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Abstract. A numerical algorithm for the solution of the velocity-vorticity formulation
of Navier-Stokes equations is presented. This formulation results in splitting of fluid
flow into its kinematic and kinetic aspect. The Boundary Element Method (BEM) used
for the solution of flow kinematics results in an implicit calculation of vorticity values
at the boundary, whereas all transport equations are solved using Finite Element Method
(FEM). The combination of both numerical techniques is proposed in order to increase the
accuracy of computation of boundary vorticities, a weak point for a magjority of numerical
methods when dealing with velocity-vorticity formulation. Since the application of BEM
results in fully populated system matrices, also the flow kinematics computation is done
by combining BEM and FEM, the latter for computation of internal velocities, keeping
the CPU time and computer storage requirements at the level close to Finite Element
Method. To speed up the computation process and to distribute storage of integrals over
several processors the algebraic parallelization of kinematics was performed. Lid driven
flow in a cubic cavity was computed to show the robustness and versatility of the proposed
numerical formulation. Results for Reynolds number value Re=100 and Re=1000 show
good agreement with benchmark results.

1 Introduction

The velocity-vorticity formulation of the Navier-Stokes equations is gaining attention
due to several advantages over other formulations, most notably primitive variables formu-
lation, especially due to the absence of pressure term in the vorticity transport equation
and accurate description of transport phenomena of higly vortical turbulent flows. How-
ever, there are several drawbacks of the formulation, most notably the problem with
accurate computation of vorticity values at the solid walls and the high computational
cost due to the solution of three transport equations for vorticity field. In this paper,
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the solution to the first problem, computation of boundary vorticity values, is solved by
applying the Boundary Element Method to the solution of flow kinematics equation. In
the field BEM-FEM numerical simulation with velocity-vorticity formulation of Navier-
Stokes equations the contributions were made by Young et al. [1], where BEM was used
to obtain boundary velocities and normal velocity fluxes implicitly and then explicitly
the internal velocities and boundary vorticities were computed by derivation of kinematic
integral equations. Slightly different approach was used by Brown and Ingber [2] and
Brown et al. [3] where internal velocities were computed using regular form of general-
ized Helmholtz decomposition and boundary conditions for vorticity transport equation
were applied using vortex sheet strengths. Vorticity transport equation was solved with
Galerkin FEM. Combined algorithm was also developed by Zuni¢ et al. [4] for planar
geometries, where the detailed comparison of different approaches to computation of in-
ternal velocities was presented. In this contribution we develop the 3D boundary element
integral representation of flow kinematics, with the vorticity values as unknowns in the
system of equations, thus allowing the implicit computation of the boundary vorticity val-
ues, also on the solid walls. Since the application of the BEM technique to the solution of
other transport equations including computation of internal velocities in flow kinematics,
would lead to problems with computer memory requirements, the FEM was selected as
approximation method for this part of the governing equations.

In the following, the derivation of integral representations of governing equations, us-
ing BEM and FEM, is explained, since these equations represent the starting point for
discretisation and numerical solution. This is followed by explanation of parallel solution
strategies for problems with large memory demands of the BEM part of computational
algorithm. The contribution ends with the presentation of computational results for the
3D lid driven cavity flow.

2  Velocity-Vorticity formulation of Navier-Stokes equations

The dynamics of a viscous incompressible fluid flow is partitioned into its kinematic
and kinetic aspect through the use of derived vector vorticity field function, see Skerget
et al. [5] and Ravnik et al. [6].

Vorticity w;(rj,t) is defined as a curl of the velocity field v;(r;,t)

S=Vxv V-3=0, (1)
resulting in the following elliptic Poisson equation for the velocity vector
V20 +V xd=0. (2)

Vorticity kinetics is governed by vorticity transport equation, which is obtained as a curl of
momentum equation and may be, in the case of incompressible viscous fluid flow, written
as

(VB = (@3- V)T+ V33 . (3)
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We seek a solution of equations (2) and (3) in the domain €2, which satisfies the initial
conditions

T=10), =@ =V X0 att= (4)
and the boundary conditions
T=1r, &= (Vx0)|r att>0 (5)

on the boundary I' of the domain 2.

