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Abstract

Nonlinear finite element analysis (NLFEA) is an increasingly relied upon form of structural anal-
ysis in the engineering industry. Yet, it is greatly hindered by convergence and bifurcation issues
in the face of brittle damage and in larger structures where many integration points can require
damaging in a single load step. Sequentially linear analysis (SLA) is an attractive alternative form
of finite element analysis in these situations due to its inherent robustness. By discretising the
material softening curve via a so-called saw-tooth relation, whereby the strength and stiffness of
the material is decreased in a step-wise fashion, the issue of negative tangent material stiffness
values creating ill-conditioning of the finite element formulation is removed. Each linear analysis
identifies the single most critical integration point in the model, scales the load such that the inte-
gration point reaches its capacity, and applies a damage increment to the integration point. In this
way the load on the structure is calculated directly as the load which corresponds to the level of
damage, thereby removing the need for an iterative scheme to seek equilibrium between the inter-
nal and external forces of the structure. The combination of these characteristics of SLA rids the
finite element analysis of convergence and bifurcation issues, as well as introducing additional
benefits such as automatically triggering asymmetric damage in perfectly symmetric structures
and ease of modelling post-peak behaviour. As it is still in the stages of development, SLA is yet
to be validated quantitatively and objectively across a range of experimental cases.

The aim of this thesis was to objectively and quantitatively assess the accuracy and robustness of
two-dimensional SLA in comparison to NLFEA, for a range of experiments of reinforced concrete
structures with proportional and non-proportional loading schemes. Non-proportional loading
refers to when two or more load cases act on a structure that do not increase or decrease in a
proportional way. Accuracy was defined as the degree to which the finite element model’s results
match the experimental results. Robustness was defined as the method’s ease of completing the
computation and objectivity with respect to user-specified input. In selecting the benchmarks, ex-
periments with brittle or quasi-brittle failures were targeted. Two experiments with proportional
loading (a shear beam and a corbel) and three with non-proportional loading (a shear wall, a
flexural beam, and a frame) were selected as the benchmarks. The frame is a single-span, double-
storey frame, and thus consists of more structural elements than the other benchmarks. Each
experiment chosen had previously been analysed using NLFEA by either the experiment conduc-
tor or another in academia.

To model non-proportional loading in this thesis, the double load multiplier strategy was used,
whereby the initial load case is kept constant with a load multiplier of 1, and the reference (vari-
able) load case is scaled using the critical load multiplier, determined using constrained maximi-
sation. In analysis steps where no critical load multiplier for the reference load exists such that the
stress state does not violate the constitutive model in any of the integration points, the analysis
temporarily reverts to a proportional loading scheme, in which the last successful load combina-
tion (i.e. the summation of the scaled initial and reference load) is scaled. The analysis then returns
to the non-proportional loading scheme the next time that a valid critical load multiplier for the
reference load exists. This interim period is referred to as intermittent proportional loading.

The five benchmark cases were modelled with SLA using a consistent solution strategy. The ma-
terial constitutive models were discretised using the (standard) ripple band width saw-tooth law,
which defines an upper and lower band of the softening and plasticity relations via a factor p of
the material strength. Four performance parameters were devised to assess the performance of
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the SLA and NLFEA for each benchmark in the pre-peak, peak and post-peak stages, by compar-
ing the modelling of the structural stiffness, peak load, ductility and ability to model post-peak
behaviour to experimental results (where applicable).

The accuracy and robustness of the SLA results were comparable to that of the NLFEA. On aver-
age, SLA performed better than the NLFEA in estimating the structural capacity and in modelling
the post-peak behaviour. Conversely, NLFEA outperformed SLA on average in the accuracy of
the pre-peak stiffness and ductility modelling. The computational ease of the SLA method was
deemed greater than that of the NLFEA for using a consistent solution strategy across a series of
cases. Several limitations of the SLA in its current state of development were observed.

Inhibitors to the method’s accuracy include the inaccurate modelling of stress reversal, which cre-
ates unrealistic crack openings and closures; delayed and limited yielding of reinforcement due to
the discretisation of the Von Mises plasticity, resulting in overestimation of structural capacity and
underestimation of ductility; lack of consideration of geometrical non-linearity; and small inaccu-
racies in the modelled saw-tooth relations resulting in some overestimation of reduced strength
values during material softening and spurious transverse crack strains. Additionally the accu-
racy was limited by the simplification of the concrete material model and use of the linear tensile
softening relation.

Inhibitors to the robustness of the SLA included lack of objectivity to some user-specified input
and intermittent proportional loading limiting the amount of post-peak behaviour successfully
modelled in the non-proportionally loaded benchmarks.
Sensitivity to mesh refinement, mesh alignment bias, concrete fracture energy input, and the re-
inforcement saw-tooth p-factor was observed in all benchmark cases to varying extents. In par-
ticular it was deemed crucial to use triangular elements as opposed to quadrilateral elements
and the concrete material properties of the fib Model Code 2010 as opposed to those of CEB-FIP
Model Code 1990 in order to reliably predict the failure mode and capacity to an adequate level
of accuracy. In one benchmark, the non-proportionally loaded flexural beam, extreme sensitiv-
ity resulting in premature failure was observed with respect to most input parameters, including
(uniquely) the concrete saw-tooth p-factor and the use of a loading plate to model the mid-span
point load. This benchmark undergoes a lot of stress reversal during the loading of the reference
load case, and the inaccurate stress reversal algorithm in the SLA was identified as the cause of
these fatal sensitivities.

Intermittent proportional loading (IPL) occurred in all three non-proportionally loaded bench-
marks in the post-peak region. After modelling a portion of the drop in load-bearing capacity,
IPL began and the full load combination was never recovered for the remaining duration of the
analysis. In one benchmark, the flexural beam, IPL was observed in the pre-peak region also for
short bouts before recovering the full load combination. Upon reaching the peak load, IPL was
not occurring. Thus the IPL was deemed to not be a hindrance to the capacity of SLA to model
the failure mode and peak load, but was deemed to prevent the full post-peak behaviour from
being modelled.

Overall, SLA was found to have a comparable level of accuracy with NLFEA in modelling re-
inforced concrete structures in both proportional and non-proportional loading scenarios, with
many benefits observed in terms of increased robustness. The inaccurate stress reversal algo-
rithm can severely affect the robustness of non-proportionally loaded cases and resolving this
inaccurate formulation of crack closure in SLA should be a priority in future developments.
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Chapter 1

Introduction

1.1 Background and Motivation
The modern world of engineering increasingly relies on technological forms of structural analysis.
Currently the dominant method in use is non-linear finite element analysis (NLFEA). However,
there is a growing desire for an easier and more reliable method than NLFEA to model damage
of quasi-brittle materials and assess the structural safety of large-scale quasi-brittle structures.
Quasi-brittle materials, such as concrete and masonry, experience strain softening when the ma-
terial strength is exceeded and differ from purely brittle materials in that they exhibit measurable
deformation before failure. Quasi-brittle structures, such as reinforced concrete structures, fail
due to fracture rather than plastic yield but undergo significant structural damage (brittle and/or
ductile) before failure occurs. NLFEA struggles to achieve convergence when modelling brittle
behaviour due to sudden structural snap-backs and negative material tangent stiffness values
inherent to brittle damage. When multiple integration points exceed the material strength in a
single load step - as occurs in severe brittle damage, when modelling post-failure and with in-
creasing frequency for larger quasi-brittle structures - NLFEA is greatly hindered by convergence
and bifurcation issues. As such, modelling quasi-brittle structures with NLFEA requires a great
deal of user knowledge and computational expense.

Sequentially linear analysis (SLA) is an alternative method of finite element analysis. Instead of
modelling non-linear material behaviour with an iterative approach in one analysis, SLA per-
forms multiple linear analyses in which a single damage increment is applied in each analysis.
Each analysis applies a reference load; identifies which single integration point (IP) in the dis-
cretised structure is most critical; loads the structure with a factor of the reference load such that
the critical IP reaches its capacity; and applies a damage increment to the critical IP by means
of decreasing the material strength and stiffness according to a discretised constitutive relation,
defined by a so-called saw-tooth law. The analysis ceases after the application of each damage in-
crement before commencing the next linear analysis on the damaged model.

Using this method, no iterative scheme is required to find the equilibrium between internal and
external forces since the load-displacement response is calculated directly with the linear equa-
tions of motion. Thereby, bifurcation and convergence issues are circumvented. This characteris-
tic of SLA is particularly beneficial when multiple cracks initiate or propagate at one load level,
since this is one cause of bifurcation and convergence issues in NLFEA. Therefore the SLA method
is extremely appealing for modelling quasi-brittle structures, especially those of larger scale, due
to its relative ease of execution.

For commercial use, SLA must be validated. Validation refers to the degree of correlation between
the calculated behaviour and the true physical behaviour, i.e. checking that the correct equations
are being used. Validation differs to verification, which instead refers to quantitatively assessing
the accuracy with which equations of the mechanical model are solved, i.e. checking that the
equations are being solved correctly. SLA has not yet been validated in an objective way across
a selection of cases of quasi-brittle structures. It is of great interest to validate SLA quantitatively

1



2 Chapter 1. Introduction

using a consistent solution strategy for both proportional and non-proportional loading cases
to be able to objectively compare its performance to NLFEA, and to ascertain the legitimacy of
the method for commercial use. It is of particular interest to validate SLA for modelling non-
proportional loading, since this is more representative of loading cases in real-life structures and
is computationally more complex to analyse. Non-proportional loading refers to two or more
load cases acting on a structure that do not increase or decrease proportionally, for example when
a structure is subjected to a dead load and a live load.

1.2 Research Goals and Scope
This thesis will seek to validate two-dimensional SLA by quantitatively assessing the robustness
and accuracy of SLA in comparison to NLFEA for five benchmark cases of previously conducted
experiments. The selected benchmark cases are all reinforced concrete structures with either pro-
portional or non-proportional loading. Only monotonic loading is considered (not cyclic). A
shear beam and a corbel are selected as the proportionally loaded benchmarks, and a shear wall,
a flexural beam and a frame are selected as the non-proportionally loaded benchmarks. A con-
sistent solution strategy in SLA is used to create comparable results. The NLFEA results used for
comparison in each benchmark are from previous analyses completed by others in academia. In
order to validate the robustness and accuracy of SLA, it is essential to first define what is meant
by these two terms.

Robustness shall refer to the method’s ease of completing the computation until complete failure of
the specimen, and objectivity with respect to user-specified input. Ease of completing the compu-
tation entails being unhindered by convergence problems, for example when encountering brittle
behaviour and multitudes of damage in large scale models. It also refers to the amount of time
and effort required by the user to set up the analysis such that it runs successfully to completion,
and the computation time for the analysis to be completed. Objectivity entails replicability of
results by another user using the same software with variations in the user-specified input, thus
implying that not a great deal of “skill” from the user is required in order to successfully complete
the analysis.

Accuracy shall refer to the degree to which the finite element model’s results match the experi-
mental results. This entails the degree to which the modelling of the crack patterns and damage,
stiffness of the overall structure, peak load, failure mode and post-peak response correspond to
the experimental results. Often within academic discussion of finite element modelling, accuracy
refers to sensitivity of the analysis to aspects of discretisation, for example mesh size and mesh
directional bias. However, as detailed above, in this thesis objectivity to user specified input is
not considered a characteristic of accuracy. To arrive at the same solution independent of certain
decisions made by the user is instead a characteristic of robustness. Whether or not this unique
solution models the realistic behaviour of the specimen well is a matter of accuracy.

The robustness and accuracy of the finite element models are assessed in three regions: pre-peak,
peak and post-peak. Three uncertainty factors will quantify the accuracy of the finite element
analyses, in the form of a ratio of the experimental to analytical results equal to more or less than
unity. For the pre-peak behaviour, the accuracy of the modelled stiffness of the structural response
shall be assessed by comparing the secant stiffness of the analysis’ and experiment’s results at
two load stages. The accuracy of the modelling of the peak load will be assessed using the peak
load uncertainty factor, which is a ratio of the experimental and analytical structural capacity. The
ductility uncertainty factor shall measure the accuracy of the predicted maximum displacements
compared to that of the experiment.

An additional performance parameter shall assess an aspect of robustness. The post-peak mod-
elling factor will calculate the percentage of the drop in force modelled or recorded after reaching
peak load. The percentages from the experiments and the analyses can then be compared to es-
tablish the extent to which the analyses successfully model the post-peak behaviour.

By nature of their objectivity and quantification of specific results, these performance parameters
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do not fully succeed in representing the strengths as well as flaws of the analytical methods and re-
sults. For example they do not allude to the modelled failure mode, crack patterns, loads a which
damage events occur or the ability of the finite element method to capture brittle snap-backs in
the structural response. Nor do they represent computational ease in terms of convergence dif-
ficulties and time required for post-processing, or sensitivities of the analysis to user-specified
input. Thus the results from the analytical models shall also be discussed qualitatively.

In summary, this thesis seeks to objectively assess the accuracy and robustness of SLA by ad-
dressing the following research question and subquestions:

1. Is two-dimensional SLA an accurate and robust finite element modelling method for the
structural analysis of reinforced concrete structures under proportional and non-proportional
loading?

(a) How does the performance of SLA qualitatively and quantitatively compare to that of
NLFEA with respect to accuracy and robustness across the selected benchmarks, in the
pre-peak, peak and post-peak stages?

(b) What factors are inhibiting the accuracy and robustness of SLA?

(c) How successful is the use of the double load multiplier strategy for modelling non-
proportional loading in SLA?

1.3 Thesis Outline
After a critical discussion of the relevant literature in Chapter 2, the general method used in this
thesis is described in Chapter 3. Chapters 4 - 8 detail the method and results of the experiment,
NLFEA and SLA for each of the five benchmark cases. The results from the SLA are presented
and compared qualitatively to those of the NLFEA and experiment. In Chapter 9, the accuracy
inhibitors in the SLA are discussed and the accuracy of the SLA compared to the NLFE method is
evaluated using the objective performance parameters and qualitative comparisons. In Chapter
10 the robustness of the SLA method is discussed by outlining the sensitivities observed during
the analyses, detailing observations regarding computational ease of the SLA, and comparing the
robustness observed in the SLAs to the reported robustness of NLFEA. In Chapter 11, conclusions
are made regarding the validity of SLA, the limitations of the method in its current form with
respect to accuracy and robustness, and its overall performance compared to NLFEA. Finally,
recommendations are made for future research and development of SLA in Chapter 12.



Chapter 2

Background Theory

Literature relevant to this thesis can be divided into two parts, that of sequentially linear analysis
(SLA) and that of modelling uncertainty. The first is summarised in Section 2.1 and the latter in
Section 2.2.

2.1 Sequentially Linear Analysis
The method and development of SLA is described in detail in literature (16; 26; 37; 40; 41; 44; 43;
46). SLA is an event-by-event procedure first proposed by Rots (40) as an alternative finite element
method with an inherently different methodology to non-linear finite element analysis (NLFEA).
NLFEA is an incremental-iterative procedure modelling material non-linearity with continuous
material constitutive models, while SLA is simply a series of linear analyses using discretised
material models. While NLFEA discretises the load into increments (in the form of force, dis-
placement, arc-length or time), and iteratively seeks for force equilibrium in each element of the
structure, SLA uses a discretised constitutive material model to damage the most critical integra-
tion point in each linear analysis, and then scales the load accordingly. The inherent differences
enable SLA to circumvent robustness issues common to NLFEA, which is particularly advanta-
geous when modelling quasi-brittle behaviour and larger scale structures with multiple structural
elements.

With the new finite element modelling processes used in SLA, additional terminology arises. In
NLFEA, each “analysis step” refers to a load increment being applied and equilibrium being
sought. In SLA the overall analysis consists of numerous consecutive linear analyses. These in-
dividual analyses are commonly referred to in literature as a “cycle”, “(damage) event”, “linear
analysis” or also as an “analysis step”. Analysis step is not such an appropriate term in the case
of SLA, since they are not steps but individual analyses, but in discussion of finite element mod-
elling it is still an intuitive term. Thus, each linear analysis in the total SLA analysis in this thesis
shall be referred to as an analysis step.

The method of SLA shall be explained in Section 2.1.1 for proportional and non-proportional
loading schemes, followed by a discussion of the theoretical benefits of the method compared to
NLFEA in Section 2.1.2. Section 2.1.3 describes how the solution strategy input of SLA differs to
that of NLFEA, explains the various formulations of the saw-tooth relation and details findings
in academia regarding the sensitivity of SLA to certain input parameters. Finally in Section 2.1.4,
differences in the performance of SLA and NLFEA observed in previous studies are presented.

2.1.1 SLA Method
The method of SLA varies for proportional and non-proportional loading cases. The general
method is described for proportional loading, and then the method is altered and expanded on
for non-proportional loading.
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2.1.1.1 Proportional Loading

The method of SLA for proportional loading is described by the following steps.

1. Model creation and discretisation
As in NLFEA, the physical problem is idealised into a model which is then discretised spa-
tially into finite elements.

2. Define the saw-tooth law
The saw-tooth constitutive relation, otherwise known as the step-wise secant material law,
is an integral part of SLA. It discretises the material constitutive model into a series of secant
stiffness branches and upper and lower bounds of strength along the softening curve. Each
branch k has a progressively smaller Young’s modulus and upper strength limit f+t than the
previous branch (see Figure 2.1). Equation 2.1 expresses the reduced Young’s modulus of
a secant branch Ek as a function of the damage parameter of the secant branch dk, which
varies from 0 for the first secant branch to 1 when full softening has occurred. A damage
increment is defined as the jump from one secant branch to the next. Figure 2.1a illustrates
that unloading of an integration point occurs along a branch and is thus always secant.
Various approaches for defining the saw-tooth relations are discussed in Section 2.1.3.

Ek = (1− dk)E0 (2.1)

(a) Discretised stress-strain
relation

(b) Step-wise reduction of Young’s
modulus

FIGURE 2.1: Illustration of the concept of the saw-tooth constitutive relation (46)

3. Apply a reference load and evaluate stress state
A reference load Fre f is applied to the model and the stresses in the elements are calculated
using a linear-elastic constitutive relation, as follows:σxx

σyy
σxy

 =
E0

1− v2
0

 1 v0 0
v0 1 0
0 0 1−v0

2

εxx
εyy
γxy

 (2.2)

4. Find critical integration point and critical load multiplier
For each integration point (IP) i in the model, in every analysis step j, the load multiplier
is calculated according to Equation 2.3 as the ratio of the current allowable strength ( f (j)

i )

according to the saw-tooth relation, to the governing stress (σ(j)
gov;i) in the IP. The critical load

multiplier for each cycle is the minimum, positive load multiplier, and the corresponding IP
is the critical IP.

λ
(j)
i =

f (j)
i

σ
(j)
gov;i

(2.3)

λ
(j)
crit = min(λ(j)

i ) for all λ
(j)
i > 0 (2.4)
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5. Scale the reference load
The reference load is then scaled using the critical load multiplier from all of the IPs, and
the stresses in the elements recomputed. By nature of the formulation of the critical load
multiplier, the critical IP will now be loaded to its allowable strength.

F(j) = λ
(j)
critFre f (2.5)

6. Apply damage increment to the critical integration point
A damage increment is applied to the critical IP, whereby the strength and stiffness is re-
duced according to the next secant branch in the saw-tooth relation.

7. Next analysis step
At this point the analysis is ceased and the next linear analysis begins using the existing
damaged model.

Steps 3 - 7 repeat, with one damage event occurring in each linear analysis (“analysis step”). The
load applied to the structure depends on the critical load multiplier of each analysis step, and
thus the load increases when the structure is capable of bearing additional load, and decreases
when brittle behaviour occurs (illustrated as snap-backs in the load-displacement response). The
load gradually increases to the peak load, and after failure the load-bearing capacity eventually
reduces to zero as the damage progresses to complete failure of the modelled specimen.

Crack Model
SLA uses a total strain smeared fixed crack model, meaning that a crack in an element of width w
is spread across the crack bandwidth h of the element, the quotient of which gives the crack strain
(εcr). The total strain is the summation of the elastic and crack strain, as shown in Equation 2.6.
Figure 2.2 depicts the components of the total strain. Upon reaching the total strain at peak stress
εp, cracks initiate. As the crack width increases, the stress transferred across the crack decreases
towards zero and thus the contribution of the elastic strain to the total strain decreases. Once the
ultimate strain εu is reached, the elastic strain has zero contribution.

ε = εel + εcr

where εcr =
w
h

εel =
σ

E0

(2.6)

(a) Total strain (b) Elastic strain (c) Crack strain

FIGURE 2.2: Decomposition of total strain into elastic and crack train (46)

Equation 2.7 shows how the total strain and total stress are related to the strain components in
the elastic and plastic stages. A characteristic of total strain-based models is that the stress cannot
be explicitly related to the total strain by an analytical expression once in the plastic stage (when
ε > εp). (This prompts an issue later on in the band width ripple approaches for the saw-tooth
relation, as detailed in Section 2.1.3.)
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for ε ≤ εp,
{

ε = εel

σ = f (ε)

for ε > εp,

 ε = εel + εcr

σ = f (εcr)
6= f (ε)

(2.7)

Once the first damage increment is applied to an integration point (i.e. upon crack initiation),
an orthotropic set of axes are defined in the integration point, normal (n) and tangential (t) to the
direction of the (first) crack, as depicted in Figure 2.3. For a fixed smeared crack model, as used
in the SLA-program, these axes do not rotate for the remaining duration of the analysis, even
if/when a second crack initiates in the second orthogonal direction. For evaluating stresses in a
damaged integration point, the isotropic constitutive relation from Equation 2.2 is replaced by the
orthotropic relation defined by the normal and tangential axes (Equation 2.8). The stresses and
total strains are then transposed back into the global coordinate system.

FIGURE 2.3: Illustration of partially cracked 6-noded triangular plane stress element

In Equation 2.8, the Young’s modulus is now differentiated into the normal and tangential crack
directions (En and Et respectively), the values of which are independent of each other and defined
by the appropriate secant branch of the saw-tooth relation for the current damage level. As dam-
age events occur, the Poisson’s ratio is also reduced according to Equations 2.9 - 2.10, in order to
limit spurious cracking in the transverse direction. The shear modulus is defined as per Equation
2.11 when a constant shear retention factor β is used. This formulation for the shear modulus has
been found to be problematic since even small values of β can result in shear locking, and yet
using a small β value results in underestimation of shear stress transfer across cracks during the
early stages of crack formation. To circumvent these issues, a formulation with a variable shear
retention factor was proposed by DeJong et al. (16), given in Equation 2.12. It is this formulation
for the variable shear retention factor that is used in this thesis.

σnn
σtt
σnt

 =
E0

1− vtnvnt

 En vntEn 0
vtnEt Et 0

0 0 (1− vtnvnt)G

εnn
εtt
γnt

 (2.8)

vtn = v0
En

E0
(2.9)

vnt = v0
Et

E0
(2.10)

G = βG0 = β
E0

2(1 + v0)
(2.11)
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G =
Emin

2(1 + vmin)
(2.12)

2.1.1.2 Non-Proportional Loading

Non-proportional loading refers to loading a structure with two or more load cases, applied in
the same or different directions, that do not increase or decrease in a proportional way. In real-
ity, non-proportional loading is far more common in structures than proportional loading, since
there is usually a dead (initial) load, such as self-weight or prestressing, as well as a live (variable)
load from the use of the structure. Non-proportional loading is more complex to analyse, since
it often leads to significant stress rotations (16). For non-proportional loading, the formulation
of SLA is not as simple as for proportional loading, due to the added complexity of determining
the critical load multiplier. Methodology for modelling non-proportional loading cases continues
to be a topic of discussion and research within academia (37; 46). Three previously developed
approaches to modelling non-proportional loading shall be introduced before the method of the
double-load multiplier strategy, used in this work, is explained.

A strategy for SLA with non-proportional loading was proposed by DeJong et al. (16), which was
based on the concept of stress superposition. Stresses due to the initial and reference load are
calculated separately, the critical load multiplier is calculated and applied to the reference load,
and then the stresses are superimposed. A fault of the method is that it assumes that stress re-
distribution is able to occur when a damage increment is applied without triggering a series of
ruptures elsewhere in the model. This assumption thus creates a potential for invalid stresses.
For this reason, the strategy was extended by Harrison (25), by considering also the selected load
multiplier from the previous analysis step.

An alternative, simplified strategy was proposed by Belletti et al. (6) which accounts for the ini-
tial (constant) load by initially degrading the material properties and “starting” the analysis with
only the reference (variable) load using the same method as for proportional loading schemes.
This method relies on the assumption that the initial load does not cause any damage, and also
that the distribution of stresses due to the initial load remain unchanged throughout the analysis.
The simplicity of this approach enables easy attainment of the critical load multiplier without the
development of invalid stresses. The downside of such a simplification is that, as damage occurs
due to the application of the variable load, stresses from the initial load are still able to be (unreal-
istically) transferred across open cracks due to the lack of stress redistribution of stresses from the
initial load case. Furthermore, since the initial loads do not influence the direction of the principal
stresses, incorrect crack orientations can occur in smeared crack models. Despite these drawbacks
this model is deemed adequate for cases where the initial load is relatively small compared to the
reference load.

A third strategy, a force-release method, was proposed by Elias et al. (18). It is based on the under-
standing that after applying a damage increment, not only should the material properties change
but also stress redistribution should occur. This is achieved by adding the unbalance forces to the
nodes and then reducing them to zero in order to trigger stress redistribution. The method suc-
ceeds in preventing stresses from violating the material law, however it has several faults. Firstly,
before the unbalance forces vanish completely, it is possible for another damage event to occur,
which raises the question of what to do with the unbalance forces still present from the previous
rupture. Secondly, since the method dictates that during redistribution of stresses the entire load
should still be carried by the structure, structural snap-backs are not able to be modelled.

Double load multiplier strategy
A new strategy for modelling non-proportional loading was proposed by van de Graaf (46), called
the double load multiplier strategy. This is the strategy utilised in the SLA-program used in this
thesis, except that it has been further developed to incorporate compressive softening also.

The double load multiplier strategy utilises the concept of constrained maximisation. The method
first seeks a set of load multipliers for the reference load in each integration point Λ(j)

i that result
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in allowable stresses in the integration point. A common subset Λ(j) is then extracted from all of
the sets of load multipliers from all integration points in the structure. The critical load multiplier
for the reference load Λ(j)

crit is then the maximum from this subset. To explain the procedure, the
process of finding the set of load multipliers for each integration point is detailed first, before
detailing the process of selecting the critical load multiplier. The process is explained for smeared
cracking in plane stress conditions.

