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Nonlinear aircraft sensor fault reconstruction in the presence of
disturbances validated by real flight data
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aDelft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

This paper proposes an approach for Inertial Measurement Unit sensor fault reconstruction by exploiting

a ground speed-based kinematic model of the aircraft flying in a rotating earth reference system. Two

strategies for the validation of sensor fault reconstruction are presented: closed-loop validation and open-

loop validation. Both strategies use the same kinematic model and a newly-developed Adaptive Two-Stage

Extended Kalman Filter to estimate the states and faults of the aircraft. Simulation results demonstrate the

effectiveness of the proposed approach compared to an approach using an airspeed-based kinematic model.

Furthermore, the major contribution is that the proposed approach is validated using real flight test data

including the presence of external disturbances such as turbulence. Three flight scenarios are selected to

test the performance of the proposed approach. It is shown that the proposed approach is robust to model

uncertainties, unmodelled dynamics and disturbances such as time-varying wind and turbulence. Therefore,

the proposed approach can be incorporated into aircraft Fault Detection and Isolation systems to enhance

the performance of the aircraft.
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Nomenclature

FDI Fault Detection and Isolation

FTC Fault-Tolerant Control

IMU Inertial Measurement Unit

IOTSEKF Iterated Optimal Two-Stage Extended Kalman Filter

ATSEKF Adaptive Two-Stage Extended Kalman Filter

KM kinematic model

AS-KM airspeed-based kinematic model

GS-KM ground speed-based kinematic model

RMSE root mean square error

SMO Sliding Mode Observer

Ax, Ay, Az specific forces along the body axis, m/s2

UN , UE, UD ground speed components in the local navigation frame, m/s

p, q, r roll, pitch and yaw rates along the body axis, rad/s

ua, va, wa airspeed components along body axis, m/s

uw, vw, ww wind speed components along earth axis, m/s

V true airspeed, m/s

α, β angle of attack, sideslip angle, rad

φ, θ, ψ roll, pitch and yaw angles along the body axis, rad

x, x̂ state and state estimate

f i, f̂ i IMU sensor fault and its estimate

fAx , fAy , fAz faults in the accelerometers, m/s2

fp, fq, fr faults in the rate gyros, rad/s

k time step

n, b, m dimensions of the state, input, output respectively

1. Introduction

Sensor Fault Detection and Isolation (FDI) is important to enhance the performance of the aircraft. For

future aircraft, structural optimization is important [1]. Model-based sensor FDI can substantially decrease5

the weight of the aircraft, which in turn increases the performance of the aircraft and leads to fuel and noise

reduction [1]. During the last few decades, many approaches are proposed to detect and estimate sensor

faults by making use of the model information [2, 3, 4, 5]. Projects related to FDI in aerospace engineering,

the REconfiguration of CONtrol in Flight for Integral Global Upset REcovery (RECONFIGURE) [6] and

Advanced Fault Diagnosis for Sustainable Flight Guidance and Control (ADDSAFE) project [1], also con-10

sider sensor faults. Recently, various model-based approaches have been proposed to deal with aircraft sensor
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faults. Marcos et al.[7] and Freeman et al. [8] use H∞ to detect and isolate the sensor faults. Unknown

input observers [9] are also applied to detect and isolate the sensor faults. Castaldi et al. [10, 11] propose

a geometric approach for the FDI of aircraft sensors. Sliding Mode Observers (SMOs) [12, 13] are used to

reconstruct the sensor faults. Control-based FDI method, which makes use of the control information, is also15

proposed [14]. Multiple-Model Adaptive Estimation approach is proposed in [15] to detect and estimate the

aircraft sensor faults. For one thing, the performance of model-based approaches depends on the accuracy

of the model used. Due to complexity, models of real-life systems are normally simplifications with limited

accuracy. For aircraft dynamic models, exact aerodynamic forces and moments are difficult to obtain which

leads to model uncertainties. For another, most systems are subject to external disturbances which will fur-20

ther affect the performance of model-based approaches. In civil aviation, wind and even time-varying wind

is unavoidable during flight. One of the biggest challenges for aircraft FDI is the presence of disturbances

such as time-varying wind and turbulence. Wind and turbulence can be present in various circumstances

during the flight. As such, FDI approaches more robust to model uncertainties and disturbances are favored

in aerospace engineering.25

This paper considers the fault reconstruction of the Inertial Measurement Unit (IMU) sensors. The IMU

contains accelerometers which measure the specific forces (Ax, Ay and Az) and rate gyros which measure

the angular rates (p, q and r) of the aircraft. The ADDSAFE project also considers faults in the yaw rate (r)

sensor [12, 16]. Alwi and Edwards [12] use a Linear Parameter Varying sliding mode scheme to reduce the

influence of linearization errors. Van Eykeren and Chu [16] use an airspeed-based kinematic model (AS-KM)30

of the aircraft which does not require linearization. Another advantage of using the AS-KM is that it does

not require the calculation of the aerodynamic forces and moments. Since exact aerodynamic forces and

moments are difficult to obtain, using the kinematic model reduces the effect of model uncertainties for

FDI. Many approaches are proposed for the aircraft sensor FDI using this AS-KM, such as Double-Model

Adaptive Estimation [17], Sliding Mode Differentiator [16] and Adaptive Three-Step Unscented Kalman35

Filter [18]. Van Eykeren and Chu [16] and Lu et al. [15] use the same kinematic model (KM) for the

fault estimation of the IMU sensors. The limitation of their approach is that the influence of disturbances

such as turbulence is not considered. In Lu et al. [19], the turbulence influence is considered by a ground

speed-based KM. The approach is validated by only simulation which demonstrates that the proposed FDI

approach is less sensitive to turbulence.40

Regarding the validation of aircraft sensor FDI approaches, the validation using real flight data is im-

portant. The performance of sensor FDI approaches is more reliable if they are validated by real flight tests

or real flight test data. For real flights, sensors may not behave as in the simulations. More importantly,

during real flight tests, various realistic wind and turbulence conditions can be experienced. Although in

some circumstances the wind can be approximately constant, the wind is normally time varying. Moreover,45

turbulence can be encountered in various situations during the flight. These flight conditions can test the
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performance of the FDI approaches in the presence of external disturbances. Therefore, use of real flight test

data containing different flight conditions, especially wind and turbulent conditions, is necessary to validate

the performance of model-based FDI approaches.

