
 
 

Delft University of Technology

PSSNet
Planarity-sensible Semantic Segmentation of large-scale urban meshes
GAO, Weixiao; Nan, Liangliang; Boom, Bas; Ledoux, Hugo

DOI
10.1016/j.isprsjprs.2022.12.020
Publication date
2023
Document Version
Final published version
Published in
ISPRS Journal of Photogrammetry and Remote Sensing

Citation (APA)
GAO, W., Nan, L., Boom, B., & Ledoux, H. (2023). PSSNet: Planarity-sensible Semantic Segmentation of
large-scale urban meshes. ISPRS Journal of Photogrammetry and Remote Sensing, 196, 32-44.
https://doi.org/10.1016/j.isprsjprs.2022.12.020

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.isprsjprs.2022.12.020
https://doi.org/10.1016/j.isprsjprs.2022.12.020


ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 32–44

A
0
o

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

PSSNet: Planarity-sensible Semantic Segmentation of large-scale urban
meshes
Weixiao GAO a,∗, Liangliang Nan a, Bas Boom b, Hugo Ledoux a

a 3D Geoinformation Research Group, Faculty of Architecture and the Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands
b CycloMedia Technology, Zaltbommel, The Netherlands

A R T I C L E I N F O

Keywords:
Texture meshes
Semantic segmentation
Over-segmentation
Urban scene understanding

A B S T R A C T

We introduce a novel deep learning-based framework to interpret 3D urban scenes represented as textured
meshes. Based on the observation that object boundaries typically align with the boundaries of planar
regions, our framework achieves semantic segmentation in two steps: planarity-sensible over-segmentation
followed by semantic classification. The over-segmentation step generates an initial set of mesh segments
that capture the planar and non-planar regions of urban scenes. In the subsequent classification step, we
construct a graph that encodes the geometric and photometric features of the segments in its nodes and the
multi-scale contextual features in its edges. The final semantic segmentation is obtained by classifying the
segments using a graph convolutional network. Experiments and comparisons on two semantic urban mesh
benchmarks demonstrate that our approach outperforms the state-of-the-art methods in terms of boundary
quality, mean IoU (intersection over union), and generalization ability. We also introduce several new metrics
for evaluating mesh over-segmentation methods dedicated to semantic segmentation, and our proposed over-
segmentation approach outperforms state-of-the-art methods on all metrics. Our source code is available at
https://github.com/WeixiaoGao/PSSNet.
1. Introduction

Recent advances in photogrammetry and 3D computer vision have
enabled the generation of textured meshes of large-scale urban scenes
that contain buildings, trees, vehicles, etc. (City of Helsinki, 2019;
Google, 2012; Gao et al., 2021). Deriving semantic information from
the mesh models is critical to allowing the use of these meshes in
diverse applications, e.g., energy estimate, noise modeling, and solar
potential (Biljecki et al., 2015; Saran et al., 2015; Besuievsky et al.,
2018).

There exists a large volume of machine learning-based algorithms
for the semantic segmentation of 3D data, and they are designed mainly
for 3D point clouds (Demantké et al., 2011; Hackel et al., 2016; Qi
et al., 2017a,b; Thomas et al., 2018, 2019). A few recent works also
address deep learning for surface meshes (Hanocka et al., 2019; Gao
et al., 2019; Selvaraju et al., 2021; Fu et al., 2021) but are limited to
individual objects or small indoor scenes (e.g., living room, kitchen).
Unlike point clouds that are usually obtained as the raw input from
typical data acquisition devices, textured meshes (see Fig. 2(a)) provide
topological information, have continuous surfaces, yield better visual-
ization, and are lightweight, which makes them an ideal representation
for urban scenes. Surprisingly, the semantic segmentation of urban
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meshes has rarely been investigated, Verdie et al. (2015), Rouhani et al.
(2017), Gao et al. (2021) are exceptions.

In this work, we address the semantic segmentation of urban meshes
by introducing a two-step framework using deep learning. Our frame-
work is designed to improve the following three aspects of semantic
segmentation:
(1) Segmentation quality. Urban scenes typically contain piecewise
regions, which can already inspire the separation of man-made objects
(e.g., roads, buildings) from organic objects (e.g., trees). We observe
that semantic segmentation algorithms usually perform well in the
interior of large smooth surfaces (including planar surfaces), but that
they perform poorly for the identification of object boundaries. Given
the fact that object boundaries typically align with the boundaries of
planar regions (see Fig. 1), our framework achieves semantic segmenta-
tion by first exploiting a planarity-sensible over-segmentation step that
separates planar and non-planar surface patches.
(2) Descriptiveness of geometric features. Existing methods for se-
mantic segmentation of 3D data commonly rely on features defined
on local primitives (i.e., points or triangles) (Weinmann et al., 2013,
2015; Qi et al., 2017a; Huang et al., 2019; Li et al., 2019; Schult et al.,
2020) or segments (i.e., a group of points or triangles) (Lin et al., 2018;
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Fig. 1. Object boundaries often align with the boundaries of planar regions. Top: planar segmentation results; Bottom: the corresponding ground truth object boundaries (shown
as yellow lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. The workflow of our method. We first decompose the input mesh (a) into a set of planar and non-planar segments (b). Then we classify the segments using graph
convolutional networks to obtain the results of semantic segmentation (c). In (b), the segments are randomly colorized. In (c), the colors are: terrain, building, high
vegetation, water, vehicle, boat. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Landrieu and Simonovsky, 2018; Cohen-Steiner et al., 2004; Lafarge
and Mallet, 2012; Verdie et al., 2015; Rouhani et al., 2017). Features
from local primitives are limited to a certain distance in the local neigh-
borhood, while features used in existing segment-based approaches do
not effectively capture the contextual relationships between segments.
Thus, they are less descriptive in representing the complex shapes of
diverse objects and in revealing the relationships between objects. In
our work, by initially decomposing a mesh model into planar and non-
planar segments, both local geometric features of individual segments
and global relationships between segments can be captured.
(3) Efficiency. Existing deep learning-based methods for processing
3D data are limited by the data size, especially for large-scale urban
scenes. This has already motivated over-segmentation for semantic
segmentation (Weinmann et al., 2015; Landrieu and Simonovsky, 2018;
Landrieu and Boussaha, 2019; Hui et al., 2021). Following the spirit
of the previous work for improving efficiency, our over-segmentation
facilitates better object boundaries and strengthens semantic segmenta-
tion by distinctive local and non-local features, which is suitable for the
subsequent classification using graph convolutional networks (GCN).

Besides the two-step semantic segmentation framework, we also
introduce several new metrics for evaluating mesh over-segmentation
techniques. We believe the proposed metrics will further stimulate the
improvement of over-segmentation for semantic segmentation.