Finding the load multiplier set for each integration point
As in the formulation for non-proportional loading from DeJong et al.(16), the stresses in each
integration point are a superposition of the stresses caused by the initial load and those by the
reference load scaled by the load multiplier λ

(j)
re f ,i of the analysis step j. Equation 2.13 gives the

formulation for the stress components in an integration point i. Subscript i and superscript j have
been dropped from each term for readability.

σxx = σxx,ini + λre f σxx,re f

σyy = σyy,ini + λre f σyy,re f

σxy = σxy,ini + λre f σxy,re f

(2.13)

By definition, λ
(j)
re f ,i belongs to a set Λ(j)

i of load multipliers which all result in acceptable levels of

stress in the integration point i.e. σ
(j)
gov,i ≤ f (j)

i . The governing stress σ
(j)
gov,i may be the maximum

principal stress σ
(j)
1,i or the minimum principal stress σ

(j)
2,i , depending on whether the integration

point is more critical in tension or in compression, respectively. In order to compute the load
multiplier λ

(j)
re f ,i, the stresses from Equation 2.13 are substituted into the principal stress equa-

tion of Equation 2.14, which is then rearranged into a quadratic equation to solve for two load
multipliers.

σ1,2 =
1
2
(σxx + σyy) ±

√
1
4
(σxx − σyy)2 + σ2

xy (2.14)

Since Equation 2.14 is squared to solve for the load multipliers, the sign of the square root loses its
positivity or negativity, meaning that the load multipliers may correspond to either the maximum
or minimum principal stresses, σ

(j)
1,i and σ

(j)
2,i respectively. Substitution of the obtained load multi-

pliers back into Equation 2.14 is recommended (46) to check which principal stress they belong to.
Thus for each integration point you obtain a load multiplier set of either [λmin, λmax], (−∞, λmax],
[λmin, ∞) or an empty set. An empty set signifies that no load multiplier of the reference load
(including zero) results in admissible stresses in the integration point.

Once a damage increment has been applied in an integration point and the orthotropic set of axes
defined in relation to the crack direction, the superposed stresses in the crack directions must
not exceed the upper bounds of the current compressive and tensile strengths ( f+(j)

c,n,i and f+(j)
t,n,i

respectively, for the n direction). The inequality now considered is as follows:

f+(j)
c,n,i ≤ σ

(j)
nn,ini,i + λ

(j)
n,i σ

(j)
nn,re f ,i ≤ f+(j)

t,n,i (2.15)

f+(j)
c,t,i ≤ σ

(j)
tt,ini,i + λ

(j)
t,i σ

(j)
tt,re f ,i ≤ f+(j)

t,t,i (2.16)

Now each integration point has two load multiplier sets, Λ(j)
n,i and Λ(j)

t,i , defining the acceptable
load multipliers in the normal and tangential crack directions. The load multiplier set for the in-
tegration point Λ(j)

i is the common subset of these two sets.
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Finding the load multiplier set of the model
The load multiplier set of the model Λ(j) is the common subset of the sets Λ(j)

i from all of the
N number of integration points in the model, as depicted in Figure 2.4. There must be a com-
mon subset among all integration points or else no combination of the initial load case with the
scaled reference load case can possibly exist without violating the constitutive law at one or more
integration points. The load multiplier set of the model is thus defined:

Λ(j) = ∩
1≤i≤N

Λ(j)
i = Λ(j)

1 ∩ Λ(j)
2 ∩ ... ∩Λ(j)

N (2.17)

FIGURE 2.4: Illustration of the common subset of all the load multiplier sets from individual integration
points

Finding the critical load multiplier
For a non-empty load multiplier set Λ(j), the critical load multiplier for the reference load in
the analysis step j is equal to the maximum of the set (Equation 2.18), and the integration point
belonging to this maximum load multiplier is the critical integration point to which a damage
increment is applied.

λ
(j)
crit = max(Λ(j)) (2.18)

If the load multiplier set of the model Λ(j) is empty, then no critical load multiplier exists in the
analysis step j, since any factor of the reference load would result in a stress state that violates the
constitutive model in one or more integration points.

Load application with the critical load multiplier
The process of the double load multiplier strategy is as follows. First the initial load must be
applied. Since the reference load is yet to be applied, the initial load is the only load and the
critical load multiplier λ

(j)
crit can be calculated as per the process for proportional loading.

F(j)
crit = λ

(j)
iniFini with λ

(j)
ini = λ

(j)
crit ≤ 1 (2.19)

If no damage in the structure occurs due to the application of the initial load, then this process
takes only one analysis step and the non-proportional loading can begin in step j = 2, scaling
the reference load using the λ

(j)
crit determined with Equation 2.18. The superposition of loads is

defined as follows:

F(j)
crit = λ

(j)
iniFini + λ

(j)
re f Fre f with λ

(j)
ini = 1 and λ

(j)
re f = λ

(j)
crit (2.20)

Figure 2.5 shows two scenarios of successful non-proportional loading where there are non-empty
load multiplier sets for every analysis step until the final step S. This is demonstrated by λ

(j)
ini

remaining equal to unity for the remaining duration of the analysis after fully applying the initial
load at the beginning of the analysis. Figure 2.5a depicts a scenario where no damage occurs
applying the initial load, and thus the reference load is applied in step (j) 2, while Figure 2.5b
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demonstrates that many damage increments can be applied to the model during application of
the initial load, only after which does the application of the reference load begin.

(a) No damage applying initial load (b) Damage applying initial load

FIGURE 2.5: Two scenarios of successful non-proportional loading with non-empty load multiplier sets

Load application for an empty load multiplier set
If the model’s load multiplier set Λ(j) is empty, no acceptable critical load multiplier for the refer-
ence load exists. Two methods were proposed by van de Graaf (46) to deal with this, the second
of which was found to be more effective and shall be detailed here. The method is to take the last
“successful” critical load combination (i.e. from the last time there was a non-empty load multi-
plier set) and scale it proportionally, as in Equation 2.21. Thus the analysis temporarily reverts to
a proportional loading scheme, where λ

(j)
crit,p is calculated as per the proportional loading method

in Equations 2.3 - 2.4. In the step j+1 the analysis attempts to return to the non-proportional load-
ing scheme. If again an empty load multiplier set is returned, the proportional loading scheme
is maintained. This process repeats until a step where the load multiplier set is non-empty and
a feasible critical load multiplier for the reference load exists for λ

(j)
ini = 1, and thus the analy-

sis returns to the non-proportional loading scheme. This process of temporarily scaling the load
combination proportionally is called intermittent proportional loading (IPL).

F(j)
crit = λ

(j)
crit,p F(j−1)

crit

= λ
(j)
crit,p [λ

(j−1)
ini Fini + λ

(j−1)
re f Fre f ]

(2.21)

Figure 2.6 depicts a scenario where IPL begins after the reference load reaches peak load. The
proportionality of the scaling of the initial and reference load during IPL is evident, with the rises
and drops in the load factors mirroring each other. In this case, the IPL never recovers, i.e. λini
never returns to a value of unity and the non-proportional loading scheme does not resume for the
remaining duration of the analysis. When IPL occurs after reaching the peak reference load, such
as in this case, it is common for it to never recover. When IPL occurs before reaching the peak
reference load however, it is common for it to recover the full load combination and continue
with the non-proportional loading scheme. If IPL were to occur before the peak reference load
was reached and not succeed in recovering the full load combination, this would be a fatal flaw
of the double load multiplier strategy for modelling non-proportional loading.
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FIGURE 2.6: A scenario of non-proportional loading where intermittent proportional loading occurs

The double load multiplier strategy described above was verified qualitatively by van de Graaf
(46) considering a masonry shear wall. Steps with intermittent proportional loading (IPL) were
observed, however the full initial load was applied upon reaching the peak load in the SLA (non-
proportional loading was successfully being modelled at failure) and the IPL was concluded to
not negatively affect the structural response.

2.1.2 Benefits Compared to NLFEA
SLA is discussed in comparison to NLFEA in numerous pieces of literature (26; 37; 43; 46). The
inherent differences in the methodology of SLA from that of NLFEA give rise to several benefits.
They can largely be summarised by considering three key differences of the SLA methodology.

1. Application of damage increments instead of load increments
While NLFEA applies increments of load to a model (in the form of displacement, force, arc-
length or time) and tries to iterate around the resulting damage, SLA applies the damage
to the model directly and scales the load accordingly. Since the applied load corresponding
to the damage event is calculated directly, no iterative scheme is required in SLA to seek
equilibrium between the internal and external forces. This rids the finite element analysis
of convergence issues. It also removes the dilemma of which type of load to apply to the
structure. In NLFEA, using force-control, snap-backs to lower force magnitudes in the load-
displacement response cannot be captured, while conversely using displacement-control,
snap-backs to lower displacements cannot be modelled. The arc-length method offers a
solution to this but adds complexity to the analysis. In SLA, the use of force-control and
displacement-control are interchangeable and have no impact on the results, since the load
is directly calculated based on the damage applied to the structure.

By applying damage increments and calculating the corresponding load, SLA is capable of
directly capturing the snap-backs due to brittle behaviour in the structural response. Con-
versely, when NLFEA struggles to find equilibrium between internal and external forces for
a given applied load due to the brittle damage, the analysis will “skip over” the snap-back
and continue, hoping to rejoin the equilibrium path in the next analysis step through itera-
tive algorithms. This process, if convergence is regained and the analysis continues, creates
a smooth load-displacement response from which the brittle behaviour is not evident.

2. Damaging only one integration point at a time
NLFEA struggles to model brittle and quasi-brittle behaviour as well as larger-scale struc-
tures because in these scenarios many integration points require softening in a single load
step. This results in the cracks “competing to survive” as the NLFEA attempts to achieve
convergence to an equilibrium solution. Multiple integration points softening in a single
load increment can result in more than one possible solution to the system of equations,
which creates bifurcations in the load-displacement response. NLFEA does not always
choose the lowest (most critical) equilibrium path, thereby modelling the structural re-
sponse incorrectly. Conversely, by damaging only the single most critical integration point
in each analysis step, SLA circumvents this issue since bifurcations do not occur.
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Damaging only one integration point at a time has several flow-on benefits. The first is
that the post-peak behaviour is far more easily modelled in SLA than in NLFEA, since the
multitude of damage that occurs post-failure usually prevents NLFEA from achieving con-
vergence after reaching the peak load. (In some cases with brittle failure, NLFEA struggles
to even reach the peak load without diverging.)

The second is that by damaging only the single most critical integration point in each analy-
sis step, SLA automatically triggers asymmetric damage in perfectly symmetric structures,
where appropriate. Conversely, in such cases NLFEA requires the modelling of an imper-
fection or use of irregular meshes to prompt asymmetric damage, because otherwise the
damage will be modelled symmetrically due to the stress state remaining symmetrical.

3. Discretising the material constitutive model
Many of the convergence issues in NLFEA arise from the presence of negative material tan-
gent stiffness values when strain-softening occurs in damaged integration points, since neg-
ative stiffness values make the boundary value problem ill-posed and create ill-conditioning
of the structural tangent stiffness matrix. By discretising the non-linear material constitutive
relations into a series of secant branches, no negative stiffness values occur. Thus strain-
softening is modelled without causing ill-conditioning of the finite element formulation.

Discretisation of the constitutive model also allows for snap-backs at a constitutive level.
Traditional finite element methods are unable to model constitutive snap-backs since the re-
lationship between strain and stress increment predictions cannot be unequivocally defined
for the snap-back. This poses a limitation for NLFEA, particularly modelling with brittle
materials such as glass for which constitutive snap-backs occur more readily.

In essence, the method of SLA circumvents the convergence and bifurcation issues that are com-
mon to the NLFEA method. This makes SLA a robust alternative, particularly when modelling
quasi-brittle behaviour and large-scale structures. Additional benefits arising from the inherently
different methodology of SLA are the ability to model asymmetric damage without requiring ad-
ditional input, the ability to model snap-backs both in the structural load-displacement response
and in material constitutive relations, and the ability to model post-peak behaviour.

The theoretical benefits of SLA over NLFEA have been supported by evidence from analyses
completed in academia. Slobbe et al. (43) modelled a shear beam from experiments with both
NLFEA and SLA and observed several differences in the performance of the finite element meth-
ods. Firstly, the SLA captured the asymmetric failure mode observed in the experiment automati-
cally while the NLFEA, without modelling an imperfection or using an irregular mesh, modelled
the damage symmetrically. Secondly, the NLFEA did not achieve convergence in 5% - 30% of the
steps in the pre-peak stage (depending on varying input trialled), and did not achieve conver-
gence at all after reaching the peak load in any of the analyses. Conversely, SLA circumvented
all convergence issues and modelled the post-peak regime until the load reached zero. Meiring
(34) similarly found in the analysis of masonry walls that SLA was superior in robustness since,
unlike NLFEA, it was not inhibited by multiple cracks occurring in multiple directions. Slobbe et
al. (43) concluded that SLA was a feasible alternative to NLFEA for modelling brittle behaviour
that was also relatively more simple in terms of control parameters.

2.1.3 Solution Strategies
The solution strategy of a finite element analysis consists of choices made by the user regarding
constitutive modelling, spatial discretisation and solution procedures (dictating load application
and iterative schemes) (21). Finite element modelling requires idealisation of the real-life struc-
ture into a mechanical model (defining the geometry, connections, supports, materials and loads),
spatial discretisation of the model (specifying the element shape, type and size), and finally dam-
age idealisation via smeared or discrete cracking models. These input requirements are common
to both NLFEA and SLA. NLFEA additionally requires specification of the solution procedure,
consisting of the load type, loading increments, the iterative scheme to be used and input for the
iterative scheme, namely the convergence norms and tolerances. More sophisticated formulations
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of NLFEA that attempt to reduce the convergence issues, such as arc-length control, crack mouth
opening displacement control and energy release control, require even more control parameters
and add further complexity to the solution strategy. SLA conversely requires only additional in-
put for the discretisation of the material constitutive relation, namely the saw-tooth law and the
parameters for defining the saw-tooth relation. SLA is praised for the relative simplicity of its so-
lution strategy (16; 43). The comparison of inputs for the two finite element modelling strategies
are summarised in Table 2.1.

TABLE 2.1: Comparison of required input for NLFEA and SLA

NLFEA SLA

Mechanical Model
Geometry

Loads
Connections and supports

Material constitutive model and input parameters

Spatial Discretisation
Element shape
Element type

Mesh size
Integration scheme

Crack model
Discrete

Smeared (fixed or rotated)

Solution procedure
Type of load

Load increments
Iterative scheme

Convergence norm(s) & tolerance(s)

Discretising material non-linearity
Saw-tooth law

Saw-tooth parameters

Input for more sophisticated
methods

Saw-tooth laws
The tensile saw-tooth relation is defined by the Young’s modulus E0, tensile strength ft, the tensile
fracture energy G f t and the shape of the tensile softening curve, such as linear, exponential or
Hordijk’s non-linear curve (28). The compressive saw-tooth relation is defined similarly, but with
the compressive strength fc, the compressive fracture energy G f c and the softening curve, for
example parabolic. There are several methods for defining the saw-teeth on the softening curve.
The methods are explained in this section with respect to tensile material softening. There are
three criteria that should be met by the saw-tooth constitutive relation (43):

1. The area under the saw-tooth diagram should be equal to G f /h, where G f is the fracture
energy, and h is the crack bandwidth, which depends on the size, order and type of the finite
element. (For quadratic- or higher-order two-dimensional elements, h =

√
A, with A as the

element area (46).)

2. The ultimate strain of the saw-tooth curve should match the material property εu.

3. The lower bound of the last saw-tooth should be zero, not negative.

The first saw-tooth relation is known as the constant stress decrements method, illustrated in Fig-
ure 2.7 (46). The softening curve of the constitutive model is divided into N segments of equal
stress decrements ∆σ, equal to the quotient of the tensile strength ft to the number of saw-teeth
N. Clearly, using this method, the area under the saw-tooth relation (G f /h) is always less than
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the energy dissipation of the base material law, and this area is greatly dependent on the number
of saw-teeth N. For greater N, the degree to which the fracture energy is underestimated lessens.
Several strategies to make this method fracture energy invariant are possible, for example “shift-
ing” the boundaries of the saw teeth, to a higher tensile strength f ∗t or greater ultimate strain
ε∗u. The most successful adaptation is a combination of both adjustments, depicted in Figure 2.8.
However, still this method is shown to result in an undesirably strong stiffness reduction upon
crack initiation (46).

(a) Stress decrements (b) Corresponding energy dissipation

FIGURE 2.7: Illustration of the constant stress decrements method (46)

(a) Division of softening curve (b) Corresponding energy dissipation

FIGURE 2.8: Regularised constant stress decrements method with increased tensile strength f ∗t and
increased ultimate strain ε∗u (46)

A second method is known as the constant stiffness reduction method (46). Instead of dividing the
softening curve into equal vertical segments, the stiffness is reduced in each branch k by a con-
stant factor a, by the relation in Equation 2.22. The stiffness thus approaches zero asymptotically
as the branch number increases. This method results in the fracture energy always being under-
estimated, as in the constant stress decrements method. Again, the energy dissipation can be
made invariant by regularising the relation with an increased tensile strength f ∗t and greater ul-
timate strain ε∗u, depicted in Figure 2.9. This method tends to have a less drastic initial reduction
of stiffness upon the initiation of cracking compared to the constant stress decrements method.
However, the number of branches with a very low stiffness level can become very large. Rots and
Invernizzi (39) suggested implementing a small dummy stiffness after N saw teeth, which assists
this issue.

Ek+1 =
Ek
a

(2.22)
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(a) Division of softening curve (b) Corresponding energy dissipation

FIGURE 2.9: Regularised constant stiffness reduction method with increased tensile strength f ∗t and
increased ultimate strain ε∗u (46)

A third method is the (standard) band width ripple approach, developed by Rots et al. (38). This
method makes use of two imaginary curves, mirroring the softening curve on the upper and lower
side, creating a band on which the points of the segments are plotted. The vertical distance from
the softening curve to the upper or lower band is defined as a fraction p of the tensile strength ft
(see Figure 2.10a). From Figure 2.10b, it may appear that this method is fracture energy invariant,
since the area in the triangle above and below the base material law have the same area. However,
this is not true for non-linear softening curves. Indeed, even for linear softening curves, there is
one more triangle above the base curve than those below, thus the over-estimations of the base
material law are not evened out by the under-estimations. Additionally, the final segment may
not necessarily have the shape of a triangle, as is the case in Figure 2.10. Adjustments made to
this approach led to the improved band with ripple method.

(a) Division of softening curve (b) Corresponding energy dissipation

FIGURE 2.10: Illustration of band width ripple saw-tooth model (46)

The improved band width ripple method has two factors p1 and p2 instead of the singular p-factor, for
shifting the curve up and down by p1 ft and p2 ft respectively, as shown in Figure 2.11. These band
width parameters p1 and p2 are solved for iteratively using a Newton-Raphson procedure such
that the three criteria discussed at the beginning of this section are met. In the standard band
width ripple approach, the p-factor was defined and the number of saw teeth was calculated
accordingly. Conversely, in the improved approach the number of saw teeth N is an input and p1
and p2 are solved for iteratively. Using the Newton-Raphson procedure for the iterative algorithm
poses robustness challenges. An alternative approach addressing this fault is proposed by Slobbe
(44), using a Simplex algorithm.
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FIGURE 2.11: Discretisation of material base law in the improved band width ripple approach (46)

An issue with both the standard and improved band width ripple approaches is the difficulty
of finding the total strain value εk (see Figure 2.11) of each secant branch k, i.e. the point of
intersection of the secant branch k with the imaginary upper curve (46). This is due to using
the total strain approach, since an analytical expression of the stress in terms of total strain does
not exist for the plastic region, as discussed in Section 2.1.1. An iterative approach is used to
find εk, whereby the crack strain contribution εcr

k is guessed, and the elastic strain is calculated
according to Equation 2.6. The raised stress limit f+t,k (see Figure 2.11) is then calculated by two
methods (Equation 2.23). If the difference is sufficiently small, the guessed value of εcr

k is accepted,
otherwise a new estimate is made and the process is repeated.

f+t,k =
{

σk + p1 ft
Ekεk

(2.23)

Sensitivity to parameters in SLA
Aspects of the solution strategy in finite element modelling, for example the choice of shear reten-
tion factor and the shape of elements used, have been observed to influence the accuracy and/or
consistency of analytical results. Research within academia has already identified some sensitivi-
ties in SLA to certain input parameters. The sensitivities discussed here informed the selection of
the solution strategy used in this thesis.

Van de Graaf (46) considered the effects of mesh refinement and saw-tooth refinement (increas-
ing the number of saw-teeth N) for the improved band width ripple approach. It was observed
that refining the saw-tooth relation yielded greater improvement in results than mesh refinement,
however that SLA is largely objective to both. A greater number of damage increments resulted
in a smoother structural response, with less of the jagged local jumps common in SLA. This eases
the task of interpretation of the results as it makes it easier to distinguish structural snap backs
from mere local jumps. Slobbe et al. (43) observed peak load predictions varied by up to 11% of
the experimental capacity for different numbers of saw-teeth, although no trend for increasing or
decreasing the number of saw-teeth was found. This finding differs to that of van de Graaf (46)
and Rots and Invernizzi (39) who came to the same conclusion: that saw-tooth refinement led to
convergence to a common solution.

For smeared crack models, van de Graaf (46) observed that mesh refinement slightly increased
post-peak capacity, perhaps due to the more diffuse crack pattern. Mesh-refinement was found
to lead to convergence towards a common solution. Slobbe et al. (43) concurred with this conclu-
sion, adding that Delaunay triangular elements were observed to exhibit notably less mesh-size
dependency than the quadrilateral elements.

Slobbe et al. (43) made other observations about the influence of input parameters in SLA for
the modelling of a shear beam. Firstly, they concluded that the shear retention factor (β) should
be modelled as variable instead of constant. The SLA results showed that a constant shear re-
tention factor was an oversimplification of the material behaviour that led to overestimation of
resistance, even with a very small β value, since a non-zero β value allows shear stresses to trans-
fer across even wide cracks. The ultimate load and failure mode were found to be sensitive to
the specification of the tensile fracture energy G f t. Using a fracture energy defined by CEP-FIP
Model Code 1990 as the original input, the best results were obtained for values increased by
20% - 40%. Mesh alignment bias was evident, particularly with quadrilateral elements, with cracks
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propagating along mesh boundaries. The substitution for triangular elements reduced the mesh
alignment and prevented cracks from propagating along straight element boundaries, but crack
patterns were still observed to be influenced by mesh boundaries.

2.1.4 Performance in Comparison to NLFEA
In terms of robustness, most of the sensitivities observed in SLA also exist in NLFEA. In the anal-
yses of a reinforced concrete shear beam with both SLA and NLFEA, Slobbe et al. (43) found
both finite element methods suffered from stress locking using a constant shear retention factor.
The failure mode and capacity predictions were observed to be similarly sensitive to the tensile
fracture energy input. In fact, for varying tensile fracture energy input, NLFEA was observed to
deviate from the experimental peak load more so than the SLA. Sensitivity to certain input varies
for different structures depending on their failure mode. As opposed to a shear beam, Belletti
et al. (5) found that NLFEA of reinforced concrete slabs are more sensitive to the compressive
strength input, specifically the compressive fracture energy and compressive strength reduction
due to lateral cracking. Results were found to rely heavily on these two inputs, as well as on the
definition of the shear retention factor.

With regards to spatial discretisation, NLFEA suffers from complete dependence that can be detri-
mental to the modelling accuracy (15). Slobbe et al. (43) found that, similar to SLA, NLFEA exhib-
ited mesh alignment bias. Using triangular elements instead of quadrilateral elements prompted
asymmetric damage patterns in the NLFEA (since the model was no longer exactly symmetric).
Additionally, an increase in convergence issues was reported, with the number of non-converged
steps before reaching peak load increasing from 20% with quadrilateral elements to 30% with
triangular elements. Sensitivity to mesh refinement has also been observed in NLFEA, with finer
meshes generally obtaining more accurate solutions since they are able to detect critical points
more locally, at the expense of greater computation time and at times greater convergence diffi-
culties (11; 15). If the mesh is not fine enough, inaccurate phenomena can be predicted (1). To deal
with this undesirable dependency, localisation limiters and models to increase objectivity with re-
spect to the mesh have been formulated in academia, however these add to the complexity of the
method and require greater user knowledge and skill.

Finally, SLA has been observed to exhibit far greater robustness than NLFEA for modelling post-
peak behaviour. In the numerical analyses of the shear beam, Slobbe et al. (43) observed the
NLFEA to not converge post-peak in any of the analyses, while the SLA was successful in mod-
elling the full post-peak behaviour.

In relation to accuracy, NLFEA is subject to modelling uncertainties, and the engineering sector
seeks to account for these by using semi-probabilistic safety formats (3). Modelling uncertainties
are discussed further in Section 2.2.1. Allaix et al. (2) used three different NLFEA software to
analyse reinforced concrete walls and shear panels and concluded that the inaccuracy of the FE
models was unsafe since they consistently overestimated the failure load.

Comparing levels of accuracy of NLFEA to SLA, Slobbe et al. (43) found that both SLA and
NLFEA results correlated well to the experimental results. The performance of SLA was con-
cluded to be very comparable to NLFEA in the load-displacement response and peak load predic-
tions. An inaccuracy observed was that both SLA and NLFEA overestimated the initial structural
stiffness. Slobbe et al. stipulated that overestimation of the initial Young’s modulus of concrete
(calculated according to CEB-FIP Model Code 1990) may have been the cause for this.
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2.2 Modelling Uncertainty
This section will first discuss the uncertainties involved in numerical analyses of structures, before
outlining strategies used in academia to resolve and quantify such uncertainties.

2.2.1 Uncertainties in Structural Analysis
Structural analysis is susceptible to many uncertainties that can largely be grouped into three
groups: physical uncertainty, modelling uncertainty and statistical uncertainty (31).

Physical uncertainty
Physical uncertainty refers to variation of material parameters to the assessed strength and de-
formation properties (21). A summary of research into the physical uncertainties of concrete and
reinforcement is presented in the Probabilistic Model Code (31). Variation of material properties
arise from variability between producers as well as variability between batches from a single
producer. In assessing physical uncertainty of material properties, numerous supposedly equiva-
lent experiments or samples should ideally be tested, however frequently only a limited number
of results are reported, and often these results are normalised, making proper quantification of
physical uncertainty difficult. Variation of material properties can be quantified using a mean
and coefficient of variation, and yet finite element modelling requires only a single value input
per material input. It is standard to use characteristic values to meet safety reliability require-
ments (22).