Few researchers [20, 21, 19] validate the IMU sensor fault detectors using real flight data. Berdjag et50

al. [20, 22] detect oscillatory faults [23] of three inertial sensors. Their approach is validated on a real

flight data set. Hu and Seiler [21] assess the false alarm probability of a model-based Unmanned Aerial

Vehicle fault detection system. Lu et al. [19] also used real flight test data to validate the performance of

model-based fault reconstruction for the IMU sensors. However, there are two limitations in [19]. Firstly,

it assumes a flat and non-rotating earth which may introduce errors when long-range flights are considered.55

Furthermore, the real flight test in [19] contains no turbulence since the objective of the flight test was data

acquisition for aerodynamic model identification [24, 19]. Therefore, the performance of the FDI approach

in [19], in the presence of various disturbances such as time-varying wind and turbulence, is not validated.

In the present paper, an IMU sensor fault reconstruction approach using a general ground-speed-based

kinematic model (GS-KM) is proposed. This KM, which is a model of the aircraft flying over a spherical60

and rotating earth, is proposed as the model for the IMU sensor fault reconstruction. Two validation

strategies (open-loop and closed-loop validations) are implemented and compared for the IMU sensor fault

reconstruction. Another contribution of this paper is that a new Adaptive Two-Stage Extended Kalman

Filter (ATSEKF) is proposed to reconstruct the states and faults. This ATSEKF is an improved version of

the Iterated Optimal Two-Stage Extended Kalman Filter (IOTSEKF) [19] with covariance matrix adaption.65

The performance of the ATSEKF for the sensor fault reconstruction is validated by simulation. The fault

scenarios include not only biases, but also drift and oscillatory faults. All the IMU sensor faults are estimated

in an unbiased sense. The performance using the GS-KM is compared with that using the AS-KM. The

performance of the ATSEKF is also compared with existing approaches such as the SMO.

The major contribution of this paper is that the performance of the proposed IMU sensor fault recon-70

struction approach is validated using real flight test data in the presence of disturbances such as time-varying

wind and turbulence. Several flight tests are performed in order to gather data in different flight conditions.

Zero-g flight is also performed in order to test the performance of the approach over a wide range of the

flight envelope. Flight data in turbulent conditions is also collected which will test the performance in the

presence of strong external disturbances. The validation is performed using three different flight conditions:75

level flight, zero-g and turbulence. The performance of using the GS-KM is compared to the approach

using the AS-KM in order to demonstrate the superiority of the proposed approach. Furthermore, the

results sufficiently demonstrate that the proposed approach is suitable for IMU sensor fault reconstruction

in practice.

The structure of this paper is as follows: Section 2 proposes an approach which uses a new KM for80

the IMU sensor fault reconstruction. Section 3 introduces the newly-developed ATSEKF for sensor fault
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reconstruction. Besides, two validation strategies are proposed which use the ATSEKF and the proposed

KM. The performance of the proposed approach is demonstrated using simulated data. In Section 4, the

three flight scenarios are introduced. Section 5 presents the real flight data validation results using the

proposed approach in various flight and wind conditions. Section 6 concludes the paper.85

2. Novel approach for IMU sensor fault reconstruction

This section proposes an approach for IMU fault reconstruction based on a GS-KM. For comparison,

the previously used KM, the AS-KM [25, 26], is also presented.

2.1. Aircraft KMs including IMU sensor faults

The proposed GS-KM is a KM of the aircraft flying in a rotating earth reference frame [27]. It should90

be noted that this model has not been used for aircraft fault reconstruction.

The GS-KM including IMU sensor faults can be described as follows:

ẋ(t) = f(x(t),um(t),f i(t), t) + G(x(t))w(t) (1)

y(t) = h(x(t)) (2)

ym(t) = y(t) + v(t), t = ti, i = 1, 2, ... (3)

where x ∈ Rn represents the system states, um ∈ Rb the measured input, ym ∈ Rm the measured output.

The subscript ‘m’ indicates that the corresponding variable is measured. G ∈ Rn×b is the noise distribution

matrix. The function f i ∈ Rb represents the input faults. The system equation variables are defined as

follows:

x = [UN UE UD φ θ ψ]T (4)

um = [Axm Aym Azm pm qm rm]T = u0 +w + f i (5)

u0 = [Ax Ay Az p q r ]T (6)

w = [wAx wAy wAz wp wq wr ]T (7)

f i = [fAx fAy fAz fp fq fr]
T (8)

ym = [UNm UEm UDm φm θm ψm]T (9)

v = [vUN
vUE

vUD
vφ vθ vψ]T (10)

where the UN , UE and UD are the ground speed velocity components in the local navigation frame. Ax, Ay

and Az are the specific forces, φ, θ and ψ are the Euler angles and p, q, r are the rotational rates. It should

be noticed that um is the measurement of the IMU which contains faults f i. fAx, fAy and fAz represent

the faults in the accelerometers while fp, fq and fr represent the faults in the rate gyros. w is the process95

noise sequence and v is the noise sequence in the output measurements denoted by ym.
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For the GS-KM proposed in this paper, f(x(t),um(t),f i(t), t) is given as follows:

(Axm − fAx)cθcψ + (Aym − fAy)(sφsθcψ − cφsψ) + (Azm − fAz)(cφsθcψ + sφsψ)

+
UNUD
Re + h

− U2
Etδ

Re + h
− 2ΩUEsδ

(Axm − fAx)cθsψ + (Aym − fAy)(sφsθsψ + cφcψ) + (Azm − fAz)(cφsθsψ − sφcψ)

+
UNUEtδ

Re + h
+
UEUD
Re + h

+ 2Ω(UN sδ + UDcδ)

− (Axm − fAx)sθ + (Aym − fAy)sφcθ + (Azm − fAz)cφcθ

− U2
N

Re + h
− U2

E

Re + h
− 2ΩUEcδ + g

(pm − fp) + (qm − fq)sφtθ + (rm − fr)cφtθ − (
UE

Re + h
+ Ωcδ)

cψ

cθ
+

UN sψ

(Re + h)cθ

(qm − fq)cφ− (rm − fr)sφ+ (
UE

Re + h
+ Ωcδ)sψ +

UNcψ

Re + h

(qm − fq)
sφ

cθ
+ (rm − fr)

cφ

cθ
+ (

UE
Re + h

+ Ωcδ)tθcψ +
UN tθsψ

Re + h
+

UEtδ

Re + h
+ Ωsδ

(11)

where s(•), c(•) and t(•) denote the trigonometric functions sin(•), cos(•) and tan(•) respectively. Re = 6367

km, Ω = 7.2921×10−5 rad/s, δ is the latitude and h is the altitude. The gravity acceleration g is calculated

as follow [27]:

g = 9.780318(
Re

Re + h
)2(1 + 5.3024× 10−3s2δ − 5.9× 10−6s22δ) (12)

