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Abstract. We study the stationary fluctuations of independent run-and-tumble
particles. We prove that the joint densities of particles with given internal
state converges to an infinite dimensional Ornstein-Uhlenbeck process. We also
consider an interacting case, where the particles are subjected to exclusion.
We then study the fluctuations of the total density, which is a non-Markovian
Gaussian process, and obtain its covariance in closed form. By considering small
noise limits of this non-Markovian Gaussian process, we obtain in a concrete
example a large deviation rate function containing memory terms.
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1. Introduction

In this paper we consider a system of independent run-and-tumble parti-
cles on Z and study the stationary fluctuations of its empirical distribution.
Because particles have positions and internal states (which determine the direc-
tion in which they move and/or their rate of hopping over lattice edges), the
hydrodynamic limit is a system of linear reaction-diffusion equations, describ-
ing the macroscopic joint evolution of the densities of particles with a given
internal state. In this sense, the paper can be viewed as a study of macroscopic
properties of the multi-layer particle systems which we studied in [12]. The
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study of hydrodynamic limits and fluctuations around the hydrodynamic limit
for particles with internal states, or alternatively, multi-layer systems is quite
recent, and to our knowledge at present only a limited set of results is known:
see [5], [6], [7], [13].

Our interest in multi-layer systems is motivated from the study of active
particles (see e.g. [3]), the study of double diffusivity models (see e.g. [6] and
references therein), and finally the study of particle systems described macro-
scopically by equations containing memory terms. In this paper we consider
multi-layer systems in which duality can be applied. Duality is a powerful tool
which reduces the study of the hydrodynamic limit to the scaling limit of a
single (dual) particle, and as we show in this paper (see Section 3.1 below) also
determines uniquely the covariance of the stationary fluctuations of the empiri-
cal density of particles. Provided one can show that the stationary fluctuations
converge to a Gaussian limiting (distribution-valued) process, this limiting co-
variance uniquely determines the limiting stationary Gaussian process.

In our paper we prove that the fluctuation fields of the densities of particles
with given internal state converge to a system of stochastic partial differential
equations. In these limiting equations, the drift is determined by the hydrody-
namic limit, whereas the noise has both a conservative part coming from the
transport of particles with a given internal state as well as a non-conservative
part coming from the flipping of internal states. We first deal with a system of
independent particles, which has a simple dual consisting of independent par-
ticles with reversed velocities. Next we indicate how to deal with interacting
particles such as layered exclusion processes, where still duality can be used.

One of our motivations of studying fluctuation fields of particles with in-
ternal states is to understand fluctuation properties of the total density, i.e.,
disregarding the internal states of the particles. The configuration which gives
at each site the total number of particles is one of the simplest examples of
a non-Markovian interacting particle system. The study of the hydrodynamic
limit, fluctuations and large deviations around the hydrodynamic limit for non-
Markovian particle systems is largely terra incognita. Therefore, we believe
that simple examples in which one can have some grip on the explicit form of
fluctuations and large deviations are important to obtain.

In our setting, we prove that the fluctuations of the total density of parti-
cles converges to a Gaussian distribution-valued process which satisfies a non-
Markovian SPDE. We provide a concrete example where we can explicitly char-
acterize the large deviations of the limiting SPDE in the small noise limit. These
large deviations give an indication of the large deviations of the total density of
particles. The latter can of course also be obtained via a contraction principle
from the large deviations of the joint densities of particles with a given internal
state. However, the large deviation rate function obtained via this contraction
principle is very implicit, and therefore in this paper we preferred not to follow
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this road in order to obtain an explicit form of the memory terms of the rate
function.

The rest of our paper is organized as follows. In Section 2 we introduce the
run-and-tumble particle model and state preliminary results on ergodic mea-
sures, duality and hydrodynamic limit, the latter of which will be proven in the
appendix A. In Section 3 we state the main result on stationary fluctuations
for independent particles, Theorem 3.1, provide a direct proof of the limiting
covariance in Section 3.1, and consider an interacting case, namely a multi-layer
version of the symmetric exclusion process, in Section 3.2. In Section 4 we study
the hydrodynamic limit and the fluctuations of the total density of particles, and
prove a large deviations result for the limiting fluctuation process in a particular
case. In Section 5 we prove the Theorem 3.1.

2. Basic notations and definitions

In this paper we will look at the run-and-tumble particle process, which is
a process designed to model active particles. Let V := Z × S, with S ⊂ Z a
finite set. The set V is the state space of a single run-and-tumble particle. We
see elements v = (x, σ) ∈ V as particles with position x ∈ Z and internal state
σ ∈ S. The dynamics of a single run-and-tumble particle are now as follows

i. At rate κN2 the particle performs a nearest neighbor jump, i.e., (x, σ)→
(x± 1, σ)

ii. At rate λN the particle performs an active jump in the direction of its
internal state, i.e., (x, σ)→ (x+ σ, σ).

iii. At rate c(σ, σ′) the particle changes its internal state from σ to σ′, i.e.
(x, σ) → (x, σ′). Here we assume that the rates {c(σ, σ′) : σ, σ′ ∈ S} are
irreducible and symmetric, i.e., c(σ, σ′) = c(σ′, σ).

The run-and-tumble particle process is the process of configurations consisting
of independent run-and-tumble particles. More precisely it is a Markov process
{ηt : t ≥ 0} on the state space Ω := NV consisting of independent random
walkers on V where every particle has the dynamics as described above.

From the dynamics we can write down the following generator LN acting on
local functions, i.e., functions f : Ω→ R which only depend on a finite number
of sites in V .

LNf(η) = κN2
∑

(x,σ)∈V

η(x, σ)
(
f
(
η(x,σ)→(x+1,σ)

)
+ f

(
η(x,σ)→(x−1,σ)

)
− 2f(η)

)
+ λN

∑
(x,σ)∈V

η(x, σ)
(
f
(
η(x,σ)→(x+σ,σ)

)
− f(η)

)
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+
∑

(x,σ)∈V

∑
σ′∈S

η(x, σ)c(σ, σ′)
(
f
(
η(x,σ)→(x,σ′)

)
− f(η)

)
. (2.1)

Here η(x, σ) denotes the number of particles at site (x, σ) ∈ V in the configura-
tion η, and η(x,σ)→(y,σ′) denotes the configuration η where a single particle has
moved from (x, σ) to (y, σ′).

With this choice of scaling, in the macroscopic limit, the densities of particles
with a given internal state satisfy a system of linear reaction-diffusion equations
(see section 4.1 below for the explicit form). Equivalently, one can view the
choice of scaling as a diffusive time scale (t→ N2t), a weak asymmetry (active
jumps in the direction of the velocity occur at rate N = N−1N2), and a slow
reaction term (changes of internal state happen at rate 1 = N−2N2. The
scaling is also such that the motion of a single particle converges to a multi-
layer Brownian motion with layer-dependent drift (cf. section 2.1 below).

2.1. Scaling limit of the single particle dynamics

We will denote by LN the Markov generator of a single run-and-tumble
particle (rescaled in space), more precisely, the generator of the process (XtN , σt)
where Xt denotes the position and σt the internal state of the particle.

This generator acts on a core consisting of test functions on the space R×S,
which we denote by C∞c,S , and which is defined via

C∞c,S := {φ : R× S → R : φ(·, σ) ∈ C∞c (R) for all σ ∈ S} .

The generator LN then reads as follows:

LNφ(x, σ) = κN2(φ(x+ 1
N , σ) + φ(x− 1

N , σ)− 2φ(x, σ))

+ λN(φ(x+ σ
N , σ)− φ(x, σ))

+
∑
σ′∈S

c(σ, σ′)(φ(x, σ′)− φ(x, σ)).

Corresponding to this generator we have the corresponding Markov semigroup
which we denote by SNt . Via Taylor approximation we obtain that LNφ→ Aφ
uniformly as N →∞, where A is the differential operator given by

Aφ(x, σ) =
(
κ
2∂xx + σλ∂x

)
φ(x, σ) +

∑
σ′∈S

c(σ, σ′)
(
φ(x, σ′)− φ(x, σ)

)
. (2.2)

Because A generates a Markov semigroup as well, as a consequence of the con-
vergence of the generators we can also obtain SNt φ → etAφ uniformly for all
φ ∈ C0,S , i.e., the functions space consisting of functions φ : R × S → R such
that φ(·, σ) ∈ C0(R) for all σ ∈ S.
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The operator A above is also an operator on (a subset of) the Hilbert space
L2(dx × | · |S), where | · |S is the counting measure over S. The inner product
on this Hilbert space, denoted by 〈〈·, ·〉〉, is the following

〈〈φ, ψ〉〉 :=
∑
σ∈S

∫
R
φ(x, σ)ψ(x, σ) dx. (2.3)

Later on we will need the adjoint of the operator A with respect to this inner
product, which acts on φ ∈ C∞c,S as follows:

A∗φ(x, σ) =
(
κ
2∂xx − σλ∂x

)
φ(x, σ) +

∑
σ′∈S

c(σ, σ′)
(
φ(x, σ′)− φ(x, σ)

)
. (2.4)

2.2. Basic properties of independent run-and-tumble particles

Before we state the theorem of the stationary fluctuations, we first review a
few known results on run-and-tumble particles which we need.

2.2.1. Stationary ergodic product measures

We define the measures µρ, with ρ ∈ [0,∞), as the product Poisson measure
with density ρ, i.e.

µρ :=
⊗

(x,σ)∈V

Pois(ρ).

In [12] it is proved that these measures are stationary and ergodic with respect
for run-and-tumble particle process {ηt : t ≥ 0}. For this reason, when we study
the stationary fluctuations of the densities of particles with given internal state,
we will start the process {ηt : t ≥ 0} from the measure µρ.

