

Figure 2.2: Example of a rich AST

getConseq()

I public class IfStmt extends Node {

3 private ConditionalStmt cond;
4 private CompoundStmt conseq;
5 private CompoundStmt altern;

6 private String content;

8 public Node getCond() {

9 return this.cond;

10 1

11

12 public Node getConseq() {
13 return this.conseq;

14 }

15

16 public Node getAltern() {
17 return this.altern;
18 1

19

20 public String getContent() {
21 return this.content;
22 )

23 }

Listing 2.1: Java class that defines an if statement node

An example of a parser that returns a rich AST is the Eclipse CDT parser. The Eclipse CDT
parser represents nodes as Java objects and has methods for the possible relations of each
node. The pattern matching algorithm in Renaissance will match on the nodes in the follow-
ing way. Given an instance node and a pattern node, it will first check that the types of the
nodes are equal, if they are equal, it will check the possible children of the node and possible
attributes such as field visibility or type specifiers. For the sake of brevity, a Java snippet of
the equality checking component of a pattern matching algorithm for two node types can
be seen in Listing 2.2. The example shows that by first discerning the type of the node, we

7
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then know exactly what attributes or children we have to check to ensure that the match is
correct. Pattern matching incorporates this equality checking and has additional logic for
the handling of placeholders that are found in the patterns. The handling of placeholders
is not in the code snippet. The important point to note is that for every node type, a piece
of logic has to be written to match on that node type. This will require effort, and for every
new language construct, corresponding logic has to be written if the tool wants to support
that construct. We want to avoid having to rewrite specific logic for each possible construct,
and that is where property-based ASTs can help us.

1 public boolean match(Node pattern, Node instance) {

2 if (pattern instanceof IfStatement && instance instanceof IfStatement) {
3 return match(pattern.getCond(), instance.getCond())

4 && match(pattern.getConseq(), instance.getConseq())

5 && match(pattern.getAltern(), instance.getAltern());

6 }

7 if (pattern instanceof ClassFieldDeclaration

8 && instance instanceof ClassFieldDeclaration) {

9 return match(pattern.getVisibilty(), instance.getVisibility())
10 && match(pattern.getFieldType(), instance.getFieldType())

11 && match(pattern.getFieldName(), instance.getFieldName());

14 // ... cases for every node type

16 return false;

Listing 2.2: Java snippet of a equality checking in a pattern matching algorithm using a rich
AST

2.3 Property-Based ASTSs

We define property-based ASTs to be ASTs that have a generic node structure, but contain
syntactic information in the node properties. These node properties consist of the type of
the node, relation to its parent, text content and offset. Language-specific properties can also
be added but this is not in the scope of this project. An example of an if-statement can be
seen in Figure 2.3. We can see that the properties of the node are added to the node as a
sort of dictionary. This allows the language engineers to generalize the functionality of their
written code since they do not need to take the possibly different structure and type of nodes
into account when extending to new languages. This is in contrast to the rich AST described
earlier, where we had to create logic for every type of node possible. A pattern matching al-
gorithm for a property-based AST could look like the following. Given a pattern and instance
node, we first check if they have the same type by retrieving the type property of the node
from each node. If they match, we can then recursively match each child node in pattern and
instance node, and return a match if all the children match. A commented Java snippet for
the algorithm just described is available in Listing 2.3. Note that the actual pattern matching
algorithm also needs to be able to handle placeholders, so this is a simplified version where
we only care about pattern matching regular code. Logic wise, this is very similar to the pat-
tern matching algorithm described for rich ASTs, but code wise, the logic only needs to be
written once and can then be applied to all possible node types.

8
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( Relation: null B
J Type: “if statement”
P - Offset: [0, 25] )
¢ AST Node )
getChild(0) getChild(2)
a8 N _ e N
( | getChild(1) y N
| 4 . ASTNode
Relatlt?rl: COhdIFIOT)’a| — i Relation: “alternative”
Type%f ex.pre55|on J Type: “compound statement”
Offset: [0, 5] A Offset: [15, 25]

y N
L AST Node )

Relation: “consequence”

p

Type: “compound statement”
Offset: [5, 15]

Figure 2.3: Example of a property-based AST

I public boolean match(Node pattern, Node instance) {
// Check type

N

3 if (!pattern.getType().equals(instance.getType())) {

4 return false;

5 3

6 // Check amount of children

7 if (pattern.getChildren().size() != dinstance.getChildren().size()) {
8 return false;

9 !

10 // Match children
11 int children = pattern.getChildren().size();

12 for (int i = 0; i < children; i++) {

13 // Match per child

14 if (!match(pattern.getChild(i), instance.getChild(i))) {
15 return false;

16 }

17 }

18 // Passed all the checks so return true

19 return true;

20 }

Listing 2.3: Java snippet of a simplified pattern matching algorithm using a property-based
AST

This representation still allows for customised code analysis and rewriting but is less efficient
than its rich counterpart. More checks have to be performed to ensure that we are in a valid
state, whilst when using a rich AST, this is ensured by the structure of the node itself. An
example is during the process of rewriting a node. When replacing or changing an existing
node with a rich AST, we are forced to create a node that satisfies the structure of the node.
When doing this with a property-based AST node, there is more freedom and as a result,
more caution has to be taken when working with this. To give a concrete example, if we
want to rewrite a for-loop into a while loop, with a rich AST, we are forced to provide a

9



2. Ricu ASTs versus PrRoPERTY-Basep AST's

conditional statement for the while loop because this is the structure of that specific node.
This is not the case for a property-based AST. We can provide a parent node that is typed
as a while loop without any conditional statement as its children. This would result in an
ill-formed AST. This problem can arise when we want to rewrite the AST itself. If we want
to rewrite the source code based on text rewriting, this issue disappears. Section 3.1 will give
some reasoning as to why text rewriting is preferred over AST rewriting for transformations.

The light design of the property-based AST allows other ASTs to be mapped to a property-
based AST in an easy manner. Engineers would need to extract the type of the node, the
relations between each node and the names of those relations, offset and text content and
they could then create a property-based AST by populating the respective property fields
for each node. Because the node itself is generic, we do not need to translate the type of the
node exactly to a matching type in this property-based representation, we can just store the
type as a property.

When comparing these two types of ASTs and the pattern matching algorithm described
with each of them, we notice some differences and similarities. First the similarities, the
two ASTs contain essentially the same information, but represented differently. For pattern
matching, we are also interested in the same information, namely, is the instance the same
syntactically as the pattern? The main difference is in the code written in the language tool
that uses these ASTs. In the case of a rich AST, we get a lot of guarantees from the structure
of the nodes and we are able to safely assume properties and children of each node, resulting
in clean and safe code. This comes at the cost of having to specify behaviour for every type
of node, since they are not generic. On the other hand, a property-based AST requires more
checks in the code to make sure that the instance matches the pattern, but the advantage
here is that this can be done generically, and therefore does not require writing specific logic
for every possible node type. However, the main advantage is the language extensibility of
a tool written with a property-based AST because it is easier to map a rich (or any) AST to a
property-based AST than it is to map any AST to a rich AST. Property-based ASTs can also
be obtained through the means of generated parsers, such as Tree-Sitter (Brunsfeld 2024).
These two factors combined mean that property-based ASTs are easy to obtain for multiple
languages. Therefore, a tool that uses a property-based AST as its base will be easier to utilise
for multiple languages.
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Chapter 3

Renaissance Adaptation with
Tree-Sitter

This chapter describes the proof of concept that we have built. We have adapted an existing
tool called Renaissance with a parser generator that returns ASTs that can be seen as property-
based ASTs. This adaptation shows a possible application of our conceptual contribution and
also allowed us to measure the amount of time and changes needed to adapt an existing tool
to our idea. It will also show that certain desired features are possible to be implemented
with this approach. Section 3.1 will go into detail about the desired features themselves and
the reasoning behind them. Section 3.2 will explain the adaptation.

3.1 Desirable Features

This section will explain some features that Renaissance already has and why we would want
to preserve those features.

