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Abstract

Classical RANS (Reynolds-Averaged Navier-Stokes) turbulence models have limited accu-
racy in the prediction of the flow over the wing-body geometry. Therefore, this work focuses
on improving the prediction accuracy of the classical k-ω SST turbulencemodel for the junction
flow by means of the data-driven method SpaRTA. In the SpaRTA methodology higher-fidelity
data, in this work LES (Large Eddy Simulation) data, is leveraged to find correction models
that enhance the baseline turbulence model. These correction models aim at correcting the
Reynolds stress anisotropy and the turbulent kinetic energy (k) equation. The correction mod-
els are obtained by sparsely regressing flow features to the correction fields that are found by
the k-corrective frozen approach.

The results showed that the correction fields determined by the frozen method are very
effective. Direct propagation of these fields resulted in a solution very similar to the LES data.
In contrast to themodel search for the k correction, finding amodel for the anisotropy correction
by means of sparse regression was difficult. The latter is reflected in the CFD (Computation
Fluid Dynamics) propagation of the found models on the same flow case as the training of the
models. This model propagation showed an improvement in the placement of the horseshoe
vortex, however, the vortex topology in the corner region was unsatisfactory. Which is linked
to the poor model fit of the anisotropy correction field.

Besides the search for an improved turbulence model, this work also encapsulates an eval-
uation of the drag reduction by the anti-fairing geometry for the wing-body junction flow. This
evaluation was achieved by comparing available wall-resolved LES data sets. The evaluation
revealed that the anti-fairing reduces the drag force by a propulsive pressure mechanism over
the bottom wall for a specific geometry over which the drag is computed. This geometry in-
cluded only 5% of the complete wing span, for larger wing spans the drag reduction was not
evident.
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1
Introduction

The drag force is defined as ”the component of the aerodynamic force parallel to the relative
wind” Anderson [1]. In many modern-day aerospace vehicles, such as cars and civil aircraft,
it is desirable to minimise this drag force in normal operation. Since minimising the drag
force will reduce the energy required to propel the vehicle, a favourable effect in the current
fight against climate change. Often, modern aerospace vehicles encounter a type of flow
somewhere on the external surface called the junction flow. As described by Simpson [2], in
this type of flow a boundary layer, developed for example over a flat surface, encounters an
object protruding the surface. A common example of a junction flow is the flow around the
wing-fuselage connection on aircraft. The interaction of the boundary layer with the flow over
the protruding object in this junction region causes the boundary layer to separate and form a
system of unsteady vortices. This flow behaviour generates an extra drag component, this is
often referred to as the interference drag. This extra drag component results in an increased
drag force encountered by the complete aerodynamic vehicle. Thus reducing the interference
drag will increase the energy efficiency of the vehicle.

As shown by Devenport et al. [3] a current solution, also seen on many present-day aircraft,
is to design a fairing around the junction region to allow for a more smooth interaction of
the two flows. Devenport et al. [3] managed to remove the separation of the boundary layer
upstream of the wing by the use of a leading-edge fillet in an experimental setup. The design
of this junction region using computational methods is, however, difficult due to the complex
vortex behaviour in the region connecting the two geometries. The main reason for this is
that the exploration of the design space using computational fluid dynamics (CFD) is currently
computationally too costly. These high costs are generated since only Large Eddy Simulations
(LES) or higher fidelity CFD codes are able to generate accurate solutions on the junction flow
due to its highly unsteady and anisotropic nature, Ryu et al. [4].

There is, however, a possible solution to reduce these costs. Which is to increase the pre-
diction accuracy of lower fidelity CFD solvers, such as the industry-popular Reynolds-averaged
Navier-Stokes (RANS) methodology, by means of data-driven methods. As shown by Zhang
et al. [5] aerodynamic shape optimisation using CFD for flow problems where RANS is lack-
ing can become feasible by combining high-fidelity solutions with a lower-fidelity RANS solver.
In Zhang et al. [5] it is shown that the design space of a shape optimisation problem for the
periodic hill geometry can be explored significantly faster by using a RANS solver for which
the accuracy of the turbulence model has been improved by means of a machine learning
approach. This is because the modelling of turbulence is one of the key error sources for
predicting flow separation in the RANS methodology (Duraisamy et al. [6]). Therefore the
objective of this MSc project is:

1



2 Chapter 1. Introduction

To improve a RANS turbulence model by means of a machine learning algorithm such that
the flow field generated by the RANS equations for the wing-body junction flow problem is

close to that of high-fidelity solvers.

If this objective is completed it will allow for aerodynamic shape optimisation of the wing-body
junction flow using a low-cost RANS CFD solver. Hence the shape can be optimised such that
the interference drag is minimal.

This thesis is structured as follows. First in Chapter 2 an elaborate literature study is pre-
sented on the various literature regarding wing-body junction flows and data-driven turbulence
modelling. This chapter also describes the important flow phenomena involved in the junction
flow. Secondly, in Chapter 3, the numerical methodology behind this work is described. This
includes the RANS simulation technique as well as the machine-learning methodology. In
Chapter 4, the results of this methodology will be displayed and discussed. This chapter is
followed by Chapter 5 in which the drag reduction system of the anti-fairing geometry, which
is covered in Chapter 2, is discussed by comparing two high-fidelity simulations. Finally, in
Chapter 6, a conclusion on the work is given as well as a set of recommendations for future
work.



2
Literature Study

This chapter covers an important portion of the available literature regarding the wing-body
junction flow as well as data-driven turbulence modelling techniques. First in Section 2.1 the
physical flow characteristics of the wing-body junction flow are discussed. Secondly, Sec-
tion 2.2 investigates available numerical simulations of the wing-body geometry. Consec-
utively, Section 2.3 covers literature on data-driven turbulence modelling techniques. And
finally, in Section 2.4, the research gap is identified and the research question is formulated.

2.1. Wing-Body Flow Physics
As described in the introduction, Chapter 1, the junction flow encapsulates a large range of
geometries. Think of wall-mounted cubes, wall-mounted cylinders or any other combination
which involves a relatively flat surface and a bluff body. Therefore, to gain a better understand-
ing of the external junction flow many authors in the research field have simplified the study
to a wing mounted perpendicular to a flat plate (Gand et al. [7]). This junction flow is often
referred to as the wing-body junction flow. The flow physics involved in the wing-body junction
flow is described by two correlated phenomena. That is the horseshoe vortex (HSV) system
and the corner separation. Literature regarding these phenomena is studied in this section to
build a foundation for the work described in this thesis, note that mostly incompressible flows
with turbulent boundary layers are investigated.

2.1.1. Horseshoe Vortex
The HSV is present due to the adverse pressure gradient imposed by the wing on the incoming
flow over the flat plate. The adverse pressure gradient causes the incoming flow to separate
from the surface and roll up into multiple horseshoe vortices (Simpson [2]). The recognisable
horseshoe shape is formed as the vortices are stretched and convected around the wing with
the flow. Since the boundary layer detaches from the flat plate a separation point upstream
of the wing on the plate can be identified. Together with the HSV this separation point is
convected around the wing forming the separation line, see Figure 2.1a.

In the time average of a turbulent flow on the wing-body geometry, the flow topology is
characterised as displayed in Figure 2.1b [8]. This topology consists of a main HSV, a counter-
rotating corner vortex (w.r.t. to the main HSV) and so-called stress induced vortices (Gand et
al. [8]). However, the vortex topology is dependent on the geometry of the surfaces as well
as the Reynolds number of the incoming flow, as shown by Simpson [2]. Therefore, a general
mean topology for the junction flow is difficult to define. Nevertheless, it is shown that for many
flows the time-mean topology often consists of one main HSV, hereafter referred to as the HSV,

3



4 Chapter 2. Literature Study

together with multiple smaller co- and counter-rotating vortices, such as the corner vortex and
stress induced vortex.

(a) Sketch of the wing-body flow. (b)Wing-body vortex topology, image from [8].

Figure 2.1: Schemetics of the wing-body junction flow.

The system of vortices present on the wing-body geometry is unsteady in both strength and
shape. Only for very low Reynolds numbers, that is Reθ ≤ 100 (θ equals the boundary layer
momentum thickness), the system is steady (Gand et al. [9]). Therefore, for most engineering
examples, in which the flow is turbulent, the HSV and the coexisting secondary vortices are
unsteady. As described by Simpson and Gand et al. [2, 9, 10], for turbulent flows the HSV
translates forward and backwards upstream of the wing between two quasi-steady locations.
These locations are defined as the backflow mode (upstream of the corner) and zeroflow
mode (close to the corner), see Figure 2.2 [10]. The aforementioned names originate from the
probability density functions of the streamwise velocity (u) measured at a fixed point upstream
of the wing beneath the time mean location of the HSV in the symmetry plane. These functions
show a peak at a negative value of u and a peak close to zero, indicating the two preferred
locations of the HSV. This bimodal behaviour is aperiodic for turbulent flows. However, as
reported by Gand et al. [9], who performed a literature survey on the periodicity, the bimodal
behaviour is found to be periodic for laminar to transitional boundary layers for which Reθ ≤
1500.

(a) Backflow mode (b) Zeroflow mode

Figure 2.2: Velocity contours of the modes in the symmetry plane upstream of the wing, images from Devenport
and Simpson [10]. The dashed line indicates the bimodal region.
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In Elahi et al. [11] a study on the effect of the Reynolds number on the HSV is given. In the
experiment, particle image velocimetry (PIV) measurements of the Rood wing [12] (the same
geometry as in Deveport and Simpson [10]) at incompressible flow conditions were taken for
wing-thickness based Reynolds numbers ranging from 6920 to 75000. This corresponded to
a Reθ range from 550 to 5740 using fully turbulent boundary layers. From the study, Elahi
et al. concluded that the time-mean vortex core location is not strongly dependent on the
Reynolds number. It was, however, found that at higher Reynolds numbers the motion of the
HSV system upstream of the leading edge was more chaotic compared to lower Reynolds
numbers. This indicates that the stability of the core decreases with increasing Reynolds
number. Next to that, with increasing Reynolds number it was found that the shape of the
turbulent kinetic energy in the symmetry plane at the time-mean HSV core location deforms
from an elliptic shape to a ’C’-shape. Resulting in more kinetic energy close to the wall. This
shape deformation is a result of the increased magnitude of the velocity fluctuations in the
freestream direction (u′) beneath the time-mean position of the HSV.

As previously mentioned, the geometry of the protruding object, for example the wing,
influences the characteristics of the HSV. As described by Simpson [2], the strength of the
HSV system increases with the bluntness of the leading edge of the object. To quantify this
bluntness many authors use the bluntness factor (BF ) introduced by Fleming [13]:

BF =
1

2

R0

XT

[
T

ST
+

ST

XT

]
(2.1)

in which R0 equals the leading-edge radius, XT the chordwise position of maximum thickness
T and ST the distance between the leading edge and XT over the surface of the wing. A
higher BF indicates a blunter leading edge and hence results in a stronger HSV.

Besides the bluntness factor, the characteristics of the incoming boundary layer dictate the
shape of the vortex system as well. Therefore authors describe the incoming flow using the
momentum deficit factor (MDFx). Which is defined as the product of the Reynolds number
based on the wing thickness (ReT ) and the Reynolds number based on the boundary layer
momentum thickness (Reθx) Gand et al. [7]:

MDFx = ReT · Reθx (2.2)

Fleming et al. [14] described that a larger MDF will result in stronger near-wall vortices and
smaller flow distortions. And thus, in contrast, a smaller MDF indicates larger flow distortions.

2.1.2. Corner Separation
The second physical phenomenon of interest on the wing-body flow is the corner separation.
The corner separation is a region of separated flow at the trailing edge of the wing where it
makes contact with the flat plate. This separation is influenced by the interaction of the two
boundary layers and the momentum transportation by the HSV. A visualisation of the corner
separation is given in Figure 2.3 [15].
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Figure 2.3: Corner separation on the trailing edge of a DLR-F6 wing connected to a fuselage at angle of attack
of 5.0 degrees, image from Kegrise et al. [15].

As described in Gand et al. [7], the HSV is competing with the corner separation. Meaning
that a strong HSV co-exists with a smaller corner separation, while a weak HSV results in a
larger corner separation. This is because a stronger HSV transports high-momentum air into
the corner region which suppresses separation. Thus the hypothesis was established by Gand
et al. that the combination of MDF and BF control whether a corner separation is present or
not. Since the MDF and BF indicate the strength of the HSV. This hypothesis was, however,
invalidated in Gand et al. [7]. In their experiment, a configuration of BF and MDF was chosen
such that a corner separation would be present according to previous experiments. Despite
the weaker HSV, the corner separation was not observed in the experiment, indicating that
other flow parameters are of importance as well.

More recently the idea is established that for turbulent flows the corner separation is also
dependent on the gradients of the Reynolds stresses in the corner region. As described in
Gand et al. [8] the corner separation depends on the shape and strength of the stress induced
vortices (see Figure 2.1b). This is because these vortices influence the boundary layers in
the corner region by transporting momentum. The idea is based on a theoretical foundation
published by Perkins [16] in which the vorticity equation in free-stream direction is analysed
in flows with anisotropic turbulence. This vorticity equation is derived from the steady incom-
pressible RANS momentum equation and formulated as:

U
∂ξ

∂x
+ V

∂ξ

∂y
+W

∂ξ

∂z
= ν∇2ξ + ξ

∂U

∂x
+ η

∂U

∂y
+ ζ

∂U

∂z︸ ︷︷ ︸
P1

+
∂

∂x

(
∂u′v′

∂z
− ∂u′w′

∂y

)
︸ ︷︷ ︸

P2

+
∂2

∂y∂z

(
v′v′ − w′w′

)
︸ ︷︷ ︸

P3

+

(
∂2

∂z2
− ∂2

∂y2

)
v′w′︸ ︷︷ ︸

P4

(2.3)

in which the vorticity vector is defined as [ξ, η, ζ]T , the Reynolds average velocity vector as
[U, V,W ]T and the Reynolds fluctuating velocity vector as [u′, v′, w′]T . In Gand et al. [8], it is
described that the stress induced vortices are dependent on the turbulent terms (P2, P3 and
P4). And since the stress induced vortices influence the boundary layers in the corner, the
stress terms influence the corner separation. This idea is echoed by Rumsey et al. [17], in
which numerical simulations are performed on the NASA Juncture Flow (JF) experiment [18].
The latter experiment is aimed at improving drag prediction on aircraft, hence the importance
of correctly predicting corner separation.

It should be noted, however, that the stress induced vortex (or vortices) is not an isolated
phenomenon. Meaning that the shape and size of the co-existing larger vortices, such as the
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corner vortex and HSV, influence the characteristics of the stress induced vortex as well (and
vice versa). Next to that, the HSV is also responsible for transporting high momentum flow into
the corner region and therefore influences the corner separation. It is thus difficult to isolate
the phenomena that directly dictate the size of the corner separation since it appears to be a
combination of multiple flow and geometry parameters.

2.1.3. Undesirable Effects
The presence of a junction flow can lead to undesirable effects. As previously mentioned,
the connection of two bodies causes an extra drag component to arise, the interference drag.
The latter is due to the presence of the HSV system and the corner separation. As described
by Simpson [2] the rotational sense of the HSV causes high-momentum fluid to mix into the
boundary layers, which increases characteristics such as drag and heat transfer. The latter
could be an undesirable effect depending on the application of the geometry. Besides, the
HSV system also impacts the structural integrity of for example bridges as the HSV scours
away soil and rocks surrounding the bridge pier.

Devenport et al. [19] mention how the bimodal behaviour of the HSV can lead to unwanted
noise generation on submarines. Next to that, the HSV legs can persist far downstream. This
has the consequence that objects in the wake of a junction flow are affected. It is thus impor-
tant to be able to accurately predict junction flows such that these undesirable effects can be
mitigated or controlled.

2.1.4. Wing-Body Fairings
A passive strategy to mitigate the undesirable effects described above in subsection 2.1.3 is
by altering the geometry in the corner region. In Devenport et al. [19] a wing-body junction flow
experiment is carried out to investigate the effects of a constant radius fillet wrapping around
the entire wing, see Figure 2.4a [19]. The flow conditions and baseline geometry are similar
to Simpson and Devenport [10]. In the latter study, the flow was characterised by a Reθ of
6700, a free-stream velocity Uref of 27.0 [m/s] and a fully turbulent boundary layer which was
tripped on the plate upstream of the wing and on the wing itself close to the leading edge. The
conclusion from the experiment was that a constant radius fillet does neither eliminate the HSV
nor the unsteady behaviour. On the contrary, it amplified those effects, presumably because
it increases the bluntness of the leading edge. From velocity fluctuation measurements in the
wake of the wing, Devenport showed how the fillet magnifies the size and strength of the HSV
legs. Besides, using oil flow visualisations, it is shown that the fillet does not eliminate the
separation from the flat plate, only an upstream displacement of the HSV was noted.

In a consecutive paper, Devenport et al. [3] investigated a leading-edge fillet, see Fig-
ure 2.4b [3], in similar flow conditions as the constant radius fillet. From the results, it was
deduced that the leading edge fillet at zero angle of attack reduces the magnitude and extent
of the adverse pressure gradient imposed by the wing on the wall. As a consequence, the
HSV and its coexisting bimodal behaviour are eliminated. At non-zero angles of attack, a vor-
tex leg has been measured on the pressure side of the wing, which is caused by a stronger
adverse pressure gradient located on the fillet at non-zero angles of attack. It should be noted,
however, that the effects are still less severe compared to the baseline configuration (i.e. no
fillet). It was thus concluded by Devenport et al. [3] that a leading edge fillet modifies the flow
over the wing-body junction flow in a desirable way. That is, desirable with respect to the
undesirable effects described in subsection 2.1.3.

Globally seen, the undesirable effects caused by the connection of a wing to a flat plate
can be passively mitigated by altering the geometry of the leading edge. Although one has to
be careful with the design as it can also work counterproductive, see the constant radius fillet.
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(a) Constant radius fillet geometry, image from Devenport et
al. [19].

(b) Leading edge fillet geometry, image from Devenport et
al. [3].

Figure 2.4: Wing-body geometry changes to passively influence the junction flow.

2.1.5. Anti-Fairing
Recently Belligoli et al. [20] found a new drag-reducing geometry for the wing-body junction
flow. This new geometry is characterised by two indents in the flat plate, hence it is referred to
as the anti-fairing, see Figure 2.5 [20]. The geometry was found by performing aerodynamic
shape optimisation in a RANS solver (SU21). Bellogoli et al. used the SU2 solver to solve
the adjoint equations for the design parameters. With the solution to these adjoint equations,
i.e. the gradients, the next design iteration could be determined. The full shape optimisation
process is described in Belligoli et al. [20]. It should be noted that the original idea for the anti-
fairing geometry originates from an aerodynamic shape optimisation by Brezillon and Dwigth
[21] of a half-body aircraft (DLR-F62).

Figure 2.5: Anti-fairing geometry, only one half of the geometry is shown due to the symmetry in the y-axis,
image from Belligoli et al. [20].

Multiple numerical and experimental studies have been performed for the anti-fairing which
are summarised in Belligoli et al. [22]. Even though most studies in this overview cannot be
directly compared to one another due to the mismatch in wing geometry and flow conditions, it
is evident that the anti-fairing has a drag-reducing mechanism. Note that all studies in Belligoli
et al. [22] were performed in the incompressible flow regime using fully turbulent boundary lay-
ers. The drag-reducing mechanism is described by a primary effect, namely a ’thrusting’ force

1https://su2code.github.io/, Last accessed: 22-05-2023
2https://aiaa-dpw.larc.nasa.gov/Workshop2/DLR-F6-geom.html, Last accessed: 03-04-2023

https://su2code.github.io/
https://aiaa-dpw.larc.nasa.gov/Workshop2/DLR-F6-geom.html
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generated by the pressure distribution over the anti-fairing, as well as a secondary viscous
effect that seems to reduce the viscous stress over the flat plate. The primary effect is caused
by the incomplete pressure recovery over the indent of the anti-fairing resulting in a net force
in the opposite direction of the drag force. The secondary effect, according to Belligoli et al., is
caused by the adverse pressure gradient in the upstream convex curve. This adverse gradient
reduces the velocity gradient at the wall and hence the wall shear stress, which reduces the
total drag. Besides, it was also found that the anti-fairing reduces the turbulent kinetic energy
of the flow in the first half of the anti-fairing geometry.