Physical uncertainties intrinsically contribute to modelling uncertainty. Ellingwood and Galam-
bos (19) observed that reinforced concrete beams failing in shear had a higher coefficient of vari-
ation of resistance than beams failing in bending, implying that brittle failure modes suffer more
from physical uncertainties than ductile failure modes. Engen et al. (21) concurred that brittle
failures had greater modelling uncertainty than ductile failures. Using NLFEA, brittle failures
were observed to be modelled with significantly less accurate capacity estimations and the stan-
dard deviation of the modelling uncertainty factors was nearly three times greater than that of
the ductile failures.

The conclusion made by Engen et al. (21) was that the added modelling uncertainty for brittle
failures is due to the great physical uncertainty in concrete. The reason for higher uncertainty in
brittle failures is tri-factored, due to spatial variability; variation of material properties within a
batch of concrete; and the level of correlation between the cylinder strength and other parameters
of the concrete. Because of the higher physical uncertainty, concrete suffers from greater uncer-
tainties in structural analyses than steel.

Modelling uncertainty
Modelling uncertainty refers to uncertainties that arise due to model selection and the accuracy of
the selected model (21). More specifically, uncertainties arise from idealising the physical struc-
ture into a model; discretising the model into finite elements; the choice and combination of ma-
terial models; the solution strategy and FEA software used; and choices made by the users (36).
Modelling uncertainty has become of increasing importance to quantify for structural reliability.
For modelling of more complex physical processes, model uncertainty often dominates the struc-
tural reliability (27). Modelling uncertainty is relevant to both the accuracy and robustness of a
finite element modelling method, since uncertainties affect the accuracy of predictions and yet
variability of results is a concern of robustness.

Competitions in academia have highlighted the modelling uncertainties in NLFEA by collecting
analysis results from different researchers. A ’blind’ competition from 1981 received approxi-
mately 30 entries of numerical analyses of four reinforced concrete panels that were experimen-
tally tested under various relatively simple loading conditions by the University of Toronto (13).
A comparison of numerical and experimental results for one of the better predicted panels - Panel
C, a nonisotropically reinforced panel loaded in pure shear - is presented in Figure 2.12. The
variance in predictions illustrates that even among highly reputable researchers with respectable
experience in NLFEA and understanding of the behaviour of structural concrete, modelling un-
certainty is still considerable. NLFE methods and formulations have increased in sophistication
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since the time of this competition, but variance of predictions from numerical analyses completed
by different users utilising different solution strategies is still a relevant issue.

FIGURE 2.12: Various NLFEA results (grey) from competition entries compared to experimental result
(black) for Panel C (49)

In terms of a mechanical model’s accuracy, both the mathematical idealisation of the problem and
the approximations in the numerical solution procedure play a role (21).

Mathematical idealisations
Mathematical idealisations are inherently limited by their reduction of infinite characteristics to
a finite number of basic variables (17). Mathematical equations are also idealised either to be
pragmatic or due to lack of proper understanding of the specific case being analysed. There is un-
certainty in these “known” simplifications, but also uncertainty from the “unknown unknowns”.

The mathematical idealisation deemed to be the greatest source of modelling uncertainty for re-
inforced concrete structures, particularly where brittle behaviour is governing, is the concrete
material model (21). This is due to the high physical uncertainty of concrete. Research into the
best material model for concrete is extensive (8; 20; 29; 33; 50). The basis of the concrete material
model can be uniaxial or triaxial. The triaxial model includes all material effects directly, while
the uniaxial model can be supplemented with additional models that account for material effects.
The additional models attempt to relieve issues that arise from the simplifications of the uniax-
ial model, issues such as stress interlock and under- or overestimation of compressive strength
for concrete experiencing lateral confinement or lateral cracking, respectively. These additional
models include compressive softening models, lateral confinement models, and reduction mod-
els for the Poisson’s ratio and shear retention factor. Other material modelling options include
the modelling of cracks with either discrete or smeared crack models, and the latter with either
fixed-crack or rotated-crack formulations. Material modelling choices can be key to determining
the degree of modelling accuracy of an analysis.

Discretisation of the mechanical model into finite elements is another mathematical idealisation
that leads to modelling uncertainty. The user must decide which degrees of freedom to consider,
and consider compatibility between elements. Different element types are more suited to different
structural elements depending on their governing modes of failure. For example, shell elements
have been found to be very poor at modelling slabs governed by punching shear failure (5).

Numerical solution procedure
Finite element modelling results can vary depending on which program is used, since the formu-
lation of the finite element solution can vary between programs. Allaix et al. (2) compared ex-
perimental values for reinforced concrete walls and shear panels to analytical results of NLFEAs
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from three different commercial software that each used a different model of concrete tensile be-
haviour, and found that there was significant scatter of numerical results compared to those of the
experiment. The difference between the actual and predicted failure loads was significantly high,
varying up to 65%. The modelling uncertainty factors for the upper and lower bound capacity
predictions differed by as much as 39% and 35% respectively between the three NLFEA software
programs.

Statistical uncertainty
Statistical uncertainty when defining physical properties or validating an analysis model or method
arises from limited data. Performance parameters calculated from a small sample of observations
are at risk of not being truly representative of the model’s accuracy. Statistical uncertainties apply
to both physical and modelling uncertainties, and should be considered when drawing conclu-
sions about the validity of a method or the compatibility of data in the statistical pool.

2.2.2 Managing Uncertainties
Vecchio (49) discusses the dangers that threaten the suitability of using finite element modelling
for structural design, namely the diversity of theoretical approaches; diversity of behaviour mod-
els; incompatibility of models and approaches; experience and knowledge requirements; inter-
pretation in post-processing of voluminous data; and lack of individualised solution strategies
for specific materials and structures. Particularly in the last decade, it has been of great interest in
academia to develop regulations for the use of NLFEA in the professional engineering field and
safety factors based on structural reliability (3).
Cervenka suggested minimising modelling uncertainty by validating numerical models (9). Vali-
dation should cover all the inherent approximations incorporated in the model, in the constitutive
modelling, numerical discretisation and structural solution. Due to the variation in behaviour of
different materials and of different structural elements, model validation must be specific to a
solution strategy in a certain FEA software for a given structural type. Model validation can be
completed by analysing a benchmark case of a similar structure, and ascertaining the modelling
uncertainty. Quantifying modelling uncertainty for NLFEA has been a key focus of recent aca-
demic research (4; 10; 21).

Quantitative measures
Engen et al. (21) used two quantitative measures to assess the modelling uncertainty for the
analyses of 38 experimental benchmarks with failures of varying levels of ductility. The first
factor is the modelling uncertainty, θ. It is a ratio of the ultimate loads from the experimental and
NLFEA results, Rexp and RNLFEA respectively (see Equation 2.24).

θ =
Rexp

RNLFEA
(2.24)

The other measure they used was a measure of the failure’s ductility. The ductility index, χductility,
is the ratio of the plastic dissipation of the system and the reinforcement at failure, Wpl,tot and
Wpl,steel respectively.

χductility =
Wpl,steel

Wpl,tot
(2.25)

Comparing the modelling uncertainty factors with the corresponding ductility indexes, Engen et
al. (21) showed that a trend existed for NLFEA being less accurate for more brittle failures. Such a
ductility scale would be useful for comparing modelling uncertainty factors of SLA also, to verify
if SLA is in fact better at modelling brittle failures than NLFEA. However, the ductility index is
not a fully accurate quantification of a structural failure’s ductility since it is subject to modelling
uncertainties itself. This is due to the fact that it consists of the plastic dissipation quantities mod-
elled in the FEA, not measurements from experimental results. Thus whether or not the ductility
index deems the failure as brittle or ductile is an estimation of the behaviour in reality from the ex-
periment. For inaccurate FEA results, the ductility index can be unrepresentative of the ductility
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of the failure mode from the experiment. Thus, it is a faulted strategy to use the ductility index to
draw conclusions regarding trends between modelling uncertainty and the ductility of failures.

An example of a misleading ductility index from the work of Engen et al. (21) is for the frame
BF2 from the experiment by Vecchio & Emara (51), for which the ductility index is calculated as
zero. This means that the sum of the plastic work in the reinforcement’s integration points at
failure is zero. The ductility index of zero suggests an entirely brittle failure where all of the stress
redistribution is taken by the concrete. In contrast, Vecchio & Emara (51) reported very ductile
post-peak behaviour in the experiment, with the frame approximately maintaining the peak load
until reaching more than twice the displacement attained at peak load, at which point the struc-
ture was unloaded and the experiment ceased.

With a large enough statistical pool, such as in the 38 cases analysed by Engen et al. (21), the
impact of the modelling uncertainty is lessened and a fair representation of the modelling inaccu-
racies for failures with various levels of ductility can be presented. However, for smaller statistical
pools and considering individual cases, the impact of the modelling uncertainty in the ductility
index is greater and can lead to ill-drawn conclusions. It is for this reason that the ductility index
is not used in this thesis.

To validate a numerical method for a selection of benchmark cases, JCSS (31) assess modelling
uncertainty using two parameters, θm and Vθ . The first is the mean of the modelling uncertainty
ratio θ given in Equation 2.24, and the latter is the coefficient of variation of the modelling uncer-
tainty ratios. Ideally an FEA method should have a mean modelling uncertainty ratio θm close to
unity, to signify the method is unbiased (accurate), and a low coefficient of variation Vθ to repre-
sent low variation in results for a given solution strategy (robustness). Recommendations by fib
(45) state that the coefficient of variation of the modelling uncertainty should be less than 30%, or
less than 15% to meet global safety requirements using target reliability (22).
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Method

The method of this thesis consisted of modelling five benchmark cases in the SLA-program in
DIANA (detailed in Section 3.1), quantifying their accuracy and robustness using performance
parameters (Section 3.2), and comparing their performance to NLFEAs of the same benchmarks
completed by others in academia (Section 3.3).

3.1 Modelling of Benchmark Cases in SLA
To objectively assess the validity of the two-dimensional sequentially linear analysis (SLA) and
compare it to non-linear finite element analysis (NLFEA), five benchmark cases of reinforced con-
crete (RC) structures were selected from previous experiments in academia. The benchmarks
were chosen by targeting experiments that reported brittle damage and/or failure, since mod-
elling brittleness is often an impediment for NLFEA. However, several of the cases exhibit mild
to significant ductility also. Three of the benchmarks are subjected to non-proportional loading,
since this is of particular interest to this research. All five have previously been modelled us-
ing NLFEA by others in academia. In modelling the benchmarks in SLA, a consistent solution
strategy was used in order to obtain comparable results from which conclusions can be drawn
regarding the method’s validity. The results from the SLA modelling of these benchmarks were
compared to that of the NLFEA and experiments.

The benchmark cases
All five benchmark cases are reinforced concrete structures from previous experiments with al-
ready completed NLFEAs by others in academia. The first two are proportional loading cases, and
the following three are non-proportional loading cases. All cases are monotonically loaded only
(without any cyclic loading). The last benchmark case is a larger structure with several structural
elements. The experiments selected for the benchmarks are briefly described here, and explained
in more detail in their respective chapters in Chapters 4 - 8.

Proportional loading cases

1. Shear Beam by Kani (7)

The shear beam is simply supported and symmetrically loaded with two vertical point loads
that monotonically increase until failure. Flexural cracks develop during loading however,
due to the slender geometry of the beam and lack of shear reinforcement, the failure mode is
shear failure via a critical shear crack that suddenly propagates at failure. The failure mode
is brittle.

2. Corbel by Niedenhoff (35)

The one-sided corbel is a heavily reinforced structural element loaded with a monotonically
increasing vertical point load. During loading, significant cracking occurs. Failure is quasi-
brittle, with yielding of the main reinforcement, widening of the main vertical crack and
crushing of the concrete in the compressive corner of the corbel.

23
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Non-proportional loading cases

3. Shear Wall by Lefas, Kotsovos & Ambraseys (32)

The shear wall is pre-compressed with a constant vertical load and loaded with a monotoni-
cally increasing horizontal point load. Significant flexural and inclined cracking occurs dur-
ing loading. Approaching the failure load, vertical cracks appear in the compressive zone
at the base of the wall. Failure occurs in the compressive zone with near-vertical splitting.
Failure is quasi-brittle since both the compressive and tensile longitudinal reinforcements
yield.

4. Flexural Beam by Jelic, Pavlovic & Kotsovos (30)

The flexural beam is a simply supported beam with an overhang, loaded with two point
loads. The point load at mid-span is kept constant at 90 kN, and the point load on the
overhang is applied monotonically until failure. Despite the beam satisfying design speci-
fications for a flexural beam, the beam fails before reaching the supposed flexural capacity
by means of an inclined crack propagating from the overhang load to the support. The fail-
ure mode is quasi-brittle, since the shear reinforcement is sufficient to prevent brittle shear
failure.

5. Frame by Vecchio & Emara (51)

The frame is a single-span, two-storey portal frame with constant vertical compressive loads
in the columns and a monotonically increasing lateral load on the upper beam. Failure oc-
curs via hinging at the column bases and at the ends of both beams. Hinging consists of
concrete cracking and crushing and yielding of both tensile and compressive longitudinal
reinforcement and thus the failure is quasi-brittle. Significant ductility was observed how-
ever, with the frame sustaining the load-bearing capacity until the experiment was ceased.

Solution strategy in this work
In this work, the SLA-program in DIANA 10.3 was used. The program was still in development
and may undergo changes before its release. In the current version, the software uses a fixed
smeared total strain crack model with the standard ripple band saw-tooth law. A consistent solution
strategy was used to model all five benchmarks. The only input that differed from case to case
was the size of the elements and the p-factor for defining the saw-tooth relation. Some of the
solution strategy options were not available for use since they are not yet included in the SLA-
program, for example bond-slip modelling, exponential and Hordijk tensile softening curves, and
material effects such as concrete hardening and softening phenomena. The user-specified input
was chosen as follows and summarised in Table 3.1.

Material Constitutive Modelling
The softening curves used were linear for tension and parabolic for compression, using the Feen-
stra parabola (23) (see Figure 3.1). Both were quantified by fracture energy input. Von Mises
plasticity was used for the reinforcement.
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FIGURE 3.1: Concrete material softening curves used: linear for tension and parabolic for compression
according to Feenstra (23)

The concrete material properties were defined as per experiments where specified, and otherwise
according to the fib Model Code 2010 (22). Poisson’s reduction was used, as per Equations 2.9 -
2.10, as well as a variable shear retention factor (Equation 2.12) to avoid shear locking.

The input for the standard ripple bandwidth approach consists of the saw-tooth p-factor and the
maximum number of damage increments. Figures 3.2 and 3.3 illustrate the discretisation of the
material constitutive models. Each secant branch is defined by the reduced Young’s modulus Ek
and the upper strength limit f+t,k, f+c,k or f+y . The final secant branch in tension and compression
for the concrete is defined as 1× 10−6 of the original strength. Unloading can occur along the
current secant branch. In general, the p-factor was defined as 10%. For the proportional loading
cases, the p-factor for the concrete was increased to 20% where the impact of this increase on
the results was found to be zero or negligible, since a larger p-factor (especially for the concrete)
reduced computation time. The impact of the p-factor is discussed in more detail in the results
(Sections 9 - 10). A maximum of 30 damage increments was specified for both the concrete and
reinforcement saw-tooth relations.

FIGURE 3.2: Illustration of discretisation of softening curves
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FIGURE 3.3: Illustration of discretisation of Von Mises plasticity for reinforcement

Spatial Discretisation
All benchmarks were modelled with two-dimensional plane stress elements. Six-noded triangu-
lar elements with quadratic interpolation and a 3-point integration scheme were used (named
CT12M in DIANA). Triangular elements were used instead of quadrilateral due to their increased
objectivity with respect to mesh refinement and mesh alignment bias, as reported by Slobbe et al.
(43) and corroborated by initial analyses in this thesis. For ease of computation, the mesh was
moderately coarse. On average the discretisation of the models had seven elements across the
height or width of the critical region.

Reinforcement was modelled as embedded with bar elements and was thus fully bonded. The re-
inforcement strains were therefore calculated based on the displacement field of the plane stress
element. The bar elements have three location points and two integration points per plane stress
element.

End of Analysis Criteria
For all analyses the “REDFAC” option was used in combination with a specification of the max-
imum number of steps. REDFAC was specified as 0.01, denoting that the analysis would cease
when it reached 1% of the specified load. The maximum number of steps was defined as large
enough for each benchmark such that the analysis was able to cease due to the REDFAC criterion
and not due to exceeding the maximum number of steps.
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TABLE 3.1: Summary of input used for SLA analyses

1. Shear
Beam 2. Corbel 3. Shear

Wall
4. Flexural

Beam 5. Frame

Concrete material parame-
ters fib Model Code 2010

Material softening/plasticity
relation

Concrete: Linear tensile softening, parabolic compressive softening
Reinforcement: Von Mises plasticity

Element description
Concrete: Six-noded triangular isoparametric plane stress elements

(Quadratic interpolation, 3-point integration)
Reinforcement: Embedded bar elements (2-point integration)

Element size (mm) 200 120 75 40 150

Crack bandwidth h (mm) 131.6 78.96 49.35 26.32 98.71

Number of elements over
critical height 7 8 11 6 4

Shear retention factor Variable

p-factor (Concrete) p 0.2 0.2 0.1 0.1 0.1

p-factor (Reinforcement) pR 0.2 0.1 0.1 0.1 0.1

Maximum number of dam-
age increments 30

3.2 Quantitative Performance Measures
To objectively compare the SLA results to the NLFEA and experimental results, four performance
parameters were used to assess the accuracy of the SLA modelling of the pre-peak stiffness, peak
load, post-peak behaviour and ductility, and to compare its performance with NLFEA. Since no
experimental data on the displacements of the specimens were available for the proportional load-
ing cases (Benchmarks 1 & 2), it was only possible to assess the peak load uncertainty factor for
these cases.

Pre-peak Uncertainty Factor
The pre-peak performance parameter (ζ) given in Equation 3.2 is a ratio of the experimental secant
stiffness (kexp) to that of the analysis (kan), be it NLFEA or SLA. The secant stiffness (k) is the ratio
of a given load (F) to the corresponding displacement (u) from the load-displacement response
(Equation 3.1). This is depicted in Figure 3.4. The parameter is calculated twice, for a load F equal
to one third and two thirds of the experimental peak load (Rexp). The ratio of secant stiffness
values compares the pre-peak structural stiffness indirectly, since a ratio close to unity indicates
that for the given load the displacement provided by the analysis resembles that measured in the
experiment.

k x
3
=

Fx
3

uFx
3

f or x = [1, 2] (3.1)

ζ x
3
=

kexp, x
3

kan, x
3

(3.2)



28 Chapter 3. Method

FIGURE 3.4: Illustration of the parameters in the pre-peak performance parameter

Peak Load Uncertainty Factor
The peak load uncertainty factor (θ) is the ’modelling uncertainty factor’ used by Engen et al. (21).
It is the ratio of the experimental peak load (Rexp) to that of the analysis (Ran), illustrated in Figure
3.5. It is commonly referred to in literature as the modelling uncertainty factor (21). As with the
pre-peak uncertainty factor, a value closer to unity indicates greater accuracy of the analysis.

θ =
Rexp

Ran
(3.3)

FIGURE 3.5: Illustration of the parameters in the pre-peak performance parameter

Post-peak Modelling Factor
The post-peak modelling factor (φ) is used to measure the amount of post-peak behaviour in the
experiment and the ability of the analysis to continue the analysis after reaching the peak load.
Unlike the other three performance parameters, the post-peak modelling factor is not a ratio of
the experimental results to the analytical results but rather an individual measure for each of
the analyses and the experiment, the three of which can then be compared. The factor is the
ratio of the drop in force successfully modelled post-peak (∆F) to the peak force (R) (see Figure
3.6). In SLA, the condition successfully refers to the section of the analysis without intermittent
proportional loading occurring, since modelling the structure with less than the full constant load



3.2. Quantitative Performance Measures 29

is no longer representative. Other oddities may also constitute “unsuccessful” analysis steps, such
as fatal stress reversal. In NLFEA, successfully refers to achieving convergence to a level deemed
acceptable. In the experiment the ratio is simply the drop in force recorded after the peak load
compared to the peak load. In some cases, with brittle failure, none is recorded.

φ =
∆F
R

(3.4)

FIGURE 3.6: Illustration of the parameters in the post-peak performance parameter

Ductility Uncertainty Factor
The ductility uncertainty factor (ϕ) is a ratio of the maximum displacement of the experimental
load-displacement response to that of the analysis, illustrated in Figure 3.7. For SLA, since very
large displacements can be modelled after failure, the maximum displacement is taken as only
that of applied loads greater than half of the analysis’ peak load. In other words, large displace-
ments occurring after the load-bearing capacity of the structure has dropped by more than 50% of
the peak load are disregarded. Similar to the pre-peak and peak load uncertainty factors, a value
closer to unity indicates better accuracy of the analysis.

ϕ =
umax,exp

umax,an
(3.5)

FIGURE 3.7: Illustration of the parameters in the ductility performance parameter
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3.3 Comparison with Experimental and NLFEA Results
The results of the SLAs were compared to that of the experiments and NLFEAs both quantita-
tively and qualitatively. Quantitatively they were compared using the performance parameters
described in the previous subsection. Qualitatively, the damage progression, final crack pattern,
failure mode, stress contours and yielding of reinforcements were compared.

Since the NLFEA results used in this thesis were obtained by others in academia, the solution
strategies of the NLFEAs differed not only to the solution strategy used in this thesis for SLA, but
also with respect to each other. Thus the qualitative and quantitative comparisons between SLA
and NLFEA results are not fair comparisons, nor can conclusions regarding the performance of
NLFEA be fairly drawn by collating the results of the NLFEAs (by averaging the performance
parameters, for example). Comparisons were made nonetheless, since repeating NLFEAs with a
consistent solution strategy was not within the scope of this thesis. The faulted comparability of
the finite element analyses was considered when drawing conclusions in Section 9.3.

An example of a difference in solution strategies is that in analysing the shear wall with NLFEA,
Nilsen-Nygaard (36) used solid elements while in the SLA plane-stress elements were used. An-
other example is that the SLA-program uses a uniaxial model of concrete without any additional
models for material effects, while Jelic et al. (30), in their analysis of the flexural beam, used a
triaxial model. There are many examples of the differences in solution strategies. The solution
strategy for each NLFEA is described in each of Chapters 4 - 8.

The finite element programs used for the NLFEAs also differed. The flexural beam and the frame
were completed with programs FINEL and TEMPEST respectively. The shear beam, shear wall
and corbel were all analysed with DIANA, however using different versions and thus are also
not directly comparable. Claus (12) and Nilsen-Nygaard (36) used DIANA versions 9.2 and 9.6
respectively, while van Mier (48) used an older version of DIANA from 1987. The SLAs completed
in this thesis were done using DIANA version 10.3.
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Benchmark 1: Shear Beam

4.1 Experiment by Kani
The shear beam to be considered is beam #3061 tested by Professor Kani from the University of
Toronto in 1968 (7). It is the first of two proportional loading cases to be considered. Figure 4.1
shows the geometry of the beam and the experimental loading conditions, as well as the crack
pattern from the experimental results. The critical crack is shown in bold. The two longitudinal
reinforcements at the bottom of the beam have a combined area of 1355mm2 and a cover of ap-
proximately 96mm. Table 4.1 shows the material properties measured in the experiment.

The two vertical point loads were increased monotonically until flexural-shear failure occurred,
at a load of V = 97.7 kN (totalling a load of 195.4 kN). The first cracks to appear were the flexural
cracks in the centre section of the beam with the constant moment. As loading continued, the
cracks progressively formed further into the shear span and more inclined, until the critical crack
formed. The critical crack was reported to occur suddenly at approximately 1350mm from the left
support, with the crack propagating up the beam to under the loading plate.

FIGURE 4.1: Geometry and loading of the beam and experimentally obtained crack pattern (12)

TABLE 4.1: Material parameters from experiment (7)

Concrete Reinforcement

fcm 27.4 N/mm2 fy 399 N/mm2

dmax 16 mm
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4.2 Nonlinear Finite Element Analysis by Claus
4.2.1 Method
The shear beam was modelled by Claus (12) using two-dimensional plane stress analysis in DI-
ANA 9.2. The spatial discretisation consisted of eight-noded isoparametric quadrilateral plane
stress elements of approximately 90 mm in size. A 3× 3 Gaussian integration scheme was used.
The reinforcement was modelled with discrete three-noded truss elements with bond-slip mod-
elling. A two-point Gaussian integration scheme was used. Concrete material softening was
modelled as linear in tension and parabolic in compression. Reinforcement was modelled with
Von Mises plasticity. Material parameters used are shown in Table 4.2, calculated according to
CEB-FIP Model Code 1990 (14) based on the characteristic compressive strength. (Oddly, Claus
used 27.4 MPa as the characteristic compressive strength of the concrete, however the experiment
specified this as the mean compressive strength.) Several analyses were completed, which are
listed below. The finite element model for analyses 1 - 3 is given in Figure 4.2.

1. Symmetric model with smeared rotated cracking
This analysis initially used displacement control with an increment size of 0.03mm, and a
force convergence norm with standard tolerance. In this analysis, an exponential curve was
used for tensile softening. The analysis was subjected to some variation in an attempt to
achieve better convergence, such as adjusting the increments of the iterative procedure or
the spatial discretisation, switching from displacement control to force control, and varia-
tion of the concrete material parameters such as the tensile strength, fracture energy, Pois-
son’s ratio and Young’s modulus. No variations to the solution strategy resolved the con-
vergence issues. Only the results of the initial solution strategy are reported.

2. Symmetric model with smeared fixed cracking
This analysis used displacement control with 0.1mm increments, and a constant shear reten-
tion factor of β = 0.001. The model also doubled the tensile fracture energy, and restarted
the analysis with the previous stiffness matrix when the critical crack formed.

3. Symmetric model with discrete cracking
For the discrete cracking models, interface elements were modelled at the approximate lo-
cations of the cracks shown in the experimental results. Flexural cracks were modelled at a
spacing of 200mm and were allowed to propagate 850mm up the beam. The critical crack
was modelled concaved.

4. Full model with discrete cracking
The full beam was modelled, with the interface elements for the discrete cracks modelled
symmetrically.