Experiments on two benchmarks show that our approach outper-
forms recently developed methods in terms of boundary quality, mean
IoU (intersection over union), and generalization ability.

In summary, our contributions are: (1) a novel mesh over-
segmentation approach for extracting planarity-sensible segments that
are dedicated for GCN-based semantic segmentation; (2) a new graph
structure that encodes both local geometric and photometric features
of segments, as well as global spatial relationships between segments;
(3) several novel metrics for evaluating mesh over-segmentation tech-
niques in the context of semantic segmentation.
33
2. Related work

While there is a large volume of research on the over-segmentation
and semantic segmentation of urban images (Cordts et al., 2016; Yang
et al., 2018), we focus in this sole section on methods designed to
process large-scale 3D data, i.e., point clouds and meshes of urban
scenes. Methods specially designed for handling individual objects or
small scenes (Nan et al., 2012; Hanocka et al., 2019; Gao et al., 2019;
Selvaraju et al., 2021; Fu et al., 2021) usually do not scale to large-scale
urban scenes and thus are not covered.

2.1. Over-segmentation of 3D data

Many methods for over-segmentation of 3D data are inspired by
image over-segmentation algorithms (Liu et al., 2011) and can be
divided into four categories: (1) primitive-based fitting (Vosselman
et al., 2004; Schnabel et al., 2007; Lafarge and Mallet, 2012), (2)
graph-based partitioning (Landrieu and Simonovsky, 2018; Ben-Shabat
et al., 2018), (3) local region expansion (Cohen-Steiner et al., 2004;
Melzer, 2007; Lafarge and Mallet, 2012; Papon et al., 2013; Rouhani
et al., 2017; Vosselman et al., 2017; Papon et al., 2013; Lin et al.,
2018), and (4) learning-based methods (Landrieu and Boussaha, 2019;
Hui et al., 2021). Over-segmentation often serves as pre-processing
for tasks such as semantic segmentation, instance segmentation, or
reconstruction, and aims at reducing the complexity of subsequent
tasks by using fewer segments having local homogeneity. Due to the
complexity of real-world scenes and the irregularity of the data, it is
challenging to obtain over-segmentation results with a desired number
of segments and clear object boundaries. The aforementioned methods
are either limited by the primitive types (e.g., plane, sphere, and
cylinder) or suffer from severe under-segmentation errors when the
number of segments is reduced or by the type of available labels in the
training data (e.g., a few methods require instance labels (Landrieu and
Boussaha, 2019; Hui et al., 2021)). We propose to partition the input
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Fig. 3. 2D illustrative comparison between planar and planarity-sensible segments. Each dot and its line denote a segment.
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eshes into a relatively small number of homogeneous regions with
lear object boundaries based on both geometric and photometric char-
cteristics (see Section 3), which is beneficial to semantic segmentation
see Section 4).

.2. Semantic segmentation of 3D data

An important step in semantic segmentation is feature extrac-
ion. Based on the methods used for feature extraction, semantic
egmentation approaches can be roughly categorized into three groups:
andcrafted-feature-based (Demantké et al., 2011; Weinmann et al.,
013; Verdie et al., 2015; Weinmann et al., 2015; Hackel et al., 2016;
ouhani et al., 2017; Vosselman et al., 2017; Thomas et al., 2018),

earning-based (Qi et al., 2017a,b; Thomas et al., 2019; Hu et al., 2020;
ei et al., 2021), and hybrid methods (Landrieu and Simonovsky, 2018;
u et al., 2021). Handcrafted features are often effective when with

imited training data. In contrast, deep-learning techniques are more
ffective when sufficient training data is available (Guo et al., 2020).
hese methods usually require contextual information to compute
r learn features. However, it is difficult to capture effective global
ontextual features. Inspired by SPG (Landrieu and Simonovsky, 2018),
ur graph structure encodes various local geometric, photometric, and
ontextual features, and we apply a GCN for semantic segmentation.
ur method exploits enriched spatial relationships in the graph at
oth local and global scales, which greatly facilitates the GCN model
o capture contextual information and learn distinctive features for
emantic segmentation.

. Methodology

Our framework for semantic segmentation of urban meshes has two
teps (as shown in Fig. 2):
lanarity-sensible over-segmentation. This step decomposes the ur-
an mesh into a set of planar and non-planar surface patches because
bject boundaries often align with the boundaries of planar regions.
his step not only enhances the descriptiveness of the features learned
hrough local context but also significantly reduces the number of
egments to be classified.
egmentation classification. We construct a graph with its nodes
ncoding the local geometric and photometric features of the segments
nd its edges encoding global contextual features. We achieve semantic
egmentation of the mesh by classifying the segments using a graph
onvolutional network.

.1. Planarity-sensible over-segmentation

This step aims to decompose the urban mesh into a set of homoge-
eous segments in terms of geometric and photometric characteristics,
ee Fig. 3. Compared with planar segments generated by classical
egion growing methods (Lafarge and Mallet, 2012), our segments can
ccommodate more complex surfaces (i.e., trees and vehicles). Our
ver-segmentation, further detailed below, is achieved in two steps: (1)
34

lanar and non-planar classification, and (2) incremental segmentation.
lanar and non-planar classification. We classify the triangle faces of a
mesh as either planar or non-planar. Following Gao et al. (2021), we
design a set of features including Eigen-based (i.e., linearity, planarity,
phericity, curvature, and verticality), elevation-based (i.e., absolute, rel-
tive, and multi-scale), scale-based (i.e, InMAT radius (Ma et al., 2012;
eters and Ledoux, 2016): interior shrinking ball radius of 3D medial
xis transformation), density-based (i.e., the number of vertices and
he density of triangle faces), and color-based (i.e., greenness and HSV
istograms) features, and we concatenate these features into a feature
ector 𝐅𝑖. We then use random forest (RF) (Geurts et al., 2006) to learn
he probability of a face being non-planar as

𝑖(𝐿) =
1
|𝜏|

∑

𝑡∈𝜏
log

(

𝑃𝑡(𝑙𝑖 ∣ 𝐅𝑖)
)

, (1)

where 𝜏 is a set of decision trees, and the predicted probability from
decision tree 𝑡 is denoted by 𝑃𝑡 ∈ [0, 1]. 𝐿 = {0, 1} represents the
otential labels of a face 𝑖 (i.e., 𝑙𝑖 = 0 for planar and 𝑙𝑖 = 1 for non-
planar). We learn a probability map (instead of binary classification)
for the subsequent segment aggregation.