Due to the uncertainties in the studies described in Belligoli et al. [22] complete evidence
of the drag reduction was still missing. Hence Belligoli et al. recommended performing wall-
resolved LES simulations on a baseline geometry and an anti-fairing geometry, freezing all
flow and geometry parameters except for the flat plate geometry. These simulations have been
performed by Alberts [23] (baseline) and Vigner [24] (anti-fairing), unfortunately however, drag
comparisons between the two simulations have not been published yet. This will therefore be
addressed in Chapter 5 in this thesis.

2.2. Numerical Simulation
In this section, various numerical studies regarding the wing-body junction flow are discussed.
Both Reynolds-Average Navier Stokes (RANS) and Large Eddy Simulations (LES) will be
covered as well as uncertainty sources in the RANS modelling approach.

2.2.1. RANS Simulations
Numerous literature report the poor performance of the RANS simulation technique for the
wing-body junction flow (Ryu et al. [4], Gand et al. [7], Rumsey et al. [17], Alberts [23]). This is
mainly due to the highly unsteady nature of the problem as well as the anisotropic behaviour
of the turbulence near the corner region.

A study on the accuracy of different RANS turbulence models for the wing-body geometry
(using the Rood wing [12]) is given in Apsley and Leschziner [25]. In this study, linear and
non-linear eddy viscosity models were tested as well as second-moment closure models. The
wing geometry and boundary layer thickness (at the location of measurement) for this study
were identical to Simpson and Devenport [10], the Reynolds number based on wing thickness
was equal to ReT = 1.15 · 105. From the extensive research, to which six partners contributed,
it was concluded that the second-moment closure models have a better accuracy compared
to the (non-) linear eddy viscosity models. Although, the k-g model (Kalitzin et al. [26]) and
k-ω SST model (Menter [27]) came close to the results of the second-moment closure models
for the mean flow quantities, but failed to correctly predict the anisotropy of the turbulence. It
should be noted, however, that even with the better accuracy of the second-moment closure
models, the results had noticeable discrepancies in both the mean-field and turbulence quan-
tities with respect to the experimental reference data. Besides, using second-moment closure
models (or Reynolds stress models) will increase the computational cost and decrease the
convergence rate compared to linear eddy viscosity models (Hickel [28]).

Regarding eddy viscosity models, in Gand et al. [8] an investigation was conducted on the
predicting performance of the quadratic constitutive relation (QCR) (Spalart [29]) for the corner
separation of the wing-body junction flow. This QCR modification modifies the Boussinesq
closure by adding non-linear terms. The QCR modification is formulated as (Gand et al. [8]):

τij = τ̄ij − cnl1 (Oik τ̄jk +Ojk τ̄ik) with Oik =
∂kUi − ∂iUk√
∂nUm∂nUm

(2.4)

In which τij equals the Reynolds stress tensor, τ̄ij the Reynolds stress tensor calculated with
the Boussinesq closure, Ui the mean velocity and cnl1 a modelling constant. The aim of the
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QCR addition is to better predict the components of the Reynolds stress tensor. This would
result in better predicted stress induced vortices, see Equation 2.3. Which in turn will result in
a more accurate corner separation prediction, see subsection 2.1.2.

For the RANS simulation in Gand et al. [8] the Spalart Allmaras (SA) model, see Spalart
and Allmaras [30], was used with and without QCR modification. The flow was characterised
by a Reynolds number based on the chord length of Rec = 3 · 105 and a boundary layer thick-
ness of δ0/T = 0.42 measured 0.3 chord lengths upstream of the wing. The wing geometry
was based on a NACA 0015 airfoil. From themean-field results, it was concluded that the QCR
closure brings significant improvements compared to the SA model without QCR. The SA with
QCR model showed only minor discrepancies with respect to the experimental reference data
on the aft part of the wing for the mean-field quantities. From the Reynolds stress analysis, it
was deduced that, in particular, the QCR closure was able to more correctly predict the v′w′

and v′v′ − w′w′ terms in the corner region, resulting in a more accurate prediction of P3 and
P4 in Equation 2.3. This correctly influences the boundary layer in the corner region resulting
in a realistic corner separation (compared to the standard SA prediction). It was therefore con-
cluded that the QCR modification to Boussinesq’s hypothesis improves the RANS prediction
for wing-body junction flows.

More recently a RANS simulation on a junction flow with an updated version of the SA
model with QCR modification is given by Rumsey et al. [17]. The updated version of QCR,
QCR2020 instead of QCR2000 used by Gand et al., applies the non-linear correction to the
Boussinesq hypothesis using a wall distance function (high values close to the wall) instead
of a constant (cnl1). Another discrepancy with Gand et al. is that Rumsey et al. use a half-
aircraft geometry instead of a wing mounted to a flat plate. Similar to Gand et al., Rumsey at
al. concluded that the QCRmodification improved the predicted corner separation with respect
to the experimental data, also describing that the spread between the normal stresses (for
example v′v′ − w′w′) have moved into the right direction. Even though, the individual normal
stresses still showed discrepancies compared to the experiment.

These two individual simulations show that using the QCR modification on the Boussinesq
closure will improve the RANS prediction of the corner separation. Although it must be noted
that comparisons with experimental data close to the leading edge of the wing were not given.
And hence no conclusion can be drawn on the prediction performance of the origin and location
of the HSV which is typically mispredicted by RANS.

2.2.2. RANS Uncertainty Sources
As described above it is difficult to get accurate flow solutions using the RANS simulation tech-
nique on the wing-body junction flow. This is due to systematic errors in the formulation of the
RANS equations. In Duraisamy et al. [6] an overview of the RANS simplification levels is given.
The first error source comes from level 1 (L1) and is due to the fact that the Reynolds aver-
age of the Navier Stokes equations (N ) is not equal to the Reynolds averaged flow variables
substituted into the Navier Stokes:

⟨N (·)⟩ ̸= N (⟨·⟩) (2.5)

It is thus required to define closure models M(·):

⟨N (·)⟩ = N (⟨·⟩) +M(·) (2.6)

The development of these closure models, such as the Boussinesq hypothesis, defines the
simplification level 2 (L2). The closure model M(·) consists of (differential) equations for the
independent variables w. Simplification level 3 (L3) is defined by establishing these equations
P(w), an example of P(w) are the k and ω equations by Wilcox [31]. Finally, level 4 (L4) is
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defined by the calibration of the model coefficients c used in the model equations P(w). The
ensemble of the four levels defines the error source made in the RANS modelling technique
in CFD. The decomposition of the error source into these four levels allow authors to indicate
which specific error source or uncertainty they are reducing.

2.2.3. LES Simulations
A more accurate technique for simulating the wing body junction flow is by using Large Eddy
Simulations. In contrast to RANS, in LES a portion of the turbulent scales, that is the most
energetic scales, are resolved rather than modelled (Hickel [32]). This has the benefit that
the anisotropy of the turbulence is much better predicted compared to RANS turbulence mod-
els. Which improves the accuracy of the flow prediction on the wing-body junction flow. The
downside of LES, as mentioned in the introduction (Chapter 1), is the significantly higher com-
putational cost compared to RANS. Hence the LES method is less popular in the industry
where often multiple simulations are required for a single project.

In Ryu et al. [4], as well as the similar simulation by Alberts [23], a wall-resolved LES simu-
lation of the wing-body junction flow was carried out. For the setup of the simulation, the geom-
etry and flow characteristics were matched to the experiment by Devenport and Simpson [10].
In general, the mean flow structures by the LES were in accordance with the experimental
result, indicating that LES simulations are superior to RANS simulations for the wing-body
junction flow in terms of accuracy. This conclusion was also drawn in Gand et al. [7], in which
a wing-body LES was performed on a wing with a different geometry compared to Ryu et
al. [4]. Next to that, by computing the statistics in the corner region upstream of the wing,
Alberts [23] was able to replicate the bimodal behaviour of the HSV as reported by Devenport
and Simpson [10]. This is another indication that wall-resolved LES is able to reproduce ex-
perimental results. However, it is noticed by Ryu et al. that there still exist small discrepancies
in the Reynolds stresses in the corner region. According to Ryu et al. this is likely due to the
inaccuracy of the subgrid-scale model used, the Vreman model [33].

Besides the comparison study, an investigation by Ryu et al. [4] was performed in the lead-
ing edge corner region of the wing-body geometry, a region which is complicated to measure in
an experimental setup. In this region, the authors showed that the anisotropy of the Reynolds
normal stresses showed a resemblance with the secondary vortex structures in this region.
Indicating again that this anisotropy, not well captured by RANS, is important for the formation
of these smaller secondary vortex structures close to the walls. The latter observation is in
coherence with the paper published by Gand et al. [8] see subsection 2.1.2.

An alternative to wall-resolved LES is wall-modelled LES, in which the flow in close dis-
tance to a wall is modelled by a wall model instead of resolved. This allows for a coarser
mesh and hence a cheaper simulation. In Belligoli et al. [22] a wall-modelled LES is described
for the anti-fairing geometry (see subsection 2.1.5) using a y+ = 50 mesh. From the results
it was concluded that the wall-modelled LES showed good agreement in the boundary-layer
development, wall pressure contours and vorticity fields in comparison with experimental data.
Although it was noticed that the turbulent kinetic energy had half the magnitude of the exper-
imental data. This is due to the insufficient mesh resolution according to Belligoli et al. [22].
Hence for accurate turbulence fields, it is desirable to wall resolve the LES simulation.

2.3. Data-Driven Turbulence Modelling
As mentioned in subsection 2.2.2 in RANS a model for the Reynolds stress tensor is required
to close the Reynolds-averaged Navier Stokes. These models are often referred to as turbu-
lence models. Classical models might use the Boussinesq hypothesis, in which the Reynolds
stresses are modelled based on the local velocity gradients and a turbulent viscosity. The
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latter is often determined by solving extra transport equations, e.g. the k-ω model by Wilcox
[31]. Although these classical models are effective, they can introduce significant errors into
the flow field, such as for the junction flow as described in subsection 2.2.1. Hence, in the
modern era, more focus is pointed towards data-driven techniques to improve these classi-
cal turbulence models. In these techniques, high-fidelity turbulence data is used to improve
the turbulence models. Due to the high variety of data-driven techniques, the emphasis in
this section is on supervised machine learning methods that are already applied to turbulence
modelling problems to narrow down the research area.

2.3.1. General Effective-Viscosity Hypothesis
Before going over the variousmachine learningmethods applied in the field of RANSmodelling
it is important to note that many of them rely on the general effective-viscosity hypothesis
established by Pope [34]. In this hypothesis, it is stated that under certain conditions the
Reynolds stresses can be determined by a ten-term tensor polynomial based on the turbulent
kinetic energy (k), the turbulent energy dissipation rate (ϵ) and the gradients of the mean
velocity (∂iUj). Expressed as an equation this tensor polynomial yields:

u′iu
′
j =

2

3
kδij + k

10∑
λ=1

G(λ)T
(λ)
ij (2.7)

in which k equals the turbulent kinetic energy, δij equals the Kronecker delta, G a scalar
function based on the tensor invariants and T

(λ)
ij a set of tensors based on the mean strain-

rate and rotation-rate tensors:

S = S∗
ij =

1

2
τ

(
∂Ui

∂xj
+

∂Uj

∂xi

)
and Ω = Ω∗

ij =
1

2
τ

(
∂Ui

∂xj
− ∂Uj

∂xi

)
(2.8)

The tensors T
(λ)
ij and invariants (I...V ) are defined as follows (Pope [34]):

T 1
ij = T1 = S T2 = SΩ−ΩS

T3 = S2 − 1

3
I
{
S2
}

T4 = Ω2 − 1

3
I
{
Ω2
}

T5 = ΩS2 − S2Ω T6 = Ω2S+ SΩ2 − 2

3
I
{
SΩ2

}
(2.9)

T7 = ΩSΩ2 −Ω2SΩ T8 = SΩS2 − S2ΩS

T9 = Ω2S2 + S2Ω2 − 2

3
I
{
S2Ω2

}
T10 = ΩS2Ω2 −Ω2S2Ω

I =
{
S2
}

II =
{
Ω2
}

III =
{
S3
}

IV =
{
Ω2S

}
V =

{
Ω2S2

}
(2.10)

Note that S2 describes a tensor product, i.e. S∗
ikS

∗
kj , {·} represents the trace of a tensor and

τ the timescale used for non-dimensionalisation. Note that by using T1 only, the linear eddy-
viscosity model is found, frequently referred to as the Boussinesq hypothesis. As described
by Pope [34], for the general effective-viscosity hypothesis to be correct it is important that
the rates of strain are nearly homogeneous in the flowfield. Only then the Reynolds-stresses
can be determined locally, i.e. by k, ϵ and ∂iUj , as no turbulence is transported through the
flowfield. Therefore, corrections might be required for turbulence models that are based on
this hypothesis when applied to flows with significant velocity gradients, such as flows over
wings, cylinders etc.
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2.3.2. Explicit Algebraic Models
A popular turbulence model for data-driven techniques is an explicit algebraic Reynolds stress
model, often referred to as EARSM or EASM. As the name suggests in these types of models
the Reynolds stress is determined via an explicit algebraic equation. This often comes down
to using the general effective hypothesis (see subsection 2.3.1), hence the goal of turbulence
modellers is to find the scalar functions G in Equation 2.7.

The origin of EARSMs was established by authors such as Gatski and Speziale [35] and
Wallin and Johansson [36]. In both [35] and [36] EARSMs are found by analytical methods for
both 2-Dimensional (2D) and 3D flows. For the derivation of these models, the general form
of the algebraic (Reynolds) stress model is used as a starting point. This model is derived
from the Reynolds stress transport equation for which it is assumed that the turbulent flow is
in equilibrium and homogeneous. It should be noted that this is quite a significant assumption,
however, similar to the underlying assumption of the general effective viscosity hypothesis.
In this algebraic stress model, a tensorially linear model is substituted for the pressure-strain
term. The selection of such a linear pressure-strain model is up to the turbulence modeller
and one of the differences between the EARSM derived by Gatski and Speziale [35] and the
EARSM by Wallin and Johansson [36]. Consecutively, Pope’s tensor basis (Equation 2.7) is
substituted into the stress model which can be rewritten as a linear system. This system is
then solved for the scalar functions G which in combination with the tensor basis results in an
EARSM. Note that the full derivation is given in Gatski and Speziale [35].

Although both 2D and 3D flow EARSMs are derived by Gatski and Speziale [35], only
results of the 2D version are shown. This is, according to Gatski and Speziale, due to the
(numerical) regularisation required for the found EARSM when applied to non-equilibrium tur-
bulent flows. As these flows provoke the underlying assumptions and hence cause numerical
instabilities. According to Gatski and Speziale finding a regularised version of the 3D EARSM
is complicated and hence only a demonstration of the 2D version is given. In this successful
demonstration, the 2D EARSM was applied to a homogeneous shear flow in a rotating frame
and showed a good resemblance with the reference LES data.

In Wallin and Johansson [36] an EARSM is presented that gives the exact solution to the
algebraic stress model in 2D and a good, and numerically stable, solution in 3D. Wallin and
Johansson showed a successful demonstration of the EARSM for an axially rotating pipe flow.
A 3D type of flow for which the prediction accuracy of two-equation linear eddy viscosity mod-
els is low. Besides [36] also reports improved prediction of the EARSM in adverse pressure
gradient boundary layers.

Multidimensional Gene Expression Programming
A data-driven method of establishing an EARSM is for example the Multidimensional Gene
Expression Programming (MGEP) algorithm proposed by Weatheritt and Sandberg [37]. This
is a symbolic regression algorithm based on a survival of the fittest methodology. In MGEP an
explicit expression for a correction term in the anisotropic part of the Boussinesq hypothesis
is aimed to be found (Weatheritt and Sandberg [37]):

τij = τ̄ij + axij (2.11)

In this equation τ̄ij equals the Boussinesq Reynolds stress and axij the anisotropic correction
term. The explicit expression for this correction term is found by creating a random set of pre-
selected candidate functions which are tested on their fitness via a fitness function. The fittest
candidates then randomly reproduce themselves with each other to generate a new genera-
tion. This new generation then undergoes the same reproduction process, which continues
until convergence is achieved. By incorporating plasmids into the standard GEP algorithm
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Weatheritt and Sandberg [37] were able to regress tensors with the GEP algorithm, hence
Multidimensional GEP. As candidate functions for the correction model Weatheritt and Sand-
berg use a combination of the tensors and tensor invariants defined by Pope [34] (see sub-
section 2.3.1). And hence, in essence, an EARSM is aimed to be found. However, instead of
using an analytical approach a data-driven approach is used. The advantage of using MGEP
over for example black box machine learning methods (e.g. Neural Networks) is that it gener-
ates an explicit function. It, therefore, has the possibility to contribute to the understanding of
turbulence modelling since it can be understood by the creator.

In Weatheritt and Sandberg [37] it is shown that using the MGEP algorithm the a poste-
riori results of a periodic hill flow can be significantly improved compared to baseline RANS.
Note that the algorithm was trained using high-fidelity data on a different geometry namely the
backwards facing step.

In a follow-up publication, Weatheritt and Sandberg [38], an extension is made to the above
described evolutionary algorithm. Instead of training the algorithm with RANS results as inputs
and high fidelity (hifi) results as the target, the authors opt for the frozen approach. In this
approach the transport equation for the specific dissipation rate ω (from the k-ω SST RANS
closure by Menter [27]) is solved passively by freezing the velocity field U , turbulent kinetic
energy field k and Reynold stresses, these variables are provided by the hifi simulation. The
resulting U , k (from the hifi results) and ω (from the frozen approach) are then used as inputs
for the MGEP algorithm. The authors have chosen this approach since the physical meaning
of ω, that is the turbulent time scale, of an eddy-resolving simulation is not representative of
the scale of ω in a RANS simulation. The frozen approach, therefore, acts as a transformation
of the hifi simulation to a RANS simulation with equivalent flow fields for U , k and τij . The
extension of the original MGEP method allowed the authors to successfully improve more
complex flows such as a diffuser.

Sparse Regression of Turbulent Stress Anisotropy
A similar data-drivenmethod toMGEP is the SparseRegression of Turbulent Stress Anisotropy
(SpaRTA) method by Schmelzer et al. [39]. This method tries to find explicit tensor polynomials
that aim to improve the closure of RANS based on hifi data. In other words, the method tries
to find an EARSM based on hifi turbulence data. In the baseline version of SpaRTA, explicit
models are regressed that predict correction fields for the anisotropic part of the Reynolds
stress tensor (see Equation 2.11) and for the turbulent kinetic energy. These correction fields
are found by using the k-corrective-frozen-RANS approach, which is similar to the frozen ap-
proach described above by Weatheritt and Sandberg [38]. The only difference is that besides
solving the ω equation, the residual with respect to the hifi data of the k transport equation is
calculated as well. As the k residual represents the correction field for k. Finally, a library of
candidate functions, based on the set of tensors defined by Pope [34], is sparsely regressed
to these two correction fields using the elastic net regression algorithm. These two models
correct the anisotropic part of the Reynolds stress and the value of k in the standard RANS
equations using the k-ω SST model. By comparing this method to the MGEP method many
similarities can be identified. The two main differences are that SpaRTA also corrects the
k-equation instead of only the Reynolds stress tensor and that MGEP uses an evolutionary
algorithm for the regression instead of the elastic net algorithm.