5. Full model with discrete cracking and an imposed imperfection
To model imperfections, the left critical crack was modelled as smaller than that of the right
side.

FIGURE 4.2: Finite element model used for analyses with symmetry (12)
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TABLE 4.2: Material parameters used in the NLFEA by Claus (12)

Concrete Reinforcement

fck 27.4 N/mm2 fy 398 N/mm2

ft 2.74 N/mm2 Es 210000 N/mm2

Ec 32766 N/mm2 v 0.3 -
v 0.15 -

G f 0.062 Nmm/mm2

dmax 16 mm

4.2.2 Results
Claus reported some difficulties using non-linear finite element analysis (NLFEA) to model this
experiment (12).

The smeared rotated cracking model experienced a lot of numerical instability due to the brittle be-
haviour of the beam. The variations made to the solution strategy to attempt to achieve better
convergence had little success. Additionally the structural response had little correlation to ex-
perimental results. The cracking and failure patterns were unrealistic, since only one bending
crack occurred, and no cracking appeared in the shear span. Furthermore, significant cracking
occurred in line with the reinforcement, which is not physically justifiable.

The smeared fixed cracking model yielded better crack patterns, however the failure mode was in-
correct. The modelled behaviour was over-stiff, so the shear crack did not fail. The failure load
instead corresponds to the flexural capacity of the beam, which is unrealistic.

The discrete cracking models yielded peak load uncertainty factors much closer to unity. Inter-
estingly, the full model agreed with the experimental failure load far better than the symmetric
model, with a failure load 21% lower than that of the symmetric model. As is typical with NLFEA,
the damage and failure cracks were symmetric, which is unrealistic for shear beam failure, which
is one-sided. (Although, it was noted that one shear crack did begin forming before the other.)
Applying the imperfection in the fifth analysis had very little impact, decreasing the failure load
by only 3%. The results from the five analyses performed by Claus are summarised in Table 4.3.

TABLE 4.3: Performance parameters from NLFEA results (12)

Analysis Failure load V
(kN)

Peak load
uncertainty factor θ

1. Smeared rotated cracking (symmetric) 67.3 1.45
2. Smeared fixed cracking (symmetric) 170 0.57
3. Discrete cracking (symmetric) 121.3 0.81
4. Discrete cracking (full) 97.6 1.00
5. Discrete cracking with imperfection (full) 94.5 0.97

Figure 4.3 corresponds to Table 4.3 in showing that analyses four and five, with the full model,
predict the peak load most accurately. It is counter-intuitive that analyses three and four differ
significantly in both the peak load and ultimate displacement, since symmetric modelling should
in theory obtain the same result. Notably, the ultimate displacement of each analysis varies sub-
stantially. Since the experiment provided no displacement data, it is not possible to verify how
accurate these displacement predictions are.
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FIGURE 4.3: Load-displacement response of Claus’ (12) non-linear finite element analyses

4.3 Sequentially Linear Analysis
4.3.1 Method
Figure 4.4 shows the discretisation of the shear beam, which was modelled with 200 mm triangu-
lar plane stress elements, with a crack bandwidth h of 132 mm. Steel loading and bearing plates
were modelled as specified in the experiment (7). The load was modelled as two point loads (V),
each of a unit load of 1 kN. The reinforcement was modelled as a single bar centred at 111 mm
above the base of the beam, with the specified area of 1355 mm2. Since the experiment speci-
fied only the compressive strength, all other concrete material parameters were calculated using
fib Model Code 2010 (22). The values are presented in Table 4.4. The p-factor for the saw-tooth
approximation was 0.2 for both the concrete and reinforcement.

FIGURE 4.4: Discretisation of Shear Beam in SLA

TABLE 4.4: Material parameters used in the SLA

Concrete Reinforcement

fcm 27.4 N/mm2 fy 399 N/mm2

ft 2.17 N/mm2 Es 210000 N/mm2

Ec 25942 N/mm2 v 0.3 -
v 0.2 - εult 0.03 -

G f t 0.1325 Nmm/mm2

G f c 33.12 Nmm/mm2
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4.3.2 Results
The SLA of the shear beam obtained the correct crack progression, failure mode and an adequate
estimate of the peak load.

Load-Displacement Response
The peak load was slightly overestimated, by 7%, as seen in Figure 4.5. The load-displacement
path leading up to the peak load shows small and significantly jagged notches where small and
larger cracks occur, respectively. Post peak behaviour was fully modelled, with the SLA contin-
uing until complete failure of the specimen, i.e. until the load-bearing capacity of the structure
dropped to zero. Notably, the maximum displacement modelled is 12.13 mm, which is relatively
small compared to most of the non-linear analyses (Figure 4.3). However, since there is no exper-
imental data regarding the structure’s displacement, it is not known which is more accurate.

FIGURE 4.5: Load-displacement response of the SLA

Crack Pattern and Failure Mode
Figure 4.6 shows the crack pattern during loading and at failure, the latter of which can be com-
pared to the experimental crack pattern shown in Figure 4.1. Figure 4.7 marks key step numbers
at stages of the analysis for reference. Flexural cracks develop first before the critical shear crack
appears. This correlates with the experiment, which reported that the critical crack appeared sud-
denly at failure. No yielding of the reinforcement occurs in the SLA. (Yielding of reinforcement
was not commented on in neither the experimental notes by Bentz (7) nor in the NLFEA results
by Claus (12).)

The critical crack originates approximately 1518 mm from the eastern support (pictured as the
right hand support) and extends up to under the loading plate. This compares relatively well to
the experiment’s reported distance of 1350 mm from the western support (pictured as left). It is
not an issue that the SLA models the critical crack on the eastern instead of the western side of the
beam, since in reality material or geometrical imperfections in the concrete beam will determine
which side of the beam will be critical, which will change arbitrarily from beam to beam.
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(a) Step 1851 (V = 81 kN)

(b) Step 2826 (V = 104 kN)

FIGURE 4.6: Crack strains (a) during loading and (b) at failure

FIGURE 4.7: Load-displacement response of the SLA with various steps labelled
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Benchmark 2: Corbel

5.1 Experiment by Niedenhoff
The second benchmark is a one-sided corbel named M2/B2 from the experiments of Niedenhoff
(35). It is the second proportional loading benchmark considered in this thesis. Figure 5.1 shows
the dimensions of the corbel, the reinforcement layout and the test set-up. A vertical point load,
increasing in 50 kN increments, was applied on the corbel. The corbel was vertically and hori-
zontally supported at its base, and horizontally supported at the top right corner of the corbel
(Figure 5.1c). Measured material parameters are given in Table 5.1. The displacements were not
measured throughout the experiment, but crack formations were monitored and a photo-elastic
investigation was performed.

(a) Dimensions (b) Reinforcement layout (c) Test set-up (48)

FIGURE 5.1: Characteristics of the corbel experiment (48)

TABLE 5.1: Material parameters from experiment (35)

Concrete Reinforcement

fcm 22.6 N/mm2 Es 210 000 N/mm2

Ec 27 000 N/mm2 φ7 fy 368 N/mm2

v 0.2 - φ12 fy 282 N/mm2

εp 0.0017 - φ14 fy 300 N/mm2

37
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Figure 5.2 shows the experimental results. Photoelastic results from the linear elastic stage show
a concentration of tensile stresses in the upper left corner of the corbel, while compressive stresses
are concentrated in the lower left corner. The upper right corner has a concentration of stresses
under the loading plate, while the lower right corner has almost zero stresses. Figure 5.2a has the
stress contours drawn onto the failed corbel.

The crack pattern at failure is digitally represented in Figure 5.2c. Crack #1 was the first to initiate
between the first and second load step (50 kN - 100 kN), and propagated into the main vertical
crack and an orthogonal crack (crack #2) at a load level of 150 kN. At a load of 200 kN, the design
load of the corbel, the vertical crack had propagated to a distance 14 mm from the top of the
corbel. Crack #2 propagated to a distance of 39 mm from the left edge of the corbel at a load
of 300 kN. Further cracks in the column and the corbel then developed. Failure occurred in the
compressive zone (labelled #3) at a load of 585kN, as yielding of the main reinforcement (the 8φ12
horizontal bars at the top of the corbel) resulted in the widening of crack #1.

(a) Image with cracks and stress
contours

(b) Photo-elastic results during
linear elastic stage (c) Crack pattern at failure

FIGURE 5.2: Experimental results (48)
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5.2 Nonlinear Finite Element Analysis by van Mier
5.2.1 Method
The corbel was modelled with two methods in a previous version of DIANA from 1987 by van
Mier (48). The element meshes are illustrated in Figure 5.3. Model A used two-dimensional
analysis with eight-noded isoparametric plane stress quadrilateral elements with quadratic in-
terpolation and 3x3 Gauss integration. The reinforcement was modelled with three-noded bar
elements and perfect bondage between the steel and concrete. Model B was similar to Model A
except for an adjusted mesh and the modelling of bond-slip on the main reinforcement (the 8φ12
bars). Model B additionally models the hook of the main reinforcement by “tying” the nodes at
the (left) end of the main reinforcement bar to the concrete nodes of the elements above and below
the bar, meaning their displacements are dictated to be the same.

(a) (b) (c)

FIGURE 5.3: Element mesh and reinforcement layout for NLFEA of the corbel in (a) Model A and (b) Model
B, and (c) the tyings of bond-slip elements in Model B (48)

The concrete material modelling consisted of a linear softening curve in tension and an elasto-
plastic model for compression, with the effect of concrete softening in compression included ac-
cording to Vermeer and de Borst (52). Von Mises plasticity was used for the reinforcement. The
additional parameters required for modelling in NLFEA are given in Table 5.2. The tensile capac-
ity of the concrete was not provided by the experimental results, thus van Mier (48) calculated
it according to ft = 0.87× (1.15 + 0.072× fc). The analysis was completed using displacement
control to apply the load on the corbel, as a point load through the steel loading plate.

TABLE 5.2: Additional parameters used in the NLFEA of van Mier (48)

Concrete Bond-slip bar φ12 (Model B)

ft 2.42 N/mm2 Sz 200 N/mm2

β 0.2 - τzu 5 N/mm2
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5.2.2 Results
The results of van Mier’s analysis (48) had fair correspondence to the experimental results, how-
ever were somewhat limited by the state of the finite element software in the 1980s. Model A
and B both obtained a crack pattern that corresponded well to that of the experiment with respect
to location and orientation, however they were smeared instead of localised, as shown in Figure
5.4. The crack lengths, however, are predicted quite well. Figure 5.5 shows that there was very
little difference between the structural response of the model without bond-slip (Model A) and
the model with bond-slip (Model B), with essentially zero difference up until a load of approxi-
mately 300 kN. The force-displacement curves of the analyses cannot be compared to that of the
experiment since displacements were not recorded in the experiment.

(a) Model A (b) Model B

FIGURE 5.4: Crack patterns from the NLFEA at a load of 340 kN, with the main experimental cracks in bold
(48)

FIGURE 5.5: Comparison of structural response from Model A and B of the NLFEA (48)

Model A
The principal stresses that developed in the corbel largely corresponded to those from the exper-
iment shown in Figure 5.2b (48). The initiation of cracking occurs earlier than in the experiment,
at a load of 48 kN, instead of between load steps 50 kN and 100 kN. However, van Mier noted
that its possible that the initiation of cracks did in fact occur earlier in the experiment, yet were
too small for the human eye to register. First yielding of the reinforcement occurred at a load
of 430 kN in the horizontal stirrups (φ7), followed by the column’s vertical reinforcement on the
corbel side, followed by the main reinforcement (8φ12).
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Model B
Model B’s results were similar to those of Model A apart from the following. The modelling of the
vertical crack in Model B corresponded better to propagation in the experiment, which can be seen
in Figure 5.4. In Figure 5.4a it is clear that towards the bottom of the experimental vertical crack,
the crack propagation from the analysis is deviating to the left instead of continuing downwards.
Conversely, Figure 5.4b shows the analysis’ vertical crack propagation is more closely aligned
with the experimental crack.

TABLE 5.3: Comparison of analytical and experimental results

Result Experiment Van Mier (48) -
Model A

Van Mier (48) -
Model B

Load at onset of cracking (kN) 50-100 48 48
Load at failure (kN) 585 486 520

5.3 Sequentially Linear Analysis
5.3.1 Method
Figure 5.6a shows the discretised model of the corbel, using 120 mm triangular plane stress ele-
ments with a crack bandwidth h of 79 mm. The layout of the reinforcement (Figure 5.1b) was
vaguely described by both Niedenhoff (35) and van Mier (48), however the interpretation is
shown in Figure 5.7. This interpretation was modelled in the SLA model, except for hooks of
the reinforcement, which were not modelled (see Figure 5.6b). The ’main reinforcement’ (as re-
ferred to by van Mier (48)) are the eight horizontal φ12 bars at the top of the corbel.

(a) Mesh, loading and supports (b) Modelled reinforcement

FIGURE 5.6: Discretised model in SLA
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FIGURE 5.7: Interpretation of corbel’s reinforcement layout

Table 5.4 shows the material parameters used. The concrete properties were calculated according
to the fib Model Code 2010 (22) based on the compressive strength fcm given in the experiment.
The bearing and loading plates were modelled with linear-elastic steel, with the same Young’s
modulus and Poisson’s ratio as the reinforcement. The reinforcement yield stresses were as in
Table 5.1, and the ultimate strain εult was overestimated to avoid reinforcement breakage in the
analysis since this was not reported in the experiment. A p-factor of 0.2 was used for the concrete
and 0.1 for the reinforcement.

TABLE 5.4: Material parameters used in the SLA

Concrete Reinforcement

fcm 22.6 N/mm2 Es 210000 N/mm2

ft 2.06 N/mm2 v 0.3 -
Ec 24021 N/mm2 εult 0.1 -
v 0.2 -

G f t 0.128 Nmm/mm2

G f c 31.99 Nmm/mm2

5.3.2 Results
The results from the presented SLA have good correlation to the experimental results in terms of
crack progression, and peak load. The failure mode was modelled moderately well, hindered by
the concrete in the bottom left corner not crushing entirely. Mesh alignment bias was very evident
in this benchmark, as will be discussed in Section 10.1.

Load-Displacement Response
Figure 5.8 shows that the SLA predicts the peak load better than both non-linear analyses com-
pleted by van Mier (48). The pre-peak stiffness is very similar for all three analyses, however the
SLA continues after the NLFEA terminates. The peak load plateaus for a time before complete
failure, indicating significant ductility. The experiment did not measure displacements so the ac-
curacy of this can not be ascertained. The failure mode of the experiment however did detail
yielding of the main reinforcement, so at least some ductility is expected.
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FIGURE 5.8: Load-displacement response of SLA and NLFEAs compared to the experimental capacity

Crack Pattern and Failure Mode
Figures 5.9 - 5.10 show the damage progression and principal stress contours throughout the anal-
ysis. Reference to Figure 5.11 gives perspective to their position in the analysis.

The stress contour of the SLA in the linear-elastic stage (Figure 5.10a) corresponds well to that
of the experiment (Figure 5.2a). Figure 5.9a shows that location #1 (as labelled in Figure 5.2c) is
where the largest tensile strains are concentrated in the SLA. Cracking initiated at this location
at a load of 63 kN, which correlates to the experimental observation of cracking initiating at this
corner between a load of 50 - 100 kN. Comparing the developed crack pattern in Figures 5.9c to
the experimental cracks shown in Figure 5.2c, a great likeness is observed, with the exception of
the cracking along the top of the column’s vertical reinforcement on the corbel’s side in the SLA.
(Cracking along reinforcement is discussed in Section 10.1.)

In step 4101, close to failure (which occurs in step 4163), the cracking is extensive and the stresses
in the compressive strut are exceeding the concrete compressive strength (Figure 5.10d), with
compressive stresses accumulating in region #3 (labelled in Figure 5.2c). It is in this region that
the experiment reported failure due to concrete crushing, after expansion of the main vertical
crack and yielding of the main horizontal reinforcement. The SLA models the widening of the
main vertical crack, but only some crushing in the compressive region, and only some yielding
of the main reinforcement. The drop in load-bearing capacity in the SLA was prompted by the
vertical reinforcement on the right hand side of the column exceeding the ultimate tensile strain
at location #1. A generous value of 0.1 was assigned to the ultimate reinforcement strain in the
SLA input to avoid failure due to breakage of reinforcement because the experiment did not re-
port breakage of reinforcement, but even with this overestimated ultimate strain, failure was not
caused by concrete crushing in location #3 of the corbel.

After step 4163 as the load bearing capacity drops, the cracked concrete in the column around the
main reinforcement fails completely. Conversely, other analyses with varying material parame-
ters failed due to failure of the concrete in the corbel. Thus the SLA models the stress distribution
and damage in the corbel well but the mechanism by which complete failure of the corbel occurs
is sensitive to material input.
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(a) Step 101 (F=228kN) (b) Step 1701 (F=513kN) (c) Step 2901 (F=550kN) (d) Step 4101 (F=555kN)

FIGURE 5.9: First principal strains in the corbel (a) during the linear stage, (b) approaching peak (c)
reaching peak load and (d) just before complete failure

(a) Step 101 (F=228kN) (b) Step 1701 (F=513kN) (c) Step 2901 (F=550kN) (d) Step 4101 (F=555kN)

FIGURE 5.10: Stress contours in the corbel (a) during the linear stage, (b) approaching peak (c) reaching
peak load and (d) just before complete failure

FIGURE 5.11: Load-displacement response of SLA marking significant steps including the first “peak” at
step 3026 (F = 560.7 kN) and the actual peak load at step 3440 (F = 562.1 kN).
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Reinforcement
The reinforcement yeilded in the SLA in the same order as in the NLFEA, with the horizontal φ7
stirrups in the corbel yielding first, at a load of 380 kN, followed by the column’s vertical rein-
forcement on the corbel side (φ14 bars) at a load of 455 kN, and finally the main reinforcement
φ12 bars at a load of 550 kN. Reinforcement strain contour plots are presented in Appendix A.1,
for two load steps: 2901 (just before reaching peak load) and 4101 (just before complete failure).

Main reinforcement
Figure 5.12 shows the stress profile along the main reinforcement at different load stages. Recall
that the left hand side of the column is X=0mm, the right hand side of the column is X=600mm,
and the right hand side of the corbel is X=1100mm. The stresses in the reinforcement modelled by
NLFEA and SLA correlate quite well for the load of 360 kN, however for higher load levels SLA
models lower stress values in the reinforcement than the NLFEA. The NLFEA results are those
from Model B, which used bond-slip modelling. Thus comparing the results of NLFEA and SLA
is not a completely fair comparison.

At the base of the figure, the red dots indicate which integration points have and have not reached
the yield stress during the (entire) SLA, and those which have exceeded the yield strength but do
not yield because they do not reach 110% of the yield strength, i.e. (1 + pR) fy. Yielding of the
main reinforcement at failure is reported in the experiment, however in the SLA only 22% of the
considered IPs across the reinforcement bar yield, and a further 14% exceed the yield strength but
do not yield since they do not reach 110% of the yield strength. The influence of the p-factor on
the yielding of reinforcement in SLA is discussed further in Section 9.2.2.

FIGURE 5.12: Comparison of stresses along main reinforcement at various load stages for the NLFEA
(Model B) and SLA
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Benchmark 3: Shear Wall

6.1 Experiment by Lefas, Kotsovos & Ambraseys
The third benchmark is shear wall SW13 from the experiments of Lefas et al. (32). It is the first
of three non-proportional loading cases to be considered. The set of experiments consisted of 13
walls of varying dimensions, Type I (squat) or Type II (slender), and various levels of normalised
axial load v: either 0.0, 0.1 or 0.2. Equation 6.1 shows that v is a function of the actual axial load
applied Fv, the base dimension b, wall thickness t and mean compressive strength fcm. Figure
6.1 shows the geometry and reinforcement layout of the Type I walls. The vertical and horizon-
tal reinforcement bars were 8 mm and 6.25 mm diameter respectively. Additionally, mild steel
stirrups of 4 mm diameter were used to confine the wall edges. SW13 is a Type I wall and has
a normalised axial load of 0.2. The concrete mean compressive strength of SW13 was 34.5 MPa,
and the reinforcement properties are given in Table 6.1.

v =
Fv

bt fcm
(6.1)

FIGURE 6.1: Geometry and reinforcement layout of Type I walls (32)

Figure 6.2 shows the set up of the experiment. The axial load was first applied through a spreader
beam to the edge of the walls, and the horizontal load was then applied to the header beam at a
rate of 0.04kN/sec. The load increments were applied at at least two minute increments, during
which time measurements and observations were recorded.

46
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TABLE 6.1: Reinforcement material parameters (32)

Bar type Yield Strength fsy (MPa) Ultimate Strength fsu (MPa)

8 mm high-tensile bar 470 565
6.25 mm high-tensile bar 520 610

4 mm mild-steel bar 420 490

FIGURE 6.2: Set-up of the experiment: (a) elevation and (b) plan view (32)

Figure 6.3 shows the crack progression for SW14, a Type I wall essentially identical to SW13 ex-
cept for the fact that it has zero axial load. For all of the walls, the effect of the axial load was
multifaceted. Walls with higher axial loads, such as SW13, had an increased lateral stiffness,
lower horizontal displacement at failure, a wider crushing band due to a deeper neutral axis, less
extensive web cracking and overall an increased capacity.

The response of the SW13 wall was described by Lefas et al. (32). At around 15% of the horizontal
load (49.5 kN), the first flexural cracks appeared near the bottom third of the tensile edge. At
40% of the horizontal load (130 kN) was the first inclined crack. At this point the flexural cracks
had already spread at a slight inclination within the wall web. Continued loading resulted in
more flexural and inclined cracks, almost reaching the compressive edge. The first yielding of the
tensile reinforcement occurred at 75% of the horizontal load (250 kN). Failure occurred by way of
near-vertical splitting of the compressive zone at a peak load of 330 kN. The wall SW13 at failure
is pictured in Figure 6.4.

(a) 55 kN (b) 100 kN (c) 200 kN

FIGURE 6.3: Crack patterns of SW14 (another Type I wall, without an axial load) at various horizontal load
levels (32)
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FIGURE 6.4: Wall SW13 at failure

6.2 Nonlinear Finite Element Analysis by Nilsen-Nygaard
6.2.1 Method
The shear wall SW13 was modelled by Nilsen-Nygaard using three-dimensional non-linear fi-
nite element analysis with solid brick elements in DIANA 9.6 (36). The effect of modelling the
beams atop and at the base of the wall was found to be negligible, thus the wall was modelled
with simply a clamped base and a uniform pressure across the top for the axial load (Figure 6.5).
Twenty-node isoparametric solid brick elements of 150x150x70 mm were used for the wall, with
a full Gaussian integration scheme. The reinforcements were modelled with perfectly bonded
embedded elements with reduced integration (two integration points per solid brick element).

FIGURE 6.5: NLFEA model of SW13 showing mesh, boundary conditions and loading (36)

Constitutive Model
The crack model used was a total strain based fixed model, considering mode I fracture energy
only. A constant shear retention factor β was used, with a value of 0.1. DIANA calculated the
crack bandwidth h as the cubic root of the solid element’s volume 3

√
V. Poisson’s ratio was as-

signed a constant value of 0.15 until the onset of cracking, at which point it decreased at the same
rate as the secant modulus.

The concrete’s tensile softening curve was exponential, and the compressive softening curve was
parabolic. The concrete’s multiaxial behaviour was accounted for using Selby & Vecchio’s (42)
model for confinement effects and Vecchio & Collins’ (50) model for decreasing the compressive
strength due to lateral cracking.
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The constitutive relation used for the reinforcement was a bilinear stress-strain diagram for both
compressive and tensile behaviour, with a Young’s modulus (Es) of 200 000 MPa and a nominal
hardening modulus of Ehar = 0.02Es. Tension stiffening due to redistribution of tensile stresses
between the concrete cracks and reinforcement was calculated as having a negligible effect on the
global capacity (0.2% - 0.8%) and thus was not modelled.

Material parameters
The material parameters used by Nilsen-Nygaard were calculated according to the Dutch Guide-
lines (DG) (36). Table 6.2 shows the parameters used for the concrete properties. The reduced
Young’s modulus Ecr , equal to 0.85Ec was used for modelling the linear elastic concrete behaviour
to account for initial cracking. The reinforcement properties were as specified in Table 6.1.

TABLE 6.2: Concrete material parameters used in the NLFEA by Nilsen-Nygaard (36)

Parameter Value Unit

fcm 34.5 N/mm2

fctm 2.68 N/mm2

G f 0.0714 Nmm/mm2

Gc 17.85 Nmm/mm2

Ec 33 243 N/mm2

Ecr 28 257 N/mm2

v 0.15 -

Load application and convergence criteria
The vertical load (355 kN) was applied first as a uniform pressure, then the horizontal load was
incrementally applied using displacement control (36). The increments were 0.05 mm for the first
ten steps, followed by 0.25 mm increments until failure or lack of convergence.
Force-norms and energy-norms were used as the convergence criteria, with tolerances of 10−2

and 10−3 respectively. The analysis was permitted to proceed through non-converged steps in
order to ensure that failure was in fact reached.

6.2.2 Results
The results of Nilsen-Nygaard’s analysis of SW13 had positive and negative aspects (36). The
crack pattern corresponded well to experimental results. The failure mode was accurately de-
picted with vertical cracking in the compressive zone, however the failure load was underesti-
mated by nearly 80 kN, with a peak load uncertainty factor θ of 1.31. In fact, throughout the
analyses of Nilsen-Nygaard, the results corresponded less well to experimental results for spec-
imens with higher normalised axial loads (such as SW13). The most prevalent inaccuracy in the
analytical results of Nilsen-Nygaard was a delay in the onset of flexural cracking and then an
overestimation of stiffness, particularly in lower load levels, as shown in Figure 6.6b. The de-
lay in flexural cracking, occurring at 81.8 kN instead of the experimental value of 49.5 kN, was
deduced to be partly due to the coarse load steps, since smaller load steps reduced this delay
somewhat. Overall the ductility of the structure was underestimated, reaching a displacement of
only 3.25 mm as opposed to the experimental result of 8.88 mm, as shown in Figure 6.6a.
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(a) (b)

FIGURE 6.6: NLFEA results compared to experimental results for (a) the load-displacement response and
(b) secant stiffness versus horizontal load (36)

Figure 6.7 shows the crack pattern obtained from the NLFEA. Both the initiation of yielding of
the tensile reinforcement and attainment of the peak load occurred in load step (LS) 21, which
corresponds to 3.25 mm of imposed displacement and a horizontal load of 251.5 kN. Compared
to Figure 6.3, there is a close correlation between the crack patterns. On the compressive edge, the
vertical crack that caused failure is visible.

