
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-MS-2014-10

M.Sc. Thesis

Determining Performance Boundaries and Automatic Loop

Optimization of High-Level System Specifications

Wouter van Teijlingen

Abstract

Designers are confronted with high time-to-market pressure and an increasing de-
mand for computational power. As a result, they are required to identify as early
as possible the quality of a specification for an intended technology. The designer
needs to know if this specification can be improved, and at what cost. Specifi-
cation trade-offs are often based on the experience and intuition of a designer,
which in itself is not enough to make design decisions given the complexity of
modern designs. Therefore, we need to identify the performance boundaries for
the execution of a specification on an intended technology.

The degree of parallelism, required resources, scheduling constraints, and
possible optimizations, etc. are essential in determining design trade-offs (e.g.,
power consumption, execution time, etc). However, existing tools lack the capa-
bility of determining relevant performance parameters and the option to automat-
ically optimize high-level specifications to make meaningful design trade-offs.

To address these problems, we present in this thesis a new profiler tool, cprof.
The Clang compiler front-end is used in this tool to parse high-level specifications,
and to produce instrumented source code for the purpose of profiling. This tool
automatically determines, from high-level specifications, the degree of parallelism
of a given source code, specified in C and C++ programming languages. Further-
more, cprof estimates the number of clock cycles necessary to complete a program,
it automatically applies loop optimization techniques, it determines the lower and
upper bound on throughput capacity, and finally, it generates hardware execution
traces. The tool assumes that the specification is executed on a parallel Model of
Computation (MoC), referred to as a Polyhedral Process Network (PPN).

The proposed tool adds new functionality to existing technologies: the esti-
mated performance by cprof of PolyBench/C benchmarks, as compared to realistic
implementations in Field-Programmable Gate Arrays (FPGA) platforms, showed
to be almost identical. Cprof is capable of estimating the lower and upper bound
on throughput capacity, making it possible for the designer to make performance
trade-offs based on real design points. As a result, only the high-level specifica-
tion is used by cprof to assist in Design Space Exploration (DSE) and to improve
design quality.

Determining Performance Boundaries and Automatic
Loop Optimization of High-Level System

Specifications
Profiling of Polyhedral Process Networks

Thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science

in

Computer Engineering

by

Wouter van Teijlingen

born in Leiderdorp, The Netherlands

This work was performed in:

Circuits and Systems Group

Department of Microelectronics & Computer Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Delft University of Technology

Copyright © 2014 Circuits and Systems Group
All rights reserved.

Delft University of Technology

Department of

Microelectronics & Computer Engineering

The undersigned hereby certify that they have read and recommend to the Faculty

of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis

entitled “Determining Performance Boundaries and Automatic Loop Opti-
mization of High-Level System Specifications” by Wouter van Teijlingen in

partial fulfillment of the requirements for the degree of Master of Science.

Dated: November 28, 2014

Chairman:

prof. dr. ir. A. J. van der Veen

Advisors:

dr. ir. T. G. R. M. van Leuken

dr. ir. A. C. J. Kienhuis

Committee Members:

dr. C. Galuzzi

dr. ir. J. S. S. M. Wong

iv

Abstract

Designers are confronted with high time-to-market pressure and an increasing demand for computa-
tional power. As a result, they are required to identify as early as possible the quality of a specification
for an intended technology. The designer needs to know if this specification can be improved, and at
what cost. Specification trade-offs are often based on the experience and intuition of a designer, which
in itself is not enough to make design decisions given the complexity of modern designs. Therefore,
we need to identify the performance boundaries for the execution of a specification on an intended
technology.

The degree of parallelism, required resources, scheduling constraints, and possible optimizations,
etc. are essential in determining design trade-offs (e.g., power consumption, execution time, etc).
However, existing tools lack the capability of determining relevant performance parameters and the
option to automatically optimize high-level specifications to make meaningful design trade-offs.

To address these problems, we present in this thesis a new profiler tool, cprof. The Clang compiler
front-end is used in this tool to parse high-level specifications, and to produce instrumented source
code for the purpose of profiling. This tool automatically determines, from high-level specifications,
the degree of parallelism of a given source code, specified in C and C++ programming languages.
Furthermore, cprof estimates the number of clock cycles necessary to complete a program, it automat-
ically applies loop optimization techniques, it determines the lower and upper bound on throughput
capacity, and finally, it generates hardware execution traces. The tool assumes that the specification
is executed on a parallel Model of Computation (MoC), referred to as a Polyhedral Process Network
(PPN).

The proposed tool adds new functionality to existing technologies: the estimated performance by
cprof of PolyBench/C benchmarks, as compared to realistic implementations in Field-Programmable
Gate Arrays (FPGA) platforms, showed to be almost identical. Cprof is capable of estimating the lower
and upper bound on throughput capacity, making it possible for the designer to make performance
trade-offs based on real design points. As a result, only the high-level specification is used by cprof to
assist in Design Space Exploration (DSE) and to improve design quality.

v

vi

Acknowledgments

First of all, I would like to express my gratitude to my advisor, professor Rene van Leuken. Without
your support, this work would never have come into existence. I would like to thank Carlo Galuzzi,
for taking an interest in my work and for proofreading my thesis.

I am also very grateful to my second advisor, professor Bart Kienhuis. Thank you for introducing
me into the world of polyhedral process networks, and for sharpening my writing skills. I hope to
continue our collaboration in the future

I am indebted to my colleague Johan Peltenburg, for taking the time to read my thesis and for
providing me with feedback. I would like to thank my colleagues at the Rotterdam University of
Applied Sciences, for taking an interest in my work.

Noela, thank you for your love and unconditional support. I would like to thank my family, and
in particular, my parents, Piet and Petra. Thank you for your limitless support throughout the years.

Wouter van Teijlingen
Delft, The Netherlands
November 28, 2014

vii

viii

Contents

Abstract v

Acknowledgments vii

List of Figures xiv

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 2
1.2 Problem statement . 3
1.3 Goals and contributions . 4
1.4 Synopsis and Outline . 4

2 Background 5
2.1 Models of Computation . 5

2.1.1 Kahn Process Networks . 5
2.1.2 Polyhedral Process Networks . 5

2.2 Deriving Polyhedral Process Networks . 6
2.2.1 Linearization and Communication Models . 7

2.3 Static Affine Nested Loop Programs . 8
2.3.1 Overview . 8
2.3.2 Applied SANLPs . 8
2.3.3 Iteration Domain and Dependencies . 9
2.3.4 Transformations . 10

2.4 The LLVM/Clang Compiler Infrastructure . 10
2.5 Hierarchical Program Analysis . 11
2.6 High-Level Synthesis Tools . 11
2.7 Summary and Conclusions . 12

3 Related Work 13
3.1 Simulation . 13
3.2 Analytical Estimation . 13
3.3 Profiling . 14

3.3.1 General-Purpose Profilers . 14
3.3.2 Hardware Profilers . 14
3.3.3 Parallel and Memory Profilers . 14
3.3.4 Critical Path Analysis . 15

3.4 Summary and Conclusions . 16

4 Solution Approach 17
4.1 Concepts . 17

4.1.1 Basic Calibration . 18
4.1.2 Conditional Synchronization . 19
4.1.3 Conditional Control Flow . 20
4.1.4 Mutual Exclusion . 20

ix

4.2 Performance Estimation . 20
4.2.1 Absolute Throughput Estimation . 20
4.2.2 Unbounded Throughput Estimation . 21

4.3 Case Studies . 21
4.3.1 Case Study: Absolute Throughput . 21
4.3.2 Case Study: Unbounded Throughput . 23

4.4 Shadow Variables . 26
4.5 Control Variables . 26
4.6 Statement Execution Profile . 27
4.7 Global Execution Profile . 27
4.8 Flow Dependencies . 28
4.9 Summary and Conclusions . 28

5 Design and Implementation 29
5.1 Overview . 29
5.2 Input Processing . 30

5.2.1 Input Specification . 30
5.2.2 AST Construction . 31

5.3 Static Analysis and Instrumentation . 31
5.3.1 Static Analysis . 32
5.3.2 Instrumentation . 34
5.3.3 Source-to-Source Transformations . 34

5.4 Dynamic Analysis . 35
5.4.1 Compilation and Initialization . 35
5.4.2 Algorithms for Dynamic Analysis . 35

5.5 Performance Analysis . 39
5.5.1 Data Processing and Presentation . 39
5.5.2 Waveform Generation . 40
5.5.3 Program Profile Generation . 40

5.6 Optimization . 41
5.6.1 Methods . 41
5.6.2 Implementation of Optimizations . 42

5.7 Hierarchical Program Analysis . 43
5.7.1 Static Analysis . 43
5.7.2 Instrumentation . 44
5.7.3 Dynamic Analysis . 45
5.7.4 Performance Analysis . 45

5.8 The Cost of Profiling . 46
5.9 Summary and Conclusions . 46

6 Verification 47
6.1 Verification Approach . 47
6.2 Verification of the Communication Models . 47

6.2.1 In-Order without Multiplicity (IOM-) . 48
6.2.2 In-Order with Multiplicity (IOM+) . 49
6.2.3 Out-of-Order without Multiplicity (OOM-) . 49
6.2.4 Out-of-Order with Multiplicity (OOM+) . 50
6.2.5 Results . 50

6.3 Verification of the Absolute and Unbounded Throughput Estimates 51
6.3.1 The Predictor Program . 51
6.3.2 Optimization of Predictor . 53
6.3.3 Results . 55

6.4 Verification of Hierarchy Program Analysis . 56

x

6.4.1 The Hierarchy Program . 57
6.4.2 Results . 57

6.5 Summary and Conclusions . 58

7 Results 59
7.1 Experimental Setup . 59
7.2 Absolute Throughput Estimates of PolyBench/C . 59

7.2.1 Execution Times . 59
7.2.2 The Average and Maximum Degree of Parallelism 60

7.3 Unbounded Throughput Estimates of Polybench/C . 61
7.3.1 Execution Times . 61
7.3.2 The Average and Maximum Degree of Parallelism 61

7.4 RTL Simulations . 62
7.5 Design Space Boundaries . 63
7.6 Optimization . 63
7.7 Scalability . 64
7.8 Summary and Conclusions . 66

8 Conclusions and Future Work 67
8.1 Contributions . 68
8.2 Future Work . 68

Bibliography 73

A Compiler Extension for Compaan DDE 75
A.1 Introduction . 75

A.1.1 Design and Implementation of the Compiler Extension 75

B Cprof Usage Instructions 79
B.1 Introduction . 79
B.2 Installation . 79
B.3 Usage . 79

C Predictor Optimized Versions 81
C.1 Inner Loop Unrolled . 81
C.2 Outer loop Unrolled . 81
C.3 Inner/Outer Loops Unrolled . 82
C.4 Inner/Outer/Sink Loops Unrolled . 83
C.5 Source/Inner/Outer Loops Unrolled . 84
C.6 Source/Inner/Outer/Sink Loops Unrolled . 85

D PolyBench/C 3.1 Benchmarks 89

E Support of Control Flow Architectures in Cprof 91
E.1 Modification of Algorithms . 91

E.1.1 Read Operations . 91
E.1.2 Write Operations . 92

F Verification Waveforms 93
F.1 IOM- Waveforms . 94
F.2 IOM+ Waveforms . 95
F.3 OOM- Waveforms . 96
F.4 OOM+ Waveforms . 97

xi

xii

List of Figures

1.1 Exploring the Design Space, using the absolute and unbounded throughput estimation. 2
1.2 Traditional design flow in high-level synthesis. 2
1.3 Reducing the feedback loop in the design flow in high-level synthesis. 3

2.1 An example of a Polyhedral Process Network with FIFOs between processes. 6
2.2 Derivation of Polyhedral Process Network. 7
2.3 Communication models for Polyhedral Process Networks. 8
2.4 Dependency analysis of Listing 2.2. 9
2.5 Selection of independent computational tasks. 10
2.6 LLVM Compiler Infrastructure. 11

3.1 Level of accuracy and complexities in performance estimation. 13

4.1 Mapping of a C program to a Polyhedral Process Network. 17
4.2 Example IP block. 18
4.3 The initiation interval and function latency of the execute stage. 19
4.4 The Read, Write, and Execute units in a polyhedral process. 19
4.5 Pipelined execution of the read, execute and write stages. 19
4.6 Mutual Exclusion in Processes. 20
4.7 Absolute and unbounded throughput. 21
4.8 The shadow variables and their values for absolute throughput estimates. 22
4.9 Control variables associated with each process in a polyhedral process network. 22
4.10 Absolute throughput statement profiles. 23
4.11 Example C Program. 24
4.12 The shadow variables and their values for unbounded throughput estimates. 24
4.13 Determiniation of control variables for unbounded throughput. 25
4.14 Unbounded throughput statement profiles. 26

5.1 Overview of the cprof profiler. 29
5.2 Example of static analysis. 32
5.3 The canonical declaration and its relation to variable references. 33
5.4 Serialization of cprof objects. 33
5.5 Source code after instrumentation by cprof. 34
5.6 Overview of algorithms used in dynamic analysis. 36
5.7 Overview of processing and presenting the output of dynamic analysis. 40
5.8 Performance of the function bar after a closer inspection. 40
5.9 Generation of program profile. 41
5.10 Sample program to show optimizations. 41
5.11 Modulo unfolding applied. 42
5.12 Plane cutting aplied. 42
5.13 Overview of the optimization flow in cprof. 43
5.14 Example program with hierarchy used for HPA. 44
5.15 The hierarchy function instrumented with support for HPA. 45
5.16 Inter-procedural relations between variables. 45

6.1 Communication models in PPNs. 48
6.2 Example implementation of the IOM- communication model. 48
6.3 Example implementation of the IOM+ communication model. 49
6.4 Example implementation of the OOM- communication model. 49
6.5 Example implementation of the OOM+ communication model. 50

xiii

6.6 Execution times of the communication models measured by cprof and ISim. 51
6.7 The source code and derived PPN of predictor. 51
6.8 The dependency graph of the transformer function. 52
6.9 The absolute and unbounded throughput estimates for the predictor. 52
6.10 Iteration dependencies in the predictor. 53
6.11 Two possible optimizations of predictor. 53
6.12 Polyhedral process network of the predictor with the inner and outer loop unrolled. . . 54
6.13 Execution times of the predictor measured by cprof and by Xilinx ISim. 55
6.14 The average and maximum degree of parallelism available in the predictor. 56
6.15 The absolute and unbounded throughput estimates for hierarchy. 57
6.16 The execution finish times of hierarchy. 58

7.1 Absolute throughput estimates of the execution finish times of PolyBench/C kernels. . 60
7.2 Absolute throughput estimates of the average and maximum degree of parallelism in

PolyBench/C kernels. 60
7.3 Unbounded throughput estimates of the execution finish times of PolyBench/C kernels. 61
7.4 Unbounded throughput estimates of the average and maximum degree of parallelism in

PolyBench/C kernels. 62
7.5 Absolute throughput estimates of the execution finish time of PolyBench/C kernel versus

the execution finish time of RTL implementations. 62
7.6 Design space boundaries: the average degree of parallelism found by the absolute and

unbounded throughput estimates. 63
7.7 Optimization of the atax benchmark. 64
7.8 Estimates of the average and maximum degree of parallelism of the atax benchmark for

various data sets. 65
7.9 Estimates of the execution time of the atax benchmark for various data sets. 65

A.1 Overview of the compiler extension. 75
A.2 Compiler Extension. 76

F.1 Waveforms representing the execution of the program implementing the IOM- commu-
nication model. 94

F.2 Waveforms representing the execution of the program implementing the IOM+ commu-
nication model. 95

F.3 Waveforms representing the execution of the program implementing the OOM- commu-
nication model. 96

F.4 Waveforms representing the execution of the program implementing the OOM+ com-
munication model. 97

xiv

List of Tables

5.1 Profiling cost in space and time. Used notations: c is the number of dimensions of the
read argument, r is the number times the read arguments are referenced throughout the
program, d is the number of dimensions of the write argument, w is the number times
the write arguments are referenced throughout the program, and m is the number of
statement intervals. 46

6.1 Pipeline efficiency of the predictor. 52
6.2 Pipeline efficiency of the predictor after unrolling the inner or outer loop. 54
6.3 Resource cost of the predictor after unrolling the inner or outer loop. 56

7.1 PolyBench/C data set specifications. 64
7.2 Time spent by cprof on estimating the performance of atax, and by Compaan DDE to

generate a hardware implementation of atax. 66

D.1 PolyBench/C Benchmarks. 89

xv

xvi

List of Algorithms

1 Update shadow variables for read access. 37
2 Update the execute statement profiles. 37
3 Update shadow variables for write access. 38
4 Update algorithm for the statement execution profiles. 39
5 Substituting algorithm for inserting valid statements into the AST. 76
6 Update shadow variables for read access, with support for anti and output dependencies. 91
7 Update shadow variables for write access, with support for anti and output dependencies. 92

xvii

xviii

List of Acronyms

API Application Programming Interface
AST Abstract Syntax Tree
BRAM Block Random Access Memory
CAS Circuits and Systems
CFG Control Flow Graph
CPA Critical Path Analysis
CPN C for Process Networks
DBA Dynamic Binary Analysis
DBI Dynamic Binary Instrumentation
DDE Design Development Environment
DPN Dataflow Process Network
DSE Design Space Exploration
ESL Electronci System Level
FF Flip Flop
FIFO First-In, First Out
FPGA Field Programmable Gate Array
FPS Frames Per Second
GPU Graphics Processing Unit
HCPA Hierarchical Critical Path Analysis
HDL Hardware Design Language
HLS High-Level Synthesis
HPA Hierarhical Program Analysis
ILP Integer Linear Programming
ILP Instruction-Level Parallelism
IP Intellectual Property
IR Intermediate Representation
KPN Kahn Process Network
LAURA Leiden Architecture Research and Exploration Tool
LUT Lookup Table
MAPS MPSoC Application Programming Studio
MIMD Multiple Instruction, Multiple Data
MISD Multiple Instruction, Single Data
MoC Model of Computation
MPSoC Multile-Processor Systems-on-Chip
PLB Parallel Block Vectors
PPN Polyhedral Process Network
RAW Read After Write
RHS Right-hand Side
RTL Register Transfer Level
SANLP Static Affine Nested Loop Programs
SIMD Single Instruction, Multiple Data
SISD Single Instruction, Single Data
SSA Static Single Assignment
UUID Universally Unique Identifier
VCD Value Change Dump
WAR Write After Read
WAW Write After Write
WPA Whole Program Analysis
WPP Whole Program Paths

xix

XML Extensible Markup Language

xx

Introduction 1
Engineers are dealing with high time-to-market pressure and demanding design constraints. One
area where these two issues are prominent is that of embedded systems. In 1997, the number of
shipped embedded systems already matched that of personal computers [1]. Designing an embedded
system is simplified by the use of high-level synthesis (HLS). HLS is a design process, which allows
to specify systems at a higher level of abstraction, e.g., in the C programming language. This high-
level specification is transformed into digital hardware and can be implemented in, for example, a
Field-Programmable Gate Array (FPGA).

In this work, we use HLS to map sequential C code to Polyhedral Process Networks (PPN), a
parallel Model of Computation (MoC) [2]. We consider a special type of C programs, called Static
Affine Nested Loop Programs (SANLPs) that can automatically be converted by a compiler into a PPN.
SANLPs are used for modeling time critical parts of audio/video stream-based and DSP applications
[2].

We can significantly reduce the time required for design feedback, if it is possible to find limits on
the performance of an embedded system, based on the C code only. Moreover, there is a reduction
in risk, because engineers know from the beginning whether a design meets its specifications. This
concept is shown in Figure 1.1. It shows that for a particular design, we can find a lower bound and
an upper bound of the design space. The lower bound is the performance of the design without any
specific optimizations. The upper bound is the performance of the design if there is an infinite amount
of resources.

The shaded area indicates performance that is unattainable for this particular design. Most likely,
the two design extremes are not the performance a designer wants. The designer probably wants a
design somewhere in between these two points. Using design space exploration, a designer can establish
the line between the two extremes and select a feasible design point. To establish the lower and upper
bound in Figure 1.1 and the line between them, we present in this thesis the cprof profiler. Cprof
estimates the performance of a system specified in C code and gives the performance of that code,
when implemented as a PPN in hardware.

The two design extremes are referred to as the absolute and the unbounded throughput in Figure
1.1. The performance of a PPN is represented by the absolute and unbounded throughput, using the
execution finish time, the average and maximum degree of parallelism, as metrics of performance. In
Figure 1.1, the design space is bound by the average degree of parallelism found by the absolute and
unbounded throughput estimates. Profiling is a technique for quickly determining the performance of
programs during run-time. Cprof allows a designer to make modifications in the C-code of a system,
and subsequently gives feedback on the performance of the system. This way, cprof assists in design
space exploration.

This project is a joint effort of the Circuits and Systems (CAS) group at Delft University of
Technology and Compaan. Compaan is a spin-off from Leiden University, and is a privately owned
company. Compaan provides services and tools for automatic conversion of streaming algorithms to
heterogeneous platforms. This introduction is organized as follows. The motivation for this work is
presented in Section 1.1. We continue with the problem statement in Section 1.2. In Section 1.3 the
goals and contributions of this thesis are discussed. Finally, Section 1.4 concludes this chapter and
presents a synopsis and an outline of this work presented in the following chapters.

1

Design points

P
e
rf

o
rm

a
n
c
e

Average degree of parallelism
Unbounded throughput estimate

Required design point

Average degree of parallelism
Absolute throughput estimate

Figure 1.1: Exploring the Design Space, using the absolute and unbounded throughput esti-
mation.

1.1 Motivation

The main motivations for this work are to boost engineering productivity, and to provide performance
insights as early as possible, as a means of risk reduction. We can increase productivity by assisting
in Design Space Exploration (DSE), and reduce risk by making design limitations explicit as early as
possible. Specifying designs at the Register Transfer Level (RTL) is time-consuming and error-prone
[3]. Instead, a higher level of abstraction is used to simplify the design process. This is what we
call high-level synthesis. HLS leads to the design flow shown in Figure 1.2. In this work, we use
Compaan [4] and Daedalus [5] for the design flow depicted in Figure 1.2. The figure shows that C-code
is converted into a system-level specification that, via synthesis, is mapped onto either an FPGA or
another platform.

System-level
specification

Sequential
Program in C/

C++
Synthesis

Implementation
(FPGA/GPU/

CPU)

Are design constraints satisfied ?

Post-implementation
performance

Design flowDesign flow

Figure 1.2: Traditional design flow in high-level synthesis.

2

A designer is not solely interested in converting C-code into a design that is implementable in
hardware. He is interested in obtaining a system that meets specific design constraints. For example,
a designer may need to process 25 frames per second (FPS) in the case of a video application. The
problem with the traditional design flow, shown in Figure 1.2, is that it takes long time before the
designer knows if the design meets the constraints. Furthermore, if the constraints are not met, the
designer needs to know if it is actually possible to meet the constraints with the given C-code. If so,
how should the designer modify the C-code in such a way that the system can process the 25 FPS on
an FPGA?

In this thesis, we present a modified flow that uses profiling. Profiling is a technique used to
analyze the behavior of programs during execution. This technique is very fast, and helps reducing
the feedback loop, as depicted in Figure 1.3. In the modified design flow, a designer uses profiling to
establish the design limits, as presented in Figure 1.1. This provides immediate feedback on whether
the design can satisfy the constraints at all. If she needs 25 FPS, but the upper bound is at 20 FPS,
it means that she can never satisfy the constraints as the 25 FPS is within the shaded area. If the
upper bound is at 40 FPS, and the lower bound is 10 FPS, the designer knows that realizing a design
capable of 25 FPS is indeed possible.

The next step will be to modify the C-code to increase parallelism in the application until the
design reaches 25 FPS. Only at that time, the designer commits to the very time consuming design
flow to make implementable hardware. The designer knows she will get a design in hardware that meets
her constraints. Another important benefit of the modified design flow is that no specific hardware
knowledge is needed to actually realize designs. Using cprof, a software designer can make design
changes in the C-code and estimates its performance. Once a particular design point is obtained, the
design is committed to a hardware flow. At that point, specific hardware knowledge is required.

Design flow

Sequential
Program in C/

C++

Are design constraints
satisfied?

Post implementation
performance

Design flow

System-level
specification

Synthesis
Implementation
(FPGA/GPU/

CPU)

Design flow

Hardware DomainSoftware Domain

cprof

Figure 1.3: Reducing the feedback loop in the design flow in high-level synthesis.

1.2 Problem statement

The current design flow of Compaan and Deadalus is represented by the traditional design flow shown
in Figure 1.2. The modified design flow presented in Figure 1.3 is the desired design flow. The desired
design flow increases engineering productivity by assisting in DSE, and risk is reduced by making
design limitations explicit at an early stage in the design process. Sven van Haastregt has presented
in his thesis various techniques to obtain the performance of a PPN [2]. Cprof originated in his work,
and he shows that the techniques used by cprof give a reliable performance estimate, with reduced
cost in terms of time and effort in comparison to other techniques, such as simulation.

This technique is only shown for a small number of examples, and estimating the performance of
programs with inter-procedural behavior is impossible. Furthermore, the optimization of designs is
given as future work in [2]. It is unclear whether cprof can be applied to any SANLPs supported by

3

Compaan or Daedalus, and with what accuracy. The problem we address in this thesis is whether
we can further develop cprof, such that it can handle any SANLP, and to assess the accuracy of the
technique. Furthermore, we want to automatically optimize designs to assist in DSE.

1.3 Goals and contributions

The primary goal of this thesis is to develop a profiler, that is based on the principles presented by
Sven van Haastregt [2]. We refer to the profiler as cprof. To show that cprof can handle complex
SNALPs, we validated cprof against the PolyBench/C benchmarks [6]. This benchmark consists of 25
mathematical kernels that are used in data processing. We show that we can estimate the performance
of each of these kernels, with on average, an overestimation of 0.44%. This shows that cprof is a very
valuable tool to assess the performance of a SNALP very early. The use of the developed cprof profiler
converts the traditional design flow of Compaan and Daedalus into the modified flow shown in Figure
1.3.

The main contributions of the work presented in this thesis are the following:

• The development of the cprof profiler for estimating the absolute and unbounded throughput in
C-code.

• A compiler plugin based on LLVM/Clang for the transformation of unsupported statements into
a form accepted by the profiler.

• The implementation of cprof in LLVM/Clang with support for the C and C++ programming
languages.

• The optimization of source code to assist in DSE.

• The support for Hierarchical Program Analysis to estimate the behavior of systems with inter-
procedural behavior.

• The validation of the results against hardware implementations of PolyBench/C benchmarks.

1.4 Synopsis and Outline

Engineers need tools to deal with the increasing complexity of hardware and software development.
To reduce the risk in the design of embedded systems and to increase engineering productivity, we
developed a profiler called cprof. With cprof, engineers can quickly determine the design space for the
lower and upper bounds to parallelism, and apply source code transformations to explore the design
space. In this thesis, we show that cprof is capable of estimating the absolute and unbounded throughput
of the PolyBench/C benchmarks.

The remainder of this thesis has the following outline. In Chapter 2, the required background
and precise definitions of the problem is presented. In Chapter 3, related work and state of art
are discussed, including the proposed contributions and reflections on why current solutions are not
sufficient. The solution approach is presented in Chapter 4. The design and implementation of the
profiler is discussed in Chapter 5. In Chapter 6, various examples and cases to verify the functionality
of the profiler are presented. In Chapter 7, case studies are discussed and the experimental results
evaluated. Finally, conclusions are drawn and directions for future research are provided in Chapter
8.