The advantage of the SpaRTA method, similar to MGEP, is that by finding sparse explicit
correction functions a better physical understanding of the shortcomings of a standard closure
model, in this case, the k-ω SST, can be created.

In Schmelzer et al. [39] a successful demonstration of SpaRTA on the Periodic Hill, Curved
Backward Facing Step and Converging Diverging channel flow are shown by implementing the
found correction models into a solver. A true (unseen) prediction on a significantly increased
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Reynolds number is also utilised to assess performance.
An important base for the research in this work is the thesis by Vigner [24]. Vigner showed

a successful propagation of the correction fields found by the frozen approach for the wing-
body junction flow. This resulted in mean fields that look very similar to the original LES. Note
that the geometry and flow characteristics are matched to Devenport and Simpson [10] since
the wall-resolved LES training data was provided by Alberts [23]. Thus, the first steps of the
SpaRTA method were shown to be effective for this type of three-dimensional flow and hence
provide a promising basis for this work. This is because Vigner did not publish a complete set
of explicit models for the two SpaRTA correction fields nor a propagation of such models.

In Huijing [40] a successful operation of SpaRTA on three three-dimensional flows is shown.
The three geometries include a wall-mounted cube, an infinite cylinder and an idealised ro-
tating wheel. All three geometries were simulated in the incompressible flow regime using
Reynolds numbers varying from 104 to 106. Huijing showed that the regressed models im-
proved especially the separated areas over the geometries significantly. Next to that, by ap-
plying the models trained on one geometry to another it was found that the wall-mounted cube
model improved the flow with respect to the baseline over all three geometries tested.

2.3.3. Tensor Basis Neural Network
The Tensor Basis Neural Network (TBNN) described in Ling et al. [41] is a neural network algo-
rithm that combines the learning capability of a neural network with the tensor decomposition
of the anisotropic part of the Reynolds stress described in Pope [34], see Equation 2.7. The
multi-level neural network (NN) proposed by Ling et al. [41] takes the flow invariants as the
input layer and multiplies the output of the neural network (G(λ)) by the tensor set (T (λ)

ij ) to
generate the anisotropic stress tensor. The used NN had eight hidden layers each with thirty
nodes. It is important to note that during the training phase RANS results were used as inputs
and DNS/LES results as truth labels. This is because the NN should be able to predict u′iu′j
in the absence of DNS data. The advantage of using the TBNN structure is the fact that the
algorithm remains Galilean invariant. This is desirable since the Navier-Stokes equations are
Galilean invariant. The downside of using a NN is that it remains a black box. This means that
although the NN might improve CFD results, its workings can not be understood by its creator.
Therefore the NN can not directly improve the understanding of turbulence modelling.

Note that in contradiction to SpaRTA, Ling et al. are not adapting an existing turbulence
model to improve results. But rathermodelling the Reynolds stresses directly using the general-
effective viscosity hypothesis.

The goal of the paper was to generate a network that would be generally applicable to
multiple flows to predict bij . And therefore disregard the use of a linear eddy viscosity model
(LEVM). Ling et al. [41] concluded from the a posteriori results that the network was not able to
reproduce the direct numerical simulation (DNS) data with high fidelity. However, the network
did generate correct flow structures that were not predicted by the LEVMs.

2.3.4. Gaussian Process Regression
In Zhang and Duraisamy [42] Gaussian processes (GP) and NN’s have been used to improve
turbulence modelling for a 1D channel flow case and a 2D flat plate flow. In the channel
flow the k transport equation in the k-ω model (Wilcox [31]) was modified by multiplying the
production term Pk with an adjustment term α. For the flat plate flow, the focus was put on the
transition of the flow. Hence, the transport equation for the intermittency factor γ was modified
by replacing the sum of the production and destruction terms with α. The adjustment factor
α for both flows was found by solving the inverse problem with Bayesian inversion for which
DNS or experimental data has been used. It was concluded by Zhang and Duraisamy [42]
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that both GP and NN were able to correctly predict α on test cases for both flows. These were
training data cases on which the model has not been trained. However, using training data as
test cases implied that a CFD prediction utilising the GP and NN models was missing.

2.3.5. Flow Classifier
A different approach to using ML in RANSmodelling is by means of flow classifiers. In Ling and
Kurzawski [43] a flow classifier is presented that can identify regions within a flow for which the
turbulence is significantly anisotropic. This information can be used to identify regions in which
the classical linear eddy viscosity model (the Boussinesq hypothesis) breaks down. In Ling
and Kurzawski [43] a non-linear eddy viscosity model is applied in these regions to improve
the flow solution. As described by the authors, applying the non-linear model in the entire flow
field is unfeasible due to stability issues. Therefore, in the regions not tagged by the classifier,
the linear eddy viscosity model is applied. By using this approach Ling and Kurzawski are
reducing the level 2 uncertainty of RANS modelling (see subsection 2.2.2).

The development of the flow classifier is described in Ling and Templeton [44] in which
different machine learning methods are used together with DNS and LES data to generate the
classifier. Ling and Kurzawski [43] tested the method on the fully developed turbulent duct
flow and on the wavy wall with scalar injection flow. From the results, it was concluded that,
for both flow fields produced with the classifier model, the results have improved accuracy
compared to the standard linear eddy viscosity model. However, the results did not perfectly
match the DNS data. Ling and Kurzawski propose this is due to the simplicity of the non-linear
model used for the tested flows. And describe that this paper is rather a demonstration of the
usefulness of using flow classifiers, that is improved accuracy while keeping good stability and
convergence, than a proposal for a more accurate RANS model.

Taking this line of thought a step further is done by Steiner et al. [45]. In Steiner et al. [45]
the SpaRTA methodology is combined with a flow classifier for a wind turbine application. To
recall, the SpaRTA method aims at finding two correction models for a baseline two-equation
RANS turbulence model by leveraging high-fidelity data. Steiner et al. [45] noticed that the
baseline model was accurate enough in certain regions and therefore there was no need to
apply any correction model, similar to Ling and Kurzawski [43]. However, in the wake of the
turbines corrections were required. Hence Steiner et al. [45] trained a classifier model using
a sparse regression method that identified regions in which the SpaRTA corrections should
be activated. From the results, it was concluded that this method was as effective as some
significantly more complex models. However, the combined classifier-correction models did
decrease the stability of the simulations. The latter was solved by applying numerical limiters.

2.4. Literature Study Conclusion
The aim of this chapter was to get an overview of the literature, and thus the research, available
in the field of wing-body junction flows and turbulence modelling. In this section, the research
gap concerning this work will be extracted from the literature study. And consecutively the
research question will be formulated.

2.4.1. Research Gap
An important task when conducting scientific research is to identify the research gap. Which in
this case comes frommultiple angles. First of all, it is recognised that an accurate prediction of
the mean junction flow using a steady RANS solver is missing. From several experimental and
numerical studies, it is shown that especially the unsteady behaviour of the junction flow as
well as the dependence on the anisotropy of the turbulence makes it difficult to get an accurate
prediction with the current RANS turbulence models. This leaves an opportunity for finding an
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improved turbulence model via a data-driven approach.
Regarding these data-driven methods, it has been shown that these can be successful for

2D and simple 3D cases. However, the amount of successful and/or unsuccessful demonstra-
tions on more complex 3D cases, such as the junction flow, is somewhat limited. This leaves
another opportunity for research, namely to test if it is possible to apply a machine learning
technique to the junction flow. The latter also partly rests on the NASA Symposium on Tur-
bulence Modelling 2022 (Rumsey and Coleman [46]), in which it is concluded that machine
learning in the field of turbulence modelling still has a long way to go. And, therefore, both
successful and especially unsuccessful attempts in this field should be published in order to
increase common knowledge. Since frankly the improvements in turbulence modelling have
stalled from the late 1990s onwards (see Figure 2 in Xiao and Cinnella [47]).

Finally, if an enhanced turbulence model is found for the junction flow it will create an
opening for more accurate design optimisations of the junction geometry using RANS solvers.
However, this is rather a futuristic goal than an actual gap for this work.

These three opportunities combined generate a rather large research space, which is
too big to explore within one Master’s thesis. Hence the objective stated in Chapter 1 is re-
formulated into a more precise form:

To improve the k-ω SST turbulence model by means of the SpaRTA machine learning
approach such that the flow field generated by the RANS equations for the wing-body

junction flow is close to that of a wall-resolved LES simulation.

The choice for the SpaRTA method was made based on the fact that in-house expertise is
available on this method, as well as the partly-successful demonstration by Vigner [24] and
the more complete demonstration by Huijing [40] for 3D geometries.

2.4.2. Research Questions
On the basis of the research gap rests the main research question, which for this work is
defined as follows:

Can the discrepancy in the flow field of a standard RANS simulation with respect to a large
eddy simulation for the wing-body junction flow be reduced using the SpaRTA machine

learning algorithm?

This main question is accompanied by the following sub-questions:

• Which regions in the RANS solution require significant corrections?
• What is the error between the regressed model and the training data?
• What are the discrepancies in the flow fields between the propagated correction fields
and the high-fidelity simulation?

• Do the regressed models run stable in a RANS simulation?
• What are the discrepancies in the flow fields between RANS with correction models and
the high-fidelity simulation?

• Is the vortex topology different between the LES and the baseline RANS?
• Is the vortex topology present in the LES solution predicted by the custom turbulence
model?

• Is the new turbulence model generally applicable? Will the new model also improve
wing-body junction flows with different types of fairings and wing geometries?

Next to these sub-questions is a question not directly related to the main research question:

• What is the difference in drag force between the LES on the baseline wing-body geometry
by Alberts [23] and the LES on the anti-fairing geometry by Vigner [24]?
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Data-Driven Modelling Methodology

In this chapter, the numerical methodology behind the results displayed in this work is dis-
cussed. First in Section 3.1 the equations behind the baseline Reynolds-Averaged Navier-
Stokes (RANS) are described. Next to that, this section also describes the computational setup
to solve the RANS equations. Secondly, in Section 3.2, the SpaRTA approach is explained,
which includes the k-corrective frozen approach, the propagation and model regression.

3.1. Reynolds-Averaged Navier-Stokes
The simulations described in this work all rely on the fundamentals of the Reynolds-Averaged
Navier-Stokes (RANS) equations. Which is a set of equations that describe the mean flow.
The derivation of this set of equations, as well as the computational setup to solve them will is
discussed in the following subsections.

3.1.1. Governing Equations
The derivation of the RANS equations starts with the definition of the Navier-Stokes (NS) equa-
tions. The corresponding NS equations for a flow problem in the incompressible flow regime
with constant density and constant viscosity are given by (Pope [48]):

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= fi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.1)

In which the top equation represents the conservation of mass and the bottom equation the
conservation of momentum. Note that ui, xi and fi represent the velocity, position and body
force vector respectively in index notation. Next to that, t, p and ν equal the time, air pressure
and kinematic viscosity respectively.

As the naming suggests to obtain the RANS equations the variables should be Reynolds-
averaged. To achieve this the two flow variables are decomposed using Reynolds decompo-
sition into a mean component (Ui and P ) and a fluctuating component (u′i and p′):

ui = Ui + u′i and p = P + p′ (3.2)

The RANS equations are subsequently achieved by substituting Equation 3.2 into the NS
equations and ensemble averaging the resulting system. The derivation for each term in Equa-
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tion 3.1 is given below, note that ⟨·⟩ operator indicates taking the ensemble average.

⟨ui⟩ =
1

N

N∑
µ=1

ui|µ (3.3)
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The non-linear term in the momentum equation is rewritten in order to perform the averaging:〈
(Uj + u′j)
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〉
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(3.5)

Combining Equation 3.4 and Equation 3.5, assuming zero body forces (fi = 0) and assuming
that the solution is steady state (∂Ui/∂t = 0) results in the steady state incompressible RANS
equations:
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∂xi
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∂xi
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(3.6)

Note that the average operator has been replaced, i.e. ⟨u′iu′j⟩ = u′iu
′
j . Comparing Equation 3.6

with Equation 3.1 shows that the system of equations is very similar. Yet an extra term is
present in the RANS formulation, that is the divergence of the Reynolds stress tensor u′iu′j .
The RANS system of equations is usually solved for the mean flow quantities, Ui and P , since
this reduces the computational cost significantly compared to eddy-resolving techniques such
as LES or DNS. This does, however, mean that the Reynolds stress tensor has to be mod-
elled using a turbulence model as there is no information available on the fluctuating velocity
components. As described by Duraisamy et al. [6] (subsection 2.2.2) this modelling step is
one of the significant error sources within a RANS simulation.

In this work the k-ω SST model by Menter [27] has been used as the baseline turbulence
model to predict the Reynolds stress tensor. The k-ω SST model is a Linear Eddy Viscosity
Model (LEVM) and relies on the Boussinesq closure to model the Reynolds stress tensor. This
closure model is given by (Pope [48]):
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(3.7)

In which νt equals the kinematic eddy viscosity, k the turbulent kinetic energy and δij the
Kronecker delta. Note that since the flow is incompressible ∂Uk/∂xk = 0. To obtain νt and
k the transport equations for k and ω (specific dissipation rate) as defined by Menter [27] are
numerically solved:
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In which the production term (Pk) and eddy viscosity are determined via:
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For numerical stability a limiter is used for the production term:

Pk = min (Pk, 10β
∗ωk) (3.11)

The additional functions in the transport equations are given by (d equals the wall distance):
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The modelling constants, referred to as ϕ, are determined via a blending function between ϕ1

and ϕ2:
ϕ = F1ϕ1 + (1− F1)ϕ2 (3.13)

The modelling constants are:

σk1 = 0.85 σω1 = 0.500 β1 = 0.0750
σk2 = 1.00 σω2 = 0.856 β2 = 0.0828
β∗ = 0.09 κ = 0.41 a1 = 0.31

And:
γ1 =

β1
β∗ − σω1κ

2

√
β∗ and γ2 =

β2
β∗ − σω2κ

2

√
β∗

3.1.2. Computational Setup
In order to solve the differential equations described above, that is the conservation of mass,
conservation of momentum, the k-equation and ω-equation, the computational domain should
be defined. This includes defining the boundaries, the flow conditions and the discretization
of the flow domain. The setup described in this subsection applies to all RANS simulations
performed in this work, that is the baseline RANS, the k-corrective-frozen approach and the
(model) propagation.

As described in Chapter 1 the flow problem of interest is the wing-body junction flow. This
flow is characterised by a wing connected perpendicular to a flat plate. below in Figure 3.1 a
sketch of the flow domain is given, the flat plate is visualised by the grey area at y = 0. Note
that in Figure 3.1 the coordinates are non-dimensionalised by the maximum wing thickness.
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Figure 3.1: Sketch of the computational domain, coordinates ’(x, y, z)’ are given in maximum wing thicknesses.

The wing used for the numerical setup is the Rood wing, as used by Alberts and Vigner [23,
24]. Note that the wing is at zero angle of attack without any twist or taper. The flow and
geometry characteristics as well as the airfoil profile are displayed in Table 3.1 and Figure 3.2
respectively.

Table 3.1: Flow and geometry characteristics.

Characteristic Symbol Value
Chord length c 0.3050 [m]
Maximum wing thickness T 0.0717 [m]
Bluntness factor BF 0.32 [-]
Free-stream velocity U∞ 27.0 [m/s]
Angle of attack α 0.0 [deg]
Inlet boundary layer thickness δinlet 0.0316 [m]
Kinematic viscosity ν 1.41 · 10−5 [m2/s]
Chord length Reynolds number Rec 5.84 · 105 [-]
Momentum deficit factor MDF 8.1 · 108 [-]
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Figure 3.2: Rood wing airfoil profile.

The type of boundary conditions used in this work to solve the RANS equations numerically
are displayed in Table 3.2. The inlet patch is located at the most upstream boundary in the
yz-plane (at x = −6.0 in Figure 3.1) and is split into two patches parallel to the plate, inlet top
and inlet bottom. The generation of the boundary layer (BL) profile specified at inlet bottom
will be discussed below. The outlet patch is the most downstream boundary in the yz-plane.
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The bottom patch represents the flat plate surface, and the wing patch the surface of the wing.
Finally, the top patch represents the boundary opposite of the flat plate and the sides the side
boundaries parallel to the flow.

Table 3.2: Boundary conditions of the computational domain.

Patch Velocity boundary condition Pressure boundary condition
Inlet bottom Fixed value (U = BL-profile) Zero-gradient
Inlet top Fixed value (U = 27.0) Zero-gradient
Outlet Zero-gradient Fixed value (p = 0)
Wing No-slip wall Zero-gradient
Bottom No-slip wall Zero-gradient
Top Symmetry Symmetry
Sides Symmetry Symmetry

Next to defining the boundary conditions, is to discretise the flow domain into finite volumes,
i.e. mesh generation. The mesh used for all RANS simulations in this work is displayed in
Figure 3.3. The mesh is an adaptation of the C-grid hexahedron RANS mesh used by Alberts
[23]. The first modification is a refinement towards the inlet, see bottom right in Figure 3.3.
This was done to increase the numerical stability of ω. The instability was caused since the
inlet boundary had a relatively low value for ω prescribed, while the bottom (wall) boundary
had a high value. The refined mesh at the inlet presumably allows for a smoother interaction
between the two boundaries which removed the instability. Secondly, the cells close to the
walls (bottom and wing) have been refined to achieve y+ ≈ 1. From testing, it was found that
a y+ = 1 mesh was required to resolve the smaller vortex structures in the corner region (for
more details please refer to Appendix B). Finally, the mesh has been coarsened towards the
top and outlet to reduce the computational cost. The total number of cells is equal to 16.4m
which is similar to the wing-body RANS simulation by Gand et al. [7] (12m cells).
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Figure 3.3: Illustrations of the computational mesh, (top) the mesh seen from above, (bottom left) mesh in the
symmetry plane (Z/T = 0) at the LE of the wing, (bottom right) inlet section of the domain.
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To generate the steady inlet boundary layer profile, which is applied as a fixed boundary
condition on the inlet bottom patch (Table 3.2), the approach used by Alberts [23] is followed.
In this approach the BL-profile is approximated using the Reichardt profile (Reichardt [49]),
which is given by:
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1

κ
ln (1 + κy+) + 7.8

[
1− exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

)]
(3.14)

For which the non-dimensional velocity u+ and non-dimensional wall distance y+ are given
by:

u+ =
u

uτ
and y+ =

yuτ
ν

(3.15)

Note that κ equals the von Kármán constant, uτ the friction velocity and ν the kinematic vis-
cosity. Hence, in order to generate a correct turbulent boundary layer the value of uτ has to
be determined. This is done using an optimisation procedure. First, it should be noted that uτ
is a direct function of the friction coefficient (Cf ) since:

uτ =

√
τw
ρ

with τw = Cf
1

2
ρU2

∞ and ρ = const. (3.16)

Thus a value of Cf shall be found such that the fixed inlet boundary layer thickness (δinlet)
of 0.0316 [m] determined by Alberts [23] (according to the measurement by Devenport and
Simpson [10]) is achieved. Using the Python31 optimisation library from SciPy [50], a function
that determines the difference between 0.99U∞ and u according to the Reichardt profile at the
mesh cell closest to y = δinlet was minimised by varying Cf . This means that a value of Cf is
found such that:

abs (0.99U∞ − uReichardt(Cf , y = δinlet)) ≈ 0 (3.17)

Then accordingly, the found value of Cf is used to generate the entire profile for y ≤ δinlet
using Equation 3.14, for y > δinlet the velocity is set to the free stream velocity (u = U∞).
The resulting velocity profile is displayed in Figure 3.4. It is important to match the δinlet to
the LES by Alberts since this LES is used as training data in the SpaRTA approach and it
has been shown in Chapter 2 that the BL-profile influences the behaviour of the junction flow
significantly.

3.1.3. Fluid Solver
To solve the RANS equations on the discretized mesh the fluid solver OpenFOAM 7 [51] has
been utilised. For all simulations reported in this work the finite volume solver simpleFoam
has been used to find the flow solution. This solver is based on the SIMPLE algorithm [52]
in which the solution of the momentum equation is iteratively corrected using the solution of
the pressure correction equation. The latter correction equation enforces the conservation of
mass on the momentum equation.