(a) Principal strain contour and cracks at LS 21 (b) Colour contour ranges for principal tensile strains

FIGURE 6.7: Crack pattern and principal tensile strains from NLFEA at LS 21 (251.15 kN), at which initial
yielding of tensile reinforcement and the peak load occurs (36)

Nilsen-Nygaard also reported problems during the modelling with regards to convergence (36).
Using a variable damage-based shear retention factor for example caused severe convergence
problems for post-peak behaviour and more brittle failures, and thus a constant shear retention
factor of 0.1 was used. Using a constant shear retention factor can cause stress locking, however
this was not reported until the post-peak region. Convergence problems also arose attempting to
use a rotating crack model instead of the fixed crack model.

Issues were encountered modelling the post-peak behaviour. Figure 6.6 shows the NLFEA results
only until the first non-converged load step, which Nilsen-Nygaard interpreted as the point of
failure. The post-peak behaviour, not shown, exhibited an initial drop in the force-displacement
response and spuriously increasing stresses that exceeded the tensile strength. These spurious
stresses were caused by stress locking.
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6.3 Sequentially Linear Analysis

6.3.1 Method
Figure 6.8 shows the discretised model of the shear wall used in the SLA. Triangular plane stress
elements of 75 mm were used, with a crack bandwidth h of 49 mm. The constant vertical load of
355 kN was divided between two uniformly distributed loads over a distance of 125 mm on the
edge of the walls, to mimic the the load application to the spreader beam used in the experiment.
The horizontal variable load was applied to the right side of the header beam to the middle node.
Loading plates were not used. The foot of the wall was not modelled because its influence was
found to be negligible. Instead, the base of the wall was fixed with translational restraints in
both directions to model the clamped wall base. The reinforcement layout is as specified in the
experiment (Figure 6.1).

Table 6.3 shows the concrete material parameters according to the fib Model Code 2010 (22) and
the reinforcement properties. They’re calculated from the mean compressive strength, which is
estimated as 85% of the cube strength fu given from the experiment (32). The yield strengths of
the reinforcement are as in Table 6.1. A p-factor of 0.1 was used for both the concrete and the
reinforcement.

FIGURE 6.8: Discretisation, loading and boundary conditions for the shear wall in SLA

TABLE 6.3: Material parameters used in the SLA

Concrete Reinforcement

fcm 34.5 N/mm2 Es 210000 N/mm2

ft 2.67 N/mm2 v 0.3 -
Ec 28537 N/mm2 εult 0.02 -
v 0.2 -

G f t 0.138 Nmm/mm2

G f c 34.5 Nmm/mm2
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6.3.2 Results
The modelling of the shear wall in SLA yielded moderately accurate results that were very com-
parable to that of the NLFEA.

Load-Displacement Response
Figure 6.9 shows that the SLA modelled the response of the shear wall in quite a similar man-
ner to the NLFEA. The capacity was underestimated, pre-peak stiffness was overestimated, and
ductility underestimated. The peak load of 281.6 kN occurs in step 7395. In Figure 6.9 a severe
snap-back can be observed post-peak where the lateral displacement in fact becomes negative.
This occurred in steps 7466 and 7467. In these two steps a total of 460 instances of stress reversal
occurred. (An ’instance’ refers to stress reversal in one direction of one integration point in one
element.) Stress reversal is modelled incorrectly in SLA, and results in non-secant snap-backs in
the load-displacement response. The incorrect modelling of stress reversal in SLA is discussed in
Section 9.2, however this is the only benchmark where stress reversal resulted in a global snap-
back to negative displacements, which is an impediment to modelling the post-peak behaviour.

The post-peak behaviour that is modelled before this snap-back, however, is far superior to that
of the NLFEA. The SLA load-displacement response modelled a sharp drop in the load bearing
capacity after failure occurs, making it clear to the user that a brittle failure had occurred.

FIGURE 6.9: Load-displacement response of the SLA, NLFEA and experiment from the horizontal load
application point

The NLFEA results reported a delay in the onset of flexural cracking and an underestimation of
the rate of decrease of the secant stiffness compared to the experiment, and Figure 6.10a shows
that the SLA suffers from a similar problem to an even greater extent. The SLA graph in Figure
6.10a appears to become negative at some point. This was cropped for illustrative purposes but
is shown in Figure 6.10b. The two points with negative secant stiffness correspond to steps 7466
and 7467, the steps where the snap-back into the negative region of Figure 6.9 occurred.
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(a) Positive secant stiffness values (b) Full graph, with steps 7466 - 7467 labelled

FIGURE 6.10: Comparison of secant stiffness versus applied horizontal load for SLA, NLFEA and the
experiment

Intermittent Proportional Loading
The modelling of the non-proportional loading was successful for the shear wall until after failure
when intermittent proportional loading (IPL) occurred in steps 7473-7482 and then began again
in step 7554, never recovering the full load combination again for the remaining duration of the
analysis. Since IPL causes unrepresentative modelling of the experiment, the results from steps
with IPL are irrelevant and were not included in Figures 6.9 - 6.10. Figure 6.11 shows the load
factor of the full constant load against the step numbers of the analysis. It is clear that IPL does
not begin until after the peak load has been reached.

FIGURE 6.11: Illustration of the intermittent proportional loading during the analysis

Damage Progression and Failure Mode
Damage Progression
Figure 6.12 shows the progression of cracks at key load stages, and Figure 6.13 the corresponding
principal stress tensors. The crack strains are presented at a scale with a maximum value of 0.005,
which corresponds roughly to a crack width of 0.25 mm. Figure 6.15 can be consulted for context
of the load steps within the analysis.

The first damage event in the SLA (i.e. the onset of cracking) occurs at 72.3 kN in Element 15,
located at the base of the wall on the tensile edge. As loading continues, the flexural cracks
continue to form further up the tensile edge and spread into the wall web at a slight inclination,
and inclined cracks develop also. At a load of 220 kN, the compressive vertical reinforcement
begins yielding in the bottom left corner of the wall. By a load of 250 kN, the inclined cracks
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are mostly developed and compressive stresses are accumulating on the compressive edge of the
wall base. At a load of 275 kN in the SLA (Figure 6.12c), vertical cracking in the compression
zone is developing. Table 6.4 compares the loads at which significant damage events occurred
in the experiment, NLFEA and SLA, illustrating that the SLA modelled the damage progression
and failure relatively well compared to the NLFEA. Appendix A.2 shows the reinforcement strain
contour plot in analysis step 7201.

(a) Step 101 (F = 114 kN) (b) Step 5901 (F = 250 kN) (c) Step 7301 (F = 275 kN)

FIGURE 6.12: Crack strains at key load steps. Scale in Figure 6.14a.

(a) Step 101 (F = 114 kN) (b) Step 5901 (F = 250 kN) (c) Step 7301 (F = 275 kN)

FIGURE 6.13: Principal stress tensor plots at key load steps. Scale in Figure 6.14b.

(a) (b)

FIGURE 6.14: Scales for (a) Figure 6.12 and (b) Figure 6.13.



6.3. Sequentially Linear Analysis 55

FIGURE 6.15: Load-displacement response of SLA with key analysis steps labelled

TABLE 6.4: Lateral loads at which key damage events occurred in the experiment (32), NLFEA (36) and SLA

Damage Event Experimental
Load (kN)

NLFEA
Load (kN)

SLA Load
(kN)

Onset of cracking: Flexural cracks at
bottom of tensile edge

49.5 81.8 72.3

First inclined crack 130 - 140.5

First yielding of tensile reinforcement 250 251.5 261.5

Failure 330 251.5 281.6

Failure Mode
The experiment reports that the load bearing capacity of the wall began to drop when the vertical
cracking began in the compressive zone, failing consequently with crushing of the compressive
zone. The SLA underestimates the failure load, however does exhibit the correct failure mode.
It too begins to lose load bearing capacity after vertical cracking in the compression zone begins,
and the modelled post-peak behaviour shows crushing in the compressive region. Figure 6.16
illustrates this by means of a contour plot of the principal strains in the second principal direction.
In Figure 6.16b the deflection is exaggerated to demonstrate the failure mode.

(a) Absolute deflection (b) Exaggerated deflection

FIGURE 6.16: The principal strains in the second direction after failure, in Step 8001 (111 kN)
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Benchmark 4: Flexural Beam

7.1 Experiment by Jelic, Pavlovic & Kotsovos
The fourth benchmark is a non-proportinally loaded beam named LDCB3 from the experiments
by Jelic et al. (30). Figure 7.1 shows the geometry, supports, loads, and reinforcement layout. The
mid-span point load P1 was first applied as 90 kN and then the point load on the overhang P2
was gradually increased from zero until failure. The experiment can thus be considered in two
loading phases, as depicted in Figure 7.2. Displacements were recorded in the experiment at mid-
span (D1) and at the end of the overhang (D2).

Geometrically, the beam spans 1600 mm with an overhang of 400 mm, and is 230 mm deep and
100 mm wide. The beam is designed according to the European codes, EC2 and EC8, as a low
ductility class flexural beam. By this definition, the beam should fail flexurally with a capacity of
43.58 kNm/m, and 100% of the ultimate shear resistance is assumed to come from the concrete
shear resistance. Longitudinal reinforcement consists of two 16 mm diameter bars at both the top
and bottom of the beam, with 30 mm from the bars’ centroid to the beam surface. Transverse
reinforcement consists of 8 mm diameter stirrups, spaced as per specifications in EC2, except at
so-called “critical regions”. The spacing is shown in Figure 7.1 and detailed in Appendix B. Table
7.1 shows the material properties measured in the experiment.

FIGURE 7.1: Illustration of the experiment

TABLE 7.1: Material parameters from experiment (30)

Concrete Reinforcement φ8 Reinforcement φ16

fcm 30.0 N/mm2 fy 368 N/mm2 fy 536 N/mm2

fu 480 N/mm2 fu 626 N/mm2

56
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(a) Load phase 1

(b) Load phase 2

FIGURE 7.2: Illustration of load phases as first (a) P1 is applied to its total value of 90 kN and then (b) P1 is
kept constant and P2 is increases monotonically

Despite being designed as a flexural beam according to European codes, the beam failed before
reaching the theoretical flexural capacity due to inability of the transverse reinforcement to control
inclined cracking (30). The failure consisted of an inclined crack from the load on the overhang
(P2) to the right support at a total load of 181.6 kN, as pictured in Figure 7.1. The shear reinforce-
ment was however sufficient in preventing brittle shear failure. Information regarding the crack
pattern was not provided.

Figure 7.3 shows the load displacement response measured in the experiment for the two dis-
placements, D1 and D2. The diamond shape of the structural response represents the subsequent
loading of first the 90 kN load (P1) and then the gradually increasing load (P2). Positive displace-
ment is downwards and negative displacement is upwards, as depicted in Figure 7.2.

FIGURE 7.3: Load-displacement response of experiment (30).
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7.2 Nonlinear Finite Element Analysis by Jelic, Pavlovic &
Kotsovos

7.2.1 Method
Jelic et al. modelled the beam with three-dimensional NLFEA using a package called FINEL (30).
The beam was discretised with 27-noded Lagrangian solid elements, two across the depth and 12
across the length (115 x 183 mm). The reinforcement was modelled with 3-noded line elements,
with perfect bond to the continuum elements. The model was based on a brittle constitutive
model of concrete behaviour with triaxial stress states (47). The iterative procedure was divided
into three sections. The first stage consists of only one iteration which determines whether the
Guassian integration points are in a state of loading or unloading. The second stage uses the pure
Newton-Raphson method, allowing only one crack closure per iteration. The third stage uses the
modified Newton-Raphson method.

7.2.2 Results
A comparison of the structural responses is shown in Figure 7.4. D2 is modelled very accurately
until the end of the analysis, while the displacement D1 is underestimated throughout the anal-
ysis, indicating that the modelling of the beam’s ductility was underestimated. The predicted
failure load by the NLFEA was 198.95 kN (combining P1 and P2). The failure mode attained cor-
responded to that of the experimental results: an inclined crack from the right support to the load
P2.

FIGURE 7.4: Load-displacement response of experiment and NLFEA, compared to the predicted flexural
capacity from EC2/EC8 (30).
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7.3 Sequentially Linear Analysis

7.3.1 Method
Figure 7.5 shows the discretised model of the flexural beam used in the SLA. The supports were
applied as point supports to bearing plates, and the loads as uniformly distributed loads over a
small distance of 50 mm. The midspan load (P1) was applied as 1800 N/mm to total the 90 kN
constant load. The load on the overhang (P2) was applied as a unit load of 1 kN by using a
distributed load of 20 N/mm. Triangular plane stress elements of 40 mm were used, with a crack
bandwidth h of 26 mm. Table 7.2 shows the material input used, with the concrete parameters
as per the fib Model Code 2010 (22). The bearing plates were modelled as a linear material with
a Young’s modulus of 30000 MPa and Poisson’s ratio of 0.2. The reinforcement yield strength
inputs were as per Table 7.1. A saw-tooth p-factor of 0.1 was used for both the concrete and
reinforcement. In this benchmark, significant damage occurs while applying the constant load.
Each of the two load cases (P1 and P2) were given a maximum of 10 000 steps to apply the load.

FIGURE 7.5: Discretisation, loading, supports and reinforcement layout of flexural beam in SLA

TABLE 7.2: Material parameters used in the SLA

Concrete Reinforcement

fcm 30 N/mm2 Es 210000 N/mm2

ft 2.36 N/mm2 v 0.3 -
Ec 26921 N/mm2 εult 0.01 -
v 0.2 -

G f t 0.1346 Nmm/mm2

G f c 33.66 Nmm/mm2

7.3.2 Results
The flexural beam differs to the two other non-proportional loading cases (Benchmarks 3 and 5)
in that the initial load case is not applied in one analysis step, but many, since damage occurs
in the structure in the process of applying the initial load. The constant load (P1) is applied in
8968 steps, after which the overhand load (P2) increases from zero to a maximum of 98.64 kN,
totalling a sum of 188.64 kN as the failure load. The SLA was successful in modelling the damage
progression, failure mode and failure load, however was found to be extremely sensitive to some
of the input. The sensitivities are discussed in Section 10.1.
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Load-Displacement Response
Figure 7.6 shows that the SLA overestimated the capacity (by 4%) but is otherwise very similar to
the NLFEA in terms of stiffness. Steps with intermittent proportional loading are not shown. Both
the SLA and NLFEA model the displacement of the overhang (D2) well until reaching peak load,
but significantly overestimate the stiffness for the mid-span displacement D1 during the loading
of the constant mid-span load P1.

FIGURE 7.6: Comparison of the load-displacement responses at D1 (mid-span) and D2 (overhang)

Intermittent Proportional Loading
Intermittent proportional loading (IPL) does occur during the analysis before reaching peak load,
but for short periods only, before recovering the full load combination and continuing with the
analysis. There are 22 bouts of IPL before step 17761, when IPL begins and never recovers. Figure
7.7 shows the steps in which IPL is occurring. Since IPL is not occurring at failure, the analysis is
successfully modelling the experimental loading conditions at failure. Thus the non-proportional
loading scheme used by SLA does not hinder the analysis for the flexural beam.

FIGURE 7.7: Load factor of constant load P1 throughout analysis
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Crack Pattern and Failure Mode
During the loading of the mid-span load P1, 8968 damage increments are applied, forming the
flexural cracks at the base of the beam (Figure 7.8a). Once P1 reaches the full value of 90 kN
and P2 begins being applied on the overhang, and a lot of stress reversal occurs throughout the
mid-span elements. The flexural cracks begin closing and new flexural cracks form at the top of
the beam over the right support (Figure 7.8b). At this point, the critical crack begins forming,
propagating diagonally from the right support to the P2 load. Ultimately, the critical crack causes
failure, reaching the peak load in step 16922 (Figure 7.8c). This correlates with experimental
observations. In Figure 7.8, the crack strains are scaled to emphasise the larger cracks. (The scale
for Figure 7.8c varies to that of (a) and (b), to emphasise the critical crack.) Figure 7.9 can be
consulted for contextualising the analysis steps.

The longitudinal reinforcement does not yield at any point in the analysis. The stirrups around
the critical crack begin yielding as the critical crack develops.

FIGURE 7.8: Crack progression at three key load stages (displayed as crack strains plots)

FIGURE 7.9: SLA structural response of flexural beam with key steps labelled
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Benchmark 5: Frame

8.1 Experiment by Vecchio & Emara
The fifth benchmark is a frame (BF2) subjected to non-proportional loading of vertical and hor-
izontal loads, from the experiment by Vecchio & Emara (51). Figure 8.1 shows the experiment
and its set-up. Reinforcement consists of longitudinal and transverse reinforcement in both the
beams and columns. The base of the frame was fixed such that the column bases were essentially
clamped. The axial loads of 700 kN each were first applied to the columns through transverse
loading beams. The axial loads were maintained as constant throughout the experiment. The
horizontal load applied to the second storey beam was increased gradually, initially at 25 kN in-
crements, later reducing to 10 kN increments at intermediate loading stages, and later again to
stroke increments. The test was performed over a series of days. At the end of each day the frame
was unloaded and then reloaded again the next day. The measured material properties are given
in Table 8.1.

(a) Geometry and reinforcement layout of experiment (b) Experiment set up

FIGURE 8.1: Geometry and set-up of the experiment (51)

TABLE 8.1: Material parameters from experiment (24)

Concrete Reinforcement φ10 Reinforcement φ20

fcm 30.0 N/mm2 fy 454 N/mm2 fy 418 N/mm2

Ec 23 674 N/mm2 fu 640 N/mm2 fu 596 N/mm2

εp 1.85 ×10−3 As 100 mm2 As 300 mm2

Es 192 600 N/mm2 Es 200 000* N/mm2

Esh 3100 N/mm2 Esh 3100* N/mm2

εsh 9.5 ×10−3 εsh 9.5* ×10−3

εu 66.9 ×10−3 εu 69.5 ×10−3

* estimated

62
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Figure 8.2 shows the load-displacement response recorded in the experiment, with unloading of
the experiment at the end of each day evident. Significant load stages (LS) are indicated, which
are described in detail by Vecchio and Emara (51). First cracking occurred at LS 2 (52.5 kN) in the
form of flexural cracks in the first-storey beam. At LS 6 (145 kN), the first flexural cracking in the
columns occurred, as well as the first web-shear cracks in the first-storey beam. First yielding of
the reinforcement occurred in the first-storey beam at LS 11 (264 kN) and LS 12 (287 kN) at the lo-
cations of the flexural cracking, at the north and south end respectively. Yielding of reinforcement
in columns and hinging at both ends of the first-storey beam occurred in LS 15 (323 kN), quickly
succeeded in LS 16 (329 kN) by concrete crushing and hinging also at the base of the columns
and ends of the top-storey beam. The frame reached a maximum load of 332 kN, with failure
constituting of hinging at the base of both columns and at the ends of both beams. The frame sus-
tained the peak load, exhibiting significant ductile behaviour and reaching a lateral displacement
of 153 mm before the structure was unloaded.

FIGURE 8.2: Experimentally obtained lateral force-displacement diagram of top storey (51)

8.2 Nonlinear Finite Element Analysis by Vecchio & Emara
8.2.1 Method
An NLFEA was completed by Vecchio & Emara (51) using the program TEMPEST with modifi-
cations to include shear effects. Discretisation was extremely coarse, with six segments for each
column and eight segments for each beam. The bases of the columns were modelled as fully fixed.
Nonlinearities considered were material nonlinearity, geometric nonlinearity, tension stiffening,
membrane action and shear effects. Other details of the NLFEA were not mentioned.

8.2.2 Results
Vecchio & Emara (51) observed relatively close correlation between the modelled and experimen-
tal local strain response as well as the overall load-deflection response (Figure 8.3). In general,
the analytical response was slightly stiffer than in reality. Vecchio & Emara suppose that the over-
estimation of stiffness could be due to not considering bond-slip (the column bases may rotate
slightly otherwise), the lack of consideration of shrinkage stresses and/or the deformations in the
joints not being modelled as concentrated as in reality. In Figure 8.3, Vecchio & Emara (51) have
taken the recorded displacements from Figure 8.2 and smoothed out the upper curve, thus the
brittle structural snap-backs are no longer depicted. The theoretical structural response is also
smooth, illustrating the inability of NLFEA to capture the brittle snap-backs in the equilibrium
path.

The peak load predicted by the NLFEA was 328 kN, just 1.5% less than the experimental result of
332 kN. Correlation between the load at which the plastic hinge formed at the base of the south
column was also satisfactory: predicted by NLFEA as between 308 kN and 318 kN, and exper-
imentally observed at around 326 kN. Ease of convergence in the NLFEA was not commented
on.
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FIGURE 8.3: Comparison of experimental and NLFEA force-displacement diagram of top storey (51)

8.3 Sequentially Linear Analysis

8.3.1 Method
Figure 8.4 shows the discretised model of the frame, with triangular plane stress elements of
150 mm and a crack bandwidth h of 99 mm. The reinforcement was modelled as specified in the
experiment. The base of the frame was not modelled since its influence was found to be negligible.
The clamped base of the frame was modelled by restraining translations in both directions at the
base of each column. The constant vertical load was applied through two uniformly distributed
loads over the 400 mm width of the top of each column as 1750 N/mm each, totalling the specified
loads of 700 kN on each column. The horizontal load was applied as a unit point load of 1 kN
on a steel loading plate onto the top of the north column, at mid-height of the top storey beam.
The steel loading plate was modelled with a linear material model using a Young’s modulus of
210 GPa and Poisson’s ratio of 0.3. Table 8.2 shows the material parameters used for the concrete
and reinforcement. The concrete parameters are according to the fib Model Code 2010 equations
(22), based on the provided fcm value of 30 MPa. The reinforcement’s ultimate strain was as
specified in the experiment (24).

FIGURE 8.4: Discretisation of frame in SLA
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TABLE 8.2: Material parameters used in the SLA

Concrete Reinforcement

fcm 30 N/mm2 Es 192600 N/mm2

ft 2.36 N/mm2 v 0.3 -
Ec 26921 N/mm2 εult 0.0669 -
v 0.2 -

G f t 0.1346 Nmm/mm2

G f c 33.66 Nmm/mm2

8.3.2 Results
Overall, the modelling of the frame’s crack progression and failure mode correlated closely to
experimental results, however the pre-peak stiffness and capacity was overestimated and the
post-peak ductility was modelled very poorly.

Load-Displacement Response
Figure 8.5 shows the comparison of the load-displacement responses. Steps with intermittent
proportional loading (IPL) are not displayed since they are unrepresentative of the experimental
loading conditions. It is clear that the SLA overestimates the pre-peak stiffness, even more so
than the NLFEA. It also overestimates the capacity by nearly 12%, and severely underestimates
the post-peak ductility of the structure. (Note that since the load-displacement of the experiment
plateaus, “post-peak” is considered as after load step 16 from Figure 8.2, the section after a lateral
displacement of 68 mm, which is the point in the experiment at which hinges have formed at the
column bases and at the ends of both beams.)

FIGURE 8.5: Load-displacement response of the experiment and analyses

Intermittent Proportional Loading
Intermittent proportional loading (IPL) does not occur at all in the analysis of the frame until after
failure. The peak load is reached in step 9549, and the IPL begins in 9734, never again recovering
the full load combination before the end of the analysis. From Figure 8.5 it is clear that even
before IPL begins, the load is dropping very sharply in a brittle manner. Therefore, IPL is not the
restricting factor causing SLA’s inability to model the post-peak ductility.
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FIGURE 8.6: Load factor of the full constant load versus step number, illustrating the occurrence of IPL after
the peak load is reached

Crack Pattern and Failure Mode
The SLA models the crack progression and failure mode of the frame well. The order in which key
damage events occur and the loads at which they occur are compared in Table 8.3. Since cracks
of very small magnitudes are visible in DIANA results, ’onset of cracking’ is defined as cracks oc-
curring with crack strains greater than 0.0001. Hinging is defined as both tensile and compressive
longitudinal reinforcement yielding coupled with concrete crushing. The difference between the
SLA results and experimentally recorded loads are given. The loads at which key damage events
regarding concrete are fairly well estimated, however the key damage events involving yielding
of reinforcements are delayed in SLA. Reasons for this are discussed in Section 9.2.2. Due to the
lack of yielding of the compressive longitudinal reinforcement in the top-storey beam, the ends
do not hinge. However, significant flexural damage and yielding does occur in the tensile regions
of this beam. Reinforcement strain contours in step 9601 are provided in Appendix A.3.

TABLE 8.3: Lateral loads at which key damage events occurred

Damage Event Experimental
Load (kN)

SLA Load
(kN)

Difference (SLA -
Exp) (kN)

Onset of cracking: Flexural cracks at
both ends of the first-storey beam

52.5 30.8 -21.7

First flexural cracks at the column
bases

145 145 0

First web shear cracks in first-storey
beam

145 132 -13

First yielding of reinforcement: Bottom
longitudinal reinforcement of north
end of first-storey beam

264 362 +98

Yielding of south end of first-storey
beam top longitudinal reinforcement

287 343 +56

Yielding of reinforcement at both col-
umn bases

323 349 +26

Hinging at both ends of the first-storey
beam

323 360 +37

Hinging of column bases 329 355 +26

Hinging of top-storey beam ends 329 - -
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Figures 8.7 - 8.8 show the crack strains and principal stress tensors respectively, at two load stages.
The first is at 145 kN, the load at which the experiment reported the first flexural cracking at the
column bases as well as the first web shear cracks in the first-storey beam. The second is in analy-
sis step 9601, just after failure, which occurred in step 9549 at a load of 370.5 kN. Figure 8.9 can be
consulted for context of the analysis steps within the analysis. As reported in the experiment, the
initial damage primarily occurs in the tensile areas of the column bases and the beam ends. As
loading continues, damage in these areas becomes progressively greater and the reinforcement
yields, creating hinges, and the cracking extends to surrounding areas. In Figure 8.8b the com-
pressive stresses are seen to be exceeding the compressive strength in the southern column base.
During post-peak behaviour, the southern column base crushes and hinges completely. In the
experiment, hinging was reported in both of the beams’ ends and column bases, but the structure
was unloaded before one of them was proved to be the dominant failure location. Since in the
SLA results hinging is evident at both of the column bases and the ends of the first-storey beam,
but not fully at the ends of the second-storey beam, the failure mode is considered to be modelled
well but not entirely accurately.