2.2.2. Duality

Definition 2.1. We say that two Markov processes {ηt : t ≥ 0} and {ξt : t ≥ 0},
on the state spaces Ω and Ω′ respectively, are dual to one another with respect
to a duality function D : Ω× Ω′ → R if

Eη [D(ξ, ηt)] = Êξ [D(ξt, η)] <∞, (2.5)

where Eη denotes the expectation in {ηt : t ≥ 0} starting from η and Êξ the
expectation in the dual process {ξt : t ≥ 0} starting from ξ.

In [12] it is proved that the run-and-tumble particle process is dual to its time-
reversed process where the active jumps are in the reverse direction, i.e., the
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process corresponding to the following generator

L̂Nf(η) = κN2
∑

(x,σ)∈V

η(x, σ)
(
f
(
η(x,σ)→(x+1,σ)

)
+ f

(
η(x,σ)→(x−1,σ)

)
− 2f(η)

)
+ λN

∑
(x,σ)∈V

η(x, σ)
(
f
(
η(x,σ)→(x−σ,σ)

)
− f(η)

)
+

∑
(x,σ)∈V

∑
σ′∈S

η(x, σ)c(σ, σ′)
(
f
(
η(x,σ)→(x,σ′)

)
− f(η)

)
.

The duality function is then given by

D(ξ, η) =
∏

(x,σ)∈V

η(x, σ)!

ξ(x, σ)!(η(x, σ)− ξ(x, σ))!
· I
(
ξ(x, σ) ≤ η(x, σ)

)
,

where I denotes the indicator function, and where ξ is assumed to be a finite
configuration, i.e., ∑

(x,σ)

ξ(x, σ) <∞.

In our paper we will mostly need this duality relation in the form of duality
with a single dual particle, i.e.,

Eη[ηt(x, σ)] = Ê(x,σ)[η(X̂t, σ̂t)],

where ( X̂tN , σ̂t) is the process corresponding to the (time-reversed) generator L̂N

given by

L̂Nφ(x, σ) = κN2(φ(x+ 1
N , σ) + φ(x− 1

N , σ)− 2φ(x, σ))

+ λN(φ(x− σ
N , σ)− φ(x, σ))

+
∑
σ′∈S

c(σ, σ′)(φ(x, σ′)− φ(x, σ)).

We denote the corresponding Markov semigroup of this process as ŜNt . By a

Taylor expansion, we obtain that L̂Nφ → A∗φ, with A∗ defined as in (2.4),
uniformly in N for all φ ∈ C∞c,S , and therefore we are able to write for all

φ ∈ C0,S that ŜNt φ→ etA
∗
φ uniformly.

2.3. Hydrodynamic limit

In this section we will briefly mention the hydrodynamic limit of the run-and-
tumble particle process. For the proof, which follows standard methodology, we
refer to the appendix.
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Given a function ρ : R× S → R such that ρ(·, σ) ∈ C2
b (R) for all σ ∈ S, we

start by defining the product Poisson measures µNρ for every N ∈ N as follows

µNρ :=
⊗

(x,σ)∈V

Pois
(
ρ( xN , σ)

)
. (2.6)

This is the local equilibrium distribution corresponding to the macroscopic pro-
file ρ.

Furthermore, for every N ∈ N, the process {ηNt : t ≥ 0} is the run-and-
tumble particle process started from ηN0 ∼ µNρ . We can now define the empirical

measures of the process, denoted by πN =
{
πNt : t ≥ 0

}
, as follows

πNt :=
1

N

∑
(x,σ)∈V

ηNt (x, σ)δ
(
x
N ,σ)

, (2.7)

where δ is the dirac measure. We think of πNt as the macroscopic profile corre-
sponding to the microscopic configuration ηt. In the rhs of (2.7) every particle
of type σ contributes a mass 1/N at the “macro spatial location” x/N .

For every t ≥ 0, πNt is a positive measure on R × S such that when paired
with a test function φ ∈ C∞c,S we obtain

πNt (φ) :=
〈
φ, πNt

〉
=

1

N

∑
(x,σ)∈V

ηNt (x, σ)φ( xN , σ).

By the choice of the initial distribution, we have at time t = 0 zero that

πN0 (φ)→
∫
ρ(x, σ)φ(x, σ)dx.

We then have the following result for the hydrodynamic limit.

Theorem 2.1. For every t ≥ 0, ε > 0 and φ ∈ C∞c,S , we have that

lim
N→∞

P
(∣∣∣πNt (φ)−

∑
σ∈S

∫
ρt(x, σ)φ(x, σ)dx

∣∣∣ > ε

)
= 0,

where ρt(x, σ) solves the PDE ρ̇t = A∗ρt with initial condition ρ0(x, σ) =
ρ(x, σ).

This results is actually a corollary of an stronger theorem which shows con-
vergence of the trajectories πN in the path space D([0, T ]; M) equipped with
the Skorokhod topology, where M is the space of Radon measures on R × S.
Let π = {πt : t ≥ 0} denote the trajectory of measures on R × S such that for
all t ≥ 0, φ ∈ C∞c,S we have that 〈φ, πt〉 = 〈〈φ, ρt〉〉, where ρt solves the PDE
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in the above theorem. The trajectory π is then the unique continuous path in
D([0, T ]; M) such that for all φ ∈ C∞c,S

M φ
t (π) = πt(φ)− π0(φ)−

∫ t

0

πs(Aφ) ds = 0. (2.8)

Theorem 2.2. For any N ∈ N, let PN be the law of the process πN . Then
PN → δπ weakly in D([0, T ]; M) for any T > 0, with π the unique continuous
path solving (2.8).

For the sake of self-containedness, the proof of Theorem 2.2 is provided in the
appendix. The method of proof is standard and it follows Seppäläinen, in [14,
Chapter 8].

2.4. Fluctuation fields

For every N ∈ N, we define the fluctuation field Y N := {Y Nt : t ≥ 0} as

Y Nt =
1√
N

∑
x∈Z

(
ηt(x, σ)− ρ

)
δ
(
x
N ,σ)

. (2.9)

This process takes values in the space of distributions on R × S, denoted by
(C∞c,S)∗. We expect the fluctuation field Y N to converge weakly to a generalized
stationary Ornstein-Uhlenbeck process. Before we can state the result we first
recall some basic definitions of space-time white noise (see e.g. [8] for a detailed
account).

Definition 2.2. A random distribution W is called a white noise on R × S if
{〈φ,W 〉 : φ ∈ C∞c,s} is jointly centered Gaussian with covariance

E[〈φ,W 〉 〈ψ,W 〉] = 〈〈φ, ψ〉〉 ,

where 〈〈, 〉〉 denotes the inner product defined in (2.3). We denote by dWt the
time-differential of space-time white noise. This object is such that when paired
with a test function φ ∈ C∞c,S and integrated over time gives a Brownian motion,
i.e., ∫ t

0

〈φ, dWs〉 = B(〈〈φ, φ〉〉 t),

where B(·) is a standard Brownian motion on R. We denote by dWt

dt the corre-
sponding space-time white noise. This random space-time distribution is such
that for all φ : [0, T ]×R×S → R, with φ(t, ·) a test function 〈φ, dWt

dt 〉 is jointly
Gaussian with covariance

E
[〈
φ,

dWt

dt

〉〈
ψ,

dWt

dt

〉]
=

∫ T

0

〈〈φ(t, ·), ψ(t, ·)〉〉dt.
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Remark 2.1. Informally speaking, a white noise on R × S is a Gaussian field
W (x, σ) with covariance δ(x − y)δσ,σ′ , and a space-time white noise on R × S
is a Gaussian field W (t, x, σ) with covariance δ(t′ − t)δ(x− y)δσ,σ′ .

3. Stationary fluctuations

We are now ready to state our result on stationary fluctuations. We start
with the case of independent particles; in Section 3.2 below we will consider an
interacting case.

Theorem 3.1. Assume that η0 is distributed according to the Poisson product
measure µρ. For every N ∈ N, let QN denote the law of the process Y N defined
in (2.9). Then QN → Q weakly in D([0, T ]; (C∞c,S)∗) for any T > 0, where Q is
the law of the stationary Gaussian process Y satisfying the following SPDE

dYt = A∗Yt dt+
√

2κρ∂x dWt +
√

2ρΣ dW̃t. (3.1)

Here dWt and dW̃t are two independent space-time white noises on the space
R× S, and Σ is the operator working on test functions φ ∈ C∞c,S as

(Σφ)(x, σ) = −
∑
σ′∈S

c(σ, σ′)
(
φ(x, σ′)− φ(x, σ)

)
. (3.2)

By the assumed symmetry of the rates c(σ, σ′), for φ, ψ ∈ C∞c,S we have 〈〈Σφ, ψ〉〉
= 〈〈φ,Σψ〉〉, and moreover 〈〈Σφ, ψ〉〉 ≥ 0. Hence the operator is bounded, self-
adjoint and non-negative and therefore its square root

√
Σ is well-defined. The

process ∂x dWt is defined as the process of distributions such that for all φ ∈ C∞c,S

〈φ, ∂x dWt〉 = −〈∂xφ, dWt〉 .

The rigorous meaning of the SPDE in (3.1) is defined in terms of a martingale
problem as in [9]. More precisely, the map φ 7→ Yt(φ) is the solution of the
following martingale problem: for every φ ∈ C∞c,S , the following two processes

M φ
t (Y ) = Yt(φ)− Y0(φ)−

∫ t

0

Ys(Aφ)ds,

N φ
t (Y ) = M φ

t (Y )2 − 2tκρ 〈〈∂xφ, ∂xφ〉〉 − 2tρ 〈〈φ,Σφ〉〉
(3.3)

are martingales with respect to the natural filtration Ft = σ(Ys : 0 ≤ s ≤ t).