4

Background 2
In this chapter, we present the required concepts and nomenclature used throughout this work. In
Section 2.1, polyhedral process networks are defined. In Section 2.2, the derivation of polyhedral
process networks is explained. Following in Section 2.3, a class of programs is introduced that can be
transformed to polyhedral process networks. In Section 2.4, the compiler infrastructure used in this
work is explained. In Section 2.5, there is an introduction to inter-procedural program analysis. In
Section 2.6 a brief overview of high-level synthesis tools is provided. Summary and conclusions are
presented in Section 2.7.

2.1 Models of Computation

Designers often specify algorithms in a sequential programming language. In such languages, it is
not possible to express parallelism without special programming directives and libraries. However,
the specification of algorithms for parallel computing is a difficult and time-consuming task, because
humans tend to think sequentially. Designers are in need of model of computations that take as input
a sequential specification, but that support the automatic derivation of parallel networks.

2.1.1 Kahn Process Networks

The Kahn Process Network (KPN) [7] is a distributed model of computation. Named after Dr. Gilles
Kahn, who was responsible for introducing this model of parallel computation in 1974. Processes in
a KPN communicate with each other via unbounded First-In, First-Out (FIFO) data channels. The
behavior of process networks is deterministic, and is not disturbed by timing variations in computation
and communication. Reads and writes in the process network are blocking and non-blocking, respec-
tively. Process networks are deterministic, as the use of blocking read guarantees that the system
behavior is always the same, whether a sequential schedule, fully parallel or a schedule in-between is
used. Deterministic behavior is a desirable property in embedded applications, as it guarantees always
the same system behavior.

2.1.2 Polyhedral Process Networks

The polyhedral process network is a dataflow-based MoC that is a specialization of KPNs. Programs
specified as PPNs have static control flow; all loop bounds, conditions and array index expressions are
such that they are represented by affine expressions. In PPNs, the computer program is represented
by geometrical properties called polyhedra. Hence, the name polyhedral process networks. Polyhedra
describe the program in a finite number of linear inequalities. Polyhedra are used for representing
loops, which iterate over a finite and parameterized set of iterations found in the computer program.
As a result, it is possible to analyze and optimize such objects with geometrical and combinatorial
techniques, such as Integer Linear Programming (ILP).

In PPNs, each process is divided into three distinctive stages:

• Read (R): in this stage, the process reads input data from the communication channel. If none
is available, the process blocks.

• Execute (E): in this stage, the process executes a computational function on the available data
and produces data as output.

5

• Write (W): in this stage, the process writes data to the outbound communication channels.

It is possible for processes to have a read or write phase, or both. In this thesis, we use the
following definition for PPNs [2]:

Definition 2.1 (Polyhedral Process Network). A Polyhedral Process Network (PPN) is modeled as a
directed graph (P , E), where P is a finite set of vertices representing processes, and E is a finite set of
edges representing communication channels. Each process pi ∈ P is characterized by:

• a list of input ports responsible for reading all function input arguments from the inbound FIFO
channels;

• a function responsible for processing the inputs and producing output arguments;

• a list of output ports responsible for writing all function output arguments to the outbound
FIFO channels.

Each channel ci ∈ E is characterized by:

• a source process;

• a destination process;

• a channel type;

• the buffer size.

Figure 2.1 shows an example of a PPN, which consists of 3 processes: P1, P2 and P3. Process P1

P1

P2

P3

Figure 2.1: An example of a Polyhedral Process Network with FIFOs between processes.

communicates through FIFOs with processes P2 and P3. Process P3 reads the data from process P1
and P2. If one of the FIFOs connected to P3 is empty, the process P3 will block until data becomes
available.

2.2 Deriving Polyhedral Process Networks

The PPNs are derived from sequential C or C++ code in a number of steps, shown in Figure 2.2.
Statements in the program code are analyzed for dependencies, and a dependency graph is constructed.
Linearization is the process of mapping higher-order data-structures to one-dimensional representa-
tions. Linearization is applied, as all memory access is mapped on FIFO channels.

After linearization, communication models are determined and a polyhedral process network is
generated. After deriving the PPN it is possible to calculate communication channel sizes, and optimize
the PPN to minimize the number of channels.

6

Dependency analysis Dependency graph

Linearization

Polyhedral Process
Network

Calculate channel sizesOptimizations and code
generation

 while (1) {
 i = sqrt(x);
 }

Figure 2.2: Derivation of Polyhedral Process Network.

2.2.1 Linearization and Communication Models

In the process of generating a PPN, the N-dimensional data-structures are mapped onto 1-dimensional
streams in the linearization stage. The indexing of N-dimensional data-structures is replaced by two
primitives, Get and Put, representing read and write operations on a FIFO buffer, respectively. In the
linearization stage, each communication channel is identified as being one of the types given in [8]:

• In-order without multiplicity (IOM-): in this model, the Get and Put primitives are used on the
FIFO buffer without considering the life-time of a communication token.

• In-order with multiplicity (IOM+): in this model, the life-time of a communication token is
considered to address its multiplicity.

• Out-of-order without multiplicity (OOM-): in this model, the consumer process is equipped with
reordering memory and a controller to reorder the memory.

• Out-of-order with multiplicity (OOM+): in this model, the life-time of a communication token
is taken into account in the reordering controller. The controller is responsible for releasing
memory if the life-time of a token has come to its end.

In Figure 2.3, the different communication models are shown.
In Figure 2.3(a), the IOM- model is shown. This model is the easiest to implement, as there is

no need for reordering, and tokens are immediately used by one iteration only. In 2.3(b), the concept
of multiplicity is shown. In this case, one token is used by multiple iterations. In Figure 2.3(c), the
OOM- model is depicted. In Figure 2.3(d), the OOM+ model is shown. In this case, a reordering
controller is necessary to solve the communication issues, as the tokens are not read in-order.

After deriving the communication models, the channel sizes for the FIFOs are calculated. The
calculated buffer sizes should not be too small. If this is the case, one or more processes are blocked
on write operations. On the other hand, if the buffer is too large, there is a penalty for the increase in
memory and area usage. However, finding optimal deadlock-free buffer sizes is a non-trivial problem.
In this process, tools such as PNGen [2] use greedy algorithms to compute adequate buffer sizes.

7

3

2

1

3

2

1

1 2 3 1 2 3

i

j

i

j

3

2

1

3

2

1

1 2 3 1 2 3

i

j

i

j

3

2

1

3

2

1

1 2 3 1 2 3

i

j

i

j

3

2

1

3

2

1

1 2 3 1 2 3

i

j

i

j

(a) IOM- (a) IOM+

(c) OOM- (d) OOM+

Figure 2.3: Communication models for Polyhedral Process Networks.

2.3 Static Affine Nested Loop Programs

SANLPs are programs with input restrictions, that can be automatically transformed into PPNs.
SANLPs are used in a various domains, such as molecular biology, astronomy, and high perfor-
mance computing. In particular, SANLPs are well suited to express time critical parts of audio/video
streaming-based and DSP applications [9]. In the following, we discuss SANLPs in detail.

2.3.1 Overview

The SANLPs are specified in the C programming language. In this thesis, we use the following
definition of SANLPs [2]:

Definition 2.2 (Static Affine Nested Loop Program). A static affine nested loop program (SANLP)
is a computer program that consists of statements, where:

• all statements are placed within one or more loops, and zero or more if-statements;

• all loop strides are constant;

• data exchange through hidden variables is forbidden;

• lower and upper loop bounds, array index expressions and if conditions are an affine function of
non-dynamic, static program parameters and enclosing loop iterators.

An important property of SANLPs is that there are no restrictions for function calls, i.e., in the
SANLP it is possible to call functions that do not conform to the definition given in 2.2.

2.3.2 Applied SANLPs

In Listing 2.1, an example of a SANLP written in the C programming language is shown.

1 for (i=0; i<N ; i++)
2 for (j=0; j<N ; j += 2)
3 i f (i+j <= N−1)
4 transform(&a [i] [j] , b [j] [i]) ;

Listing 2.1: An example of a SANLP.

8

It is possible to place SANLP statements at any loop-level, as is shown in Listing 2.1. In line 3, an
if-statement is used to guard the assignment statement. In this case, the logical condition is an affine
combination of loop indices and constants. Then, in line 4 the transform function reads variable
b[j][i] and writes to variable a[i][j]. The & operator is used to pass the address of the variable
a[i][j], making it possible for the transform function to write data to a[i][j].

2.3.3 Iteration Domain and Dependencies

Each process in a polyhedral process network has a collections of elements representing its iteration
domain. For example, consider the SANLP shown in Listing 2.2.

1 for (i=1; i<=M ; i++)
2 for (j=2; j<=N ; j++)
3 A [i] [j] = F (A [i] [j−1]) ;

Listing 2.2: Data dependencies in a SANLP.

To represent the iteration domain, the concept of parameterized polyhedrons [9] is introduced.
Parameterized polyhedrons are used to represent loop nests that iterate over a set of finite iterations.
These sets are geometrical representations of the SANLP. More details on the mathematics behind
polyhedral process networks can be found in [2, 9]. For the derivation of the iteration domain, the
information presented in this section is sufficient. Polyhedra can depend on a vector of parameters,
denoted by p, and we therefore define a parameterized polyhedron, P(p), as follows:

P(p) =
{

x ∈ Qd | Ax ≥ Bp+ b
}

, (2.1)

where A is an integral m × d matrix, B is an integral m × d matrix and b is an integral vector of size
m [9]. It is possible to formally derive the iteration domain for the statement in line 3 of Listing 2.2,
by applying Equation 2.1:

P (M,N) =















{(i, j) ∈ Z2|









1 0
−1 0
0 1
0 −1









∗

(

i

j

)

≥









0 0
−1 0
0 0
0 −1









∗

(

M

N

)

+









1
0
1
0























(2.2)

Before applying transformations to processes, it is important to know what data dependencies
exist between successive calls of statement B in the inner loop. In this example, the assignment of
A[i][j] is determined by the value of A[i][j-1]. The data dependencies for Listing 2.2 are shown in Figure
2.4. The arrows indicate the data dependencies between iterations.

3

2

1

1 2 3

i

j

Figure 2.4: Dependency analysis of Listing 2.2.

To transform the program code in Listing 2.2, it is necessary to divide the iteration domain into
points that are not dependent on each other. If there is no dependency between two points, it is
possible to execute the statements of B in parallel.

9

2.3.4 Transformations

The dependencies shown in the previous section for the source code in Listing 2.2, allow for transfor-
mations to optimize the program code. In Figure 2.5, it is visible that operations are row dependent,
i.e., there are no vertical dependencies between operations. In this example, the loop bounds M and
N in Listing 2.2 are equal to 3.

3

2

1

1 2 3

i

j

Figure 2.5: Selection of independent computational tasks.

1 for (j=2; j<=N ; j++)
2 A [1] [j] = F (A [1] [j−1]) ;
3 for (j=2; j<=N ; j++)
4 A [2] [j] = F (A [2] [j−1]) ;
5 for (j=2; j<=N ; j++)
6 A [3] [j] = F (A [3] [j−1]) ;

Listing 2.3: Data dependencies in a SANLP

By applying loop unrolling (modulo unfolding), as shown in Listing 2.3, it is possible to map the
statements in line 2, 5 and 8 to independent processes. Now, if a PPN of the C-code in Listing 2.3 were
to be derived, such optimizations would be possible through algebraic manipulations [9]. This is one
of the major strengths of PPNs. Examples of such algebraic manipulations are skewing, plane-cutting,
and merging.

2.4 The LLVM/Clang Compiler Infrastructure

The LLVM Compiler Infrastructure is the result of a research project by the University of Illionois
released in 2003. The goal of the project was to develop a modern compiler with support for the Static
Single Assignment (SSA) form. SSA requires that each variable in the program code is defined before
it is used, and that each variable is assigned only once [10]. If the compiler supports SSA, various
compiler optimizations, e.g., dead code elimination and constant propagation, are easier to implement.
In LLVM all scalar register values are represented in the SSA form. Furthermore, most production-
grade compilers are not easily integrated in other applications. That is, given the aging code base and
decade old techniques in such compilers, it is often impossible to reuse code in other programs. LLVM
tries to overcome these issues by providing a framework that is extensible and reusable.

Traditional compilers are often monolithic, whereas LLVM is build as a set of modular compo-
nents, as shown in Figure 2.6. In this work, a compiler front-end is required that supports C and
C++ programs, as we need to instrument source code for profiling. A compiler front-end for LLVM
supporting C, C++, Objective C and Objective C++ is Clang. Clang provides a complete set of
libraries for source-to-source transformations, which can be integrated in customized applications.

10

Front-end LLVM Optimizer
LLVM Code
Generator

Clang

PyPy

Dead Code Elimination

IR IR
 10100010
 00100101
 00101001

Constant Propagation

MC
 while (1) {
 i++;
}

SC

Figure 2.6: LLVM Compiler Infrastructure.

2.5 Hierarchical Program Analysis

In modern compilers, Whole Program Analysis (WPA) [11] is used for the analysis of large software
systems. In WPA, a Control Flow Graph (CFG) is constructed for individual procedures, and a
collection of algorithms is used to capture inter-procedural behavior of software. Other specializations
of WPA are available as well. For example, Larus [12] introduced a technique called Whole Program
Paths (WPP). It applies both static and dynamic analysis to capture a complete CFG in a compact
form, using specialized compression algorithms.

In this work, inter-procedural behavior is analyzed, a CFG is not used for this purpose. That is,
the profiler annotates code to detect relations between variables in software systems at run-time. In
this way, it is possible to keep track of read and writes to variables in programs that have a hierarchical
design. Therefore, it would be incorrect to define the approach used in this work as WPA. We use the
term Hierarhical Program Analysis (HPA) to describe the inter-procedural relations. HPA is defined
as follows:

Definition 2.3 (Hierarchical Program Analysis). Hierarchical Program Analysis (HPA) is a technique
for relating inter-procedural variables, where all variables within procedures are related using their full
memory address.

2.6 High-Level Synthesis Tools

For polyhedral code generation, numerous tools are available. The MPSoC Application Programming
Studio (MAPS) [3] is one example. It provides a framework for programming MPSoCs. MAPS
supports the extraction of parallel specifications from sequential programs. Furthermore, it provides
a specialized programming language called C for Process Networks (CPN), and the language is aimed
at designers who specify specifications in block diagrams. Another well known polyhedral compiler
is CLooG [13]. Daedalus [5] provides an open source framework for MPSoC programming. Daedalus
provides means to transform high-level specifications in the C programming language to gate-level
implementations.

In this work, Compaan Design Development Environment (DDE) [4] is used for the automatic
conversion of C-based streaming algorithms to heterogeneous platforms. The Compaan-compiler uses
Leiden Architecture Research and Exploration Tool (LAURA) as back-end for mapping PPNs onto
hardware. Examples of hardware platforms supported by Compaan are Field Programmable Gate
Arrays (FPGAs), and Graphics Processing Units (GPUs).

11

2.7 Summary and Conclusions

In this chapter, we presented the necessary background for the work presented in the next chapters.
The concepts of PPNs were introduced, as well as SANLPs, which are automatically mapped onto
PPNs. After that, we gave a brief overview of the compiler architecture used as framework for cprof.
Finally, the tools used to transform high-level specifications to hardware implementations were intro-
duced in the last section. We showed that deriving process networks requires a significant amount of
effort. As a result, engineers and scientists will benefit from cprof, as it provides means to estimate
behavior of SANLPs, without actually deriving the PPNs.

12

Related Work 3
In this chapter, we present the state-of-the-art in performance estimation of software and hardware
designs. In Section 3.1, performance estimation using simulation is discussed. Then, in Section 3.2,
follows a brief summary of analytical performance estimation. In Section 3.3, tools and methods for
profiling are evaluated. The summary and conclusions are presented in Section 3.4.

3.1 Simulation

Simulation at the RTL level is the most precise method to estimate throughput performance. The
accuracy is very high, as the RTL for implementation is also used for simulation. However, to obtain
this level of accuracy, the complete design flow is traversed, as shown in Figure 3.1.

void filter(int data_in[WIDTH]) {

 for (x = 0; x < WIDTH; x = x + 1) {
 data_out[x] = c[x];
 }
}

P1

P21

P4

P1

Dependency analysis

Dependency graph

Linearization

Polyhedral Process

Network

Calculate channel sizes

Optimizations and code

generation

P1 P4P12

Sequential Code Profiling

Analytical Analysis

Simulation

Low

High

A
c
c
u
ra

c
y

C
o
m

p
le

x
it

y

Low

High

Figure 3.1: Level of accuracy and complexities in performance estimation.

The advantage of a low-level simulation is that designers know about actual implementation details,
such as resource cost. However, this level of details is often not necessary to estimate the performance
in early stages of designing systems. Cprof is not designed to replace simulation as a means of
performance estimation. Instead, it is a tool which can help developers postpone gate-level simulation
to the last stage of the design flow.

3.2 Analytical Estimation

Given the mathematical definition of PPNs, there have been efforts to analytically predict the per-
formance. For example, in [9], the authors propose estimation techniques for process networks on
microprocessor-based systems. However, the application of these techniques is limited, as only a
subset of polyhedral process networks is supported.

One advantage of analytical estimation is that it is independent of workload, whereas simulation
and profiling approaches are directly affected by the workload. Nonetheless, a complete derivation of

13

the process network is required for analytical estimation, which we want to avoid in the first place.

Haastregt [2] introduced four new concepts for the performance estimations of PPNs. With his
concepts, it is possible to profile a wide-range of PPNs. However, to estimate the performance of the
PPN, the derivation of the complete process network is necessary. Therefore, the proposed solutions
are equally or more expensive than the methods introduced in [9].

3.3 Profiling

Profilers inspect the dynamic behavior of computer programs. This gives insight into the behavior of
computer programs by measuring memory consumption, duration, time complexity, and other quan-
tifiable metrics of a program during execution. To collect data, profilers employ a variety of techniques.
Such techniques include, but are not limited to, static code analysis and code instrumentation. Modern
profilers apply a combination of techniques to collect the performance profile.

3.3.1 General-Purpose Profilers

For the purpose of dynamic performance estimation, a collection of both free and commercially general-
purpose profilers is available. A well-known profiler developed in the 1980’s is gprof [14]. Gprof is used
on daily basis by software engineers to collect performance metrics of computer programs. However,
profiling for hardware platforms is not the same as profiling for general-purpose processors, as the
system architectures vary greatly. That is, decisions based on general software profilers, like gprof,
may give directions that are not applicable to hardware implementations. For example, let us take the
time required to finish a computer program. The profiler gprof delivers a number that is imprecise,
as it relies on program counter sampling. The sampling rate affects the accuracy of performance
measurements, making it an inexact method for performance evaluation. The profiling results are
only valid for the platform on which the profiling is performed. As a result, tools such as gprof are
not a reliable instrument for estimating performance of PPNs.

3.3.2 Hardware Profilers

Hardware profilers support different processor architectures, and are designed to estimate the perfor-
mance of programs executing on different processors. The Valgrind profiler [15] provides a framework
for dynamic instrumentation. Valgrind provides advanced tools for implementing support for different
hardware architectures.

For run-time analysis of code, Valgrind implements Dynamic Binary Analysis (DBA). Valgrind’s
implementation of DBA is based on Dynamic Binary Instrumentation (DBI). DBI injects code into the
computer program during run-time. Developers do not have to recompile or relink their code to collect
measurements. However, Valgrind is strongly intertwined with the architecture of the computing
platform. Implementing support for polyhedral process networks and the LAURA architecture in
Valgrind requires a significant amount of work.

The profiler TotalProf [16] was designed to support multiple processor architectures. TotalProf
works with the LLVM IR code for profiling. The LLVM intermediate representation is instrumented by
TotalProf, and executable code is generated for the host processor. The framework supports profiling
for MPSoCs. However, the LAURA architecture is not supported, and TotalProf is, therefore, not
suitable for profiling PPNs.

3.3.3 Parallel and Memory Profilers

In [17], a tool for finding pipeline parallelism in sequential programs is proposed. It applies static and
dynamic data flow analysis to find patterns of parallelism in applications. The tool does not support
PPNs, and is targeting general-purpose computers.

14

ParaProf [18] is a tool for parallel performance analysis. It supports various programming lan-
guages, including C and C++. However, the tool only supports programs already specified in parallel
frameworks, such as OpenMP, MPI or pthreads.

Harmony [19] is a tool for finding Parallel Block Vectors (PLB) in computer programs. A PLB
describes the relation between the static blocks in a multi-threaded application, and the degree of
parallelism available during each invocation of a block. However, Harmony only supports pthread
applications, which is not applicable to this project.

Intel’s Parallel Advisor [20] is a profiler that identifies regions of program code that may bene-
fit from parallelism. However, the parallel advisor requires a significant amount of effort from the
programmer. This happens as fine-grained annotations need to be manually inserted into the pro-
gram code. Furthermore, its application domain is shared-memory systems, based on a control-flow
architecture, making it unfit for PPNs.

The Q2 profiling framework has its roots in the Delft Workbench (DWB) [21]. DWB targets
heterogeneous platforms with support for reconfigurable computing. It describes the complete design
flow from high-level specification to synthesis. The Q2 framework profiles programs in two steps.
The first step is static profiling, to collect code characteristics from the computer program. The
characteristics are used to make estimates of FPGA area requirements. The second step is dynamic
profiling, to collect data about the run-time behavior of the computer program.

The next step is the execution of the general-purpose profiler gprof, to produce the call graph of
the application. The call graph is used by the profiler Memory Access Intensity Profiler (MAIP) for
accurate measurements, as gprof is sample based and, therefore, inaccurate. The data produced by
MAIP is then used by a program to estimate parallelism in the profiled data.

The static analysis part is modeled by the Quipu [22] approach. Quipu gives estimates on the
area usage of a C code application implemented in hardware. Early Quipu predictions have an error
of 10% to 20% percent. However, it gives, in an early stage of the design process, insight into area
performance of a given implementation.

The memory access behavior of the application is fully described by QUAD [23]. This tool is
implemented with the Pin framework [24]. The profiling tools developed for the Q2 provides developers
with valuable information for HW/SW co-design. However, the Q2 profiling framework, and its related
tools and architectures target a general shared-memory HW/SW co-design model, whereas our scope
is limited to PPNs.

In [25], the author proposes a method for memory access and operator usage estimation. Memory
usage is a key factor in application performance. With this estimation method, it is possible to view
memory access and operator usage on function or loop basis. With this information, developers can
optimize code, and configure HLS tools to increase circuit throughput. However, the tool is targeted
towards traditional control-flow architectures, and developers have to hand-craft optimizations to
explore the design space.

3.3.4 Critical Path Analysis

Critical Path Analysis (CPA) is a technique used for identifying parallel code regions in a program
[26]. CPA is used to model the synchronization and communication dependencies between processes
in a program. Kumar proposed the tool COMET [27], for measuring the degree of parallelism found
in Fortran programs by applying CPA. The assumption is that the program is executed on an ideal
machine. This ideal machine has an unbounded number of resources. Furthermore, the ideal machine
has no synchronization, communication and scheduling issues. After instrumenting the source code,
COMET dynamically collects data to determine the absolute amount of parallelism.

Kremlin [28, 29] is profiling tool similar to gprof, but is designed to discover parallelization in
sequential programs. Its purpose is to identify which parts of a program to parallelize. Kremlin
uses a technique called Hierarchical Critical Path Analysis (HCPA), which adds hierarchy to critical
path analysis. With CPA, parallelism is measured within the complete program, whereas HCPA
considers separate program regions. Kremlin delivers the upper bound on parallelism in the program

15

under inspection. With Kremlin’s parallelization planner, it is possible to calculate speedup after
parallelizing a region.

However, there are certain limitations to Kremlin’s approach. It is a tool targeting general-purpose
processors, whereas cprof targets implementations based on PPNs. Moreover, it is not possible to
automatically transform the code in such a way that the theoretical maximum degree of parallelism
can be achieved.

Another tool applying HCPA is Parkour [30]. This tool provides parallel speedup estimates for
unmodified serial programs. Parkour consists of two phases: HCPA and speedup prediction. HCPA
is covered by the Kremlin profiler. Kismet [31] extends Parkour and Kremlin with sequence regions.
With this extension, Kismet is able to detect various forms of parallelism within the program code. In
particular, it is possible to separate instruction-level parallelism (ILP) from other classes of parallelism.

Li et al. [32] present DiscoPoP, short for Discovery of Potential Parallelism. The profiler is based
on the Kremlin profiler. DiscoPoP is set out to find possible parallel regions within unstructured
code, whereas Kremlin is designed to work on regions between two specified endpoints. However, this
additional feature still makes it an unfit choice for profiling SANLPs.

Haastregt [2] transformed Kumar’s paper into an idea called cprof. His approach for profiling PPN
performance is based on the COMET profiler. With this idea, it is possible to measure parallelism in
PPNs. First, cprof can measure the parallel performance of the program on an ideal machine. In this
ideal machine, each iteration of a statement is mapped onto its own processing element. Second, cprof
can evaluate the parallel performance of the program, while restricting all iterations of a statement to
one process.

The original cprof profiling tool developed by Haastregt [2], has no support for complex dynamic
data structures, and all data is kept on the stack, thereby limiting the number of processes that
can be profiled. Moreover, it has no support for selecting kernels of interest. The original cprof
is a basic proof-of-concept, not capable of profiling real-world applications. Another issue is that
there is no consideration of hierarchy. Without hierarchy, it is impossible to estimate performance of
systems with inter-procedural behavior. In the original idea, the absolute throughput and maximum
degree of parallelism are collected and presented. However, it is not possible to automatically apply
transformations based on these numbers to explore the design space. In this thesis, we continue with
the work of Haastregt presented in [2].

3.4 Summary and Conclusions

In this chapter, various profilers and other tools for static and dynamic performance estimation were
discussed. None of the profilers, but the original cprof support the PPN architecture. In the following
chapter, we continue with the solution approach we adopted in order to estimate the performance of
C code when implemented as a PPN in hardware.

16

Solution Approach 4
In this chapter, we present cprof. Cprof profiles sequential C programming code, and determines the
performance of the program when implemented as a PPN in hardware. In Section 4.1, the concepts
related to profiling PPNs are introduced. The definition and examples of performance estimates are
given in Section 4.2. In Section 4.4 and 4.5, the solutions for modeling the behavior of processes are
discussed. The definitions of the execution profiles are given in Section 4.6 and 4.7. Finally, in Section
4.9, a summary is given and conclusions are drawn.

4.1 Concepts

The goal of cprof is to determine the performance of applications specified in the C programming
language, that are implemented as a PPN in hardware. The performance we determine in cprof
relates to the run-time of a given application in hardware, measured on a global time scale. The global
time scale is used to track start and stop times of statements in sequential computer programs. In
this section, we introduce the relevant concepts and properties related to the profiling of polyhedral
process networks.

P1

P2

P3

P4

(a) SANLP. (b) Derived PPN.

for(i= 0 ; i< 4 ; i++) {

 a [i] = source();

}

for(i= 0 ; i< 4 ; i++) {

 x [i] = foo(a[i]);

 y [i] = bar(a[i]);

}

for(i= 0 ; i< 4 ; i++) {

 sink(x [i], y [i]);

}

1

2

3

4

5

6

7

8

9

10

11

12

Statement 1

Statement 2

Statement 3

Statement 4

st1:

st2:

st3:

st4:

Figure 4.1: Mapping of a C program to a Polyhedral Process Network.