In Eq. (1), G(x(t)) is defined as follows:

G(x(t)) =



−cθcψ −(sφsθcψ − cφsψ) −(cφsθcψ + sφsψ) 0 0 0

−cθsψ −(sφsθsψ + cφcψ) −(cφsθsψ − sφcψ) 0 0 0

sθ −sφcθ −cφcθ 0 0 0

0 0 0 −1 −sφtθ −cφtθ

0 0 0 0 −cφ sφ

0 0 0 0 −sφ/cθ −cφ/cθ


(13)

For the GS-KM, h(x) = x. Therefore, the measurement model of the GS-KM reduces to

ym(t) = x(t) + v(t) (14)

This concludes the definition of the GS-KM (given by Eqs. (11)-(14)). To demonstrate the performance

of the proposed approach, the AS-KM, used in [25, 26, 15] and given by Eqs. (18) and (20), is also given

for comparison. For the sake of explanation, the process model of the AS-KM is briefly shown below. The
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system variables of the AS-KM are defined as follows [19]:

x′ = [ua va wa φ θ ψ]T (15)

y′m = [Vm αm βm φm θm ψm]T (16)

v′ = [vV vα vβ vφ vθ vψ]T (17)

where ua, va, wa are the airspeed components expressed in the body-fixed reference frame. Vm, αm and

βm are the measurements of the true airspeed, angle of attack and angle of sideslip. Other variables, such

as um and u0, are the same as for the GS-KM.

The AS-KM is given as follows [26]:

u̇a = (Axm − fAx − wAx) + va(rm − fr − wr)− wa(qm − fq − wq)− g sin θ

v̇a = (Aym − fAy − wAy)− ua(rm − fr − wr) + wa(pm − fp − wp) + g cos θ sinφ

ẇa = (Azm − fAz − wAz) + ua(qm − fq − wq)− va(pm − fp − wp) + g cos θ cosφ

φ̇ = (pm − fp − wp) + (qm − fq − wq) sinφ tan θ + (rm − fr − wr) cosφ tan θ

θ̇ = (qm − fq − wq) cosφ− (rm − fr − wr) sinφ

ψ̇ = (qm − fq − wq)
sinφ

cos θ
+ (rm − fr − wr)

cosφ

cos θ

(18)

By extracting the noise w from the above equations, one can readily obtain f(x′(t),um(t),f i(t), t) and

G(x′(t)) and write the equations in the form of Eqs.(1)-(3). The matrix G(x′(t)) is defined as follows:

G(x′(t)) =



−1 0 0 0 wa −va
0 −1 0 −wa 0 ua

0 0 −1 va −ua 0

0 0 0 −1 − sinφ tan θ − cosφ tan θ

0 0 0 0 − cosφ sinφ

0 0 0 0 − sinφ/ cos θ − cosφ/ cos θ


(19)

The measurement model is:

y′(t) = h(x′(t)) + v′(t), t = ti, i = 1, 2, ... (20)

where h(x′(t)) is the nonlinear output function which can be found in [26].100

Remarks: The model used in [19] is a simplified model of the GS-KM used in the present paper. The

model used in [19] assumes that the earth is flat and non-rotating, which could introduce errors for long-

range flights [27]. In contrast, the GS-KM used in the present paper does not have to assume that the earth

is flat and non-rotating.
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The advantage of the GS-KM compared to the AS-KM is that the GS-KM can deal with various flight105

situations and is more robust in the presence of disturbances such as time-varying wind and turbulence,

which will be demonstrated in the following sections.

For the GS-KM, the ground speed measurements are assumed to be fault-free while for the AS-KM, the

air data measurements are assumed to be fault-free.

2.2. Disturbances and their influence on fault reconstruction110

This paper deals with IMU sensor fault reconstruction in the presence of external disturbances. Sec-

tion 3 considers simulated disturbances while Section 5 deals with real-life disturbances. In this section,

the simulated disturbances are presented first. Specifically, two main types of external disturbances are

presented: wind shear and turbulence. The speed components of the disturbances in the earth axis and the

body axis are denoted by uw, vw, ww and uBw , vBw , wBw respectively. Then, the influence of disturbances on115

fault reconstruction is analyzed.

2.2.1. Wind shear and turbulence

Wind shear is a rapid change in the wind vector which could be hazardous to aircraft especially when

the aircraft is flying at a low altitude [28]. The wind shear model used in this paper is derived from [28] and

the wind speed components in the earth frame uw, vw and ww are shown in Fig. 1(a). vw is assumed to be120

zero.

Turbulence is a random process which can occur in various flight situations such as in the clouds as well

as near mountains [28]. In this paper, the simulated turbulence is generated using the Dryden model. The

power spectral density functions of the Dryden turbulence model are given as follows [28]:

Φu(ωo) =
2σ2

uLu
πV

1

1 + (Luωo/V )2
(21)

Φv(ωo) =
σ2
vLv
πV

1 + 3(Lvωo/V )2

1 + (Lvωo/V )2
(22)

Φw(ωo) =
σ2
wLw
πV

1 + 3(Lwωo/V )2

1 + (Lwωo/V )2
(23)

where V is the true airspeed, ωo is the observed angular frequency. In this paper, the scale lengths Lu =

Lv = Lw = 530 m, the intensities σu = σv = σw = 3.54 m/s. The resulting speed components of the

generated turbulence are shown in Fig. 1(b).