3.1.1 Concrete Syntax Patterns

A way to help the engineers refactor code is through the use of concrete syntax patterns.
Concrete syntax patterns are blocks of code, that look like real code but can have placeholders
for parts of it. The advantage of this is that it is very familiar to the user. And at the same
time, it allows for specifying repetitive parts of the code. One alternative would be to specify
an abstract syntax pattern, but working with abstract syntax patterns is more cumbersome
and results in having to write large patterns for small pieces of code. To give an example, for
a simple piece of code such as the code in Listing 3.1, the Eclipse CDT parser abstract syntax
pattern looks like Listing 3.2. Another alternative would be to use regular expressions, but
the learning curve with regular expressions is quite steep (Andersson and Hansson 2020)
and it is much more intuitive for the users to work with something that looks similar to what
they have worked with before.

| —CPPASTSimpleDeclaration
2 -CPPASTSimpleDeclSpecifier
3 -CPPASTDeclarator
1 int x = 5; 4 —-CPPASTName
Listing 3.1: Simple line of code g CPrerEmalErmEe L
6 -CPPASTLiteralExpression
Listing 3.2: Abstract syntax pattern for a sim-
ple line of code

11



3] o~ e8]

-

N

3. RENAISSANCE ADAPTATION WITH TREE-SITTER

There are two types of placeholders that can be used in a concrete syntax pattern. There
are single placeholders and multiple placeholders. An example with a single placeholder
is shown in Listing 3.3 and Listing 3.4. In this example, we want to match on any if-else-
statement. In Listing 3.3, we have the code that is being analysed, and in it, a fragment of the
code that we want to find. Listing 3.4 shows the code fragment that we want to find. This
code fragment is written by the user. The dollar sign indicates a single placeholder variable.
For example, $COND is a single placeholder that will match on any single statement in the
conditional clause. This placeholder and its value can later be used when refactoring the
code. $TRUEBRANCH and $FALSEBRANCH will both match on any single statement in that block of
code. In this example, the tool will match on lines 2-6 of Listing 3.3, since this matches the
pattern specified.

public boolean biggerThanFive(int x) {

if (x > 5) { 1 if ($COND) {
return true; 2 $STRUEBRANCH;
} else { 3 } else {
return false; 4 $SFALSEBRANCH;
} 5}
¥ Listing 3.4: The concrete syntax pattern
Listing 3.3: The code in which we want to with three single placeholders
match

The second type of placeholder is the multiple placeholder. The multiple placeholder will
match zero or more nodes. We are able to match on multiple placeholders using a double
dollar sign. An example of this is given in Listings 3.5 and 3.6. In the example, we can see
that we have used a multiple placeholder to match on the arguments passed to the function
call. In this case, the value of the multiple placeholder will be x, y.

Multiple placeholders can also match on whole lines of code. Another pattern is shownin
Listing 3.7. This pattern will match on any block of code that starts with int x = 5; followed
by an arbitrary amount of statements. In this case, the value of the multiple placeholder will
be the two lines of code on lines 3 and 4.

public void createlLocalVariables() {

int x = 5; ,

) 1 int z = addTwoValues ($$ARGUMENTS) ;

int y = 10;

int z = addTwoValues(x, Vy); Listing 3.6: The concrete syntax pattern

} with a multiple placeholder capturing

Listing 3.5: The code in which we want to multiple arguments

match

int x = 5;

$$STATEMENTS;

Listing 3.7: The concrete syntax pattern
with a multiple placeholder capturing
multiple statements

3.1.2 Matching Based on Abstract Syntax Tree

When searching for code fragments, we want the user to be able to input concrete syntax
patterns, but under the hood we want to match on the AST that corresponds to the concrete
syntax pattern. This is because the AST will abstract away from details that are syntactically
unimportant. This allows multiple concrete syntax patterns to map to the same AST. Things

12



3.2. Proof of Concept

such as layout, spacing and comments can be (optionally) ignored. This ensures that the
tool will look for code fragments that are syntactically equivalent, regardless of how the
code looks. Listings 3.8, 3.9, and 3.10 show three examples of a piece of code that parses to
the same AST but are different in concrete syntax due to extra spaces or indents.

int x = 53 1 int X = 5 H 1 int X = 5

Listing 3.8: Example 1 Listing 3.9: Example 2 Listing 3.10: Example 3

3.1.3 Code Rewriting Based on Offsets

The previous subsection explained why matching based on ASTs is desirable, however this
approach ignores certain elements of the code in the matching process. Most notably, com-
ments and layout are ignored. If we are only searching for specific patterns, this is not a
problem but if we want to also rewrite matched code fragments, it becomes a slight problem.
Rewriting a code fragment by modifying the AST can cause the layout (amount of indenta-
tions, spacing, etc) to be incorrect. This is caused by the pretty-printer that converts the AST
back into a block of code. Since ASTs do not contain such layout information, the original
layout information will be lost and replaced with layout information that is determined by
the pretty-printer. Although this is not a problem for the functionality of the program, itis a
problem for the developers maintaining it because it affects the readability of the code. How-
ever AST nodes contain information about the location of the node itself. This is referred to
as an offset. An offset is either a combination of the row and column of the start and end of
the AST node in the source file, or two integers indicating the start and end point of the AST
node in the source file in terms of characters. Using the second definition, an AST node that
has offsets 15 and 25 means that the node starts at the 15" character (inclusive) and ends at
the 25 character (exclusive) of the source file.

To minimize losing layout information, rewriting based on the offsets of a matched pat-
tern in the target is the preferred approach. The text to be rewritten to is specified as raw
text and is used to rewrite the matched pattern. The location of the text to be rewritten is
specified by the offset. The entire matched pattern gets replaced with the text to be rewritten
to. If this is done in a back-to-front manner, the rewriting only changes the matched code
fragments and leaves the rest of the code as it was.

The trade-off for using text rewriting when compared to using rewriting based on a mod-
ified AST to implement transformations is the correctness of the code for the compiler. The
text rewrite does not need to adhere to any compiler rules and could be anything. This may
result in code that does not even compile, or pass tests. This is where the code compilation
check and test run that follows a refactoring come into play. Industrial software systems will
have these things incorporated in their development pipeline based on standard industrial
software practices (Fluri, Fornari, and Pustulka 2024).

3.2 Proof of Concept

Our proof of concept involves adapting Renaissance (Laar and A. Mooij 2022) and replacing
the CDT parser with a generated parser from Tree-Sitter (Brunsfeld 2024). Tree-Sitter ASTs
are akin to the notion of propety-based ASTs that we have defined in the previous chapter,
and Tree-Sitter already supports a large number of languages (more than 80) that are main-
tained by a community.

3.2.1 Renaissance

Renaissance is an existing language tool developed by TNO (Laar and A. Mooij 2022; A. ].
Mooij, Eggen, et al. 2015; A. J. Mooij, Ketema, et al. 2020). This approach has previously been
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3. RENAISSANCE ADAPTATION WITH TREE-SITTER

used with success for code transformations on large-scale industrial codebases (A. J. Mooij,
Eggen, et al. 2015; A. J. Mooij, Joy, et al. 2016). Renaissance supports various features such as
concrete syntax pattern matching, code refactoring, and creating code graphs from multiple
source files. Renaissance can detect single and multiple placeholders and use them in the
rewriting. The default for this is the single- and double-dollar sign. Extending Renaissance to
different languages has been a major time sink in the past, so this also shows a very applicable
use case of using property-based ASTs to make refactoring tools more language-parametric.

The pattern matching component of Renaissance is called Rejuvenation and currently
utilises a language-specific representation of the AST to function. This makes it harder to
extend the Rejuvenation library to other languages a big part of it would have to be rewritten
to fit to another parser. The components of the library are handwritten to match these specific
parsers. If we want to plug in a different language or even a different parser for the same
language, we would need to rewrite the whole tool to fit to this parser.

There are currently two versions of Renaissance, one for C++ using the CDT parser
(Foundation 2024) and one for Ada (TNO 2024) using Libadalang (AdaCore 2024). The
one that we will be using for the adaptation is the one for C++.

3.2.2 Tree-Sitter

Tree-sitter (Brunsfeld 2024) is a parser generator tool. Given a grammar that defines a lan-
guage, it will parse the source code into a tree of that language. It parses the source code
into a Concrete Syntax Tree (CST). This entails that it parses every individual token, even
things such as parentheses or semicolons. It is possible to treat this CST as an AST because
Tree-sitter differentiates between named and anonymous nodes. Named nodes contain the
important details that are needed for an AST to function whilst unnamed nodes contain less
important information, such as string literals like parentheses or semicolons. Anonymous
nodes are represented in the grammar as simple strings while named nodes have been given
explicit names in the grammar. If the user only uses the named nodes, the CST that Tree-sitter
provides functions as an AST.