3.1. Stationary covariance of the fluctuation fields via duality

We will first compare the covariance structure of the limiting process of Y N

with the covariance structure of the process solving the SPDE in (3.1). This
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covariance uniquely characterizes the process. More precisely, if we can prove
that Y Nt → Yt where Yt is a distribution-valued stationary Gaussian process,
then the covariance E(Yt(φ)Y0(ψ)) uniquely determines this process. In that
sense, the computation of the covariance already determines the only possible
candidate limit Yt. As we show below, the covariance is in turn completely deter-
mined by the scaling limit of a single dual particle. This shows that for systems
with duality, both the hydrodynamic limit and the stationary fluctuations are
uniquely determined by the scaling limit of a single dual particle.

Proposition 3.2. For all φ, ψ ∈ C∞c (R× S)

lim
N→∞

E[Y Nt (φ)Y N0 (ψ)] = E[Yt(φ)Y0(ψ)] = ρ ·
〈〈
etAφ, ψ

〉〉
.

Here E denotes the stationary expectation starting from the initial configuration
distributed according to η0 ∼ µρ.

Proof. If Y is a solution to the SPDE in (3.1), then we can write

Yt(φ) = M φ
t (Y ) + Y0(φ) +

∫ t

0

Ys(Aφ) ds,

where M φ
t (Y ) is a martingale with respect to the filtration Ft=σ(Ys :0 ≤ s ≤ t)

such that M φ
0 (Y ) = 0. By the martingale property we have that

E[M φ
t (Y )Y0(ψ)] = E

[
E[M φ

t (Y )Y0(ψ)|F0]
]

= E
[
Y0(ψ)E[M φ

t (Y )|F0]
]

= 0,

and so

E[Yt(φ)Y0(ψ)] = E[Y0(φ)Y0(ψ)] +

∫ t

0

E[Ys(Aφ)Y0(ψ)] ds.

Therefore, using that E[Y0(φ)Y0(ψ)] = 〈〈φ, ψ〉〉 we obtain that if Y is a solution
of (3.1), then we have

E[Yt(φ)Y0(ψ)] = E[Y0(etAφ)Y0(ψ)] = ρ ·
〈〈
etAφ, ψ

〉〉
.

On the other hand, for any N ∈ N we have that

E
[
Y Nt (φ)Y N0 (ψ)

]
(3.4)

=
1

N

∑
(x,σ)∈V

∑
(y,σ′)∈V

φ( xN , σ)ψ( yN , σ
′)

∫
Eη
[
(ηt(x, σ)− ρ)(η(y, σ′)− ρ)

]
dµρ(η)

=
1

N

∑
(x,σ)∈V

∑
(y,σ′)∈V

φ( xN , σ)ψ( yN , σ
′)

∫
Ê(x,σ)

[
(η(X̂t, σ̂t)−ρ)(η(y, σ′)−ρ)

]
dµρ(η)
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=
1

N

∑
(x,σ)∈V

∑
(y,σ′)∈V

φ( xN , σ)ψ( yN , σ
′)Ê(x,σ)

[
Covµρ

(
η(X̂t, σ̂t), η(y, σ′)

)]
,

where we used duality for the second equality and Fubini for the last equality.
Now note that, because µρ is a product of Poisson measures, the covariance

term is equal to ρ if and only if (X̂t, σ̂t) = (y, σ′) and zero otherwise. Therefore∑
(y,σ′)∈V

ψ( yN , σ
′)Ê(x,σ)

[
Covµρ

(
η(X̂t, σ̂t), η(y, σ′)

)]
= ρ

∑
(y,σ′)∈V

ψ( yN , σ
′)Ê(x,σ)

[
I
(

(X̂t, σ̂t) = (y, σ′)
)]

= ρ · (ŜNt ψ)( xN , σ). (3.5)

Here ŜNt is the semigroup of the Markov process ( X̂tN , σ̂t), for which we have

the following uniform convergence ŜNt ψ → etA
∗
ψ (see Section 2.2.2) . By now

combining (3.4) and (3.5), we find that

E
[
Y Nt (φ)Y N0 (ψ)

]
= ρ · 1

N

∑
(x,σ)∈V

∑
(y,σ′)∈V

φ( xN , σ)(ŜNt ψ)( xN , σ)

→ ρ ·
〈〈
φ, etA

∗
ψ
〉〉

= ρ ·
〈〈
etAφ, ψ

〉〉
,

which concludes the proof. 2

Remark 3.1. In Proposition 3.2, the only place where the independence of the
particles is manifest is in the pre-factor ρ which corresponds to the limiting
variance of the fluctuation field at time zero, because η0 is distributed as µρ.
When considering any other system which satisfies duality, when A is the scaling
limit of the single particle generator, and χ(ρ) is the limiting variance of the
fluctuation field at time zero, we find that the limiting covariance is given by

E[Yt(φ)Y0(ψ)] = χ(ρ)
〈〈
etAφ.ψ

〉〉
.

E.g. for the exclusion process studied in the section below, χ(ρ) = ρ(α− ρ).

3.2. Interacting case: the multi-layer SEP

The multi-layer symmetric exclusion process, or multi-layer SEP, is a gen-
eralization of the symmetric exclusion process on Z to the multi-layered setting
on Z × S. For this process we look at configurations η ∈ {0, 1, . . . , α}V with
α ∈ N, i.e., there are at most α particles per site v ∈ V . Instead of having
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an active component on every layer σ ∈ S like the run-and-tumble particle sys-
tem, multi-layer SEP switches to a different diffusion coëfficient, denoted by κσ,
between the layers. The generator of this process is then as follows

LSEPN f(η)

= N2
∑

(x,σ)∈V

κσ
∑
|x−y|=1

η(x, σ) (α− η(y, σ))
(
f
(
η(x,σ)→(y,σ)

)
− f(η)

)
+

∑
(x,σ)∈V

∑
σ′∈S

c(σ, σ′)η(x, σ)(α− η(x, σ′))
(
f
(
η(x,σ)→(x,σ′)

)
− f(η)

)
.

In [12] it is proved that this process is self-dual and has ergodic measures given
by product Binomial measures νρ =

⊗
v∈V Bin(α, ρ) where ρ ∈ (0, 1) is constant.

The corresponding single-particle generator is then given by

L SEP
N φ(x, σ) = ακσ

(
(φ(x+ 1

N , σ) + φ(x− 1
N , σ)− 2φ(x, σ)

)
+
∑
σ′∈S

c(σ, σ′)
(
φ(x, σ′)− φ(x, σ)

)
,

and L SEP
N φ→ Bφ uniformly, where

(Bφ)(x, σ) =
ακσ

2
∂xxφ(x, σ) +

∑
σ′∈S

αc(σ, σ′)
(
φ(x, σ′)− φ(x, σ)

)
.

Since we took the rates c(σ, σ′) symmetric, this operator is self-adjoint in the
Hilbert space L2(dx× | · |S).

Using the same line of proof as in Section 5 below, we obtain the following
SPDE for the stationary fluctuation field,

dYt = BYt dt+
√

2ρ(α− ρ)K∂x dWt +
√

2ρ(α− ρ)Σ dW̃t. (3.6)

Here K is the operator given by (Kφ)(x, σ) = κσφ(x, σ). Note in the noise
terms the appearance of the terms ρ(α− ρ) instead of ρ as in (3.1). This comes
from the fact that for (x, σ) 6= (y, σ′)

Eνρ [ηs(x, σ)(α− ηs(y, σ′))] = ρ(α− ρ),

which plays a role in the calculation of the expectation of the Carré du champ
operator.

4. Scaling limits of the total density

If we sum over the layers, i.e., over the σ-variables, then the resulting con-
figuration which gives the total number of particles at each site is no longer
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a Markov process. Therefore, both in the hydrodynamic limit as well as in
the fluctuations we expect memory terms to appear in the form of higher or-
der time derivatives in the limiting equations. The stationary fluctuations of
the empirical distribution of the total number of particles will then become a
non-Markovian Gaussian process which we can identify explicitly.

Next, we consider the small-noise limit of these fluctuations. We then obtain
a large deviation principle via large deviations of Schilder’s type for Gaussian
processes (i.e., small variance limit of Gaussian processes, see e.g. [4] p. 88, and
also [10]), and we have memory terms in the corresponding large deviation rate
function. We will make these memory effects explicit in the simplest possible
setting where κ = 0 in (2.1). To our knowledge, this is the first example of an
explicit expression for a large deviation rate function of the empirical distribu-
tion of particles in a non-Markovian context. In general such rate functions can
be obtained from the contraction principle of the Markovian multi-layer system,
but this expression in the form of an infimum is implicit, can rarely be made
explicit, and therefore does not make manifest the effect of memory terms.

In the whole of this section, for notational simplicity, we further restrict to
S = {−1, 1} (two layers) and put c(1,−1) = c(−1, 1) =: γ. The aim is then
to study the fluctuations of the total density of particles, where we sum up the
particles in both layers. This produces an empirical measure and fluctuation
field on R given by

ζNt =
1

N

∑
(x,σ)∈V

ηNt (x, σ)δ x
N
, ZNt =

1√
N

∑
(x,σ)∈V

(ηt(x, σ)− ρ)δ x
N
.

4.1. Hydrodynamic equation for the total density

From Theorem 2.1 we can deduce that ζNt converges in probability to %t(x)dx,
where the density %t(x) is the sum of the densities on both layers, i.e., %t(x) =
ρt(x, 1) + ρt(x,−1) with ρt(x, σ) the solution to the hydrodynamic equation
ρ̇t = A∗ρt. We can rewrite this equation as a coupled system of linear PDE’s
given by{

ρ̇t(x, 1) =
(
κ
2∂xx − λ∂x

)
ρt(x, 1) + γ(ρt(x,−1)− ρt(x, 1)),

ρ̇t(x,−1) =
(
κ
2∂xx + λ∂x

)
ρt(x,−1) + γ(ρt(x, 1)− ρt(x,−1)).