In the whole discussion, we follow the basic principle used by Compaan and Daedalus to model
PPNs. The principle is that each statement is mapped to one process. In Figure 4.1(a) and 4.1(b), we
show a C-program and the resulting PPN, respectively. The figure shows that the functions source,
foo, bar and sink are mapped to the processes P1, P2, P3 and P4, respectively. The relationships
between variables are mapped to edges. For example, the variable a[i] from source to foo becomes
an edge in Figure 4.1(b).

From the work of van Gemund [33], we know that the performance of any parallel system is
determined by four properties [33]: basic calibration, conditional synchronization, conditional
control flow, and mutual exclusion. To understand these 4 properties, we look at each of them in
context of the program given in Figure 4.1.

17

4.1.1 Basic Calibration

The functions in the C-programs we analyze will be implemented in hardware. It turns out that these
functions can be modeled using only two parameters: the initiation interval and the function latency.
Look for example at the functions foo and bar in Figure 4.1(a). The two parameters are enough to
calibrate a function in C-code for performance analysis. If we look at a modern HLS tool, such as
Vivado HLS, we see that Vivado HLS also characterizes a function using the initiation interval and
the function latency. For example, in line 3 of Listing 4.1, Vivado HLS determines that the initiation
interval and function latency of source are 1 and 5, respectively.

1 [exec] [SCHED−11] Starting scheduling . . .
2 [exec] [SCHED−61] Pipelining function ’ source ’ .
3 [exec] [SCHED−61] Pipelining result : Target II : 1 , Final II : 1 , Depth : 5 .
4 [exec] [SCHED−11] Finished scheduling .

Listing 4.1: Example output of Vivado HLS.

No matter what the complexity is of the IP block that implements a computational function, the
initiation interval and function latency are enough to model the performance of any function, as shown
in Figure 4.2.

IP

Figure 4.2: Example IP block.

The initiation interval determines the throughput. It indicates the number of cycles required
between successive starts. The function latency determines the number of cycles it takes to finish the
execution of an IP block:

• the initiation interval II F ,

• a function latency ΛF ,

where II F ∈ N+ is the initiation interval in clock cycles, and ΛF ∈ N+ is the input-to-output latency
in clock cycles [2]. The initiation interval and function latency are explained using the source function
in line 2 of Figure 4.1(a). We implemented the source function in Vivado HLS, and this gave 5 cycles
for the function latency and an initiation rate of 1 cycle. In this case, the initiation interval II F < ΛF .
The result is that the execution is pipelined, and throughput is increased, as shown in Figure 4.3(a).
On the other hand, in 4.3(b), II F = ΛF . In this case, pipelining is not possible.

The integration of IP blocks in PPNs derived by Daedalus and Compaan uses the LAURA Virtual
Processor model [2]. In Compaan and Daedalus, each process consists of a read, execute, and write
stage, as shown in Figure 4.4. The read and write step take care of the distribution of data in a
process, as a result of the parallelization of the C-code by the data-flow analysis. The read or write
stage is optional, depending on the requirements of the execute stage. For example, the statement in
Line 2 of 4.1(a) skips the read stage, as the source() function is only producing, and not consuming,
data. The execute stage integrates the IP block representing a function in the C-code.

The use of the LAURA processor leads to the introduction of two properties relevant to the
implementation of a process into hardware.

18

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
cycles cycles

(a) Pipelined execution.

,

(b) Non-pipelined execution.

,

Figure 4.3: The initiation interval and function latency of the execute stage.

Read Execute Write

Figure 4.4: The Read, Write, and Execute units in a polyhedral process.

• the read latency ΛR,

• the write latency ΛW ,

where ΛR ∈ N+ is the latency in clock cycles for reading input tokens, and ΛW ∈ N+ is the latency in
clock cycles for writing output tokens. In this thesis, we assume ΛR = ΛW = 1, as all input and output
tokens are read or written in one cycle [2]. The execute stage typically implements a pipelined IP core,
as shown in Figure 4.5. The read operation is blocked until data becomes available, implementing the
behavior of PPNs. As a result, the pipeline is stalled in iteration 2, as indicated by the “–”. The
execution is delayed, and it is resumed later on, as depicted in Figure 4.5.

R

Time

E

R

E E W

E E E W
Iteration

0

1

2 - - - -

R E E E W

-(blocking read)

2

Figure 4.5: Pipelined execution of the read, execute and write stages.

4.1.2 Conditional Synchronization

Within a PPN, we assume that a function only executes when all its data arguments are present.
The same happens in sequential C-code. Consider the function sink in line 11 of Figure 4.1(b). The
function consumes the variables x[i] and y[i]. The execution of the function sink is allowed only if
both data dependencies are satisfied.

Now, assume that variable x[0] is available at time tx[0] = 3, and variable y[0] is available at
time ty[0] = 4, in the first iteration of the loop in line 10 of Figure 4.1(a). Even though x[0] was
available at t = 3, the function has to wait until y[0] becomes available at t = 4. This affects the
performance of a system, and is called conditional synchronization.

19

4.1.3 Conditional Control Flow

Statements, like a[i] < 3 and i > N, are used for modeling conditional control flows. The sequence
in a regular program is influenced by conditional control flow. However, cprof assumes that the code
is specified as a SANLP (see Section 2.3). The loop bounds and conditional predicates of a SANLP
are affine functions of enclosing loop indices and parameters. As a result, a SANLP has only static
control parts. There is always a single-entry, single-exit region.

4.1.4 Mutual Exclusion

Mutual exclusion is about the fact that two or more tasks are not allowed to execute their critical
sections simultaneously. The critical section of a task accesses a shared resource, which can be used
by one task at a time. To illustrate the concept of mutual exclusion, let us consider the functions foo
and bar in Figure 4.1(a). Both functions are mapped to the processes P2 and P3, as shown in Figure
4.1(b). The input a[i] is available to both P2 and P3 at the same time. The functions foo and bar

are, therefore, able to start their execution at the same time.

However, assume that the system has only one adder and foo and bar require, each one, one adder
to execute. As a result, the simultaneous execution of foo and bar results in a resource conflict, as
shown in Figure 4.6(a). High level synthesis tools, such as Vivado and OpenCL, will try to come up
with a feasible schedule, in order to resolve the resource conflict. Well-known techniques for solving
resource conflicts are retiming [34], and changing the performance parameters of IP blocks, for example
using an initiation interval of 2. A possible conflict-free schedule is shown in Figure 4.6(b). In this
example, the execution of bar is delayed.

time 4

foo bar

+
1

time 4

foo bar

+
1

+
1

time 5

(a) Resource conflict. (b) Resource conflict resolved.

Figure 4.6: Mutual Exclusion in Processes.

However, the fine-grained details necessary to solve resource conflicts is not available to cprof. The
reason is that cprof has no knowledge about the hardware resources used by an IP block. That is,
functions are not restricted by the definition of SANLPs (see Section 2.3), and can take any form as
long as the implementation of the function is supported by the high-level synthesis tool. We assume
a one-to-one mapping of functions to processes. As a result, there cannot be any resource contention.

4.2 Performance Estimation

In this section, we define two modes of performance estimation that both relate to the run-time of
PPNs in hardware: the absolute throughput estimation and the unbounded throughput estimation.

4.2.1 Absolute Throughput Estimation

The absolute throughput assumes that all iterations of a statement are mapped onto the same pro-
cessing resource. We define absolute throughput as follows.

20

Definition 4.1 (Absolute Throughput). Absolute throughput assumes that all iterations of a state-
ment are mapped onto the same processing resource, and assumes an unbounded number of hardware
resources.

For example, let us consider process P1, representing statement 1, in Figure 4.7(a). In absolute
throughput estimation, the 4 iterations of statement 1 are mapped onto the process P1. If we assume
that all executions of a statement are mapped onto the same processing resource, then the next
invocation of a process should take the initiation interval (II F) into account. The PPN of the source
code in Figure 4.1(a) is shown in Figure 4.7(a).

P1

P2

P3

P4

Statement 1

Statement 2

Statement 3

Statement 4

Statement 2

Statement 3

Statement 4

(a) Absolute throughput.

Statement 1

(b) Unbounded throughput.

P1 P4

P2

P3

Figure 4.7: Absolute and unbounded throughput.

4.2.2 Unbounded Throughput Estimation

The unbounded throughput assumes an unbounded number of processing resources. That is, each
execution of an iteration of a statement is mapped onto its own dedicated processing resource. We
define unbounded throughput as follows.

Definition 4.2 (Unbounded Throughput). Unbounded throughput assumes that the execution of
an iteration of a statement is mapped onto its own dedicated processing resource, and assumes an
unbounded number of hardware resources.

For example, statement 1 in Figure 4.1(a) is mapped to four processing resources, instead of one.
As a result, each process created for statement 1 executes as soon as the input data is available. The
PPN used for unbounded throughput estimation is shown in Figure 4.7(b).

4.3 Case Studies

To illustrate how to determine the absolute throughput and the unbounded throughput estimation,
we will now look again at the program shown in Figure 4.1(a).

4.3.1 Case Study: Absolute Throughput

To successfully collect the performance profiles of computer programs without implementing them as
a PPN in hardware, data dependencies related to the execution of processes in a PPN must be tracked
to model conditional synchronization. For this purpose, we introduce shadow variables [2]. For
each variable declaration, a shadow variable is used to store the finish time of write operations, as is
shown in Figure 4.8(a). For process P1, II F = 2 and ΛF = 1. Process P2 and P3 have an initiation
interval and function latency of II F = ΛF = 1. Process P3 is configured with II F = 1 and ΛF = 2.

21

(b)

(c) (d)
(a)

for(i= 0 ; i< 4 ; i++) {

 a [i] = source();

}

for(i= 0 ; i< 4 ; i++) {

 x [i] = foo(a[i]);

 y [i] = bar(a[i]);

}

for(i= 0 ; i< 4 ; i++) {

 sink(x [i], y [i]);

}

1

2

3

4

5

6

7

8

9

10

11

12

sv time

$a[0]

$a[1]

$a[2]

$a[3]

2

4

6

8

sv time

$x[0]

$x[1]

$x[2]

$x[3]

5

7

9

11

sv time

$y[0]

$y[1]

$y[2]

$y[3]

6

8

10

12

st1:

st2:

st3:

st4:

Figure 4.8: The shadow variables and their values for absolute throughput estimates.

In Figure 4.8(b), the left column shows the name of the shadow variable, $a. The shadow variable
$a is associated with the original variable a. The second column lists the timestamp at which time
the data produced for $a[i] is available. The same applies to shadow variables $x and $y. In this
example, statement 4 in line 11 has no shadow variable, as no data is written by the process.

The measurements for both absolute and unbounded throughput make use of control variables
[2] to calculate the valid start times of the processes. Control variables are associated with each
statement to determine whether a process can execute, as shown in Figure 4.9. The start time of a
statement is determined by taking the maximum over the input variables and the control variable.
In the case of absolute throughput estimation, the initiation interval is added to the control variable,
after successfully executing a process.

P1

P2

P3

P4

Statement 1

Statement 2

Statement 3
Statement 4

C$2 = max($a[i], C$2)

C$3 = max($a[i], C$3)

C$4 = max($x[i], $y[i], C$4)C$1

(a) SANLP.

for(i= 0 ; i< 4 ; i++) {

 a [i] = source();

}

for(i= 0 ; i< 4 ; i++) {

 x [i] =

 y [i] =

}

for(i= 0 ; i< 4 ; i++) {

 sink(x [i], y [i]);

}

1

2

3

4

5

6

7

8

9

10

11

12

(b) Process network.

foo(a[i]);

bar(a[i]);

st1:

st2:

st3:

st4:

Figure 4.9: Control variables associated with each process in a polyhedral process network.

Shadow and control variables are used to facilitate the construction of execution profiles. What
follows is an explanation of how this information is used for the absolute throughput estimate. In Figure
4.10(a), the polyhedral process network including the basic calibration is shown. The associated source
code is shown in 4.8(a). The read and write latencies are defined as ΛR = ΛW = 1.

The statement execution profiles capture the behavior of the processes. In Table P1, in Figure
4.10(b), we can see that the first execute operation starts at time 0. The associated write operations
start at time 1, as the function latency is one cycle. This information directly relates to the tables
shown in 4.8(b). In table 4.8(b), the shadow variable $a[0] is available at time 2. This is correct,
as at time 1 the variable is being written. Now, the next execute operation starts at time 2, as
the initiation interval is 2 cycles. For process P2, P3 and P4 similar tables are constructed. In the

22

P1

P2

P3

P4

(a) Derived PPN with latencies.

R$1

1E$1

W$1 1 1

1 1 1

1 1

R$2

E$2

W$2

1

1

R$3

E$3

W$3

1

1 1

1

1

R$4

E$4

W$4

1

2

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1 1

1

1

2

1

2

1

2

0 5 15

Time
10

(b) Statement execution profile.

GR

GE

GW

4 4

1

2

1

2

1

1

2 2

2 2 2 2 3 1 3 11

1 1 2 1 2 1 1 1 1

P1

P2

P3

P4

Figure 4.10: Absolute throughput statement profiles.

execution statement profile of P4 in Table 4.10, the last execute operation is at time 14.
The global execution profile sums up the number of reads, executes, and writes active at a certain

point in time, found in the statement execution profiles. As a result, the global execution profile de-
scribes the complete behavior of the process network. The global execution profile is subsequently used
to determine the average and maximum degree of parallelism. We define the average and maximum
degree of parallelism as follows.

Definition 4.3 (Average Degree of Parallelism). The average degree of parallelism is the sum of all
execute operations in the global execution profile, divided by the number of execute operations in the
global execution profile.

Definition 4.4 (Maximum Degree of Parallelism). The maximum degree of parallelism is the max-
imum number of simultaneously active execute operations in the global execution profile, at a given
time t.

The time at which the process network is finished executing is available as well. In this example,
the process network is finished at time 14. In this case, the sum of all execute operations equals 20.
The average degree of parallelism is, therefore, 20

14 = 1.4. This means that on average 1.4 processes are
active. The maximum degree of parallelism is the number representing the peak parallel performance.
In this example, the peak parallel performance is seen at time 8 and 10 in the global execution profile
in Figure 4.8(b). The peak parallel performance of this PPN is 3.

4.3.2 Case Study: Unbounded Throughput

For unbounded throughput, we assume the existence of an unbounded number of processing elements.
We can emulate this by fully unrolling the loops. In Figure 4.11(a), the original source code is shown,
whereas in Figure 4.11(b) the fully unrolled version is shown. Fully unrolled means that each statement
is mapped onto its own process resource, e.g. foo(a[0]) is a different resource than foo(a[1]) and
foo(a[2]). The fully unrolled process network now consists of 16 processes instead of 4, as shown in
Figure 4.14(b).

23

for(i= 0 ; i< 4 ; i++) {

 a [i] = source();

}

for(i= 0 ; i< 4 ; i++) {

 x [i] =

 y [i] =

}

for(i= 0 ; i< 4 ; i++) {

 sink(x [i], y [i]);

}

1

2

3

4

5

6

7

8

9

10

11

12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

a[0] = source();
a[1] = source();
a[2] = source();
a[3] = source();

x[0] = foo(a[0]);
y[0] = bar(a[0]);
x[1] = foo(a[1]);
y[1] = bar(a[1]);
x[2] = foo(a[2]);
y[2] = bar(a[2]);
x[3] = foo(a[3]);
y[3] = bar(a[3]);

sink(x[0], y[0]);
sink(x[1], y[1]);
sink(x[2], y[2]);
sink(x[3], y[3]);

(a) Program code for absolute
throughput.

(b) Possible program code for
unbounded throughput.

foo(a[i]);

bar(a[i]);

st1:

st2:

st3:

st4:

Figure 4.11: Example C Program.

In the fully unrolled version, a statement starts executing as soon as the input data is available.
In this example, the latencies and initiation intervals are the same, as in the case study of the absolute
throughput estimation. In Figure 4.12(b), the times at which the variable a[i] is finished writing are
listed. The same table is shown for statement 2 and 3 in Figure 4.12(b) and (c), respectively.

(b)

(c) (d)
(a)

for(i= 0 ; i< 4 ; i++) {

 a [i] = source();

}

for(i= 0 ; i< 4 ; i++) {

 x [i] = foo(a[i]);

 y [i] = bar(a[i]);

}

for(i= 0 ; i< 4 ; i++) {

 sink(x [i], y [i]);

}

1

2

3

4

5

6

7

8

9

10

11

12

sv time

$a[0]

$a[1]

$a[2]

$a[3]

1

1

1

1

sv time

$x[0]

$x[1]

$x[2]

$x[3]

4

4

4

4

sv time

$y[0]

$y[1]

$y[2]

$y[3]

5

5

5

5

st1:

st2:

st3:

st4:

Figure 4.12: The shadow variables and their values for unbounded throughput estimates.

The start time of a process in unbounded throughput mode is determined by the maximum over the
input variables. A process starts executing as soon as the input data is available, as shown in Figure
4.13. For absolute throughput, the control variable includes the initiation interval of the process.
However, for the unbounded throughput, this is not necessary. Each statement can immediately
process the data as each execution is mapped onto its own processing resource.

For the unbounded throughput estimate, the associated statement profiles are shown in Figure

24

P2_1

P3_1

P1_1 P4_1

C$2_1 = max($a[0])

C$3_1 = max($a[0])

C$4_1 = max($x[0], $y[0])

P2_2

P3_2

P1_2 P4_2

C$2_2 = max($a[1])

C$3_2 = max($a[1])

C$4_2 = max($x[1], $y[1])

P2_3

P3_3

P1_3 P4_3

C$2_3 = max($a[2])

C$3_3 = max($a[2])

C$4_3 = max($x[2], $y[2])

P2_4

P3_4

P1_4 P4_4

C$2_4 = max($a[3])

C$3_4 = max($a[3])

C$4_4 = max($x[3], $y[3])

(a)

(b)

(c)

(d)

C1_3C1_1

C$1_2 C$1_4

Figure 4.13: Determiniation of control variables for unbounded throughput.

4.14(b). At time 0, the process P1 1, P1 2, P1 3 and P1 4 are executing. Then, at time 2, the
processes [P2 1, P2 4] and [P3 1, P3 4] read input data. Their start is delayed, as processes [P1 1,
P1 4] write data at time 1. Then, processes [P4 1, P4 4] start executing at time 6, as the input
dependencies are solved at that time.

The full execution of the process network takes, in total, 8 time units. The sum of all execute
operations is shown in the table of the global execution profile. The average degree of parallelism
equals 20

8 = 2.5. The maximum degree of parallelism is 8. To achieve the minimum execution time,
a system with 8 processors is required. However, the average degree of parallelism provides a more
realistic design point that is close to the maximum degree of parallelism [35].

25

(a) Derived PPNs for unbounded throughput
estimates.

R$1

4E$1

W$1 4

R$2

E$2

W$2

4

4

R$3

E$3

W$3

4

4 4

4

4

R$4

E$4

W$4

4

8

0 5

Time
10

(b) Statement execution profile.

P2_1

P3_1

P2_2

P3_2

P2_3

P3_3

P2_4

P3_4

P1_1

P1_2

P1_3

P1_4

P4_1

P4_2

P4_3

P4_4

GR

GE

GW

4

8

4

4

8

8 4

4 4

P1_[1, 4]

P2_[1, 4]

P3_[1, 4]

P4_[1, 4]

Figure 4.14: Unbounded throughput statement profiles.

4.4 Shadow Variables

To keep track of when a variable is written, we introduced the concept of shadow variables. The
shadow variables are used for keeping track of the point in time in which a variable v is written. The
timestamp written to the shadow variable $v is the time of the write operations, including the cost of
a write operation ΛW . Shadow variables are used to model the conditional synchronization in PPNs.
Cprof incorporates the conditional synchronization aspect by performing a max on the timestamps
stored in the shadow variables.

The SANLPs, which are by definition sequential, are processed in textual order, and one statement
execution at a time. Moreover, before executing a statement, all data dependencies must be resolved.
As long as the data dependencies are satisfied, many different execution orders may exist [9]. PPNs
use this property to execute processes in parallel.

4.5 Control Variables

Control variables, denoted as C$s, are used to store the timestamp of the point in time in which a
given process can execute. These control variables are constructed for each statement. The variable
is used to make sure that the conditional synchronization aspect is taken into account, as well as the
initiation interval (II F).

This control variable C$s is based upon the availability of input data and is updated in the read

26

stage of a process. That is, for all variables associated, it takes the maximum timestamp at which one
of the variables is written. If the absolute throughput is measured, the initiation interval (II) of the
function is taken into account. As a result, it is possible to model the system for execution on a single
resource.

For execution on an ideal machine, we assume an unbounded number of processing resources.
Given an unbounded number of processing elements, there is no need to determine whether a resource
is available. In effect, the control variable only considers the availability of data, and it takes the
maximum over all shadow variables only.

4.6 Statement Execution Profile

To be able to calculate meaningful performance metrics, each statement s has three one-dimensional
arrays Rs, Es, and W$s. These three arrays make up the statement execution profile, which con-
tains the behavior of the read, execute and write stages of a statement over time. For example, if
R$s[16] = 1, it means that at time 16 there is one read operation active. Each array is initialized
with zeros, and is incremented at each operation in an interval [ts, tf), where ts is the starting time
and tf = ts + Λ is the finish time of the operation with latency Λ.

The statement execution profile provides the following information.

• The total time spent on read, execute, and write operations, which is the sum of all elements in
the Rs, Es and W$s arrays.

• The start time of a process s(p), which is the first non-zero element in R$s. If there are no read
arguments, the first non-zero element in E$s is used.

• The finish time of a process f(p), which is the last non-zero element in W$s. If no data is written,
the first non-zero element in E$s is used.

• The number of unused read, execute, or write slots, which are found by looking for zeros in the
Rs, Es, and W$s arrays for the interval [s(p), f(p)).

• The maximum number of concurrent executed processes, which is obtained by finding the max-
imum value in E$s.

• The flat execution profile, which is defined as the number of process iterations executed simul-
taneously at a given time t. This profile is calculated using equation 4.1:

R$s[t]+ E$s[t]+ W$s[t]. (4.1)

4.7 Global Execution Profile

By using the statement execution profile, we can determine the global execution profile G$s, as defined
in Equation 4.2:

G$[k] =

|P |−1
∑

i=0

R$i[k]+ E$i[k]+ W$i[k], (4.2)

0 ≤ k < max {∀p ∈ P | f(p)} ,

where P is the set of all processes and k is the maximum index of a statement profile for a given
process p. This definition is taken from [2].

Besides finding the finish time of a PPN, we are interested in the performance of an IP block in
the execute stage of a process. The execute unit determines the efficiency of an IP block. That is, the

27

read and write operations are fundamental requirements of the computational part of the process. To
capture this information, we define the following equation:

GE$[k] =

|P |−1
∑

i=0

E$i[k] (4.3)

0 ≤ k < max {∀p ∈ P | f(p)} ,

where P is the set of all processes and k is the maximum index of a statement profile for a given
process p. The following information is extracted from GE$s:

• The execution time of an IP block, which is equal to the number of elements in GE$s.

• The average degree of parallelism, as defined in Definition 4.3.

• The maximum degree of parallelism, as defined in Definition 4.4

4.8 Flow Dependencies

In sequential programs, the following data dependencies exist [36]:

• Read After Write (RAW): this may happen if a variable v is being read before it is written.

• Write After Read (WAR): this happens if a variable v is written after a variable is read and,
thus, poses a problem in concurrent systems.

• Write After Write (WAW): this may happen if two statements write data to the same variable
v. The timestamp of the first write operation is stored and is then overwritten by the timestamp
of the second operation.

The flow dependency (RAW) is addressed in cprof as follows. The read operation takes the avail-
ability of a variable into account, by checking the shadow variable for the last write time. Therefore, a
read cannot start before the write operation has finished and, as a result, this dependency is accurately
modeled. Anti-dependencies in SANLPs do not affect the performance of PPNs, as each token is stored
and accessed in and from a private storage location [2]. In effect, different values for the same variable
are stored in dedicated storage areas. One of the properties of a PPN is that the storage location of
a data token is never rewritten after utilization. Output dependencies cannot exist in PPNs, as the
models guarantees that each produced token is consumed at least once [2]. This means that if a token
is not used, it is never communicated. The result is that it is impossible to have output dependencies
in PPNs.

The anti-dependencies (WAR) and the output dependencies (WAW) are not modeled in COMET
[27], and in Haastregt’s cprof [2]. As a result, it is impossible to model the performance of a computer
program if it contains anti- (WAR) or output (WAW) dependencies. In this work, we extended (see
Appendix E) cprof to support WAR and WAW hazards, broadening the application domain of the
profiler.

4.9 Summary and Conclusions

In this chapter, we have shown that it is possible to estimate the performance of applications specified
in the C programming language, when implemented as a PPN in hardware, using the four key aspects
of performance modeling of parallel systems. Two modes of performance estimation were presented.
The absolute throughput estimate assumes that all iterations of a statement are mapped onto the
same processing resource, whereas the unbounded throughput estimate assumes that the execution of
an iteration of a statement is mapped onto its own dedicated processing resource.

For both the absolute and unbounded throughput, cprof estimates the run-time of a polyhedral
process network when implemented in hardware, and determines the average and maximum degree of
parallelism available in PPNs.

28

Design and Implementation 5
In this chapter, we present the design and implementation of cprof, based on the concepts and solutions
discussed in the previous chapters. The architectural overview of the profiler is presented in Section
5.1. The parts of cprof are shown in Figure 5.1. In the following sections, each part of the profiler is
discussed in detail. The cost of profiling is presented in Section 5.8. Finally, in Section 5.9, a summary
is presented and conclusions are drawn.

 while (1) {
 i = sqrt(x);
 }

Input Processing Static Analysis and Instrumentation Dynamic Analysis Performance Analysis

+

+

31

+

3

7

 while (1) {
 CFC->x();
 i = sqrt(x);
 }

10101011101
10101101011
10101111011
10111111011
10100001101

10101011101
10101101011
10101111011
10111111011
10100001101

10101011101
10101101011
10101111011
10111111011
10100001101

5.2 5.3 5.4 5.5

Optimization

5.6

5.1

while (1) {
sqrt(x);

 while (1) {
 i = sqrt(x);
 }

 while (1) {
 i = sqrt(x);
 }

5.7

 while (1) {
 i = sqrt(x);
 }

Figure 5.1: Overview of the cprof profiler.

5.1 Overview

The cprof profiler is divided into five systems, as shown in Figure 5.1. The first system is responsible
for input processing, and will be discussed in Section 5.2. The next system deals with static
analysis and code instrumentation. Static analysis is used to identify relevant code regions in the
source code, represented using an abstract syntax tree (AST). This information is used to construct
a database with information about variables, function calls and code structure in the program. Code
instrumentation is used to insert cprof specific statements into the abstract syntax tree, and the result
is an instrumented C++ program. Static analysis and code instrumentation are discussed in Section
5.3.

The next system is used for dynamic analysis. Dynamic analysis is used for profiling the behavior
of the instrumented C++ program during run-time. Dynamic analysis is presented in Section 5.4. The

29

collected data is processed during the performance analysis, and is presented in Section 5.5. In this
part of the profiler, the average and maximum of degree of parallelism are calculated, as well as the
pipeline efficiency. A program profile is generated, which may be used for optimizing the source code.