In the Java binding (Bonede 2024) that we use, nodes are represented as Java classes
with fields for type, children, text content, offsets and other properties. This makes it adhere
to our definition of a property-based AST and makes it a good fit for testing the language
parametricity of property-based ASTs. It also contains utility functions for tree-related oper-
ations such as retrieving siblings or finding descendants within a given byte (offset) range.
Our focus is on the genericness of the AST and the representation of types, text content and
offsets as fields (properties) of the node.

The advantage of Tree-sitter is that the tree provided is generic, even for different lan-
guages and thus we are able to reuse code written for the tree of one language for another.
It also has written grammars for most common languages, so they are supported out of the
box when using Tree-sitter.

3.2.3 Adaptation

We can use Tree-Sitter to make Renaissance more easily extendable whilst maintaining access
to the useful features it provides. Our aim was to replace the CDT parser in Renaissance with
the Tree-Sitter generated parsers. A version of Renaissance is available in Java, and there is a
Java binding for Tree-Sitter (Bonede 2024). To plug in the Tree-Sitter generated parsers, we
had to adapt the Renaissance tool itself to be more generic because it was written in a way to
work on specific CDT nodes. Figure 3.1 shows the structure of the original Renaissance and
Figure 3.2 shows the structure of the adapted Renaissance. By giving Tree-Sitter a grammar,
it will generate a parser for us based on that grammar. We can then use this parser as the
base of Renaissance. These figures also highlight the increased language-extensibility of the
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adapted Renaissance because all that we need to provide is a grammar for a new language.
Most of the changes for the adaptation had to be made in the Rejuvenation component of
Renaissance.

Renaissance

Rejuvenation Fluent
(Pattern Matching) (Code Rewriting)

N

Other components/
features
- CDT
Parser

Figure 3.1: Simplified diagram of the structure of the original Renaissance

Renaissance

Rejuvenation Fluent
(Pattern Matching) (Code Rewriting)

S

Other components!
features
© Tree-Sitter
C++ Java Python
Grammar Grammar Grammar

Figure 3.2: Simplified diagram of the structure of the adapted Renaissance. These three
grammars only serve as examples and Tree-Sitter is not limited to only these three.

The original implementation used CDT nodes that were represented as Java objects to
perform the various features. There was logic for every possible CDT node type. We copied
the classes that dealt with these CDT node types and changed them to use Tree-Sitter nodes.
The logic that was not related to the pattern matching on the nodes was left as it was. The
only exception being the logic that detects placeholders. Because some languages do not
support dollar signs in their syntax, an extra check has to be added to check if a placeholder
passed is valid in the language undergoing refactoring. This resulted in a large portion of
duplicate code, but this allowed us to easily switch between the original implementation and
the adapted implementation for experimentation purposes.
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3. RENAISSANCE ADAPTATION WITH TREE-SITTER

Issues

There was an issue with the Java binding that involved concurrent memory accesses. For
example, a small case that only matched a single statement pattern to a single statement target
code worked. But as soon as we added more complexity in the form of more statements or
placeholders, we ran into the JVM throwing a memory access violation. We tried accessing
the tree in a separate project with the same pattern and target codes, but without all the
complexity that came from the Renaissance implementation, and it worked as expected. So
we speculate that the issue is caused by something in Renaissance that clashes with the Java
binding. We conjecture that this is based on concurrent memory accesses in the JVM. The
Java binding uses native methods to provide its functionality. This means that the actual
methods are written in a different language, in this case it is C. The way the JVM handles
this is that it allocates memory for the non-Java part of the application separately. We think
that the issue is that the Java binding does not allow for multi-threading because it throws
memory access violation exceptions when trying to use the binding in the tool. To circumvent
this, we implemented a workaround where we copied the retrieved AST from the Tree-Sitter
Java binding into a custom Java object. This ensures that all the memory accesses remain in
the Java-part of the JVM. However, this is slower and takes up more memory because we are
duplicating the tree.
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Chapter 4

Evaluation

This chapter will go over the experiments we have performed and the results of those. The
focus of the experiments is to measure various metrics, such as effort required, correctness
of output and ease of extendibility with a new language. We will also look at the amount
of effort it took for the adaptation itself, measured in time, and lines of code. The goal of
this evaluation is to test on a few quality metrics. These quality metrics will be explained in
Section 4.1. The experiments will be explained in more detail in Section 4.2. Section 4.3 will
go over the results of performing the experiments.

4.1 Quality Metrics

The goal of the evaluation is to test two things. Firstly, we want the adapted Renaissance to
be easily usable in multiple languages, so we want to test the ease of plugging in a new target
language for refactoring. Secondly, we also want to make sure that the adapted Renaissance
exhibits the same behaviour as the original.

We measure the effort to plug in a new language based on how many lines of code need to
be changed, and how much knowledge is required from the developer. We measure the cor-
rectness of the adaptation by comparing the two versions and performing refactoring opera-
tions with them. If they both return the same results, we know that the observable behaviour
is the same.

We also measure the speed and memory usage of the two versions. This is in order to give
an impression of the performance of the adapted Renaissance in comparison to a benchmark
(the original Renaissance). We aim to measure the speed in milliseconds and the memory
usage in megabytes.

We also measure the effort taken to develop the adaptation. This will be done in terms of
lines of code changed and time taken in months.

4.2 Experiments Outline

We have created experiments that test various features, and we measure the effort and the cor-
rectness of those experiments. Correctness here means the difference between the expected
output versus the actual output and we are interested in what might cause the disparity.
An overview of the experiments is given in Table 4.1. The idea is that we want to com-
pare our adapted Renaissance to the baseline, which is the original Renaissance implemen-
tation that works on C++. We measure the amount of lines of code that need to be added or
changed. We realize that this is not a perfect measurement, but it should give a general idea
of how much effort it takes to perform these experiments. The first two experiments men-
tioned in the table are the simpler experiments and test the basic functionality of the tool. The
last experiment involves using JsonCPP exercises to test the refactoring and pattern matching
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capabilities on bigger codebases and with more complicated cases. The JsonCPP exercises
we refer to are some exercises that are made to get users that are unfamiliar with Renaissance
up to speed with it. The exercises contain several refactoring and analysis problems that are
to be performed on an open source library called JsonCPP (Lepilleur 2024).

H Experiment ‘ Features Tested H

Extending the Renaissance Java implementa- | Extensibility of tool
tion with a new language via Tree-Sitter
Comparative analysis of simple code rewrit- | Pattern matching, replacing, pat-
ing (i.e. function parameter swap) in C++, | tern creation

Java and Python
JsonCPP exercises in C++ and Python Pattern matching, replacing, pat-
tern creation

Table 4.1: Experiments and their tested features

4.2.1 Extending Renaissance

The first experiment covers the effort of extending Renaissance with a new language. Specif-
ically, we want to measure what the refactoring engineer needs to do to be able to use Re-
naissance with their desired language. This is measured in lines of code and in a qualitative
estimation of the knowledge required to do so. We extend Renaissance with Java and Python
because we require it for the subsequent experiments.

4.2.2 Simple Code Rewriting

The second experiment covers using adapted Renaissance to do basic pattern matching and
code transformations. We use small excerpts of code and small patterns to find and replace
code. We want to do this in multiple languages, so we aim to use the same code fragments
in different languages, even if the syntax is different. The approach was to create test cases
in C++ first. Then translate these test cases to other languages, specifically Java and Python.
Listing 4.1 shows a piece of code in C+4 before rewriting, with Listing 4.3 showing the
pattern we want to find in this piece of code. We want to replace the found pattern with
the pattern in Listing 4.4. After applying this, we want to get the code in Listing 4.2.

void main() {
other_func(3, 1);
some_func(2, 4);

void main() {
some_func(1l, 3);
other_func(4, 2);

@ N =

4 X = 7;

X = 3;
} i
Listing 4.1: The test case before rewriting Llsm.lg 42: The expe‘cted test case after
(C++) rewriting (C++). Notice the switched pa-

rameters

$CALL1($ARGL, $ARG2);
SCALL2 ($ARG3, $ARG4);

$CALL2 ($ARG2, $ARG1);
SCALL1($ARG4, $ARG3);

N

$VAR = 3; 3 $VAR = 7;
Listing 4.3: The pattern we want to find Listing 4.4: The pattern we want to re-
(C++) place with (C++)