2.2.2. Influence of disturbances on fault reconstruction125

The influence of the disturbances on fault reconstruction is explained below. It should be noted that the

disturbances are included in the modeling of the aircraft response but they are considered unknown when

designing fault reconstruction approaches.
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(b) Wind speed components of the simulated turbulence using

the Dryden Model

Figure 1: Two main types of external disturbances: wind shear and turbulence

Define the following:

V B
a = [ua va wa]T , V B

w = [uBw vBw wBw ]T (24)

A = [Ax Ay Az]
T , ω = [p q r]T (25)

fA = [fAx fAy fAz]
T , fω = [fp fq fr]

T (26)

wA = [wAx wAy wAz]
T , wω = [wp wq wr]

T (27)

According to [19], the dynamics of the airspeed can be expressed as

V̇ B
a = A+ Tbeg − ω × V B

a − (V̇ B
w + ω × V B

w ) (28)

where Tbe is the transformation matrix from earth axis to body axis. g = [0 0 g]T . Rewrite Eq. (5) and

substitute it into Eq. (28), resulting in:

V̇ B
a = (Am − fA −wA) + Tbeg − (ωm − fω −wω)× V B

a − (V̇ B
w + (ωm − fω −wω)× V B

w ) (29)

Define dw = V̇ B
w + (ωm− fω −wω)×V B

w . When the wind is constant, dw = 0, the above equation reduces

to

V̇ B
a = (Am − fA −wω) + Tbeg − (ωm − fω −wω)× V B

a (30)

which is the vector form of the first three equations of Eq. (18). When the wind is not constant, dw 6= 0. It

is seen from Eq. (29) that fA and dw have the same distribution matrix (I) and it is difficult to distinguish130

between them. Consequently, when the AS-KM is used to reconstruct the faults in the presence of external

disturbances, the faults and the disturbances are coupled, which could lead to incorrect fault reconstruction.
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2.3. Measurements and sensor faults

The aircraft model used in the simulation is the ADMIRE benchmark model [29]. To make the validation

more realistic, noise is added to the measurements of the model. This simulation data is used in Section 3135

to validate the performance of the proposed approaches while the real flight test data is used in Section 5.

The standard deviations of the noises added to the sensors are given in Table 1. In the table, σ(•) denotes

the standard deviations of the noise in the corresponding sensors.

Table 1: Standard deviations of the noises added in the sensors

Standard deviations Magnitudes Units

σV 0.1 [ m/s ]

σUN
, σUE

, σUD
0.01 [ m/s ]

σα, σβ 0.1π/180 [ rad ]

σφ, σθ, σψ 0.01π/180 [ rad ]

σAx
, σAy

, σAz
0.01 [ m/s2 ]

σp, σq, σr 0.01π/180 [ rad/s ]

In this paper, all the IMU sensors fail simultaneously during 10 s < t < 30 s. This means f i = 0 when

t ≤ 10 s or t ≥ 30 s. During 10 s < t < 30 s, the faults f i are presented in Table 2. As can be seen from140

the table, different types of faults are considered, including bias faults and drift faults, as well as oscillatory

faults. The fault scenario is arbitrarily chosen to test the performance of the proposed approach.

3. IMU sensor fault reconstruction

This section deals with the IMU sensor fault reconstruction problem. First, the newly-developed

ATSEKF is introduced in Section 3.1. Then, in Section 3.2, two different strategies are proposed to validate145

the proposed approach for IMU sensor fault reconstruction. The validation results of the proposed approach

Table 2: Fault information

Time interval Faults Fault type Fault magnitude Fault unit

10 s < t < 30 s

fAx bias 3 [m/s2]

fAy drift 0.1(t− 10) [m/s2]

fAz oscillatory 4 sin(0.5πt) [m/s2]

fp bias 1.5π/180 [rad/s]

fq oscillatory π sin
(
0.5π(t− 10)

)
/180 [rad/s]

fr bias 3π/180 [rad/s]

10



in the absence of disturbances are shown in Section 3.3. The validation results in the presence of wind shear

and turbulence are given in Section 3.4 and 3.5 respectively.

3.1. Adaptive Two-Stage Extended Kalman Filter

In this paper, the ATSEKF is proposed to estimate the states and the faults. The ATSEKF is an150

improved version of the IOTSEKF [19]. First, the IOTSEKF is introduced. Then, the adaption scheme for

the covariance matrix is introduced.

The IOTSEKF is composed of a modified bias-free filter and a bias filter [30, 19]. The bias filter, which

estimates the faults, models the faults as: f ik = f ik−1 + wf
i

k−1 with covariances: E{wf
i

k (wf
i

l )T } = Qf i

k δkl

and E{wk(wf
i

l )T } = Qxf i

k δkl. wk is the defined in Eq. (1) and δkl the Kronecker function. The IOTSEKF,155

slightly modified from [19] for clarity, is presented below.

1. The bias-free filter of the IOTSEKF is as follows:

(a) Predicted state and error covariance matrix:

η1 = x̄k|k−1 = x̄k−1|k−1 +

∫ tk

tk−1

f(x̄(t),um(t),0, t)dt+ ūk−1 (31)

Px̄k|k−1 = Φk−1P
x̄
k−1|k−1Φ

T
k−1 + Q̄k−1 (32)

where f(x̄(t),um(t),0, t) means the fault vector is set to 0. This is because the IOTSEKF

decouples the state and fault estimation. ūk−1 and Q̄k−1 are defined by Eqs. (45) and (46)

respectively. Discrete-time matrices Φk−1 and Γk−1 are calculated by:

Φk−1 = eFk−1∆t =

∞∑
n

Fnk−1(∆t)n

n!
, ∆t = tk − tk−1, (33)

Fk−1 =
∂f(x(t),u(t),f i(t))

∂x

∣∣∣∣
x=x̄k−1|k−1

, Γk−1 =

∫ tk

tk−1

Φk−1G(x̄k−1|k−1)dt (34)

(b) Kalman gain calculation:

Hk =
∂h(x(t))

∂x
|x=η1

(35)

Kx̄
k = Px̄k|k−1H

T
k (HkP

x̄
k|k−1H

T
k + Rk)−1 (36)

where Rk is the covariance matrix defined by E{vkvTl } = Rkδkl.