Incremental segmentation. Grouping all triangles into segments in one
step using graph cuts would require the total number of segments,
which is often not a priori. Therefore, we use the learned planar
and non-planar probability maps to incrementally aggregate the mesh
faces into a set of locally homogeneous segments. Inspired by Lafarge
and Mallet (2012), we accumulate faces for a segment by solving
a binary labeling problem. Starting from the face with the highest
planar probability (i.e., the current region 𝑟 has only a starting face
at the beginning), we incrementally gather its neighboring face 𝑖 to
the current region 𝑟 based on the labeling outcome of face 𝑖. The
growing process is illustrated in Fig. 4. Our idea is to grow a region
𝑟 if its neighboring face 𝑖 receives the same label. We exploit a Markov
Random Field (MRF) formulation to select the most suitable face for
the aggregation in each growing iteration. The energy function 𝑈 (𝑋) is
efined as the sum of a unary term 𝜓𝑖(𝑥𝑖) and a pairwise term 𝜑𝑖,𝑟(𝑥𝑖, 𝑥𝑟),
.e.,

(𝑋) = 𝜆𝑑 ⋅
∑

𝑖∈𝐴
𝜓𝑖(𝑥𝑖) + 𝜆𝑚 ⋅

∑

𝑖∈𝐴
𝜑𝑖,𝑟(𝑥𝑖, 𝑥𝑟), (2)

here 𝐴 denotes the neighboring faces of the current growing region
i.e., the faces directly connected to 𝑟). 𝑥𝑖 and 𝑥𝑟 denote the binary
abels that will be received by face 𝑖 and region 𝑟, respectively. A
eighboring face can be added to the current region only if it receives
he same label as the current region. In our implementation, we fix
he label of the current region to 0 (i.e., 𝑥𝑟 ≡ 0) before minimizing
he energy function. The face 𝑖 is added to 𝑟 only when 𝑥𝑖 = 0 after
he optimization. 𝜆𝑑 ≥ 0 and 𝜆𝑚 ≥ 0 are the weights balancing the
nary and pairwise terms. A larger 𝜆𝑑 can lead to an excessive number
f segments with smaller under-segmentation errors (see Figs. 5(a)
nd 5(b)). In contrast, a larger 𝜆𝑚 can result in fewer segments but may
ntroduce larger under-segmentation errors (see Fig. 5(c)).

The unary term 𝜓𝑖(𝑥𝑖) measures the penalty of assigning a label 𝑥𝑖
o a face 𝑖. To define this term, we consider the geometric distance (for
lanar regions) and the probability map (for non-planar regions), which
s formulated as

(𝑥𝑖) =
{

min
{

d(𝑓𝑖, 𝑝𝑟), 𝐶𝑖
}

, if 𝑥𝑖 = 0
{ } , (3)
1 − min d(𝑓𝑖, 𝑝𝑟), 𝐶𝑖 , if 𝑥𝑖 = 1
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Fig. 4. An illustration of the first few steps of incremental segmentation. (a) The seed face with the highest planar probability is shown in gold color. (b) The local graph is
constructed on the seed face (represented by the region node) and its three neighboring faces (represented by the face node). (c) The labeling outcome of the Markov random
field (MRF): one newly added face is used as a seed face, and two non-added faces will be labeled as visited faces for the current growth step. (d) A local graph is constructed
based on the growing region (represented by the region node) and two neighboring faces (represented by the face node). (e) The new labeling outcome, where the newly added
two faces will be used as seed faces for the next growing step. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
𝐶𝑖 =
{

1 − 𝜆𝑔 ⋅ 𝐺𝑖, if 𝑙𝑖 = 1 ∧ 𝑙𝑟 = 1
∞, otherwise , (4)

where d(𝑓𝑖, 𝑝𝑟) measures the Euclidean distance between the farthest
vertex of face 𝑖 and the fitted plane 𝑝𝑟 of the region 𝑟. The plane is
obtained by linear least squares fitting using all the vertices of the
region and dynamically updated when a new face has been added.
During growing, when 𝑥𝑖 = 0, min

{

d(𝑓𝑖, 𝑝𝑟), 𝐶𝑖
}

measures the cost of
assigning face 𝑖 the same label as the current region 𝑟 (i.e., the cost
of adding face 𝑖 to the current region 𝑟). On the contrary, the cost is
measured by 1 − min

{

d(𝑣𝑖, 𝑝𝑟), 𝐶𝑖
}

when 𝑥𝑖 = 1. In particular, for the
planar case, since 𝐶𝑖 = ∞, the geometric distance d(𝑓𝑖, 𝑝𝑟) is actually
used as the cost measure. For the non-planar case, the prior term 𝐺𝑖
(see Eq. (1)) is considered to define the cost 𝐶𝑖. 𝜆𝑔 ≥ 0 is a weight
that controls the relative numbers of planar and non-planar segments
(see Figs. 5(a) and 5(d)).

The pairwise term 𝜑𝑖,𝑟(𝑥𝑖, 𝑥𝑟) is designed to control the smoothness
degree during the growing process,

𝜑𝑖,𝑟(𝑥𝑖, 𝑥𝑟) = ∠(𝐧𝑖,𝐧𝑟) ⋅ 1(𝑥𝑖 ≠ 𝑥𝑟), (5)

where 𝐧𝑖 and 𝐧𝑟 denote the normals of a neighboring triangle face 𝑖
and the region 𝑟, respectively. This term encodes the angle between
these normal vectors, to reduce the normal deviation within the local
neighborhood in the segmentation. 1(𝑥𝑖 ≠ 𝑥𝑟) is an indicator function
that measures the coherence between 𝑥𝑖 and 𝑥𝑟.

The energy 𝑈 (𝑋) is minimized using the 𝛼 − 𝛽 swap graph cut
algorithm (Boykov et al., 2001) to accumulate a face for the current
segment. The growth of a segment stops if no more faces can be accu-
mulated. We then restart growing a new segment from the face with the
highest planar probability in the remaining set of faces. The growing of
segments is repeated until all mesh faces have been processed.

3.2. Classification

We construct a graph whose nodes encode features of the segments
and edges encode interactions between segments. With this graph,
the semantic segmentation of the mesh is achieved by classifying the
segments using GCN.

Node feature embedding. In our graph, each node represents a segment
and it encodes two types of features generated based on the vertices
and face centroids of the segment: (1) 𝐹𝑙(𝑠𝑘)256 is learned using Point-
Net (Qi et al., 2017a), and the input to it is a point cloud of randomly
sub-sampled points from mesh vertices and face centroids. The size
of the feature vector is 128 × 6 and consists of XYZ and RGB; (2)
𝐹ℎ(𝑠𝑘)48 is generated from the handcrafted feature generator (HFG),
and it contains the same type of features used for planar and non-
planar classification (see in Section 3.1) and four additional shape-based
features capturing local geometric differences (see Table 1).
35
Table 1
Shape-based features defined on segments. 𝐶(𝑠𝑘) is the circumference of a segment 𝑠𝑘.
𝜆2 and 𝜆3 are the eigenvalues derived from the linear fitting line of 𝑚 boundary points
in 3D (Karl Pearson, 1901). Avg Distance measures the average distance from 𝑛 mesh
vertices 𝑝𝑖 to the supporting plane 𝑃𝑘 of the segment.