The last part of the profiler is responsible for optimization. The relevant program parameters
are stored in a database, and the user has the option to select kernels for optimization. Optimization
is discussed in Section 5.6.1. The profiler supports hierarhical program analysis. Support for HPA
is integrated throughout the profiler. The integration of HPA in cprof is explained in Section 5.7.

5.2 Input Processing

The input restrictions that apply to cprof are discussed in Section 5.2.1. The construction of an
abstract syntax tree is discussed in Section 5.2.2.

5.2.1 Input Specification

The profiler supports a subset of C and C++ programs. The programs must be valid SANLPs (see
Section 2.3), and statements must obey to the following rules:

• each computational statement is modeled as a function call;

• write arguments are passed as pointers to the function;

• read arguments are passed by value to the function;

• it is valid to have a single write argument as the left-hand side of the assignment operator, as
long as the right-hand side is a function call;

• the int, float, double, long and struct (data) types are supported;

• use braces {, } for all if and for statements.

30

In Listing 5.1, a valid example program is shown:

1 #pragma cpro f procedure f i l t e r
2 void filter () {
3 int a [N] , x [N] , y [N] ;
4 for (int j=0; j<N ; j++) {
5 a [i] = source () ;
6 }
7 for (int j=0; j<N ; j++) {
8 x [i] = foo (a [i]) ;
9 y [i] = bar (a [i]) ;

10 }
11 for (int j=0; j<N ; j++) {
12 sink (x [i] , y [i]) ;
13 }
14 }

Listing 5.1: Valid program in the C programming language.

In lines 5, 8, 9 and 12, examples of supported statements are shown. Variables are either declared
as fundamental or compound type (arrays). There are no restrictions on the dimensions used by
arrays. In line 5, the variable a[i] is modeled as the LHS of the assignment operator.

5.2.2 AST Construction

In Section 5.2.2.1, the compiler front-end Clang is introduced. The design and implementation of the
pragma directive for kernel selection is discussed in Section 5.2.2.2

5.2.2.1 The Compiler Front-end

The Clang framework is a compiler front-end (see Section 2.4). The main reason for using Clang is that
the framework provides accessible libraries for building and modifying the AST. The clang framework
is part of cprof, and the cprof is responsible for setting up Clang. After initializing various objects,
the CompilerInstance is responsible for creating the AST. Each node in the AST can be visited by
implementing the RecursiveASTVisitor interface. Nodes in the AST are not modifiable. To modify
nodes, a Rewriter object is required. This object is associated with the source code, and keeps its
own copy of the AST in memory that can be modified. The profiler supports both C and C++. The
main difference in constructing the AST for C or C++ programs is that Clang uses different classes
and objects to model the AST of C++ programs.

5.2.2.2 Pragma Support

Pragmas are defined in both the C and C++ standard and provide additional information to the
compiler. Cprof needs to know which kernels to profile, and pragmas are used for that purpose. Clang
provides no easy integration of new pragmas. Therefore, the parts responsible for parsing source code
and the semantic analysis were modified. The #pragma shown in line 1 of Listing 5.1 allows to select
a kernel for profiling. The first part of the #pragma is a directive for the preprocessor to launch a
pragmahandler. The second part, cprof_procedure, is the name of the pragma. After naming the
pragma, a name for the cprof procedure is specified. In the case of the example it is filter.

5.3 Static Analysis and Instrumentation

During static analysis, the relevant code regions are identified, and is discussed in Section 5.3.1.
Following in Section 5.3.2, the process of code instrumentation is explained.

31

5.3.1 Static Analysis

In the following, we present the basic process of identifying code regions in the AST. After static
analysis, a database with program information is generated and subsequently used during dynamic
analysis. In Section 5.3.1.2, the process of storing the database on disk is explained.

5.3.1.1 Kernel and Statement Identification in the AST

The process of identifying and collecting relevant code regions is explained in the context of Figure
5.2. The source code is listed in 5.2(a). The AST constructed during input processing is consumed by
the CprofASTConsumer, which is responsible for identifying relevant kernels. In this case, it accepts
the kernel filter and ignores print. The reason is that print is not annotated with a #pragma.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

#pragma cprof_procedure filter
void filter() {
 int b[10];
 int a[10];
 for(i=0; i<N*M; i++) {
 foo(&a[i], b[i]);
 }
 for(i = 0; i < X; i++) {
 bar(a[i], b[i]);
 }
}
void print() {
 printf("Hello world!\n");
}

+

+

31

+

3

7

+

+

+

31

3

7
function details

filter CprofFunctionCall

variable details

a
b

CprofVariable

CprofVariable

Name
UUID

source
0

Property Value

Name
Dimension

a
1

Property Value

Name
Dimension

b
1

Property Value

CprofASTConsumer

CprofASTVisitor

(a) Source code.

(b) Identifying relevant
code regions.

CprofVariable

CprofFunctionCall

CprofManager

(c) Representation of relevant
code regions.

AST

Figure 5.2: Example of static analysis.

The AST of filter is inspected for relevant code regions. The class CprofASTVisitor is used for
this purpose. In this example, the visitor finds the function call foo and bar, and the two variables
a and b in line 6 and 9 of Figure 5.2(a), respectively. The marking of code regions is shown in
Figure 5.2(b). The colors red and green represent code regions, which are not marked and marked,
respectively.

The kernel filter is represented by a CprofManager. This object keeps a collection of func-
tion calls used in the kernel, in this example foo and bar. These function calls are modeled with
CprofFunctionCall objects. For each variable, a CprofVariable is created with type information
about the variable.

To relate variables in the source code, variable a must know about its canonical declaration. The
canonical declaration is the initial declaration in the C code, in this example line 4 of Figure 5.2(a).
For the purpose of illustration, we present an example of relating variables in Figure 5.3(a). The

32

function foo writes to variable a and the function bar consumes variable a.
During static analysis, the CprofASTVisitor detects that the canonical declaration of variable a

is in line 4. Furthermore, the CprofASTVisitor knows that variable a is written in line 6, and read
in line 9. The function foo keeps a list of related reads and writes, as shown in Figure 5.3(b). Figure
5.3(b) shows that variable a keeps a list of related nodes, shown in Figure 5.3(c). All the related nodes
share the same shadow and control variables, thereby reducing memory usage.

1
2
3
4
5
6
7
8
9
10
11

void filter(int in[X],
 int out[X]) {
 int b[X];
 int a[X];
 for(i = 0; i < X; i++) {
 foo(&a[i], in[i]);
 }
 for(i = 0; i < X; i++) {
 bar(a[i], b[i]);
 }
}

}

Name
UUID
Dimension
Access type
Data type
Declaration
Operation
IsArgument
Indices
Related nodes

a
0
2
static
int
int [X]
write
false
i, j
{0}

Property Value

Name
UUID
Dimension
Access type
Data type
Declaration
Operation
IsArgument
Indices
Related nodes

in
1
1
dynamic
int
int [x]
read
true
i
{0}

Property Value

Name
UUID
Dimension
Access type
Data type
Declaration
Operation
IsArgument
Indices
Related nodes

a
1
2
static
int
int [X]
read
false
i
{1}

Property Value

Name
UUID
Related reads
Related writes

foo
0
{in}
{a}

Property Value

(c) Information about variables.

(b) Information about
the function foo.

(a) Source code.

Canonical declaration

Figure 5.3: The canonical declaration and its relation to variable references.

5.3.1.2 Serialization of Objects

In computer science, in the context of transmission and data storage, serialization is the process of
breaking down an arbitrary set of data structures into a sequence of bytes [37]. The serialization of
object is required, as it stores a relational model of the program. This model is used during dynamic
analysis to relate the variables. In Figure 5.4(a), variable a[i] is associated with the function foo. The
function foo is represented by a CprofFunctionCall object, and is associated with a CprofManager

object. The manager is responsible for the relation between the kernel and the code regions of interest.

1
2
3
4
5
6
7
8

void filter(int in[X],
 int out[X]) {

 int a[X];
 for(i = 0; i < X; i++) {
 foo(&a[i], in[i]);
 }
}

CprofVariable

CprofFunctionCall

CprofManager

10101101011
serialization::archive

1 1 D 0 CprofVariable

2 0 1 1 int [10] a 1 0 2
1 2 D 1 CprofFunctionCall

2 0 1 1 foo 2 3

CprofSerializer

(a) Source code.

(b) Serialization
process.

(c) Serialization archive.

Figure 5.4: Serialization of cprof objects.

The information collected during static analysis is forwarded to the CprofSerializer, as shown in
Figure 5.4(b). The CprofSerializer is responsible for serializing objects. Each class being processed
by the CprofSerializer implements the Boost serializing interface [37]. In this case, the data is
stored in a text file, and the result is shown in 5.4(c).

33

5.3.2 Instrumentation

After identification, objects were created to model the kernels, function calls, and variables. Section
5.3.3 explains how these objects relate to the instrumentation of source code.

5.3.3 Source-to-Source Transformations

The source code in Figure 5.5(a) is used to explain the process of instrumentation. The information
stored during the serialization process is used by the CprofAnnotator object, shown in Figure 5.5(b).
The CprofAnnotator creates a new source file with instrumented code. The instrumentation of code
is discussed in the three separate sections: initialization (Section 5.3.3.1), dynamic analysis (Section
5.3.3.2), and performance analysis (Section 5.3.3.3).

+

+

31

+

3

7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

void filter(int in[X],
 int out[X]) {
 int a[X], b[X];
 static int invocationId = 0;
 CprofSerializer& CS = CprofSerializer::getInstance();
 CS.load("cprof_db");
 CprofManager* CM = CS.get(0);
 CprofFunctionCall* CFC0 = CM->get(0);
 CM->initFunctionCalls();
 CM->mapMemory();

 for(i = 0; i < X; i++) {
 CFC0->updateReads(1, i);
 CFC0->updateExecution();
 CFC0->updateWrites(1, i);
 foo(&a[i], in[i]);
 }

 CM->collectGlobalExecutionProfile();
 CM->createVCD("wave.vcd", invocationId++);
}

}
}
}

Initialization

Dynamic Analysis

Performance analysis

1
2
3
4
5
6
7
8

void filter(int in[X],
 int out[X]) {

 int a[X];
 for(i = 0; i < X; i++) {
 foo(&a[i], in[i]);
 }
}

function details

foo CprofFunctionCall

variable details

a
in

CprofVariable

CprofVariable

Name
UUID

source
0

Property Value

Name
Dimension

a
1

Property Value

Name
Dimension

in
1

Property Value

CprofAnnotator

(a) Source code.

(b) Source-to-source
transformations.

(c) Instrumented source code.

Figure 5.5: Source code after instrumentation by cprof.

5.3.3.1 Code Instrumentation for Initialization

The CprofAnnotator inserts the initialization code to make dynamic analysis possible. The code in
Figure 5.5(c) is used throughout this section. The code for initialization is always placed above all
other statements in the kernel, as it assures that subsequent cprof statements use initialized objects.

In line 4, an invocation number is declared. For example, let us consider a program in which the
kernel filter is called multiple times. In this case, the data associated with each invocation is stored
in separate files.

In line 5 to 6, the CprofSerializer object is retrieved. After loading the data, the CprofManager
with identification number zero is initialized, as shown in line 7. In line 8, the manager initialized the
function calls.

The variables referenced by their canonical declaration use the same shadow variable for storing
information about write operations. Since all memory used for the cprof statements is dynamically
allocated, the memory mapping procedure called in line 10 is executed during run-time. The result is
that the variables use the same shadow and control variables if they are related.

5.3.3.2 Code Instrumentation for Dynamic Analysis

During dynamic analysis, the statement execution profiles and shadow variables (see Chapter 4) are
built and keep track of the behavior of the function calls. For each CprofVariable, the associated

34

index with the read operation is evaluated during run-time. The code in line 13 is inserted to make
this evaluation possible. In line 14, the execution part of the function call is updated. Then, in line
15, the write operation is evaluated. In this case, the variable a[i] is written and the associated index
i is evaluated during run-time.

5.3.3.3 Code Instrumentation for Performance Analysis

The CprofManager object is responsible for collecting all the execution profiles at the end of the pro-
gram. Therefore, the code for performance analysis is inserted either before the last return statement
in a function, or before the last brace if the return statement is missing. The code for collecting the
statement profiles is shown in line 19. At the end of the program, an objects is responsible for creating
a waveform, as shown in line 20.

5.4 Dynamic Analysis

To determine the performance, information is collected during dynamic analysis. The source file
generated during code instrumentation is used for this purpose. In Section 5.4.1, the compilation and
initialization of the instrumented code is discussed. Then, in Secton 5.4.2, the algorithms used for
dynamic analysis and data collection are presented.

5.4.1 Compilation and Initialization

The instrumented source code is a C++ program, where all selected kernels have annotations. In
Section 5.4.1.1, the necessary steps in compiling the instrumented code are discussed. The initialization
of the code during run-time is discussed in Section 5.4.1.2.

5.4.1.1 Compilation of Instrumented Code

The C++ program generated by cprof can be compiled with all modern C++ compilers, on both
Microsoft Windows and Linux. For each C++ program, a CMake file [38] is generated to manage the
build of the project. More details on compilation are described in Appendix B.

5.4.1.2 Deserialization of Objects

The cprof statements collected during static analysis are loaded during run-time. To make this possible,
the data on disk is read, and the objects are deserialized. The CprofSerializer is asked to load the
data from disk. After deserializing the archive, the statements can be tracked by cprof.

5.4.2 Algorithms for Dynamic Analysis

In this section, we present the algorithms used for dynamic analysis and the execution profiles are
presented. In Section 5.4.2.1, the algorithms used during dynamic analysis are introduced. The
algorithms for read, execute, and write operations are discussed in Sections 5.4.2.2, 5.4.2.3 and 5.4.2.4,
respectively. In Section 5.4.2.5, the algorithm for constructing statement execution profiles is discussed.

5.4.2.1 Overview of Algorithms

In this section, we give an overview of the algorithms used during dynamic analysis. In Figure 5.6(a),
the cprof statements are mapped to algorithms. The cprof variables, shown in Figure 5.6(b), provide
access to shadow variables, which allows to find out when a variable is written. The algorithms for
keeping track of execute and write operations are mapped as well. In Figure 5.6(c), the algorithms
are listed and the output of all the algorithms combined is shown in Figure 5.6(d).

35

1
2
3
4
5
6
7
8
9
10
11
12

void filter(int in[4],
 int out[4]) {
 int a[4], x[4];

 for(i = 0; i < 4; i++) {
 CFC0->updateReads(1, i);
 CFC0->updateExecution();
 CFC0->updateWrites(1, i);
 x[i] = foo(a[i]);
 }

}

Algorithm 1

Algorithm 2

Algorithm 3

R$2

E$2

W$2

1

1

1

1

1

1

1

1

1

1

1

1

0 5
Time

10

Name
UUID
Dimension
Access type
Data type
Declaration
Operation
IsArgument
Indices
Related nodes

a
2
1
static
int
int [4]
read
false
i
{1}

Property Value

sv time

$a[0]

$a[1]

$a[2]

$a[3]

2

4

6

8

A
l
g
o
r
i
t
h
m

4

Name
UUID
Dimension
Access type
Data type
Declaration
Operation
IsArgument
Indices
Related nodes

x
3
1
static
int
int [4]
write
false
i
{1}

Property Value

sv time

$x[0]

$x[1]

$x[2]

$x[3]

5

7

9

11

(a) Instrumented source code.

(b) CprofVariables with timestamps
stored in shadow variables.

(c) Algorithms for
dynamic analysis.

(d) Statement execution profile.

Figure 5.6: Overview of algorithms used in dynamic analysis.

To see the example output generated by the algorithms discussed in the following sections, we
refer to the case studies in Chapter 4 (see Section 4.3). The case studies show the capabilities of the
algorithms, as cprof was used to generate the tables and numbers for the absolute and unbounded
throughput estimates in Section 4.3.

5.4.2.2 Read Operations

In the following, we discuss the algorithm used for keeping track of read operations is discussed. Each
statement that reads at least one variable is preceded by the updateReads function. In Algorithm 1,
the procedure is summarized.

In line 2 and 3, the start and stop value are determined. The start time is the control variable
(C$s), and the stop time of the read operation is determined by the latency of the read operation
(ΛR). The maxStop variable in line 4 is used to determine the latest write time associated with one of
the read arguments.

In line 5, each read argument associated with the function call is visited. Then, each of the
variables returns its number of dimensions in line 6. These indices, stored in an array and taken from
the indices list, are passed as arguments to the updateReads function.

In line 9, the variable is asked to check at which time it is written. If it is later than maxStop, the
value in maxStop is substituted with the new timestamp. If the program is profiled for the absolute
throughput estimate, the control variable (C$s) must be taken into account to determine the stop
time of the read operation. In the case of the unbounded throughput estimate, the control variable
(C$s) is set to maxStop, because it can start its execution as soon as the data is available.

In Line 14, the read profile is updated, by calling the updateStatementProfile(start, stop)

function, which is the subject of a later discussion. The space complexity of Algorithm 1 is O(c+ r),
and the time complexity is O(c · r), where r is the number of read arguments identified by cprof, and

36

Algorithm 1 Update shadow variables for read access.

Precondition: indices is a list of indices for accessing the shadow variables of length n

1: function UpdateReads(indices)
2: start ← C$s
3: stop ← C$s+ ΛR

4: maxStop ← 0
5: for each argument a in readArguments do
6: dims ← a.getDimensions()
7: for y = 0 to dims do
8: l.push(indices[y])

9: a.getWrites(l,&maxStop)

10: if UnboundedThroughputEstimate then
11: C$s ← maxStop

12: else
13: C$s ← max(stop,maxStop)

14: UpdateStatementProfile(start, stop,ΛR)

c the number of dimensions associated with the read argument.

5.4.2.3 Execute Operations

In the following, the algorithm used for keeping track of execute operations is discussed. Each state-
ment is preceded by updateExecution function. The procedure is summarized in Algorithm 2.

Algorithm 2 Update the execute statement profiles.

1: function UpdateExececution

2: start ← C$s
3: stop ← C$s+ ΛF

4: UpdateStatementProfile(start, stop,ΛF)
5: if AbsoluteThroughputEstimate then
6: C$s ← C$s+ II F

In line 2, the start time of the the execute operation is determined. In this case, start simply
equals the control variable (C$s). In line 3, the stop time is determined. The stop time equals the
control variable (C$s), including the function latency (ΛF). In line 4 the statement profile is updated.
If the program is profiled for the absolute throughput estimate, the initiation interval (II F) must be
taken into account. The space complexity of Algorithm 2 is O(1), and the time complexity is O(1).

5.4.2.4 Write Operations

In this section, we discuss the algorithm used for keeping track of write operations. Each statement
that writes at least one variable is preceded by updateWrites function. In Algorithm 3, the procedure
is summarized.

In line 2 the start time and stop time of the write operation are initialized. For both the start
and stop times the function latency (ΛF) is included. The stop time of the write operation is modeled
using the write latency (ΛW).

37

Algorithm 3 Update shadow variables for write access.

Precondition: indices is a list of indices for accessing the shadow variables of length n

1: function UpdateWrites(indices)
2: start ← C$s+ ΛF

3: stop ← C$s+ ΛF + ΛW

4: if AbsoluteThroughputEstimate then
5: start ← start− II F
6: stop ← stop− II F

7: maxStopV alue ← 0
8: for each argument a in writeArguments do
9: dims ← a.getDimensions()

10: for y = 0 to dims do
11: l.push(indices[y])

12: a.updateWrites(l, stop)

13: UpdateStatementProfile(start, stop,ΛW)

In the case of the absolute throughput estimate, the start and stop times are corrected for the
initiation interval (II F) in line 5 and 6, respectively. If this is not taken into account, the write
operation could possibly start too late.

In line 8, each write argument associated with the function call is visited. Then, each variable
returns its number of dimensions in line 9. These indices are subsequently stored in an array and taken
from the indices list. These indices are passed as arguments to the updateWrites function. In line 12
each variable a is updated with the stop time associated with the write operation for the given indices.
In Line 13, the write profile is updated, by calling the updateStatementProfile(start, stop) func-
tion. The space complexity of Algorithm 3 is O(d+w), and the time complexity is O(d ·w), where w
is the number of write arguments identified by cprof, and d the number of dimensions associated with
the write argument.

5.4.2.5 Statement Execution Profiles

The execution profiles storing information about the read, execute, and write operations, and grow
linearly in time. For example, consider a program that takes 232 time units to finish. If the profiler
is told that at time 232 one write operation is in progress, it needs to store that information in the
W$s variable. Now, storing this information at index 232 of the W$s variable is expensive. The W$s is
an array of unsigned long integers, costing 8 bytes per element. As a result, almost 35 gigabytes is
necessary to store this information.

Therefore, an algorithm is used to store this data in an efficient way. We use two ways to store the
statement execution profile in an efficient way. First, we only keep track of zeros, i.e., only store when
there is no operation in progress. Second, we keep track of sequence of zeros, and update the interval
map with a new stop time if successive zeros are found. The two optimizations are summarized in
Algorithm 4.

In line 2, the latency of the operation is used to check if there is a gap between successive operations.
In Line 3, the stop time of the previous operation is subtracted from the current operation start time.
The algorithm detects a repetitive pattern, if this result is equal to the step-size calculated in line 10.
The step-size is the interval length between successive zeros.

Then, if there is no pattern found, in line 7, a new object is created with the previous stop time,
the current start time, and the initialized step-size. In line 10 and 11, the step-size and the previous
stop time are stored for later use.

38

Algorithm 4 Update algorithm for the statement execution profiles.

Precondition: start is the start time of the operation and stop is the stop time and latency.

1: function updateStatementProfile(start, stop, latency)
2: if (start− prevStop) > latency then
3: if (start− prevStop) = stepSize then
4: intervalMap.back().stop ← start;
5: intervalMap.back().stepSize ← stepSize;
6: else
7: opStepSize ← 0;
8: timeInterval ← (prevStop, start, opStepSize);
9: intervalMap.push(timeInterval);

10: stepSize ← start - prevStop;
11: prevStop ← stop;

The space complexity of Algorithm 4 is O(m), whereas the time complexity is O(1), where m is
the number of intervals. The interval map is used to reconstruct the statement execution profile in
the performance analysis. This is discussed in Section 5.5.

5.5 Performance Analysis

In Section 5.5.1, data processing and presentation of measurements are explained. Then, in Section
5.5.2, waveform generation is discussed. In Section 5.5.3, the system responsible for storing program
information is presented.

5.5.1 Data Processing and Presentation

The algorithms discussed in Section 5.4.2 produce statement execution profiles. To derive performance
metrics from the produced output, the data is processed by the CprofManager. This is shown in line
15 of Figure 5.7(a). The CprofManager asks each CprofFunctionCall object to reconstruct the
statement execution profiles based on their measurements. Given the possibility that the size of these
statement profiles is more than the memory system can handle, the execution profiles are constructed
for a specified interval. This interval is specified using an offset, that is shifted each time the execution
profile for the interval is reconstructed. After data in this interval is collected for each function, the
global execution profile is scanned for peak parallel performance. The statement execution profiles are
shown in Figure 5.7(b).

In 5.7(c), the metrics are shown. The run-time is determined by looking in the global execution
profile for the latest execute or write operation. The efficiency of a function is given as a first-order
hint of performance. The function source is 100%, as the initiation interval of the function is 2. The
function foo starts at time 0 and the last iteration stops at time 7. In the execution interval, [0, 7],
four slots are used. The efficiency of the function is, therefore, 4

8 × 100 = 50.0%

A more interesting case is the function bar. Looking at the flat statement execution profile would
suggest that this pipeline is 100% efficient. However, the function latency is two cycles instead of one.
To determine the efficiency in this case, we zoom in on the execution profile, as shown in Figure 5.8.
The resulting performance is 50%, instead of 100% shown in Figure 5.7(c).

39

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void filter(int in[4],
 int out[4]) {
 int a[4], x[4];
 for(i = 0; i < 4; i++) {
 a[i] = source(in[i]);
 }
 for(i = 0; i < 4; i++) {
 x[i] = foo(a[i]);
 y[i] = bar(a[i]);
 }
 for(i = 0; i < 4; i++) {
 sink(x[i], y[i], out[i]);
 }

 CM->collectGlobalExecutionProfile();

}

R$2

E$2

W$2

1

1

R$3

E$3

W$3

1

1 1

1

1

R$4

E$4

W$4

1

2

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1 1

1

1

1 1

1

1

2

1

2

1

2

0 5 1510

GR

GE

GW

4 4

1

2

1

2

1

1

2 2

2 2 2 2 3 1 3 11

1 1 2 1 2 1 1 1 1

R$1

1E$1

W$1 1 1

1 1 1

1 1

Time

Function name:
Function efficiency:
Number of loops:

source
100%
1

Function name:
Function efficiency:
Number of loops:

foo
50%
1

 Function name:

Function efficiency:
Number of loops:

bar
100%
1

 Function name:

Function efficiency:
Number of loops:

sink
50%
1

Average parallelism:
Maximum parallelism:
Run-time:

1.4
3
14

(a) Instrumented source code.

(b) Statement execution
profiles.

(c) Presentation of results.

Figure 5.7: Overview of processing and presenting the output of dynamic analysis.

R$3

E$3

W$3

1

1 1

1

1

1 1

1

1

1 1

1

1

1 1

1

 Function name:

Function efficiency:
Number of loops:

bar
50%
1

1E$3_0

1 1

1 1 1

1 1E$3_1

Figure 5.8: Performance of the function bar after a closer inspection.

5.5.2 Waveform Generation

The processed data is used to generate waveforms to provide an insight to the behavior of the C
programs, when implemented as a PPN in hardware. The Value Change Dump (VCD) format [39] is
used to present information about value changes on selected signals. Cprof automatically generates
VCD files when a kernel is finished executing.

5.5.3 Program Profile Generation

The data produced provides information about the efficiency of function calls. To improve the efficiency
of a function we can apply optimizations. To perform these optimizations automatically, we need a
program profile. In Figure 5.9, the approach used to generate the program profile is shown. The
arrows are numbered, indicating the order the of operations in generating the program profile.

In line 3 in Figure 5.9(a), the filter function is called. Then, in line 2 of Figure 5.9(b), the
CprofMetrics object is initialized. This object is responsible for keeping track of program information.
In line 14 in 5.9(b), the loop associated with the function foo is evaluated. The unique identification
number of the CprofManager and of the function foo are the first two arguments to evalLoop. The
last two arguments represent the upper bound of the loop and the iterator. In line 4 of Figure 5.9(b),
this information is saved in the CprofMetrics object. In each program, the required code for storing
the program profile on disk is inserted in the main function of the program. This is shown in line 6 of
Figure 5.9(a). Statement information, such as loop bounds and iteratores, are stored in the program
profile that is used for optimizing the program.