Summing up both equations gives us a PDE for the total density %t(x). This
PDE also depends on the difference of the densities, which we will denote by
∆t(x) := ρt(x, 1)− ρt(x,−1), and therefore we get a new system of PDE’s,{

%̇t(x) = κ
2∂xx%t(x)− λ∂x∆t(x),

∆̇t(x) = κ
2∂xx∆t(x)− λ∂x%t(x)− 2γ∆t(x).

(4.1)
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From this system we can actually find a closed equation for %(x). Namely, by
first taking a second derivative in time of the upper equation we find that

%̈t(x) =
κ

2
∂xx%̇t(x)− λ∂x∆̇t(x) (4.2)

=
κ

2
∂xx%̇t(x)− λ∂x

(κ
2
∂xx∆t(x)− λ∂x%t(x)− 2γ∆t(x)

)
.

Now we use that from the first equation in (4.1) we have −λ∂x∆t(x) = %̇t(x)−
κ
2∂xx%t(x). Substituting this in (4.2), we find the following closed equation for
the total density

%̈t(x)− (κ∂xx + 2γ)%̇t(x) =
(

(λ2 − γκ)∂xx −
κ2

4
(∂x)4

)
%t(x).

4.2. Fluctuations of the total density

For the analysis of the fluctuation field of the total density we first define the
fluctuation fields of each layer, and then by taking higher order derivatives as
in the previous subsection, we obtain a second order SPDE for the fluctuations
of the total density (cf. (4.7) below). We first set up a framework where we can
rigorously deal with the various distributions coming from the SPDE given in
(3.1) corresponding to both layers. We start by defining a fluctuation field for
each layer individually.

Y Nt,σ =
1√
N

∑
x∈Z

(ηt(x, σ)− ρ)δ x
N
, σ ∈ {−1, 1}.

The relation between these fluctuation fields and ZNt is as follows: for every
φ ∈ C∞c we have that 〈

φ,ZNt
〉

=
〈
φ, Y Nt,1

〉
+
〈
φ, Y Nt,−1

〉
. (4.3)

However, there is also a direct relation between the fluctuation fields on both
layers and the fluctuation field Y Nt on R×S defined in (2.9): for every φ ∈ C∞c,S
the following holds〈

φ, Y Nt
〉

=
〈
φ(·, 1), Y Nt,1

〉
+
〈
φ(·,−1), Y Nt,−1

〉
. (4.4)

In this way Y Nt , but more importantly its limiting process Yt, can be interpreted

as a column vector of distributions, Yt =
(
Yt,1 Yt,−1

)T
, working on a row

vector of functions, φ =
(
φ(·, 1) φ(·,−1)

)
. With this in mind, we can look at

the vector representation of the measure A∗Yt. We have that

〈φ,A∗Yt〉 = 〈Aφ, Yt〉
=
〈
(κ2∂xx + λ∂x)φ(·, 1), Yt,1

〉
+ 〈φ(·, 1), γ(Yt,−1 − Yt,1)〉
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+
〈
(κ2∂xx − λ∂x)φ(·,−1), Yt,−1

〉
+ 〈φ(·,−1), γ(Yt,1 − Yt,−1)〉

=
〈
φ(·, 1), (κ2∂xx − λ∂x)Yt,1 + γ(Yt,−1 − Yt,1)

〉
+
〈
φ(·,−1), (κ2∂xx + λ∂x)Yt,−1 + γ(Yt,1 − Yt,−1)

〉
.

Therefore A∗Yt corresponds to the following vector of distributions

A∗Yt =

 (κ2∂xx − λ∂x)Yt,1 + γ(Yt,−1 − Yt,1)

(κ2∂xx + λ∂x)Yt,−1 + γ(Yt,1 − Yt,−1)

 .

In a similar way we can find a vector representation of the noise part in the
SPDE (3.1), namely√

2κρ∂x dWt +
√

2ρΣ dW̃t =
√

2κρ∂x

(
dWt,1

dWt,−1

)
+
√

2ρΣ

(
dW̃t,1

dW̃t,−1

)

=

 √2κρ∂x dWt,1 +
√
γρ
(

dW̃t,−1 − dW̃t,1

)
√

2κρ∂x dWt,−1 +
√
γρ
(

dW̃t,1 − dW̃t,−1

) ,

where all the dWt,i,dW̃t,i are independent space-time white noises on R. In this
notation, the SPDE in (3.1) actually gives us a system of SPDE’s given by

dYt,1 =
[
κ
2∂xxYt,1 − λ∂xYt,1 + γ (Yt,−1 − Yt,1)

]
dt

+
√

2κρ∂x dWt,1 +
√
γρ
(
dW̃t,−1 − dW̃t,1

)
,

dYt,−1 =
[
κ
2∂xxYt,−1 + λ∂xYt,−1 + γ (Yt,1 − Yt,−1)

]
dt

+
√

2κρ∂x dWt,−1 +
√
γρ
(
dW̃t,1 − dW̃t,−1

)
.

Now we are able to sum up these equations to get an SPDE for the fluctuation
process of the total density Zt. Just like in the hydrodynamic limit, this will
again depend on the difference of the two processes above, denoted by Rt :=
Yt,1 − Yt,−1. This gives us the following system of coupled SPDE’s{

dZt =
[
κ
2∂xxZt − λ∂xRt

]
dt+ 2

√
κρ∂x dWt,Z ,

dRt =
[
κ
2∂xxRt − λ∂xZt − 2γRt

]
dt+ 2

√
κρ∂x dWt,R + 2

√
2γρdW̃t,

(4.5)

where

Wt,Z =
1√
2

(Wt,1 +Wt,−1) ,

Wt,R =
1√
2

(Wt,1 −Wt,−1) ,

W̃t =
1√
2

(
W̃t,1 − dW̃t,−1

)
,

which are all independent space-time white noises on R.
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4.3. Covariance of the total density

The process Zt introduced as in (4.5) is a (non-Markovian) stationary Gaus-
sian processes. Therefore, we can characterize Zt through its covariances. Using
(4.3) and (4.4), we can actually relate this covariance to the covariance structure
of Yt, which we have already calculated in Proposition 3.2. In order to do so,
for a given φ, ψ ∈ C∞c we define the functions φ̄, ψ̄ ∈ C∞c,S via φ̄(x, σ) = φ(x)

and ψ̄(x, σ) = ψ(x). The covariance can then be computed as follows

E[〈φ,Zt〉 〈ψ,Z0〉]
= E[(〈φ, Yt,1〉+ 〈φ, Yt,−1〉) (〈ψ, Y0,1〉+ 〈ψ, Y0,−1〉)]
= E[

(〈
φ̄(·, 1), Yt,1

〉
+
〈
φ̄(·,−1), Yt,−1

〉) (〈
ψ̄(·, 1), Y0,1

〉
+
〈
ψ̄(·,−1), Y0,−1

〉)
]

= E[
〈
φ̄, Yt

〉 〈
ψ̄, Y0

〉
]

= ρ ·
〈〈
etAφ̄, ψ̄

〉〉
. (4.6)

This covariance strongly resembles the covariance of a stationary Ornstein–
Uhlenbeck process, but notice that the semigroup etA works on the “extended”
functions φ̄, ψ̄, which corresponds to the non-Markovianity of the process {Zt,
t ≥ 0}.

Notice that the formula for the covariance obtained in (4.6) is solely based
on duality, and is therefore valid as long as we have duality for the multi-layer
system, i.e., beyond the case of two internal states and including also interacting
cases such as the multi-layer SEP.

4.4. Closed form equation and large deviations for the case κ = 0

In the case of κ = 0 the noise term vanishes in the upper equation of (4.5)
and therefore we we can solve the system explicitly. Namely, we then find that{

dZt = −λ∂xRt dt,

dRt = − [λ∂xZt + 2γRt] dt+ 2
√
γρdW̃t.

Just like for the hydrodynamic limit of the total density, by now taking a second
derivative in time in the first equation we find that d2Zt = −λ∂x dRt dt. By
now filling in dRt from the lower equation, we have that

d2Zt
dt2

= λ2∂xxZt − 2γλ∂xRt + 2λ
√
γρ∂x

dW̃t

dt

= λ2∂xxZt + 2γ
dZt
dt

+ 2λ
√
γρ∂x

dW̃t

dt
. (4.7)

From the expression above we are also able to obtain the rate function for

the large deviations of Z
(ε)
t in the small noise regime, i.e., where we add a factor
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ε before the noise W̃t which we will send to zero. I.e., we are interested in the
large deviations of Schilder type (see [4], [10]) for the family of Gaussian process
given by

d2Z
(ε)
t

dt2
= λ2∂xxZ

(ε)
t + 2γ

dZ
(ε)
t

dt
+ ε2λ

√
γρ∂x

dW̃t

dt
. (4.8)

We use that

P
(
ε∂x

dW̃t

dt
� Γ(t, x)

)
� exp

(
−ε−2 1

2

∫ T

0

||Γ(t, ·)||2H−1
dt

)
,

which has to be interpreted in the sense of the large deviation principle in the
space of space-time distributions. The rate function in the above equation can
be derived from the log-moment-generating function of a space-time white noise
on R, which for a test function φ ∈ C∞c ([0, T ]× R) is equal to

Λ(φ) = lim
ε→0

ε2 log
(
E[eε

−1〈φ,∂x dWt
dt 〉]

)
=

1

2
〈∂xφ, ∂xφ〉L2(R×[0,T ]) .

The Legendre transform of Λ then yields the rate function,

Λ∗(Γ(t, x)) = sup
φ∈C∞c ([0,T ]×R)

{
〈φ,Γ〉L2([0,T ]×R) −

1

2
〈∂xφ, ∂xφ〉L2([0,T ]×R)

}

=
1

2

∫ T

0

||Γ(t, ·)||2H−1 dt.