Compactness 𝐶𝑃𝑘 =
4 ⋅ 𝜋 ⋅ 𝑎𝑟𝑒𝑎(𝑠𝑘)

𝐶(𝑠𝑘)2
Shape Index 𝑆𝐼𝑘 =

𝐶(𝑠𝑘)
4
√

𝑎𝑟𝑒𝑎(𝑠𝑘)

Straightness 𝑆𝐷𝑘 =

∑𝑚
𝑖=1

𝜆2
𝜆3

𝑚
Avg Distance 𝐷𝑘 =

∑𝑖=1
𝑛 𝑑𝑖𝑠𝑡

(

𝑝𝑖 , 𝑃𝑘
)

𝑛

Edge feature embedding. In contrast to graphs defined on 3D points or
triangle faces, graphs defined on certain segmentation of the data can
better capture global contextual relationships than simple adjacency
connections. The idea behind the designed graph is to give more
prominence to the segment differences that are usually present in
urban scenarios. To this end, we intend to include global features that
fulfill two conditions. First, the global features should be generalizable,
i.e., they can be captured in different scenarios. Second, the global
features should be established between graph nodes that have large
feature differences. To make full use of the planar and non-planar
segments and establish meaningful relationships between the segments,
we propose a graph consisting of the following four types of edges
(see Fig. 6):

(1) parallelism edges: edges connecting parallel planar segments. Two
planar segments are considered parallel if the angle between
their supporting planes is smaller than a threshold (5◦ in our
experiments). These edges mainly connect the planar segments
belonging to man-made objects.

(2) connecting-ground edges: edges connecting segments and their
local ground planes. A local ground plane is identified as the
lowest and largest planar segment in a cylindrical neighborhood
(30 m in our experiments) around the boundary vertices of the
segment. These edges primarily capture the relationship between
the ground and all non-ground objects.

(3) exterior medial axis transform (ExMAT) edges. We first build the
ExMAT (i.e., exterior shrinking ball radius of 3D medial axis
transformation) (Ma et al., 2012; Peters and Ledoux, 2016)
on the segments, and we introduce graph edges that link the
segments connected by the exterior shrinking ball (see Fig. 6(c)).
Since the external skeleton usually corresponds to the joints
between objects, ExMAT edges allow connecting segments that
are adjacent but belong to different objects.

(4) spatially-proximate edges. We first build a 3D Delaunay triangu-
lation (Jaromczyk and Toussaint, 1992) with the input mesh
vertices and the centroids of mesh faces. Two segments are
connected by an edge if at least one pair of points from the
two segments are connected by a Delaunay edge. This type of
edges allow the encoding of contextual information on different
scales. Particularly, these edges contribute to capturing the re-
lationships between urban objects from short-range (for objects
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Fig. 5. The effect of the parameters 𝜆𝑑 , 𝜆𝑚, and 𝜆𝑔 on the over-segmentation. These parameters provide control over the size and boundary smoothness of the segments.
Fig. 6. An illustration of the four types of edges in our graph. Each color indicates a segment encoded as a node (i.e., the colored dot on each segment) in the graph. The dash
lines denote the graph edges. In (c), the blue circles represent the exterior shrinking balls. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
that are close to the ground) to long-range (for objects that are
far away from the ground).

With the above graph edges, we define the edge feature 𝐹ℎ(𝑒𝑘,𝑘+1) =
𝑙𝑜𝑔(𝐹ℎ(𝑠𝑘)∕𝐹ℎ(𝑠𝑘+1)), where 𝑠𝑘 and 𝑠𝑘+1 are the two segments connected
by an edge 𝑒𝑘,𝑘+1. We also introduced two additional edge features
defined as the mean and standard deviation of the vertex offsets of
the segment boundaries, in which the offset is defined using the closest
point pair between two segments.

Segment classification. Based on the graph and feature embedding
(see Fig. 7), we exploit a GCN (Li et al., 2016) to classify the segments.
The node features learned from PointNet (Qi et al., 2017a) and the
handcrafted features are concatenated and fed to MLP (Multilayer
perceptron) to output a 64D feature vector that serves as the hid-
den state of the Gated Recurrent Unit (GRU: a gating mechanism in
recurrent neural networks for updating and resetting hidden states
to capture short-term and long-term dependencies in sequence) (Cho
et al., 2014). We apply ReLU activation (Nair and Hinton, 2010) and
batch normalization (Ioffe and Szegedy, 2015) for each hidden layer
of all MLPs. The computed edge features are used as the input to the
36
Fig. 7. The feature embedding components for segment classification. Our network
takes mesh vertices and face centers (with XYZ and RGB) of each segment, denoted as
𝐹𝑝(𝑠𝑘)6, as input. PointNet (Qi et al., 2017a) is used to learn features 𝐹𝑙(𝑠𝑘)256 for each
segment. The handcrafted features 𝐹ℎ(𝑠𝑘)48 are computed using the feature generator
(HFG). These two types of features are then processed jointly by the MLP and then
refined in the GRU. The 𝐹ℎ(𝑒𝑘,𝑘+1)48 are handcrafted edge features and input to a filter
generating network (FGN). The final classification is obtained using edge-conditioned
convolution (ECC) that takes both node and edge features as input. The output segment
labels 𝐿(𝑠𝑘) are then transferred to face labels 𝐿(𝑖).
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Fig. 8. 2D schematic of object purity, boundary precision, and boundary recall. In (a), the yellow region represents the ground truth segment 𝐺. The blue region represents the
generated segment 𝑆. The pink region represents the largest overlapping region between a segment and the ground truth segments. In (b), the yellow edges represent the border 𝐵𝐺
of the ground truth segment. In (c), the blue edges represent the border 𝐵𝑆 of the generated segment. The orange edges represent the first ring of 𝐵𝑆 . The green edges represent
the second ring of 𝐵𝑆 . In (d), the red edges are the intersection of 𝐵𝐺 and 𝐵𝑆 (as well as its first two rings). The black dashed line represents the true border between objects.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Filter Generating Network (FGN: a sequence of MLPs with widths of
32, 128, and 64 to output a 64D edge feature vector) (Landrieu and
Simonovsky, 2018). The output edge weights are then used to update
the hidden state and refine the GRUs via Edge-Conditioned Convolution
(ECC: a dynamic edge-conditioned filter that computes element-wise
vector–vector multiplication for each edge and averages the results over
respective nodes) (Simonovsky and Komodakis, 2017). To alleviate
class imbalance, we apply a standard cross-entropy loss (Szegedy et al.,
2016) 𝑙𝑛 = −𝑤𝑦𝑛 log

exp(𝑥𝑛,𝑦𝑛 )
∑𝐶
𝑐=1 exp(𝑥𝑛,𝑐 )

weighted by 𝑤𝑦𝑛 =
√

𝑁∕𝑛𝑐 , where 𝑥 is
he input, and 𝑦 is the target. 𝑁 denotes the total number of segments,
nd 𝑛𝑐 represents the number of segments in each class 𝑐. The final
utput is per-segment labels that are then transferred to the faces of
he input mesh.