40

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

void filter(int in[4],
 int out[4]) {
 int a[4], x[4];
 CprofMetrics& cprofMetrics =
 CprofMetrics::getInstance();

 for(i = 0; i < 4; i++) {
 CFC0->updateReads(1, i);
 CFC0->updateExecution();
 CFC0->updateWrites(1, i);
 x[i] = foo(a[i]);
 }

 cprofMetrics.evalLoop(1, 1, 4, "i");
 cprofMetrics.add(CM);
}

<?xml version="1.0">
<optimizations>
 <function>
 <name>foo</name>
 <loops>1</loops>
 <loop0>
 <ub>4</ub>
 <it>i</it>
 <uf>2</uf>
 <opt>MU</opt>
 </loop0>
 </function>
</optimizations>

1
2
3
4
5
6
7
8
9
10
11

int main() {
 int in[4], out[4];
 filter(in, out);
 CprofMetrics& cprofMetrics =
 CprofMetrics::getInstance();
 cprofMetrics.collect();
 cprofMetrics.save("profile.xml");
 std::cout << cprofMetrics.toString();

 return 0;
}

(b) Profiled function.(a) Program entry. (c) Program profile in XML.

CprofMetrics1

3

2

4

5

6

Figure 5.9: Generation of program profile.

5.6 Optimization

The absolute and unbounded throughput estimate represent the lower and upper bound of the design
space. Between the lower and upper bound, many alternative design points may exist. In Section
5.6.1, the optimization methods used for visiting design points in the design space are discussed.

5.6.1 Methods

Cprof implements two optimization techniques: modulo unfolding (Section 5.6.1.1), and plane cutting
(Section 5.6.1.2). Modulo unfolding and plane cutting split-up the process by assigning process itera-
tions to different partitions. These optimizations are easily modeled in the C programming language.
Loop skewing is another possible optimization possible to model in the C programming language.
Anyhow, it is not part of this work. Other methods for optimizing PPNs are found in [2, 9] How-
ever, the algorithms for other optimization techniques require the derivation of the PPN. A one-to-one
mapping of such algorithms to C code is impossible, as the level of abstraction in the C programming
code is too high. Modulo unfolding and plane cutting are explained in the context of Figure 5.10. The
program in Figure 5.10(a) consists of two for loops, and in line 3 the value a[i, j] is the result of
some value produced by the function foo. There are no dependencies between variables, as shown in
the dependency graph in Figure 5.10(b).

for(i = 0; i < 4; i = i + 1)
 for(j = 0; j < 4; j = j + 1)
 a[i, j] = foo(b[i, j])

(a) Source code.

1
2

3

(b) Dependency graph.

0 1 2

i

j

3
2
1
0

3

Figure 5.10: Sample program to show optimizations.

5.6.1.1 Modulo Unfolding

Modulo unfolding splits-up a process p into N partitions [2]. If modulo unfolding is applied to the code
shown in Figure 5.10(a), it is possible to map each iteration of the function foo to its own process.
As an example, we use modulo unfolding to map each iteration onto the same process for which the
iterator j = 0. This selection of iteration points of the iterator j are shown in Figure 5.11(a).

41

(a) Modulo unfolding.

for(i = 0; i < 4; i = i + 1)
 for(j = 0; j < 4; j = j + 1) {
 if (j % 4 == 0)
 a[i, j] = foo(b[i, j])
 if (j % 4 == 1)
 a[i, j] = foo(b[i, j])
 if (j % 4 == 2)
 a[i, j] = foo(b[i, j])
 if (j % 4 == 3)
 a[i, j] = foo(b[i, j])
}

1
2
3
4
5
6
7
8
9
10
11

(b) Modulo unfolding in C code.

0 1 2

i

j

3
2
1
0

3

F0F0 F1 F2 F3

F0

F1

F2

F3

Figure 5.11: Modulo unfolding applied.

The C program optimized with modulo unfolding is shown in Figure 5.11(b). In hardware, each
iteration is mapped onto its own process. The inner loop is represented using four different processes,
which start executing as soon as data is available. The result is that the inner loop is fully unrolled
in the process network.

5.6.1.2 Plane Cutting

Plane cutting splits-up a process p into N subdomains [2]. If plane cutting is applied for two subdo-
mains to the code shown in Figure 5.10(a), the iterations are mapped as shown in Figure 5.12(a).

(a) Plane cutting.

for(i = 0; i < 4; i = i + 1)
 for(j = 0; j < 4; j = j + 1) {
 if (j >= 2)
 a[i, j] = foo(b[i, j])
 else if (j < 2)
 a[i, j] = foo(b[i, j])
 }

1
2
3
4
5
6
7

(b) Plane cutting in C code.

0 1 2

i

j

3
2
1
0

3

F0 F1

F1

F0

Figure 5.12: Plane cutting aplied.

The C program optimized with plane cutting is shown in Figure 5.12(b). As a result, the iterations
points in the left rectangle of Figure 5.12(a) are mapped onto the function call in line 6 of Figure
5.12(b). The right rectangle is mapping the points that are mapped onto the function call in line 4 of
Figure 5.12(b).

5.6.2 Implementation of Optimizations

In Section 5.5.3, program profiles were introduced. The program profile provides information about
the functions in the program. The profiles stores the number of loops enclosing the function call, the
upper bound, and used iterators. At this moment, cprof only supports the optimization the innermost
loop. For inner loops, it is possible to specify the unroll factor used by the modulo unfolding and plane
cutting.

During program profile generation, the modulo unfolding option (MU) is selected as default option
for optimization. If, however, a variable is read and written in the same statement, this is classified as a
self-dependency. In this case, program profile selects plane cutting as default method for optimization.
This choice is based upon the selection criteria for optimization methods presented in Meijer’s work
[9]. In his work the direction of the dependencies is used for determining which optimization to apply.
However, cprof does not know the direction of the self-dependencies as no fully PPN is derived.

42

<?xml version="1.0">
<optimizations>
 <function>
 <name>foo</name>
 <loops>2</loops>
 <loop1>
 <ub>5</ub>
 <it>i</it>
 <uf>2</uf>
 <opt>PC</opt>
 </loop1>
 </function>
</optimizations>

for(i = 0; i < 4; i = i + 1)
 for(j = 0; j < 4; j = j + 1) {
 if (j >= 2)
 CFC0->updateReads();
 a[i, j] = foo(b[i, j])
 else if (j < 2)
 CFC1->updateReads();
 a[i, j] = foo(b[i, j])
 }

for(i = 0; i < 4; i = i + 1)
 for(j = 0; j < 4; j = j + 1) {
 if (j >= 2)
 a[i, j] = foo(b[i, j])
 else if (j < 2)
 a[i, j] = foo(b[i, j])
 }

(a) Program profile.

(b) Processing by cprof.

(c) Optimized source code
without cprof annotations.

(d) Optimized source code
without cprof annotations.

cprof

Figure 5.13: Overview of the optimization flow in cprof.

Cprof parses the optimization file depicted in Figure 5.13(a) generated by the profiler, and sub-
stitutes the statements with their optimized equivalents, as shown in Figure 5.13(b). The results of
the source-to-source translation results in two files. The first file is not instrumented for profiling, as
shown in Figure 5.13(c). This file can then be used in tools, such as Compaan and Daedalus, to derive
the polyhedral process network. The second file is instrumented, as shown in Figure 5.13(d). This file
can be used to profile the optimized program. The process for annotating optimized source code is
no different from other programs, and cprof applies the regular systems and techniques to profile the
program.

5.7 Hierarchical Program Analysis

HPA is about profiling programs with inter-procedural relations. In HPA, manual kernel selection is
not necessary, as cprof automatically detects SANLPs. This is discussed in Section 5.7.1. In Section
5.7.2, the process of code instrumentation for HPA is explained. The changes required for dynamic
analysis are discussed in Section 5.7.3. The collection of performance metrics in HPA is the subject
of Section 5.7.4.

5.7.1 Static Analysis

Figure 5.14 is used throughout this section. To illustrate the process of automatic kernel selection in
HPA, Figure 5.14(a) shows the entry point of the program. In line 7 of Figure 5.14(a), the function
producer is called. In this case, the call to producer is marked for instrumentation. The reason is
that the body of producer does not contain any function calls. In line 9, the function hierarchy is
called. In this case, the call to hierarchy is not marked for instrumentation, as the body of hierarchy
contains code that is annotated by cprof. If this is the case, the function hierarchy is responsible
for keeping track of the variables data_a and data_out. To summarize, cprof detects SANLPs and
annotates them. Otherwise, the statement is ignored.

In Figure 5.14(b), the function hierarchy is defined. In line 9 of Figure 5.14(b), the assign

function is called. The assign call itself does not contain any code that is recognized by cprof.
Therefore, this call is marked for instrumentation. In line 11, the function transformer is called.
This function is responsible for tracking the variables a and b.

The most complicated function is defined in Figure 5.14(c). In this case, each call to assign is
marked for instrumentation. However, the calls in line 19 and 20 are not, as the functions foo and bar

have code statements that can be profiled. The definitions of both foo and bar are given in Figure
5.14(d) and 5.14(e), respectively. The calls made in line 9, 12 and 15 of both functions do not contain

43

any code that is marked for instrumentation.

The hierarchy in the program is flattened by cprof. Each function call in 5.14 that is not marked
for instrumentation could be replaced by their implementation. For example, the body of hierarchy
in 5.14(b) could replace the call in line 9 in Figure 5.14(a). This is the approach cprof takes on marking
the statements for HPA.

int main() {
 int i = 0, j = 0;

 int data_out[MAX_O];
 int data_a[MAX_O];
 for(j = 0; j < MAX_O; j++) {
 producer(&(data_a[j]));
 }
 hierarchy(data_a, data_out);
 for(j = 0; j < MAX_O; j++) {
 consumer(data_out[j]);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void hierarchy(int data_a[MAX_O],
 int data_out[MAX_O]) {
 int i;
 int j;
 int a[MAX_O];
 int b[MAX_O];

 for(i = 0; i < MAX_O; i = i + 1) {
 assign(data_a[i], &a[i]);
 }
 transformer(a, b);
 for(i = 0; i < MAX_O; i = i + 1) {
 assign(b[i], &data_out[i]);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

void transformer(int data_in[MAX_O],
 int data_out[MAX_O]) {

 int a[MAX_O];
 int b[MAX_HALF];
 int c[MAX_HALF];
 int d[MAX_HALF];
 int e[MAX_HALF];
 int f[MAX_O];
 int i, j, x;

 for(i = 0; i < MAX_O; i = i + 1) {
 assign(data_in[i], &a[i]);
 }
 for(j = 0; j < MAX_HALF; j = j + 1) {
 assign(a[j * 2], &b[j]);
 assign(a[(j * 2) + 1], &d[j]);
 }
 foo(b, c);
 bar(d, e);
 for(j = 0; j < MAX_HALF; j = j + 1) {
 assign(c[j], &f[j * 2]);
 assign(e[j], &f[(j * 2) + 1]);
 }
 for (x = 0; x < MAX_O; x = x + 1) {
 assign(f[x], &data_out[x]);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

void foo(int data_in[MAX_HALF],
 int data_out[MAX_HALF]) {

 int a[MAX_HALF];
 int c[MAX_HALF];
 int i, j, x;

 for(i = 0; i < MAX_HALF; i = i + 1) {
 assign(data_in[i], &a[i]);
 }
 for(j = 0; j < MAX_HALF; j = j + 1) {
 mac(a[j], &c[j]);
 }
 for(x = 0; x < MAX_HALF; x = x + 1) {
 assign(c[x], &data_out[x]); }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

void bar(int data_in[MAX_HALF],
 int data_out[MAX_HALF]) {

 int a[MAX_HALF];
 int c[MAX_HALF];
 int i, j, x;

 for(i = 0; i < MAX_HALF; i = i + 1) {
 assign(data_in[i], &a[i]);
 }
 for(j = 0; j < MAX_HALF; j = j + 1) {
 mac(a[j], &c[j]);
 }
 for(x = 0; x < MAX_HALF; x = x + 1) {
 assign(c[x], &data_out[x]);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(b) hierarchy

(a) main

(c) transformer

(d) foo

(e) bar

Figure 5.14: Example program with hierarchy used for HPA.

5.7.2 Instrumentation

The problem in HPA is that the data structures used for shadow variables must be shared inter-
procedural. In Figure 5.15, the function hierarchy is annotated.

In line 15, the statement responsible for relating memory is shown. Since cprof knows about the
dimensions of the variables, it is possible to insert a statement to find out the base memory address of
a variable. The address of the first element is the base memory of arrays, and for non-array types just
the address of the variable itself. Variables are related during run-time using this information. In line
16, the function relateVariables is inserted for this action. This function is responsible for finding
out which functions are using the same variables based on their memory address. After registering
the relations between variables, the memory used for shadow variables is shared between variables by
the call to mapMemory in line 17. The bookkeeping from line 20 to 23 is the same as it is for regular
programs and requires no different instrumentation.

From line 27 to 30, statements are inserted for performance analysis. The performance metrics
are presented to the user after each invocation of the kernel. In line 30, the performance metrics are
stored in the CprofHPAManager object. This object is responsible for collecting performance metrics
during HPA.

44

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

void hierarchy(int data_a[MAX_O],
 int data_out[MAX_O]) {
 static int invocationId = 0;
 CprofSerializer& CS = CprofSerializer::getInstance();
 CprofManager* CM = CS.get(3);
 CM->initFunctionCalls();
 CprofFunctionCall* CFC12 = CM->get(12);

 int i;
 int j;
 int a[MAX_O];
 int b[MAX_O];

 CM->setHierarchyID();
 CFC12->registerAddresses(2, &(data_a[0]), &(a[0]));
 CM->relateVariables();
 CM->mapMemory(AD_OD);

 for(i = 0; i < MAX_O; i = i + 1) {
 CFC12->updateReads(1,i);
 CFC12->updateExecution();
 CFC12->updateWrites(1,i);
 assign(data_a[i], &a[i]);
 }

 CM->collectGlobalExecutionProfile();
 CM->createVCD("hierarchy"), invocationId);
 CprofWPAManager& cprofWPA = CprofWPAManager::getInstance();
 cprofWPA.add(CM);
 }

}

}
}

}

Initialization

Relating variables

Bookkeeping

Performance Analysis

Figure 5.15: The hierarchy function instrumented with support for HPA.

5.7.3 Dynamic Analysis

In the previous section, it was shown how the code was annotated to determine inter-procedural
relationships during run-time.

Name
Address

Property

Name
Address

in
0xF0F0

Property Value

Name
Address

Property

Name
Address

a
0xE0E0

Property Value

Name
Address

Property

Name
Address

Property

int main() {
 int i = 0, j = 0;

 int data_out[MAX_O];
 int data_a[MAX_O];
 for(j = 0; j < MAX_O; j++) {
 producer(&(data_a[j]));
 }
 hierarchy(data_a, data_out);
 for(j = 0; j < MAX_O; j++) {
 consumer(data_out[j]);
 }
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

void hierarchy(int data_a[MAX_O],
 int data_out[MAX_O]) {
 int i;
 int j;
 int a[MAX_O];
 int b[MAX_O];

 for(i = 0; i < MAX_O; i = i + 1) {
 assign(data_a[i], &a[i]);
 }
 transformer(a, b);
 for(i = 0; i < MAX_O; i = i + 1) {
 assign(b[i], &data_out[i]);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(b) Memory addresses in hierarchy.

2
3
4
5

Name
Address

Property

Name
Address

data_a
0xA0A0

Property Value

12
13

Name
Address

Property

Name
Address

data_a
0xB0B0

Property Value

2
3
4
5

Name
Address

Property

Name
Address

data_a
0xA0A0

Property Value

12
13

Name
Address

Property

Name
Address

data_out
0xB0B0

Property Value

12
13

Name
Address

Property

Name
Address

data_a
0xB0B0

Property Value

12
13

Name
Address

Property

Name
Address

data_out
0xB0B0

Property Value

(a) Memory addresses in main.

Figure 5.16: Inter-procedural relations between variables.

In Figure 5.16(a), the memory addresses of the variables data_a and data_out are shown. By
using this information, the relationship with the variables in the function hierarchy, shown in 5.16(b),
is established. After establishing the relationship, it is possible to keep track of the behavior of
hierarchical programs.

5.7.4 Performance Analysis

At the end of each function invocation, the performance metrics of the kernel are collected and pre-
sented. The CprofHPAManager is responsible for storing for information about each invocation of a
kernel, such as the average and maximum parallelism as well as the run-time. Each program has an
entry point, and in regular C code this is the main function. During static analysis, the main function
is located and code is inserted to retrieve the data collected by the CprofHPAManager. The collection
of program profiles, as discussed in Section 5.5.3, is the same for HPA programs.

45

5.8 The Cost of Profiling

Profiling comes with a price in terms of both space and time complexity. For each canonical declaration
in the source code, a shadow and control variable are created. In Table 5.1, the cost of profiling in
terms of space and time complexity of cprof are listed. The memory footprint of the generated program
by cprof is at least twice the size of the original program. The reason is that for each variable, control
and shadow variables are used to keep track of the performance of the program. The space complexity
of profiling scales linearly with the number of statements used in the program.

The space complexity introduced by cprof in the instrumented program is O(n + v), where n
is the number of variable declarations in the original program that are marked by cprof, and v is
the dimension of each marked variable declaration. The time complexity introduced by cprof in the
instrumented program is dominated by O(u · v), where u is the number of times each variable is
referenced in the program. Non-array types are modeled as arrays with one dimension and, hence, v
never equals zero.

Algorithm Space Time

Dynamic Analysis of Read Operations O(c+ r) O(c · r)
Dynamic Analysis of Execute Operations O(1) O(1)
Dynamic Analysis of Write Operations O(d+ w) O(d · w)
Updating the Statement Execution Profile O(m) O(1)

Table 5.1: Profiling cost in space and time. Used notations: c is the number of dimensions of
the read argument, r is the number times the read arguments are referenced throughout the
program, d is the number of dimensions of the write argument, w is the number times the
write arguments are referenced throughout the program, and m is the number of statement
intervals.

5.9 Summary and Conclusions

In this chapter, we have presented the design and implementation of cprof. Cprof has the ability to
profile C and C++ code. The Clang framework used for implementing cprof provides libraries for
source-to-source transformations. These transformations allows us to annotate the source code with
statements for dynamic analysis. The performance analysis provides suggestions for optimization, and
developers have the possibility to optimize the program. The optimized program can subsequently be
used to explore the design space. Cprof supports hierarchical program analysis, making it possible
to analyze the behavior of programs with inter-procedural relations. At the end of the chapter, we
presented the cost of profiling. In the next chapter, we verify the implementation of the solution
approach in cprof.

46

Verification 6
In this chapter, the implementation of the solution approach in cprof is verified. In Secton 6.1, we
present the verification approach. Processes in PPNs communicate with each other in four different
ways. In Section 6.2, we will show that each communication model is supported by cprof. In Section 6.3,
we will show that it is possible to increase throughput by applying program optimizations. Following
in Section 6.4, the verification of hierarchical program analysis is presented. In Section 6.5, a summary
is given and conclusions are drawn.

6.1 Verification Approach

Cprof estimates the performance of C programs, based on the assumption that the C code is im-
plemented as a PPN in hardware. The measurements performed by cprof are, therefore, validated
against RTL implementations generated by the Compaan DDE. The Compaan DDE generates ISE
projects that Xilinx ISE Simulator (ISim) can simulate. The FPGA board used is a Virtex-6 FPGA
(xc6vlx240t).

The clock period used in Compaan DDE is 10 ns, and the clock frequency is 100 MHz. The
estimates by cprof use the same clock period. The function latency (ΛF) is 3 cycles, and the initiation
interval (II F) is 1 cycle. This configuration of the function latency and initiation interval applies to
each program throughout this chapter, unless stated otherwise.

The validation approach is to compare the execution finish time from Xilinx ISim with the ex-
ecution finish time found by cprof. Xilinx ISim is used to establish the execution finish time of a
PPN in hardware. The execution finish time estimated by cprof is compared to this number. For the
validation of the communication models, waveforms generated by Xilinx ISim are used to verify the
estimates of cprof. For the purpose of clarity, the waveforms produced by cprof and ISim are recreated
in Wavedrom [40].

6.2 Verification of the Communication Models

In this section, the following four communication models are verified: in-order without multiplicity
(Section 6.2.1), in-order with multiplicity (Section 6.2.2), out-of-order without multiplicity (Section
6.2.3), and out-of-order with multiplicity (Section 6.2.2). In PPNs, each communication channel is
implemented as a FIFO, and has one producer and one or more consumer nodes. The producer and
consumer form a P/C pair.

The production order is determined by the producer node. If the consumer node consumes the
tokens in the same order, we say that the communication between the producer and consumer is
in-order. Otherwise, the communication between the producer and consumer is out-of-order. If the
communication model has no multiplicity, it means that the tokens produced are not used in future
executions of the consumer process. On the other hand, if the model has multiplicity, it means that
the tokens produced are used in future executions of the consumer node.

In the following subsections, each program used for the verification of communication models
consists of the following three nodes: producer, consumer and sink. The relationship between the
producer and consumer node is shown in Figure 6.1. The sink node is used to stream data out of the
process network. The number of iterations is bound by the variable X, where X is 5. For the purpose
of clarity, the generated waveforms used for the verifcation of the communication models are shown
in Appendix F.

47

0 0

1 1

2 2

3 3

4 4

i i

j0 1 2 3 4

(a) IOM-

0 0

1 1

2 2

3 3

4 4

i i

j0 1 2 3 4

(b) IOM+

0 0

1 1

2 2

3 3

4 4

ii i

j0 1 2 3 4

(c) OOM-

0 0

1 1

2 2

3 3

4 4

ii i

j0 1 2 3 4

(d) OOM+

producer consumer

producer consumer

producer consumer

producer consumer

Figure 6.1: Communication models in PPNs.

6.2.1 In-Order without Multiplicity (IOM-)

In Figure 6.2(a), an example source code is shown for implementing the IOM- communication model.
The producer and consumer are shown in line 2 and 5 of Figure 6.2(a). In Figure 6.2(b), the derived
PPN of the source code is shown. The communication pattern between producer and consumer is
correctly identified as IOM-.

1
2
3
4
5
6
7
8
9

for(i=0; i<X; i++) {
 producer(&a[i], data_in[i]);
 }
 for(i=0; i<X; i++) {
 consumer(a[i], &b[i]);
 }
 for(i=0; i<X; i++) {
 sink(b[i], &data_out[i]);
 }

(a) Source code implementing IOM-.

(b) Derived polyhedral process network.

consumer sink
data_in data_out

IOM- IOM-
ND_2 ND_3ND_1

producer

Figure 6.2: Example implementation of the IOM- communication model.

The source code is profiled by cprof, and the waveform shown in Figure F.1(a) of Appendix F
is generated. After RTL simulation, Xilinx ISim generates the waveform shown in Figure F.1(b) of
Appendix F. Cprof estimates that it takes 190 ns to finish execution, and the RTL simulation is finished
after 210 ns. The two waveforms are almost identical. The difference between both waveforms is that
in Figure F.1(b) of Appendix F, the producer stalls its read operation for two cycles. This stall in
the read stage in hardware is undefined behavior in Compaan DDE, and seems to represent a bug in
the hardware.

48

6.2.2 In-Order with Multiplicity (IOM+)

In Figure 6.3(a), example source code is shown for the IOM+ communication model. In line 6 of Figure
6.3(a), the consumer node is enclosed by two loops. The reason is that in this case, the consumer
consumes multiple tokens in following iterations. For example, in the second iteration, the token
stored in a[1] is consumed twice by the consumer. The derived PPN is shown in Figure 6.3(b). The
communication pattern between producer and consumer is correctly identified as IOM+.

1
2
3
4
5
6
7
8
9
10
11

for(i=0; i<X; i++) {
 producer(&a[i], data_in[i]);
 }
 for(i=0; i<X; i++) {
 for(j=0; j<=i; j++) {
 consumer(a[i], &b[i]);
 }
 }
 for(i=0; i<X; i++) {
 sink(b[i], &data_out[i]);
 }

(a) Source code implementing IOM+.

(b) Derived polyhedral process network.

consumer sink
data_in data_out

IOM-IOM+
ND_2 ND_3ND_1

producer

Figure 6.3: Example implementation of the IOM+ communication model.

The source code is profiled by cprof, and the waveform shown in Figure F.2(a) of Appendix F
is generated. After RTL simulation, Xilinx ISim generates the waveform shown in Figure F.2(b) of
Appendix F. Cprof estimates that it takes 290 ns to finish execution, and the RTL simulation is finished
after 310 ns. In this case, the consumer takes more time to execute, because of the two loops enclosing
the statement. The two waveforms are almost identical. The difference between the waveforms is that
in Figure F.1(b) of Appendix F, the producer stalls its read operation for two cycles. The stall is, in
this case, not caused by the communication model.

6.2.3 Out-of-Order without Multiplicity (OOM-)

In Figure 6.4(a), example source code is shown for implementing the OOM- communication model.
In line 5 of Figure 6.4(a), the consumer access the data produced by the producer in reverse order.
The result is that the consumer process has to postpone execution, until the last element is produced
by the producer. In this case, the consumer has to wait 5 iterations before it starts executing. The
derived PPN is shown in Figure 6.4(b). The communication pattern between producer and consumer

is correctly identified as OOM-.

1
2
3
4
5
6
7
8
9

for(i=0; i<X; i++) {
 producer(&a[i], data_in[i]);
 }
 for(i=1; i<=X; i++) {
 consumer(a[X-i], &b[i-1]);
 }
 for(i=0; i<X; i++) {
 sink(b[i], &data_out[i]);
 }

(a) Source code implementing OOM-.

(b) Derived polyhedral process network.

consumer sink
data_in data_out

OO�� IO��
ND_1 ND_2 ND_3

producer

Figure 6.4: Example implementation of the OOM- communication model.

The source code is profiled by cprof, and the waveform shown in Figure F.3(a) of Appendix F
is generated. After RTL simulation, Xilinx ISim generates the waveform shown in Figure F.3(b) of
Appendix F. Cprof estimates that it takes 230 ns to finish execution, and the RTL simulation is finished
after 230 ns. The two waveforms are identical.

49

6.2.4 Out-of-Order with Multiplicity (OOM+)

In Figure 6.5(a), example source code is shown for implementing the OOM+ communication model
shown in Figure 6.1(d). In line 6 of Figure 6.5(a), the consumer is enclosed by two loops, and accesses
the data produced by the producer in reverse order. The result is that the consumer process has to
postpone execution, until the last element is produced by the producer. In this case, the consumer

has to wait 5 iterations before it can actually start executing. Multiplicity is present, because a token
produced is consumed in multiple iterations. For example, a[0] is consumed 5 times in last iteration of
the consumer node. The derived PPN is shown in Figure 6.5(b). The communication pattern between
producer and consumer is correctly identified as OOM+.

1
2
3
4
5
6
7
8
9
10
11

for(i=0; i<X; i++) {
 producer(&a[i], data_in[i]);
 }
 for(i=1; i<X; i++) {
 for(j=1; j<=i; j++) {
 consumer(a[X-i], &b[i-1]);
 }
 }
 for(i=0; i<X; i++) {
 sink(b[i], &data_out[i]);
 }

(a) Source code implementing IOM+.

(b) Derived polyhedral process network.

sinkconsumer
data_outdata_in

IOM-OOM+
ND_3ND_1 ND_2

producer

Figure 6.5: Example implementation of the OOM+ communication model.

The source code is profiled by cprof, and the waveform shown in Figure F.4(a) of Appendix F
is generated. After RTL simulation, Xilinx ISim generates the waveform shown in Figure F.4(b) of
Appendix F. Cprof estimates that it takes 330 ns to finish execution, and the RTL simulation is finished
after 330 ns. The two waveforms are identical.