(a) Step 1201 (F = 145 kN) (b) Step 9601 (F = 367 kN)

FIGURE 8.7: Crack strains at key load steps

(a) Step 1201 (F = 145 kN) (b) Step 9601 (F = 367 kN)

FIGURE 8.8: Principal stress tensor plots at key load steps
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FIGURE 8.9: SLA structural response of frame with key steps labelled



Chapter 9

Accuracy of SLA

First, in Section 9.1, the accuracy with which the discretised material constitutive relations are
modelled by the SLA-program is discussed. In Section 9.2, the ways in which the SLA method in-
hibit the modelling accuracy is discussed. Finally in Section 9.3 a comparison of the modelling
accuracy of SLA to that of NLFEA is made considering the five benchmark cases.

9.1 Discretisation of the Material Constitutive Relation
This section looks at the discretised material constitutive modelling, first for concrete and then for
the reinforcement. For the concrete, a phenomenon dubbed flutter and the occurrence of consecu-
tive softening of an integration point are identified as two inaccuracies that exist in the modelling
of the discretised softening relations.

9.1.1 Concrete
Figure 9.1 depicts the shear beam from Benchmark 1, with three elements labelled that shall be
discussed in this chapter. In element 599, a “perfect” discretisation of the concrete’s tensile soft-
ening relation is depicted, shown in Figure 9.2. The saw-teeth of all three integration points (IPs)
are perfectly aligned. Since all three integration points belong to the same element and thus share
the same crack bandwidth h, you would expect the secant branches to be aligned. Yet, some of
the SLA results that shall be presented in this chapter show that they are not always. This is due
to the orthotropic constitutive relation of Equation 2.8 that interrelates the normal and tangential
crack strains via the orthogonal Poisson’s ratios. If softening is occurring in both crack directions
of an integration point, the crack strains in one orthogonal crack direction will depend on the re-
duced Young’s moduli of both crack directions. Thus, the stiffness of the secant branches can vary
slightly between integration points of a single element. In the case of element 599, no softening in
the tangential crack direction of any of the integration points occurs, which is why the modelled
saw-teeth of each integration point are aligned.

FIGURE 9.1: Benchmark 1: The first principal strain contour plot at Step 2826 (V = 104 kN) with three
elements of interest labelled

Softening begins in element 599 when the normal crack stress reaches (1+ p) ft, which is 2.6 MPa.
Each integration point softens eight times, and yet only seven secant branches are easily visible
in Figure 9.2. The final secant branch has a very low stiffness (equal to 1× 10−6 of the original
strength) and is thus closely aligned with the horizontal axis. The maximum normal crack strains
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are not shown in Figure 9.2 since they are cropped out for ease of visibility of the first seven secant
branches. Due to the extremely low stiffness of the final secant branch, the strain in the final saw-
tooth can reach magnitudes substantially greater than the previous saw-teeth. The maximum
normal crack strains for element 599 in IPs 1, 2 and 3 are 0.0047, 0.0012 and 0.0054 respectively.

FIGURE 9.2: Modelled saw-tooth relation of tensile softening in the normal crack direction in element 599
of Benchmark 1

9.1.1.1 Flutter

A phenomenon dubbed flutter refers to the deviation of crack strains from the saw-tooth se-
cant branches. Flutter can give the appearance of the discretised material constitutive relation
as ’messy’ or ’ugly’. It is an effect of Poisson’s, since each of the crack strains are related to the re-
duced Young’s moduli in both the normal and tangential directions via the orthotropic Poisson’s
ratios, as dictated by Equation 2.8. Flutter is observed in a crack direction’s discretised material
softening relation in two scenarios:

Scenario 1: When local unloading is occurring in the crack direction of the integration
point, due to stress redistribution.

Scenario 2: When softening is not occurring in the crack direction, but is occurring in
the other, perpendicular crack direction.

Scenario 1 results in small deviations from the secant branch. Scenario 2 results in more “chaotic”
crack stress-strain relations, and can be described as the development of spurious crack strains
in the transverse crack direction, due to Poisson’s effect. This phenomena was also recognised
by van de Graaf (46), and it’s for this reason, to limit spurious transverse cracking, that the or-
thogonal Poisson’s ratios are reduced with increasing damage. Thus flutter is found to have the
greatest magnitudes for the first secant branch, and to be non-existent on the final secant branch.

Flutter was observed in all five of the benchmarks modelled in SLA. Four examples will be dis-
cussed here to demonstrate the phenomenon and illustrate how it is affected by stress redistribu-
tion. The examples refer to the two scenarios listed above.

Example 1: An illustration of scenario 1, from Benchmark 1
Element 702 of the shear beam is located adjacent to one of the dominant flexural cracks, as de-
picted in Figure 9.1. During loading, element 702 begins softening in tension in integration points
2 and 3. When the crack in the adjacent elements expands, unloading occurs in element 702.
Figure 9.3 demonstrates that the unloading in the integration point does not exactly follow the
secant branch, exhibiting ’flutter’. Deviation of the crack strains from the secant branch are of the
magnitude of 10−5, thus the inaccuracy of the saw-tooth relation is negligible.
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FIGURE 9.3: Normal crack stress-strain relation in Element 702 from Benchmark 1

Example 2: An illustration of scenario 2, from Benchmark 2
Figure 9.4a illustrates an example of flutter in the third integration point (IP 3) from an element
from the corbel. Element 20 is located at the left end of the main reinforcement, and experiences
both tensile and compressive softening. IP 3 is first damaged in compression before in tension,
with compressive hardening occurring in the tangential direction in step 2148, and tensile soften-
ing then occurring in the normal direction in step 2485. During this interim period, the normal
crack stresses in IP 3 become negative and then positive, exhibiting the flutter phenomenon. This
is a clear demonstration of the Poisson’s effect. After tensile softening begins in the normal di-
rection in IP 3 in step 2485, the saw-tooth relation is followed in subsequent damage events, with
only small deviations from the secant branches. (In this example, small flutter and stress reversal
is also evident in IP 1, and IP 2 does not soften at all so the crack stresses remain zero.)

(a) Normal crack stress-strain relation

(b) Tangential crack stress-strain relation

FIGURE 9.4: Constitutive modelling of SLA in each integration point of Element 20, located at the left end
of the main reinforcement
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Example 3: An ’ugly’ case, from Benchmark 3
In some cases, the flutter is more extreme and creates quite an ’ugly’ crack stress-strain relation.
An example is element 55 from Benchmark 3, located at the left base of the wall in the compres-
sive region, which thus fails predominantly in compression. (Benchmark 3 is a non-proportional
loading case, but no steps with intermittent proportional loading are presented.) The ’messiness’
of the normal crack stress-strain relation in Figure 9.5b may lead the SLA-program user to believe
that an error has occurred in the analysis, but the ’mess’ can be explained by the occurrence of
both scenario 1 and 2 of flutter, as well as stress reversal.

Figure 9.5 shows the crack stress-strain relations, with steps after 6080 in a softened hue. Before
step 6080, only compressive softening occurs in the three integration points. (Step 6080 is close
to failure, refer to Figure 6.15.) Due to softening occurring in the tangential crack direction, crack
stresses and strains also develop in the normal direction because of their interrelatedness via the
orthotropic Poisson’s ratios in the orthotropic constitutive relation (Equation 2.8).

After step 6080, the element softens completely in compression in IP 2 and 3, softens more in
compression in IP 1, and softens a little in tension in IP 2 and 3 also. During this period, a ’messy’
saw-tooth tensile softening relation is visible for IP 2 and 3, with flutter occurring due to scenario
1. Local unloading prompts stress reversal, which is modelled inaccurately by transferring the re-
duced tensile stiffness to the compressive region. (The inaccurate stress-reversal algorithm in the
SLA-program is explained in Section 9.2.1.) The unloading is not perfectly secant, due to flutter,
and thus they do not pass directly through the origin.

(a) Tangential crack stress-strain relation

(b) Normal crack stress-strain relation

FIGURE 9.5: Modelled discretised material softening for Element 55 from Benchmark 3, for each of the three
integration points (IPs). Analysis steps 6080+ are in a softened hue.

To consider the impact of flutter in this example, the scale of the axes should be noted. The strain
axis scale of Figure 9.5b is 25 magnitudes smaller than in Figure 9.5a, and at a larger scale the
unloading appears much more secant. Thus the tangential crack stress-strain relation may appear
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’ugly’, and the modelling of the stress reversal is incorrect but the flutter is of extremely small
magnitudes and inconsequential.

Example 4: An illustration of the impact of global stress redistribution, from Benchmark 4
The phenomenon of flutter is exacerbated when coupled with global stress redistribution. This ef-
fect is visible considering the normal crack stress-strain relation from an element from the fourth
benchmark, shown in Figure 9.7a. (Again, results from analysis steps with intermittent propor-
tional loading are not presented.) Element 513 is located adjacent to a large crack, as depicted in
Figure 9.6.

(a) Location of Element 513
(b) Integration points in

Element 513

FIGURE 9.6: Position of Element 513 in flexural beam, depicted using a principal strain contour plot from
analysis step 8901.

(a) Normal crack stress-strain relation for all three integration points of Element 513

(b) Comparison of stresses in integration point 1 (IP 1) and the applied load

FIGURE 9.7: Output for Element 513 from the flexural beam

The normal crack stress-strain relation from Figure 9.7a can be explained as follows. Only tensile
softening occurs in the element, and all damage increments are applied before step 5914 of the



74 Chapter 9. Accuracy of SLA

analysis. (Recall that the mid-span load P1 finishes being applied in step 8968.) Damage events
cease in the element because it undergoes local unloading due to a large crack developing in the
elements adjacent to it; the development of the adjacent crack corresponds to the drop in crack
stresses in all three integration points. (IP 3 is the first IP to exhibit drops in the normal crack
stresses, which is logical since IP 3 is closest to the adjacent crack.) The unloading of IP 1 is the
least secant out of the three integration points. This is because only one damage increment has
been applied to this IP, and thus it’s Poisson’s ratio has not been reduced much and its effect is
greater.

IP 1 also exhibits an oddity in Figure 9.7a: as the crack normal stresses are approaching zero
they begin increasing again with increasing crack strain values also, and the stress-strain relation
’curves back’, further away from the secant branch. In investigating this oddity, a correlation
was observed between the global Y-direction stress in the integration point and the normal crack
stress, depicted in Figure 9.7b. The ’curve back’ in the normal crack-stress strain relation, occur-
ring approximately between steps 12500 and 13500, corresponds to an increase in the compressive
global Y-direction stresses. The crack plane is oriented 38 degrees anticlockwise from the verti-
cal, thus it is logical that an increase in Y-direction global compressive stresses would increase
the normal crack stresses. Simultaneously there is a decrease in X-direction global compressive
stresses, which explains the increased normal crack strains, creating the combined effect of the
’curve back’. Thus the ’curve back’ is an effect of stress redistribution, combined with the effect
of Poisson’s.

To confirm that flutter is indeed an effect of Poisson’s, the SLA of Benchmark 4 was re-run with
the Poisson’s ratio set to zero. Figure 9.8 shows that the phenomena is not present at all.

FIGURE 9.8: Comparison of normal crack-stress strain relation for analyses with and without non-zero
Poisson’s ratio.

Overall, it is clear from the four examples that flutter is an inaccuracy in modelling the saw-tooth
relation due to the effect of Poisson’s. It occurs with great frequency, however the magnitudes
of deviation are so small that it’s impact on the overall modelling accuracy is deemed negligible.
Additionally, the presence of flutter reduces to zero as the Poisson’s ratio reduces to zero, so its
impact in heavily damaged areas of a structure is limited. The inaccuracy evident in Examples
2 - 4 that is of more interest is the inaccurate modelling of stress reversal, which is a serious fault
in the current SLA method (discussed in Section 9.2.1).

9.1.1.2 Softening in Consecutive Steps

To observe the occurrence of consecutive softening in a crack direction of an integration point,
element 545 from the shear beam (Benchmark 1) shall be considered. The element is located in
the position of the critical shear crack (see Figure 9.1). Figure 9.9a shows that integration point
1 (IP 1) “skips” many of the saw-teeth, with much of the constitutive relation modelled simply
as a linear decline. This occurrence indicates consecutive steps in which IP 1 from element 545 is
consistently the critical integration point out of the entire model.

IP 1 softens in the normal direction in steps 3306, 3340-3342 and 3344-3347. The linear ’jumping’
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between secant branches occurs in these consecutive softening steps, as illustrated in Figure 9.9b.
Since the upper bound of the saw-tooth diagram represents the overestimation of the strength
for a given strain, jumping from peak to peak results in an “overestimation of the tensile fracture
energy”. This phrase is in quotation marks since SLA is simply a series of linear analyses, and
thus does not in fact inherently use fracture energy. However the fracture energy input, paired
with the p-factor, does determine the coordinates of the discretised constitutive relation, i.e. the
secant branches and branch peaks of the saw-tooth relation. Thus when a crack direction of an
integration point is consecutively softened, the SLA is continuously overestimating the strength
of the concrete for a given strain, and this is not balanced out by later underestimating it in a
similar fashion, as generally occurs with the saw-tooth relation. This is a fault of the SLA method.

(a) Normal crack stresses and strains in Element 545 of Benchmark 1

(b) Analysis steps marked on IP 1’s saw-tooth relation with key steps labelled

(c) Comparison of crack normal stress and applied vertical load against step number

FIGURE 9.9: Normal crack stress output from element 545 of the shear beam



76 Chapter 9. Accuracy of SLA

Flutter also exists in the element’s crack stress-strain relation during the local unloading along
the secant branch, visible by the small deviations from the secant branch. Figure 9.9c shows that
the unloading of crack stresses in the integration point corresponds to temporary unloading of
the entire structure, occurring between steps 3306 and 3340. Figure 9.9b also clearly shows that
the secant branches of IP 1 and IP 2 are not aligned, particularly for the first five branches. As the
damage progresses and the Poisson’s ratios become continuously reduced, the Poisson’s effect
diminishes and thus the secant branches are aligned at the end of the saw-tooth diagram.

9.1.2 Reinforcement
The SLA-program was successful in modelling the discretisation of the Von Mises plasticity of the
reinforcement as intended in the SLA method, an example of which is shown in Figure 9.10 for an
element from the main reinforcement of the corbel. Initially stress increases linearly with respect
to the strain at the stiffness specified by the Young’s modulus of the steel. A reinforcement p-factor
of 0.1 was used, and thus yielding occurs at 110% of the yield stress input. Each time the stress
reaches a magnitude of 110% fy, the integration point jumps to the next secant branch. Unloading
occurs in a secant manner along the secant branch. Figure 9.10 demonstrates that unloading can
occur to significant levels, resulting in substantial drops in reinforcement strain that would not
occur using a continuous Von Mises relation, and indeed are not realistic.

FIGURE 9.10: Discretised plasticity of reinforcement element 241 of the main reinforcement of the corbel

9.2 Accuracy Inhibitors in SLA
In this section, several aspects of the SLA method that inhibit the accuracy of modelling pre-
dictions are discussed. These include the incorrect modelling of stress reversal (Section 9.2.1),
restricted yielding of reinforcement due to the saw-tooth p-factor (Section 9.2.2) and lack of con-
sideration of geometrical nonlinearity (Section 9.2.3).

9.2.1 Stress Reversal
The current method of SLA does not model stress reversal accurately, since it transfers damage
from one stress regime directly to the other. For example, when stress reversal occurs in an in-
tegration point damaged in tension and the stresses revert to compressive, the reduced tensile
stiffness Et,k from the kth tensile secant branch is used also in the compressive regime, as depicted
in Figure 9.11. A correct stress reversal strategy would dictate that upon returning to the stress
origin, the stiffness be adapted appropriately. If the integration point is thus far undamaged in
compression for example, the stiffness in compression should be E0.
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FIGURE 9.11: Illustration of how stress reversal in a cracked integration point is modelled in SLA

Examples
Element 115 from Benchmark 2 (the corbel) illustrates an example of the incorrect modelling of
stress reversal. The element is located in the main vertical crack along the joint of the corbel
and the column, and thus fails in tension in both the normal and tangential crack directions.
Stress reversal into the compressive regime does occur along two secant branches however. No
inaccuracy exists modelling stress reversal along the first secant branch with stiffness E0, since
both the tensile and compressive material constitutive relations share the same initial stiffness.
On the eighth secant branch (k = 8) however, stress reversal into the compressive regime occurs
in integration point 1, reaching compressive strains of −1.27 × 10−3 with the reduced tensile
stiffness Et,8. For an equivalent compressive stress and the correct stiffness in compression, E0, the
compressive strain would be only −2.8× 10−5, one-fiftieth of the strain value actually prescribed
by the SLA method. Thus, crack closure is overestimated by the inaccurate modelling of stress
reversal.

FIGURE 9.12: Tangential crack stress-strain relation in each integration point of Element 115 of Benchmark
2, located in crack #1

Another example is observed considering the cropped and un-cropped normal crack stress-strain
relation of element 4 from the corbel in Figure 9.13, located at the left end of the main reinforce-
ment. Figure 9.13a shows that the element softens fully in tension in all three integration points.
Some flutter is visible. Figure 9.13b shows that on the final secant branch of the tensile softening
relation, large strains are reached. Overestimation of crack closure due to inaccurate modelling of
stress reversal is evident in IP 2, where large compressive strains develop.
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(a) Normal crack stress-strain relation

(b) As in (a) but zoomed out to show crack expansion and closure

FIGURE 9.13: Constitutive modelling of SLA in each integration point of Element 4 of the corbel

Frequency of occurrence and impact
Stress reversal occurred in all five benchmarks with varying frequency. Table 9.1 shows the per-
centage of steps with to those without stress reversal (excluding steps with IPL), and a visual
representation of this data for each benchmark is given in Appendix C. The flexural beam clearly
had the highest percentage of steps with stress reversal, which is unsurprising since the global
stress state of the beam was reversed after fully applying the mid-span load P1 as the overhang
load P2 was applied.

TABLE 9.1: Steps with stress reversal in the five benchmark analyses

Benchmark Ratio of number of steps with
stress reversal to those without

1. Shear Beam 0.072
2. Corbel 0.097
3. Shear Wall 0.008
4. Flexural Beam 0.233
5. Frame 0.081

As shown in the examples, stress reversal occurring late in the damage progression when the
stiffness is very reduced prompted overestimation of crack opening or closure. The considered
benchmarks dealt with monotonic loading only, and the impact of the inaccurate modelling of
stress reversal is expected to be far greater in analyses with cyclic loading. Regardless, several
impacts were evident in these benchmarks.

The first, which affects the interpretation of results, is that the inaccurate stress reversal modelling
resulted in misleading strain contour plots in the DIANA output. Elements that had failed com-
pletely in tension and underwent stress reversal exhibited high compressive strains (such as in
Figure 9.13b), which gave the appearance that the element had failed in compression.

The second was observed in the case of the shear wall, where stress reversal occurred to such an
extent that a large snap-back was observed in the structural load-displacement response into the
region of negative lateral displacements (Figure 6.9). Thus the stress reversal was the cause of
modelling inaccuracy in the post-peak region.
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The third was in the case of the flexural beam. This benchmark was observed to be far more sensi-
tive to the user input than the other benchmarks (as shall be discussed in Section 10.1). For some
specifications of the saw-tooth p-factor, material input, and the type of load application, the anal-
ysis failed prematurely almost immediately after beginning the application of the overhang point
load P2. The premature failures occurred between the mid-span load and the right support in the
concrete. At the location of failure in the concrete, large compressive strains were observed in the
elements that had previously hosted the flexural cracks that closed in the second loading stage.
This is because, in elements that had fully softened in tension, the fully reduced stiffness was
transferred directly (and incorrectly) to the compressive regime. The multitude of stress reversal
that occurs in the flexural beam due to the subsequent loading scheme meant that the incorrect
modelling of stress reversal in SLA resulted in fatal sensitivities in this benchmark.

9.2.2 Saw-tooth p-Factor for Reinforcement
Discretising the Von Mises plasticity of reinforcement was found to contribute to modelling inac-
curacy due to the p-factor prolonging the onset of yielding, since the stress must reach (1 + pR) fy
instead of merely fy before yielding begins. The impact on the modelling accuracy was evident
only in the benchmarks where yielding of the reinforcement was part of the failure mode, namely
in the case of the corbel (Benchmark 2) and the frame (Benchmark 5).

Benchmark 2: Corbel
Figure 9.14 compares the results of three SLAs conducted, that are identical except in their def-
inition of the yield stress and reinforcement p-factor, as outlined in Table 9.2. The SLA results
presented in Section 5.3 correspond to Analysis B. A previous SLA of the corbel completed dur-
ing the research of this thesis (Analysis A) used a p-factor for the reinforcement of pR = 0.2,
however the results from this analysis showed that in many places the reinforcement was not
yielding where it should be because, while the yield stress was exceeded, 120% of the yield stress
was not. Analysis B significantly improved the amount of yielding that occurred in the main rein-
forcement. The global impact of this is evident in Figure 9.14, with a noticeably reduced capacity
prediction. The peak load uncertainty factor increased from 0.95 to 1.04, with Analysis B now
underestimating the corbel’s capacity.

In Analysis C, the prolonging of the onset of yielding was prevented entirely by reducing the
yield stress input to fred, as defined in Table 9.2, such that (1 + pR) fred = fy. In this way, stresses
in the reinforcement do not exceed the yield stress, and the next secant branch is jumped to every
time the yield stress is reached. In Figure 9.14 it is evident that once again the capacity prediction
is noticeably reduced, now with a peak load uncertainty factor of 1.11.

TABLE 9.2: Comparison of three SLA analyses with varying reinforcement input. (Analysis B was the
analysis presented in Section 5.6.)

SLA Yield Stress Input pR Input Peak Load
Uncertainty Factor θ

Analysis A fy 0.2 0.95

Analysis B fy 0.1 1.04

Analysis C fred =
fy

1+pR
0.1 1.11
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FIGURE 9.14: Comparison of three SLAs, with different yield stress input and reinforcement p-factor input

Benchmark 5: Frame
Figure 9.15b shows reinforcement stresses and strains throughout the analysis for integration
point 1 (IP 1) reinforcement element 500, located at the northern end of the first-storey beam’s
bottom longitudinal reinforcement. The figure marks the steps that reach or exceed the yield
strength in the integration point. Only steps before IPL began are shown. The load is applied in a
consistently increasing fashion (shown in Figure 9.15a), except for a few snap backs that correlate
with the sharp reductions in the reinforcement stresses and strains. Using a p-factor of 0.1, the
reinforcement does not yield unless it reaches 110% of the yield stress ( fy), which is 459.8 MPa.

(a) Lateral applied load versus step number

(b) Reinforcement stresses and strains in IP 1 of considered element versus step number

FIGURE 9.15: Illustration of correlation between applied lateral load and reinforcement stresses at northern
end of bottom longitudinal reinforcement of first-storey beam, with steps exceeding the yield strength

marked
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The yield strength of 418 MPa is first reached in step 4521, at an applied lateral load of 265 kN,
after which the stresses and strains in the reinforcement drop significantly. Referring to Table 8.3,
265 kN correlates very well to the specified load in the experiment at which the first yielding in
the first-storey beam’s bottom longitudinal reinforcement occurs. In fact, from step 4521 - 4577,
there are 23 steps in which the yield stress is reached or exceeded in this integration point. Yet,
since 110% of the yield strength is not reached, the SLA-program does not yield the reinforce-
ment and the strains remain low. First yielding in this section of the reinforcement does not occur
until significantly later in the analysis, in step 8952 at a load of 364 kN, when 110% of the yield
strength is reached for the first time. At this point, the yielding is evident by the sudden increase
of the reinforcement strain in Figure 9.15b. If the reinforcement had yielded previously in steps
4521 - 4577, the reinforcement strain would have increased instead of decreasing as it did in the
following few hundred steps. This demonstrates the potential impact that delaying yielding of
reinforcement has on the modelled ductility.

To determine the degree to which yielding of reinforcement was being prevented, another SLA
was completed with reduced yield strengths ( fy,red), defined as per Table 9.2. Figure 9.16 presents
a comparison of the modelled plasticity in reinforcement element 500 for (a) the regular analysis
and (b) the analysis with the reduced yield strength. Steps with IPL are not included. The differ-
ence in yielding is substantial. In the reduced yield strength analysis, IP 1 yields 14 times instead
of 9, reaching more than double the strain value. IP 2 yields 12 times, as opposed to never in the
regular analysis. Marked on Figure 9.16a are 3243 instances in which the reinforcement (in either
IP 1 or IP 2) reaches or exceeds the yield strength of 418 MPa.

(a)

(b)

FIGURE 9.16: Modelled plasticity of longitudinal reinforcement element for (a) the regular yield stress and
p=0.1, and (b) for a reduced yield stress and p = 0.1. Shown for reinforcement element 500 in the bottom

reinforcement at the north end of the first storey beam.

The load-displacement response of the analysis completed with reduced yield strengths to ob-



82 Chapter 9. Accuracy of SLA

serve the effect of this alteration on the overall structural response is presented in Figure 9.17.
Compared to the original SLA analysis, the peak load is lower - closer to the experimental value.
The peak load uncertainty factor is increased from 0.90 from the original analysis to 0.95, which is
a marked improvement. The failure mode is unchanged. The modelling of ductility is increased
which is another positive effect, reducing the ductility uncertainty factor from 3.33 to 3.08. The
stiffness of the response does not differ much until a load of approximately 310 kN, at which point
the stiffness of the adjusted analysis reduces, illustrating the impact of the additional yielding of
reinforcement.

FIGURE 9.17: Comparison of the load-displacement responses from the original SLA and that with reduced
yield strength for the reinforcement

9.2.3 Lack of Consideration of Geometrical Nonlinearity
In most benchmarks, deformations are not significant. For considering the relevance of geomet-
rical nonlinearity, the frame is the most appropriate benchmark since it reaches a sizeable lateral
displacement of 150 mm, nearly 4% of the lever arm (the height of the frame). As the lateral
displacement increases, the base of the columns are subject to an additional moment due to the
eccentricity of the vertical axial load. Analytical calculations were completed to determine how
much the moment increases at the base of the frame when second order effects are taken into
account. Three points from the experimental load-displacement response were considered, as il-
lustrated in Figure 9.19. The moments at the base of the frame were calculated with and without
considering second order effects (illustrated in Figure 9.18). The results in Table 9.3 illustrate that
including the moment due to the eccentricity of the axial loads increases the moment at the col-
umn bases by 18%, 24% and 33% for locations 1, 2 and 3 from Figure 9.19 respectively. This is a
substantial increase.