The same execution can be seen for Java and Python in Listings 4.5, 4.6, 4.7, 4.8 and 4.9,
4.10, 4.11, 4.12, respectively. Note that for Python, we use a different placeholder because
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Python does not allow for dollar signs in its syntax. The single dollar sign is replaced by ss__
and the double dollar sign is replaced by mM__. Caution has to be taken with this, because it

could conflict with variable names.

public static void main() {
some_func(1l, 3);
other_func(4, 2);
X = 3;

}

Listing 4.5: The test case before rewriting

(Java)

$CALL1($ARGL, $ARG2);
SCALL2 ($ARG3, $ARG4);
$VAR = 3;

Listing 4.7: The pattern we want to find
(Java)

def main():

some_func(l, 3)

other_func(4, 2)

x =3
Listing 4.9: The test case before rewriting
(Python)

SS__CALL1(SS__ARGl, SS__ARG2)
SS__CALL2(SS__ARG3, SS__ARG4)
SS__VAR = 3

Listing 4.11: The pattern we want to find
(Python)

[SSHE N}

'S

@ N &3}

w N —_

N —_

W

public static void main() {
other_func(3, 1);
some_func(2, 4);
X =7,
I}
Listing 4.6: The expected test case after
rewriting (Java). Notice the switched pa-
rameters

$CALL2($ARG2, $ARG1);
SCALL1($ARG4, $ARG3);
SVAR = T7;

Listing 4.8: The pattern we want to re-
place with (Java)

def main():

other_func(3, 1)

some_func(2, 4)

X =7
Listing 4.10: The expected test case after
rewriting (Python). Notice the switched
parameters

SS__CALL2(SS__ARG2, SS__ARG1)
SS__CALL1(SS__ARG4, SS__ARG3)
SS__VAR = 7

Listing 4.12: The pattern we want to re-
place with (Python)

In this manner, we can test the correctness of the C++ transformations with the original
Renaissance implementation to compare. This does not work for other languages directly,
but we can know from the C++ test case what the results should be for the other languages.

4.2.3 JsonCPP exercises

The following exercises were performed:
1. Print the AST of one file.

2. Find a specific statement in all the files and report its location and show its AST. The
specific statement can be seen in Listing 4.13.

3. Create an inheritance tree of all the classes, using classes and their parents.

4. Match on a specific pattern and replace it with a different code fragment using place-
holders. The specific pattern with placeholders can be seen in Listing 4.14. We want to

replace it with the pattern in Listing 4.15.

5. Count the amount of pre and post-increments/decrements in the update expression of

forloops. Afterwards, change post-increments/decrements to pre-increments/decrements.

19



N —_

W

N —_

(63}

&3]

N -

(e8]

&3]

4. EvaLuATION

6. Match on a pattern that describes a code fragment that joins elements using a separator.
Afterwards, transform them into more complex or simpler code fragments. The differ-
ent patterns with differing levels of complexity can be seen in Listings 4.16, 4.17 and
4.18. The transformations were done with the goal of transforming the code fragment
into one of the other patterns.

7. Count the amount of four different if statements without else clauses: The amount in
general, if statements with brackets, if statements with brackets and a single statement
in those brackets, and finally if statements without brackets.

I Token token;
> token.type_ = STYPE;

3 token.start_ = S$START;
Listing 4.13: The statement we want to 4 token.end_ = $END;

find for Exercise 2

document_ += ',';

Listing 4.14: The pattern we want to find
for Exercise 4

Token token {$TYPE, SSTART, $END};

Listing 4.15: The pattern we want to replace with in Exercise 4

for ($T $INDEX = $BOUND; $INDEX < $SIZE; ++$INDEX) {
if (SINDEX > $BOUND)
$SEPARATOR_STATEMENT;
$SASSIGNMENT_STATEMENTS;

Listing 4.16: The simple pattern we want to find for Exercise 6

for ($T $INDEX = $BOUND; $INDEX != $SIZE; ++$INDEX) {
$SINITIAL_STATEMENTS;
if ($INDEX != $BOUND)
$SEPARATOR_STATEMENT;
$SASSIGNMENT_STATEMENTS;

Listing 4.17: The medium pattern we want to find for Exercise 6

$T SINDEX = $BOUND;
for (53) {
SSINITIAL_STATEMENTS;
if (++$INDEX == $SIZE) {
$SLAST_STATEMENTS;
break;
)
$$SEPARATOR_STATEMENTS;;
$SLAST_STATEMENTS;

Listing 4.18: The complex pattern we want to find for Exercise 6

424 Time Taken and Memory Usage Measurements

To measure the time taken and memory used for the various tasks, we used a simple ap-
proach. Before each task, the time was noted using Java’s built-in System.nanoTime() and
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the memory was noted using the Runtime class in Java. We also collect garbage first to at-
tempt to minimize the memory in use and to avoid inaccuracies. The same metrics were
measured again after the task was completed, and the difference shows us the time taken and
the amount of bytes used. An example of the code written for this is shown in Listing 4.19.
We do this five times for each task and take the average. This is in order to minimize noise
through factors such as garbage collection or JVM optimization. The results will initially be
retrieved in nanoseconds and bytes, but we convert them to milliseconds and megabytes,
respectively. The goal of taking these measurements is to give a realistic impression of the
performance of the adapted Renaissance and to compare it to the performance of the original.
This can be used to gauge whether this approach is feasible in a real-world situation. Since
these micro-measurements will not give a good insight on a small task, we will not use these
for the simple code rewriting tasks.

long startTime = System.nanoTime();

Runtime runtime = Runtime.getRuntime();

// Collect garbage first

runtime.gc();

long beforeUsedMemory = runtime.totalMemory() - runtime.freeMemory();

runTask() ;

long afterUsedMemory = runtime.totalMemory() - runtime.freeMemory();

double memoryUsed = (afterUsedMemory - beforeUsedMemory) / (Math.pow(10, 6));
double elapsedTime = (System.nanoTime() - startTime) / (Math.pow(10, 6));
System.out.println("Time used by task: " + elapsedTime + " ms");
System.out.println("Memory used by task: " + memoryUsed + " megabytes");

Listing 4.19: The code to measure time taken and memory used

4.3 Results

This section will go over the result that we obtained. Firstly, the results of the experiments
are explained in Subsection 4.3.1. The adaptation effort is also covered in Subsection 4.3.2.

4.3.1 Outcome of Experiments
Supporting new languages

The adaptation allows for easy plugging in of new languages given an existing Tree-Sitter
grammar for the language. The users only need to provide the node type name of the node
that syntactically represents a compound statement or block. This is needed for some match-
ing logic in the tool. Specifically, the matching algorithm needs to detect when we are dealing
with a compound statement to match on all the statements that are in the compound state-
ment. Other than this, the other potential thing that has to be manually added is placeholder
names for languages that do not allow for the dollar sign in their syntax. By default, the sin-
gle and double dollar sign are used for single and multi placeholders, respectively. However,
some languages, such as Python, do not allow dollar signs and will therefore not parse cor-
rectly. The addition of this language parametric information has to be done in two files and
will then be propagated throughout the tool. It only requires adding about 20 lines of code.
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Simple code rewriting

Simple code rewriting was tested and found to be correct and easy to switch between lan-
guages. One test case and pattern in multiple languages was described in Section 4.2.2.
Things such as (single and multiple) placeholders, statements, variables, and replacing all
worked as expected.

From the perspective of an engineer using adapted Renaissance, their knowledge of how
Renaissance works and functions on one language can be carried over to another one. Natu-
rally, they would need to know the syntax of the new language but there would not be the
need of learning or setting up a new tool (with the potential exception of the small changes
mentioned previously).

JsonCPP exercises

For each of the exercises, the experience and results are explained here.

Print AST This was a straightforward exercise that worked. All we had to do was use the
adaptation and its classes instead of the original classes, with C++ as the language.

Find a specific statement We could use the same pattern and code used in the original
version here. The same locations were matched, so that means the behaviour was identical.

Create inheritance tree This exercise did not give identical behaviour. This was due to the
pattern used and an error in the logic of our adaptation. The pattern used is shown in Listing
4.20. This pattern should match on any class and remember its parents in the $$PARENTS
placeholder. More specifically, it can be 0 or more parents. However, our adaptation requires
at least one parent for it to function, so the resulting inheritance tree is incorrect.