3 Boundary element integral representation of kinematics

The singular boundary integral representation of the kinematics can be formulated
using the Green theorems for scalar functions or weighting residuals technique. The
integral form of Poisson type equation (Wu and Thompson [7], Wrobel [8]) is used on the
kinematic equation (2), yielding

c(E)T(E) + /F (7 - 9 )urdl = /F (7 - ¥)7dT + /Q (V x &)urdQ, (6)

with u* = u*(&, S) denoting the elliptic Laplace fundamental solution, £ is the source point
on boundary I', S integration point in domain €2 (including T"), ¢(&) geometry coefficient
and 7 outward pointing normal to the boundary. Geometry coefficient can be generally
computed as © /4w, where O is the internal solid angle at point £ in steradians. Laplace

fundamental solution is ]

ur(§,S) = (€, 9)’ (7)

where £ € I' is source point, S € () is integration point and r distance between the source
and the integration point.

Figure 1: Computational domain.

The final integral form of the kinematic equation, employing the derivatives of the
fundamental solution, see also Skerget et al. [5] and Ravnik et al. [6], is

dOTE) + [(Vur -7 dl = [(Vu* x i) x Tdl + | & x Vu* dS. (8)
/ / /
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4 Finite element integral representations

In the computational algorithm, FEM will be used for the solution of transport equa-
tion as well as solution of velocity values away from boundary, in the interior of the
computational domain.

In the case of flow kinematics, where FEM will be used for computation of internal
velocity values, we derived the integral representation by following the Galerkin weighted
residual method, Taylor and Hughes [9], Gresho and Sani [10], multiplying the equation
(2) by the weighting function N and integrating it over the domain:

/Nv2 dQ+/N X @) dQ = 0. 9)

Next we apply Green’s first theorem to the diffusion term to obtain a weak formulation
of kinematic Poisson equation as

/VN~VUdQ—F/N(ﬁ~ ) dr — /N 3) d = 0. (10)

Equivalent procedure can be performed to obtain weak formulation of vorticity trans-
port equation. We multiply the equation (3) by the weighting function N and integrate
it over the domain (2, to obtain

/N dQ+/N V)& dQ = /N ﬁ)ﬁdQﬂ/Nv%de. (11)

Replacing time derivative with first order backward finite differences approximation

0d & — Wy
= _z i 1
ot At (12)

and applying Green’s first theorem to the diffusion term, one can obtain a weak formula-
tion of kinetic equation

At/NwdQ+/N V)@ dQ = /N )7 dO
—v/VN-VcUdQJrV/N(ﬁ-VQ)dF+E/N<DT_1dQ, (13)
Q

where At is the size of time step and subscript 7 — 1 denotes vorticity value in previous
time step.
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5 Parallel algorithm

Discretisation of the equation (8) followed by application of boundary conditions results
in a system of linear equations Ax = b. System matrix A is fully populated and non-
symmetric.

In this system each row represents discretised equation that belongs to one boundary
node. With the division of the matrix rows over the several processors we divide the
boundary into equally sized patches.

System of equations divided between available processors is solved using a iterative
solver with diagonal preconditioning.

There are four basic matrix and vector operations used in each iteration of iterative
solver that need to be adopted for parallel execution:

1) matrix-vector product {y} = [A]{z}: prior to the multiplication the commu-
nication step (data exchange) is requested where the non-local data from vector z are
obtained.