6.2.5 Results

Cprof showed that it is capable of correctly profiling the four different communication models used in
PPNs. In Figure 6.6, the estimated execution finish times by cprof and Xilinx ISim are shown. The
only difference in the execution finish times is found in the IOM- and IOM+ communication models.
In Figure F.1(b) of Appendix F, we see that in the RTL simulation of the IOM- program the read
operation is delayed at clock cycle 4 and 5. This delay is introduced in the simulation of the IOM+
program as well, as shown in Figure F.2(b) of Appendix F. Given the nature of the communication
models, we conclude that this is undefined behavior in the RTL generated by Compaan DDE. The
estimates of the execution finish times of the OOM- and OOM+ models are exactly the same as the
execution finish time of the RTL simulations.

50

190

290

230

330

210

310

230

330

0

50

100

150

200

250

300

350

IOM- IOM+ OOM- OOM+

E
xe

cu
ti

on
 t

im
e

(n
s)

Communication model

cprof Xilinx ISim

Figure 6.6: Execution times of the communication models measured by cprof and ISim.

6.3 Verification of the Absolute and Unbounded Throughput
Estimates

In this section, we will show that it is possible to transform a program to achieve the performance
measured by the unbounded throughput estimate. Program transformations are used to optimize the
program, and the results are discussed in this section. We use the predictor program throughout this
section, as it is resentative for a large class of scientific applications [41]. In Section 6.3.1, the predictor
program is explained in more detail. The optimizations used to increase throughput in predictor are
explained in Section 6.3.2. Finally, in Section 6.3.3, the results are discussed.

6.3.1 The Predictor Program

The predictor program is a program with complex data dependencies. The source code of the program
is shown in Figure 6.7(a), and the derived PPN in 6.7(b).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

for (i = 0; i <= 4; i = i + 1) {
 for(j = 0; j <= 4; j = j + 1) {
 source(&a[i][j], data_in[i][j]);
 }
 }
 for (i = 1; i <= 4; i = i + 1) {
 for(j = 1; j <= 4; j = j + 1) {
 transformer(&a[i][j], a[i-1][j], a[i][j-1]);
 }
 }
 for (i = 1; i <= 4; i = i + 1) {
 for(j = 1; j <= 4; j = j + 1) {
 sink(a[i][j], &data_out[i][j]);
 }
 }

(a) Source code of predictor.

(b) Derived polyhedral process network.

transformersource sink

data_outdata_in

IOM-

IOM-
IOM-

IOM-

IOM-

ND_2ND_1 ND_3

Figure 6.7: The source code and derived PPN of predictor.

There are two self-links in transformer, as the value of a[i][j] is dependent on a[i-1][j] and
on a[i][j-1]. In Figure 6.8(b), the dependency graph of the function transformer is shown. The
dependency graph shows the data flow dependencies between operations.

51

3
2
1

1 2 3

i

j

4

4
for(i = 1; i <= 4; i = i + 1)
 for(j = 1; j <= 4; j = j + 1)
 transformer(&a[i][j], a[i - 1][j], a[i][j - 1])

(a) Transformer function. (b) Dependency graph of transformer.

1
2

3

Figure 6.8: The dependency graph of the transformer function.

Function Used slots Available slots Pipeline utilization (%)

source 75 75 100.0

transformer 48 192 25.0

sink 48 192 25.0

Table 6.1: Pipeline efficiency of the predictor.

Before we start optimizing the predictor, we need to know the absolute and unbounded throughput
estimates. The measurements are shown in Figure 6.9.

(a) The average and maximum degree of parallelism
of predictor.

(b) The estimated execution time of
predictor.

2

3.8

5

25

0 5 10 15 20 25 30

Absolute throughput

Unbounded throughput

Degree of parallelism

E
st

im
a
ti

o
n
 m

e
th

o
d

Maximum Average

Figure 6.9: The absolute and unbounded throughput estimates for the predictor.

The average and maximum degree of parallelism, found with the absolute throughput estimate,
are 2 and 5. The numbers found with the unbounded throughput estimate are 3.8 and 25. This
means that the average degree of parallelism can be increased by 90.0%, and the maximum degree
of parallelism by 500%. The execution finish time of the original predictor can be reduced with a
maximum of 45.7%.

Cprof measures the pipeline utilization based on the function latency and the initiation interval.
The pipeline utilization provides a first-order hint for optimizations. In this case, the efficiency of
source is 100%. The other two functions, transformer and sink, have an utilization of 25%. The

52

pipeline utilization of transformer suggests that there is room for improvement.

6.3.2 Optimization of Predictor

In the previous subsection, we determined the absolute and unbounded throughput of the predictor
program. There is room for improvement, as the numbers for the absolute and unbounded throughput
are not the same, and the pipeline utilization shows that the functions are not 100% efficient.

W[i, j] R[i - 1, j] R[i, j - 1]
1, 1
1, 2
1, 3
1, 4

0, 1
0, 2
0, 3
0, 4

1, 0
1, 1
1, 2
1, 3

First iteration
W[i, j] R[i - 1, j] R[i, j - 1]

2, 1
2, 2
2, 3
2, 4

1, 1
1, 2
1, 3
1, 4

2, 0
2, 1
2, 2
2, 3

Second iteration

W[i, j] R[i - 1, j] R[i, j - 1]
3, 1
3, 2
3, 3
3, 4

2, 1
2, 2
2, 3
2, 4

3, 0
3, 1
3, 2
3, 3

Third iteration
W[i, j] R[i - 1, j] R[i, j - 1]

4, 1
4, 2
4, 3
4, 4

3, 1
3, 2
3, 3
3, 4

4, 0
4, 1
4, 2
4, 3

Fourth iteration

Figure 6.10: Iteration dependencies in the predictor.

This means that there is data parallelism available in the predictor. We know that the functions
source and sink are not suited for optimization, as we assume that there is no data parallelism at the
input and output of the predictor. However, in this section the complete predictor will be optimized
to show that it is possible to transform the program to achieve maximum performance.

The function transformer has room for optimization, as it is possible to exploit data parallelism.
The data dependencies in the iterations of transformer are shown in Figure 6.10. At time t = 0, only
operation [1, 1] can be executed. When t = 1, it is possible to simultaneously execute operation [1,
2] and [2, 1]. At t = 3, it is possible to execute [1, 3], [2, 2] and [3, 1] in parallel. This means that it
should be possible to optimize transformer to increase the throughput.

To increase throughput, it is necessary to transform the source code to exploit the available data-
parallelism. In this case, it is possible to unroll the outer and inner loops, as both have the same
execution profile. That is, the data dependencies in predictor are horizontal and vertical. Unrolling
both will not give any performance advantages. In Figure 6.11, two possible optimizations of the
predictor are shown. The inner loop is fully unrolled in Figure 6.11(a). The outer loop is fully
unrolled in Figure 6.11(b).

for(i = 1; i <= 4; i = i + 1) {
 transformer(&a[i, 1],a [i - 1, 1], a[i, 1 - 1]) // st0
 transformer(&a[i, 2], a[i - 1, 2], a[i, 2 - 1]) // st1
 transformer(&a[i, 3], a[i - 1, 3], a[i, 3 - 1]) // st2
 transformer(&a[i, 4], a[i - 1, 4], a[i, 4 - 1]) // st3
}

(a) Inner loop unrolled.

1
2
3
4
5
6

for(j = 1; j <= 4; j = j + 1)
 transformer(&a[1, j], a[1 - 1, j], a[1, j - 1]) //st0
for(j = 1; j <= 4; j = j + 1)
 transformer(&a[2, j], a[2 - 1, j], a[2, j - 1]) // st1
for(j = 1; j <= 4; j = j + 1)
 transformer(&a[3, j],a[3 - 1, j], a[3, j - 1]) // st2
for(j = 1; j <= 4; j = j + 1)
 transformer(&a[4, j],a [4 - 1, j], a[4, j - 1]) // st3

1
2
3
4
5
6
7
8

(b) Outer loop unrolled.

Figure 6.11: Two possible optimizations of predictor.

After unrolling the inner loop, the data dependencies still exist. Each statement in the unrolled
loops are mapped onto their own dedicated process. Now, at time t = 3, it is possible to execute
operation [1, 3], [2, 2] and [3, 1] in parallel, as the processes start executing as soon as input data is
available. The same applies to unrolling the outer loop. In line 2 of Figure 6.11(b), the operations are

53

Function Used slots Available slots Pipeline utilization (%)

source 75 75 100.0

transformer 12 48 25.0

transformer 12 48 25.0

transformer 12 48 25.0

transformer 12 48 25.0

sink 48 93 51.6

Table 6.2: Pipeline efficiency of the predictor after unrolling the inner or outer loop.

executed sequentially within that process. That is, [1, 2] is dependent on [1, 1]. Now, let us consider
the statement in line 5. Operation [2, 1] execute if and only if operation [1, 1] has finished. As soon
as this happens it can start executing, while at that same time the statement in line 1 is executing
operation [1, 2].

Up to this point, we have discussed only the optimization of the transformer function. However,
the functions source and sink can be unrolled as well. The unrolling of both source and sink cannot
be verified in hardware, as we assume that the input and output streams are sequential. The predictor
program will be optimized in six different ways. The source code of the optimized versions of the
predictor are listed in Appendix C. Three out of six of the optimized designs can be implemented in
hardware. The other three optimize either the input/output streams or both and, as we assume that
the input and output streams are sequential by nature, no RTL can be generated for such designs.

Figure 6.12(a) shows the derived PPN if the inner loop is fully unrolled. In this case, the
transformer function is replicated four times. Figure 6.12(b) shows the PPN of the predictor when
the outer loop is fully unrolled. The figures are exactly the same, as expected, as there is no differ-
ence in unrolling the inner or outer loop. The reason is that the orientation of data dependencies in
predictor is the same in both versions.

source

sink

transformer

transformer

transformer

transformer

data_in

data_out

IOM-
IOM-

IOM-
IOM-

IOM-

IOM-

IOM-

IOM-

IOM-
IOM-

IOM-

IOM-

IOM-

IOM-
IOM-

IOM-

ND_1

ND_6

ND_4

ND_5

ND_2

ND_3

transformer

sink

transformer

transformer
source

transformer

data_out

data_in IOM-IOM-

IOM-

IOM- IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-

IOM-
ND_2

ND_6

ND_4

ND_3
ND_1

ND_5

Figure 6.12: Polyhedral process network of the predictor with the inner and outer loop
unrolled.

This effect is also noticeable in cprof, since the pipeline utilization for both versions is exactly the
same, as shown in Table 6.2:

Each transformer function still operates at 25%. However, because each transformer starts
executing as soon as input data is available, the pipeline utilization of sink is increased. The result is
that the throughput of sink is increased, and the execution time of the predictor is reduced.

If the inner and outer loop of the predictor are both fully unrolled, the result is that transformer
is replicated 16 times. Now, each transformer is responsible for one iteration, and the pipeline

54

utilization is 100%. However, the sink function has a pipeline utilization of 51.6%. Therefore, for
maximum performance, it will suffice to either unroll the inner or outer loop, with a reduced number
of resources. Despite the complexity of the network, the execution time is not reduced. The reason
is that the data dependencies in the predictor do not allow for further optimizations. The complexity
of this process network is considerable, and generating the RTL of the design takes almost 5 minutes.
However, estimating the performance in cprof takes less than 5 seconds.

6.3.3 Results

The absolute and unbounded throughput estimates deliver a lower and upper bound of the design space
in terms of parallelism. After optimizing the source code, it should be possible to achieve performance
found by the unbounded throughput estimate. In the previous section, six optimized versions of the
predictor were presented. The performance of the predictor program is measured using both the
absolute and unbounded throughput estimate. In Figure 6.13, cprof estimates that the execution time
for the unmodified program is 830 ns, whereas in hardware it is 850 ns. The fully unrolled predictor
has an execution time of 450 ns.

In theory, it is possible to reduce the execution time of the predictor with a factor of 1.8. However,
we know that it is impossible to fully unroll the program, given the restrictions of the source and sink

node, as discussed in Section 6.3.2. Therefore, the optimized predictors implementable in hardware
optimize either the inner or outer loop or both. The estimated execution finish times by cprof for
the three versions implementable in hardware are the same, for previously discussed reasons. The
estimated execution time is 500 ns, and the implementations in hardware finish after 520 cycles. The
reduction in the execution time is almost 1.7x. Cprof has overestimated the performance in this case
by 3.8%. The theoretical minimum execution finish time is shown in Figure 6.9(b), and is found to
be 450 ns. In the last two optimization methods, shown in Figure 6.13, this number is achieved. The
maximum performance achievable in hardware takes about 1.2 times more than the maximum speed.

0
100
200
300
400
500
600
700
800
900

E
x
ec

u
ti

on
 t

im
e

(n
s)

Optimization method
cprof Xilinx ISim

no
ne

in
ne

r
lo
op

un
ro
lle

d

ou
te
r
lo
op

un
ro
lle

d

in
ne

r/
ou

te
r

un
ro
lle

d

so
ur

ce
/i
nn

er
/

ou
te
r
un

ro
lle

d

in
ne

r/
ou

te
r/

sin
k
un

ro
lle

d

so
ur

ce
/i
nn

er
/

ou
te
r/
sin

k
un

ro
lle

d

850830

520500 520500 520500 500
450 450

Figure 6.13: Execution times of the predictor measured by cprof and by Xilinx ISim.

In Table 6.3, the resource costs associated with the RTL implementations of predictor are listed.
Optimization means that more resources are needed to implement the design in hardware. The pre-
dictors with either the inner or the outer loop optimized have the same resource usage. The reason is
that the optimized networks implement the same behavior. The optimized versions of the predictor
have a substantial increase in the usage of lookup tables (LUT) and flip-flops (FF). There is a minor
growth of block random access memory (BRAM). The fully unrolled version is the most expensive
in terms of resources, as each iteration of a statement is mapped onto its own dedicated processing

55

Optimization method LUT FF BRAM

none 327 135 1

inner loop unrolled 987 362 3

outer loop unrolled 987 362 3

inner/outer loop unrolled 2520 736 4

Table 6.3: Resource cost of the predictor after unrolling the inner or outer loop.

resource.

In Figure 6.14(a), the average degree of parallelism associated with each version of the predictor is
shown. The lowest average degree of parallelism is found in the original predictor. No optimizations
are applied, and the average degree of parallelism is 2. In the graph the highest average degree of
parallelism is achieved if the source, inner and outer loop are fully unrolled or if the program is fully
unrolled. This number, 3.8, is the same as the average degree of parallelism found for the unbounded
throughput estimate in Figure 6.9(a). In Figure 6.14(b), the maximum degree of parallelism associated
with each version of the predictor is shown. The lower bound on the maximum degree of parallelism is
5, and is found in the unmodified version of the predictor. The upper bound of the maximum degree
of parallelism is 25.

(a) The average degree of parallelism
in multiple implementations of predictor.

(b) The maximum degree of parallelism
in multiple implementations of predictor.

5
7 7 7

9

25 25

0

5

10

15

20

25

30

M
a
x
im

u
m

 d
eg

re
e

o
f
p
a
ra

ll
el

is
m

Optimization method

2

3.4 3.4 3.4 3.4 3.8 3.8

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
er

a
g
e

d
eg

re
e

o
f
p
a
ra

ll
el

is
m

Optimization method

Figure 6.14: The average and maximum degree of parallelism available in the predictor.

In this section, we have shown that it is possible to move from the absolute throughput estimate
to the performance found by the unbounded throughput estimate. With this information, we can limit
design space exploration, as shown in Figure 1.1.

6.4 Verification of Hierarchy Program Analysis

In this section, we show that cprof is capable of profiling programs with hierarchy. In Section 6.4.1, we
introduce the hierarchy program used for verification. The verification results are discussed in Section
6.4.2.

56

6.4.1 The Hierarchy Program

In Figure 5.14 (see Section 5.7.1), we show the program used for the verification of HPA. The program
is complicated enough to demonstrate HPA, as the program uses inter-procedural function calls. Cprof
automatically identifies the following five functions for profiling: foo, bar, transformer, hierarchy,
and main. The five functions identified describe the inter-procedural behavior in the program. We
assume that the function latency (ΛF) of each function is 2 cycles. The MAX_O and MAX_HALF definitions
used for sizing the arrays, are set to 1000 and 500, respectively.

6.4.2 Results

We first estimate the absolute and unbounded throughput of the hierarchy program. The unbounded
throughput estimates that the execution finish time is 360 ns, whereas the absolute throughput esti-
mate is 10350 ns. This means that the execution finish time is reduced by 95.5%.

(a) The average and maximum degree of parallelism
of hierarchy.

(b) The estimated execution time of
hierarchy.

4.3

158.3

8

1000

1 10 100 1000

Absolute throughput

Unbounded throughput

Degree of Parallelism

Maximum Average

10350

360

1

10

100

1000

10000

100000

Absolute throughput Unbounded throughput

E
x
e
c
u
ti

o
n
 t

im
e
 (

n
s)

Estimation method

Figure 6.15: The absolute and unbounded throughput estimates for hierarchy.

In Figure 6.16, the execution times estimated by cprof and measured with ISim are shown. Cprof
estimates the performance of the hierarchy with high accuracy, because the execution finish time is
only overestimated by 0.34%.

57

10385

10350

10000

10050

10100

10150

10200

10250

10300

10350

10400

10450

Xilinx Isim cprof

E
x
ec

u
ti

on
 t

im
e

(n
s)

Implementation

platform

Figure 6.16: The execution finish times of hierarchy.

6.5 Summary and Conclusions

In this chapter, we have shown that cprof supports the necessary communication models, and that
the estimated performance is verifiable with RTL simulations. We showed that it is possible to opti-
mize a program to achieve the maximum performance, given by the unbounded throughput estimate.
Hierarchical program analysis is used for programs with complex inter-procedural relations, and cprof
has the ability to profile such programs as well. In this chapter, we have verified that it is possible to
use cprof to estimate the performance of C programs implemented in hardware as polyhedral process
networks. In the next chapter, we show that cprof is capable of profiling complicated mathematical
benchmarks.

58

Results 7
In this chapter, we use the PolyBench/C 3.1 benchmarks to show that cprof is capable of profiling
benchmarks, which consist of complicated mathematical functions. The control parts of PolyBench/C
3.1 benchmarks are static and are, therefore, they are well suited for implementation as PPNs in
hardware. In Section 7.1, the experimental setup is explained. The absolute throughput estimates
and the unbounded throughput estimates are presented in Section 7.2 and Section 7.3, respectively. In
Section 7.4, the measurements of the RTL implementations of PolyBench/C benchmarks are presented.
The PolyBench/C benchmarks design boundaries are presented in Section 7.5. In Section 7.6, we show
how cprof is capable of optimizing one of the benchmarks. The scalability of cprof is discussed in
Section 7.7. A summary is given and conclusions are drawn in Section 7.8.

7.1 Experimental Setup

One of the goals of this work is to validate cprof against hardware implementations of PolyBench/C
3.1 benchmarks [6]. For this purpose, we use RTL implementations of PolyBench/C 3.1, generated by
Compaan DDE. In Appendix D, a short description of each benchmark in PolyBench/C is given. The
“C” in PolyBench/C 3.1 refers to the fact that the benchmarks are written in the C programming
language. Each PolyBench/C 3.1 benchmark is configured to use the MINI_DATASET size.

Cprof accepts programs that are modeled with function calls. The statements in PolyBench/C
benchmarks are not modeled in this way. Compaan DDE automatically creates functions for such
statements. However, Compaan DDE does not substitute the statements in the original kernel. To
solve this problem, we developed a compiler plugin. The design and implementation of this plugin are
described in Appendix A.

The platform used for profiling the benchmarks with cprof is an Intel i7-3520M operating at 2.9
GHz, with 8 GB internal memory. Xilinx ISE Simulator (ISim) is used for the purpose of simulating
the RTL designs of the benchmarks, and the FPGA board used is a Virtex-6 FPGA (xc6vlx240t). The
clock period is 10 ns and the clock frequency is 100 MHz. The function latency (ΛF) is 3 cycles, and
the initiation interval (II F) is 1 cycle. The measurements are rounded down, and have one degree of
decimal accuracy. The main reason for this degree of accuracy is that it shows if the average degree
of parallelism is moving away or towards the nearest integer.

7.2 Absolute Throughput Estimates of PolyBench/C

Each Polybench/C benchmark is profiled with cprof for the absolute throughput estimate. In Section
7.2.1, the estimated execution times of the benchmarks are presented. The average and maximum
degree of parallelism in the benchmarks are given in Section 7.3.2.

7.2.1 Execution Times

Cprof estimates the execution finish times of the C programs when implemented as a PPN in hardware.
The results are shown in Figure 7.1. The Y-axis is in log10 scale. Instead of multiple invocations of
the same kernel, the mm3, mvt, syr2k, and syrk are modified to execute the kernel only once.

The computational complexity of the benchmarks varies greatly, and this directly affects the
estimated execution times. For example, the jacobi_1d_imper benchmark consists of 5 for loops, and

59

121.2
50.4 50

230.1

842.4 890.3
460.9

238.7

2336.9

20.6

369.5 367.5 337.4

106.9

794.1

10.1
19

105.7

316.9

1656.3
3153.5

58.4 45.5
88.7

706.6

3184.8
1597.6

25.1

763.6

1

10

100

1000

10000

E
x
e
c
u
ti

o
n
 t

im
e
 (

u
s
)

Benchmark

Figure 7.1: Absolute throughput estimates of the execution finish times of PolyBench/C
kernels.

only one multiplication, and a few additions, whereas syr2k has 13 loops and has 5 multiplications.
On average, the execution time of a benchmark is 653.4 µs.

7.2.2 The Average and Maximum Degree of Parallelism

The average and maximum degree of parallelism found by the absolute throughput estimate gives
insight about the parallel behavior of process networks. The results are shown in Figure 7.2.

3.9 1.8 1.9 1.1 0.8 0.7 0.9 1.2 0.8

14.5

39.8

2.8 3.3 1.2 1.3

10.3 9.8
3.6 1.5 3.7 1.0 1.6 1.3 1.3 1.5 0.6 0.6 1.9 0.7

18

10

19
16 17

10 11 9 9

21

48

6

16

31

11 12 12 12
17

20
25

17

6 6

17
14

11 10 9

0.0

10.0

20.0

30.0

40.0

50.0

60.0

D
e
g
r
e
e
 o

f
p
a
r
a
ll
e
li
s
m

Benchmark
Average Maximum

Figure 7.2: Absolute throughput estimates of the average and maximum degree of parallelism
in PolyBench/C kernels.

The average degree of parallelism is quite low in all benchmarks. The average degree of parallelism
over all benchmarks given by the absolute throughput estimate is 4. Two noticeable exceptions are the
fdtd_2d and fdtd_apml benchmarks. In the source code of the two benchmarks, multiple statements
are working on different data sets, i.e., the data dependencies between statements is quite low, and

60

the result is a high average degree of parallelism. The maximum degree of parallelism is similar for all
the benchmarks. The maximum degree of parallelism represents the peak parallel performance. The
maximum degree of parallelism on average given by the absolute throughput estimate is 15.2. For
example, in the gemver benchmark the maximum degree of parallelism is 31. This means that at one
point in time, 31 operations are executing in parallel.

7.3 Unbounded Throughput Estimates of Polybench/C

Each Polybench/C benchmark is profiled with cprof for the unbounded throughput estimate. In
Section 7.3.1, the estimated execution times of the benchmarks are presented. The average and
maximum degree of parallelism in the benchmarks are given in Section 7.3.2.

7.3.1 Execution Times

Cprof estimates the theoretical execution finish times of the C programs using the unbounded through-
put estimate. The results are shown in Figure 7.3. The Y-axis is in log10 scale.

3.5 3.3
2

6.4 6.6 7 10.6

28

102.4

0.3

3.3 4.8

0.2

3.4

105.6

5.1
9.6

3.2

33

13.2 13.2

1.7 1.8

4.7
11.8

3.3

1.7 1.7

13.1

0,1

1

10

100

1000

E
x
ec

u
ti

o
n
 t

im
e

(u
s)

Benchmark

Figure 7.3: Unbounded throughput estimates of the execution finish times of PolyBench/C
kernels.

The average execution time of a benchmark found by the unbounded throughput is 13.9 µs. Because
each iteration of a statement is mapped onto its own processing resource, the execution times of the
benchmarks are relatively low compared to the absolute throughput estimates.

7.3.2 The Average and Maximum Degree of Parallelism

The average and maximum degree of parallelism found by the unbounded throughput estimate gives
insight to the theoretical maximum parallel performance of PPNs. The results are shown in Figure
7.4. The Y-axis is in log10 scale.

The average degree of parallelism given by the unbounded throughput estimate is 504.9. On
average, the maximum degree of parallelism given by the unbounded throughput estimate is 10989.
These percentages are theoretical estimates, i.e., cprof assumes that all statements can be parallelized,
as long as data dependencies are not violated.

61

137.2

28.8
49.2 40.3

104.3 92.6
39.8

1.3

20.4

1039.6

4404.6

218.0

5982.6

39.0

10.3
20.2 19.3

121.8

13.4

470.6
242.0

57.9
32.2 24.6

90.8

634.6 635.6

28.4
43.3

3072

1030 1094 1056 1038 1031 1103

33

107

3136

148177

1024

32768

1282 1030 995
1688

1024 1123

99331

4105

1152 960 1024

3077 3074
2050

1056 1028

1.0

10.0

100.0

1000.0

10000.0

100000.0

1000000.0

D
eg

re
e

o
f
p
a
ra

ll
el

is
m

Benchmark

Average Maximum

Figure 7.4: Unbounded throughput estimates of the average and maximum degree of paral-
lelism in PolyBench/C kernels.

7.4 RTL Simulations

In the previous sections, the absolute and unbounded throughput estimates of the PolyBench/C bench-
marks were presented. In this section, 9 of the PolyBench/C benchmarks are represented in the RTL
specification. The results are shown in Figure 7.5. The Y-axis is in log10 scale.

50.4 50

890.3
460.1

20.6

337.4

106.9

10.1
19

50.5 50.2

890.6
460.4

20.9

337.5

107.2

10.2
19.1

1

10

100

1000

E
xe

cu
ti

on
 t

im
e

(u
s)

Benchmark

cprof Xilinx ISim

Figure 7.5: Absolute throughput estimates of the execution finish time of PolyBench/C kernel
versus the execution finish time of RTL implementations.

The absolute throughput estimates by cprof are close to the numbers achieved in RTL simulation.
Cprof overestimates the performance, on average by 0.44%. For large systems, the overestimates
increase, as in the simulated designs the FIFOs were large enough to facilitate communication without
synchronization problems. That is, cprof assumes FIFOs of unbounded size, and in large designs the
FIFO can become full. In this case, the process is blocked until there is enough free space available in
the FIFO.

62

7.5 Design Space Boundaries

The average degree of parallelism estimates by the absolute and unbounded throughput are shown in
Figure 7.6. The Y-axis is in log10 scale. These measurements give a lower and upper bound of the
design space, in terms of the average degree of parallelism, as presented in Figure 1.1. The average
degree of parallelism provides a more realistic design point that is close to the maximum achievable
performance [35].