(c) Measurement update:

η2 = x̄k|k−1 + Kx̄
k

(
yk − h(η1)−Hk(x̄k|k−1 − η1)

)
(37)

Define ε := ‖η2−η1‖
‖η2‖ and ε0 the desired parameter to stop the iteration. If ε > ε0, repeat step (b)

and step (c). In this paper, ε0 is chosen to be 10−8 and this iteration is only performed in the160

first ten time steps. After each iteration, η1 := η2.
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(d) Update the state estimation error covariance matrix, if ε ≤ ε0:

x̄k|k = η2 (38)

Px̄k|k = (I−Kx̄
kHk)Px̄k|k−1(I−Kx̄

kHk)T + Kx̄
kRk(Kx̄

k )T (39)

2. The bias filter of the IOTSEKF, which is used to estimate the faults, is as follows:

f̂ ik|k−1 = f̂ ik−1|k−1 (40)

Pf
i

k|k−1 = Pf
i

k−1|k−1 + Qf i

k−1 (41)

Kf i

k = Pf
i

k|k−1S
T
k (HkP

x̄
k|k−1H

T
k + Rk + SkP

f i

k|k−1S
T
k )−1 (42)

f̂ ik|k = f̂ ik|k−1 + Kf i

k (yk − h(x̄k|k−1)− Skf̂
i
k|k−1) (43)

Pf
i

k|k = (I−Kf i

k Sk)Pf
i

k|k−1 (44)

3. The coupling equations of the IOTSEKF are:

ūk−1 = (Ūk −Uk)f̂ ik−1|k−1 (45)

Q̄k−1 = Γk−1Qk−1Γ
T
k−1 −Qxf i

k−1Ū
T
k −Uk(Qxf i

k−1 − ŪkQ
f i

k−1)T (46)

Ūk = Φk−1Vk−1 + Γk−1 (47)

Sk = HkUk (48)

where Qk−1 the covariance matrix defined by E{wkwT
l } = Qkδkl. Uk and Vk are the two-stage

blending matrices given by

Uk = Ūk + (Qxf i

k−1 − ŪkQ
f i

k−1)(Pf
i

k|k−1)−1 (49)

Vk = Uk −Kx̄
kSk (50)

4. The final state estimate and its covariance matrix using the IOTSEKF are given as follows:

x̂k|k = x̄k|k + Vkf̂
i
k|k (51)

Pxk|k = Px̄k|k + VkP
f i

k|kV
T
k (52)

The final fault estimation is given in Eq. (43). This concludes the introduction of the IOTSEKF. For the

benefit of using the IOTSEKF, please refer to [19] and the reference therein.

Although this IOTSEKF can estimate both the states and faults, its performance can be degraded by

bad choices of Qf i

k and Qxf i

k . According to [30], Qxf i

k can be chosen to be zero. The present paper proposes165

an adaptive update scheme for Qf i

k .

Define Q̂k as

Q̂k := Cr,k −HkΓk−1Qk−1Γ
T
k−1H

T
k /∆t−Rk (53)
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where Cr,k = 1
N

k∑
j=k−N+1

γjγ
T
j . N is the size of a moving window. In this paper, N = 10. γj is the

innovation at time step j which can be calculated by

γj = yj − h(Φj−1x̂j−1|j−1 + Γj−1f̂j−1|j−1) (54)

In Eq. (53), Qk and Rk are the process noise and measurement noise covariance matrices, which are defined

in Eq. (46) and (36) respectively. Take the GS-KM as an example, Rk can be readily determined by the

following

Rk = diag(σ2
UN
, σ2
UE
, σ2
UD
, σ2
φ, σ

2
θ , σ

2
ψ) (55)

where σ(•) is given in Table 1. Regarding the process noise covariance matrix Qk, it should be noted that

the input of the KM used by the IOTSEKF is um. As can be seen from Eq. (1), the only process noise

is w which is given in Eq. (7). This is the noise in the IMU sensor measurements. Therefore, Qk can be

determined by

Qk = diag(σ2
Ax, σ

2
Ay, σ

2
Az, σ

2
p, σ

2
q , σ

2
r) (56)

This is also an advantage when using the GS-KM as the model for fault reconstruction since both the process

noise and output noise covariance matrices are defined explicitly.

According to covariance matching techniques [31], Qf i

k can be updated based on the main diagonal of

the following matrix

Γ−1
k−1H

−1
k Q̃k(HT

k )−1(ΓTk−1)−1(∆t)2 (57)

where Q̃k is determined

Q̃k = diag(max{0, Q̂11}, ...,max{0, Q̂mm}) (58)

with Q̂jj , j = 1, 2, ...,m the jth diagonal element of Q̂k which is defined in Eq. (53).

The IOTSEKF with this adaption of Qf i

k is called ATSEKF. In the following of this paper, this ATSEKF170

is used as the filter for both state and fault reconstruction.

3.2. Closed-loop validation vs open-loop validation

In this section, two different validation strategies are presented. The aircraft model used in this section

is the ADMIRE benchmark model [29]. The controller is the baseline controller of the benchmark model.

It contains a longitudinal controller which controls the airspeed, pitch rate and load factor, and a lateral175

controller which controls the roll rate and angle of sideslip [29]. The controller design is based on the PID

control law. More detailed information can be found in [29].
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The first validation strategy is the closed-loop validation which is shown in Fig. 2(a). This is the strategy

to achieve Fault-Tolerant Control (FTC) in the presence of sensor faults. As can be seen from the figure,

after the occurrence of the sensor faults, a fault reconstruction block is implemented to compensate for the180

sensor faults.

Let u0
m denote the IMU sensor measurements without faults, then

u0
m = u0 +w = um − f i (59)

where um, u0, w and f i are defined in Eqs. (5), (6), (7) and (8) respectively. Let subscript ‘CL’ denote

the corresponding variables in the closed-loop validation. The fault reconstruction block receives the mea-

surements ym,CL and um,CL, and output unbiased estimates of the state xCL and the faults f iCL online by

making use of the ATSEKF. Without this fault reconstruction block, the estimate of xCL will be biased185

due to the faults in the sensors.

Since f iCL are also estimated in an unbiased sense by using the ATSEKF, a more reliable IMU measure-

ment can be obtained by

ûm,CL = um,CL − f̂ iCL (60)

where ûm,CL denotes the estimated IMU measurements. Due to this fault reconstruction, FTC can be

achieved in the presence of faults by making use of x̂CL and ûm,CL. The estimated faults f̂ iCL can also be

used for fault detection.

Although the sensor FTC (closed-loop validation) can be validated in simulation, it is difficult to be190

validated in real-life especially for fixed-wing manned aircraft. For these aircraft, validation with fault injec-

tion during the flight is risky. Consequently, this prevents researchers from validating fault reconstruction

approaches under real-life uncertainties and disturbances.