I class $CLS : $$PARENTS { $$DECLARATIONS; };
Listing 4.20: The pattern used to find classes and their parents

Match on a specific pattern and replace This exercise works as expected. It also showed
that rewriting files works, although a noteworthy thing is the indentation. The indentation
looks different, but this also applies to the original version.

Count pre and post-increments/decrements in for loops This exercise does not work as
expected. This is due to the fact that the adaptation does not differentiate between --$ITER
and $ITER--, and identically for ++$ITER and $1TER++. This is due to the way the matching
algorithm is implemented. A different approach was used to circumvent this problem. In-
stead of having separate patterns for pre-increment, post-increment, pre-decrement, post-
decrement, a single pattern capturing them all, and afterwards filtered to count the pre and
post-increments. A more detailed explanation of this will be given in Section 4.3.1.

Match on a generic pattern and replace This generally works as expected, but there are
some incorrect matches that have the same root cause as the errors in the increment counting
in the for loops. On the correctly matched patterns, it did perform the rewriting correctly.
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Count if statements The exact amount of matches can be found in Table 4.2. The table
shows the results of the original Renaissance and the adapted Renaissance. The table shows
a disparity between the two versions. The disparity can be attributed to various factors, one
of them being the macros in C++. Upon closer inspection of some of the matches, we noticed
that there are matches that originally originated from a macro. The pre-processing step of
C++ is done in the original Renaissance implementation, but for the adaptation, this was left
as a lower priority task and, therefore, not implemented. This explains some of the difference
between the two versions. An important point to note is that the amount of if statements with
brackets and without brackets should add up to the total amount of if statements found. This
holds for both versions of Renaissance.

H If statement type (without else clauses) Original Adapted H
Any if statement 1065 816
If statement with brackets 496 323
If statement with brackets and a single statement | 304 147
If statement without brackets 569 493

Table 4.2: Counts of different if statement types in the original Renaissance versus the
adapted Renaissance

Further Explanation of Errors

This section will explain the errors found during the JsonCPP exercises. The errors are caused
by implementation faults or unimplemented components, so it is not an inherent fault of our
approach of using property-based ASTs as the base of the tool. As explained before, Tree-
Sitter has two types of nodes, named and anonymous. We have written our adaptation to
work on the named nodes of the AST provided because it was believed that all the important
information is stored in named nodes.

The problematic part here is that it parses binary operators like the plus and minus sign
as unnamed nodes. This results in the pattern matching algorithm finding matches when it is
not supposed to. For example, int x = 2 + 3and int x = 2 - 3 would return a match, even
though they are different pieces of code. The binary operator is essentially ignored during
the pattern matching algorithm.

In the exercise in which the aim was to count the pre and post-increments in for loops, the
tool matched on too many instances. As said before, the tool did not differentiate between
the different pre and post-increments, and this was because the + and the - in the pattern
were ignored, and thus the pattern consisted only of a placeholder, matching on anything.

We originally used four different patterns for this, the only difference between these
patterns being in the update clause of the for loop. These were meant to capture pre and
post-increments/decrements separately and then process them accordingly. But facing the
problem of named and unnamed nodes in Tree-Sitter, we instead used a single pattern cap-
turing all for loops, and then retrieved what was captured by the placeholder in the update
clause. The result is a string, containing the actual code of the update clause. We use this
to determine whether it was a pre or post-increment/decrement and keep track of the count
in this way. We were also able to use this to write the pattern for the rewriting of post-
increments/decrements to pre-increments/decrements. The only caveat is that the indenta-
tion was not correct for the cases where no changes were made. But the cases where changes
were required were manually checked to be correct.

In the exercise in which we wanted to match on patterns with differing levels of complex-
ity and transform them, the issue was in the part of the pattern that detects for loops. In the
medium pattern, the for loop segment of the pattern looks like $T $INDEX = $BOUND; $INDEX
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= $SIZE; ++$INDEX. The issue here is in the condition part of the for loop. The inequality
operator != is a binary operator and is therefore seen as an unnamed node. This makes it so
that this part of the pattern is equal to a lot of different things, and the extra matches that
we found matched on code that should have matched with $INDEX < $SIZE as the pattern for
the condition instead of $INDEX != $SIZE.

Lastly, we did not have the pre-processing step that can happen in C++ code imple-
mented in the adapted Renaissance. As mentioned before, this also caused some of the
results to be different. Especially in the exercise counting the amount of if-statements but
we suspect that this would also cause inaccuracies for the exercise creating the inheritance
tree, if the pattern matching worked correctly.

Speed and Memory Measurements

As explained in the previous Section, we took the average of five runs for each JsonCPP
Exercise where we measured speed and memory usage. The results can be found in Table
4.3. The full results can be found in Appendix A.1.

Exercise Time (Origi- | Memory Time Memory
nal) (Original) (Adapted) (Adapted)

Print AST of one file 409.78 ms 20.37 MB 412.39 ms 74.18 MB

Find a specific state- | 2211.38 ms 65.34 MB 1170213 ms | 270.04 MB

ment

Create inheritance tree | 3161.54 ms 95.04 MB 19504.20 ms | 248.68 MB

Match on a specific pat- | 2337.42 ms 49.14 MB 11924.95ms | 154.29 MB

tern and replace

Count pre and post-| 4109.68 ms 218.85 MB 20588.36 ms | 299.20 MB

increments/decrements

Match on a generic pat- | 3039.61 ms 90.38 MB 32332.01 ms | 254.08 MB

tern and replace

Count if statements 4223.42 ms 164.38 MB 52646.76 ms | 157.17 MB

Table 4.3: Time and memory measurements for the JsonCPP Exercises (average over five
runs)

From the results, we can see that the adapted Renaissance takes longer to run and also
uses more memory. A closer look at some of the runs in Appendix A.1 also shows some
variance in the measurements for memory usage. This is likely due to various factors in the
JVM that are difficult to control such as when it decides to collect garbage. We have tried to
minimize this as much as possible by telling the JVM that it should collect garbage before
running the task, but this is seen as a hint and not an explicit command to the JVM.

The overall takeaway from these results is that the adapted Renaissance takes more time
to run and also uses up more memory while doing so. This is an expected outcome, given
that the adaptation is not optimized and also duplicates the tree because of issues in the Tree-
Sitter Java Binding. It cannot be said with certainty that a tool using a property-based AST is
slower and more memory intensive to the extent showcased by our results. But we theorise
that it can not be faster than a tool based on rich ASTs because the same information has to
be checked. Logically, we need to perform the same comparisons to determine whether or
not a pattern matches in the source code.

4.3.2 Adaptation Effort

The amount of code changes is shown in Table 4.4. An important thing to note is that the
number of lines of code added is inflated due to copying existing classes to use for the adap-
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tation. Another consideration to make is that prior to working with Renaissance, the team
member in charge of the adaptation had no experience with working with such tools or writ-
ing them. Lastly, the adaptation was simply aimed at providing a proof of concept, so it is
not yet usable for production in the way that Renaissance is. Further development would be
required to make it fully fault-proof.

The majority of the development time was spent on understanding the original Renais-
sance and finding the right places to insert Tree-Sitter. One of the challenges was understand-
ing what the code does and performing equivalent operations but with Tree-Sitter nodes
instead of the original CDT nodes.

We estimate that the amount of lines actually changed/added/deleted (so excluding
copying existing files) is closer to around 1500 lines of code. This shows that a rudimentary
adaptation to using property-based ASTs is manageable, but further care has to be taken to
fully retain the original functionality of the tool.

| Type of change | Effort |
LOC added 6704
LOC deleted 348
Files changed 73
Time taken 4 months

Table 4.4: Code changes during the adaptation effort
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Chapter 5

Related work

There are many ways to automatically refactor code or help with refactoring code more effi-
ciently and research has already been conducted on this. This chapter aims to provide some
context around our approach and shine a light on what has already been done towards mak-
ing refactoring easier. The chapter is split up into three sections, Section 5.1 for techniques
and research on those techniques. Section 5.2 is focused on tools that are usable for a devel-
oper. Finally, Section 5.3 is on other works on intermediate representations.

5.1 Techniques

Our work uses an AST-based approach on code analysis and refactoring. Other approaches
are possible and this section highlights a few approaches.