1.8 1.9 1.1 0.8 0.7 0.9 1.2 0.8

14.5
39.8

2.8 3.3
1.2 1.3

10.3 9.8
3.6

1.5
3.7

1.0 1.6 1.3 1.3 1.5
0.6 0.6

1.9
0.7

137.2

28.8 49.2 40.3
104.3 92.6

39.8

1.3

20.4

1039.6
4404.6

218.0

5982.6

39.0
10.3

20.2 19.3

121.8

13.4

470.6
242.0

57.9 32.2 24.6
90.8

634.6 635.6

28.4

0.1

1.0

10.0

100.0

1000.0

10000.0

A
v
e
r
a
g
e
 D

e
g
r
e
e
 o

f
P

a
r
a
ll
e
li
s
m

Benchmark

Absolute throughput Unbounded throughput

Figure 7.6: Design space boundaries: the average degree of parallelism found by the absolute
and unbounded throughput estimates.

The measurements show that the performance of PolyBench/C benchmarks can be significantly
improved. In the next section, we show that cprof is capable of evaluating various design points, by
optimizing the atax benchmark.

7.6 Optimization

In this section, cprof is used to apply program optimizations to increase the performance of the atax

benchmark. We assume that the input and output streams of the atax benchmark are not paral-
lelizable. All other statements are eligible for optimization. The optimization methods implemented
in cprof can only be applied to optimize inner loops, and plane cutting divides iterations over two
planes in the iteration domain. Cprof optimizes the inner loops in the source code, and the absolute
throughput is subsequently used to determine the performance metrics.

In Figure 7.7(a), the average and maximum degree of parallelism are shown. The unbounded
throughput estimate gives an average degree and maximum degree of parallelism of 28.8 and 1088,
respectively. If modulo unfolding with a factor 32 is applied to the inner loops of atax, the average and
maximum degree of parallelism become 7.9 and 66, respectively. The average degree of parallelism
is increased by 338.8% and the maximum degree of parallelism with 560%, in comparison to the
none-optimized atax.

However, we now have design points, which are eligible for implementation in hardware. If the
statements are optimized with plane cutting, the average and maximum degree of parallelism are
increased by 105.5% and by 60%, respectively. These numbers are considerably lower than the numbers
found if atax is optimized with modulo unfolding (32x). However, the program optimized with plane
cutting consists of 10 processes, whereas the one optimized with modulo unfolding has 130.

The execution finish times of atax are shown in Figure 7.7(b). The unbounded throughput estimate

63

1.8 1.9 2
2.4

3.4

7.9

3.7

10

16

28

51
66 66

16

1

10

100

none MU 2x MU 4x MU 8x MU 16x MU 32x PC 2x

D
e
g
re

e
 o

f
P

a
ra

ll
e
li
sm

Optimization method

Average Maximum

50.4 48.8
45.7

39.5

27.1

11.9

25.6

0

10

20

30

40

50

60

none MU 2x MU 4x MU 8x MU 16x MU 32x PC 2x

E
x
e
c
u
ti

o
n
 t

im
e
 (

u
s)

Optimization method

(a) The degree of parallelism of the optimized atax benchmark. (b) The execution finish times of the optimized atax benchmarks.

Figure 7.7: Optimization of the atax benchmark.

gives, as execution finish time, 3.3 µs, as shown in Figure 7.3. If the inner loops are optimized with
modulo unfolding (32x), the execution time is reduced by 76.6%. We have already seen that the
number of processes we need in order to achieve this performance is substantial. Plane cutting reduces
the execution finish time by 49.2%. The version of atax optimized with plane cutting seems a good
choice. There is a considerable increase in performance, and the number of processes needed to achieve
this performance is only doubled in comparison to atax without optimizations. Furthermore, we were
able to estimate the performance without actually implementing the design in hardware.

7.7 Scalability

In the previous section, we used the MINI_DATASET for all measurements. To show the scalability of
cprof, the atax benchmark is profiled with larger data sets: SMALL_DATASET, STANDARD_DATASET, and
the LARGE_DATASET. In Table 7.1, the data sets are specified. The accuracy of the average degree of

Data set NX NY

MINI_DATASET 32 32

SMALL_DATASET 500 500

STANDARD_DATASET 4000 4000

LARGE_DATASET 8000 8000

Table 7.1: PolyBench/C data set specifications.

parallelism is 4 decimals, in order to show the difference between the measurements. In Figure 7.8,
the results are shown. The Y-axis is in log10 scale.

Figure 7.8(a) shows that the average degree of parallelism found by the absolute throughput
estimate is in the range of 1.8, whereas the maximum degree of parallelism varies greatly for both the
absolute and the unbounded estimate. In Figure 7.8(b), the maximum degree of parallelism of atax
for each data set is shown. The execution finish times for the different data sets are shown in Figure
7.9. The Y-axis is in log10 scale. The execution time of atax is influenced by the data size. As a
result, the execution times vary greatly.

64

1.8853 1.8057 1.8007 1.8003

28.8

450

3600.1
7200.2

1

10

100

1000

10000

mini small standard large

A
v
e
ra

g
e
 D

e
g
re

e
 o

f
P

a
ra

ll
e
li
sm

Data set

Absolute throughput Unbounded throughput

10 10 10 10

1088

251000

16008000
64016000

1

10

100

1000

10000

100000

1000000

10000000

100000000

mini small standard largeM
a
x
im

u
m

 D
e
g
re

e
 o

f
P

a
ra

ll
e
li
sm

Data set

Absolute throughput Unbounded throughput

(a) The average degree of parallelism of atax
for different data sets.

(b) The maximum degree of parallelism of atax
for different data sets.

Figure 7.8: Estimates of the average and maximum degree of parallelism of the atax bench-
mark for various data sets.

50.4

12485

799880
3199760

0.33

50.1

400.1
800.1

0.1

1

10

100

1000

10000

100000

1000000

10000000

mini small standard large

E
xe

cu
ti

on
 t

im
e

(u
s)

Data set

Absolute throughput Unbounded throughput

Figure 7.9: Estimates of the execution time of the atax benchmark for various data sets.

Profiling of atax varies from a few seconds for the MINI_DATASET to about 10 minutes for the
LARGE_DATASET. If we use Compaan DDE to generate a design of atax for both data sets, the time
necessary for the MINI_DATASET is a few minutes, whereas the same procedure takes more than an
hour for the LARGE_DATASET. The differences are shown in Table 7.2, and estimating the performance
with cprof is significantly faster than going through the complete design flow of Compaan DDE.

65

Data set Cprof (hh:mm:ss) Compaan DDE (hh:mm:ss)

MINI_DATASET 00:00:05 00:00:45

SMALL_DATASET 00:00:09 00:11:15

STANDARD_DATASET 00:04:30 00:31:27

LARGE_DATASET 00:13:02 01:55:33

Table 7.2: Time spent by cprof on estimating the performance of atax, and by Compaan DDE
to generate a hardware implementation of atax.

7.8 Summary and Conclusions

In this chapter, we have shown that we can estimate the execution finish times of PolyBench/C
benchmarks correctly. The performance of RTL simulations is close to the performance estimated by
cprof, the average overestimation is 0.44%. We can obtain bounds on the design space, thereby giving
insight into the performance potential of the PolyBench/C benchmarks. We have demonstrated the
capabilities of cprof with respect to program optimization. We have also shown that cprof scales well
with large data sets, by profiling, as an example, the atax benchmark for various data sets.

66

Conclusions and Future Work 8
In this thesis, we presented cprof, a tool for the profiling of polyhedral process networks. Cprof provides
the possibility to estimate the performance of designs, specified in C or C++, early in the design flow.
We continued the work of Van Haastregt [2], as none of the other profilers are capable of profiling
PPNs. Cprof instruments source code to estimate the performance of sequential C or C++ code,
when implemented as a PPN in hardware. We have used the LLVM/Clang compiler infrastructure
to automatically generate the instrumented program. The instrumented source code is subsequently
used for profiling.

Two modes of performance estimation are implemented: the absolute and unbounded throughput
estimates. Absolute throughput assumes that all iterations of a statement are mapped onto the same
processing resource. Unbounded throughput assumes that the execution of an iteration of a statement
is mapped onto its own dedicated processing resource.

The performance metrics used in the absolute and unbounded throughput estimate are as follows:
the average degree of parallelism, the maximum degree of parallelism, and the execution finish time.
The average degree of parallelism represents a design point close to the maximum achievable perfor-
mance [35]. The maximum degree of parallelism represents the peak parallel performance in a program.
The average degree of parallelism found in the absolute and unbounded throughput estimate, give a
possible lower and upper bound of the design space. Cprof evaluates design points between these two
extremes, by applying optimization techniques. The execution finish time is the time required by a
PPN to complete its execution. The performance we determine in cprof relates to the run-time of a
given application in hardware, and resource usage is not modeled.

We verified that cprof supports the four different communication models used in PPNs. Hierar-
chical program analysis is used to profile programs with inter-procedural relations. The PolyBench/C
benchmarks were profiled, and we showed that on average, cprof overestimates the execution finish
time of the PolyBench/C benchmarks implemented in hardware by 0.44%. Cprof helps increasing
engineering productivity by assisting in DSE, and risk is reduced by making design limitations explicit
at an early stage in the design process. The result is that the hardware design flow looks like a regular
software design flow, and no special hardware skills are required to analyze and optimize a design that
is eventually implemented as a PPN in hardware.

67

8.1 Contributions

The main contributions of this thesis can be summarized as follows.

1. A profiler capable of profiling polyhedral process networks. The profiler, referred to as
cprof, is capable of profiling sequential C and C++ programs, which are realized in hardware
as PPNs. The performance of a program is characterized by the absolute and unbounded
throughput estimates, which give a lower and upper bound of the design space, respectively;

2. Hierarchical Program Analysis for estimating the performance of programs with
inter-procedural behavior. We have introduced HPA in cprof. As a result, we can profile
programs with inter-procedural behavior, which are specified in the C or C++ programming
language. HPA allows us to estimate the performance of complex and real-world designs;

3. Assistance in Design Space Exploration. Cprof applies source code optimization to gen-
erate design points between the minimum and maximum achievable performance. The result is
that designers can evaluate design points before actually implementing the design in hardware;

4. Verification and results. We verified the solution approach implemented in cprof, and we
validated cprof against RTL implementations of the PolyBench/C benchmarks. A compiler
plugin for Compaan was developed. With this plugin, we translate statements unsupported by
cprof to their supported equivalents. We have also shown that cprof scales well with large data
sets.

8.2 Future Work

In this section, we present several recommendations for future work.

Extension of Programming Language Support

Cprof only supports statements modeled as a function call. Supporting statements not modeled as
function calls allows to profile a larger class of programs. SystemC is an extension of the C++ pro-
gramming language, and cprof could be extended to support the SystemC classes and take advantage
of the hardware descriptions for better performance estimates.

Modeling of Hardware Resources

Cprof assumes a one-to-one mapping of a statement onto a process. Cprof has no knowledge about
the hardware resources used by an IP block. One way to model hardware resources is by introducing
the concept of resource variables, denoted as R$s. If the system is modeled with N resources, it is
possible to claim a resource with the R$s variable. All the statements use this variable to determine
whether a hardware resource is available. If the resource is unavailable, the execution of the statement
is delayed until the resource is available. The use of a resource variable would allow us to model
resource contention.

Resource Cost Estimation

The execution finish time is one aspect of the performance of PPNs. Another aspect is the hardware
resource cost. One way to estimate resource usage of processes is to specify the resource cost in a
configuration file. Another approach is to apply statistical estimation to predict the resource cost,
similar to the Quipu approach [22]. Implementing resource cost estimation in cprof provides insight
to the feasibility of design points generated by cprof, in terms of performance and resource cost.

68

Limiting the Unbounded Throughput Estimate

If we estimate the unbounded throughput of a program, we assume that the program is fully unrolled.
Designers often know which functions cannot be parallelized. If it is possible to mark those kernels,
the predicted performance can become more accurate.

Dynamic Performance Modeling

Cprof assumes a fixed latency for each IP block. Most IP blocks have different latencies, depending on
the inputs. For example, a given multiplier normally takes 8 cycles to finish. If one of the inputs is a
zero, the result is delivered after one cycle. Cprof already supports the dynamic modeling of functions.
However, the designer has to manually insert statements to check the input to determine the latency.
A better solution is to use a configuration file, and to define for which inputs the function latency
varies.

Modeling of Communication Channels

Cprof assumes that FIFOs of unbounded size are used to facilitate communication between processes.
For larger designs, this assumption is unrealistic and this affects the found result. Before a process
can resume execution, the FIFO must be ready to process data. The derivation of PPNs requires the
calculation of the buffer sizes, because communication channels are not explicitly modeled. However,
estimating the performance degradation caused by FIFO congestion should be possible, if the commu-
nication between processes is explicitly modeled. For example, a CprofFIFO object could be used to
represent the communication channel between processes.

Extending Optimization

Cprof applies modulo unfolding and plane cutting to explore the performance of programs. Cprof only
optimizes the innermost loop, and with plane cutting it is only possible to divide the iterations of a
statement over two processes. Another optimization that can be represented in C code is skewing.
Further work is necessary to make it possible to optimize all the enclosing loops of a statement.

Support of Control Flow Architectures

PPNs are classified as a dataflow architecture. Estimating the performance of programs that use a
control flow architecture requires the modeling of different data hazards. We already provide basic
support for control flow architectures (see Appendix E). If it is possible to profile an application
on both platforms, a designer has the opportunity to evaluate the performance of an application on
multiple platforms, and make design choices accordingly.

69

70

Bibliography

[1] J. Hennessy, “The future of systems research,” Computer, vol. 32, no. 8, pp. 27–33, 1999.

[2] S. J. J. Haastregt, Estimation and optimization of the performance of polyhedral process networks.
PhD thesis, Leiden Institute of Advanced Computer Science (LIACS), Faculty of Science, Leiden
University, 2013.

[3] J. Castrillon, Programming Heterogeneous MPSoCs: Tool Flows to Close the Software Productivity
Gap. PhD thesis, PhD thesis, RWTH Aachen university, 2013.

[4] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: Deriving process networks from matlab
for embedded signal processing architectures,” in Proceedings of the eighth international workshop
on Hardware/software codesign, pp. 13–17, ACM, 2000.

[5] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zissulescu, and
E. Deprettere, “Daedalus: toward composable multimedia mp-soc design,” in Proceedings of the
45th annual Design Automation Conference, pp. 574–579, ACM, 2008.

[6] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” http://www.cs.ucla. edu/˜
pouchet/software/polybench/, 2012.

[7] G. Kahn, D. MacQueen, et al., “Coroutines and networks of parallel processes,” 1976.

[8] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine nested-loop programs to process
networks,” in Proceedings of the 2004 international conference on Compilers, architecture, and
synthesis for embedded systems, pp. 220–229, ACM, 2004.

[9] S. Meijer et al., Transformations for polyhedral process networks. Leiden Institute of Advanced
Computer Science (LIACS), Faculty of Science, Leiden University, 2010.

[10] C. Lattner, “Llvm and clang: Next generation compiler technology,” 2008. Poster presented at
the BSDCan 2008, Ottawa, Canada.

[11] A. Mycroft and A. Zeller, Compiler Construction: 15th International Conference, CC 2006, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2006,
Vienna, Austria, March 30-31, 2006, Proceedings, vol. 3923. Springer, 2006.

[12] J. R. Larus, “Whole program paths,” in ACM SIGPLAN Notices, vol. 34, pp. 259–269, ACM,
1999.

[13] C. Bastoul, “Code generation in the polyhedral model is easier than you think,” in Proceedings of
the 13th International Conference on Parallel Architectures and Compilation Techniques, pp. 7–
16, IEEE Computer Society, 2004.

[14] S. L. Graham, P. B. Kessler, and M. K. McKusick, “Gprof: A call graph execution profiler,”
ACM SIGPLAN Notices, vol. 39, no. 4, pp. 49–57, 2004.

[15] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary instru-
mentation,” in ACM Sigplan Notices, vol. 42, pp. 89–100, ACM, 2007.

[16] L. Gao, J. Huang, J. Ceng, R. Leupers, G. Ascheid, and H. Meyr, “Totalprof: a fast and accurate
retargetable source code profiler,” in Proceedings of the 7th IEEE/ACM international conference
on Hardware/software codesign and system synthesis, pp. 305–314, ACM, 2009.

[17] S. Rul, H. Vandierendonck, and K. De Bosschere, “A profile-based tool for finding pipeline par-
allelism in sequential programs,” Parallel Computing, vol. 36, no. 9, pp. 531–551, 2010.

[18] R. Bell, A. D. Malony, and S. Shende, “Paraprof: A portable, extensible, and scalable tool for
parallel performance profile analysis,” in Euro-Par 2003 Parallel Processing, pp. 17–26, Springer,
2003.

71

[19] M. Kambadur, K. Tang, and M. A. Kim, “Harmony: collection and analysis of parallel block
vectors,” in ACM SIGARCH Computer Architecture News, vol. 40, pp. 452–463, IEEE Computer
Society, 2012.

[20] S. Blair-Chappell and A. Stokes, Parallel Programming with Intel Parallel Studio XE. John Wiley
& Sons, 2012.

[21] S. A. Ostadzadeh, R. Meeuws, I. Ashraf, C. Galuzzi, and K. Bertels, “Profile-guided application
partitioning for heterogeneous reconfigurable platforms,” in Computer Architecture and Digital
Systems (CADS), 2012 16th CSI International Symposium on, pp. 37–43, IEEE, 2012.

[22] R. Meeuws, Quantitative hardware prediction modeling for hardware/software co-design. Ph. D.
thesis, 2012.

[23] S. A. Ostadzadeh, R. J. Meeuws, C. Galuzzi, and K. Bertels, “Quad–a memory access pat-
tern analyser,” in Reconfigurable computing: architectures, tools and applications, pp. 269–281,
Springer, 2010.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood, “Pin: building customized program analysis tools with dynamic instrumentation,”
ACM Sigplan Notices, vol. 40, no. 6, pp. 190–200, 2005.

[25] C. Feenstra and B. Eng, A Memory Access and Operator Usage Profiler Framework for HLS
Optimization. PhD thesis, Masters thesis, Delft University of Technology, 2011.

[26] X. Wu, Performance evaluation, prediction and visualization of parallel systems, vol. 4. Springer,
1999.

[27] M. J. Kumar, “Measuring parallelism in computation-intensive scientific/engineering applica-
tions,” Computers, IEEE Transactions on, vol. 37, no. 9, pp. 1088–1098, 1988.

[28] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking and rebooting gprof for
the multicore age,” in ACM SIGPLAN Notices, vol. 46, pp. 458–469, ACM, 2011.

[29] D. Jeon, S. Garcia, C. Louie, S. Kota Venkata, and M. B. Taylor, “Kremlin: Like gprof, but for
parallelization,” in ACM SIGPLAN Notices, vol. 46, pp. 293–294, ACM, 2011.

[30] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Parkour: Parallel speedup estimates for serial
programs,” in HotPar11: Proceedings of the USENIX workshop on Hot Topics in Parallelism,
2011.

[31] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: parallel speedup estimates for serial
programs,” in ACM SIGPLAN Notices, vol. 46, pp. 519–536, ACM, 2011.

[32] Z. Li, A. Jannesari, and F. Wolf, “Discovery of potential parallelism in sequential programs,” in
Parallel Processing (ICPP), 2013 42nd International Conference on, pp. 1004–1013, IEEE, 2013.

[33] A. J. C. Van Gemund, Performance modeling of parallel systems. Delft University Press, 1996.

[34] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-Hill Higher Education,
1994.

[35] D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup versus efficiency in parallel systems,”
Computers, IEEE Transactions on, vol. 38, no. 3, pp. 408–423, 1989.

[36] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Elsevier,
2012.

[37] R. Ramey, “Boost serialization library,” 2008.

[38] K. Martin and B. Hoffman, Mastering CMake. Kitware, 2010.

[39] L. VHDL, “Verilog system users manual,” VHDL Compiler Version, vol. 4, no. 1, 1993.

72

[40] M. LLC, “Wavedrom,” http://wavedrom.com, 2014-09-15.

[41] A. Balevic et al., Exploiting multi-level parallelism in streaming applications for heterogeneous
platforms with GPUs. PhD thesis, Leiden Institute of Advanced Computer Science (LIACS), and
Leiden Embedded Research Center, Faculty of Science, Leiden University, 2013.

[42] D. Nadezhkin, H. Nikolov, and T. Stefanov, “Translating affine nested-loop programs with dy-
namic loop bounds into polyhedral process networks,” in Embedded Systems for Real-Time Mul-
timedia (ESTIMedia), 2010 8th IEEE Workshop on, pp. 21–30, IEEE, 2010.

[43] S. Verdoolaege, “Polyhedral process networks,” in Handbook of Signal Processing Systems,
pp. 1335–1375, Springer, 2013.

[44] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, “High-level synthesis
for fpgas: From prototyping to deployment,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 30, no. 4, pp. 473–491, 2011.

[45] O. Krzikalla, “Performing source-to-source transformations with clang,” 2013. Poster presented
at the European LLVM Conference Paris 2013, Paris, France.

[46] D. Spinellis, “Global analysis and transformations in preprocessed languages,” Software Engi-
neering, IEEE Transactions on, vol. 29, no. 11, pp. 1019–1030, 2003.

[47] S. J. Geuns, M. J. G. Bekooij, T. Bijlsma, and H. Corporaal, “Parallelization of while loops in
nested loop programs for shared-memory multiprocessor systems,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2011, pp. 1–6, IEEE, 2011.

[48] M. M. Baskaran, J. Ramanujam, and P. Sadayappan, “Automatic c-to-cuda code generation for
affine programs,” in Compiler Construction, pp. 244–263, Springer, 2010.

[49] S. S. Kumar, A. Chahar, and R. van Leuken, “Cit: A gcc plugin for the analysis and characteri-
zation of data dependencies in parallel programs,” 2013.

[50] C.-Q. Yang and B. P. Miller, “Critical path analysis for the execution of parallel and distributed
programs,” in Distributed Computing Systems, 1988., 8th International Conference on, pp. 366–
373, IEEE, 1988.

[51] A. Chahar and B. Tech, Compile Time Analysis for Hardware Transactional Memory Architec-
tures. PhD thesis, Masters thesis, Delft University of Technology, 2012.

[52] D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hardware/software
approach. Gulf Professional Publishing, 1999.

[53] R. Duncan, “A survey of parallel computer architectures,” Computer, vol. 23, no. 2, pp. 5–16,
1990.

[54] D. C. Atkinson and W. G. Griswold, “The design of whole-program analysis tools,” in Software
Engineering, 1996., Proceedings of the 18th International Conference on, pp. 16–27, IEEE, 1996.

[55] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proceedings of the IEEE, vol. 83, no. 5,
pp. 773–801, 1995.

[56] M. Flynn, “Some computer organizations and their effectiveness,” Computers, IEEE Transactions
on, vol. 100, no. 9, pp. 948–960, 1972.

[57] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis. Xilinx, 2013.

[58] B. Karlsson, Beyond the C++ standard library: an introduction to boost. Pearson Education,
2005.

[59] A. Alexandrescu, Modern C++ design: generic programming and design patterns applied.
Addison-Wesley, 2001.

[60] K. K. Parhi, VLSI digital signal processing systems: design and implementation. John Wiley &
Sons, 2007.

73

74

Compiler Extension for
Compaan DDE A

A

for(i=0; i<4; i++) {
 a[i] = a[i] + b[i];
}

for(i=0; i<4; i++) {
 a[i] = compaan_outlinedproc(a[i], b[i]);
}Compaan DDE

Transformation of Unsupported Statements

A.1

Figure A.1: Overview of the compiler extension.

A.1 Introduction

The Compaan Design Development Environment (DDE) is a high-level synthesis tool to transform
SANLPs to synthesizable VHDL. Large subsystems of the DDE are implemented in the LLVM/Clang
framework. Compaan DDE supports processing of SANLPs that are not modeled using function calls,
as required by cprof. It collects all statements not modeled with function calls, and automatically
creates functions with equivalent behavior to the original statement, as shown in Figure A.1.

Compaan DDE generates new functions, but does not substitute them in the original source code.
The functions are automatically mapped to a database with their implementations, and the code is
derived automatically in subsequent processes. Now, the problem is, that in order to automatically
profile source code, the generated functions need to replace their counterparts in the original source
code. To facilitate this transformation, a compiler extension has been developed. This compiler
extension is responsible for substituting the unsupported statements with their supported equivalents.
This extension is integrated in the design flow and, hence, it is possible to automatically generate
supported source code for cprof.

A.1.1 Design and Implementation of the Compiler Extension

The extension is designed for the LLVM/Clang framework. The extension is activated by a com-
mand line argument, which has been added to the compiler front-end. Compaan DDE generates the
declarations and implementations of function calls, and stores this information in a database. The
data is stored in an Extensible Markup Language (XML) file, where the data is modeled as an AST.
Furthermore, the XML representation of the AST is enhanced with information about the location of
unsupported statements.

75

With the locations of the unsupported statements in place, it is possible to traverse the AST and
apply source-to-source transformations to generate a new program, with the unsupported statements
substituted with their supported equivalents. In order to successfully substitute the unsupported state-
ments with their supported equivalents, Algorithm 5 is implemented in the compiler infrastructure.

Algorithm 5 Substituting algorithm for inserting valid statements into the AST.

Precondition: stmts is a tree of valid Compaan DDE statements of length n

1: function substitute(stmts)
2: for each stmt ∈ stmts do
3: if stmt is assignmentStmt then
4: if substitute[stmt] then
5: stmt ← substitute[stmt]

6: else if stmt is otherStmt then
7: return substitute(stmt.getChilds())
8: else
9: return

This is a recursive algorithm, which is necessary because of the nature of the abstract syntax three.
In line 4, there is a lookup to check if the statement has a suitable replacement. If and only if this is
the case, the statement is replaced in line 5. The space and time complexity of the algorithm is O(n).
The place of Algorithm 5 within the system is shown in Figure A.2.

Clang Front-end

1
2
3
4
5

void filter() {
 for(i=0; i<N*M; i++) {
 a[i] = b[i];
 }
}

}

1
2
3
4
5
6
7
8

void compaan_outlinedproc0(int* tmp0, int tmp1){
 *tmp0 = tmp1;
}
void filter() {
 for(i=0; i<N*M; i++) {
 compaan_outlinedproc0(&a[i], b[i]);
 }
}

}

Compaan Compiler
 Analysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

<AST>
 <assignmentstatement>
 <name>compaan_outlinedproc0</name>
 <line>3</line>
 <pos>0</pos>
 <LHS>
 <variable>
 <name>a</name>
 <index>i</index>
 </variable>
 </LHS>
 <RHS>
 <variable>
 <name>b</name>
 <index>i</index>
 </variable>
 </RHS>
 </assignmentstatement>
</AST>RecursiveASTVisitor

 Algorithm 5

line

3

replacement

compaan_outlinedproc0

(a) Original program.

(b) AST representation in XML.

(c) Modified C Program.

pos

0

Figure A.2: Compiler Extension.

The original program, shown in Figure A.2(a), is processed by the Clang front-end and subse-
quently inspected by the Compaan analyzer. The resulting AST, including a substitution for the code
in line 3 in Figure A.2(a), is shown in Figure A.2(b). The RecursiveASTVisitor is responsible for

76

executing Algorithm 5. The table with the line and position information is used to check if a statement
has a valid replacement. After substituting the unsupported code, the new source code is generated
using the Rewriter object, and the result is shown in Figure A.2(c).

77

78

Cprof Usage Instructions B
In this appendix, we explain the usage instructions of cprof.