. Evaluation

.1. Data split

We have implemented our mesh over-segmentation with CGAL (The
GAL Project, 2020) and Easy3D (Nan, 2021), and the semantic classifi-
ation with PyTorch (Paszke et al., 2019). All experiments were carried
ut on a desktop PC with a 3.5 GHz CPU and a GTX 1080Ti GPU.

We have used the SUM dataset (Gao et al., 2021) and H3D dataset
Kölle et al., 2021) to evaluate our method. To the best of our knowl-
dge, SUM is the largest benchmark dataset for semantic urban meshes,
hich covers about 4 km2 of Helsinki (Finland) with six object classes:
errain (terra.), high vegetation (h-veg.), building (build.), water, vehicle
vehic.), and boat. The whole dataset contains 64 tiles each covering
n 250 m × 250 m area. Following the SUM baseline, we used 40 tiles
62.5% of the whole dataset) for training, 12 tiles (18.75%) for the test,
nd 12 tiles for validation. The H3D dataset covers about 0.19 km2 area
f the village of Hessigheim (Germany) with 11 classes: Low Vegetation,
Impervious Surface, Vehicle, Urban Furniture, Roof, Facade, Shrub, Tree,
oil/Gravel, Vertical Surface, and Chimney. We follow the data splits in
3D (Kölle et al., 2021), and we further merge small mesh tiles into a

arge one to obtain more contextual information.

.2. Evaluation metrics

etrics for over-segmentation. Our over-segmentation aims to produce
omogeneous segments to better facilitate semantic segmentation. We
ropose three novel evaluation metrics focusing on the impact of the
ver-segmentation on the final semantic segmentation: object purity
OP), boundary precision (BP), and boundary recall (BR).

Since our goal is semantic segmentation, the best achievable over-
egmentation is identical to the ground truth semantic segmentation. In
his ideal situation, each segment covers exactly an individual object,
nd its boundaries perfectly align with the object boundaries. Thus,
imilar to intersection over union, we define object purity as

𝑃 (𝑆,𝐺) =
∑

𝑘 𝑝𝑢𝑟𝑖𝑡𝑦(𝑠𝑘, 𝐺) , (6)
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𝑎𝑟𝑒𝑎(𝐺)
here 𝑆 = {𝑠𝑘} denotes the set of segments in our over-segmentation,
and 𝐺 = {𝑔𝑘} are the segments extracted as connected components
from the ground truth semantic segmentation. 𝑝𝑢𝑟𝑖𝑡𝑦(𝑠𝑘, 𝐺) measures
he surface area of the largest overlapping region between a segment
nd the ground truth segments (see Fig. 8).
Boundary precision measures the correctness of the segment bound-

ries. Thus, it is defined to quantify how much the segment boundaries
verlap with the boundaries of the ground truth semantic segmentation,

𝑃 (𝐵𝑆 , 𝐵𝐺) =
𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝑆 ∩ 𝐵𝐺)
𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝑆 )

, (7)

where 𝐵𝑆 and 𝐵𝐺 denote the boundaries of the over-segmentation and
those of the ground truth of the semantic segmentation, respectively.
The function 𝑙𝑒𝑛𝑔𝑡ℎ(⋅) quantifies the total length of a set of segment
boundaries. To handle noisy and dense meshes, we allow a tolerance
when looking for overlapping boundary edges. Specifically, two edges
𝑒1 and 𝑒2 are considered overlapping if the two endpoints of 𝑒2 fall

ithin the 2-ring neighborhood of the endpoints of 𝑒1 (see Fig. 8).
Boundary recall measures the completeness of the segment bound-

ries, defined as

𝑅(𝐵𝑆 , 𝐵𝐺) =
𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝑆 ∩ 𝐵𝐺)
𝑙𝑒𝑛𝑔𝑡ℎ(𝐵𝐺)

. (8)

Metrics for semantic segmentation. To evaluate semantic segmentation
results, we measure the precision, recall, F1 score, and intersection
over union (IoU) for each object class, and we also record the overall
accuracy (OA), mean accuracy (mAcc), and mean intersection over
union (mIoU) of all object classes.

4.3. Evaluation of over-segmentation

We evaluate over-segmentation on SUM dataset (Gao et al., 2021)
because it covers a larger area and contains fewer unlabeled areas
compared to H3D dataset (Kölle et al., 2021). Fig. 9 presents our
planarity-sensible over-segmentation result and comparison with seven
other commonly used over-segmentation techniques, namely region
growing (RG) (Lafarge and Mallet, 2012), efficient RANSAC (RA) (Schn-
abel et al., 2007), geometric partition (GP) (Landrieu and Simonovsky,
2018), supervized superpoint generation (SSP) (Landrieu and Boussaha,
2019), variational shape approximation (VSA) (Cohen-Steiner et al.,
2004), supervoxel generation (SPV) (Lin et al., 2018), voxel cloud con-
nectivity segmentation (Vccs) (Papon et al., 2013), superface clustering
(SC) (Verdie et al., 2015), and superface partitioning (SP) (Rouhani
et al., 2017). RG, VSA, SC, SP, and our method use meshes as input,
and the other methods (originally developed for point clouds) perform
over-segmentation on points that we densely sampled (10 pts∕m2) from
the input mesh. We can see from Fig. 9 that the segment boundaries
of our method are largely aligned with object boundaries. RG and
VSA perform similarly but generate excessive segments for non-planar

objects such as trees. Our over-segmentation generates segments that
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Fig. 9. Comparison of mesh over-segmentation methods on a tile of the SUM dataset (Gao et al., 2021). (b) to (k) show the over-segmentation results with the same object purity
(around 92%) for all methods. The number below each result denotes the number of segments required to achieve the desired object purity. (l) shows the connected components
extracted from the ground truth semantic segmentation.
Fig. 10. Comparison of different over-segmentation method in terms of OP, BP, and BR on the SUM dataset (Gao et al., 2021). For each method, we tuned their parameters such
that all methods generated a similar number of segments. The data was recorded at different numbers of segments for all methods.
are closer to semantically meaningful objects. In terms of the number of
segments, RA, SC, SP, Vccs, and SPV generate relatively large numbers
of segments, which are unfavorable to the subsequent classification
using GCN. In contrast, our method generates the least segments, which
is a strong advantage for the subsequent classification step in terms of
efficiency.