5.1.1 Clustering

Clustering tries to create clusters of classes or functions by looking at the relationships be-
tween them. In other words, trying to create clusters by finding pieces of code that interact
with each other a lot. Clustering can be used to refactor code at the function level (Lung et al.
2006). Functions are divided into entities (statements) and each entity has its own attributes,
which consist of the things a statement of code would exist of such as, but not limited to, vari-
ables, constants, function calls, operators and semicolons. They are then clustered based on a
similarity measure based on these entities and attributes. The resulting clusters are shown as
a tree, and ill-structured code fragments can be identified by inspecting the tree and these be-
come the candidates for refactoring. Although the clustering tree provides heuristic advice
on how to restructure the function, ultimately this decision is taken by the software designer.
Afterwards, the low-cohesive functions will be decomposed into several smaller fragments,
some of which will become their own function. This process happens manually.

5.1.2 Machine Learning

Another way of refactoring is through the use of machine learning. Kumar, Satapathy, and
Murthy (2019) has used 10 different machine learning classifiers on 25 source code metrics
extracted from 5 open source Java projects to perform a comparative analysis between the
classifiers. They also compared 3 different data sampling methods. The task for the compar-
ison was predicting whether or not a refactoring was necessary at the method level. They
observe that there are statistically significant differences between the performance of some
of the classifiers. They also conclude that method level refactoring prediction using metrics
from the source code with machine learning classifiers is possible. Aniche et al. (2020) has
done something similar but also included process metrics, such as number of commits in a
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class, and ownership metrics, such as number of authors. They have a list of 20 possible refac-
toring operations, spread out between the class-level, method-level and variable-level. They
then trained binary classifiers for each of these possible operations to predict whether or not
that operation is necessary. The scale of their research is bigger because they use a variety of
different codebases, mainly from GitHub, but also from other sources. They found that pro-
cess and ownership metrics play an important role in the creation of better models and that
models trained with heterogeneous projects generalize better and have a good performance.

5.1.3 Large Language Models

Large Language Models (LLMs) have been accumulating interest, especially by the introduc-
tion and subsequent widespread exposure of ChatGPT (OpenAl 2022). An empirical study
has been conducted on the code refactoring capabilities of ChatGPT (DePalma et al. 2024).
The study found that ChatGPT is able to consistently refactor code and enhance it based on
quality attributes such as readability or complexity. It is also able to discern between code be-
fore and after refactoring and identify the purpose of the refactoring. However, the authors
conclude with saying that ChatGPT should be used as an aide during refactoring and that a
human programmer should still be overseeing the overall operation because we can not de-
pend on ChatGPT just yet. This is due to the fact that it was not able to perfectly refactor all
the cases used in the study correctly and because it was not able to understand the broader
context of the code fragments.

The approach of using a LLM is different from using a tool based on an AST or some
underlying representation of the code. The main difference is that a LLM is essentially a
black box, and users can not be certain about why the model responded in a certain way.
Whereas a tool based on an AST is written by an engineer and there is code that represents
the logic used for the decisions of the tool. The advantage of using a tool like ChatGPT is that
it is easy to use and does not require learning any new skills. However, this can come with
unexpected costs, such as loss in hand-on skills in the long term, as argued by the empirical
study (DePalma et al. 2024).

5.2 Tools

This section will go over some tools and place them in the context of our designed proof
of concept of Renaissance with Tree-sitter. The presence of these different tools for different
languages also shows that tooling already exists, but requires knowledge of different tools for
different languages. All of these tools also require maintenance from different developers.

5.2.1 Rascal

Rascal (Bos et al. 2011) is a meta-programming language that is used for source code anal-
ysis and transformation. It is used for legacy system rejuvenation, reverse engineering, re-
engineering and development of Domain Specific Languages (DSLs). It currently provides
support for C, C++, Java, PHP, Python and JVM bytecode. Users are also able to define their
own grammar and use Rascal with their own defined language.

Rascal aims to provide an easy-to-use and easy-to-combine set of primitives for the user
to work with because this makes it easier to zoom in on the details whenever necessary. Ac-
cording to the creators, during meta-programming, the details are especially important, so
not abstracting them away from the user allows the user to easily address issues when they
arise. Rascal’s strength is that it provides all the tools you need to perform code analysis and
transformation in one package.
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5.2.2 Spoofax

Spoofax (Wachsmuth, Konat, and Visser 2014) is a language workbench. It is used to develop
new programming languages and provide IDE features for the newly developed language.
Spoofax provides an environment that integrates syntax definition, name binding, type anal-
ysis, program transformation, and code generation. It provides metalanguages that abstract
over the components that handle these features, therefore letting the language designer fo-
cus on the design. All of these components are provided if the designer specifies a grammar
for the language that the designer wants to create.

Spoofax uses Stratego (Bravenboer et al. 2008) to perform code transformations. The user
specifies the rules that operate on the AST. This AST structure is dependent on the grammar
that defines the language, which is provided by the user. The user is able to use strategies
to describe their code transformations. Strategies manipulates how and when rules are used
during code transformations.

The main purpose of Spoofax is to aid in the development of new languages, and thus
it is not very suited for working with existing languages. If one would want to utilise all of
Spoofax’s capabilities in an existing language, a grammar would have to be specified for that
language. If the language is popular enough, the language might already have IDE-support
and tools that can perform code-based operations such as type analysis or code transforma-
tion.

5.2.3 Ast-grep

Ast-grep (Darkholme 2024) is an open-source code tool that allows for the users to syntacti-
cally search through ASTs and rewrite code if matches are found. It uses Tree-Sitter as its base
for parsing. It is used for searching, linting and rewriting. It supports using metavariables
(placeholders) and can handle a wide array of languages due to the availability of Tree-sitter
grammars.

Users are able to search for code in two ways. The first is to write a concrete syntax pat-
tern as described before in Figure 3.3 and Figure 3.4. The second method is specifying a rule,
and this rule can specify various properties of the AST node we want to match on. Includ-
ing, but not limited to, node type, relation to its parent, order of child relative to siblings and
concrete syntax. This is quite expressive, but during testing, it was found to be rather cum-
bersome to specify slightly more complex rules. It was also not possible to specify concrete
syntax patterns that consists of multiple statements on the top-level, which was deemed a
big shortcoming.

The main similarity between our adapted Renaissance and ast-grep is the utilization of
Tree-Sitter as its core. The pattern matching algorithm is similar, but when diving deeper
into it, the way patterns are specified by the user are vastly different. Ast-grep has a bigger
focus on using rules to express a pattern, whilst adapted Renaissance solely uses concrete
syntax patterns.

Ast-grep functions as a Command-Line-Interface (CLI), but also provides a Python and
JavaScript API for users to utilize ast-grep. It also hosts a web playground to test and get
acquainted with ast-grep.

5.24 OpenRewrite

OpenRewrite by Moderne (2024) is an automated refactoring ecosystem designed for large-
scale transformations on source code. It has an automatic refactoring engine that is able
to run prepackaged, open-source recipes for common large-scale transformations such as
framework migrations, security fixes, stylistic fixes, and version upgrading/downgrading.
These are meant to be generic and help out developers that want to perform common refac-
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toring operations in a quick and easy manner. Developers are also able to create their own
recipes if they have more specific needs.

OpenRewrite currently supports a small selection of languages, build tools and frame-
works. Notably, Java, Kotlin, Groovy, Maven and Gradle. Recipe authors can contribute to
the recipe catalog for other engineers to use.

This shows the limited nature of some of these refactoring tools. They are built with
specific languages in mind, and as a result, are hard to extend to new languages.

5.2.5 Structural Search and Replace

Structural Search and Replace (SSR) (Mossienko 2004) is a tool integrated in JetBrains Intel-
li] IDEA. It allows users to search through their code structurally, similar to what ast-grep
provides. The advantage of SSR is that it comes with the IDE, so users do not need to install
a separate third-party tool to use it. This makes it accessible. However, it is only available
in Java, Kotlin and Groovy, hence why it is only available in the Intelli] version of JetBrains’
Integrated Development Environments (IDEs).

This again, shows the limited reach of language tools. In this case, it makes sense because
the tool only supports the languages supported by the IDE it is packaged into.

5.3 Intermediate Representations

Our research is mainly focused on the intermediate representation underlying a language
tool. There are other intermediate representations that have been proposed for a more language-
agnostic approach, and this section will go over some of them.