In this research, an alternative validation strategy (open-loop validation strategy) is implemented and

compared to the closed-loop validation. The open-loop validation strategy is shown in Fig. 2(b) where the195

subscript ‘OL’ denotes the corresponding variables in the open-loop validation. It is seen from the figure that

only the blocks within the blue dashed line are run online or on-board, and they are free from the influence of

the sensor faults. The fault injection and reconstruction are not in the feedback loop. Specifically, the faults

are injected into the recorded measurements and are estimated by the fault reconstruction block off-line.

In the figure, x̂aOL and ûam,OL, which are the estimated xOL and um,OL by the Filter block on-board the200

aircraft, are assumed to be unbiased.

Comparing these two validation strategies, it can be inferred that if the estimates x̂ and f̂ i in the closed-

loop and the open-loop are unbiased, then the differences between these two strategies are limited. Note that

unbiased f̂ i indicates unbiased ûm. In the following section, the comparison between these two strategies

will be shown.205
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Reconstruction

(ATSEKF)

x̂CL, ûm,CL

f̂ i
CL

xCL, u
0
CL

um,CL u0
m,CL

ym,CL

(a) Closed-loop validation strategy (Sensor FTC strategy). The states which are irrelevant to the fault reconstruction are

not shown in the figure. All the blocks are run online including the fault injection and fault reconstruction. The subscript

‘CL’ denotes closed-loop validation.

Reference

Command

+

−
Controller Actuator

Disturbances

Aircraft Sensor

Filter

Online

Fault

Injection

Fault

Reconstruction

(ATSEKF)

x̂OL, ûm,OL

f̂ i
OL

x̂a
OL, û

a
m,OL

xOL, u
0
OL

um,OL

ym,OL

u0
m,OL

ym,OL, u
0
m,OL

(b) Open-loop validation strategy. The states which are irrelevant to the fault reconstruction are not shown in the figure.

The blocks within the blue dashed line are run online while the fault injection and reconstruction are run off-line and are

not in the feedback loop. The subscript ‘OL’ denotes open-loop validation.

Figure 2: Block diagram of two different validation strategies

3.3. Simulation validation in the absence of simulated disturbances

In this section, the results of the above-mentioned two validation strategies are shown. The fault scenario

is shown in Table 2. No disturbance is present. The model used is the GS-KM.

The differences of the true states (x = [UN , UE , UD, φ, θ, ψ]T ) between the open-loop (xOL) and closed-

loop (xCL) validations are shown in Fig. 3(a) and Fig. 3(b). It should be noted that for the closed-loop210
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Figure 3: Comparisons between the open-loop and closed-loop validations in the absence of disturbances
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validation, the faults are generated online in the feedback loop. As can be seen from the figure, although the

faults are in the feedback loop of closed-loop validation, the differences between xOL and xCL are limited

even in the presence of faults. The maximum difference of UN , UE and UD is smaller than 0.2 m/s and that

of φ, θ and ψ is smaller than 5× 10−3 rad.

The fault reconstruction results of the two validations are shown in Fig. 3(c) and 3(d). As can be seen,215

the fault estimates f̂ i (f̂Ax, f̂Ay, f̂Az and f̂p, f̂q, f̂r) of the two validation strategies, denoted by f̂ iOL and

f̂ iCL in the open-loop and closed-loop validations respectively, closely match each other. This indicates that

reconstructed faults are similar no matter whether it is the open-loop or closed-loop validation. The state

estimates of the open-loop and closed-loop validations, denoted by x̂OL and x̂CL respectively, are both

unbiased. The differences between x̂OL and x̂CL are similar to those shown in Fig. 3(a) and Fig. 3(b) and220

are not shown.

Let us further check the differences between f̂ iOL and f̂ iCL which are shown in Fig. 3(e) and 3(f). It can

be seen that the differences mainly occur in the beginning or the end of the fault period (except for f̂Az

and f̂q which are oscillatory faults). During 10 s< t < 30 s, although the true states of the two validations

(xOL and xCL) are different (as shown in Fig. 3(a) and Fig. 3(b)), the differences between f̂ iOL and f̂ iCL are225

limited. This becomes more obvious when the faults are removed after t > 30 s. xOL and xCL are different

(see Fig. 3(a) and Fig. 3(b)), but f̂ iOL and f̂ iCL are all zero-mean.

The above results demonstrate that if the fault reconstruction block can provide unbiased estimates of

x and f i, the differences between the two validation strategies are limited. Under this condition, the open-

loop validation, which injects and estimates the faults offline, is also valid. Therefore, open-loop validation230

can be used to test the performance of fault reconstruction approaches under real-life disturbances and

uncertainties, as will be shown in Section 5.

In the following sections, the subscript ‘OL’ and ‘CL’ will be dropped for readability. In the remainder

of this section, all the results are obtained using the closed-loop validation while in Section 5, all the results

are obtained using the open-loop validation.235

3.4. Simulation validation in the presence of simulated wind shear

In this section, the simulated wind shear, as shown in Fig. 1(a), is included in the simulation model but

is assumed unknown for the design of the fault reconstruction approaches. The GS-KM together with the

ATSEKF are used for the fault reconstruction. The AS-KM together with the ATSEKF are also used for

comparison.240

The fault reconstructions of fAx, fAy and fAz using the AS-KM and the GS-KM are compared in

Fig. 4(a). It is seen that the fault estimates using the GS-KM can follow the true faults well. The fault

estimation using the AS-KM is not satisfactory. Estimation of fAz significantly deviates from the true faults

around t = 5 s. This is caused by the fact the ww > 0 after t = 5 s. The vertical wind is interpreted into a
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Figure 4: State estimation and fault estimation results in the presence of simulated wind shear
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fault in the sensor which measures az. The reason can be explained using Eq. (29). When ww is not constant,245

fAz is coupled with the influence of the wind which leads to the wrong fault reconstruction. Similarly, the

estimation of fAx using the AS-KM between 18 s < t < 20 s is wrong due to uw which significantly decreases

during 18 s < t < 20 s, as shown in Fig. 1(a). Since vw is assumed to be zero, estimation of fAy is not

influenced. The estimates of fp, fq and fr using the AS-KM and GS-KM are similar and are shown in

Fig. 4(b).250

The corresponding estimation errors of fAx, fAy and fAz using the AS-KM and the GS-KM are shown

in Fig. 4(c). As can be seen, the errors using the GS-KM maintain zero-mean while those using the AS-KM

deviate from zero. The estimation errors of fp, fq and fr using the two KMs are similar and zero-mean, as

shown in Fig. 4(d).