The moments at the column bases were calculated for two points in the SLA load-displacement
response also. They were calculated without consideration of second order effects only, since
SLA does not consider geometrical nonlinearity. Point 4 shows when the SLA response begins to
plateau, which is comparable to point 1 since this is when the experimental structural response
begins to plateau (Figure 9.19). Comparing MS and MN of point 4 of the SLA to MS,GNL and
MN,GNL of point 1 of the experiment, they are found to be very comparable. (These moments
are highlighted in Table 9.3.) Thus, the SLA structural response begins to plateau at the “correct”
moment, however this magnitude of moment is not reached until a greater lateral load has been
applied due to the lack of consideration of second order effects.



9.2. Accuracy Inhibitors in SLA 83

(a) (b)

FIGURE 9.18: Illustration of structural analysis of frame, (a) not considering second order effects and (b)
including second order effects.

FIGURE 9.19: Five points from the load-displacement response of the experiment and SLA, referred to in
Table 9.3.

TABLE 9.3: Analytically derived moments at column bases for five points from the load-displacement
response in Figure 9.19, for when geometrical nonlinearity is and is not considered. Direction of moments is

as indicated in Figure 9.18.

1 2 3 4 5

Horizontal load FH (kN) 300 332 315 350 370.5
Lateral displacement of top storey δ (m) 0.04 0.084 0.153 0.033 0.046

No second order effects
Moment at north column base MN (kNm) 188.86 209.01 198.31 220.34 233.25
Moment at south column base MS (kNm) 189.06 209.23 198.52 220.57 233.49

Second order effects included
Moment at north column base MN,GNL (kNm) 224.32 258.16 263.21 - -
Moment at south column base MS,GNL 224.57 258.48 263.58 - -

Ratio MN,GNL/M1 1.188 1.235 1.327 - -
Ratio MS,GNL/M2 1.188 1.235 1.328 - -
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The lack of consideration of geometrical nonlinearity may therefore contribute to the overestima-
tion of capacity of the frame in the SLA. It cannot however fully explain the inaccuracy of the SLA
in terms of the overestimation of the pre-peak stiffness, since the secant stiffness is overestimated
almost from the onset of the analysis when the lateral displacements are still very small. How-
ever the degree to which the secant stiffness of the SLA differs to that of the experiment increases
throughout the analysis; at a lateral load of 50 kN, SLA overestimates the secant stiffness by 37%
of the experimental secant stiffness, and by the time the load reaches 300 kN, this has increased
to 81%. Thus there is a correlation between the degree of influence of the second order effects and
the degree of inaccuracy of the structural stiffness estimation by SLA.

Lack of consideration of geometrical nonlinearity may also partly explain the poor ductility mod-
elling of the SLA, particularly since the NLFEA (which did consider geometrical nonlinearity)
performed much better than the SLA in this aspect. Further investigation is required to make
conclusions on this matter.

9.3 Comparison of Accuracy with NLFEA

9.3.1 Performance Parameters
Table 9.4 shows the accuracy performance parameters for the NLFEA and SLA results from all
five benchmarks. The factor closest to unity for each parameter from either the NLFEA or SLA
is presented in bold in Table 9.4, and the averages are presented in Table 9.5. As discussed in
Section 3.2, only the peak load uncertainty factor was calculated for Benchmarks 1& 2, since no
experimental displacements were recorded for these cases.

Calculation of the parameters were done according to the method described in Section 3.2. For
a few cases additional explanation is required. For Benchmark 3, the post-peak modelling factor
was calculated only considering the steps between the peak load and the onset of the severe
snap-back in step 7466, since this snap-back was considered the end of the successful period of the
analysis. For Benchmark 4, the parameters require further definition since there are two loading
stages, loading P1 then additionally loading P2, as well as two load-displacement curves for D1
and D2. The pre-peak uncertainty factors are calculated at one and two thirds of the overhang load,
P2. At these load points, the secant stiffness is calculated for both D1 and D2 using the total load,
the summation of P1 and P2. The peak uncertainty factor is of course the same for both D1 and D2,
since the analysis terminates at one load for both of them. Finally, the ductility uncertainty factor
is calculated for D2 only, since the displacements are greater for D2 and thus more of interest for
comparison.
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TABLE 9.4: Comparison of uncertainty factors for NLFEA and SLA for all benchmark cases

Benchmark Analysis Pre-peak
Uncertainty

Factor at
1
3 Rexp (ζ 1

3
)

Pre-peak
Uncertainty

Factor at
2
3 Rexp (ζ 2

3
)

Peak Load
Uncertainty

Factor (θ)

Ductility
Uncertainty
Factor (ϕ)

1. Shear Beam NLFEA - - 1.03 -

#3061 SLA - - 0.93 -

2. Corbel NLFEA A - - 1.20 -
M2/B2 B - - 1.13 -

SLA - - 1.04 -

3. Shear Wall NLFEA 0.51 0.71 1.31 2.73

SW13 SLA 0.39 0.50 1.17 2.22

4. Flexural NLFEA D1 0.69 0.62 1.00 -
Beam D2 0.70 0.95 0.70

LDCB3 SLA D1 0.66 0.59 0.96 -
D2 0.91 0.87 1.71

5. Frame NLFEA 0.80 0.75 1.01 1.75

BF2 SLA 0.57 0.55 0.90 3.33

TABLE 9.5: Average uncertainty factors for NLFEA and SLA

Finite Element
Method

ζ 1
3

ζ 2
3

θ ϕ

NLFEA 0.68 0.76 1.11 1.73

SLA 0.63 0.63 1.00 2.42

9.3.2 Discussion
Table 9.4 shows that both NLFEA and SLA generally overestimate the pre-peak stiffness, since
the pre-peak uncertainty factors are all less than unity. For the peak load, NLFEA on average un-
derestimates capacity while SLA both overestimates and underestimates the capacity in different
benchmarks, resulting in an average of unity (Table 9.5). The uncertainty factors of NLFEA are
closer to unity than those of SLA 81% of the time. Yet, in many cases NLFEA is not closer to unity
by a great margin.

SLA overestimates the pre-peak stiffness even more so than the NLFEA in Benchmarks 3 - 5. This
is likely due to using a linear tensile softening curve. It is generally acknowledged in academia
that the linear tensile softening curve is a simplification of the concrete softening behaviour, since
in reality the strength of concrete drops more quickly after crack initiation than is modelled with
the linear softening curve. As such, the linear softening curve is often disregarded in favour of
the exponential or Hordijk (28) softening curves which model this initial drop in strength more
accurately. Indeed, when a linear tensile softening curve was used in both the NLFEA and SLA
for Benchmark 2 very similar pre-peak stiffness values were modelled, while in Benchmark 3 the
NLFEA used an exponential tensile softening curve and a lower pre-peak stiffness than the SLA
was observed. Thus, using the linear tensile softening curve in SLA may slow down the dam-
age progression of a structure and explain the increased pre-peak stiffness observed in the SLA
results. This overestimation is exacerbated when consecutive softening occurs in an integration
point.



86 Chapter 9. Accuracy of SLA

Except in the case of the shear wall, the SLA underestimates the ductility of the structures more
so than the NLFEA. This may be due to the secant unloading that occurs in the reinforcement’s
discretised Von Mises plasticity relation. Secant unloading after yielding has occurred was ob-
served to result in a substantial drop in reinforcement strains (Figures 9.10, 9.16). It may also be
due to unrealistic crack closures arising from the inaccurate modelling of stress reversal, particu-
larly since for embedded reinforcements the reinforcement strains are linked to the displacement
field of the concrete element. Additionally, in the case of the frame the lack of consideration of the
geometrical nonlinearity could have been a contributing factor. Further investigation is required
to draw conclusions on this matter.

As discussed in Section 3.3, it is not a fair comparison to compare the SLA results to the NLFEA
results since they use different solution strategies. In the case of the shear beam, the results pre-
sented in Table 9.4 for the NLFEA are from the final and most successful of Claus’ five analyses
(12), which used a discrete cracking model. In fact a fairer comparison would be to use the per-
formance parameter for Claus’ second analysis which used a smeared fixed cracking model, like
the SLA. For this analysis a peak load uncertainty factor of 0.57 is obtained: a far less desirable
result than the factor of 1.03 presented in Table 9.4. The differences in solution strategies should
be considered when comparing the uncertainty factors of SLA to those of NLFEA.

Qualitatively, SLA exhibited greater accuracy than NLFEA in some cases. In the case of the shear
beam it was observed that SLA modelled the shear failure as asymmetrical, as it was in reality,
while the NLFEA of the full model of the shear beam obtained a symmetric failure mode (12).
Obtaining the failure mode from NLFEA, the user required sufficient knowledge to interpret the
symmetric failure mode as in fact one-sided shear failure. SLA automatically triggering asymmet-
ric damage eliminates the reliance on user interpretation for accurate failure mode predictions of
structures. This in an asset of SLA, and an advantge over NLFEA. In Benchmark 5, the NLFEA
exhibited a smooth load-displacement response that did not show brittle behaviour via structural
snap-backs. Conversely, some notches in the the SLA load- displacement response were visible.
Additionally, in the case of the corbel, the SLA modelled the cracks as localised rather than the
smeared formation that was obtained by the NLFEA.

Figure 9.20 gives a visual representation of the peak load uncertainty factors from the SLA. The
coefficient of variation from unity is 10.84%, which is satisfactorily less than the recommended
limit of 15% for structural reliability (22). Thus the SLA method provides adequately accurate re-
sults and is a viable alternative finite element method to NLFEA for the two-dimensional analyses
of the selected benchmarks.

FIGURE 9.20: SLA peak load predictions (Ran) against experimental peak loads (Rexp) for the five
benchmark cases. Modelling uncertainty factor θ of unity marked as a line.



Chapter 10

Robustness of SLA

This chapter first discusses the robustness of the SLA in the five benchmark cases with respect to
objectivity in Section 10.1, and then with respect to ease of computation in Section 10.2. Finally in
Section 10.3 the robustness of SLA to that of NLFEA is compared, with reference to the post-peak
modelling factor and by means of discussion.

10.1 Objectivity
During the investigation of SLA in this thesis, several sensitivities to certain input were observed.
A selection of examples shall be discussed here. It should be noted that the results in this section
should not be compared to those from Chapters 6 - 8, since a bug in the software preventing the re-
inforcement from yielding properly (in the non-proportional loading cases only) was found, and
fixing the bug resulted in significant changes to the results. Analyses for the examples discussed
in this section were not repeated after the bug was fixed, but nevertheless, the dependencies pre-
sented here are valid irrespective of the bug.

10.1.1 Mesh Alignment
The results of all five benchmarks were presented with triangular elements because better results
were obtained with triangular elements. In most benchmarks (1, 2, 4 and 5) premature failure and
incorrect failure modes were obtained using quadrilateral elements. The premature failure was
extreme in some cases. In the case of the flexural beam , using quadrilateral elements resulted in
failure before the mid-span load P1 had even been fully applied, by means of a vertical flexural
crack propagating along the element boundaries at the mid-span of the beam.

In all cases with quadrilateral elements mesh alignment bias was very evident, with either crack-
ing along reinforcement or along element boundaries. This concurs with the the findings of Slobbe
et al. (43) who found that quadrilateral elements suffered from more mesh alignment bias than
triangular elements. They observed that with triangular elements the crack paths were still sub-
jected to mesh alignment bias but that they prevented cracks from propagating linearly along the
aligned mesh boundaries of quadrilateral elements.

Figure 10.1 shows an example of an analysis of the corbel that failed prematurely using quadri-
lateral elements and exhibited crack propagation along the main horizontal reinforcement and
also the right hand side longitudinal reinforcement of the column. (The second principal strains
are shown instead of the first because they emphasise the cracking along the reinforcement more.
The negative values for the second principal strains indicate that the elements have softened com-
pletely in tension and then the strain values have reversed into the compressive region, via the
inaccurate stress reversal algorithm of SLA. Thus the blue elements represent concrete that has
completely failed.)

87
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FIGURE 10.1: Principal strains in second direction for Benchmark 2 at a load of 525 kN from an SLA with
quadrilateral elements

In the case of the shear beam, analyses were first completed using the concrete material properties
used in Claus’ analyses (12) and quadrilateral elements, and the correct failure mode could not be
obtained. Premature failure occurred due to cracking along the reinforcement, evident in Figure
10.2a. Switching to triangular elements prolonged the premature failure, decreasing the peak
load uncertainty factor from 1.76 to 1.46 and in turn allowing more flexural cracks to develop,
as shown in Figure 10.2b. (In the end, the solution presented in Section 4.3.2 was obtained by
changing the concrete material parameters to those advised by the fib Model Code 2010. This rid
the analysis of the premature failure via cracking along the reinforcement.)

(a)

(b)

FIGURE 10.2: Damage to stiffness contour plot for Benchmark 1 with (a) quadrilateral elements and (b)
triangular elements just before failure. The contour plots have a scale of zero (blue) to one (red).

10.1.2 Mesh Refinement
Mesh refinement was observed to impact the peak load, but upon refinement convergence to a
common solution was observed. An example is for Benchmark 5, for which three analyses were
completed that were perfectly comparable except for their mesh sizes differing from 200 mm,
150 mm and 100 m. The first overestimated the experimental peak load by 18%, the next by 7%
and finally by only 4%.

Mesh refinement was also found to delay premature failure when premature failure occurred due
to mesh alignment bias. An example is in Benchmark 1, where mesh refinement was observed to
delay the premature failure via cracking along the reinforcement, as depicted in Figure 10.3.
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FIGURE 10.3: Comparison of load-displacement responses for two different mesh sizes in Benchmark 1.
(Load-displacement response only shown until flexural cracks cease developing. Meshes illustrated in

legend, for half of the beam.)

10.1.3 Concrete Material Input
The analyses demonstrated that SLA is sensitive to the definition of material properties of con-
crete. Three options were trialled. Initially, the analyses for each benchmark were run using the
same parameters used in the corresponding NLFEAs. However this did not yield good results,
in most cases underestimating the capacity and in some cases resulting in extremely premature
failures. Next the CEP-FIB Model Code 1990 (14) recommendations were used. Similar problems
persisted. Only Benchmarks 2 and 5 were able to obtain adequate modelling with these concrete
material properties. Finally the fib Model Code 2010 (22) recommendations were used, and these
values greatly improved results, and thus were used for all the SLA results presented in Chapters
4 - 8. The analyses of all five benchmarks successfully reached failure using the fib Model Code
2010 values.

The main difference between the CEP-FIB Model Code 1990 and fib Model Code 2010 is the def-
inition of fracture energy, which is more or less double in the latter than in the former. Other
parameters differ also but not to such a large extent. Lower fracture energy values were observed
to lower the capacity prediction and pre-peak stiffness of the structure in the SLA.

An example is shown for the shear wall in Table 10.1 and Figure 10.4. Analysis A uses the fib
Model Code 2010 values. Analysis C uses the CEB-FIP Model Code 1990 values. Analysis B is
identical to C except that it uses the compressive fracture energy value from Analysis A. Con-
sidering Figure 10.4 it is clear that the impact of the compressive fracture energy is dominant as
opposed to the other varying concrete material parameters since the load-displacement curves of
Analysis A and B are very similar to each other yet differ substantially to that of Analysis C. This
is not surprising since the shear wall fails in the compressive region and the compressive fracture
energy value is almost doubled in Analyses A and B compared to C. A similarly strong influence
was observed in the other benchmarks for the tensile fracture energy, since tensile failure is more
dominant in the other benchmarks.
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TABLE 10.1: Comparison of concrete material input for three SLAs of the shear wall

Concrete Material Input Analysis
A

Analysis
B

Analysis
C

Mean compressive strength fcm (MPa) 34.5

Tensile strength ft (MPa) 2.67 2.68

Compressive fracture energy G f c (Nmm/mm2) 34.5 17.85

Tensile fracture energy G f t (Nmm/mm2) 0.138 0.0714

Young’s Modulus E0 (MPa) 28 537 28 257

Poisson’s ratio v0 0.2 0.15

FIGURE 10.4: Comparison of three SLAs of the shear wall with varying concrete material input. Steps with
IPL are not shown.

10.1.4 Saw-tooth p-factor
Concrete
In the analyses completed in this thesis, p-factors of 0.1 and 0.2 were trialled. The selection of
either of these two values for the concrete’s saw-tooth p-factor was in general observed to have
a negligible impact on the global response. An example is shown in Figure 10.5 for the shear
beam (Benchmark 1). Changing the p-factor for the concrete from 0.2 to 0.1 resulted in a slightly
decreased capacity prediction, closer to the experimental value. Observing the brittle behaviour
it is also clear that the loads at which structural snap-backs occur is slightly lower. The failure
mode did not change, although the number of steps in the analysis nearly doubled, increasing the
computation time.
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FIGURE 10.5: Comparison of SLA load-displacement response for Benchmark 1 using a p-factor for the
concrete of 0.1 and 0.2.

An exception to this general observation of the concrete’s p-factor having a limited impact, was
in the case of the flexural beam (Benchmark 4). Premature failure occurred using a p-factor of 0.2,
while the correct failure mode and a good estimate of the failure load was attained with a factor
of 0.1. This is depicted in Figure 10.6.

FIGURE 10.6: Comparison of SLA load-displacement response for Benchmark 4 using a p-factor for the
concrete of 0.1 and 0.2.

Reinforcement
As discussed in Section 9.2, the choice of p-factor for the reinforcement was seen to have a very
noticeable effect on both the peak load and ductility modelled by the analysis in cases where
yielding of reinforcement is expected. This is because a higher p-factor delays yielding and con-
sequentially prevents proper elongation of the reinforcement, which can cause overestimation of
the structures strength and underestimation of the structure’s ductility. Conversely, in cases such
as the flexural beam where not much yielding of reinforcement occurred in the experiment, the
sensitivity to the reinforcement p-factor was negligible. Thus, SLA is sensitive to the reinforce-
ment p-factor, but only for failures that exhibit some ductility. In such cases increasing pR from
0.1 to 0.2 was observed to increase the peak load estimate by up to 10%.



92 Chapter 10. Robustness of SLA

10.1.5 Other
The case of the flexural beam (Benchmark 4) was observed to be extremely sensitive in general to
several aspects of the solution strategy, such as the definition of concrete material parameters and
the p-factor (as shown in Figure 10.6). The bizarre sensitivity was its sensitivity to the presence
or lack of bearing and loading plates. The analysis was successful (modelled the correct failure
mode and predicted the failure load within 10% of the experimental capacity) in only the two
following scenarios:

1. With two bearing plates with point supports, and no loading plates with the point loads
modelled as uniformly distributed loads (UDLs) over a small distance of 50 mm. (This
analysis is the one shown in Section 7.3.2.)

2. As in (1), but with the overhang point load P2 modelled as a point load on a loading plate.

Premature failure and incorrect failure modes were obtained in the following scenarios:
3. As in (1) but without bearing plates, with point supports modelled as small UDLs over a

distance of 50 mm.

4. As in (1) but with two loading plates

From the successes and failures listed above, it was concluded that bearing plates were necessary,
as opposed to merely distributing the “point” support over a small distance of 50 mm. Addition-
ally, the use of a loading plate for the application of the mid-span load appeared to be detrimental
to the analysis, which was deemed peculiar and prompted investigation. For scenario (4), firstly
the premature failure was investigated, to see what was occurring during this failure. Secondly,
the sensitivity to the loading plates was investigated.

Premature failure
For scenario (4), when a loading plate was used for the mid-span load, premature failure oc-
curred during the second loading phase (refer to Figure 7.2) in the section of the beam between
the mid-span load and the right support. Figure 10.7 shows the premature failure mode via a
strain contour plot of the second principal strains. The figure demonstrates that large compres-
sive strains develop during the application of the overhang load in the elements that previously
hosted a large flexural crack in first loading stage (evident via the first principal strain plot in
Figure 10.7a). As the overhang load is applied, the flexural cracks between the supports close,
but negative crack strains of large magnitudes develop due to the inaccurate modelling of stress
reversal in the SLA method, as demonstrated for element 125 in Figure 10.8. In Figure 10.8a, it is
evident that the element softens fully in tension. Zooming out to see the full extent of the crack
strain axis in Figure 10.8b, it is clear that the incorrect stress reversal algorithm in SLA has far
overestimated the crack closure, with compressive crack strains reaching excessively large mag-
nitudes of nearly 0.8.

(a) First principal strains after applying the full mid-span load

(b) Second principal strains after beginning to apply the reference load

FIGURE 10.7: Illustration of principal strains from an unsuccessful analysis during (a) load stage 1 and (b)
load stage 2, at premature failure
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(a) (b)

FIGURE 10.8: Normal crack-stress strain relation in integration point 3 of element 125 of the flexural beam
during an unsuccessful analysis with (a) a zoomed in crack strain axis and (b) the full crack strain axis

It is therefore clear that the premature failure of the flexural beam in the unsuccessful analyses
was due to the incorrect crack closure algorithm causing large compressive strains to develop in
the concrete. It occurred in the flexural beam due to the non-proportional loading scheme that
reverses the bending moment diagram of the flexural beam progressing from the first loading
stage to the second loading stage, prompting closure of multiple cracks.

Sensitivity to loading plates
The bearing plates were modelled as a linear elastic material with a Young’s modulus of 30 000 MPa
and Poisson’s ratio of 0.2. The loading plates in scenarios (2) and (4) were initially modelled in the
same fashion as the bearing plates. Efforts to achieve better results for scenario (4) involved reduc-
ing the Young’s modulus to 20 000 MPa, setting it exactly to that of the concrete (26 920.9 MPa),
adding interface elements, and changing Poisson’s ratio to zero, however none of these attempts
were successful. These analyses are summarised in Appendix D.

It was observed that the critical difference between scenarios (1) and (2) and scenario (4) was the
direction of stress transfer at the mid-span loading plate. The stress path from the load to the
beam differed when there was no loading plate to when there was a loading plate, as depicted
in Figure 10.9. The stress flow in Figure 10.9b persisted even when a UDL was used instead of a
point load on the loading plate. Ordinarily a slight difference in the stress flow path would not be
detrimental to a finite element analysis. The fatal impact that this sensitivity has on the SLA of the
flexural beam indicates that the incorrect crack closure algorithm causes severe robustness issues
for non-proportionally loaded cases where the global stress state of the structure is reversed (i.e.
where a lot of crack closure occurs).

(a) (b)

FIGURE 10.9: Principal stress tensor plot for the mid-span load P1 with (a) no loading plate and (b) a
loading plate
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10.2 Ease of Computation

10.2.1 User Skill Requirements
The method of SLA was observed to be relatively simple compared to NLFEA, requiring less
time, knowledge, experience and interpretation from the user. Comparisons to NLFEA regard-
ing the ease of computation for the five benchmarks are drawn in the following section (10.3).
Some aspects of the current SLA-program do however demand some skill and knowledge from
the user. Firstly, the inaccurate modelling of stress reversal creates misleading stress and strain
contour plots that require correct user interpretation. Secondly, in the case of the flexural beam,
the extreme sensitivities to user-specified input (likely due to the multitude of stress reversal that
occurred) also required user skill to obtain a successful analysis. Thirdly, user knowledge and/or
experience was required to use triangular elements to reduce the mesh alignment bias, since far
poorer results were obtained with quadrilateral elements.

10.2.2 Computation Time
In this section, computation time shall refer to the total duration of the analysis as specified by
the start and end times in the output file, i.e. the time taken for computing as well as the time for
extracting the requested output.

While computation time is a current concern for developers of SLA, the analysis models in this
thesis were relatively simple, all two-dimensional with surface areas no greater than 12 m2. Thus
computation time was low, generally always less than an hour and mostly less than half an hour.
Computation time varied based on the discretisation of the model, the requested output, and the
computer capacity.

The computer used for the analyses was equipped with an Intel Core i5-6500 CPU and 8GB of
RAM. Computation time was observed to increase for an increased number of elements (i.e. for
larger structures and/or mesh refinement), for an increased amount of reinforcement (regardless
of whether or not yielding was occurring) as well as for lower values of the saw-tooth p-factor
(particularly for concrete). Table 10.2 summarises the computation times per element observed
for two considered p-factors (consistently used for both the concrete and reinforcement). Increas-
ing p from 0.1 to 0.2 was shown to more or less halve the computation time per element. The data
presented is from analyses requesting a certain set of output. Other analyses that requested more
output, such as tabular files of the crack strain data, are not included since that increased com-
putation time considerably. The output requested for the analyses considered in Table 10.2 was
tabular force-displacement data at the load application point(s) and DIANA output as follows:

DISPLA
PARAME YOUNG INTPNT
STATUS DAMAGE INTPNT
STRAIN TOTAL GREEN GLOBAL
STRAIN TOTAL GREEN PRINCI
STRAIN CRACK GREEN
STRESS TOTAL
STRESS TOTAL PRINCI

TABLE 10.2: Computation times for a given set of requested output

Benchmark Average computation time (s) of analysis per element
p = 0.1 p = 0.2

1. Shear Beam 1.19 0.99
2. Corbel 4.52 2.09
3. Shear Wall 2.61 2.04
4. Flexural Beam 3.49 1.25
5. Frame 3.53 1.47
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In terms of time required for post-processing results, additional time was required for extracting
some output since not all input is available using the DIANA interface yet, and must be extracted
using other means from the ouptut file and tabular output files.

10.3 Comparison of Robustness with NLFEA

10.3.1 Performance Parameter
Table 10.3 presents the post-peak modelling factors for the experiment, NLFEA and SLA of each
benchmark. The post-peak modelling factor was the fourth performance parameter, which is an
indicator of the robustness of finite element analyses. The best factor from either the NLFEA or
SLA for each benchmark is shown in bold.

TABLE 10.3: Post-peak modelling factors (φ) from the experiment and analyses, for comparison

Benchmark Experiment NLFEA SLA

1. Shear Beam N.A. 0.92 1.00

2. Corbel N.A. 0.00 1.00

3. Shear Wall 0.00 0.00 0.159

4. Flexural Beam 0.113 0.00 0.264

5. Frame 0.057 0.003 0.193

10.3.2 Discussion
Ease of Computation
SLA requires less user skill than NLFEA in several aspects. Firstly, since SLA circumvents con-
vergence issues, no time and skill is required by the user to trial different solution procedures (i.e.
the load application increments, convergence norms and tolerances, choice of iterative scheme)
such that the end of the analysis is able to be reached. This was particularly clear in the case of
the flexural beam, where Jelic et al. (30) used a three-part iterative procedure in the NLFEA to
prevent early divergence and numerical instability. Conversely, in all of the SLAs, the analysis ran
successfully until completion on the first attempt every time, with the exception of sensitivities
causing premature failure (but this is an issue of objectivity).