In order to enhance stability and therefore convergence, under-relaxation factors were
used to control the magnitude at which the variables update from one iteration to the other.
For Ui this factor was set to 0.7, P used a factor of 0.5 and the turbulence quantities ω and k
used a value of 0.6.

Next to that, the P correction equation was solved using the OpenFOAM GAMG solver.
The equations for Ui, k and ω were solved using the OpenFOAM smoothSolver using the
symmetric Gauss Seidel smoother. Note that in this work no sensitivity study is performed for
the different available linear system solvers in OpenFOAM since it is outside the scope of this

1https://www.python.org/, Last accessed: 31-05-2023

https://www.python.org/
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Figure 3.4: The fixed velocity profile used as boundary condition on the patch Inlet bottom, note δinlet/T ≈ 0.44.

research. The solvers were set identically to the junction-flow RANS simulation performed by
Alberts [23].

To interpolate the flow values from the cell centres to the cell faces, as required for the
finite volume method using Gaussian integration, second-order linear schemes were used. To
be specific: the gradient terms used the Gauss linear scheme, the divergence terms for k
and ω the bounded Gauss limitedLinear scheme for U the boundend Gauss linearUpwind
scheme and for the Reynolds stress the Gauss linear scheme. Finally, for the laplacian terms
the Gauss linear corrected scheme was applied.

Since the computational domain is too big to run on a conventional personal computer the
simulations were performed on a high-performance cluster (HPC). For this work, the simula-
tions were run on the HPC HPC12 provided by the TU Delft. Within this cluster, two types
of processors were utilised: the Intel(R) Xeon(R) Gold 6130 2 and the Intel(R) Xeon(R) E5-
2640v4 3. Although dependent on the availability, approximately 200 cores were used for
each simulation. As a rough indication, since the time depended on the type of simulation and
the type of CPU, the simulation duration was 3 to 6 hours which comes down to 600 to 1200
core-hours.

3.2. SpaRTA Framework for the Junction Flow
As briefly described in the literature study, Chapter 2, the goal of the SpaRTAmethod (Schmelzer
et al. [39]) is to improve the RANS approach by utilising high-fidelity data, in this work LES
data (by Alberts [23]). This is done using the steps described in the flowchart displayed below
in Figure 3.5. Note that this flow chart is aimed towards the junction flow in this work, but can
be generalised for any type of flow.

In detail, the SpaRTA method can be described by the following steps. First, a baseline
RANS simulation is performed and the LES data is interpolated onto the RANS mesh. With
these two starting points the k-corrective frozen approach can be executed. Note that the P

2https://www.intel.com/content/www/us/en/products/sku/120492/intel-xeon-gold-6130-processor
-22m-cache-2-10-ghz/specifications.html, Last accessed: 27-06-2023

3https://www.intel.com/content/www/us/en/products/sku/92984/intel-xeon-processor-e52640-v
4-25m-cache-2-40-ghz/specifications.html, Last accessed: 27-06-2023

https://www.intel.com/content/www/us/en/products/sku/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92984/intel-xeon-processor-e52640-v4-25m-cache-2-40-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/92984/intel-xeon-processor-e52640-v4-25m-cache-2-40-ghz/specifications.html
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and ω fields from the baseline simulation are used for the initial condition of the frozen simu-
lation to improve the convergence of the solution. The frozen method generates a correction
field for the anisotropy of the Reynolds stress tensor called b∆ij and a correction field for the tur-
bulent kinetic energy equation called R. These two correction fields describe the discrepancy
in the turbulence prediction between the baseline RANS and the LES. The equations used to
find these correction fields are described in subsection 3.2.1.

The outputted correction fields are then used as the machine learning target for the two to-
be regressed models (Mb∆ij

, MR). The (flow) features that are used for the sparse regression
are generated using the propagated frozen fields. The latter denotes that the exact correction
fields found by the frozen method are propagated in the RANS solver to obtain the theoretically
highest achievable result with respect to flow prediction. This is because the to-be-regressed
models are presumably not able to perfectly match the targets. The propagation process is
described in subsection 3.2.2 and the regression as well as the generation of the regression
features are described in subsection 3.2.3 and subsection 3.2.4 respectively. Finally, the re-
gressed models are propagated in the RANS solver as described in subsection 3.2.2 and
evaluated against the LES and or (frozen field) propagation results.

As can be observed in the flow chart for both the propagation of the frozen fields and the
model propagation the k and ω fields from the frozen approach are used for the initial condition
of the simulations. This was done in order to achieve satisfactory convergence of the solution.
The impact of this decision will be discussed later in Chapter 4.
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Figure 3.5: Flowchart of SpaRTA for the junction flow.

3.2.1. k-Corrective-Frozen
In the k-corrective-frozen approach the correction fields b∆ij and R are determined. These
correction fields describe the discrepancies of the RANS turbulence quantities with respect to
the LES values. The first step in this approach is to ’freeze’ the following three variables which
are supplied by the LES solution:

Ui = uiLES and k = kLES and bij =
1

2k
τijLES

− 1

3
δij (3.18)
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Note that the above notation is only used in this subsection. With the frozen k and bij the value
of b∆ij can be determined using Equation 3.19. In this equation bij equals the anisotropic part
of the Reynolds stress calculated using the Boussinesq closure.

b∆ij = bij − bij with bij = −νt
k
Sij (3.19)

However, to determine bij the value of νt should be evaluated and thus the ω equation has to
be solved. But before doing so it is important to note that the b∆ij field does not only correct the
Reynolds stress tensor but also the turbulence production term in the transport equations for
k and ω. The new production term is defined as:

P̃k = max
[
0,min

(
−2k

(
bij + b∆ij

) ∂Ui

∂xj
, 10β∗ωk

)]
(3.20)

In comparison to the standard SpaRTA method, an extra limit has been applied, that is P̃k ≥ 0.
This limit has been used to achieve numerical stability of the solver. With the new production
term defined, the transport equation for ω is solved to determine the value of νt.

∂ω

∂t
+

∂Ujω

∂xj
=

γ

νt
P̃k − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ 2(1− F1)

σω2
ω

∂k

∂xj

∂ω

∂xj
(3.21)

Finally, since k is frozen and ω and thus νt is known, the correction field for k-equation, that is
R, can be determined via the explicit equation:

R =
∂k

∂t
+

∂Ujk

∂xj
− P̃k + β∗kω − ∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(3.22)

In short, R describes the residual of the k-equation when substituting the LES data. The
original k-ω SST definitions for νt, the model constants and blending functions are used in
the transport equations displayed above. Next to that, solving the ω equation is an iterative
process since νt is dependent on ω and ω on νt. Therefore, in each iteration, the value of b∆ij
and R is updated until convergence is achieved.

3.2.2. Propagation
In the (model) propagation the correction fields, or models that determine the correction fields,
are propagated in the RANS CFD solver. Hereafter, the term propagation will refer to the
propagation of the exact correction fields (as calculated by the frozen solver) and the term
model propagation will refer to the propagation of the found models by the regression algo-
rithm. In the (model) propagation the equations for the Reynolds stress, ω and k are altered
to incorporate the correction terms.

First of all, the Reynolds stress tensor is modified such that the anisotropy correction b∆ij is
included, that is (note ∂kUk = 0):

u′iu
′
j = 2k

(
−νt

k
Sij + b∆ij +

1

3
δij

)
(3.23)

Secondly, the ω equation is modified to the version displayed by Equation 3.21, including the
newly defined production term P̃k. Finally, the k-equation is modified to include the correction
field R and the new P̃k:

∂k

∂t
+

∂Ujk

∂xj
= P̃k +R− β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(3.24)
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All other equations and model constants of the baseline RANS with k-ω SST model are
unchanged. Note that compared to the original SpaRTA equations published by Schmelzer et
al. [39] the ω equation is slightly altered. Namely, the correction field R is not included in the
ω equation to enhance numerical stability. A discussion regarding this change will be given in
Chapter 4.

Besides the updated equations to accommodate the correction fields, an extra numeri-
cal trick in the (model) propagation was used to increase stability. Namely, spatial blending
functions for the corrections fields were used. These functions return a factor between [0, 1]
depending on the spatial location in the domain. This factor is multiplied with b∆ij and R in each
iteration before being substituted into the equations. Two spatial blending functions were used,
one that wraps around the area close to the wing and one for the far-field.

The blending function that wraps the wing is displayed in Figure 3.6. As can be seen in
Figure 3.6a, the area where the corner vortex and (smaller) secondary vortices exist is not
blended since the blending starts at y/T ≈ 0.06 (as will be shown in Chapter 4). Above this y
level a blending factor linearly dependent on wall normal distance is applied (see Figure 3.6b).
Note that the blending function extends all the way up to the top of the computational domain.
The spatial blending around the wing is used to filter out a laminar separation bubble, this is
discussed in detail in Chapter 4.

(a) Free-stream normal view at x/T = 1. (b) Top view at y/T = 1.95.

Figure 3.6: Spatial blending factor applied close to the airfoil.

Next to the blending applied close the wing, is the spatial blending applied in the far-field.
This blending is displayed in Figure 3.7. As can be seen correction fields at the top and outlet
of the computational domain are linearly blended to zero. This is again performed to enhance
the numerical stability of the solver.

3.2.3. Sparse Regression
In order to generate the models that determine the turbulence corrections, spare regression is
utilized. The latter means that a set of (flow) features are sparsely regressed to the correction
fields. Resulting in two separate explicit functions for the tensor field b∆ij and the scalar field
R. The features that are used for this regression are described in subsection 3.2.4, for the
description in this subsection it is assumed that the features exist and are discretized over the
RANS mesh resulting in a feature matrix C∆ of shape (ncells, nbasisfunctions). Note that∆ = b∆ij
or R.

As described by Schmelzer et al. [39], the regression occurs in two steps. First elastic net
regression is applied to the linear problem:

∆ = C∆Θ (3.25)
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Figure 3.7: Spatial blending factor applied in the far-field of the domain, z/T = 0.

In which ∆ equals the target (b∆ij or R), C∆ the feature matrix and Θ the to-be-found set of
coefficients. In elastic net regression, the linear system is solved according to the following
optimisation formulation ([39]):

Θ = argmin
Θ̂

(∥∥∥C∆Θ̂−∆
∥∥∥2
2
+ λρ

∥∥∥Θ̂∥∥∥
1
+ 0.5λ (1− ρ)

∥∥∥Θ̂∥∥∥2
2

)
(3.26)

In which λ equals the regularisation weight and ρ the mixing parameter valued between 0 and
1. This mixing parameter controls the blend between LASSO regression and ridge regression.
Using only the l1 norm, defined by the subscript 1 in Equation 3.26, will result in LASSO
regression which promotes sparsity of the solution. Yet using only the l2 norm will result in
ridge regression which promotes small coefficients (Schmelzer et al. [39]). And thus using the
combination, by controlling the value of λ and ρ, will allow for a sparse solution with relatively
small coefficients. The goal of the elastic net regression is to find the sparse set of basis
functions in C∆ that describe the target to a good extent, not necessarily to find the correct
coefficients. Hence in the original paper, it is referred to as model selection. Besides, since
the optimal set of λ and ρ is unknown a brute force technique is used in this work that tests all
combinations:

λ = [0.01, 0.1, 1.0, 10.0, 100.0]

ρ = [0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 1.0]

By doing this a set of multiple candidate models consisting of only a few basis functions is
found, each for a different combination of λ and ρ.

The second step in the regression is the model inference, in which the optimal set of co-
efficients is found for the set of sparse candidate models. For this step ridge regression is
used since it promotes small coefficients. The optimisation problem for each individual model
candidate is formulated as follows ([39]):

Θi = argmin
Θ̂i

(∥∥∥Ci
∆Θ̂

i −∆
∥∥∥2
2
+ λr

∥∥∥Θ̂i
∥∥∥2
2

)
(3.27)

In which superscript i denotes the candidate model, and thus the submatrix and subvector of
C∆ and Θ that are non-zero according to the model selection step. Besides, λr equals the
regularisation parameter. Similar to the elastic net regression several values of λr were tried,
namely:

λr = [0.001, 0.01, 0.1, 1.0, 10.0]
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Then finally a set of correction models for b∆ij (Mb∆ij
) and R (MR) is formed by multiplying the

non-zero coefficients in Θi with the corresponding basis functions.
To perform the regression in this work the Python library Scikit-learn [53] is used together

with a code under development by the research group of Dr. R.P. Dwight. The latter is mainly
meant to automate the machine learning, generate the regression library and allow for smooth
interaction with the OpenFOAM fluid solver. Due to the large computational domain, the TU
Delft provided HPC 12 computing cluster was used to perform the machine learning, which
enables the use of 128 gigabytes of memory for the learning process. Yet, especially for b∆ij ,
reducing the cells used for the regression is required to meet the memory limit. To reduce the
number of cells thinning and boxing were used.

Thinning and Boxing
As described above two methods were applied to reduce the number of cells used for the
regression to reduce the memory requirement. This is because reducing the number of cells
will reduce the number of rows of C∆ and thus the memory required to store it.

The thinning process is rather simple. In this process, a random number of cells from
the entire domain is picked. To control the number of random cells to take, a thinning factor
between [0.0, 1.0] is user defined which when multiplied by the total number of cells results in
the number of cells to randomly choose. For both b∆ij and R a thinning factor of 0.1 is used.

Besides thinning, boxing is applied as well. In the boxing process, only cells are used for
the regression that are inside a user-defined rectangular box within the domain. This allows
the regression to purely focus on a part of the flow. For the junction flow a large portion in
the free-stream region is not of interest for the correction models. Hence defining the box to
surround the interesting region allows to reduce the number of cells used for the regression.
For bothR and b∆ij a box is used that extends in x/T from [−1.4, 1.4] and in z/T from [−2.1, 2.1].
ForR the box extends in y/T from [0.0, 1.4], while for b∆ij it extends from [0.0, 0.7], see Figure 3.8.
These boxes were determined using a trial and error approach, however, it was kept in mind
to include a portion of free-stream area within the box to ’show’ the regression areas with low
to no corrections.

Figure 3.8: Drawing of the box used for reducing the data, figure is up to scale, (red) box used for R, (blue) box
used for b∆ij .

Culling
In order to decide which models go into the refit step, i.e. the ridge regression, a culling step
is introduced which culls the models from the elastic net regression that are not of interest.
For all for models that have non-zero coefficients the following two criteria must hold before
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continuing into the refitting step:

• The R2-score must be above a certain user-defined value.
• The complexity of the model, that is the number of non-zeros in the Θ-vector, must be
below a user-defined value.

The R2-score is computed as follows (Rawlings et al. [54]):

R2-score = 1−
∑

i (yi − fi)
2∑

i (yi − ȳ)2
(3.28)

in which yi equals the target data, ȳ the mean of the target data and fi the predicted value
by the model. This score gives an indication of how well the model fits the target data, if the
R2-score equals 1.0 then the model predicts the target perfectly.

Besides ranking models on the R2-score, the mean squared error (MSE) is also used as
a performance indicator. The MSE of a model is computed as follows:

MSE =
1

n

∑
i

(yi − fi)
2 (3.29)

in which n equals the length of the vector yi, i.e. the number of data points.

3.2.4. Feature Library and Selection
In order to perform the regression described above in subsection 3.2.3 it is important to es-
tablish the feature matrix C∆. For both b∆ij and R, Pope’s tensor basis, as displayed in Sec-
tion 2.3, will be used as a starting point. This means that, especially for b∆ij since it impacts
the Reynolds stress tensor directly, the underlying assumption of the near homogeneous rate
of strain should be kept in mind.

Features for t.k.e. Residual
SinceR is a scalar field, a set of scalar features is required. Hence as a primary set of features
the tensors defined by Pope [34], see Equation 2.9, are multiplied by the velocity gradient
tensor ∇U to generate the scalar features:

G(λ) = 2kT
(λ)
ij

∂Ui

∂xj
(3.30)

This is similar to how the production term in the turbulent transport equations is determined,
see Equation 3.20. Now to evaluate T

(λ)
ij the strain rate and rotation rate tensors should be

non-dimensionalised using a time-scale τ . In this work, two time scales are used. The first
time scale is the conventional turbulent time scale 1/ω, also used by [38, 39]. And the second
time scale is the mean flow time scale 1/∥∇U∥ as for example used in the QCR model to non-
dimensionalise Oik (Equation 2.4). The subscript s is used to indicate that the mean flow time
scale has been applied instead of the conventional turbulent time scale. Finally, the turbulence
dissipation rate (ϵ) is added to the set of G(λ) functions to generate the list of primary features:

Primary features =
[
ϵ,G(1), G(1)

s , G(2), G(2)
s , G(3), G(3)

s , ..., G(10), G(10)
s

]
(3.31)

To not solely rely on the primary features for the regression, the primary set is accompanied
by a set of non-dimensional secondary features. This secondary set is based on several flow
features and the tensor invariants corresponding to Pope’s tensor basis, see Equation 2.10.
These invariants were again computed with the two different time scales. The non-dimensional
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flow features qi are displayed below in Table 3.3. These flow features were previously defined
in Steiner et al. [45] and Vigner [24].

Although the list displayed in Table 3.3 can be very useful to activate models in regions
where the invariants defined by Pope do not activate one must be careful with the use of them.
First of all, qTI is not Galilean-invariant, which means it should preferably be avoided in a
turbulence model. It is kept in the list since for design optimisation the Galilean-invariance
argument is less of a problem as from iteration to iteration the reference frame will remain
unchanged. However, it is tried to be avoided if possible. Secondly, as mentioned by Spalart
[55], the use of the gradient of P should also be avoided in any turbulence model. Therefore,
if possible qpS and qdp/ds are omitted.

Table 3.3: List of non-dimensionalized qi features.

Expression Description

qTI = k/
(
1
2U

2
i

)
Turbulence intensity

qQ = 1
2

(
∥Ωij∥2 − ∥Sij∥2

)
/∥Sij∥2 Q-criterion

qT = 1
ω/∥Sij∥ Ratio of turbulent to mean time scale

qν = νt/(100ν) Ratio of turbulent to laminar viscosity

qτkB = ∥τij,Boussinesq∥ /k Ratio of total to normal Boussinesq Reynolds stresses

q⊥ =
∣∣∣UiUj

∂Ui
∂xj

∣∣∣ /√U2
nUi

∂Ui
∂xj

Um
∂Um
∂xj

Deviation from parallel shear flow

qγ =
∥∥∥∂Ui
∂xj

∥∥∥ /ω Shear parameter

qV =
√
ωj

∂Ui
∂xj

ωk
∂Ui
∂xk

/∥Sij∥2 Vortex stretching

qRe =
√
kd

50ν Wall-distance based Reynolds number

qpS =
√

∂P
∂xi

∂P
∂xi

/
∣∣∣Ui

∂Ui
∂xi

∣∣∣ Pressure to shear ratio

qdp/ds = Uk
∂P
∂xk

/
√

∂P
∂xj

∂P
∂xj

UiUi Pressure gradient along a streamline

Finally, a set of tensor invariants based on the∇k were added as defined by Wu et al. [56],
the introduction of these invariants into SpaRTA is published by Steiner et al. [45]. The invari-
ants are given by Equation 3.32 and Table 3.4, note that ϵ equals the dissipation rate and I the
identity tensor. For Table 3.4, similar to Equation 2.10, {·} equals the trace and the bold sym-
bols refer to conventional tensor multiplication. Note that S and Ω are non-dimensionalised
using two time scales, similar to the conventional tensor basis, subscript s refers to the mean
flow time scale.

Ak = −
√
k

ϵ
I ×∇k (3.32)



3.2. SpaRTA Framework for the Junction Flow 35

Table 3.4: List of invariants based on Ak S and Ω.