To demonstrate the performance of the ATSEKF, a SMO [32, 33] is implemented using the GS-KM. The255

estimation of fAx, fAy, fAz and fp, fq, fr using the SMO are shown in Fig. 4(e) and 4(f) respectively. As

can be seen from the figure, although the faults are reconstructed, the standard deviations of the estimation

are significantly larger than those of the ATSEKF. This is caused by the noise in the measurements. The

influence of the noise on the fault reconstruction can be reduced by using a low-pass filter, which will be

discussed in the following section.260

3.5. Simulation validation in the presence of simulated turbulence

In this section, the simulated turbulence, as shown in Fig. 1(b), is included in the simulation but is

considered unknown for the design of the fault reconstruction approaches. The GS-KM is again compared

with the AS-KM.

If the AS-KM is used when the turbulence is present, as can be seen from Eq. (29), fAx, fAy and fAz265

are coupled with the influence of the turbulence, denoted by dw. This explains why the estimates of fAx,

fAy and fAz using the AS-KM are corrupted by the turbulence, as shown in Fig. 5(a). Using the GS-KM,

satisfactory fault estimation results are achieved, as shown in Fig. 5(a).

The estimates of fp, fq and fr using the two KMs are satisfactory and are the same as in Fig. 4(b). The

estimation errors of fp, fq and fr using the two KMs are the same as in Fig. 4(d) and are not shown.270

To show the performance of the ATSEKF, the SMO is implemented again to estimate the faults using the

GS-KM. Since the standard deviations of the fault estimation are large, a low-pass filter is implemented to

filter the estimated faults and the results are shown in Fig. 5(c) and 5(d) respectively. Although the estimates

of the SMO are filtered, the standard deviations are still larger than those of the ATSEKF. Therefore, in

the following sections, only the results using the ATSEKF are presented.275
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Figure 5: State estimation and fault estimation results in the presence of simulated turbulence
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Figure 6: Cessna Citation II aircraft, owned by Delft University of Technology and the Dutch Aerospace Laboratory

4. Real flight test scenarios

The above results are obtained using a simulated aircraft model. However, to fully demonstrate the per-

formance of the proposed approach, it should be validated using real flight data where realistic uncertainties

and disturbances are included. The robustness of the approach should be validated using different flight

conditions and wind conditions. In Lu et al. [19], real flight data is also used to validate the performance.280

However, no turbulence is present in the flight data. Consequently, the robustness of the proposed approach

in the presence of disturbances such as time-varying wind and turbulence is not validated.

In order to validate the performance of the proposed approach in the presence of disturbances, more

flight tests were performed in 2015. The aircraft used is the Cessna Citation II aircraft which is shown in

Fig. 6. Aircraft response data are recorded in various flight conditions and wind conditions. Parabolic flights285

or so called zero-g flights, during which the aircraft follows a parabolic trajectory to achieve a temporary

sensation of weightlessness, are performed in order to test the performance of the approach over a wide

range of the flight envelope with varying uncertainties. The measurement data were recorded for post-flight

analysis.

The air data are measured with a frequency of 100 Hz and the angle of attack is measured by a mechanical290

vane on the fuselage used for stall warning. This is different from the measurements used in the flight tests

in [19] where the angle of attack is measured by the vanes mounted on an air data boom. The ground speed

components are measured by a Global Positioning System receiver at 1 Hz and are linearly interpolated

to obtain data with a frequency of 100 Hz. Aircraft response data in the presence of turbulence are also

recorded and the crew recorded the time when the turbulence occurs.295

In this paper, three representative flight scenarios are chosen to validate the performance of the proposed

approach and to show the advantage of the proposed approach over other methods. The three flight scenarios

are shown in Fig. 7 and the descriptions are as follows:
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Figure 7: Real flight test data in different flight scenarios
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1. Scenario 1 is a level flight which is shown in Fig. 7(a). As can be seen, the altitude of the aircraft h is

nearly constant and so are other parameters such as the true airspeed V , angle of attack α and specific300

force Az. In this flight scenario, no manoeuvre is performed which means that there is no controlled

excitation.

2. Scenario 2 is a parabolic flight which is shown in Fig. 7(b). As can be seen from the figure, Az of the

aircraft decreases to almost -20 m/s2 at around t = 16 s and increases to almost 0 m/s2 at around

t = 27 s. This clearly shows the motion of the aircraft. During this period, the altitude h, true airspeed305

V and angle of attack α of the aircraft change significantly. At around t = 28 s, α even decreases

below 0 rad. This scenario is to test the performance over a wide range of the flight envelope.

3. Scenario 3 is a flight in the presence of turbulence which is shown in Fig. 7(c). In the first 60 s, Az is

smooth while after t = 60 s, it oscillates significantly. The oscillations are also observable in α. This

scenario is to test the performance of the fault reconstruction approaches in the presence of turbulence.310

In the validation, only the data between 50 s < t < 100 s are used.

In the following section, the performance of the GS-KM will be compared to the AS-KM using these

three flight scenarios.

5. Validation using real flight data under various flight scenarios

In this section, the performance of the proposed approach is validated using the flight scenarios in the315

previous section. Since injecting faults during flight is unfeasible due to safety concerns, this section uses

the open-loop validation strategy to validate the fault reconstruction approaches. As shown in Section 3,

this is also an effective validation strategy if the states and faults are estimated in an unbiased sense. All

the faults are injected into the recorded data and the fault scenario is the same as in Table 2. The filter

used for the estimation of the states and faults is the ATSEKF. The performance of the proposed approach320

as well as the comparison with the approach using the AS-KM are presented in the following.

5.1. Validation of real flight test scenario 1

In this section, the performance of the fault reconstruction of flight scenario 1 is presented. The state

estimation performance of the GS-KM is shown in Fig. 8(a) and 8(b). In the figure, the measured states are

plotted since real states are not available. As can be seen, the estimated states closely match the measured325

states. The differences between the measured and estimated states are shown in Fig. 8(c) and 8(d). It

can be seen that even during the period when there are faults, the differences between the measured and

estimated states are small. This demonstrates that the ATSEKF can provide unbiased state estimates even

in the presence of faults.
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Figure 8: State estimation results of real flight test scenario 1
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Figure 9: Fault estimation results of real flight test scenario 1 (level flight)25



The fault estimates using the AS-KM and GS-KM are compared in Fig. 9(a) and 9(b). The true injected330

faults are also plotted to show the performance of the fault reconstruction. It can be seen from the figure

that the performances of using the GS-KM and the AS-KM are comparable. Both of the estimates follow

the true faults well.