We have used the entire SUM dataset (Gao et al., 2021) to evalu-
ate our over-segmentation method in terms OP, BP, and BR, and we
have compared them with those of the other seven over-segmentation
methods. In the comparison, we tuned the parameters of each method
such that all methods generated a similar number of segments, and
we then computed the OP, BP, and BR for each method. We recorded
the performance of all methods for different numbers of segments, and
the results are shown in Fig. 10. It can be observed that our method
outperforms the others for all three metrics. Specifically, as the number
of segments increases, the OP of VSA, RG, and SSP get closer to ours.
However, VSA underperforms our method in terms of BP and BR, which
indicates that our method generated segments with better boundary
qualities. For RG and SSP, its OP, BP, and BR are rather low when
the number of segments is small, indicating that our method is more
robust with a relatively small number of segments. Other methods like
RA, SP, GP, SPV, Vccs, and SC also require a larger number of segments
to produce satisfactory results.

To understand the potential of each method, Table 2 provides the
maximum achievable performance of semantic segmentation for each
over-segmentation method. The maximum achievable performance is
measured by the maximum IoU and mIoU that can be achieved in
theory. We can see that our method significantly outperforms the other
methods with a considerable margin ranging from 4.8% to 30.1% in
terms of mIoU (which reflects the under-segmentation errors). It is also
38
worth noting that VSA has slightly better results on very few object
classes (e.g., water and boat) while our method can better distinguish
small non-planar objects such as vehicles which are very common in
urban textured meshes.

Performance analysis. For the impact of planarity-sensible over-
segmentation in different configurations, we experimented with dif-
ferent settings for each weight term based on the default parameters
(i.e., 𝜆𝑑 = 1.2, 𝜆𝑚 = 0.1, and 𝜆𝑔 = 0.9). In each experiment, only one
weight is tuned while the others remain unchanged. Fig. 11 shows its
results in terms of OP and the number of segments. We can observe that
increasing 𝜆𝑑 leads to a larger OP but also encourages the splitting of
segments into smaller planar ones. In contrast, increasing 𝜆𝑚 results in
over-smoothed segments (i.e., the smaller segments are merged into a
larger one). However, 𝜆𝑔 performs differently from the other two since
our aim is to use 𝜆𝑔 to reduce the number of segments without decreas-
ing OP (as demonstrated in Fig. 11). The performance of applying 𝜆𝑔
is limited to the results of planar and non-planar classification, while
the performance of the other two terms is limited to the quality of the
mesh.

4.4. Evaluation of semantic classification

We have tested our semantic classification method on both the
SUM (Gao et al., 2021) and the H3D (Kölle et al., 2021) datasets.

4.4.1. Evaluation on SUM
Fig. 12 shows the results for two tiles from the SUM dataset. From

the extensive experiments, we also observed that our method is robust
against non-uniform triangulation of mesh, for which an example is
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Table 2
Comparison of different over-segmentation methods in terms of maximum achievable performance of semantic segmentation on test data from
the SUM dataset (Gao et al., 2021), with 50,000 segments. Evaluation metrics are reported as per-class IoU (%) and mean IoU (mIoU, %).
Methods Terra. H-veg. Build. Water Vehic. Boat mIoU

SP (Rouhani et al., 2017) 73.4 88.1 96.8 12.5 15.7 68.1 59.1
RANSAC (Schnabel et al., 2007) 82.3 88.6 97.0 57.3 29.8 69.7 70.8
Vccs (Papon et al., 2013) 77.4 86.3 94.3 87.4 35.9 84.5 77.6
SC (Verdie et al., 2015) 86.8 92.5 97.8 75.5 46.1 79.3 79.7
SPV (Lin et al., 2018) 83.7 91.5 97.0 87.1 37.5 84.5 80.2
GP (Landrieu and Simonovsky, 2018) 86.5 91.2 96.6 87.1 46.9 84.6 82.1
RG (Lafarge and Mallet, 2012) 90.9 93.9 98.4 84.5 53.9 75.6 82.9
SSP (Landrieu and Boussaha, 2019) 85.3 91.2 96.1 91.1 49.6 88.3 83.6
VSA (Cohen-Steiner et al., 2004) 91.1 95.1 98.7 93.4 39.3 88.9 84.4
Ours 93.3 95.6 98.9 91.6 67.1 88.8 89.2
Fig. 11. Comparison of over-segmentation with different parameter configurations in terms of object purity and the number of segments on the SUM dataset (Gao et al., 2021).
Note that the range of parameters depends on the quality of the input data.
Fig. 12. Semantic segmentation results of our method on two tiles from the SUM dataset (Gao et al., 2021).
Table 3
Comparison with state-of-the-art semantic segmentation methods on the SUM dataset (Gao et al., 2021). Per-class IoU (%), mean IoU (mIoU, %), Overall Accuracy (OA, %), mean
class Accuracy (mAcc, %), mean F1 score (mF1, %), and the running times for training (over-seg: 1.8 h, graph: 2.7 h, classification: 11.8 h, total: 16.3 h) and testing (over-seg:
15 min, graph: 40 min, classification: 7 min, total: 62 min) are included. Note that each method was run ten times and the mean performance is reported here.

Methods Terra. H-veg. Build. Water Vehic. Boat mIoU OA mAcc mF1 Training
(h)

Testing
(min)