Ik =
{
Ak

2
}

V IIIk = {ΩΩAkS}
IIk = {AkAkS} IXk = {AkAkΩS}
IIIk = {AkAkSS} Xk = {ΩΩAkSS}
IVk = {AkAkSAkSS} XIk = {ΩΩSAkSS}
Vk = {ΩAk} XIIk = {AkAkΩSS}
V Ik = {ΩAkS} XIIIk = {AkAkSΩSS}
V IIk = {ΩAkSS}

Note thatWu et al. [56] also specifies invariants based on∇P yet these have not been included
since Spalart ([55]) discourages the use of ∇P in turbulence models. This all combined es-
tablishes the set of secondary non-dimensional features:

Secondary features =
[(
qTI , ..., qdp/ds

)
, (I, Is, ..., V, Vs) , (Ik, ..., XIIIk, XIIIk,s)

]
(3.33)

Besides boxing the flow to reduce the memory requirement of the regression, it is also
important to filter out the secondary features that hardly contain any information regarding R.
This means that only a subset of the secondary features is actually used for the regression,
which reduces the number of columns required for C∆ and thus the required memory. For the
regression of R the concept of mutual information is used.

By computing the mutual information of all secondary features with R a measure is com-
puted that quantifies the amount of information a secondary feature gives about R. And thus
the dependency of a secondary feature X with respect to R is discovered. If the feature X is
independent of R then the mutual information value equals zero. The formal definition of the
mutual information is given by Equation 3.34 (Kraskov et al. [57]).

MI(X,Y ) =

∫
y

∫
x
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy (3.34)

In Equation 3.34 p(x) equals themarginal probability density function of random variableX and
p(x, y) the joint probability density function of random variables X and Y . However, since the
probability density functions of the secondary features and R are unknown the Python library
scikit-learn [53] is used which estimates the value of MI based on the method by Kraskov et
al. [57].

In Kraskov et al. [57] a k-nearest neighbour method is utilised. First the value ϵ(i) is deter-
mined which is based on the distance of a point i to its kth nearest neighbour, let’s say there
are two random variables X and Y consisting of N points then the value of ϵ(i) yields:

ϵ(i)/2 = max
(
∥xi − x′i∥, ∥yi − y′i∥

)
(3.35)

in which (xi, yi) represent the point i, (x′i, y′i) the kth nearest neighbour of i and ∥ · ∥ the
Euclidean distance. Sequentially the number of points (xj) within X that satisfy the relation:

∥xj − xi∥ < ϵ(i)/2 (3.36)

is defined as nx(i), similarly the value of ny(i) is determined. Finally, the value of MI(X,Y )
is determined as:

MI(X,Y ) = Ψ(k)− 1

N

N∑
i

[Ψ(nx(i) + 1) + Ψ(ny(i) + 1)] + Ψ(N) (3.37)



36 Chapter 3. Data-Driven Modelling Methodology

in whichΨ equals the digamma function. As described by Goderie [58] the assumptions made
to derive Equation 3.37 is that the entropy of variable X (and Y ) can be determined with N
realisations and that the marginal density function p(x) is constant within a radius ϵ(i)/2 from
point i. Note that the value ofMI can also be expressed using the entropy ofX and Y defined
by H() (Kraskov et al. [57]):

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (3.38)

With Equation 3.37, the value of MI for each secondary feature with R can be computed.
Consequently, secondary features with a relatively low MI score can be removed from the
set reducing the amount of memory required to store C∆. The only decision left is what value
to use for k, as described by Kraskov et al. [57] lower values of k will reduce systematic errors
in the estimation, while higher values of k reduce statistical errors. Kraskov et al. [57] advise
to use a value between 2 and 4. In this work, it was found that for this particular problem the
value of k (as will be shown in Chapter 4) was insensitive. Higher values would reduce the
magnitude ofMI compared to lower values, however, the relative difference between theMI
scores of different secondary features would remain fairly constant.

Feature Variables for Anisotropy Correction
The regression features used for b∆ij are very similar to the features used forR. For the primary
features, instead of using the features G(λ), Pope’s tensor basis can be used directly. Hence
the primary set is defined as follows, again using the two time scales:

Primary features =
[
T
(1)
ij , T

(1)
ij,s, T

(2)
ij , T

(2)
ij,s, T

(3)
ij , T

(3)
ij,s, ..., T

(10)
ij , T

(10)
ij,s

]
(3.39)

The set of secondary scalar features is the same as for R, that is the features defined in Equa-
tion 3.33. Similar to R only a subset of the secondary features is used to limit the requirement
on memory. However, using mutual information on the set of secondary features with respect
to b∆ij is difficult to define since b∆ij is a tensor and the secondary features are scalars. It could
be done by flattening b∆ij into a vector of scalars, however, this will result in information on the
scalar features with respect to each individual component of b∆ij rather than the complete tensor.
Therefore, it was decided to do a cheap regression with degree 1, which will be explained in
subsection 3.2.5, using all secondary features. From this regression, the important secondary
features are extracted by observing the best-scoring models. These important features then
form the set of secondary features used for the more expensive regressions.

3.2.5. Library Generation
Following the original paper by Schmelzer et al. [39], the library of non-linear functions which
ultimately form the columns of C∆ is generated using the FFX algorithm (Riolo et al. [59]). In
this algorithm, the secondary and primary features are combined using (non-)linear functions
to generate the basis functions that are regressed to the target data. In essence, the algorithm
generates strings that described the basis functions which are evaluated on the training data
set (after thinning and boxing). The strings have the following form:

f(si) · g(sj) · h(sk) · ... · pi (3.40)

In which the f(), g(), h(), ... describe (non-)linear functions, si equals any secondary feature
from the predefined set and pi any primary feature from the predefined set. Note that only
one primary feature is used to cohere to the structure of the original general effective viscosity
hypothesis (Section 2.3), and to enforce unit consistency. The amount of secondary features
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used is dependent on the user-defined library degree setting. If the library degree equals 1
then only univariate function strings (multiplied by a primary feature) are possible:

f(si) · pj (3.41)

Yet if the degree is set to 2, more complex functional strings with up to 2 secondary features
are generated, that is:

f(si) · g(sj) · pk (3.42)

Note that, if for example, the degree equals 2 then the library also includes all degree 1 forms.
The value of the library degree can be increased up to very complex levels, however, to keep
the memory required for the regression within bounds the level has been set to 2 in this work.

For the functions f() the following set has been used in this work:[
tanh(x), |x|,

√
|x|, x1, x2

]
All basis functions are evaluated on the computational cells which result in the matrix C∆.
Note that the features are scaled using their standard deviation which is determined using
the Python library Numpy [60]. If any basis function results in a ’not-a-number’, for example,
because it tends to infinity, then the basis function is omitted from the matrix.





4
Results and Discussion

This chapter displays and discusses the various results of the various simulations performed
in this work. First, in Section 4.1 a comparison is made between the baseline RANS simulation
and the LES data to establish the fallacies in the baseline version of RANS. Secondly, in Sec-
tion 4.2 the results of the k-corrective frozen approach are displayed. This section is followed
by Section 4.3 in which the results of the propagation of the correction fields are shown. The
sparse regression of the correction fields is discussed in Section 4.4. The propagation of the
found models is discussed in Section 4.5. Finally, a discussion on several modifications made
to the SpaRTA methodology for the junction flow is given in Section 4.6.

4.1. Baseline RANS Results and LES Data
Before diving into the machine learning it is essential to establish a baseline. Hence in this
section the results of the baseline RANS will be displayed. Next to that, these results will
be compared to the LES data by Alberts [23]. Note that all LES results shown in this work
refer to the time-mean results. Although the LES data has minor discrepancies with respect
to experimental data, due to the subgrid-scale model as shown by Ryu et al. [4], it is seen as
the ground truth in this work. For the validation of the LES with experimental data please refer
to Alberts [23].

4.1.1. Mean Flow Fields
Below in Figure 4.1 the x-velocity profile (U ) is given in the symmetry plane at several locations
upstream of the wing. In the most left profile (x/T = −5.9) it is shown that the boundary layer
profile at the inlet of the domain of the RANS simulation matches the LES profile to a good
extent. The latter is important as the shape and thickness of the boundary layer influence the
formation of the vortices downstream, as described by the literature in Chapter 2. In the right
three plots a significant discrepancy between the profiles and separation location is observed,
this confirms the lack of prediction accuracy of RANS for the junction flow.

39
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Figure 4.1: RANS and LES boundary layer profiles in the symmetry plane.

A better visualisation of the faulty separation prediction by the RANS is shown in Figure 4.2
in which the velocity magnitude (|U |) and velocity direction are shown in the symmetry plane
upstream of the wing. The wrong prediction of the separation point causes the HSV to be
misplaced by approximately 0.15T .

Figure 4.2: RANS and LES velocity magnitude in the symmetry plane upstream of the wing.

The location of the vortex core is easily recognised by observing the turbulent kinetic energy
(k) in the symmetry plane, see Figure 4.3. In the LES data, it is noticed that the k profile
shows the expected C-shape as described by Elahi et al. [11]. Besides the RANS not having
the correct shape and location, it is also under-predicting the magnitude of k. Next to that, a
discrepancy is observed in the corner region (near x/T = 0.0) where RANS is predicting zero
k yet the LES is not.

In Figure 4.4 the vorticity in z-direction (Ωz) is displayed in the symmetry plane. When
comparing the RANS results with the LES data it is clearly visible that not only the location
of the HSV is off, the shape is not representative either. The LES clearly shows the elliptical
shape resulting from the time average of the bimodal behaviour of the HSV. This shape is not
recognised in the RANS results. The latter could be due to the fact that the RANS equations,
as described in Chapter 3, search for a steady-state solution without any information regard-
ing the unsteady behaviour of the true flow. This means that although the LES shown in
Figure 4.4 obeys the steady state RANS equations, as Alberts [23] showed that the simulation
was statistically stationary, the elliptical shape is formed by averaging (over time) an unsteady
phenomenon. This unsteady behaviour is unknown to the RANS solver and its closure model
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Figure 4.3: RANS and LES turbulent kinetic energy in the symmetry plane upstream of the wing.

which therefore could result in a different solution for the shape of the mean HSV. However,
for the goal of this thesis, this does not pose a problem since the goal is not to find the correct
instantaneous flow fields nor the correct transient behaviour of the HSV, but rather to find the
correct mean field. And thus the goal is to adapt, or correct, this nonphysical steady-state
solution such that it is similar to the time average of the true flow.

Figure 4.4: RANS and LES vorticity in z-direction in the symmetry plane upstream of the wing.

Although the HSV is dissimilar in the RANS versus LES, the corner vortex in the symmetry
plane shows a similar shape and location. The corner vortex is recognised by the circular struc-
ture with positive Ωz in Figure 4.5. The magnitude of the RANS is, however, lower compared
the LES. Note that the colour scale has been adapted between Figure 4.4 and Figure 4.5 to
clarify the shape of the corner vortex. The change in scale also indicates that the magnitude
of the vorticity of the corner vortex core is significantly larger than the HSV.

Figure 4.5: RANS and LES closeup of the z-vorticity in the symmetry plane upstream of the wing.
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The behaviour of the HSV when convecting and stretching around the leading edge is
shown in Figure 4.6. In this figure, the vorticity in x-direction (Ωx) is shown at several y-z
planes adjacent to the wing. A similar behaviour as in the symmetry plane is seen. Namely,
the shape and especially the location of the HSV are dissimilar when comparing the RANS to
the LES data. Next to that, it is also observed that the dissipation of the HSV in the RANS is
weaker. Finally, the HSV in the RANS displaces further away from the wing when traversing
downstream. It is plausible that this is the result of a less severe suction force imposed by the
wing on the HSV, because the HSV is generated further away from the wing in the RANS.

Figure 4.6: RANS (left) and LES (right) vorticity in free-stream direction (x) in planes normal to the flow (y-z
planes).

An interesting region to investigate, for both the RANS and LES data, is the corner region
in the y-z planes downstream of the leading edge. Figures 4.7, 4.8 and 4.9 show the Ωx in
this region at several planes, note that Figure 4.7 uses a different colour scale to clarify the
structures. First of all, in the top row of Figure 4.7 (x/T = 0.5) it can be seen that although
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the magnitude is slightly off the shape and different structures are similar, this was seen in
Figure 4.5 as well. In the second row (x/T = 1), however, a negative Ωx structure at z/T =
0.50 is present in the LES which is not predicted by the RANS. This is a good example of
RANS not being able to predict these secondary vortex structures (or stress-induced vortices)
as these depend on the gradients of the Reynolds stresses as explained in Chapter 2. Since
two-equation models such as the k-ω SST model cannot predict the anisotropy of the Reynold
stress accurately it is expected that RANSwith this turbulence model does not correctly predict
secondary vortices. Note that the structure should be able to be represented by the RANS
mesh since nine computational cells cover the dimension z/T = [0.50, 0.51] and thirteen cells
cover y/T = [0.00, 0.01].

Figure 4.7: RANS (left) and LES (right) closeup of x-vorticity in y-z planes at two different x/T locations.

Another example of a secondary vortex is given in Figure 4.8 and Figure 4.9. Notice how
the positive Ωx structure in the LES data at z/T = 0.265 in Figure 4.8 and z/T = 0.065 in
Figure 4.9 is not predicted by RANS. A possible result of not predicting these structures is the
contribution to a corner separation in the RANS flow which will be shown later.

Figure 4.8: RANS and LES closeup of x-vorticity in the y-z plane at x = 3T .
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Figure 4.9: RANS and LES closeup of x-vorticity in the y-z plane at x = 4T .

In Figure 4.10 the U velocity (velocity in x-direction) is shown at several y-z planes down-
stream of the leading edge. The main discrepancy between the RANS and LES can be ob-
served in the region just to the right of where the HSV exists. It can be seen that the HSV
removes momentum in the free-stream direction to its right and adds momentum to the left
(with respect to this side of the wing). This extraction right of the HSV appears to be more
extreme in the RANS simulation close to the bottom wall compared to the LES. This can be
linked to the larger (area-wise) HSV as seen in Figure 4.6. As a result of this an error in the
drag prediction of the bottom wall will be induced since the wall shear stress is dependent on
the velocity gradient at the wall (Pope [48]).

Next to the discrepancy caused by the HSV, is the difference seen at the wing wall in the
corner region. In which the RANS, especially at x/T = 3 seems to predict lower velocities.
However, above the bottom wall and corner region, that is y/T ≳ 0.25, the RANS and LES
U -velocity fields match quite well.
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Figure 4.10: RANS (left) and LES (right) velocity in x direction for several y-z planes.

From the comparison done in this section a few key points are identified that describe
the difference between RANS and LES on the wing body junction flow, and hence provide
guidance for the improvements required by the new turbulence model. First the HSV, it is
observed that the shape, location and k magnitude are different and hence need adaptation.
Secondly, it was found that the corner vortex prediction is satisfactory, yet, the secondary
vortices are not. And thus the anisotropy of the turbulence should be modified such that these
secondary vortices are predicted. Finally, a laminar flow phenomenon difference was found
which is described next in subsection 4.1.2.

4.1.2. Laminar Separation Bubble
As the LES data was investigated for the machine learning phase a laminar flow phenomenon
was found which cannot be represented by the RANS equations as defined in Chapter 3. That
is, a laminar separation bubble (LSB) was observed close to the leading edge of the airfoil, as
visualised in Figure 4.11. This figure shows the U -velocity close to the airfoil wall at y/T = 2,
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which is far away from the corner region. As can be seen in Figure 4.11 the LES data shows
a bubble region of separated flow which is not present in the RANS result since the baseline
k-ω SST model is not meant to predict flow transition.

The appearance of an LSB in the LES is not unexpected as the airfoil is relatively thick and
the inflow above the boundary layer in the LES was fully laminar. This laminar flow separates
in the adverse pressure region of the wing, transitions to turbulent flow, and consequently
the flow re-attaches to the wing which causes the separation bubble. It should be noted that
since the LES boundary layer over the bottom wall was turbulent, the corner region where the
corner- and secondary vortices live does not have an LSB. However, above the corner region
(approximately y/T > 0.06) the LSB exists on the wing and extends all the way up to the top
of the domain. Note that this corner region with the turbulent flow is significantly smaller than
the turbulent boundary layer thickness (δinlet/T ≈ 0.44). This is assumed to be caused by the
HSV which pulls laminar flow from the upper region of the domain towards the bottom wall, as
shown by the flow direction in Figure 4.2.

Figure 4.11: Presence of a laminar separation bubble on the surface of the airfoil in the LES solution, flow seen
from above.

To further compare the pressure and viscous forces on the wing, the pressure and friction
coefficient profiles (Cp and Cf ) are displayed in Figure 4.12. Two different y-levels have been
used, one in the turbulent corner region (y/T = 0.025) and one in the initially laminar region
far away from the corner (y/T = 2.0). First of all, in the Cp plot it is observed that the RANS
profile matches the LES data quite well and predicts the correct pressure peak and pressure
recovery curve. Two discrepancies can be observed, that is the presence of the LSB in the
LES data at x/c = 0.2 and the corner separation near the trailing edge in the RANS results.

This corner separation for y/T = 0.025 is especially visible in the Cf plot. In which it can
be seen that for y/T = 0.025 the RANS results match the LES quite well except for the trailing
edge region where the RANS result shows a (corner) separation. As discussed above a likely
source for this separation is the fact that RANS cannot correctly predict the secondary vortices
which causes the BL behaviour to be different, especially in the trailing edge region of the wing.
The y/T = 2.0 curve is very different when comparing RANS to LES, which is due to the flow
transition in the LES, the LSB can be clearly identified by the negative peak of Cf in the LES
curve.
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Figure 4.12: Pressure and skin-friction coefficient at two different wing span locations.

4.2. k-Corrective Frozen Results
From the comparison in the previous section, it is clear that corrections are required for the
RANS turbulence model to decrease the discrepancies for the wing-body junction flow. In this
section, the fields that define this correction are shown and discussed. To recall, the correc-
tion variables used in the SpaRTA method are the k-equation residual R and the turbulence
anisotropy correction b∆ij . These variables are found using the k-corrective frozen approach
as described in Chapter 3.

4.2.1. Turbulent Kinetic Energy Correction
For the turbulent kinetic energy there exist two corrections, the direct correction via the residual
R and the indirect correction of b∆ij . The latter is through the production term in the k- and ω-
equation, for reference revisit Equation 3.20. The production correction by b∆ij is referred to
as P∆

k (= −2kb∆ij∂jUi). Although P∆
k is not regressed directly, since b∆ij is regressed, it is still

important to investigate the correction. This is because its significance or magnitude is similar
to R. Below in Figure 4.13 the fields for R and P∆

k are shown in the symmetry plane upstream
of the wing. As observed, the main corrections exist in the region where the HSV lives in the
LES data, and in the corner region. A correction in these regions is expected when observing
the difference between the k solutions in Figure 4.3. However, it has to be noted that the
difference in k-fields (RANS vs. LES) cannot be directly linked to R and P∆

k since there is a
mismatch in units.

From Figure 4.13 it is observed that the structures of theR field, in contrast to P∆
k , are quite

complex and maybe even a bit noisy. From the comparison of the k-fields in the RANS versus
LES comparison it was noticed that the k-field of the LES is more complex with respect to
the RANS solution (recall the C-shape in Figure 4.3). Hence, using this more complex k-field
to compute the value of R, it can be expected to consist of multiple (noisy) structures. Yet it
should not be forgotten that the value of R is also influenced by the LES velocity field and the
value of b∆ij (via P∆

k ). Thus it is difficult to pinpoint where this complex system of structures at
the HSV location exactly comes from. Yet it should be kept in mind since the noisy structure
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could introduce instabilities in upcoming simulations.

Figure 4.13: R and P∆
k in the symmetry plane upstream of the wing.