5.3.1 Language Agnostic Abstract Syntax Tree

Language Agnostic Abstract Syntax Trees (LAASTs) (Curtis 2022) are ASTs that are de-
signed to be an abstraction away from language-specific elements to a common interface
for refactoring tools. The goal of a LAAST is to simplify static analysis of source code in
different languages, which is akin to our goal of making refactoring tools easier to extend
with new languages. The way they approach this is different from ours. They define a set of
common language constructs that most languages contain, such as classes and fields, func-
tions, blocks, and control flow statements, to give a few examples. Programming languages
may contain constructs that are unique to that language, but usually these are representable
using some set of instructions using the common constructs.

The goal of the LAAST is to serve as a common layer of abstraction for multiple program-
ming languages. Depending on the languages chosen, the structure of the LAAST will vary.
This depends on the language constructs that have to be supported, which depends on the
languages themselves. A LAAST needs to be designed for the set of languages that the we
want to work on. This differs case by case, and there is no single LAAST code representation
that will work on all languages.

To use a LAAST, users are required to map from their language-specific AST to a LAAST.
After this, code analysis can be performed generically and does not require redevelopment
of the analysis component of the tool.

Whilst significantly decreasing the workload of using a new language with a refactoring
tool, there is still some language-parametric work that has to be done for each language for
them to work. This comes in the form of providing the mapping from a language-specific
AST to a LAAST. Next to this, if the LAAST designed does not support the language with
which we want to extend, we are unable to use the LAAST unless we alter the design of the
LAAST to work with the new language.
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5.3.2 Separator Syntax Tree

A middle point between CSTs and ASTs are Separator Syntax Trees (SSTs) (Aarssen and
Van Der Storm 2020). The main goal of SSTs is to perform high-fidelity source code trans-
formations. In other words, preserving layout whilst transforming source code. The SST by
storing the text content between the nodes, the separators, along with the nodes. The SST can
be seen as an AST augmented with additional information about the separators. Because of
this, it is possible to pattern match syntactically on the source code by using the AST portion
of the SST and then use the separators to preserve the original layout of the source code after
applying some transformations.

SSTs can be reconstructed from ASTs (or CSTs) if the nodes are annotated with source
location information, such as offsets and length. Using this information, all the separators
that are not part of an AST node can be retrieved and stored.
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Chapter 6

Discussion

This chapter will discuss our findings and compare our approach to some of the related
works from the previous chapter.

6.1 Comparison to Other AST representations

The goal of our property-based ASTs and Language Agnostic Abstract Syntax Trees (LAASTSs)
(Curtis 2022) is similar, but there are some differences worth pointing out. First of all, a
LAAST has to be designed for a set of languages and multiple LAAST representations can
exist. Each of them with the ability to handle different languages. This hinders extensibility
if the language is not supported by the LAAST. If the language is supported, a converter
from the language-specific AST to the LAAST is required. In contrast, a property-based AST
is a looser representation, aimed to fit any (object-oriented) programming language. This
makes it able to be extended with any language as long as a property-based AST representa-
tion is available through a parser (or parser generator such as Tree-Sitter) or a converter from
a language-specific AST to the property-based AST. The core difference is in the language-
extensibility of the tool utilizing either of these ASTs. With a LAAST, the set of languages
supported has to be determined before hand for the design of the LAAST. After this phase,
the set of languages supported is set in stone. With a property-based AST, there is no limi-
tation set from the beginning. The tool can be extended with any language if one of the two
conditions (parser or converter) mentioned before hold. This disparity is due to the LAAST
having specific node types for every language construct, while the property-based AST has
generic nodes with the type stored as a property of the node.

The SST (Aarssen and Van Der Storm 2020) is essentially an augmented AST and we
think that with some minor adjustments, it can also be treated as a property-based AST with
the added benefit of having access to the separators in the usage of code rewriting.

6.2 Converting to a Property-Based AST's

Another point of discussion is that we claim that a property-based AST can also be obtained
through the means of a converter from a language-specific (or rich) AST to a property-based
AST. We have not shown a concrete implementation of this; however, we have briefly de-
scribed a possible rudimental methodology of a converter. A converter for Java and C++ to
a LAAST (Curtis 2022) has been made to show the applicability of a LAAST. Although not
exactly the same converter, this suggests the possibility of a convert that is able to translate
between ASTs.
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6.3 Performance and Issues of Adapted Renaissance

This research has shown a proof of concept (adapted Renaissance) using a parser generator
to obtain property-based ASTs for a refactoring tool. Our proof of concept involved adapting
Renaissance with Tree-Sitter, and then testing it with a few experiments to check for correct-
ness. Some of the experiments returned results that were incorrect. This might be seen as
a flaw of the property-based ASTs, but this is not the case. As argued before in Section 4.3,
this is not due to an inherent fault in our approach with property-based ASTs, but rather an
implementation issue due to some details in Tree-Sitter.

Our proof of concept is slower and uses more memory than the original Renaissance. This
is not necessarily due to the use of property-based ASTs because it can also be attributed to
the workaround that we used with the Java binding for Tree-Sitter.

Other tools exist that can work with multiple languages, notable ones have already been
mentioned in Section 5. Rascal (Bos et al. 2011) and Spoofax (Wachsmuth, Konat, and Visser
2014) are both tools that allow for working with multiple languages. However, Spoofax is de-
signed for creating new DSLs and programming languages and is not suited for refactoring
purposes. Rascal is designed for multiple languages and provides this language parametric-
ity in the form of grammars, similar to Tree-Sitter. However, mapping from an AST from
any given parser to an AST that Rascal can use is not possible. In this sense, the “entry point”
differs. Rascal allows for new languages by specifying a formal grammar for that language.
A property-based AST can be used by either using a converter or a parser that returns such
an AST. The parser that returns such an AST can be retrieved from a parser generator, and
those also require a formal grammar to provide their parsing functionality. This shows that
there are more ways to start using a property-based AST than there are ways to start using
Rascal, allowing for more flexibility on the side of the refactoring engineer.

6.4 Multi-Language Systems

The use of property-based ASTs allows for increase language support in refactoring tools.
This is advantageous because of factors such as less development effort, less maintenance
efforts and easier access and better understanding for refactoring engineers working with
multiple languages. Where a refactoring tool that can work on multiple languages really
shines is in multi-language systems. This allows the refactoring engineer to efficiently anal-
yse and transform codebases written in multiple languages. Whereas, normally, multiple
tools have to be used that each target a different portion of the codebase written in a differ-
ent language. Having this functionality in one tool increases the overview and clarity of the
refactoring and also speeds up the refactoring process.
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Chapter 7

Conclusion and Future Work

This chapter will first conclude the paper. Afterwards, we will recommend some future work
that could prove to be interesting venues of research based on our findings.

7.1 Conclusion

We have introduced the problem of legacy systems in large software systems. The issue with
these legacy systems is that they are often outdated and lack in code quality. This is because
they were written in times with different code practices and technologies. Another factor is
that they were often extended in a sub-par manner. As a result of this, the technological debt
of these systems is very high. These systems have to be refactored with the goal to make
them last in the long term.

Refactoring large systems is not cost-efficient to do manually. Since refactoring often in-
volves repetitive tasks, this is the ideal venue to use an automatic refactoring tool. Many
refactoring tools exist for many languages, but refactoring tools often only cater towards one
or a selection of a few languages. This results in requiring the refactoring engineer to learn
and understand more tools. On the tool development side, this requires maintenance on
multiple tools and can result in duplicated logic for different languages.

To combat this, we would like to make existing tools easier to extend. This allows us to
leverage the logic of the tool that is written for one language, for another language. This
decreases the tool development effort and allows the tooling engineers to pool their efforts
into one tool instead of multiple tools for multiple languages.

We introduce the notion of a property-based AST to help tooling engineers make their
tools more language parametric. This property-based AST consists of generic nodes with
any amount of children. Each node contains properties that reflect the semantic information
that is in the source code from which the AST was parsed. This generic representation al-
lows us to abstract away from language-specific ASTs such as rich ASTs. Rich ASTs contain
the syntactical information in its structure and are language-specific. One way of obtaining
property-based ASTs is through mapping existing ASTs to a property-based variant. This
is done by retrieving the relations, node types, and other properties and converting them
into a generic version where each node only has properties and connections to its parents
and children. Property-based ASTs might also be obtained through a parser itself. A good
example of one such parser is a parser generated by Tree-Sitter. These parsers are generic,
and the AST returned by them adhere to our definition of a property-based AST.