PointNet (Qi et al., 2017a) 56.3 14.9 66.7 83.8 0.0 0.0 36.9 ± 2.3 71.4 ± 2.1 46.1 ± 2.6 44.6 ± 3.2 1.8 1
RandLaNet (Hu et al., 2020) 38.9 59.6 81.5 27.7 22.0 2.1 38.6 ± 4.6 74.9 ± 3.2 53.3 ± 5.1 49.9 ± 4.8 10.8 52
SPG (Landrieu and Simonovsky, 2018) 56.4 61.8 87.4 36.5 34.4 6.2 47.1 ± 2.4 79.0 ± 2.8 64.8 ± 1.2 59.6 ± 1.9 17.8 26
PointNet++ (Qi et al., 2017b) 68.0 73.1 84.2 69.9 0.5 1.6 49.5 ± 2.1 85.5 ± 0.9 57.8 ± 1.8 57.1 ± 1.7 2.8 3
RF-MRF (Rouhani et al., 2017) 77.4 87.5 91.3 83.7 23.8 1.7 60.9 ± 0.0 91.2 ± 0.0 65.9 ± 0.0 68.1 ± 0.0 1.1 15
SUM-RF (Gao et al., 2021) 83.3 90.5 92.5 86.0 37.3 7.4 66.2 ± 0.0 93.0 ± 0.0 70.6 ± 0.0 73.8 ± 0.0 1.2 18
KPConv (Thomas et al., 2019) 86.5 88.4 92.7 77.7 54.3 13.3 68.8 ± 5.7 93.3 ± 1.5 73.7 ± 5.4 76.7 ± 5.8 23.5 42
Ours 84.9 90.6 93.9 84.3 50.9 32.3 72.8 ± 2.0 93.8 ± 0.4 79.2 ± 3.0 81.6 ± 2.3 16.3 62
shown in Fig. 15. We have also compared our method with several
state-of-the-art semantic segmentation approaches, among which RF-
MRF (Rouhani et al., 2017) and SUM-RF (Gao et al., 2021) directly
consume meshes. To compare with methods originally developed for
semantic segmentation of point clouds, e.g., PointNet (Qi et al., 2017a),
PointNet++ (Qi et al., 2017b), SPG (Landrieu and Simonovsky, 2018),
KPConv (Thomas et al., 2019), and RandLA-Net (Hu et al., 2020), we
sampled points from the meshes by following Gao et al. (2021). For
each deep learning method designed for point clouds, we feed it with
the colored point clouds densely sampled from the texture meshes. We
tune the hyper-parameters starting with their default setting. For a fair
comparison, we use the same weight for all the competing methods
involved in the comparison. Due to the randomness of deep learning,
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we ran each method ten times with the same settings to record its
average performance. We report the results in Table 3, and we can
see the results of the top three best methods in Fig. 13. Our method
achieves the highest per-class IoU on the majority of object classes, and
it outperforms all other methods in all overall metrics, with a margin
from 4% to 35.9% in terms of mIoU. Compared to KPConv and SPG,
our method requires less training time, and our results are more stable
(i.e., with smaller standard deviations).

4.4.2. Evaluation on H3D
We also attempted to train and test on the H3D dataset (Kölle et al.,

2021) (see for an overview of the results in Fig. 14). It should be noted
that the H3D dataset is much smaller (0.19 km2) than SUM (4 km2).
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Fig. 13. Semantic segmentation results of SUM-RF (Gao et al., 2021), KPConv (Thomas et al., 2019), and our method on five tiles from the SUM dataset (Gao et al., 2021).
In addition, 40% of the area of the mesh in H3D is unlabeled and
many triangles have incorrect labels, which was due to the limitation
in their cloud-to-mesh labeling process where the correspondence was
either not completed or has ambiguities when transferring the labels
from the points to the mesh faces. This prevents H3D from being
an ideal training dataset for us, as both our method and other deep
learning methods require a large amount of labeled data. Besides, to
distinguish between different classes that are geometrically coplanar in
H3D (e.g., Low Vegetation, Impervious Surface, Soil, and Gravel), the
planar class is divided into sub-classes and used as a prior for over-
segmentation in our approach. The test results show that our method
achieves about 52.2% mIoU, outperforming the KPConv (45.5% mIoU),
SPG (29.9% mIoU), and PointNet++ (15.6% mIoU).

4.5. Ablation study

To understand the effect of several design choices made in the graph
construction, and the contributions of the hand-crafted features and
the learned features, we have conducted an ablation study on the SUM
dataset (Gao et al., 2021).

Table 4 summarizes the ablation result of the graphs and the fea-
tures. The upper part of Table 4 reveals the impact of removing
40
each type of graph edges (i.e., connections between segments) on the
final semantic segmentation. It reveals that every type of graph edges
contributes to the performance, and removing any of them results in
a drop in mIoU in the range [2.9%, 4.3%]. This implies that both local
and global interactions between segments provide useful information
and play an important role in semantic segmentation. To understand
the effectiveness of the designed graph, we compared it to using a
graph with random connections (with the same number of edges as
in our designed graph). Although these connections may overlap with
the edges we have designed, the presence of randomness significantly
reduces the capability of the network. This is because the random set of
edges does not convey the effective features captured by our carefully
designed edges. Besides, the orthogonal edges were also tested (see
Table 4), from which we can see that they are less useful than the
other types of edges. This is because the orthogonal relationship is more
often incident to man-made structures within the same object (such as
building parts) than between segments from different objects.

The lower part of Table 4 details the ablation analysis of differ-
ent features. We have evaluated the importance of each feature by
removing it from the experiment and recording the performance of the
semantic segmentation. These experiments show that the combination
of all the features outperforms all degraded features with a margin
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Fig. 14. Semantic segmentation results of our method on the test area of the H3D dataset (Kölle et al., 2021).
Fig. 15. Robustness against triangulation.
Table 4
Ablation study of graph edges and features on the SUM dataset (Gao et al., 2021). PointNet denotes features learned from
PointNet (Qi et al., 2017a) with XYZ and RGB as input, and ‘‘ No RGB with PointNet ’’ means RGB is not used as input.

Model OA (%) mAcc (%) mIoU (%) 𝛥mIoU (%)

Graph edges

No parallelism 92.9 75.3 68.5 ± 1.9 −4.3
No ExMAT 93.1 76.0 69.3 ± 1.3 −3.5
No spatial-proximity 93.1 76.3 69.4 ± 1.9 −3.4
No connecting-ground 93.3 76.3 69.9 ± 1.6 −2.9
Only random 92.5 74.9 67.8 ± 2.3 −5.0
With orthogonal 93.0 75.3 68.9 ± 1.8 −3.9

Features

No All Handcrafted 89.7 75.9 65.0 ± 3.8 −7.8
No Offset 92.4 75.0 67.2 ± 1.5 −5.6
No PointNet 92.8 74.5 68.2 ± 1.3 −4.6
No Eigen 93.0 75.3 68.3 ± 2.3 −4.5
No Color 93.1 75.0 68.9 ± 1.4 −3.9
No Density 93.1 76.4 69.4 ± 2.0 −3.4
No Scale 93.0 76.1 69.7 ± 0.9 −3.1
No Shape 93.2 75.6 69.7 ± 0.8 −3.1
No RGB with PointNet 93.5 76.4 70.4 ± 0.4 −2.4

Ours 93.8 79.2 72.8 ± 2.0 –
of mIoU from 2.4% to 7.8%, which means every feature contributes
to the performance. It is also interesting to notice that the results are
more stable without RGB information as input to PointNet for feature
learning, which indicates the low quality (e.g., distortion, shadow) of
mesh textures in our training datasets.
41
4.6. Generalization ability

We have conducted experiments to test the generalization ability of
our method and the competing methods. Such tests can indicate the
applicability of models trained by different methods on practical test
datasets. SUM (Gao et al., 2021) and H3D (Kölle et al., 2021) are well
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Table 5
Generalization ability comparison. All methods are trained on four classes of the SUM dataset (Gao et al., 2021). The top eight rows show the
scores on the testing area of the SUM dataset, while the bottom eight records show the testing results on the four classes H3D dataset. Per-class
IoU (%) and mean IoU (mIoU, %) are reported here.