Similar to the symmetry plane, the results in the y-z planes shown in Figure 4.14 (R) and
Figure 4.15 (P∆

k ) also show two correction regions. That is again the HSV region and the
corner region. It is noticed, however, that the R correction seems to be more significant in
the HSV region compared to P∆

k . Comparing x/T = 0.5 and x/T = 1 it is observed that at
the wing wall the correction is increasing, this is due to the LSB as shown in Section 4.1. The
reason this correction is present is due to the fact that the LES solution is transitioning in this
region from laminar flow to turbulent flow. Hence, to reproduce this transition behaviour in the
RANS a significant k-correction is applied. Note that although it looks like R and P∆

k seem to
cancel each other out on the wing wall this is not the case as will be shown.

Figure 4.14: R in y-z planes at two x locations.

Figure 4.15: P∆
k in y-z planes at two x locations.
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Adding R and P∆
k together results in the total correction to the k-equation, the summation

of the two is shown in Figure 4.16. In this figure the planes x/T = 2 and 3 are also shown,
however, as observed only the regions very close to the wall corrections at these locations.
The top row figures still show the two previously discussed significant corrections in the corner
and HSV region.

Figure 4.16: Sum of R and P∆
k in y-z planes at several x locations.

Next to the corrections for the HSV and corner region, a significant region of correction
is found close to the bottom wall downstream of the leading edge. This correction has been
visualised in Figure 4.17 for several z locations outside the range shown in Figure 4.16 at
x/T = 1. From the curves, it is noticed that at z/T = 2.6 the correction is close to 0. This
indicates that the correction is not just due to a slight mismatch in inlet boundary layer profiles
between the RANS simulation and LES data since the domain extends in z/T from [−6.3, 6.3].
Therefore the correction is likely related to the separation and/or modification of the boundary
layer by the vortex system close to the wall. Otherwise, a correction would be expected to
extend all the way to z/T = 6.3.
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In Figure 4.14 it was observed that a correction close to the wing wall is present, the latter
is to reproduce the transitional behaviour of the flow over the LSB. A better visualisation of this
correction is present in Figure 4.18, in which the flow seen from above is shown at a distance
far away from the corner region. Especially when comparing this figure to Figure 4.11, it can
be seen that a significant k correction is present at the aft location of the LSB. Figure 4.18 also
shows that the negative correction by P∆

k does not cancel the small bubble of positive R.

Figure 4.18: k-correction close to the wing wall far from the corner region to show the effect of the LSB, flow
seen from above.

4.2.2. Anisotropy Correction
The second correction field is the Reynolds stress anisotropy correction tensor b∆ij . This term
aims at correcting the Reynolds stress tensor such that the anisotropy of the turbulence in the
junction flow is more accurate. The resulting b∆ij components from the frozen approach in the
symmetry plane are shown below in Figure 4.19. In this figure corrections in the HSV region
are found in the yy, zz and xy components. Note that b∆ij , or bij in general, is multiplied by k in
the RANS equations. Therefore, the corrections close to the wing wall and in the free stream
region for xx and yy appear significant, yet the value of k is close to zero in those regions (see
Figure 4.3), thus the effect is limited. The corrections to the xz and yz components are close
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to zero and thus insignificant.

Figure 4.19: Components of b∆ij in the symmetry plane upstream of the wing.

To continue the discussion of b∆ij in the y-z planes it is important to visualize the value of k.
This is because of the dependence of the effect of b∆ij on k. Therefore, below in Figure 4.20
the value of k from the LES data is displayed for two y-z planes. This figure shows that, as
expected, the value of k is high in the HSV region and the corner region as well as close to
the bottom wall. For x/T = 3 the value of k is also higher at the wing wall since the flow
has transitioned to turbulent flow in the LES (flow transitions is just upstream of x/T = 1 see
Figure 4.12). This knowledge allows the continuation of the analysis of b∆ij .
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Figure 4.20: The k fields in y-z planes from the LES data at two x locations.

First b∆ij at x/T = 0.5, see Figure 4.21, in this figure some corrections near the flat plate
are seen in the yy and zz components. Next to that, there is a visible yy correction in the HSV
region. Again the yy and zz corrections close to the wing wall are less critical due to the low
value of k.

Figure 4.21: Components of b∆ij in the y-z plane at x/T = 0.5.

A more exciting correction is found when zooming in on the corner region, which is shown
in Figure 4.22. This figure shows anisotropy corrections in the region where the corner vortex
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and the secondary vortices live. These corrections are seen in the yy, zz and yz components.
Such corrections are expected since it was shown in Section 4.1 that the RANS simulation
does not predict the secondary vortices well. And as discussed before, the prediction of these
vortices is influenced by the prediction of the anisotropy in the Reynolds stress tensor. It is,
therefore, seemingly not a coincidence that the corrections found in the corner region line up
with the P3 term, which is a function of v′v′ (i.e. yy) and w′w′ (zz), and the P4 term, function
of v′w′ (yz), from the vorticity equation in the free stream direction (Equation 2.3).

Figure 4.22: Components of b∆ij in the corner region in the y-z plane at x/T = 0.5.

Finally, the corrections at x/T = 3 are shown in Figure 4.23. From this figure, it is observed
that only significant corrections are found in the diagonal components. For which the zz com-
ponent only seems to correct the wing wall and not the bottom plate. Besides, the xx and yy
components appear to exchange with one another. That is, the positive xx correction at the
walls roughly cancels the combined negative corrections of yy and zz components indicating
a redistribution of the turbulent components. The off-diagonal components do not show any
significant corrections.
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Figure 4.23: Components of b∆ij in the y-z plane at x/T = 3.

4.3. Correction Field Propagation
The propagation of the correction fields discovered in Section 4.2 is an important step in the
SpaRTA process. This is because the propagation shows the theoretical best result achievable
with respect to the discrepancy between the target LES data and the modified RANS. It is thus
expected that the flowfields generated by the propagation closelymatch the LES data. As if this
were not the case then the correction fields and or correction variables are insufficient for this
flow problem. The propagation can therefore be seen as a verification step of the corrections
in the SpaRTA process. This section displays the results of the propagation fields as found in
Section 4.2, using the equations and spatial blending functions described in Chapter 3.

In Figure 4.24 the boundary layers of both the propagation and the LES data are shown in
the symmetry plane upstream of the wing. From this figure, it is identified that the propagation
matches the LES data very well. This means that the separation point upstream of the leading
edge is determined correctly.
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Figure 4.24: Propagation boundary layer profiles in the symmetry plane upstream of the leading edge.

The correct location of the separation point is also visible in Figure 4.25 in which the z-
vorticity is displayed in the symmetry plane. Next to the separation point, the propagation
displays the correct shape and magnitude of the HSV as well. This is a welcome result since
the LES HSV shape is the result of time averaging an unsteady phenomenon. This propa-
gation thus shows that with the correction fields determined by the frozen approach, the time
average result of the HSV can be found using a steady-state CFD solver.

Figure 4.25: Propagation and LES z-vorticity in the symmetry plane upstream of the leading edge.

The comparison of k in the symmetry plane, presented in Figure 4.26, shows that the
faulty k shape from the baseline RANS (Figure 4.3) is corrected in the propagation using the
correction fields. Not only is the C-shape visible but also the magnitude of k in the corner
region.
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Figure 4.26: Turbulent kinetic energy in the symmetry plane upstream of the leading edge for both propagation
and LES.

Next to the investigation in the symmetry plane is the comparison of the propagation with
the LES in the y-z planes downstream of the leading edge, these are shown next. First in Fig-
ure 4.27 the vorticity in the x-direction is displayed. The main take-away from this figure is the
fact that the shape, position and magnitude of the HSV are correctly shown in the propagation
simulation.

Figure 4.27: Vorticity in x-direction in y-z planes at several x/T locations.
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However, more interesting is whether the propagation determines the correct secondary
vortices in the corner region. To recall, the correct vortex topology was missing in the baseline
RANS. Pleasantly, as presented in Figure 4.28 and Figure 4.29 the secondary vortices are
in fact present in the propagation results. This includes both the small vortex with negative
magnitude at z/T ≈ 0.5 in Figure 4.28 and the positive structure at z/T ≈ 0.265 in Figure 4.29.
It is noted, however, that in there exists a discrepancy in the magnitude of the corner vortex as
well as the negative vorticity close to the bottom wall in Figure 4.29. Yet these discrepancies
are negligible compared to the improvements with respect to the baseline RANS.

Figure 4.28: Vorticity in x-direction in the corner region, note the change in colour-scale.

Figure 4.29: Vorticity in x-direction in the corner region.

With the correct vorticity, it is expected that the U velocity is accurate as well. And indeed
as shown in Figure 4.30 the U velocity downstream of the leading edge matches the LES
well. Only minor discrepancies are present on the wing wall, this is due to the spatial blending
function used on the wing wall to filter the LSB. As shown in Chapter 3, this blending function
linearly blends out the correction fields in very near proximity to the wing wall above the corner
region.
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Figure 4.30: U velocity for several y-z planes for both propagation and LES.

The main effect of using the spatial blending function around the wing is that the wing
forces, especially the viscous forces as shown in Section 4.1, will be dissimilar to the LES in
the blended region. This is because instead of an LSB as present in the LES, the baseline
RANS solution will approximately be present in this blended region. Note that this blending
has been applied for the numerical stability of the later discussed model propagation and that
it has been confirmed that indeed the corrections found by the frozen approach will induce a
correct LSB in the propagation if used without this blending at the wing. The latter propagation
is, however, not shown in this work as it is irrelevant to the discussion since the propagation
is linked to the model propagation for which the blending is required. The discussion on why
the spatial blending is required will be covered in Section 4.6.

Nevertheless, for the region below the spatial blending, i.e. the corner region, the wall
forces can be compared. Below in Figure 4.31 the skin friction coefficient on the wing based
on the wall shear stress in x-direction is displayed for various y levels. Note that the Cp profiles
are omitted since as already shown in the baseline RANS these match very well in the corner
region. From Figure 4.31 it can be seen that the propagation is matching the LES to a good
extent. However, more interestingly is the removal of the corner separation present in the
baseline RANS, which is likely due to the correct determination of the vortex topology in close
proximity to the corner.
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Figure 4.31: Skin friction coefficient profiles of the wing in the corner region for both propagation and LES.

At the start of this section, it was described that the propagation serves as a verification of
the correction fields. The results showed that the correction fields were verified successfully
since the flow fields match the LES data with only minor discrepancies.

4.4. Model Training Results
This section covers the results from the sparse regression according to the method described
in Chapter 3. First, the regression of the turbulent kinetic energy residual R will be discussed.
Secondly, the results regarding the regression of the turbulence anisotropy correction are dis-
played.

4.4.1. Turbulent Kinetic Energy Residual
As mentioned in Chapter 3 the first step in the regression of R is to choose a subset of the sec-
ondary features to reduce the computational memory requirement for the regression. For the
regression ofR, this subset is chosen based on the mutual information (MI) of each secondary
feature with R. The resulting MI values are displayed below in Figure 4.32 for four different
values of n. The value of n indicates the number of neighbours used by the numerical method
to estimate the MI (n = k in Equation 3.37). Only the 25 features with the highest MI score out
of all secondary features are displayed and ordered from high to low based on the result of
n = 3. Note that the variables in Figure 4.32 are written using alphabetic letters as used in the
SpaRTA code, e.g. W2_s = {Ω2

s} = IIs, for the full list of the SpaRTA nomenclature please
refer to Appendix A.
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Figure 4.32: Mutual information of the different features with R using the propagation flow field, n equals the
number of neighbours used in the numerical approximation.

In this figure, it can be seen that for this particular problem, apart from n = 25 which is
outside the recommended range (see Kraskov et al. [57]), the relative score between differ-
ent secondary features remains fairly constant for the different values of n. However, with
increasing n the magnitude of the scores decrease. From this figure, the subset of secondary
features is decided on, yet not all features are selected purely based on their MI score. This
is because MI only indicates the level of dependency of feature i on R, but that does not
necessarily mean that it forms a numerically stable model in an actual CFD simulation. There-
fore, based on experience, it was decided to not include the invariants that rely on ∇k (Ak in
Figure 4.32). It was reasoned that these features could be added later in the process if for
any reason the regression did not fit the data well enough. Similarly, q_TI was omitted due
to the feature not being Galilean invariant. Besides, it was decided to add features q_V and
q_Re. The latter since, first, the vortex stretching in the junction flow is significant, therefore
q_V could provide information. And second, it was observed that a significant amount of R
is located near the wall for which q_Re could provide important information since it is based
on wall distance. These arguments, combined with the MI, result in the following subset of
secondary features used for the regression of R:

Secondary features = [Is, IIs, IVs, Vs, I, II, III, qQ, qν , qτkB, q⊥, qV , qRe] (4.1)

An observant reader might wonder why q_perp is in the list of secondary features since it has
a low MI score. This is because when the MI was initially estimated the flow was thinned and
boxed (see Chapter 3) which resulted in a relatively good MI score for q_perp. However, as
shown by Goderie [58] the more data points are available the more accurate the MI estimate
becomes. Hence the MI setup was rerun using only boxing (no thinning) after the regression
was performed which resulted in the scores shown in this section. The outcome was not
significantly different, apart from the score of q_perp. This does, however, not pose a problem
since the features that had a high MI score initially, also have a high score in the rerun, as
expected.
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For the primary features, the complete set is used, as defined in Equation 3.31. These
two sets then allow generating the feature library as described in Chapter 3. The features are
scaled by their standard deviation and the features are generated on cells randomly selected
within a predefined box (see Chapter 3). Yet this order could be either way, that is, first select
the cells within the box and then scale the variables using the selected cells to determine the
standard deviation. Or, alternatively, scale the variables first using their standard deviation for
the entire domain and then select the cells in the box. At first, it was thought that this would
not result in significant differences in the regression, yet it did as the results will show.

The results of the regression are shown in Figure 4.33 and Figure 4.34 which show the
value of the regression coefficients of each basis function (Y -axis) in each model (X-axis).
Figure 4.33 shows the regression result for which the variables are scaled using the selected
cells to calculate the standard deviation, while Figure 4.34 shows the result using the complete
domain for scaling. To better explain the visualisation of the regression in Figure 4.33 and 4.34,
it should be noted that for each combination of λ and ρ the elastic net regression regresses a
model (Mi) which is of the form:

Mi/std(∆) =c1 · [f(sj/std(sj)) · f(sk/std(sk)) · ... · pl]+
c2 · [f(sm/std(sm)) · ... · pn] + c3 · [...] + ...

(4.2)

In which f represents a (non-)linear function, ∆ the target, si any secondary feature, pi any
primary feature and ci the regression coefficients. The coefficients ci in the equation above
give an indication of the importance of one feature over another. The value of each ci for each
basis function is displayed in Figure 4.33 and 4.34. If a rectangle is blank then this means the
basis function is not part of the specific modelMi. Although the value of the coefficients gives
a good indication of the dominance within a model it has to be kept in mind that the features
are based on physical quantities which can be more active in one region in the flow than in
another. Meaning that, even though ci might be relatively high if the actual feature is close to
zero in a particular flow region then ci is insignificant in that region. Again, for the features the
SpaRTA nomenclature is used, please refer to Appendix A, and note that the Python language
is used for the math operations, i.e. x**2 = x2.

When comparing Figure 4.33 with Figure 4.34 the resulting models seem to be similar,
yet there is a noticeable difference in the primary features. The models in Figure 4.33 use
both primary features ϵ and G

(1)
s from complexity 4 and onwards (M2, M3, ...). In contrast,

the models in Figure 4.34 only use the primary feature ϵ. The first G(1)
s feature appears in

M11 which has complexity 12. Besides this difference in primary features, the regressions,
as expected, also show similarities. For both regressions, the models rely heavily on the ϵ-
element as well as the

[√
|IVs| · ϵ

]
-element. Although the coefficient of the latter is relatively

small.
To further analyse the performance of the regression two models from the coefficient matri-

ces, one from Figure 4.33 and one from Figure 4.34, are picked. In order to justify this decision
the mean square error (MSE) and R2-score of each model are displayed in Figure 4.35 and
Figure 4.36, note the model naming (Y -axis) corresponds to the naming in the coefficient
matrices.

First regarding the models that were generated using the standard deviation in the boxed
region, Figure 4.35. In this figure, it can be seen that the MSE globally reduces with the
complexity of the model except for the outlier ofM5. Note that the models are ordered based
on their complexity, i.e. the complexity of M1 is lower than the one of M2, etc. Although
the MSE reduces, the R2-score stays fairly constant. Since the models with lower complexity
are preferred, as these will avoid overfitting the data and are likely to be more stable in an
a posteriori CFD simulation, model 3 was chosen as the model to test from this regression.
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Figure 4.33: Feature coefficient matrix of the R models for which the features are scaled using the selected cells.

Since it still has a relatively low complexity of 5 terms while having a R2-score of 0.91 and a
slightly lower MSE than model 2 which has the same R2-score.
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Figure 4.35: Mean squared error in [m4/s6] and R2-score of the models for which the features are scaled using
the selected cells.

Similarly, in Figure 4.36, the MSE andR2-score for the models displayed in Figure 4.34 are
displayed. Again with increasing complexity,M7 → M16, the MSE reduces, yet the R2-score
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Figure 4.34: Feature coefficient matrix of the R models for which the features are scaled using the entire domain.

stays relatively constant for the lower complexity models. Eventually, it was decided to choose
model 9 which has complexity 4. This is because model 9 has the same R2-score asM10 but
is only dependent on the primary feature ϵ, which allows for comparison with model 3 which
relies on ϵ and G

(1)
s . Note that for M11 → M16 the MSE is decreasing and the R2-score is

increasing, however, the complexity is relatively high for these models which cause overfitting
and likely unstable CFD simulations. Therefore, these models are not considered.
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Figure 4.36: Mean squared error in [m4/s6] and R2-score of the models or which the features are scaled using
the entire domain.
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Thus, the two R-models that will be further investigated are displayed below. Note that the
complete model is given including the scaling factor of each feature.

M3R =[0.6505 · (ϵ/1198213.34)

+ 0.2751 ·
√
|(IVs/0.026)| · (ϵ/1198213.34)

+ 0.009679 · (qRe/0.73) ·
√

|(IVs/0.026)| · (G(1)
s /312067.87)

− 0.04692 · (IIs/0.22) ·
√
|(qV /0.28)| · (ϵ/1198213.34)

+ 0.2163 ·
√
|(IVs/0.026)| · tanh((qRe/0.73)) · (G(1)

s /312067.87)] · 101329.75
M9R =[0.8129 · (ϵ/479961.68)

+ 0.05006 · tanh((qRe/0.67)) · (ϵ/479961.68)
− 0.009438 · (Is/0.24) · (Is/0.24)2 · (ϵ/479961.68)

+ 0.2535 ·
√

|(IVs/0.017)| · (ϵ/479961.68)] · 39143.24

(4.3)

An initial check on the ’correctness’ of the regressed models is to generate scatter plots.
Below in Figure 4.37 the scatter plots for both models from Equation 4.3 are displayed. These
plots show the prediction of the model versus the target value, for a model with a perfect fit all
points would line up with the black diagonal line. To generate the scatter plots the propagation
field from Section 4.3 has been used to generate the features. Next to that, all cells within the
boxed domain described in Chapter 3 are plotted.

Even though the models use different primary features, the scatter plots are nearly identi-
cal. That is except for the upper right corner where M9 seems to fit the target slightly better.
However, as can be seen, both models fail to predict the negative values of R which is likely
due to the vast amount of cells with positive values of R. Therefore, a natural bias to only
predict positive values is created. Next to that, in the region Prediction R [500, 1000] · 103,
there seems to be a mismatch visible as well. But overall the majority of the points lie in close
proximity of the diagonal indicating a relatively good fit. The latter was also indicated by the
R2-score of both models.

(a) M3 (b) M9

Figure 4.37: Scatter plots of two different R-models using all cells inside the boxed domain.