Similarly, the robustness of SLA was evident in the case of the shear beam, where successful re-
sults were obtained using a smeared crack model in the SLA but not in the NLFEA, for which
accurate results were only obtained using a discrete cracking model (12). In order to use a dis-
crete cracking model, user knowledge was required to predefine the crack locations. Also in the
case of the shear beam, user knowledge was required to interpret the symmetric failure mode of
the NLFEA as in fact one-sided shear failure, while SLA triggered the asymmetric damage auto-
matically.

Finally, Table 10.3 shows that SLA consistently performs better in modelling the post-peak be-
haviour than the NLFEA. Even in the case of very brittle failure where the experiment reports no
drop in load after reaching the peak load (Benchmark 3), the SLA models a slight drop in force,
which is evidently very steep in Figure 6.9, illustrating to the user that a brittle failure has in fact
occurred. Conversely, Nilsen-Nygaard (36) had to investigate the lack of convergence at the end
of the NLFEA to determine whether or not failure had in fact occurred, requiring greater post-
processing time and user expertise.
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Objectivity
SLA suffered from sensitivities to mesh refinement, mesh alignment, concrete material input, the
saw-tooth p-factor (mainly only for reinforcement) and in one case to the type of load application,
as detailed in the previous section (10.1). Sensitivities of NLFEA in the analyses of the benchmarks
were not discussed to a great extent, except in some cases for the solution procedure in order to
achieve convergence. As discussed in Section 2.1.3, NLFEA suffers with sensitivities to mesh
refinement, mesh alignment and concrete material input as in SLA. Thus the performance of SLA
in objectivity versus that of NLFEA is comparable.
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Conclusions

The aim of this thesis was to validate SLA for five benchmark cases by quantitatively assessing
the accuracy and robustness of the SLA method compared to the NLFE method. In this section,
firstly the limitations of the SLA method will be concluded, followed by an overview of the SLA
performance across the benchmarks compared to the NLFEA.

11.1 Limitations of SLA

11.1.1 Accuracy Inhibitors
Several aspects of the SLA method were observed to result in inaccuracies at a local and/or global
scale. They are listed here in order of the greatest to least impact had on the global structural
response.

1. Reinforcement’s p-factor pR
Larger p-factors for the reinforcement were found to restrict the yielding of the reinforce-
ment. In benchmarks where yielding occurred significantly in the experiment (Benchmarks
2, 3 and 5), the restriction of yielding in the SLA resulted in an overestimation of the peak
load and underestimation of ductility in the analytical results. Reducing the p-factor im-
proved the accuracy of the results, as did trialling a new method where the yield stress
input was reduced, such that a factor of (1+pR) of the reduced yield stress gave the actual
yield stress.

2. Stress reversal
The inaccurate modelling of stress reversal in the SLA method was visible in the results.
The impact of this varied between the benchmarks. Stress reversal was most visible in
the structural load-displacement response for the shear wall, where it occurred to such
an extent that a large snap-back into negative lateral displacements during the post-peak
modelling was observed. The benchmark with the most amount of stress reversal was
the non-proportionally loaded flexural beam, for which 23% of the steps included stress
reversal. This resulted in fatal sensitivities to user-specified input, thus causing severe ro-
bustness issues for this benchmark. For other cases the global impact of the inaccurate
modelling of stress reversal is only obvious occasionally via non-secant snap-backs in the
load-displacement relation, but it did create misleading strain contour plots in the DIANA
output interface that required adequate interpretation from the user.

Importantly, the cases considered in this thesis were loaded by constant and monotonic
loads only. For cyclic loading, the impact of the inaccurate modelling of stress reversal in
the current SLA-program would cause greater modelling inaccuracies. One would expect
robustness issues such as those observed in the case of the non-proportionally loaded flex-
ural beam to be a great hindrance to modelling cyclic loading with SLA.
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3. Lack of consideration of geometrical nonlinearity
For the case of the frame, the impact of SLA not including geometrical nonlinearity in the
structural analysis was considered. It was concluded that since the frame reaches significant
displacements, the impact of not considering second order effects could partially explain the
overestimated structural stiffness in the later pre-peak stage, the overestimated peak load
and the underestimated ductility. For quantification of the impact of considering geometri-
cal nonlinearity on these aspects of the modelled structural response, further investigation
is required.

4. Inaccuracies in the discretisation of the material constitutive models
Deviations from the secant branches and spurious cracking in the transverse crack direction
was observed in all five benchmarks. This phenomena was dubbed flutter and was shown
to be an effect of Poisson’s that was exacerbated when stress redistribution occurs. The mag-
nitude of the strain deviations from the secant branch were of the order of 10−5 or less, thus
the impact of flutter was deemed to have a negligible effect on the global response. By the
time an integration point was fully softened, the impact of flutter was reduced to zero due
to the reduction of the orthogonal Poisson’s ratios.

Additionally in the SLA results it was commonly observed that a crack direction in an inte-
gration point could be critical in consecutive analyses and thus be damaged consecutively,
“jumping” between the peaks of the secant branches of the saw-tooth relation. This re-
sulted in the reduced strength being consistently overestimated without being balanced out
by subsequent underestimations that would ordinarily follow. The global impact of this
inaccuracy is not known and could be mild or negligible, however it does exacerbate the
overestimation of reduced strength values already caused by using a linear tensile soften-
ing relation.

5. Secant unloading in Von Mises plasticity
By nature of the discretisation of the Von Mises plasticity in the SLA method, unloading is
permitted to occur along all of the secant branches. In some cases, it was observed that un-
loading to very small strain values occurred. This is unrealistic modelling of reinforcement
plasticity, and may have contributed to the generally underestimated structural ductility
modelled by SLA across the benchmarks.

Due to limited modelling options in the current SLA-program, some aspects of the material mod-
elling were simplistic and thus inaccurate, however their impact on the global structural response
was not ascertained since more sophisticated modelling options are not yet available with which
to compare results. Examples of these limitations are that (1) only the standard band width ripple
approach is available for the definition of the saw-tooth relation, (2) the softening curves can only
be linear for tensile or parabolic for compression (unless they are coordinate-defined), and (3) no
material effects are included such as concrete hardening and softening phenomena. The effect of
these simplifications could be significant since, for example, both the standard band-width rip-
ple approach and the linear tensile softening relation result in an overestimation of the tensile
fracture energy. Despite the simplicity of the material modelling in the current SLA-program,
SLA’s performance was very comparable to that of NLFEA, as will be concluded in the following
subsections.

11.1.2 Robustness Inhibitors
Sensitivities observed in all benchmarks
Four of the user-specified inputs were identified as having an influence on the SLA results in all
five benchmarks, to varying extents. Mild is considered as having a limited and/or insignificant
influence. Moderate to significant are considered as more noticeable influences, but still not being
ruinous to results. Severe is considered as being seriously detrimental to the robustness and/or
accuracy of the analysis.

1. Mesh Refinement (Mild influence)
Mesh size was shown to have an effect on the modelled capacity, however refinement was
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shown to result in convergence to a common solution. Mesh refinement was not found to
alter the failure mode. For mesh refinement in the case of the shear beam for example, the
failure was consistently caused by a sudden shear crack, and only the positioning of the
crack with respect to the support varied, by a maximum of 14% of the shear span. In cases
where premature failure was occurring, mesh refinement delayed the premature failure but
did not prevent it.

2. Mesh Alignment Bias (Moderate to severe influence)
Mesh alignment bias was evident in the SLA analyses, with cracks tending to propagate
along element boundaries. The SLA results indicated that quadrilateral elements suffered
from mesh alignment bias far more than triangular elements. In most cases, the use of
quadrilateral resulted in premature failure of the structure, due to unrealistic crack propa-
gation along reinforcements and element boundaries. Using triangular elements resolved
this issue.

3. Concrete Fracture Energy Input (Moderate to severe influence)
Analyses were compared in all benchmarks using two definitions for the concrete material
parameters, those of CEB-FIP Model Code 1990 and fib Model Code 2010. The most signif-
icant difference between these two codes was the definition of the fracture energies; in the
fib Model Code 2010 both the tensile and compressive fracture energies were approximately
doubled. Across the five benchmarks, the fib Model Code 2010 concrete material parameters
performed far better. In fact, in three out of the five benchmarks, using the CEB-FIP Model
Code 1990 definitions resulted in incorrect failure modes and premature failure. In the other
two benchmarks (Benchmarks 2 & 5), adequate modelling of the failure mode and load was
achieved. For these two cases, the analyses with CEB-FIP Model Code 1990 material pa-
rameters gave lower capacity predictions (by 6% and 12%) and lower pre-peak stiffness (by
8-15%) than the fib Model Code 2010 analyses.

4. Saw-Tooth p-Factor (Mild to significant influence)
For the concrete, the use of either 10% or 20% for the p-factor had a negligible difference
in all cases except for the non-proportionally loaded flexural beam. The sensitivity in the
case of the flexural beam is discussed in the following subsection, however in general the
influence of the p-factor for the concrete is mild.

As discussed in the above subsection (11.1.1), the influence of the p-factor for the reinforce-
ment was significant in benchmarks that exhibited some ductility. This is also a robustness
inhibitor as well as an accuracy inhibitor, since the results vary based on the choices of the
user for the analysis input.

Robustness issues unique to non-proportionally loaded cases
Fatal sensitivities due to incorrect crack closure algorithm
In the case of the non-proportionally loaded flexural beam, the SLA was found to be fatally sensi-
tive to most of the input choices, including the four listed above as well as (uniquely) the loading
and bearing plates and the concrete p-factor. Premature failure occurred using a p-factor of 0.2,
when bearing plates were not used, and whenever a loading plate was used for the application
of the mid-span load. The extreme sensitivity of this benchmark to user-specified input, and the
fatal impact of these sensitivities for the analysis was concluded to be due to the incorrect stress
reversal algorithm of SLA. The reason why these fatal sensitivities were observed only in the
benchmark of the flexural beam was because the flexural beam undergoes a complete reversal of
the global stress state due to the subsequent loading scheme. This is a robustness issue for non-
proportionally loaded cases that is expected to be a great hindrance to modelling all structures
that experience a global reversal of stress states, such as in cyclic loading.

Intermittent proportional loading
In one the non-proportional loading cases, intermittent proportional loading (IPL) occurred for
brief periods pre-failure, but the full load combination was recovered and the analysis continued
until reaching the peak load. For all three non-proportionally loaded benchmarks, the analyses
did not successfully model the entire post-peak behaviour as it did in the proportionally loaded
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benchmarks, because after modelling some of the drop in load-bearing capacity, IPL would begin
and the full load combination would never be recovered for the remaining duration of the anal-
ysis. However, the SLA was successful in modelling at least a portion of the post-peak response,
equal to 16-26% of the drop of load bearing capacity. Steps with IPL were not included in the
results since they represent an incorrect loading scheme of the structure.

11.2 Overall Performance of SLA in Comparison to NLFEA
From the analyses completed in this thesis, conclusions regarding the accuracy and robustness of
SLA in comparison to NLFEA can be made. As discussed in Section 3.2, to average the NLFEA
performance parameters and compare them to those of the SLA is not a fair comparison, since
the solution strategies of the NLFEAs differ not only to that of the SLA but also to each other.
However, the comparison does give some insight to the validity of SLA.

11.2.1 Accuracy
Comparing levels of accuracy, NLFEA outperformed SLA in 81% of the modelling uncertainty
factors. Despite this high percentage, closer inspection of the factors reveals that the performance
of SLA was in many cases very comparable to that of the NLFEA. This is reflected in the similarity
of their averaged modelling uncertainty factors.

Considering the pre-peak region, SLA averaged 0.63 for the pre-peak uncertainty factor, indicat-
ing that the pre-peak stiffness was consistently overestimated. The SLA pre-peak uncertainty
factors are on average 6% and 17% less than the NLFEA values, at one- and two-thirds of the ex-
perimental peak load respectively. This signifies that the SLA overestimates the pre-peak stiffness
more so than the NLFEA. The use of a linear tensile softening relation was suspected to predom-
inantly be the cause for this, since it results in an overestimation of the softened tensile strength
values, especially immediately after crack initiation.

For the peak load uncertainty factor, SLA averaged unity, since it sometimes overestimated and
sometimes underestimated the peak load. Thus in this performance parameter SLA exhibits
greater accuracy than NLFEA, which on average underestimates the peak load by 11%.

For the ductility uncertainty factor, SLA averaged a value of 2.42, demonstrating the consistently
underestimated ductility of the structural responses. This was attributed to the underestimation
of reinforcement’s plasticity due to the discretisation of the Von Mises relation. The saw-tooth p-
factor delayed the onset of and limited the progression of yielding, and secant unloading reduced
reinforcement strains of yielded integration points to low magnitudes. It was also conjectured
that considering geometrical nonlinearity would increase the modelled structural ductility. Simi-
lar to the SLA, NLFEA also underestimates the ductility of the structural response, but to a lesser
extent. The NLFEA ductility uncertainty factor is on average 71% of that of the SLA.

In terms of damage progression, crack patterns and failure modes, the SLA models were accu-
rate except in the case of the corbel, where one aspect of the failure mode - the crushing in the
compressive corner of the corbel - was not very evident. Failure was prompted by the vertical
reinforcement in the main vertical crack breaking before crushing of the concrete had reached a
critical level. Modelling of bond-slip would likely prevent this by decoupling the strains of the
reinforcement from the displacement field of the severely damaged plane stress elements. Addi-
tionally, yielding of reinforcement was generally underestimated in Benchmarks 2 and 5.

Asymmetric damage and/or failure cracks were modelled in all benchmarks without any addi-
tional input required such as the modelling of imperfections, unlike in NLFEA. In the case of the
shear beam, analyses with different mesh sizes modelled the critical shear crack on either the left
or right side of the beam, which correctly depicts the way in which symmetric shear beams fail
arbitrarily on one side or the other. This automatic capturing of asymmetric damage and avoid-
ance of bifurcations, due to the application of only one damage event per analysis, is an asset of
SLA.
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11.2.2 Robustness
Using the consistent solution strategy used in this thesis, the SLAs were performed with very a
comparable level of accuracy across the benchmarks, both qualitatively and quantitatively. The
coefficient of variation of the peak load uncertainty factors, Vθ , across the five benchmarks was
10.8%, a value which is moderately low and complies with the recommendations (22) for global
safety reliability as being lower than 15%. (Five benchmarks is not an extensive pool so this co-
efficient of variation is subject to statistical uncertainty.) In terms of replicability of results, using
triangular elements and the fib Model Code 2010 values for the concrete material parameters, an-
other user would be able to obtain similar results, since the element shape and concrete fracture
energies were found to be the two inputs that could have a severe impact on the results. With the
exception of the non-proportionally loaded flexural beam (that was extremely sensitive to many
of the inputs), none of the other sensitivities to input were found to be severely detrimental to
obtaining a reasonable model of the failure load and mode. NLFEA is similarly susceptible to
sensitivities to mesh size and fracture energy input, but in general is not as inhibited by mesh
alignment bias using quadrilateral elements as the SLA was observed to be. Overall the objectiv-
ity of SLA is comparable to that of NLFEA, excluding the case of the non-proportionally loaded
flexural beam.

The fatal sensitivities observed in the flexural beam due to the inaccurate modelling of stress re-
versal illustrated the severe robustness issues that can arise in non-proportionally loaded cases
with the current crack closure algorithm. Otherwise, the non-proportionally loaded cases had
comparable accuracy and robustness to the proportionally loaded cases. The use of the double
load multiplier strategy for the formulation of non-proportional loading did not hinder the ro-
bustness of the SLA until complete failure of the structure, when intermittent proportional load-
ing would restrict the amount of the post-peak region that was successfully modelled.

With regards to ease of computation, SLA was not inhibited by convergence or bifurcation is-
sues that NLFEA commonly suffers from (as reported by Claus (12), Nilsen-Nygaard (36) and
Jelic et al. (30)). SLA outperformed the NLFEA in the post-peak performance factor for all five
benchmarks, by being more successful in continuing the analysis as the load-bearing capacity of
the structure declined. Modelling the full post-peak region was achieved without difficulty in
the proportional loading cases, with the entire drop in load-bearing capacity modelled success-
fully. In the non-proportionally loaded cases, the drop in load-bearing capacity was modelled
partially, limited by intermittent proportional loading in all three cases and by a severe structural
snap-back in the structural response in the case of the shear wall. The fact that SLA was not hin-
dered by convergence issues in the face of brittle failures was considered to be an advantage of
SLA over NLFEA, since SLA modelling the sharp drop in load-bearing capacity after reaching
the peak load allows the user to be confident that failure has in fact occurred, and not merely lack
of convergence. Similarly for quasi-brittle failures it is a very advantageous characteristic of SLA
since it can continue the analysis without convergence issues when a lot of damage is occurring
simultaneously at a load step.

The computation time of the SLAs of this thesis were low, mostly less than half an hour. Com-
putation time was found to increase for smaller concrete saw-tooth p-factors, greater quantities
of reinforcement and for an increasing number of elements, and thus for larger models as well as
mesh refinement.
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Recommendations

The following recommendations are made for future research and development of the sequen-
tially linear analysis (SLA) method.

1. Stress reversal
Based on the findings of this thesis it is recommended that reformulating the procedure for
stress reversal be a priority in further developments in SLA, such that when reversing from
a tensile state to a compressive state the stiffness is adjusted accordingly and vice versa.
Particularly for analyses with cyclic loading, the impact of the current formulation for stress
reversal is expected to be greatly detrimental to the accuracy and robustness of the SLA
method, via the inaccurate overestimation crack openings and closures causing unrealistic
snap-backs in the load-displacement response, unrealistic damage and premature failure of
the analysis.

2. Reinforcement saw-tooth p-factor
A recommendation would be to adjust the p-factor for the reinforcement in the SLA method-
ology such that the yield stress input is reduced and the upper limit, at which point yielding
occurs, correlates with the actual yield stress. This would enable proper yielding of the re-
inforcement, as was demonstrated in the case of the frame in Section 9.2.2.

3. Investigate lack of ductility
Underestimation of the structures’ ductility was common in the SLA of all of the relevant
benchmarks (for which experimental displacements were recorded). This could be related
to the inherent nature of SLA with secant unloading, lack of consideration of geometrical
nonlinearity, or the limited yielding of reinforcement that was observed, but conclusions can
not be made from the research of this thesis and further investigation is required. NLFEA
also underestimated the ductility of the structures, but to a lesser extent.

4. More accurate material modelling
It is recommended to incorporate input options for more sophisticated modelling of the
concrete material. Examples include more accurate material softening curves (such as the
Hordijk tensile curve) and material effects such as concrete hardening and softening phe-
nomena and non-local smeared crack approaches. Once incorporated, the influence and
significance of simplifications of material modelling can be ascertained.

5. Investigate effect of ignoring geometrical nonlinearity
An investigation should be conducted to ascertain whether or not excluding geometrical
nonlinearity has a substantial impact on the SLA results, particularly for modelling post-
peak ductility. This could be done by imposing displacements on the original geometry and
completing the analysis in stages, each with progressively greater displacements.

6. Include more output options in DIANA
To decrease post-processing time, it is recommended to include more output options in the
DIANA interface. Examples include the crack stresses and strains in integration points, and
the number of saw-teeth in each element.
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Appendix A

Reinforcement Strain Contour Plots
A.1 Benchmark 2
Figures A.1.1 - A.1.2 present the reinforcement strain contour plots at two analysis steps: 2901
(just before reaching peak load) and 4101 (just before complete failure). The reader is referred to
Figure 5.11 for perspective of these steps in the context of the structural response. Three different
reinforcement bars are used in the experiment of the corbel, as depicted in Figure 5.7. Table A.1
gives the reinforcement strain values corresponding to the yield stress and a factor of (1+pR) of
the yield stress. Yielding in the reinforcement elements does not occur in the SLA unless (1+pR) of
the yield stress is reached. The strain values presented are used as the scale for the plots in Figures
A.1.1 - A.1.2. The minimum and maximum strains in analysis step 2901 are −0.00133 and 0.00857
in the horizontal direction and −0.00181 and 0.0136 in the vertical direction. The minimum and
maximum strains in analysis step 4101 are −0.00332 and 0.0163 in the horizontal direction and
−0.00406 and 0.103 in the vertical direction.

TABLE A.1: Yield stress and strain values

Bar diammeter
(mm)

fy (MPa) ε fy (1 + pR) fy
(MPa)

ε(1+pR) fy

φ7 350 0.0017 385 0.0018
φ12 282 0.0013 310 0.0015
φ14 300 0.0014 330 0.0016

(a) Horizontal strains (b) Vertical strains

FIGURE A.1.1: Reinforcement strains in Step 2901
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(a) Horizontal strains (b) Vertical strains

FIGURE A.1.2: Reinforcement strains in Step 4101

A.2 Benchmark 3
Figure A.2.1 shows the vertical reinforcement strains in the shear wall in step 7201, which is
shortly before reaching the peak load. The reader is referred to Figure 6.15 for the position of the
analysis step in the context of the analysis. The scale of the figure uses strain values relevant for
the vertical reinforcement bars, which were φ8 bars with a yield stress of 470 MPa. The strain cor-
responding to the yield stress is 0.00224, and the strain corresponding to a factor of (1+ pR) of the
yield stress, at which point yielding occurs, is 0.00246. Thus the elements marked in red or dark
blue indicated elements that have yielded. The minimum and maximum strains in this analysis
step are -0.0193 and 0.00659. The ultimate reinforcement strain used in the SLA was 0.02, which is
not reached in the tensile reinforcement and not exceeded in the compressive reinforcement until
after failure. No yielding in the horizontal reinforcement or stirrups occurred.

FIGURE A.2.1: Vertical reinforcement strains in Step 7201
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A.3 Benchmark 5
Figure A.3.1 shows the reinforcement strains in step 9601, which is just after reaching peak load.
Figure 8.9 can be consulted for the location of the step in the load-displacement response. The
scale used in the figures corresponds to relevant strain values for the longitudinal reinforcement
(not for the stirrups), which were the φ20 bars. The yield stress was 418 MPa, which corresponds
to a strain of 0.00217. A factor of (1 + pR) of the yield stress is 459.8 MPa, which corresponds to
a strain of 0.00239. Yielding in the SLA does not occur until a strain of 0.00239 is reached. The
minimum and maximum strains in step 9601 are -0.00203 and 0.0408 in the horizontal direction,
and -0.0106 and 0.0277 in the vertical direction respectively. The ultimate reinforcement strain
was defined as 0.0669, as defined by Güner (24), thus these strain values do not signify breakage.
Post failure, the compressive strains in the longitudinal reinforcement at the base of the south
column do exceed the ultimate strain.

(a) Horizontal strains (b) Vertical strains

FIGURE A.3.1: Reinforcement strains in Step 9601
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Shear Reinforcement in Benchmark 4
The layout of the shear reinforcement in Benchmark 4, the flexural beam, is as per the depiction
in Figure 7.1 and the following description. Critical regions are, according to EC8, located at (a)
point loads, (b) supports, and (c) points of change in bending moment. For low-ductility beams
(as is LDCB3), the length of critical regions is equal to H, the overall height of the section. In
critical regions, the maximum spacing of shear reinforcement is sv = H/4. In the remainder of
the beam, E2 specifies shear reinforcement should be spaced at a maximum of sv = 0.6d, where d
is the effective depth of the beam.
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Stress Reversal
Figure C.0.1 shows the frequency with which stress reversal is occurring in the analyses. For
Benchmarks 3-5, steps with intermittent proportional loading (IPL) are not shown.

108



109

(a) Benchmark 1 (b) Benchmark 2

(c) Benchmark 3 (d) Benchmark 4

(e) Benchmark 5

FIGURE C.0.1: Load-displacement responses from the five benchmark cases with steps with stress reversal
marked



Appendix D

Sequentially Linear Analyses of Benchmark
4
Only the SLAs of the flexural beam using triangular elements and the fib Model Code 2010 (22)
values for the concrete material parameters yielded successful results, and even then the bench-
mark was very sensitive to the modelling of load application, and the saw-tooth p-factor. Table
D.1 details the varying input between nine analyses completed on the flexural beam with trian-
gular elements and the fib Model Code 2010 concrete material parameters. For each analysis, the
distinguishing input is marked in bold. Only analyses A and C were ’successful’, i.e. they did not
fail prematurely and obtained the correct failure mode. (Analysis A is the analysis presented in
Section 7.3.) All of the other analyses failed prematurely between the mid-span load and the right
support during the application of P2. Most of these analyses failed almost immediately after the
application of P2 began.

An odd sensitivity to the use of a loading plate (LP) for the mid-span load was observed, as dis-
cussed in Section 10.1. Analyses E - I investigated this, to see if this sensitivity could be attributed
to another input. Reducing the Young’s modulus of the LP, setting the Young’s modulus of the
LP to that of the concrete (26 920.9 MPa), adding interface elements, using uniformly distributed
loads (UDLs) instead of point loads (PLs) on the LPs, and setting the Poisson’s ratio of the LP to
zero were all changes that were trialled. None proved to be successful in preventing the prema-
ture failure.

TABLE D.1: Input for nine SLAs completed on the flexural beam, all with triangular elements and the fib
Model Code 2010 concrete material parameters. (Abbreviations: uniformly distributed load (UDL), point

load (PL), loading plate (LP).)

Analysis Load type P1 Load type P2 LP Properties Interface
elements?

p Successful
analysis?

A UDL, no LP UDL, no LP - - 0.1 Yes

B PL, with LP PL, with LP E0 = 30 000 MPa
v = 0.2 No 0.1 No

C UDL, no LP PL, with LP E0 = 30 000 MPa
v = 0.2 No 0.1 Yes

D UDL, no LP PL, with LP E0 = 30 000 MPa
v = 0.2 No 0.2 No

E PL, with LP PL, with LP E0 = 20 000 MPa
v = 0.2 No 0.1 No

F PL, with LP PL, with LP E0 = 26 920.9 MPa
v = 0.2 No 0.1 No

G PL, with LP PL, with LP E0 = 26 920.9 MPa
v = 0.2 Yes 0.2 No

H UDL, with LP UDL, with LP E0 = 26 920.9 MPa
v = 0.2 Yes 0.2 No

I PL, with LP PL, with LP E0 = 26 920.9 MPa
v = 0 No 0.1 No
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