{2} = allgatherv({z}")
{y}t = [z}, (14)
where subscript G and L means the global and local part of data;

2) vector update {y} = {w} + a{x}: there are only local element by element opera-
tions present and no communication is needed

{y}" = {w}" + ofz}"; (15)

3) scalar (dot) product a = {y}T{z}: at first only local parts of vectors are multi-
plied and local sum is calculated and second all partial sums are summed together and
global sum is sent to all processors (allreduce)

af = {y} " {z}", (16)
a® = allreduce(a”) ; (17)

4) preconditioning step {y} = [@Q]{z}: when using a diagonal preconditioning only
local part of operations occurs and no communication is needed

{y}" = Q" {«}". (18)
With those four operations the iterative solver can be executed in parallel. For the
data exchange the MPI message passing library was used [11].
6 Computational algorithm

First, the kinematic equation (8) is discretised using boundary element method and
then rearranged to give boundary vorticities. We use the elliptic Laplace fundamental
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solution. Domain discretisation is obtained using 8 node trilinear domain cells, while
boundary discretisation is obtained using 4 node bilinear boundary elements. Discreti-
sation procedure of partial differential equation leads to the system of linear equations
with fully populated non-symmetric matrix. This system is solved either directly with LU
decomposition or iteratively with BiICGSTAB(L) iterative solver, Sleijpen and Fokkema
[12], with diagonal preconditioning.

The kinematic equation (10) written in terms of internal velocities and kinetic equation
(13) are discretised using finite element method. The finite element part is implemented
using Galerkin weighted residual method. Boundary and domain interpolation functions
were the same as for boundary element method. Discretisation procedure of partial dif-
ferential equation leads to sparse system of linear equations. Matrices are stored in com-
pressed row storage (CRS) form and are solved using BICGSTAB(L) iterative solver with
incomplete LU (ILU) preconditioning.

The solution algorithm can be described as follows:

1. Initialize parallel environment and divide boundary.

2. Choose initial velocity () field, compute initial vorticity (o) field using equation
(1), set initial time level 7 = 0, set initial nonlinear iteration level i = 0.

3. Compute local part of BEM integrals and FEM integrals. Form local BEM system
matrix.

4. Time loop, 7:= 7+ 1.
5. Nonlinear iteration loop, i := i + 1.
6. Flow kinematics:

(a) Solve equations (8) by BEM for boundary vorticities, using internal vorticities
from previous nonlinear iteration step (form local RHS vector and run parallel
iterative solver).

(b) Solve equations (10) by FEM for domain velocities, using new boundary vor-
ticities to form right hand side vector. It is also possible to use explicit BEM
calculation, however this requires calculation and storage of a large number of
integrals. Due to limited computer memory, we used FEM instead.

7. Flow kinetics, vorticity transport:

(a) Solve equations (13) by FEM for domain vorticities, using the new velocity
field to evaluate convection contribution and use boundary vorticities from
kinematics as boundary conditions.

(b) Use underrelaxation 0 < ¢ < 1 for computing new domain vorticity values
Wiy1 = i1 + (1 — ¢)d;.
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8. Check convergence:

(a) Compute error = ||&;11 — Gill2/]|Tiv1]]2-

(b) If error is greater then predefined e go to step 5.

9. Finish time loop:

—

(a) Store time step values &, = dJjy1, Uy = Uiyq.

(b) If time step 7 is less than maximum number of time steps NT' go to step 4.

10. End of computation.

7 Parallel results

As a test example the lid driven flow in a cubic cavity was used. The Reynolds number
value was defined on cavity size and was chosen Re = 100. Mesh nodes was equally
distributed and the mesh size was 16 x 16 x 16, which gives in total 4913 nodes. The total
amount of memory storage for integrals was 245 MB.

NPR | CPU [s] | SPD | EFF
Integration
1 346.24 | 1.00 | 1.00
4 86.15 | 4.02 | 1.00
8 4795 | 7.22 | 0.90
16 24.50 | 14.13 | 0.88
Right hand side
1 65.22 | 1.00 | 1.00
4 18.37 | 3.55 | 0.89
8 714 913 | 1.14
16 3.35 11947 | 1.22
Solver
1 86.16 | 1.00 | 1.00
4 23.60 | 3.65 | 0.91
8 1244 | 6.93 | 0.87
16 10.32 | 8.35 | 0.52

Table 1: Speedup and efficiency factors. NPR is number of processors, CPU processor time in seconds,
SPD speedup factor ( SPD = CPU(1)/CPU(NPR)) and EFF efficiency factor (EFF = SPD/NPR).