B.1 Introduction

Cprof can be used on both Microsoft Windows and Linux. To successfully compile cprof, LLVM 3.1
and Boost 1.55.0 are necessary. For Boost you need the header files and the (precompiled) libraries.

B.2 Installation

On both platforms, cmake can be used to compile cprof. The instructions for cmake are in the README
file.

B.3 Usage

After compilation, the user should run cprof with the --help argument to see the available com-
mand line arguments. Example invocations are shown in the README file. If the user wish to pro-
file with hierarchical program analysis disabled, he/she should select kernels of interest with the
#pragma cprof_procedure kernel_name directive. The AD_OD definition in the instrumented source
code can be used to indicate whether anti (WAR) and output (WAW) dependencies must be modeled.
The user should set CPROF_ABS_THROUGHPUT to false to determine the unbounded throughput estimate.
The absolute throughput estimate is the default mode of operation. It is possible to print the contents
of the statement execution profiles to screen by setting the CPROF_DEBUG statement to true. To view
the generated waveforms, a program such as Waveview (http://www.eda.ir/page waview.htm) can be
used.

79

80

Predictor Optimized Versions C
C.1 Inner Loop Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2 int a [X] [Y] ;
3 int i , j , x ;
4

5 // source

6 for (i = 0 ; i <= 4 ; i = i + 1) {
7 for (j = 0 ; j <= 4 ; j = j + 1) {
8 source(&a [i] [j] , data_in [i] [j]) ;
9 }

10 }
11 // transformer

12 for (i = 1 ; i <= 4 ; i = i + 1) {
13 transformer(&a [i] [1] , a [i− 1] [1] , a [i] [1 −1]) ;
14 transformer(&a [i] [2] , a [i− 1] [2] , a [i] [2 −1]) ;
15 transformer(&a [i] [3] , a [i− 1] [3] , a [i] [3 −1]) ;
16 transformer(&a [i] [4] , a [i− 1] [4] , a [i] [4 −1]) ;
17 }
18 // sink

19 for (i = 1 ; i <= 4 ; i = i + 1) {
20 for (j = 1 ; j <= 4 ; j = j + 1) {
21 sink (a [i] [j] , &data_out [i] [j]) ;
22 }
23 }
24 }

Listing C.1: Inner loop unrolled.

C.2 Outer loop Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2 int a [X] [Y] ;
3 int i , j , x ;
4

5 // source

6 for (i = 0 ; i <= 4 ; i = i + 1) {
7 for (j = 0 ; j <= 4 ; j = j + 1) {
8 source(&a [i] [j] , data_in [i] [j]) ;
9 }

10 }
11

81

12 // transformer

13 for (j = 1 ; j <= 4 ; j = j + 1) {
14 transformer(&a [1] [j] , a [1 −1] [j] , a [1] [j−1]) ;
15 }
16 for (j = 1 ; j <= 4 ; j = j + 1) {
17 transformer(&a [2] [j] , a [2 −1] [j] , a [2] [j−1]) ;
18 }
19 for (j = 1 ; j <= 4 ; j = j + 1) {
20 transformer(&a [3] [j] , a [3 −1] [j] , a [3] [j−1]) ;
21 }
22 for (j = 1 ; j <= 4 ; j = j + 1) {
23 transformer(&a [4] [j] , a [4 −1] [j] , a [4] [j−1]) ;
24 }
25 // sink

26 for (i = 1 ; i <= 4 ; i = i + 1) {
27 for (j = 1 ; j <= 4 ; j = j + 1) {
28 sink (a [i] [j] , &data_out [i] [j]) ;
29 }
30 }
31 }

Listing C.2: Outer-loop unrolled.

C.3 Inner/Outer Loops Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2 int a [X] [Y] ;
3 int i , j , x ;
4

5 // source

6 for (i = 0 ; i <= 4 ; i = i + 1) {
7 for (j = 0 ; j <= 4 ; j = j + 1) {
8 source(&a [i] [j] , data_in [i] [j]) ;
9 }

10 }
11 // transformer

12 transformer(&a [1] [1] , a [1 − 1] [1] , a [1] [1 − 1]) ;
13 transformer(&a [1] [2] , a [1 − 1] [2] , a [1] [2 − 1]) ;
14 transformer(&a [1] [3] , a [1 − 1] [3] , a [1] [3 − 1]) ;
15 transformer(&a [1] [4] , a [1 − 1] [4] , a [1] [4 − 1]) ;
16

17 transformer(&a [2] [1] , a [2 − 1] [1] , a [2] [1 − 1]) ;
18 transformer(&a [2] [2] , a [2 − 1] [2] , a [2] [2 − 1]) ;
19 transformer(&a [2] [3] , a [2 − 1] [3] , a [2] [3 − 1]) ;
20 transformer(&a [2] [4] , a [2 − 1] [4] , a [2] [4 − 1]) ;
21

22 transformer(&a [3] [1] , a [3 − 1] [1] , a [3] [1 − 1]) ;
23 transformer(&a [3] [2] , a [3 − 1] [2] , a [3] [2 − 1]) ;
24 transformer(&a [3] [3] , a [3 − 1] [3] , a [3] [3 − 1]) ;
25 transformer(&a [3] [4] , a [3 − 1] [4] , a [3] [4 − 1]) ;
26

82

27 transformer(&a [4] [1] , a [4 − 1] [1] , a [4] [1 − 1]) ;
28 transformer(&a [4] [2] , a [4 − 1] [2] , a [4] [2 − 1]) ;
29 transformer(&a [4] [3] , a [4 − 1] [3] , a [4] [3 − 1]) ;
30 transformer(&a [4] [4] , a [4 − 1] [4] , a [4] [4 − 1]) ;
31 // sink

32 for (i = 1 ; i <= 4 ; i = i + 1) {
33 for (j = 1 ; j <= 4 ; j = j + 1) {
34 sink (a [i] [j] , &data_out [i] [j]) ;
35 }
36 }
37 }

Listing C.3: Inner/Outer Unrolled.

C.4 Inner/Outer/Sink Loops Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2

3 int a [X] [Y] ;
4 int i , j , x ;
5

6 // source

7 for (i = 0 ; i <= 4 ; i = i + 1) {
8 for (j = 0 ; j <= 4 ; j = j + 1) {
9 source(&a [i] [j] , data_in [i] [j]) ;

10 }
11 }
12

13 // transformer

14 transformer(&a [1] [1] , a [1 − 1] [1] , a [1] [1 − 1]) ;
15 transformer(&a [1] [2] , a [1 − 1] [2] , a [1] [2 − 1]) ;
16 transformer(&a [1] [3] , a [1 − 1] [3] , a [1] [3 − 1]) ;
17 transformer(&a [1] [4] , a [1 − 1] [4] , a [1] [4 − 1]) ;
18

19 transformer(&a [2] [1] , a [2 − 1] [1] , a [2] [1 − 1]) ;
20 transformer(&a [2] [2] , a [2 − 1] [2] , a [2] [2 − 1]) ;
21 transformer(&a [2] [3] , a [2 − 1] [3] , a [2] [3 − 1]) ;
22 transformer(&a [2] [4] , a [2 − 1] [4] , a [2] [4 − 1]) ;
23

24 transformer(&a [3] [1] , a [3 − 1] [1] , a [3] [1 − 1]) ;
25 transformer(&a [3] [2] , a [3 − 1] [2] , a [3] [2 − 1]) ;
26 transformer(&a [3] [3] , a [3 − 1] [3] , a [3] [3 − 1]) ;
27 transformer(&a [3] [4] , a [3 − 1] [4] , a [3] [4 − 1]) ;
28

29 transformer(&a [4] [1] , a [4 − 1] [1] , a [4] [1 − 1]) ;
30 transformer(&a [4] [2] , a [4 − 1] [2] , a [4] [2 − 1]) ;
31 transformer(&a [4] [3] , a [4 − 1] [3] , a [4] [3 − 1]) ;
32 transformer(&a [4] [4] , a [4 − 1] [4] , a [4] [4 − 1]) ;
33

34 // sink

35 sink (a [1] [1] , &data_out [1] [1]) ;

83

36 sink (a [1] [2] , &data_out [1] [2]) ;
37 sink (a [1] [3] , &data_out [1] [3]) ;
38 sink (a [1] [4] , &data_out [1] [4]) ;
39

40 sink (a [2] [1] , &data_out [2] [1]) ;
41 sink (a [2] [2] , &data_out [2] [2]) ;
42 sink (a [2] [3] , &data_out [2] [3]) ;
43 sink (a [2] [4] , &data_out [2] [4]) ;
44

45 sink (a [3] [1] , &data_out [3] [1]) ;
46 sink (a [3] [2] , &data_out [3] [2]) ;
47 sink (a [3] [3] , &data_out [3] [3]) ;
48 sink (a [3] [4] , &data_out [3] [4]) ;
49

50 sink (a [4] [1] , &data_out [4] [1]) ;
51 sink (a [4] [2] , &data_out [4] [2]) ;
52 sink (a [4] [3] , &data_out [4] [3]) ;
53 sink (a [4] [4] , &data_out [4] [4]) ;
54 }

Listing C.4: Inner/Outer/Sink unrolled.

C.5 Source/Inner/Outer Loops Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2

3 int a [X] [Y] ;
4 int i , j , x ;
5

6 // source

7 source(&a [0] [0] , data_in [0] [0]) ;
8 source(&a [0] [1] , data_in [0] [1]) ;
9 source(&a [0] [2] , data_in [0] [2]) ;

10 source(&a [0] [3] , data_in [0] [3]) ;
11 source(&a [0] [4] , data_in [0] [4]) ;
12

13 source(&a [1] [0] , data_in [1] [0]) ;
14 source(&a [1] [1] , data_in [1] [1]) ;
15 source(&a [1] [2] , data_in [1] [2]) ;
16 source(&a [1] [3] , data_in [1] [3]) ;
17 source(&a [1] [4] , data_in [1] [4]) ;
18

19 source(&a [2] [0] , data_in [2] [0]) ;
20 source(&a [2] [1] , data_in [2] [1]) ;
21 source(&a [2] [2] , data_in [2] [2]) ;
22 source(&a [2] [3] , data_in [2] [3]) ;
23 source(&a [2] [4] , data_in [2] [4]) ;
24

25 source(&a [3] [0] , data_in [3] [0]) ;
26 source(&a [3] [1] , data_in [3] [1]) ;
27 source(&a [3] [2] , data_in [3] [2]) ;

84

28 source(&a [3] [3] , data_in [3] [3]) ;
29 source(&a [3] [4] , data_in [3] [4]) ;
30

31 source(&a [4] [0] , data_in [4] [0]) ;
32 source(&a [4] [1] , data_in [4] [1]) ;
33 source(&a [4] [2] , data_in [4] [2]) ;
34 source(&a [4] [3] , data_in [4] [3]) ;
35 source(&a [4] [4] , data_in [4] [4]) ;
36

37 // transformer

38 transformer(&a [1] [1] , a [1 − 1] [1] , a [1] [1 − 1]) ;
39 transformer(&a [1] [2] , a [1 − 1] [2] , a [1] [2 − 1]) ;
40 transformer(&a [1] [3] , a [1 − 1] [3] , a [1] [3 − 1]) ;
41 transformer(&a [1] [4] , a [1 − 1] [4] , a [1] [4 − 1]) ;
42

43 transformer(&a [2] [1] , a [2 − 1] [1] , a [2] [1 − 1]) ;
44 transformer(&a [2] [2] , a [2 − 1] [2] , a [2] [2 − 1]) ;
45 transformer(&a [2] [3] , a [2 − 1] [3] , a [2] [3 − 1]) ;
46 transformer(&a [2] [4] , a [2 − 1] [4] , a [2] [4 − 1]) ;
47

48 transformer(&a [3] [1] , a [3 − 1] [1] , a [3] [1 − 1]) ;
49 transformer(&a [3] [2] , a [3 − 1] [2] , a [3] [2 − 1]) ;
50 transformer(&a [3] [3] , a [3 − 1] [3] , a [3] [3 − 1]) ;
51 transformer(&a [3] [4] , a [3 − 1] [4] , a [3] [4 − 1]) ;
52

53 transformer(&a [4] [1] , a [4 − 1] [1] , a [4] [1 − 1]) ;
54 transformer(&a [4] [2] , a [4 − 1] [2] , a [4] [2 − 1]) ;
55 transformer(&a [4] [3] , a [4 − 1] [3] , a [4] [3 − 1]) ;
56 transformer(&a [4] [4] , a [4 − 1] [4] , a [4] [4 − 1]) ;
57

58 // sink

59 for (i = 1 ; i <= 4 ; i = i + 1) {
60 for (j = 1 ; j <= 4 ; j = j + 1) {
61 sink (a [i] [j] , &data_out [i] [j]) ;
62 }
63 }
64 }

Listing C.5: Source/Inner/Outer unrolled.

C.6 Source/Inner/Outer/Sink Loops Unrolled

1 void predictor(int data_in [X] [Y] , int data_out [X] [Y]) {
2

3 int a [X] [Y] ;
4 int i , j , x ;
5

6 // source

7 source(&a [0] [0] , data_in [0] [0]) ;
8 source(&a [0] [1] , data_in [0] [1]) ;
9 source(&a [0] [2] , data_in [0] [2]) ;

85

10 source(&a [0] [3] , data_in [0] [3]) ;
11 source(&a [0] [4] , data_in [0] [4]) ;
12

13 source(&a [1] [0] , data_in [1] [0]) ;
14 source(&a [1] [1] , data_in [1] [1]) ;
15 source(&a [1] [2] , data_in [1] [2]) ;
16 source(&a [1] [3] , data_in [1] [3]) ;
17 source(&a [1] [4] , data_in [1] [4]) ;
18

19 source(&a [2] [0] , data_in [2] [0]) ;
20 source(&a [2] [1] , data_in [2] [1]) ;
21 source(&a [2] [2] , data_in [2] [2]) ;
22 source(&a [2] [3] , data_in [2] [3]) ;
23 source(&a [2] [4] , data_in [2] [4]) ;
24

25 source(&a [3] [0] , data_in [3] [0]) ;
26 source(&a [3] [1] , data_in [3] [1]) ;
27 source(&a [3] [2] , data_in [3] [2]) ;
28 source(&a [3] [3] , data_in [3] [3]) ;
29 source(&a [3] [4] , data_in [3] [4]) ;
30

31 source(&a [4] [0] , data_in [4] [0]) ;
32 source(&a [4] [1] , data_in [4] [1]) ;
33 source(&a [4] [2] , data_in [4] [2]) ;
34 source(&a [4] [3] , data_in [4] [3]) ;
35 source(&a [4] [4] , data_in [4] [4]) ;
36

37 // transformer

38 transformer(&a [1] [1] , a [1 − 1] [1] , a [1] [1 − 1]) ;
39 transformer(&a [1] [2] , a [1 − 1] [2] , a [1] [2 − 1]) ;
40 transformer(&a [1] [3] , a [1 − 1] [3] , a [1] [3 − 1]) ;
41 transformer(&a [1] [4] , a [1 − 1] [4] , a [1] [4 − 1]) ;
42

43 transformer(&a [2] [1] , a [2 − 1] [1] , a [2] [1 − 1]) ;
44 transformer(&a [2] [2] , a [2 − 1] [2] , a [2] [2 − 1]) ;
45 transformer(&a [2] [3] , a [2 − 1] [3] , a [2] [3 − 1]) ;
46 transformer(&a [2] [4] , a [2 − 1] [4] , a [2] [4 − 1]) ;
47

48 transformer(&a [3] [1] , a [3 − 1] [1] , a [3] [1 − 1]) ;
49 transformer(&a [3] [2] , a [3 − 1] [2] , a [3] [2 − 1]) ;
50 transformer(&a [3] [3] , a [3 − 1] [3] , a [3] [3 − 1]) ;
51 transformer(&a [3] [4] , a [3 − 1] [4] , a [3] [4 − 1]) ;
52

53 transformer(&a [4] [1] , a [4 − 1] [1] , a [4] [1 − 1]) ;
54 transformer(&a [4] [2] , a [4 − 1] [2] , a [4] [2 − 1]) ;
55 transformer(&a [4] [3] , a [4 − 1] [3] , a [4] [3 − 1]) ;
56 transformer(&a [4] [4] , a [4 − 1] [4] , a [4] [4 − 1]) ;
57

58 // sink

59 sink (a [1] [1] , &data_out [1] [1]) ;
60 sink (a [1] [2] , &data_out [1] [2]) ;
61 sink (a [1] [3] , &data_out [1] [3]) ;
62 sink (a [1] [4] , &data_out [1] [4]) ;

86

63

64 sink (a [2] [1] , &data_out [2] [1]) ;
65 sink (a [2] [2] , &data_out [2] [2]) ;
66 sink (a [2] [3] , &data_out [2] [3]) ;
67 sink (a [2] [4] , &data_out [2] [4]) ;
68

69 sink (a [3] [1] , &data_out [3] [1]) ;
70 sink (a [3] [2] , &data_out [3] [2]) ;
71 sink (a [3] [3] , &data_out [3] [3]) ;
72 sink (a [3] [4] , &data_out [3] [4]) ;
73

74 sink (a [4] [1] , &data_out [4] [1]) ;
75 sink (a [4] [2] , &data_out [4] [2]) ;
76 sink (a [4] [3] , &data_out [4] [3]) ;
77 sink (a [4] [4] , &data_out [4] [4]) ;
78 }

Listing C.6: Source/Inner/Outer/Sink Unrolled.

87

88

PolyBench/C 3.1 Benchmarks D
Benchmark Description

adi Alternating Direction Implicit solver

atax Matrix Transpose and Vector Multiplication

bicg BiCG Sub Kernel of BiCGStab Linear Solver

cholesky Cholesky Decomposition

correlation Correlation Computation

covariance Covariance Computation

doitgen Multiresolution analysis kernel (MADNESS)

durbin Toeplitz system solver

dynprog Dynamic programming (2D)

fdtd-2D 2-D Finite Different Time Domain Kernel

fdtd-apml FDTD using Anisotropic Perfectly Matched Layer

floyd warshall All-pairs Shortest Path solving

gauss-filter Gaussian Filter

gemm Matrix-multiply C=alpha.A.B+beta.C

gemver Vector Multiplication and Matrix Addition

gesummv Scalar, Vector and Matrix Multiplication

gramschmidt Gram-Schmidt decomposition

jacobi-1D 1-D Jacobi stencil computation

jacobi-2D 2-D Jacobi stencil computation

lu LU decomposition

ludcmp LU decomposition

mvt Matrix Vector Product and Transpose

mm2 2 Matrix Multiplications (D=A.B; E=C.D)

mm3 3 Matrix Multiplications (E=A.B; F=C.D; G=E.F)

reg-detect 2-D Image processing

seidel 2-D Seidel stencil computation

symm Symmetric matrix-multiply

syr2k Symmetric rank-2k operations

syrk Symmetric rank-k operations

trisolv Triangular solver

trmm Triangular matrix-multiply

Table D.1: PolyBench/C Benchmarks.

89

90

Support of Control Flow
Architectures in Cprof E
In this appendix, the modeling of anti (WAR) and output (WAW) dependencies in cprof is discussed.
In Section E.1, the required modifications are discussed.

E.1 Modification of Algorithms

The algorithms for dynamic analysis presented in Section 5.4.2 are modified to support anti and output
dependencies.

E.1.1 Read Operations

Algorithm 1 is used to keep track of read operations. The modified algorithm keeps track at which
point in time the variable is read. In line 10 of Algorithm 6, the finish time of the read operation is
stored. The updateReads is implemented in the CprofVariable class and is responsible for updating
the read information.

Algorithm 6 Update shadow variables for read access, with support for anti and output
dependencies.

Precondition: indices is a list of indices for accessing the shadow variables of length n

1: function UpdateReads(indices)
2: start ← C$s
3: stop ← C$s+ ΛR

4: maxStop ← 0
5: for each argument a in readArguments do
6: dims ← a.getDimensions()
7: for y = 0 to dims do
8: l.push(indices[y])

9: a.getWrites(l,&maxStop)
10: a.updateReads(i, max(stop,maxStop))

11: if UnboundedThroughputEstimate then
12: C$s ← maxStop

13: else
14: C$s ← max(stop,maxStop)

15: UpdateStatementProfile(start, stop,ΛR)

91

E.1.2 Write Operations

Algorithm 7 is used to keep track of write operations. In line 4 and 5 of Algorithm 7, two new
variables are declared. The maxWrite and maxRead are used to store the timestamps related to write
and read operations. In line 14 and 15 the latest write and read timestamps are stored in the maxWrite
and maxRead variables. It is important to note that the getWrites and getReads statements only
consider preceding reads and writes. It is only possible to write the new variable if all the preceding
statements have written and read the variable. From line 14 to 19, this behavior is modeled. With
these modifications in place, the write operation is delayed until the anti and output dependencies are
solved.

Algorithm 7 Update shadow variables for write access, with support for anti and output
dependencies.

Precondition: indices is a list of indices for accessing the shadow variables of length n

1: function UpdateWrites(indices)
2: start ← C$s+ ΛF

3: stop ← C$s+ ΛF + ΛW

4: maxWrite ← 0
5: maxRead ← 0
6: if AbsoluteThroughputEstimate then
7: start ← start− II F
8: stop ← stop− II F

9: maxStopV alue ← 0
10: for each argument a in writeArguments do
11: dims ← a.getDimensions()
12: for y = 0 to dims do
13: l.push(indices[y])

14: a.getWrites(indices,&maxWrite)
15: a.getReads(indices,&maxRead)
16: if maxReadV alue ≥ stop then
17: start ← maxRead

18: stop ← maxRead+ ΛW

19: stop ← max(stop,maxWrite)
20: a.updateWrites(l, stop)

21: UpdateStatementProfile(start, stop,ΛW)

92

Verification Waveforms F
In this appendix, the waveforms used for verification of the communication models in PPNs are shown.
In Section 6.2, we have discussed the generated waveforms.

93

F.1 IOM- Waveforms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

clk

R0

E00

E01

E02

W0

R1

E10

E11

E12

W1

R2

E20

E21

E22

W2

pr
od
uc
er

co
ns
um
er

sin
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

clk

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

pr
od
uc
er

co
ns
um
er

sin
k

(a) Cprof generated waveform for the IOM- communication model.

(b) Xilinx ISE generated waveform for the IOM- communication model.

Figure F.1: Waveforms representing the execution of the program implementing the IOM- communication model.

94

F.2 IOM+ Waveforms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

clk

R0

E00

E01

E02

W0

R1

E10

E11

E12

W1

R2

E20

E21

E22

W2

p
ro
d
u
ce
r

co
n
su
m
e
r

si
n
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

clk

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

p
ro
d
u
ce
r

co
n
su
m
e
r

si
n
k

(a) Cprof generated waveform for the IOM+ communication model.

(b) Xilinx ISE generated waveform for the IOM+ communication model.

Figure F.2: Waveforms representing the execution of the program implementing the IOM+ communication model.

95

F.3 OOM- Waveforms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

clk

R0

E00

E01

E02

W0

R1

E10

E11

E12

W1

R2

E20

E21

E22

W2

pr
od
uc
er

co
ns
um
er

si
nk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

clk

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

pr
od
uc
er

co
ns
um
er

si
nk

(a) Cprof generated waveform for the OOM- communication model.

(b) Xilinx ISE generated waveform for the OOM- communication model.

Figure F.3: Waveforms representing the execution of the program implementing the OOM- communication model.

96

F.4 OOM+ Waveforms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

clk

R0

E00

E01

E02

W0

R1

E10

E11

E12

W1

R2

E20

E21

E22

W2

p
ro
d
u
c
e
r

c
o
n
s
u
m
e
r

s
in
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

clk

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

read

execute_pipe[2]

execute_pipe[1]

execute_pipe[0]

write

p
ro
d
u
c
e
r

c
o
n
s
u
m
e
r

s
in
k

(a) Cprof generated waveform for the OOM+ communication model.

(b) Xilinx ISE generated waveform for the OOM+ communication model.

Figure F.4: Waveforms representing the execution of the program implementing the OOM+ communication model.

97

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Problem statement
	Goals and contributions
	Synopsis and Outline

	Background
	Models of Computation
	Kahn Process Networks
	Polyhedral Process Networks

	Deriving Polyhedral Process Networks
	Linearization and Communication Models

	Static Affine Nested Loop Programs
	Overview
	Applied SANLPs
	Iteration Domain and Dependencies
	Transformations

	The LLVM/Clang Compiler Infrastructure
	Hierarchical Program Analysis
	High-Level Synthesis Tools
	Summary and Conclusions

	Related Work
	Simulation
	Analytical Estimation
	Profiling
	General-Purpose Profilers
	Hardware Profilers
	Parallel and Memory Profilers
	Critical Path Analysis

	Summary and Conclusions

	Solution Approach
	Concepts
	Basic Calibration
	Conditional Synchronization
	Conditional Control Flow
	Mutual Exclusion

	Performance Estimation
	Absolute Throughput Estimation
	Unbounded Throughput Estimation

	Case Studies
	Case Study: Absolute Throughput
	Case Study: Unbounded Throughput

	Shadow Variables
	Control Variables
	Statement Execution Profile
	Global Execution Profile
	Flow Dependencies
	Summary and Conclusions

	Design and Implementation
	Overview
	Input Processing
	Input Specification
	AST Construction

	Static Analysis and Instrumentation
	Static Analysis
	Instrumentation
	Source-to-Source Transformations

	Dynamic Analysis
	Compilation and Initialization
	Algorithms for Dynamic Analysis

	Performance Analysis
	Data Processing and Presentation
	Waveform Generation
	Program Profile Generation

	Optimization
	Methods
	Implementation of Optimizations

	Hierarchical Program Analysis
	Static Analysis
	Instrumentation
	Dynamic Analysis
	Performance Analysis

	The Cost of Profiling
	Summary and Conclusions

	Verification
	Verification Approach
	Verification of the Communication Models
	In-Order without Multiplicity (IOM-)
	In-Order with Multiplicity (IOM+)
	Out-of-Order without Multiplicity (OOM-)
	Out-of-Order with Multiplicity (OOM+)
	Results

	Verification of the Absolute and Unbounded Throughput Estimates
	The Predictor Program
	Optimization of Predictor
	Results

	Verification of Hierarchy Program Analysis
	The Hierarchy Program
	Results

	Summary and Conclusions

	Results
	Experimental Setup
	Absolute Throughput Estimates of PolyBench/C
	Execution Times
	The Average and Maximum Degree of Parallelism

	Unbounded Throughput Estimates of Polybench/C
	Execution Times
	The Average and Maximum Degree of Parallelism

	RTL Simulations
	Design Space Boundaries
	Optimization
	Scalability
	Summary and Conclusions

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography
	Compiler Extension for Compaan DDE
	Introduction
	Design and Implementation of the Compiler Extension

	Cprof Usage Instructions
	Introduction
	Installation
	Usage

	Predictor Optimized Versions
	Inner Loop Unrolled
	Outer loop Unrolled
	Inner/Outer Loops Unrolled
	Inner/Outer/Sink Loops Unrolled
	Source/Inner/Outer Loops Unrolled
	Source/Inner/Outer/Sink Loops Unrolled

	PolyBench/C 3.1 Benchmarks
	Support of Control Flow Architectures in Cprof
	Modification of Algorithms
	Read Operations
	Write Operations

	Verification Waveforms
	IOM- Waveforms
	IOM+ Waveforms
	OOM- Waveforms
	OOM+ Waveforms