Methods Terra. H-veg. Build. Vehic. mIoU

SUM

PointNet (Qi et al., 2017a) 66.8 13.8 65.7 0.0 36.6
PointNet++ (Qi et al., 2017b) 77.7 76.7 86.3 1.3 60.5
SPG (Landrieu and Simonovsky, 2018) 86.0 73.9 88.5 13.9 65.6
RF-MRF (Rouhani et al., 2017) 86.8 86.7 90.5 20.7 71.2
RandLaNet (Hu et al., 2020) 83.0 91.6 90.1 22.0 71.7
KPConv (Thomas et al., 2019) 89.4 84.7 91.5 34.1 75.0
SUM-RF (Gao et al., 2021) 88.0 90.2 92.3 30.4 75.2
Ours 89.5 92.0 93.9 33.0 77.1

H3D

PointNet++ (Qi et al., 2017b) 0.0 0.0 0.0 1.1 0.3
KPConv (Thomas et al., 2019) 0.0 0.0 0.0 1.1 0.3
SPG (Landrieu and Simonovsky, 2018) 0.0 0.0 18.3 0.0 4.6
RandLaNet (Hu et al., 2020) 0.0 0.0 20.7 0.0 5.2
PointNet (Qi et al., 2017a) 56.9 24.1 0.0 0.0 20.3
RF-MRF (Rouhani et al., 2017) 73.9 46.0 40.0 4.7 41.1
SUM-RF (Gao et al., 2021) 80.2 44.0 41.6 9.2 43.8
Ours 74.2 66.2 44.5 13.4 49.6
qualified for generalization ability tests as they both represent urban
scenes. As the original classes of these two datasets do not match, we
merged them into four common classes that are typical of urban scenar-
ios for testing, i.e., terrain (including water, low vegetation, impervious
surface, soil, and gravel), high-vegetation (including shrub and tree),
building (including roof, facade, and chimney), and vehicle (including
car and boat). For all methods, we trained the model on the SUM
dataset and perform the testing on the H3D dataset. In particular, for
training and validation, we have used the training and validation splits
of the SUM dataset as they cover a larger area than H3D. For testing,
we have used training and validation splits of the H3D dataset that has
publicly available ground truth labels. To compare the difference in
results, we also tested the same model on the test area of SUM.

As shown in the top eight rows of Table 5, the mIoU of all methods
has improved compared to the previous six classes in the SUM test area
because the task of classification has become relatively easy due to the
reduction in the number of classes. The bottom eight records of Table 5
demonstrate the generalization ability of different methods. We can
see that our method outperforms all competing methods with a margin
from 5.8% to 49.3% in terms of mIoU. Except for our approach, almost
all other deep learning-based methods (i.e. PointNet++ (Qi et al.,
2017b), SPG (Landrieu and Simonovsky, 2018), KPConv (Thomas et al.,
2019), and RandLA-Net (Hu et al., 2020)) failed to predict the classes
in a new urban scene. This is because these methods all learn global
features by having a large receptive field, and these global features
can lead to overfitting of the model to the training data and result in
degradation of generalization ability. In contrast, the global features of
PointNet (Qi et al., 2017a) are based on aggregated local features and
do not correspond to a larger receptive field, which does not have the
overfitting problem. In other words, training with only local features
avoids the degradation of model generalization ability, which is better
illustrated by RF-MRF (Rouhani et al., 2017) and SUM-RF (Gao et al.,
2021) as they only use features extracted on local segments. Whereas
our approach includes global features derived from the local features,
our proposed graph is based on the spatial distribution of the object
components in the urban scene, which facilitates the generalization of
the global features.

From Tables 4 and 5, we can conclude that compared with features
learned by the neural network, the proposed handcrafted features
and edges lead to better semantic segmentation results and contribute
to a stronger generalization ability, especially for data with domain
gaps. In particular, the domain gaps are attributed to the differences
between training data and test data (i.e., different feature distribu-
tions), and the reasons for these differences can be grouped into two
main categories: (1) same data acquisition and processing pipeline,
42

but covering different urban scenarios (e.g., from dense urban area
to rural or forest area); (2) covering the same urban scenarios but
with different data acquisition (e.g., using different sensors or different
parameters for data collection) and processing pipelines (e.g., using
different approaches or parameter configurations for generating the 3D
data). Nevertheless, the features learned by the existing neural network
architectures cannot cope with such differences without adding new
training samples from the test area. Our segment-based handcrafted
features and edges capture the intrinsic characteristics of the object
(e.g., the facade is usually perpendicular to the ground or the surface
of the tree is undulating and non-planar) and can better cope with the
variance in feature distribution.

4.7. Limitations

Our method is based on the observation that urban scenes consist
of objects demonstrating both planar and non-planar regions, and that
object boundaries lie in the connections between the planar and non-
planar regions. In special cases where adjacent objects contain only
non-planar regions (e.g., vehicles underneath trees), our method will
not be able to differentiate them. In addition, our approach generates
segments for semantic classification, which reduces memory consump-
tion as well as the number of samples. Specifically, if the training
data covers a small area (e.g., H3D (Kölle et al., 2021)) and only a
few segments are generated after over-segmentation, the number of
samples may not be sufficient to train a competent model. Possible
solutions include data augmentation of segments and graph connections
or adding more labeled data. Besides, our method requires adjacency
information of the mesh for incremental region growing. Additional
preprocessing is necessary for meshes that are non-manifold or contain
duplicated vertices, as they destroy the topological adjacency infor-
mation. Potential solutions can be to split non-manifold vertices or
to reconstruct adjacency information of duplicated vertices. In our
experiments, the meshes in the SUM dataset (Gao et al., 2021) are 2-
manifold, while the meshes in the H3D dataset (Kölle et al., 2021) are
not.

5. Conclusion

We have presented a two-stage supervised framework for semantic
segmentation of large-scale urban meshes. Our planarity-sensible over-
segmentation algorithm favors generating segments largely aligned
with object boundaries, closer to semantically meaningful objects, can
deliver descriptive features, and can represent urban scenes with a
smaller number of segments. A thorough analysis reveals that our
planarity-sensible over-segmentation plays a key role in achieving su-
perior performance in semantic segmentation. We have also shown that
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exploiting multi-scale contextual information better facilitates semantic
segmentation. Furthermore, we have demonstrated that our proposed
approach achieves better generalization abilities in comparison with
other methods, owing to the segment-based local features and unique
connections in graphs. Our proposed new metrics are effective for
evaluating mesh over-segmentation methods dedicated to semantic
segmentation. We believe the proposed metrics will further stimu-
late improving other over-segmentation techniques. In future work,
we would like to extend our framework to part-level (e.g., dormers,
balconies, roofs, and facades of buildings) urban mesh segmentation.
In addition, we will also investigate how the semantics learned from
multi-view images can be used for semantic segmentation of urban
meshes.
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