As a consequence, we obtain the large deviation principle for the random space-

time distribution Z
(ε)
t , namely from (4.8) it follows that

P
(
Z

(ε)
t � Γ(t, x)

)
= P

(
ε∂x

dW̃t

dt
� 1

2λ
√
γρ

(
Γ̈(t, x)− 2γΓ̇(t, x)− λ2∂xxΓ(t, x)

))
(4.9)

� exp

(
−ε−2 1

4λ
√
γρ

∫ T

0

∣∣∣∣∣∣Γ̈(t, ·)− 2γΓ̇(t, ·)− λ2∂xxΓ(t, ·)
∣∣∣∣∣∣2
H−1

dt

)
.

5. Proof of Theorem 3.1

In this section we prove Theorem 3.1, following the line of proof of Van
Ginkel and Redig in [15]. For the readers convenience we sketch the main steps.

We start by introducing the Dynkin martingales of Y Nt (φ). For every φ ∈
C∞c,S and N ∈ N, let {FN

t : t ≥ 0} be the filtration generated by {Y Nt : t ≥
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0}. Because the configuration process {ηt : t ≥ 0} is a Markov processes the
following processes

MN,φ
t (Y N ) = Y Nt (φ)− Y N0 (φ)−

∫ t

0

LNY
N
s (φ) ds,

N N,φ
t (Y N ) = MN,φ

t (Y N )2 −
∫ t

0

ΓN,φs (Y N ) ds,

(5.1)

are FN
t -martingales, where ΓN,φs is the so-called Carré du champ operator given

by
ΓN,φs (Y N ) := LN

(
Y Ns (φ)2

)
− 2Y Ns (φ)LNY

N
s (φ). (5.2)

The aim is then to prove that asN →∞, the martingales in (5.1) converge to the
martingales from (3.3). This fact, complemented with a proof of tightness and
the fact that the martingale problem (3.3) has a unique solution, then completes
the proof. In Section 5.1 we prove the convergence of the martingales, in Section
5.2 we prove the tightness, and in Section 5.3 we prove the uniqueness of the
solution of the martingale problem (3.3).

5.1. Substituting the martingales

Our goal for this section is to show that in the limit as N → ∞, we can
substitute M φ

t (Y N ) and N φ
t (Y N ) (with M φ

t and N φ
t defined as in (3.3)) for

MN,φ
t (Y N ) and N N,φ

t (Y N ) respectively. We do so in the Propositions 5.1
and 5.4. We recall the reader that the expectation E stands for the stationary
expectation starting from the initial configuration distributed according to η0 ∼
µρ.

Proposition 5.1. For all φ ∈ C∞c,S we have

lim
N→∞

E
[∣∣MN,φ

t (Y N )−M φ
t (Y N )

∣∣2] = 0.

Proof. First of all, note that by definition

E
[∣∣MN,φ

t (Y N )−M φ
t (Y N )

∣∣2] = E

[∣∣∣∣∫ t

0

LNY
N
s (φ) ds−

∫ t

0

Y Ns (Aφ) ds

∣∣∣∣2
]
.

For a given (x, σ) ∈ V we have that

LNη(x, σ) = κN2[η(x+ 1, σ) + η(x− 1, σ)− 2η(x, σ)]

+ λN [η(x− σ, σ)− η(x, σ)]

+
∑
σ′∈S

c(σ, σ′)[η(x, σ′)− η(x, σ)],
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and so in particular we find that

LNY
N
s (φ) =

1√
N

∑
(x,σ)∈V

(
LNηs(x, σ)

)
φ( xN , σ)

=
1√
N

∑
(x,σ)∈V

ηs(x, σ) · (LNφ)( xN , σ),

where we remind the reader that LN is the generator of a single run-and-tumble
particle on the rescaled space 1

NZ × S. Now, using that for any φ ∈ C∞c,S we
have that ∑

(x,σ)∈V

ρ · (LNφ)( xN , σ) = 0,

we are able to write

LNY
N
s (φ) =

1√
N

∑
(x,σ)∈V

(ηs(x, σ)− ρ) · (LNφ)( xN , σ).

Since LNφ→ Aφ uniformly, where A is defined in (2.2), we have that

LNY
N
s (φ) =

1√
N

∑
(x,σ)∈V

(ηs(x, σ)− ρ) · (Aφ)( xN , σ) +R1(φ,N, s), (5.3)

whereR1(φ,N, s) is an error term produced by the Taylor approximations. Since
φ is compactly supported, if we define V Nφ := {(x, σ) ∈ V, φ( xN , σ) 6= 0} then

|V Nφ | = O(N). Furthermore, the error term is bounded in the following way

|R1(φ,N, s)| ≤ 1

N3/2

∑
(x,σ)∈V Nφ

(ηs(x, σ)−ρ)(κ||∂xxxφ||∞+λσ2||∂xxφ||∞). (5.4)

Therefore we find that for every φ ∈ C∞c,S and t ≥ 0,

E
[
R1(φ,N, s)2

]
≤ 1

N3
E
[ ∑

(x,σ),(y,σ′)∈V Nφ

(ηs(x, σ)− ρ)(ηs(y, σ
′)− ρ)

× (κ||∂xxxφ||∞ + λσ2||∂xxφ||∞)2
]

(5.5)

=
1

N3

∑
(x,σ),(y,σ′)∈V Nφ

Cov
(
ηs(x, σ), ηs(y, σ

′)
)
(κ||∂xxxφ||∞ + λσ2||∂xxφ||∞)2.

Since we are starting the process ηt from the invariant product measure µρ, we
have that

Cov
(
ηs(x, σ), ηs(y, σ

′)
)

= ρ · I
(
(x, σ) = (y, σ′)

)
. (5.6)
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Therefore,

E
[
R1(φ,N, s)2

]
≤ 1

N3
|V Nφ |ρ(κ||∂xxxφ||∞ + λσ2||∂xxφ||∞)2 → 0,

where we used the fact that |V Nφ | = O(N). Note that the above convergence is
uniform in s, and therefore by dominated convergence we find that

lim
N→∞

E
[∣∣MN,φ

t (Y N )−M φ
t (Y N )

∣∣2] = lim
N→∞

∫ t

0

E
[
R1(φ,N, s)2

]
ds = 0,

which concludes the proof. 2

The substitution of N φ
t (Y N ) is a bit more work and requires a fourth mo-

ment estimate. We start by proving two lemmas. The proof of the substitution
result in Proposition 5.4 immediately follows from these lemmas.

Lemma 5.2. For all φ ∈ C∞c,S we have the following

lim
k→∞

E
[(

MN,φ
t (Y N )2 −M φ

t (Y N )2
)2
]

= 0. (5.7)

Proof. We start with the following application of Hölder’s inequality

E
[(

MN,φ
t (Y N )2 −M φ

t (Y N )2
)2]

= E
[(

MN,φ
t (Y N )−M φ

t (Y N )
)2(

MN,φ
t (Y N ) + M φ

t (Y N )
)2]

(5.8)

≤
(
E
[(

MN,φ
t (Y N )−M φ

t (Y N )
)4] · E[(MN,φ

t (Y N ) + M φ
t (Y N )

)4])1/2

.

We will first show that the first expectation in the last line vanishes as N →∞,
and afterwards we will show that the second expectation is uniformly bounded
in N . Note that by (5.3)

E
[(

MN,φ
t (Y N )−M φ

t (Y N )
)4]

= E

[(∫ t

0

[R1(φ,N, s)] ds

)4
]

≤ t3
∫ T

0

E
[
R1(φ,N, s)4

]
ds.

Using the bound in (5.4) we find that

E
[
R1(φ,N, s)4

]
≤ 1

N6

∑
(xi,σi)∈V Nφ

1≤i≤4

E

[
4∏
i=1

(ηs(xi, σi)− ρ)

]
(κ||∂xxxφ||∞ + λσ2||∂xxφ||∞)4.
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Since we start from the product Poisson measure µρ, we only get non-zero
contributions in the expectation on the right-hand side when all (xi, σi) are
equal or when we have two distinct pairs, given by

E
[
(ηs(x, σ)− ρ)4

]
= 3ρ2 + ρ, E

[
(ηs(x, σ)− ρ)2(ηs(y, σ

′)− ρ)2
]

= ρ2.

Therefore, it follows that

E
[
R1(φ,N, s)4

]
(5.9)

≤ 1

N6

(
|V Nφ |(3ρ2 + ρ) + |V Nφ |2ρ2

)
(κ||∂xxxφ||∞ + λσ2||∂xxφ||∞)4,

and so R1(φ,N, s, σ)
L4

−−→ 0 uniformly in s. From this we can conclude that

E
[(

MN,φ
t (Y N )−M φ

t (Y N )
)4
]
≤ t3

∫ t

0

E
[
R1(φ,N, s)4

]
ds→ 0.

To now show that the second expectation in the last line of (5.8) is uniformly
bounded in N , note that

E
[(

MN,φ
t (Y N ) + M φ

t (Y N )
)4] ≤ 8

(
E
[(

MN,φ
t (Y N )

)4]
+ E

[(
M φ

t (Y N )
)4])

,

(5.10)
and similarly

E
[(

M φ
t (Y N )

)4] ≤ 27

(
E
[
Y Nt (φ)4

]
+ E

[
Y N0 (φ)4

]
+ E

[(∫ t

0

Y Ns (Aφ) ds

)4
])

.

(5.11)

Now we need to show that three expectations on the right-hand-side are uni-
formly bounded. For the first expectation, we find that

E
[
Y Nt (φ)4

]
≤ 1

N2
·

∑
(x1,σ1)∈V Nφ

· · ·
∑

(x4,σ4)∈V Nφ

E

[
4∏
i=1

(ηt(xi, σi)− ρ)

]
||φ||∞.