The estimation errors of fAx, fAy and fAz using the two KMs are shown in Fig. 9(c) while those of fp,

fq and fr are given in Fig. 9(d). It is seen that the estimation errors using the two KMs are both zero-mean.335

The estimation error of fAz using the AS-KM is slightly larger than that using the GS-KM in the presence

of faults, as can be seen from Fig. 9(c).

The RMSEs of the fault estimates using the two KMs are compared in Fig. 9(e) and 9(f). The RMSEs

of the estimates using the two approaches are comparable except for fAz. For the RMSE of the estimate of

fAz, the result using the AS-KM is almost twice the result using the GS-KM.340

In this flight scenario, the performance using the two KMs is similar. According to Eq. (28), it can be

inferred that the wind during this level flight is close to constant.

5.2. Validation of real flight test scenario 2

In this flight scenario, the aircraft is performing a parabolic flight. As can be seen from the measured

states shown in Fig. 7(b). All the states change significantly especially during 16 s < t < 26 s and 40 s345

< t < 50 s. Therefore, it can test the performance over a wide range of the flight envelope.

The estimates of fAx, fAy and fAz using the AS-KM and GS-KM are compared in Fig. 10(a). The

results using the AS-KM are worse than those using the GS-KM. It is noticed that during 16 s < t < 26 s

and 40 s < t < 50 s, the performances using the two KMs both degrade. This is caused by the fact that

the system states are changing significantly. However, the performance using the GS-KM is better than350

that using the AS-KM. The estimates of fAx using the AS-KM deviate from the true fault condition even

at the beginning of the simulation. In contrast, the estimates using the GS-KM maintain zero-mean before

the injection of the faults. The estimation errors of fAx, fAy and fAz using the AS-KM and GS-KM are

compared in Fig. 10(c)

The estimates of fp, fq and fr using the two KMs are similar, as shown in Fig. 10(b). The corresponding355

errors of the estimation are shown in Fig. 10(d). It is seen that the estimation performance is satisfactory.

The maximum error is less than 0.05 rad/s even when the faults are injected.

The RMSEs of the fault estimates using the two KMs are shown in Fig. 10(e) and 10(f), which confirms

the better performance of using the GS-KM over the AS-KM.

5.3. Validation of real flight test scenario 3360

In this flight scenario, the aircraft is flying in turbulence. The estimates of fAx, fAy and fAz using the

two KMs are compared in Fig. 11(a). The influence of turbulence on fault reconstruction when using the
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Figure 10: Fault estimation results of real flight test scenario 2 (parabolic flight)27
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Figure 11: Fault estimation results of real flight test scenario 3 (during turbulence)28
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Figure 12: RMSEs of the estimates of fAx using the AS-KM and GS-KM in the three different flight scenarios

AS-KM is noticeably seen in the figure after t = 10 s. The estimates of the ATSEKF using the AS-KM

are corrupted by the turbulence, which is similar to those shown in Fig. 5(a). In contrast, the ATSEKF

using the GS-KM still maintains satisfactory performance and is significantly better than that using the365

AS-KM. The fault estimates using the GS-KM can follow the true faults well without being influenced by

the turbulence. This clearly demonstrates the superiority of the GS-KM.

The estimates of fp, fq and fr using the two approaches are still comparable, as shown in Fig. 11(b). It

shows that although the turbulence can influence the estimation of the accelerometer faults (fAx, fAy and

fAz), its influence on the estimation of rate gyro faults (fp, fq and fr) is limited.370

The fault estimation errors using the two KMs are compared in Fig. 11(c) and 11(d). It is seen that the

estimation errors using the GS-KM remain small despite the presence of the turbulence.

The RMSEs of the estimation of fAx, fAy and fAz using the two approaches are shown in Fig. 11(e).

The RMSEs using the GS-KM are prominently smaller than those using the AS-KM. However, the RMSEs

of the estimates of fp, fq and fr using the two approaches are comparable, as shown in Fig. 11(f).375

5.4. Discussion on robustness against turbulence

In this section, the robustness of the proposed approach (GS-KM) and the approach using the AS-KM

is compared and summarized. Without loss of generality, the RMSE of the estimation of fAx is taken as an

example.

The RMSEs of the estimation of fAx using the AS-KM and the GS-KM in the three flight scenarios380

are plotted in Fig. 12. It is evident that the approach using the AS-KM is not robust. The performance

changes when the flight scenarios varies. The worst performance occurs when the turbulence is present,

which demonstrates that it is sensitive to disturbances. This implies the necessity of considering external

disturbances such as turbulence when dealing with aircraft sensor reconstruction.
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In contrast, the performance of the proposed approach which uses the GS-KM is more robust to distur-385

bances. The performance does not change significantly even in the presence of turbulence. The performance

is notably better than that of using the AS-KM.

Finally, the ground speed measurements are obtained at 1 Hz and are linearly interpolated to obtain data

at 100 Hz. To obtain a better performance, ground speed measurements with a high update rate should be

applied.390

6. Conclusions

This paper proposes a new approach for Inertial Measurement Unit sensor fault reconstruction by making

use of the ground-speed-based kinematic model of the aircraft flying in a rotating earth reference frame.

Two strategies are proposed for the validation of sensor fault reconstruction approaches: closed-loop and

open-loop strategy. Both validation strategies use a newly-developed Adaptive Two-Stage Extended Kalman395

Filter to estimate the states and faults. The Adaptive Two-Stage Extended Kalman Filter can adaptively

update the covariance matrix for fault estimation. The fault reconstruction performance using the ground-

speed-based kinematic model is compared to the approach which uses the airspeed-based kinematic model,

which shows the performance of the proposed approach.

More importantly, the proposed approach is validated using real flight test data. The performance is400

tested in various flight conditions and wind conditions including turbulence. The proposed approach is

found to be robust in various flight conditions and disturbances such as turbulence, which demonstrates the

advantage of the proposed approach.

It is suggested that the proposed approach be incorporated in the aircraft Fault Detection and Isolation

and Fault-Tolerant Control systems to enhance the performance of the aircraft.405
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