To show an use case and the feasibility of property-based ASTs, we have adapted an
existing Renaissance implementation in Java with Tree-Sitter. This Renaissance implementa-
tion originally was meant to work on C++, and with the adaptation, it should work on any
language for which a Tree-Sitter grammar exists. Experiments were performed on this adap-
tation to test its extensibility to other languages and to test if the adaptation was performed
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correctly. The results are promising and show that with little effort, a new language can be
plugged in and used when refactoring. This shows that using a property-based AST can aid
in making refactoring tools more language-parametric.

7.2 Future Work

721 Other Programming Paradigms

The type of programming languages that were focused on during this research were object-
oriented programming languages. This was due to their popularity in the industry, and
widespread applicability. Different programming paradigms exist, and it would be interest-
ing to look into refactoring those. Investigating how a tool works for a functional program-
ming language and seeing if a property-based AST could be used to make it more language-
parametric is a proposed next step for research if we want to explore different paradigms.

7.2.2 Extending Property-Based ASTs to Property-Based SSTs

SSTs allow for code rewriting based on AST transformations instead of text rewriting like
we currently do with the adapted Renaissance. The main drawback of AST rewriting is the
issue of layout, but this is no longer an issue with SSTs. It would be interesting to see if a tool
could be built that uses a property-based SST as its foundation. Combining the language
parametricity of the property-based AST with the high-fidelity transformations of the SST.

7.2.3 Extensions to Adapted Renaissance

Another venue for future work is to use a converter to get a property-based AST for our
adapted Renaissance to use. This will show, with a concrete example, that a property-based
AST can be obtained from any AST through the use of a converter. An extra bonus for doing
this with the adapted Renaissance would be the access to the exact same environment for
the experiments. Allowing for the same experiments to be ran in the same environment, but
with a different method of obtaining a property-based AST.

Another extension to a tool using a property-based AST could be the usage of language-
specific properties. What we mean by this is that a tool can use more property fields that
are language specific when dealing with that language. For example, property fields specific
to C++4 could exist, and these would not exist in Java. Since information is represented as
properties, a language-specific property field could be empty for ASTs originating from other
languages but exist for the language that we are interested in. The tool itself can be made to
know the language with which it is working and specifically look for those language-specific
properties when possible. This would mean that more language-specific features or short-
cuts would exist within the tool, but this would not be visible to the user utilizing the tool.
This would add additional complexity of language-specific properties to the user in the form
of having to specify more properties in the AST. However, language-specific properties can
be made optional by having the tool check for the existence of such properties. This makes
this feature an extension to the property-based ASTs that engineers can opt out from if the
additional complexity is not worth the gain.

An existing feature in the original Renaissance was the creation of code graphs. Code
graphs are graphs that represent the connectivity of the code system being analyzed. It con-
tains information about what parts of the system call or use what other parts of the system.
This is used for static analysis of the system and allows the refactoring engineers to gain more
insight regarding the system under analysis. We also wanted to implement this and retrieve
such a code graph using the adapted Renaissance, but due to time constraints, this was not
possible. This is a potential direction for exploration using Renaissance.
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7.2. Future Work

There is also an experimental version of Renaissance in Python that is being developed
parallel to this project at TNO. This experimental version also uses a property-based AST
as its base and is currently integrated with Clang, showing that the idea works with black-
box parsers. If Tree-Sitter can also be used in this version, it will show that our concept of
property-based ASTs can work with both black-box and generated parsers. However, this is
a recommendation for future work because of the scope of this project.
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AST Abstract Syntax Tree

LAAST Language Agnostic Abstract Syntax Tree
SST Separator Syntax Tree

CST Concrete Syntax Tree

CDT C/C++ Development Tooling

CLI Command-Line-Interface

IDE Integrated Development Environment
LLM Large Language Model

DSL Domain Specific Language

SSR Structural Search and Replace

JSON JavaScript Object Notation

JVM Java Virtual Machine
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Appendix A

A.1 JsonCPP Exercises - Speed and Memory Measurements

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run1 398.43 ms 21.69 MB 405.58 ms 73.40 MB
Run 2 382.13 ms 21.65 MB 406.98 ms 78.69 MB
Run 3 414.24 ms 17.18 MB 413.53 ms 74.52 MB
Run 4 441.15 ms 24.30 MB 429.78 ms 65.33 MB
Run 5 412.93 ms 17.05 MB 406.07 ms 78.96 MB
Average 409.78 ms 20.37 MB 412.39 ms 74.18 MB

Table A.1: Time and memory measurements for JsonCPP Exercise 1: Print AST of one file

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run1 2221.67 ms 64.28 MB 11204.28 ms | 226.77 MB
Run 2 2196.77 ms 67.26 MB 11493.59 ms | 247.91 MB
Run 3 2191.29 ms 64.25 MB 11540.90 ms | 234.90 MB
Run 4 2253.77 ms 65.54 MB 12320.58 ms | 304.43 MB
Run 5 2193.39 ms 65.36 MB 11951.28 ms | 336.17 MB
Average 2211.38 ms 65.34 MB 11702.13 ms 270.04 MB

Table A.2: Time and memory measurements for J[sonCPP Exercise 2: Find a specific statement

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run 1 3325.25 ms 95.04 MB 19023.75ms | 172.03 MB
Run 2 3138.55 ms 113.64 MB 20197.03ms | 132.05 MB
Run 3 3180.94 ms 109.28 MB 19350.02 ms | 341.71 MB
Run 4 3355.67 ms 96.45 MB 20174.50 ms | 350.04 MB
Run 5 3307.28 ms 60.78 MB 18775.69 ms | 247.59 MB
Average 3161.54 ms 95.04 MB 19504.20 ms 248.68 MB

Table A.3: Time and memory measurements for JsonCPP Exercise 3: Create inheritancee tree
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Table A.4: Time and memory measurements for JsonCPP Exercise 4:
pattern and replace

Table A.5: Time and memory measurements for JsonCPP Exercise 5: Count pre and post-

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run1 2258.62 ms 33.53 MB 12099.93 ms | 144.04 MB
Run 2 2221.72 ms 66.38 MB 11908.03 ms | 211.77 MB
Run 3 2393.93 ms 48.63 MB 11817.00 ms | 122.47 MB
Run 4 2349.68 ms 49.45 MB 11954.57 ms | 102.58 MB
Run 5 2463.17 ms 47.71 MB 11791.22ms | 190.57 MB
Average 2337.42 ms 49.14 MB 11924.95ms | 154.29 MB

Match on a specific

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run 1 4084.95 ms 221.62 MB 2242410 ms | 302.12 MB
Run 2 4348.98 ms 263.28 MB 20349.04 ms 345.10 MB
Run 3 4049.47 ms 221.58 MB 20746.52 ms 339.78 MB
Run 4 4025.53 ms 167.94 MB 19658.92 ms | 295.03 MB
Run 5 4039.48 ms 219.82 MB 19763.20 ms 213.95 MB
Average 4109.68 ms 218.85 MB 20588.36 ms | 299.2 MB

increments/decrements

Table A.6: Time and memory measurements for JsonCPP Exercise 6:
pattern and replace

Table A.7: Time and memory measurements for JsonCPP Exercise 7: Count if statements
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Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run 1 2943.48 ms 84.69 MB 32488.31 ms | 219.84 MB
Run 2 2942.81 ms 96.04 MB 32576.10 ms | 302.43 MB
Run 3 3240.29 ms 79.45 MB 32091.18 ms | 244.55 MB
Run 4 3035.34 ms 84.69 MB 32447.77 ms | 256.14 MB
Run 5 3036.15 ms 107.02 MB 32056.68 ms 247.42 MB
Average 3039.61 ms 90.38 MB 32332.01 ms | 254.08 MB

Match on a generic

Time (Origi- | Memory Time Memory

nal) (Original) (Adapted) (Adapted)
Run1 4290.70 ms 158.96 MB 52968.47 ms | 234.67 MB
Run 2 4232.13 ms 196.21 MB 52504.58 ms | 130.74 MB
Run 3 4223.11 ms 161.90 MB 52301.89 ms | 143.74 MB
Run 4 4216.54 ms 110.05 MB 52681.46 ms | 116.12 MB
Run 5 4154.64 ms 194.34 MB 5277739 ms | 160.57 MB
Average 4223.42 ms 164.38 MB 52646.76 ms | 157.17 MB
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