Similarly as in (5.9), we find that

E
[
Y Nt (φ)4

]
≤ 1

N2

(
|V Nφ |(3ρ2 + ρ) + |V Nφ |2ρ2

)
||φ||∞ = O(1), (5.12)

hence it is uniformly bounded, and similar approaches can be used for E[Y N0 (φ)4]
and E

[
Y Ns (Aφ)4

]
. The fact that the last expectation in (5.11) is uniformly

bounded now follows from an application of Hölder’s inequality, namely

E

[(∫ t

0

Y Ns (Aφ) ds

)4
]
≤ t3

∫ T

0

E
[(
Y Ns (Aφ)

)4]
ds.
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Therefore we know that E
[(

M φ
t (Y N )

)4]
is uniformly bounded. The proof for

E
[(

MN,φ
t (Y N )

)4]
works the same way if we use that

E
[(
LNY

N
s (φ)

)4]
= 8

(
E
[(
Y Ns (Aφ)

)4]
+ E

[
R1(φ,N, t, σ)4

])
,

where by (5.9) we already know that E
[
R1(φ,N, t, σ)4

]
is uniformly bounded.

Hence we can conclude that (5.7) holds. 2

Lemma 5.3. For all φ ∈ C∞c,S we have the following

lim
N→∞

E

[(∫ t

0

ΓN,φs (Y N ) ds− 2tκρ 〈〈∂xφ, ∂xφ〉〉 − 2tρ 〈〈φ,Σφ〉〉
)2
]

= 0,

with Σ defined as in (3.2).

Proof. First we recall that for a Markov process with generator L determined by
the transition rates r(η, η′) the carré du champ operator is computed as follows.

Lf2(η)−2f(η) · Lf(η) =
∑
η′∈Ω

r(η, η′)
((
f2(η′)−f2(η)

)
−2
(
f(η)f(η′)−f2(η)

))
=
∑
η′∈Ω

r(η, η′)
(
f(η′)− f(η)

)2
, (5.13)

Translating this to our setting with L = LN and f = Y N we obtain

ΓN,φs (Y N ) = κN
∑

(x,σ)∈V

ηs(x, σ)
(
(φ(x+1

N , σ)−φ( xN , σ))2+(φ(x−1
N , σ)−φ( xN , σ))2

)
+ λ

∑
(x,σ)∈V

ηs(x, σ)
(
φ(x+σ

N , σ)− φ( xN , σ)
)2

+
1

N

∑
(x,σ)∈V

∑
σ′∈S

c(σ, σ′)ηs(x, σ)
(
φ(x, σ′)− φ(x, σ))2.

Using Taylor expansion with rest term, we can write

ΓN,φs (Y N ) =
2κ

N

∑
(x,σ)∈V

ηs(x, σ)
(
∂xφ( xN , σ)

)2
+

1

N

∑
(x,σ)∈V

∑
σ′∈S

c(σ, σ′)ηs(x, σ)(φ( xN , σ
′)− φ( xN , σ)2

+R2(φ, s,N), (5.14)
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with R2(φ, s,N) the error term, which is bounded as follows

|R2(φ, s,N)| ≤ κ 1

N3

∑
(x,σ)∈V Nφ

ηs(x, σ)κ||∂xxφ||∞+
1

N2

∑
(x,σ)∈V Nφ

ηs(x, σ)λσ||φ′||∞.

Following the line of thought leading to (5.5), we obtain that R2(φ, s,N)
L2

−−→ 0.
Therefore, for the expectation we find that

E
[
ΓN,φs (Y N )

]
=

2κρ

N

∑
(x,σ)∈V

(∂xφ( xN , σ))2

+
2ρ

N

∑
σ′∈S

c(σ, σ′)(φ( xN , σ
′)− φ( xN , σ))2 + E [R2(φ, s,N)]

→ 2κρ 〈〈∂xφ, ∂xφ〉〉+ 2ρ 〈〈φ,Σφ〉〉 , (5.15)

and for the variance

Var
[
ΓN,φs (Y N )

]
≤ C(φ, s)

N2

∑
(x,σ),(y,σ′)∈V Nφ

Cov
(
ηs(x, σ), ηs(y, σ

′)
)

=
C(φ, s)

N2
|V Nφ |ρ→ 0,

(5.16)

with C(φ, s) some constant and where we have used (5.6) for the equality. Since
the variance converges to zero, this means that ΓN,φs (Y N ) converges to its mean
in L2. Therefore

lim
N→∞

E

[(∫ t

0

ΓN,φs (Y N ) ds− 2tκρ 〈〈∂xφ, ∂xφ〉〉 − 2tρ 〈〈φ,Σφ〉〉
)2
]

≤ lim
N→∞

∫ t

0

E
[(

ΓN,φs (Y N )− 2κρ 〈〈∂xφ, ∂xφ〉〉 − 2ρ 〈〈φ,Σφ〉〉
)2]

ds

= 0,

where we used dominated convergence for the last equality. 2

Proposition 5.4. For all φ ∈ C∞c,S

lim
N→∞

E
[∣∣∣N N,φ

t (Y N )−N φ
t (Y N )

∣∣∣2] = 0.

Proof. We have that

E
[∣∣N N,φ

t (Y N )−N φ
t (Y N )

∣∣2]
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≤ 2E
[(

MN,φ
t (Y N )2 −M φ

t (Y N )2
)2]

+ 2E
[(∫ t

0

ΓN,φs (Y N ) ds− 2tκρ 〈〈∂xφ, ∂xφ〉〉 − 2tρ 〈〈φ,Σφ〉〉
)]

.

The proof now follows from Lemma 5.2 and 5.3. 2

5.2. Tightness

In this section we will show the tightness of the collection {Y N : N ∈ N}.

Proposition 5.5. {Y N : N ∈ N} is tight in D([0, T ]; (C∞c,S)∗).

Proof. Since C∞c,S is a nuclear space, by Mitoma [11, Theorem 4.1] it suffices to

prove that for a fixed φ ∈ C∞c,S we have that {Y N (φ) : N ∈ N} is tight in the
path space D([0, T ];R). Aldous’ criterion, as stated in [1, Theorem 1], tells us
that it suffices to show the following two things:

A.1 For all t ∈ [0, T ] and ε > 0 there exists a compact K(t, ε) ∈ R such that

sup
N∈N

P
(
Y Nt (φ) /∈ K(t, ε)

)
≤ ε.

A.2 For all ε > 0

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

P
(
|Y Nτ (φ)− Y Nτ+θ(φ)| > ε

)
= 0,

with TT the set of all stopping times bounded by T .

Fix t ∈ [0, T ] and φ ∈ C∞c,S . Then, for every σ ∈ S we have that

E[Y Nt (φ)] =
1√
N

∑
(x,σ)∈V

E [ηt(x, σ)− ρ]φ( xN , σ) = 0,

Var[Y Nt (φ)] =
1√
N

∑
(x,σ)∈V

Var [ηt(x, σ)− ρ]φ( xN , σ) =
1

N
ρ
∑

(x,σ)∈V

φ2( xN , σ).

By the central limit theorem, we therefore see that every Y Nt (φ) converges
in distribution to the normal distribution N

(
0, ρ 〈〈φ, φ〉〉

)
. This implies the

tightness of the real-valued random variables {Y Nt (φ) : N ∈ N}, and therefore
also A.1.

To prove A.2, we note that for every bounded stopping time τ ∈ TT we
have that

Y Nτ (φ) = MN,φ
τ (Y N ) + Y N0 (φ) +

∫ τ

0

LNY
N
s (φ)ds,
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with MN,φ
τ (Y N ) the Dynkin martingale of Y Nτ (φ). Using the Markov inequality,

we can then deduce that

P
(
|Y Nτ (φ)− Y Nτ+θ(φ)| > ε

)
≤ 1

ε2
E
[(
Y Nτ (φ)− Y Nτ+θ,σ(φ)

)2]
≤ 2

ε2

(
E
[(

MN,φ
τ (Y N )−MN,φ

τ+θ (Y N )
)2]

+ E

(∫ τ+θ

τ

LNY
N
s (φ) ds

)2
). (5.17)

For the integral term, note that by the Cauchy–Schwarz inequality and Fu-
bini we have that

E

(∫ τ+θ

τ

LNY
N
s (φ)dr

)2
 ≤ √θ ·(E[∫ T+θ

0

(
LNY

N
s (φ)

)2
ds

])1/2

=
√
θ ·

(∫ T+θ

0

E
[(
LNY

N
s (φ)

)2]
ds

)1/2

.

(5.18)

In the proof of Lemma 5.2 we have shown that {LNY Ns (φ) : N ∈ N} is uniformly
bounded in L4, hence it is also uniformly bounded in L2, i.e.

C := sup
N∈N

E
[(
LNY

N
s (φ)

)2]
<∞. (5.19)

Combining (5.18) and (5.19), we find that

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

E

(∫ τ+θ

τ

LNY
N
s (φ)dr

)2
 ≤ lim

δ→0

√
δCT = 0. (5.20)

For the martingale, by the martingale property we have that

E
[
MN,φ

τ (Y N )MN,φ
τ+θ (Y N )

]
= E

[(
MN,φ

τ (Y N )
)2]

,

hence we see that

E
[(

MN,φ
τ (Y N )−MN,φ

τ+θ (Y N )
)2
]

= E
[(

MN,φ
τ+θ (Y N )

)2

−
(
MN,φ

τ (Y N )
)2
]
.

Since E
[
MN,φ

0 (Y N )
]

= 0, we can use that

E
[(

MN,φ
t (Y N )

)2
]

= E
[∫ t

0

ΓN,φs (Y N )

]
ds,
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because
∫ t

0
ΓN,φs (Y N ) ds is the quadratic variation of the process MN,φ

t (Y N ).