Similar to the scatter plots, the resulting R correction fields for both models can be plotted
as well. For model 3 this is displayed in Figure 4.38. This figure shows R in the symmetry
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plane, note again that the propagation fields are used to generate R. From this figure the
observation from the scatter plot is confirmed, the model indeed fails to predict any negative
values of R. Yet the locations of the corrections appear to be in the right place, namely at the
HSV core location and in the corner region near the corner vortex. The structure is, however,
far from the target. This could be expected since the target field for R had many complex
structures, it can therefore not be expected, and arguably unwanted, that a regressed model
with relatively low complexity can represent such shapes.

Figure 4.38: Comparison of Model3 with the target (Frozen data) in the symmetry plane.

In Figure 4.39 two y-z planes are shown downstream of the leading edge. The same
observations as made in the symmetry plane hold. Namely the location and magnitude are
similar to the target data, yet the model fails to predict the complex shapes and negative
spots. Next to that, the model also predicts a significant correction at the wing wall, which
is not present in the propagation data due to the spatial blending functions to filter the LSB
(see Section 4.3). And even though the regression was trained on the propagation data it still
predicts a correction for the LSB, this means that the spatial blending also has to be applied
in the model propagation.

Figure 4.39: Comparison of Model3 with the target in two y-z planes.

For model 9 the flowfields are displayed in Figure 4.40 and Figure 4.41. The same discov-
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eries as made for model 3 are present when comparing model 9 with the target. However, in
contradiction to what is seen in the scatter plots, there exists a noticeable difference between
the fields generated by model 3 and the fields generated by model 9. This difference is present
in the region connecting the wall region and the HSV core location, model 9 shows a more
distinct disconnection between the two regions.

Figure 4.40: Comparison of Model9 with the target in the symmetry plane.

Figure 4.41: Comparison of Model3 with the target in two y-z planes.

To better visualise the difference in the peak magnitude of R between the target and the
models in the symmetry plane, two lines have been extracted in this plane and displayed in
Figure 4.42. As can be seen very close to the bottom wall the value of the models and the
target are very similar. Yet for y/T ≳ 0.02 both models show a more moderate magnitude
compared to the target. Next to that, this figure again highlights the fact that the models are
not capable of reproducing the negative values ofR, as was seen in the scatter plots. Although
the models do not show the correct peak magnitudes, they do produce a smoother distribution
ofR. The latter is likely to reduce the accuracy of the flow solution in an a posteriori simulation,
however, it will enhance the stability of the simulation. This Increased stability is preferable as
long as the loss in accuracy is not too big.
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Figure 4.42: Profiles of R for both the target and the models in the symmetry plane at two locations upstream of
the wing.

In the analysis of k-corrective frozen results, it was found that the value of R significantly
far away from the wing goes to zero in the regions close to the wall. Therefore, to check
whether this behaviour is also present in the fields generated by the models, Figure 4.17 has
been recreated in Figure 4.43 including the profiles as determined by the models using the
propagation field. And indeed both model 3 (left) and model 9 (right) show a similar trend of
R going to zero when moving further outboard at x/T = 1.
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Figure 4.43: Profiles of R for both the target and the models at x/T = 1 at multiple outboard z locations.

Although there appears to be a very slight difference in the flowfields generated by model
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3 versus model 9, it can be concluded that these models virtually generate equal corrections.
However, judging from the MSE and the R2-score model 3 would be the better option due to
the lower MSE and higher R2-score. Yet these improvements are very small.

An important analysis point not discussed in this subsection is, however, to test the gen-
eralisability of the models. Since the scatter and flow field plots are generated using the data
on which the models have been trained, i.e. the propagation data. For a more complete com-
parison, the models should also be tested on a different test case, for example, a significantly
different Reynolds number or a slight alteration of the geometry. As indicated in the flowchart
in Chapter 3 the plan is to test generalisability a posteriori using the anti-fairing geometry.
However, to decide which model to use in this a posteriori testing, it would be recommended
to perform an a priori generalisability test as well to allow for a more complete comparison of
the regressed models. This is beyond the scope of this work.

4.4.2. Turbulence Anisotropy Correction
Similar to the regression of R, for the regression of b∆ij first a subset of the secondary variables
should be established. This is because using all secondary features would require a too high
amount of computational memory. This is especially true for the b∆ij regression since it is
a symmetric tensor, thus for each primary feature for each cell in the mesh, 6 components
need to be stored instead of 1. As explained in Chapter 3 mutual information is not used to
determine the subset due to the fact that b∆ij is not a scalar and the secondary features are.
Therefore, a regression with library degree 1 is performed using all secondary features. From
this regression, the prominent features are extracted for the final 2-degree run. This resulted
in the following (sub)set of secondary features:

Secondary features = [I, II, Is, IIs, qγ , qν , qQ, qRe] (4.4)

Using this set combined with Pope’s tensor basis as the primary features resulted in the re-
gression displayed by the coefficient matrix in Figure 4.44. Similar to R, two regressions were
tested, one for which the features were scaled using the entire domain, and one for which the
features were scaled using the boxed domain. Yet this did not result in a very different result
with respect to which features were present, the coefficients were different, as expected, be-
cause the scaling was different. The figure below shows the result for which the features are
scaled using the entire domain.



4.4. Model Training Results 69

Figure 4.44: Feature coefficient matrix for b∆ij .

To assess the fit of the regressed models to the target the MSE andR2-score are displayed
below in Figure 4.45. Especially from the R2-score it can be seen that the fit for b∆ij even for
the models with higher complexity is poor.
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Figure 4.45: Mean squared error and R2-score of the regressed b∆ij models.

This poor fit is better visualised using the scatter plots to display each component of the
regressed model. The scatter plots for model 1 (M1) and model 3 (M3) are displayed in
Figure 4.46 and Figure 4.47 respectively. These scatter plots were generated using the prop-
agation data on which the models have been trained. It can be seen in both figures that the



70 Chapter 4. Results and Discussion

spread of the model prediction is significant. And, therefore, the models do not represent the
target. Even for model 3, which has a 14% better R2-score compared to model 1 the fit is
still inaccurate. The complete equations for model 1 and model 3 are given below (including
scaling).

M1b∆ij
=− 0.2973 · (IIs/0.24) ·

√
|qγ/12.73| · (T (8)

s /0.054)

M3b∆ij
=− 0.03384 · (IIs/0.24) · (T (8)

s /0.054)

− 0.1003 ·
√
|qγ/12.73| · (T (8)

s /0.054)

− 10.75 · (IIs/0.24)2 ·
√

|I/246615.19| · (T (4)
s /0.061)

− 0.1692 · (IIs/0.24) ·
√
|qγ/12.73| · (T (8)

s /0.054)

+ 0.5298 ·
√
|qν/2.55| · tanh (qRe/0.67) · (T (2)

s /0.21)

− 0.3185 ·
√
|qν/2.55| · tanh (qRe/0.67) · (T (7)

s /0.051)

− 0.08877 ·
√
|qν/2.55| · tanh (qRe/0.67) · (T (8)

s /0.054)

(4.5)

Figure 4.46: Scatter plots of b∆ij Model1.
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Figure 4.47: Scatter plots of b∆ij Model3.

Unfortunately, in a posteriori testing model 3 did not produce a converged solution. There-
fore, in this section, only the flow fields of model 1 are displayed. This model has a similar
MSE and R2-score as model 2 yet with less complexity. Therefore there is no need to analyse
model 2 as well. Model 4 is omitted from the discussion due to its relatively high complexity.

First, the normal stresses in the symmetry plane of model 1 are compared to the target in
Figure 4.48, the plots of model 1 are created using the propagation as input. From this figure, it
is observed that the model is only properly predicting the correction close to the bottom wall for
x/T < −0.2. All other corrections are not captured by the model, for example, the correction
at the HSV in the yy component is of the opposite magnitude. Similarly, the xx component of
the model shows a correction at the HSV which is not present in the target. Finally, the model
does also not determine the zz correction at the place where flow is ejected under the HSV.
These flow fields, thus, confirm the observation made in the scatter plots.
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Figure 4.48: Comparison of Model1 with the target for the diagonal components in the symmetry plane.

The shear stresses in the symmetry plane are displayed in Figure 4.49. A positive note
from this figure is that for the xz and yz components, for which hardly any correction is required,
the model does not predict any correction either. Unfortunately, this cannot be said for the xy
component, for which the model is predicting a correction that is not present in the target.
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Figure 4.49: Comparison of Model1 with the target for the off-diagonal components in the symmetry plane.

Figure 4.50 and Figure 4.51 show the normal-stress and shear-stress corrections in the y-z
plane at x/T = 0.5 for both the target and model 1. From this comparison, an equal conclusion
is drawn as for the symmetry plane. That is the near wall correction away from the HSV is
somewhat correct. However, any correction near the HSV and corner vortices are incorrect or
not even present.
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Figure 4.50: Comparison of Model1 with the target for the diagonal components at x/T = 0.5.
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Figure 4.51: Comparison of Model1 with the target for the off-diagonal components at x/T = 0.5.

A close-up of the corner region of Figure 4.50 and Figure 4.51 is given in Figure 4.52 and
Figure 4.53 respectively. As described in the frozen approach results, it is important to correct
the anisotropy of the turbulence in the corner region to predict the correct secondary vortices.
Yet unfortunately, due to the poor fit of b∆ij the anisotropy corrections are not captured well by
model 1. Therefore, as will be analysed in Section 4.5, the model propagation is not expected
to have the correct vortex topology in the corner region. It should be noted, however, that the
corrections close to the walls of the xx and xz components are captured quite well by model
1. The latter was, especially for xx, not easy to observe in Figure 4.50 and Figure 4.51.
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Figure 4.52: Comparison of Model1 with the target for the diagonal components at x/T = 0.5 in the corner
region.



4.4. Model Training Results 77

Figure 4.53: Comparison of Model1 with the target for the off-diagonal components at x/T = 0.5 in the corner
region.

Finally, it is important to also check the flow fields of P∆
k which is a function of b∆ij . This

is because it is shown in Section 4.2 that the significance of P∆
k with respect to R cannot be

neglected. Yet this poses a big problem for model 1 because it is only based on T
(8)
s , and

since:
T
(8)
s,ij

∂Ui

∂xj
= 0 for incompressible flows (4.6)

the value of P∆
k by model 1 throughout the entire flowfield is zero. Which is not representative

of the target P∆
k at all (see Figure 4.13). The consequence of this will be displayed and dis-

cussed in Section 4.5. Note that the same holds for model 2 or 4 as Equation 4.6 also applies
to T (2), T (5) and T (7). As an ad-hoc solution, a third correction field was defined, namely P∆

k ,
for which a scalar model was regressed using the same method as for R. The quality of the
regression was similar to the regression of R, yet in a posteriori testing the P∆

k model would
destabilize the simulation. Therefore, this methodology was not further pursued. That is be-
side the fact that such a model would be required because the fit of b∆ij is poor. So rather than
trying to reduce the error of a poor fit by introducing a new model, it would be better to improve
the original fit. Note that this method is also only possible because the double dot product of
∇U with T (8) (as well as T (2), T (5) and T (7)) equal zero for incompressible flows and thus P∆

k

by these tensors equal zero. Finally, it is also worth mentioning that even if P∆
k would have
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been correct then the anisotropy of the Reynolds stress tensor is still off which will influence
the results.

Improving the Fit
Naturally one tries to improve the fit of b∆ij using various numerical tricks and methodology
alterations. Unfortunately, in the time frame of this Master thesis, an improved (and stable) fit
has not been achieved. However, for the sake of increasing the common knowledge regarding
the regression of anisotropy corrections, some noteworthy attempts are listed below:

• Non-linear curve fitting; as one might have noticed model 2 consists of a hyperbolic
tangent function, by redefining this function to tanh(a · feati + b) and fitting the a and b
coefficients in the model using the non-linear curve fitting method from the Scipy library
[50] an (unsuccessful) effort was made to improve the fit of model 2. The idea behind
this method was that it would allow for a more complex equation for the regression and
that it, therefore, would increase the R2-score.

• Using the QCR model as an extra primary feature; due to the success of the non-linear
QCR correction for the SA turbulence model (see Chapter 2), an attempt was made to
include the QCR correction (Equation 2.4) in the list of primary features for b∆ij . Although
it did show up in the regressed models, the fit was not better compared to regressions
without the QCR correction as a feature.

• Using a different time-scale for Ω∗
ij ; Ω∗

ij in the standard version of SpaRTA is either non-
dimensionalised by 1/ω or by 1/∥∇U∥, yet it can also be non-dimensionalised using
1/∥Ωij∥, as done by Wu et al. [56]. This did, however, also not improve the fit, which
could be expected due to the similarity of 1/∥∇U∥ and 1/∥Ωij∥.

• Using extra non-linear functions; inspired by the complexity of the EARSMs by [35] and
[36] extra non-linear functions were added to the library generation step such as exp (x),
log (x) and 1/x. Unfortunately, this would often, as can be expected, result in models that
are very unstable in a posteriori testing due to the asymptotic nature of these functions.

So the question that remains is whether it is possible to regress the anisotropy correction
imposed by the junction flow using the current SpaRTA methodology. This question is asked
with respect to the junction flow since it is shown that for other, so to say, more simple flows the
methodology seems to provide satisfactory results (Schmelzer et al. [39], Huijing [40]). One
possible reason for the poor performance could be the fact that in order to regress the correc-
tion tensor it is flattened to a vector of six components per cell. This has the consequence that
the regression algorithm is trying to match each individual component of the tensor rather than
for example the directionality or magnitude of the complete tensor. For the junction flow it could
be interesting to see if one can focus the regression on the important Reynolds stresses in the
vorticity equation rather than the complete tensor. That is to try to regress (v′v′ − w′w′) and
v′w′ since these play an important role in the vorticity equation as defined in the x-direction
using the reference frame as described in this work (Equation 2.3). The latter is important
since focusing on a few components of interest in a defined reference frame does reduce the
generalisability of the model. Yet for the sake of design optimisation, in which the reference
frame is not altered from design iteration to design iteration, this does not pose a problem.

Another idea is to increase the complexity of the elements generated by the library gener-
ator. Since, at the time of writing, the SpaRTA library generation code is only able to generate
elements such as:

f(si) · g(sj) · h(sk) · ... · pl (4.7)

In which f, g and h represent (non-)linear functions and si, pi any secondary and primary
features. It would be interesting to see if combining features within one (non-)linear function
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can improve the regression results:

f(si, sj , ...) · g(sk, ...) · ... · pl (4.8)

As well as adding, for example, constants within the functions. Yet it is not guaranteed that
increasing the complexity of the features or library elements will improve the fit. It is a possibility
that it will result in unstable models when testing a posteriori. However, some promising work
utilising a more complicated regression algorithm to fit b∆ij has been published by Hoefnagel
[61].

4.5. Model Propagation
In this section, the models found in the regression are propagated into the CFD solver to
correct the turbulent kinetic energy via a model for R (MR) and the Reynolds stress tensor via
a model for b∆ij (Mb∆ij

). The two models that are propagated are displayed below:

MR =
(
0.6505 · (ϵ/1198213.34) + 0.2751 ·

√
|(IVs/0.026)| · (ϵ/1198213.34)

+ 0.009679 · (qRe/0.73) ·
√
|(IVs/0.026)| · (G(1)

s /312067.87)

− 0.04692 · (IIs/0.22) ·
√
|(qV /0.28)| · (ϵ/1198213.34)

+ 0.2163 ·
√

|(IVs/0.026)| · tanh(qRe/0.73) · (G(1)
s /312067.87)

)
· 101329.75

(4.9)

Mb∆ij
=
(
−0.2973 · (IIs/0.24) ·

√
|qγ/12.73| · (T (8)

s /0.054)
)
· 1.0 (4.10)

these models are the direct result of the regression in Section 4.4.
The model propagations displayed in this section are using the same geometry and flow

conditions as used in the training setup. Therefore, an unseen prediction of the models given
by Equation 4.9 and Equation 4.10 is missing in this work. The latter poses a problem re-
garding testing the generalisability of the models. Note that this is next to the also missing
generalisability test in the a priori environment. A logical recommendation therefore would be
to propagate the models on the anti-faring geometry (see Chapter 2) to check the general-
isability. The latter would be a sufficient test in the view of design optimisation. In such an
optimisation problem, the geometry would namely only alter slightly from one design iteration
to another.

Although a generalisability test is missing, it is still important to check the effectiveness of
the models on the original flow. To check this effectiveness the initial conditions of the model
propagation, in fact also of the propagation, are not equal to the converged LES solution.
Instead, only the turbulence fields are from the converged true solution while the mean fields
(U and p) are set to zero except for the boundary conditions. A discussion on this particular
initial condition setup is given in Section 4.6.

Each figure in the following discussion displays the results of four simulations, the four
different simulations are listed below:

• the baseline RANS results
• the propagation results (Prop.)
• the model propagation of R results, which represents the simulation in which R is deter-
mined by MR yet b∆ij is equal to the field from the frozen approach (Section 4.2)

• the model propagation results, which show the results for which R is determined byMR

and b∆ij by Mb∆ij
, i.e. a complete model propagation



80 Chapter 4. Results and Discussion

The idea behind the two different model propagations is to access the performance of MR

individually since it is shown in Section 4.4 that the fit of b∆ij was lacking accuracy. Thus
having a model propagation for which b∆ij equals the exact target field allows to decouple the
performance of MR from the (likely) faulty performance of Mb∆ij

, both in terms of anisotropy
correction and turbulence production correction (P∆

k ).
In order to achieve the best result the factors by which MR and Mb∆ij

are incorporated into
the solver were manually altered. The factors that showed the best qualitative flow fields were
as follows:

• model propagation of R: R = 0.75 ·MR and b∆ij = b∆ij

• model propagation: R = 0.5 ·MR and b∆ij = 1.0 ·Mb∆ij

Below is Figure 4.54 the U -velocity profile upstream of the wing in the symmetry plane
is displayed for the four aforementioned simulations. Note that the propagation resembles
the truth (or target result), it has been shown that the propagation is very similar to the LES
data. From Figure 4.54 it can be seen that both model propagations match the propagation in
terms of profile and separation point fairly well. It is even observed that the model propagation
outperforms the model propagation of R in matching the target for y/T < 0.2. Above 0.2 the
model propagation shows a significant discrepancy in the most right plot. But overall both
model propagations show a significant improvement with respect to the baseline RANS.

0.0 0.5
U/U

0.0

0.1

0.2

0.3

0.4

0.5

y/
T

x/T=-0.4
RANS
Prop.
Model prop. R
Model prop.

0.5 0.0 0.5
U/U

x/T=-0.3

0.5 0.0 0.5
U/U

x/T=-0.2

0.25 0.00 0.25
U/U

x/T=-0.1

Figure 4.54: Boundary layer profiles upstream of the wing in the symmetry plane.

This improvement of the velocity field upstream of the wing by both model propagations
is also displayed in Figure 4.55. In this figure the velocity magnitude as well as the velocity
direction is displayed in the symmetry plane upstream of the wing. Not only is the prediction in
the separation point and HSV location more accurate, but also the velocity magnitude further
away from the HSV (upper left corner in the plots).
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Figure 4.55: Velocity magnitude in the symmetry plane upstream of the wing for the different simulations.

To confirm the correct location of the HSV the vorticity in z-direction in the symmetry plane
is displayed in Figure 4.56. In which, indeed, it is seen that both model propagations show an
improved result in the position of the HSV. However, the shape of the HSV, especially in the
model propagation of R, is dissimilar to the propagation result. It is likely that this is due to
the fact that MR was not able to represent all complex structures present in the target field of
R (recall Figure 4.13). The shape of the HSV in the model propagation is slightly better but
still shows discrepancies with respect to the propagation. The latter is surprising due to the
fact that in the model propagation P∆

k = 0, hence it was not expected to show a noticable
improvement with respect to the baseline RANS.

Figure 4.56: Vorticity in z-direction in the symmetry plane.