In the Table 1 cpu times are presented for different number of processors. It can be
observed that integration as well as right hand side vector formation are well parallelized
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operations since there is no need for any communication. The only source of efficiency
loses is imbalance between domain sizes. In case of RHS vector formation we can observe
a superlinear speedup, which can be explained with better usage of processor cache due
to smaller vector sizes. Efficiency of the solver is gradually decreasing due to increased
amount of communication.

8 Lid driven cavity

In our computation we used a cubic cavity with the edge size L = 1. The Reynolds
number is based on the cavity’s edge size and the top lid velocity, Re = v, L/v, and was
selected to be Re = 100 and Re = 1000. The mesh size used were 8 x 8 x 8, 16 x 16 x 16
and 32 x 32 x 32 elements, all with maximum to minimum element length ratio of 8, with
elements clustered near the walls.

Velocity boundary conditions were:

e z = 1: moving wall (v, =1, v, = v, =0),
[} z:(),:v:l,y:(),yzl,z:(): nOShp(Uwzvyzvz:O).

Prescribed convergence criterium for nonlinear iterations was ¢ = 1 - 1075, Test case
with Re = 100 was computed with time step At = 2 and underrelaxation factor ¢ = 0.2,
test case with Re = 1000 was computed with time step At = 0.2 and underrelaxation
factor ¢ = 0.2. For the prescribed time step size on the finest mesh test case with Re = 100
needed 15 time steps to reach steady state and for Re = 1000, 375 time steps.

Both test cases were computed with initial conditions of v, = v, = v, = 0. Prescribed
tolerance for iterative solver was 4, = 107% Results were compared to the results of
Yang et al. [13].

Figure 2: Isosurface of magnitude of velocity |¥| = 0.13 for different Reynolds number values, Re = 100
left and Re = 1000 right.
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Figure 3: Velocity vectors on center-planes for different Reynolds number values.

Figure 2 shows isosurfaces of absolute velocity [v] = ,/v2 + v2 + vZ = 0.13 for different
Reynolds number values. It can be seen, that the high speed core of the fluid becomes
narrower with the increasing of the Reynolds number value.

Figure 3 shows comparison of velocity vectors on center-planes for different Reynolds
number values.

Figure 4: Streamtraces for Re = 1000.
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Figure 5: Velocity profiles along centerlines for different mesh sizes, Re = 100 top left, Re = 400 top
right and Re = 1000 bottom.

It can be seen that in the z — y planes a pair of vortices appear near the centerline
of the cavity and move out towards the lover corners as the Reynolds number increases.
Additional two vortices appear in the top corners at Re = 1000. In the x — y plane fluid
at first flows uniformly backwards and with the increasing of the Reynolds number value
two vertical vortices appear. Similar behaviour of the velocity field was reported also by
Yang et al. [13] and Wong and Baker [14].

Streamtraces are presented in figure 4 and qualitatively agrees well with the results of
Li et al. [15].

The quantitative evaluation of the results is shown in figure 5, where we compare the
v, velocity along © = y = 0.5 centerline and v, velocity along y = z = 0.5 centerline for
different mesh sizes and different Reynolds number values. The mesh refinement shows
that the coarsest mesh is too coarse, although it gives qualitatively reasonable results.
The finest two meshes are in close agreement with the benchmark solution of Yang et al.

13].

9 Conclusions

The 3D BEM-FEM approach to the numerical solution of Navier-Stokes equations in
velocity-vorticity formulation was presented. It consists of implicit calculation of bound-
ary vorticities by means of Boundary Element Method and calculation of vorticity trans-
port by means of Finite Element Method. For the computation of internal velocities the
approach of solving the implicit system of equations, resulting from the Finite Element
Method discretisation of elliptic Poisson velocity equation was used. Parallelisation of
flow kinematics computation was done in order to speed-up the computations. Numeri-

10
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cal testings of the algorithm on the 3D lid driven cavity flow for Re=100 and Re=1000
showed, that the proposed combination of BEM and FEM is an accurate computational
tool for the numerical solution of 3-D incompressible Navier-Stokes equations.
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