Furthermore, E
[(

ΓN,φs (Y N )
)2]

is uniformly bounded since ΓN,φs (Y N ) converges

in L2, hence

sup
N∈N

E
[(

MN,φ
τ (Y N )−MN,φ

τ+θ (Y N )
)2
]

= sup
N∈N

E

[∫ τ+θ

τ

ΓN,φs (Y N )

]
ds

≤
√
θ ·

(∫ T+θ

0

sup
N∈N

E
[(

ΓN,φs (Y N )
)2]

ds

)1/2

<∞,

where we used Cauchy–Schwarz in the second line. From this we can again
conclude that

lim
δ→0

lim sup
N→∞

sup
τ∈TT
θ≤δ

E
[(

MN,φ
τ (Y N )−MN,φ

τ+θ (Y N )
)2
]

= 0. (5.21)

Combining (5.20) and (5.21) with (5.17), we indeed find that (A.2) holds. 2

5.3. Uniqueness of limits

By the tightness, there exists a subsequence Nk and a process Y ∈ D([0, T ];
(C∞c,S)∗) such that Y Nk → Y in distribution.

Lemma 5.6. For each φ ∈ C∞c,S we have that t 7→ Yt(φ) is a.s. continuous.

Proof. We define the following functions

wδ(X) = sup
|t−s|<δ

|Xt −Xs|,

w′δ(X) = inf
0=t0<t1<...<tr=1

ti−ti−1<δ

max
1≤i≤r

sup
ti−1≤s<t≤ti

|Xt −Xs|,

then we have the following inequality

wδ(X) ≤ 2w′δ(X) + sup
t
|Xt −Xt− |. (5.22)

From A.2 it follows for all ε > 0 and all σ ∈ S we have that

lim
δ→0

lim sup
N→∞

P(w′δ(Y
N (φ)) ≥ ε) = 0. (5.23)
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Now note that

sup
t

∣∣Y Nt (φ)− Y Nt− (φ)
∣∣ ≤ sup

t

1√
N

∑
v∈V
|(ηt(v)− ηt−(v))φ(v)| ≤ 1√

N
||φ||∞ → 0,

(5.24)
where we used that there can be at most one jump between the times t and t−

for the second inequality. Therefore, by combining (5.23) and (5.24) with (5.22)
we can conclude that

lim
δ→0

lim sup
N→∞

P(wδ(Y
N (φ)) ≥ ε) = 0.

Therefore we find that t 7→ Yt(φ) is a.s. continuous. 2

Finally we show that Y solves the martingale problem in (3.3).

Proposition 5.7. For every φ ∈ C∞c,S the processes M φ
t (Y ) and N φ

t (Y ) de-
fined in (3.3) are martingales with respect to the filtration {Ft : t ≥ 0} generated
by Y .

Proof. Fix arbitrary n ∈ N, s ≥ 0, 0 ≤ s1 ≤ . . . ≤ sn ≤ s, ψ1, . . . , ψn ∈ C∞c,S
and Ψ ∈ Cb(Rn), and define the function I : D([0, T ]; (C∞c,S)∗)→ R as

I(X) := Ψ (Xs1(ψ1), . . . , Xsn(ψn)) .

To show that M φ
t (Y ) and N φ

t (Y ) are Ft-martingales, it suffices to show that

lim
k→∞

E
[
MNk,φ

t (Y Nk)I(Y Nk)
]

= E
[
M φ

t (Y )I(Y )
]
,

lim
k→∞

E
[
N Nk,φ
t (Y Nk)I(Y Nk)

]
= E

[
N φ
t (Y )I(Y )

]
,

with MN,φ
t and N N,φ

t the Dynkin martingales defined in (5.1). Namely, by the
martingale property we then have that

E
[
M φ

t (Y )I(Y )
]

= lim
k→∞

E
[
MNk,φ

t (Y Nk)I(Y Nk)
]

= lim
k→∞

E
[
MNk,φ

s (Y Nk)I(Y Nk)
]

= E
[
M φ

s (Y )I(Y )
]
,

and analogous for N φ
t (Y ).

We start by proving M φ
t (Y ) is a martingale. First of all, note that from

Proposition 5.1 we can conclude

lim
k→∞

E
[
MNk,φ

t (Y Nk)I(Y Nk)
]

= lim
k→∞

E
[
M φ

t (Y Nk)I(Y Nk)
]
.
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Furthermore, in Lemma 5.2 we have shown that the process M φ
t (Y N ) is uni-

formly bounded in L4, hence it is also uniformly bounded in L2, therefore

sup
k∈N

E
[∣∣M φ

t (Y Nk)I(Y Nk)
∣∣2] ≤ ||Ψ||2∞ sup

k∈N

∑
σ∈S

E
[(

M φ
t (Y Nk)

)2]
<∞.

This implies that we have uniform integrability of M φ
t (Y Nk)I(Y Nk). It now

suffices to show that M φ
t (Y Nk)I(Y Nk) converges to M φ

t (Y )I(Y ) in distribu-
tion. One usually concludes this using the Portmanteau theorem, but because
the path space D([0, T ]; (C∞c,S)∗S) is not metrizable, we cannot directly use this.
Instead, using the exact same method as introduced in [15, Proposition 5.2],
one can work around the problem of non-metrizability via the continuity of
t 7→ Yt(φ).

The proof that N φ
t (Y ) is a martingale works in the same way. First we note

that by Proposition 5.4 we have that

lim
k→∞

E
[
N Nk,φ
t (Y Nk)I(Y Nk)

]
= lim
k→∞

E
[
N φ
t (Y Nk)I(Y Nk)

]
.

Therefore we only need to show that

sup
k∈N

E
[∣∣N φ

t (Y Nk)I(Y Nk)
∣∣2] <∞. (5.25)

Afterwards the convergence of N φ
t (Y Nk)I(Y Nk) to N φ

t (Y )I(Y ) in distribution
follows from the same arguments as above.

To see that (5.25) holds, note that

E
[(

N φ
t (Y Nk)

)2] ≤ 2E
[(

M φ
t (Y Nk)

)4]
+ 8t2ρ2 (κ 〈〈∂xφ, ∂xφ〉〉+ 〈〈φ,Σφ〉〉)2

.

In the proof of Lemma 5.2, we have already shown that E
[(

M φ
t (Y N )

)4]
is

uniformly bounded in N , hence the result follows. 2

Appendix

A. Hydrodynamic limit

In this section we give the proof of the hydrodynamic limit, i.e., of Theorem
2.2. We follow the standard methodology of [14].

A1. Preliminary results

Before we start the proof of Theorem 2.2, we first show the following lemma
which, using duality, provides uniform upper bounds for the first and second mo-
ment of the expected particle number when starting from the local equilibrium
distribution (2.6).
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Lemma A.1. For all N ∈ N, t ≥ 0 and (x, σ) ∈ V we have that

EµNρ
[
ηNt (x, σ)

]
≤ ||ρ||∞, (A1)

EµNρ
[
ηNt (x, σ)2

]
≤ ||ρ||2∞ + ||ρ||∞. (A2)

Proof. For the first inequality, note that by duality we have that

EµNρ
[
ηNt (x, σ)

]
=

∫
EηN

[
D(δ(x,σ), η

N
t )
]

dµNρ (ηN )

=

∫
Ê(x,σ)

[
D(δ(X̂t,σ̂t), η

N )
]

dµNρ (ηN )

= Ê(x,σ)

[
ρ( X̂tN , σ̂t)

]
≤ ||ρ||∞.

Similarly for the second inequality, we have that

EµNρ
[
ηNt (x, σ)2

]
=

∫
EηN

[
D(2δ(x,σ), η

N
t ) +D(δ(x,σ), η

N
t )
]

dµNρ (ηN )

=

∫
Ê(x,σ),(x,σ)

[
D(δ

(X̂
(1)
t ,σ̂

(1)
t )

+δ
(X̂

(2)
t ,σ̂

(2)
t )

, ηN )+D(δ
(X̂

(1)
t ,σ̂

(1)
t )

, ηN )
]
dµNρ (ηN )

= Ê(x,σ),(x,σ)

[
ρ(
X̂

(1)
t

N , σ̂
(1)
t )ρ(

X̂
(2)
t

N , σ̂
(2)
t ) + ρ(

X̂
(1)
t

N , σ̂
(1)
t )
]

≤ ||ρ||2∞ + ||ρ||∞.

2

Now we will define the processes M φ
t (πN ) and MN,φ

t (πN ) the same way as
in (3.3) and (5.1) respectively. We will again show that we can exchange these
processes in the limit.

Proposition A.2. For all t ≥ 0 and φ ∈ C∞c,S , we have that

lim
N→∞

E
[∣∣M φ

t (πN )−MN,φ
t (πN )

∣∣] = 0.

Proof. Through similar calculations as in the proof of Proposition 5.1, we find
that

LNπ
N
s (φ) = πNs (Aφ) +R3(φ,N, s). (A3)

HereR3(φ,N, s) is the error term of the Taylor approximations, which is bounded
as follows

|R3(φ,N, s)| ≤ 1

N2

∑
(x,σ)∈VN

ηNs (x, σ)
(
κ||φxxx||∞ + λσ2||φxx||∞

)
, (A4)
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and so by (A1)

lim
N→∞

E
[∣∣M φ

t (πN )−MN,φ
t (πN )

∣∣]
= lim
N→∞

∫ t

0

E
[
|R3(φ,N, s)|

]
ds

≤ lim
N→∞

1

N2
t|VN | · ||ρ||∞

(
κ||φxxx||∞ + λσ2||φxx||∞

)
= 0,

which concludes the proof. 2

Lastly we will prove that the martingale MN,φ
t (πN ) actually vanishes in the

limit.

Lemma A.3. For any φ ∈ C∞c,S we have that

lim
N→∞

E
[

sup
t∈[0,T ]

∣∣MN,φ
t (πN )

∣∣2] = 0.

Proof. First of all, by Doob’s maximal inequality, we have that

E
[

sup
t∈[0,T ]

∣∣MN,φ
t (πN )

∣∣2] ≤ 4E
[(

MN,φ
T (πN )

)2]
.

Since MN,φ
t (πN ) is a mean-zero martingale, this expectation is equal to the

expectation of the quadratic variation of MN,φ
t (πN ), i.e.,

E
[(

MN,φ
T (πN )

)2
]

= E

[∫ T

0

ΓN,φs (πN ) ds

]

=

∫ T

0

E
[
ΓN,φs (πN )

]
ds,

where ΓN,φs is as defined in (5.2). By using the same calculations to get (5.14)
we find that

ΓN,φs (πN ) =
2κ

N2

∑
(x,σ)∈V

ηNs (x, σ)(∂xφ( xN , σ))2

+
1

N2

∑
(x,σ)∈V

∑
σ′∈S

c(σ, σ′)ηNs (x, σ)(φ( xN , σ
′)− φ( xN , σ))2

+R4(φ, s,N, σ),

with R4(φ, s,N) bounded as follows

|R4(φ, s,N)| ≤ κ 1

N4

∑
(x,σ)∈VN

ηNs (x, σ)(κ||φxx||∞ + λσ||φx||∞).
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By dominated convergence and (A1) we can then conclude that

lim
N→∞

E
[(

MN,φ
T (πN )

)2]
= lim
N→∞

∫ T

0

E
[
ΓN,φs (πN )

]
ds = 0,

and the result follows. 2

A2. Tightness

We now prove the tightness result for the sequence {πN : N ∈ N}.

Proposition A.4. {πN : N ∈ N} is tight in D([0, T ]; M).

Proof. In the space D([0, T ]; M) we can prove tightness by showing that the
following two assertions hold.

B.1 For all t ∈ [0, T ] and ε > 0 there exists a compact K(t, ε) ⊂M such that

sup
N∈N

P
(
πNt /∈ K(t, ε)

)
≤ ε.

B.2 For all ε > 0
lim
δ→0

lim sup
N→∞

P
(
ω(πN , δ) ≥ ε

)
= 0,

where
ω(α, δ) = sup{d

(
αs, αt

)
: s, t ∈ [0, T ], |t− s| < δ},

and d is the metric on M given by

d
(
α, β

)
=

∞∑
j=1

2−j (1 ∧ |α(φj)− β(φj)|)

for some specific choice of test functions φj ∈ C∞c,S .

We start by proving B.1. Fix ε > 0 and t ≥ 0, and for some C > 0 let KC

be the following set

KC =
{
µ ∈M : µ([−k, k]× S) ≤ C(2k + 1)k2 for all k ∈ N

}
.

By [14, Proposition A.25], this is a compact set in M, and by Markov’s inequality
we now have that

P(πNt ([−k, k]× S) ≥ C(2k + 1)k2)

≤ 1

C(2k + 1)k2
E
[
πNt ([−k, k]× S)

]
=

1

C(2k + 1)k2N

∑
(x,σ)∈[−kN,kN ]×S

E
[
ηNt (x, σ)

]
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≤ 1

C(2k + 1)k2N
(2k + 1)N |S| · ||ρ||∞

=
1

Ck2
|S| · ||ρ||∞.

Here we have used the inequality in (A1). Therefore

P(πNt /∈ KC) ≤
∞∑
k=1

P(πNt ([−k, k]) ≥ C(2k + 1)k)

≤ 1

C
|S| · ||ρ||∞

∞∑
k=1

1

k2
<∞.

By now taking C big enough, we then have that for all N ∈ N that P(πNt /∈
KC) ≤ ε, which finishes the proof of B.1.

In order to prove that B.2 holds, note first that

ω(πN , δ) = sup
s,t∈[0,T ]
|t−s|<δ

∞∑
j=1

2−j
(
1 ∧

∣∣πNt (φj)− πNs (φj)
∣∣)

≤ 2−m +

m∑
j=1

sup
s,t∈[0,T ]
|t−s|<δ

2−j
(
1 ∧

∣∣πNt (φj)− πNs (φj)
∣∣)

≤ 2−m +

m∑
j=1

sup
s,t∈[0,T ]
|t−s|<δ

∣∣πNt (φj)− πNs (φj)
∣∣ .

(A5)

Here we have taken m arbitrarily, so the first term can be made as small as we
want. We now want to show that the expecation of the sum vanishes as we let
N → ∞ and δ ↓ 0. Afterwards, the claim can be shown by using the Markov
inequality.

Note first that we have the following,

E
[

sup
s,t∈[0,T ]
|t−s|<δ

∣∣πNt (φj)− πNs (φj)
∣∣2]

= E
[

sup
s,t∈[0,T ]
|t−s|<δ

∣∣∣MN,φj
t (πN )−MN,φj

s (πN )−
∫ t

s

LNπ
N
r (φj) dr

∣∣∣2]

≤ 4E
[

sup
t∈[0,T ]

(
M

N,φj
t (πN )

)2
]

+ 2E
[

sup
s,t∈[0,T ]
|t−s|<δ

∣∣∣∫ t

s

LNπ
N
r (φj) dr

∣∣∣2].
(A6)
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By Lemma A.3, the first term goes to zero as N →∞. For the second term, by
filling in (A3) we find that∣∣∣∣∫ t

s

LNπ
N
r (φj) dr

∣∣∣∣2 =

(∫ t

s

(
πNr (Aφj) +R3(φj , N, r)

)
dr

)2

≤ 2

(∫ t

s

πNr (Aφj) dr

)2

+ 2

(∫ t

s

R3(φj , N, r, σ) dr

)2

.

(A7)

By the upper bound on R3(φj , N, r) in (A4) and by (A1), we can see that the
last term vanishes in expectation when N → ∞. For the other term we have
that

(∫ t

s

πNr (Aφj) dr

)2

=
1

N2

∫ t

s

∑
(x,σ)∈V

ηNr (x, σ) · (Aφj)( xN , σ) dr

2

.

Using that |t− s| < δ and applying Hölder a number of times, we find that(∫ t

s

πNr (Aφj) dr

)2

≤ 1

N2
|V Nφj |δ · ||Aφ||∞

∑
(x,σ)∈V Nφj

∫ T

0

(
ηNr (x, σ)

)2
dr.

Using the inequality in (A2), we find that

E
[

sup
s,t∈[0,T ]
|t−s|<δ

(∫ t

s

πNr (Aφj) dr

)2]
≤ 1

N2
|V Nφj |

2δT · ||Aφ||∞(||ρ||2∞ + ||ρ||∞)

= O(δ).

Therefore

lim
δ↓0

lim sup
N→∞

E
[

sup
s,t∈[0,T ]
|t−s|<δ

∣∣πNt (φj)− πNs (φj)
∣∣2]

= lim
δ↓0

lim sup
N→∞

E
[

sup
s,t∈[0,T ]
|t−s|<δ

(∫ t

s

πNr (Aφj) dr

)2]
= 0. (A8)

So, by going back to (A5) and using the Markov inequality, we get the following:

P(ω(πN , δ) ≥ ε) ≤ 1

ε

(
2−m +

m∑
j=1

E
[

sup
s,t∈[0,T ]
|t−s|<δ

∣∣πNt (φj)− πNs (φj)
∣∣ ]).
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By now taking m such that 2−m < ε2 and using (A8) we see that

lim
δ↓0

lim sup
N→∞

P(ω(πN , δ) ≥ ε) < ε,

which ultimately proves the tightness result. 2

A3. Proof of hydrodynamic limit

Now we have everything needed to prove the result.

Proof of Theorem 2.2. From the tightness of the sequence {PN : N ∈ N} we
know that there exists a subsequence {PNk : k ∈ N} that converges weakly

in the Skorokhod topology, i.e., PNk
w−→ P for some probability measure P on

D([0, T ]; M). If we can show that every convergent subsequence converges to
the dirac measure P = δπ with π the unique continuous path solving (2.8), then
the result follows.

First of all, by B.2, we immediately know that P is concentrated on con-
tinuous paths in D([0, T ]; M). Now define for φ ∈ C∞c,S , ε > 0 and T > 0 the
following set

H(φ, ε) :=

{
α ∈ D([0, T ]; M) : sup

t∈[0,T ]

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0

αs(Aφ) ds

∣∣∣∣ ≤ ε
}
.

Analogously as in [14, Lemma 8.7] one can prove that this set is closed in
the Skorokhod topology. Since the set H(φ, ε) is closed, we can apply the
Portmanteau Theorem to see that

P
(
H(φ, ε)

)
≥ lim sup

k→∞
PNk

(
H(φ, ε)

)
= lim sup

k→∞
P

(
sup
t∈[0,T ]

∣∣∣∣πNkt (φ)− πNk0 (φ)−
∫ t

0

πNks (Aφ) ds

∣∣∣∣ ≤ ε
)

= lim sup
k→∞

P

(
sup
t∈[0,T ]

∣∣∣M φ
t (πNk)

∣∣∣ ≤ ε)

= lim sup
k→∞

P

(
sup
t∈[0,T ]

∣∣∣MNk,φ
t (πNk)

∣∣∣ ≤ ε) .
Here we have used Proposition A.2 for the last equality. By Lemma A.3 and
the Markov inequality we then have that

P

(
sup
t∈[0,T ]

∣∣∣MNk,φ
t (πNk)

∣∣∣ > ε

)
≤ 1

ε2
E

[
sup
t∈[0,T ]

∣∣∣MNk,φ
t (πNk)

∣∣∣2]→ 0,

so P
(
H(φ, ε)

)
= 1. Since we took ε > 0 arbitrarily, we indeed find that P = δπ.

2
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