The turbulent kinetic energy in the symmetry plane is shown in Figure 4.57. This figure
shows that both model propagations improve the location of the bulb of high k associated with
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the HSV, however, the characteristic C-shape is not captured. Again, for the model propaga-
tion of R, this is likely due to MR not being able to represent all complex structures that were
present in the target data. For the complete model propagation this is a combination of the
latter and the poor fit ofMb∆ij

. However, a more concerning difference is found when observing
the small area of high k in the corner region. Which is present in the model propagation of
R yet not clearly present in the model propagation. This region, as will be shown, is also the
region in which the largest discrepancy exists between the propagation and the model propa-
gation. Because up to this point, the poor fit ofMb∆ij

is not really noticeable in the velocity and
vorticity fields upstream of the wing, that is with respect to the results of the model propagation
of R.

Figure 4.57: Turbulent kinetic energy in the symmetry plane for the different simulations.

However, when zooming in on the corner region it can be seen that the model propagation
is not determining the corner vortex and the secondary vortices in an accurate manner. For
example, below in Figure 4.58 the z-vorticity in the corner region in the symmetry plane is
displayed. Note the change in colour scale from Figure 4.56 to Figure 4.58 to clarify the
structures. Figure 4.58 shows that the model propagation is under-predicting the magnitude of
the corner vortex significantly. The same holds for the negative vorticity structures surrounding
the corner vortex. It is expected that this is due to the fact that P∆

k equals zero in the model
propagation. This is because Section 4.2 showed that the value of P∆

k especially in the regions
where the HSV and corner vortex live cannot be neglected. Therefore the fact that the model
propagation shows fairly good results for the HSV upstream of the wing is surprising. It could,
however, be that the error made in MR cancels the effect of having no P∆

k .
Since the value of P∆

k is correct for the model propagation of R the resulting corner vortex
is more accurate. However, compared to the baseline RANS it cannot be concluded that it is
an improvement over the baseline RANS.
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Figure 4.58: Close-up of the corner vortex in the symmetry plane, the vorticity displayed is in the z-direction.

To continue the analysis, the vorticity in the free-stream direction in the y-z planes at several
locations downstream of the leading edge is discussed. Figure 4.59 shows the x-vorticity at
x/T = 0.5, in contradiction to the symmetry plane the model propagation of R is predicting
the shape and magnitude of the HSV better compared to the model propagation. It should
be noted, however, that the location of the HSV in the model propagation is still significantly
improved compared to the baseline RANS. Although it is noticed that the magnitude of the
vorticity is lower compared to the propagation.

Figure 4.59: Vorticity in the x-direction in the y-z plane at x/T = 0.5.

Taking a closer look at the corner region, Figure 4.60, reveals that the model propagation
is not predicting the magnitude of the corner vortex accurately, similar to Figure 4.58. Next
to that, the negative vorticity structures close to the wing wall are not captured either by the
model propagation. The model propagation of R predicts the vortex structures better when
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comparing them to the propagation. Yet it cannot be left unnoticed that, in this particular plane,
the baseline RANS result is very close to the propagation.

Figure 4.60: Close-up of the corner region displaying the vorticity in the x-direction in the y-z plane at x/T = 0.5.

Moving a half maximum wing thickness downstream results in Figure 4.61. Similarly to
x/T = 0.5, the magnitude, shape and location of the HSV in the model propagation of R
are quite similar to the propagation and therefore a significant improvement compared to the
baseline RANS. Unfortunately, the model propagation is not determining the HSV well. Thus,
even though upstream of the wing the location of the HSV by the model propagation is rela-
tively good, when convecting downstream the result starts to differentiate from the propagation
result.

Figure 4.61: Vorticity in the x-direction in the y-z plane at x/T = 1.0.

Recall that in Section 4.1 it was discovered that a secondary vortex is present in the LES
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data in the corner region of the y-z plane at x/T = 1.0 that was not present in the RANS
solution. This was linked to the deficient turbulence anisotropy prediction by the baseline k-ω
SST model. Therefore, one of the goals of the b∆ij correction was to correct this anisotropy
such that these secondary structures would be present in the RANS solution. However, as
can be seen in Figure 4.62, the model prediction is not showing this negative vorticity structure
near z/T ≈ 0.50. Yet it is present in the model propagation of R, from which it, therefore, can
be concluded that this is due to the poor fit of Mb∆ij

.
In contradiction to the y-z plane at x/T = 0.5, improvements with respect to the baseline

RANS of the model propagation of R are present in Figure 4.62. First of all, the corner vortex
has an improved shape andmagnitude. And secondly, the positive vorticity close to the bottom
wall is also very similar to the propagation. The latter is, however, not only due to MR since
the value of P∆

k is also significant near the bottom wall (see Figure 4.15). As mentioned above
the secondary vortex at z/T ≈ 0.50 is due to the correct b∆ij in that region and can therefore
not be linked to MR.

Figure 4.62: Close-up of the corner region displaying the vorticity in the x-direction in the y-z plane at x/T = 1.0.

Figure 4.63 displays the x-vorticity in the y-z plane at x/T = 2. Similar to the more up-
stream planes, the main improvement is present in the correct location of the HSV for the
model propagation of R. The HSV in the model propagation has already dissipated while it is
still slightly present in the propagation field. Next to that, it is again observed that the corner
vortex is not present in the model propagation.
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Figure 4.63: Vorticity in the x-direction in the y-z plane at x/T = 2.0.

To analyse the behaviour of the model propagations at the trailing edge the U -velocity
fields are plotted at x/T = 4 in Figure 4.64. This figure basically confirms the behaviour seen
in the vorticity plots. That is, first of all for the model propagation, the HSV has a smaller
magnitude compared to the propagation when moving downstream. This causes the pull-
down effect of higher velocity flow by the HSV towards the bottom wall to be less significant.
Which has the effect that the velocity profile is less ’full’ for the model propagation compared
to the propagation as observed in Figure 4.64. Secondly, the significantly lower magnitude
corner vortex and absence of secondary vortices (almost) cause flow separation in the corner
for the model propagation which is less noticeable in the propagation data.

Regarding the model propagation of R, the resulting flow field is much closer to the prop-
agation field. The only discrepancies found are close to the wing wall where the propagation
predicts a lower velocity and at the bottom wall near z/T = 0.63. At this location, the propa-
gation field shows a hump in the iso-lines which is not present in the model propagation of R.
Yet compared to the baseline RANS the model propagation of R significantly improved the U
flow field. This is also true, although to a lesser extent, for the model propagation.
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Figure 4.64: Velocity in x-direciton in the y-z plane close to the trailing edge (x/T = 4.0).

The final part of the analysis for the model propagations is to check the aerodynamic forces
on the wing. Figure 4.65 shows the friction coefficient of the wing in the corner region at two
different heights (i.e. outside the spatial blending region). As already discussed in Section 4.1
the RANS results show a trailing edge separation (corner separation) which is not present in
the LES and thus also not in the propagation. It is expected that this is due to the effect of the
correct vortex topology around the wing as described in the literature in Chapter 2. Figure 4.65
shows that themodel propagation ofR is quite accurately following the trend of the propagation.
This is due to the fact that the vortex system (HSV, corner vortex and secondary vortices) is
determined correctly (to a certain extent) as shown in this section and hence it is expected
that the wall shear stress in the corner region is correct. Regarding the model propagation,
it is observed that apart from the friction peak at x/c ≈ 0.1 the curve at y/T = 0.01 is well
determined. For y/T = 0.03 the discrepancy is larger, yet the slope of the curve seems to be
correct.

More surprisingly, the model propagation does not show a corner separation. This is sur-
prising as it has been shown that the corner and secondary vortices are hardly present in the
model propagation. The presence of these should suppress the corner separation. Hence
with these vortices being absent, a separation would be expected. There are a couple of pos-
sible explanations for the not-existing corner separation in the model propagation. First of all,
it could be that in this non-lifting wing configuration the effect of placing the HSV at the correct
location, which is closer to the wing compared to baseline RANS, can already suppress the
separation by a sufficient amount. Secondly, it could be due to the always positive k correction
at the walls throughout the flow field. To nuance this, it should be recalled that the k-equation
correction (R and P∆

k ) is always positive because MR is positive and P∆
k = 0. This will likely

increase the turbulence intensity of the boundary layers to be higher compared to the base-
line RANS. Which suppresses the tendency to separate. Now since the k-equation correction
should be negative at the walls, see Figure 4.16, it is possible that the increased turbulence
cancels the need for the vortex structures in the corner to suppress the separation.
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Figure 4.65: Wing friction coefficient profiles for the different simulations in close proximity to the corner.

Figure 4.66 displays the pressure coefficient profiles of the wing at two different heights,
one in the corner region and one outside the corner region (thus in the blending region). The
latter is done because the LSB did not have a very significant effect on the Cp plots, thus
the spatial blending will not alter the profiles by a large amount. From both plots, it can be
seen that both model propagations follow the propagation accurately. It is noticed, however,
that the model propagation under-predicts the suction peak for y/T = 0.3. And both model
propagations show an LSB-like behaviour just aft of the suction peak, which confirmed the
need for the spatial blending function in the model propagation (not only in the propagation).
Since the baseline RANS already had the correct Cp profile with respect to the propagation for
which the LSB has been filtered out, there is not really an improvement required from themodel
propagations. Yet it is good to confirm that the models do not alter the profiles significantly.
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Figure 4.66: Wing pressure coefficient prolfiels for the different simulations, (left) in close proximity to the corner,
(right) at half wing-span.

4.6. Discussion on SpaRTA Modifications
In this section, a discussion is given on the modifications of the SpaRTA methodology with
respect to the original publication by Schmelzer et al. [39]. This includes the modification of
the ω transport equation, the extra production limiter, the use of different initial conditions and
the spatial blending functions applied to the correction terms.

4.6.1. Altering the Transport Equation
In Chapter 3 it is described that one of the correction fields within SpaRTA is the k residual
R. In the original publication by Schmelzer et al. [39] the correction field R is present in both
the ω transport equation and the k transport equation. However, in this work, R is omitted
from the ω-equation (Equation 3.21). The basic reason for this is that with R in the ω-equation,
the propagation simulation would diverge rapidly. Thus it was omitted to obtain a converged
solution. Note that unsuccessful attempts were made on limiting R in the ω-equation using
limiters based on the production limiter applied in the k-ω SST model.

What should be investigated is whether R is required in the ω-equation. Because of the
almost perfect results in the propagation (Section 4.3) it can be deduced that for this particular
junction flow, R is apparently not required in the ω-equation. Whether R is required depends
on the interpretation of R. If it is really seen as just the residual of the k-equation then there is
no need to include it in the ω-equation. However, if R is interpreted as a production correction
in the k-equation, i.e. similar to P∆

k , then it is natural to include R in the ω-equation. This is
because the production terms in the original transport equations are equal as well, see Wilcox
[31].

The simple conclusion from this work is that based on the propagation results, R acts
simply as an extra correction within the k-equation that is not necessarily connected to the
production term. However, to confirm this, a thorough investigation using simple academic
flows (period hill, square duct, etc.) would be required to verify that it is not just a coincidence
for the junction flow.
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4.6.2. Production Limiter
Next to the conventional production limiter in the k-ω SST model which limits the production
term in the transport equations to be less than 10β∗ωk, another limiter has been added in this
work. Namely that the total production is always larger or equal to zero, see Equation 3.20.
This has been done similarly to all modifications in this section to enhance the stability of the
(model) propagation simulations. It should be noted that without this extra limit, the solution
would diverge rapidly. Since R is not seen as a production correction it is not included in the
limiter.

From the propagation results (Section 4.3) it is seen that this limiter does not restrict the
solution to be very different from the LES and thus that the limiter is safe to use in the model
propagation. However, it is important to check the regions where the limiter is active. Therefore
the active regions as well as the production term without the new limit have been displayed in
Figure 4.67 in the symmetry plane. To produce the right image the frozen results have been
used, this means the LES data for U and k and the frozen solution for bij . In the left image,
the blue regions indicate where the limiter would be active. From Figure 4.67 it is observed
that apart from the negative production structure near the bottom wall in the corner region the
limiter does not really impose big constraints. Because in the other regions where the limiter
is active the production is close to zero and thus less significant.

Figure 4.67: Visualisation of the production limiter, the left figure shows where the limiter is active (blue) and
inactive (red), the right image shows the value of Pk without the limiter, figure from the frozen approach

simulation at z/T = 0.

Figure 4.68 shows the active regions and production without limiter in the y-z plane at
x/T = 0.5. Again, for most regions where the limiter is active, it is not a problem since the
production is close to zero. Only the small structure near z/T = 0.5 will be influenced by the
limiter. However, even though the limiter does remove two relatively small, yet significant in
magnitude, negative production regions it is concluded from the propagation that this does
not pose a big problem. Since the solution matches the LES data very well, as shown in
Section 4.3.
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Figure 4.68: Visualisation of the production limiter, the left figure shows where the limiter is active (blue) and
inactive (red), the right image shows the value of Pk without the limiter, figure from the frozen approach

simulation at x/T = 0.5.

4.6.3. Initial Conditions
For both the propagation and the model propagation a decision has to be made on which initial
condition (IC) to use. In essence, there are three options within the SpaRTA framework, which
are:

• Using the initial conditions as used for the baseline RANS. For example for U that would
be a uniform zero vector within the flow field and the BL profile specified at the inlet.

• Using the converged baseline RANS solution as the IC.
• Using the time-mean LES data as the IC for which ω is set to the field found by the
k-corrective frozen approach.

Ideally speaking the preferred option is to use the converged baseline RANS solution as the
IC. This is because this IC guarantees that any change in the resulting flow field is because of
the correction models. And since the starting point is not an empty (or zero) field the number
of iterations required to converge to a steady-state solution is likely lower than when using an
IC field as one would use for a standard RANS solution. Using the time-mean LES solution as
the IC is sub-optimal since, if for some reason the corrections by the models are insignificant,
it could be that a seemingly good resulting flow field is just the IC that was stable enough not
to change. And thus the effect of the models is not really tested.

When performing the propagation simulation it was found that using the converged base-
line RANS solution as IC would result in an unsatisfactory flow field, namely two horseshoe
vortices were present in the steady-state solution rather than the expected one. Using the LES
as IC on the other hand would result in an almost perfect propagation. However, as already
explained, using the LES as IC does not test the effectiveness of the corrections. Fortunately,
a good propagation was found when using the LES fields as IC for k and ω and empty fields
for U and p (i.e. U and p were equal to the IC of the baseline RANS). The advantage of this
IC over using the LES for all variables is that the important vortex structures are not present
yet at iteration zero since U is zero everywhere (except at the inlet boundary). And because
the propagation results were satisfactory it confirmed the effectiveness of the correction fields
since the solver had to compute the vortex structures from almost zero. Not exactly zero since
the quantities for ω and k are active at the vortex locations. However, the LES solution was
disrupted enough, by setting U and p to zero, that the effectiveness of the corrections is tested
to a good amount.

The question that remains is whether using this setup for the IC is a problem within the
goal of this thesis. Since it requires the ’correct’ fields for k and ω. Fortunately, it is not a
problem, this is because the eventual goal of this work is to perform design optimisation of the
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wing-body junction flow. So if an LES is used as a starting point then every design iteration can
use the solution of the previous iteration as the IC. And because the LES solution of the starting
point is present since it is required for the data-driven approach this method is possible.

4.6.4. Propagation for Regression
In the original paper by Schmelzer et al. [39] the combination of the LES data and the ω field
from the frozen approach were used to build the features for the sparse regression. In this
work, however, the propagation flow fields were used as the basis for the regression features.
This has been done since, as mentioned before, the propagation is the theoretically best result
achievable with the RANS solver. That is, with respect to the discrepancy with the LES solution.
Therefore, using the propagation flow fields to build the regression features is a more realistic
scenario since it is nearly impossible to exactly match the time-mean LES solution by the
RANS with corrections.

One can argue, however, that this approach is leaning towards an engineering solution.
From a physics standpoint, using the LES solution for the regression could lead to a physical
insight. This means that a physical understanding of the turbulence correction might be found
rather than just an empirical function that appears to work well. This thought of line does how-
ever assume that the LES solution resembles the truth. Yet finding a physical understanding
using the propagation is more uncertain as a small, but present, discrepancy exists between
the propagation and the truth, as shown in Section 4.3.

4.6.5. Spatial Blending Functions
Although the use of spatial blending functions is not necessarily a modification to the SpaRTA
method it is an important numerical trick that contributed to this work and thus its effects should
be discussed. But first, the reason behind the use of the spatial blending functions that are
displayed subsection 3.2.2. Regarding the blending at the wing wall, it was found that the
regressed model for R would result in a very high injection of k correction near the LSB to
simulate the transition in the model propagation. This injection would, however, result in nu-
merical instabilities with divergence of the solution as a consequence. Initially, this was solved
by limiting the model for R, that is instead of usingMR use 0.5 ·MR. However, this resulted in
not enough k in the region aft of the LSB, which would cause premature separation from the
wing. And thus a better solution was using a linear blending function very close to the wing
that goes to zero if the wall distance goes to zero. Essentially, forcing the baseline RANS
solution at the wing wall in a numerically stable manner. The only requirement was that this
function excludes the region where the corner and secondary vortices live since it is desired
to correct these as shown in the propagation (Section 4.3). The latter is not a problem since
the corner region is turbulent, as a turbulent boundary layer is used, and thus in this corner
region no laminar separation bubble is present.

As shortly touch upon in Section 4.3, the consequence of using the blending function at
the wing wall is that the forces, especially the viscous forces, cannot be compared to any
dataset. This is because it is not exactly RANS with k-ω SST as the blending distance is
rather short, but it is also not comparable to the LES data since that includes an LSB. The
pressure forces are less of a concern since these were not significantly affected by the LSB in
the LES, however, the same argument as for the viscous forces still holds. Ultimately to solve
this issue it is recommended to rerun the LES for which the boundary layer is tripped in close
proximity to the leading edge.

Finally regarding the blending in the far-field, behind this blending there is no physical
reasoning. It was observed that quite some noise was present in the correction fields towards
the top and outlet of the domain. For b∆ij this was likely due to the low value of k in the training
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data in these regions. Therefore, using blending functions to blend the corrections to zero in
the far-field allowed the (model) propagation simulation to be significantly more stable. And
since this blending only occurs in the far-field, where no corrections are required, there are
no consequences while doing this. That is as long as the portion of the bottom wall and wing
near the outlet and top of the domain are disregarded in the calculation of the aerodynamic
forces.





5
LES Drag Comparison Anti-Fairing

One of the remaining research questions in this work was to investigate whether the anti-fairing
actually reduces the drag force on the wing body junction flow. In this chapter, the drag force
of the two wall-resolved LES simulations by Alberts [23] for the baseline geometry and by
Vigner [24] for the anti-fairing geometry are computed and compared. These LES simulations
are virtually the same except for the geometry in the region connecting the bottom wall to
the wing, for the anti-fairing geometry please refer to Chapter 2. This chapter is structured as
follows, first, the method of computing the drag force is established in Section 5.1. This section
is followed by Section 5.2 in which the drag results are displayed and discussed. Finally, a
conclusion is given in Section 5.3.

5.1. Computational Setup
In this section, the numerical methodology for computing the drag force will be discussed. As
defined in Anderson [1], the drag force is ”the component of the aerodynamic force parallel
to the relative wind”. In this work the free-stream flow is parallel to the x-direction as defined
in Chapter 3. Hence to compute the drag force (Fd) the viscous force and pressure force on
both the bottom wall and on the wing should be computed in the x-direction, this means that
the drag force for this particular geometry is formulated as:

Fd = Fx,v,1 + Fx,p,1︸ ︷︷ ︸
bottom wall

+Fx,v,2 + Fx,p,2︸ ︷︷ ︸
wing

(5.1)

The viscous drag force (Fx,v) is obtained by integrating the wall shear stress in the x-
direction (τw,x) over the solid surface S (Belligoli [62]):

Fx,visc =

∫
S
−τw,xdS (5.2)

Note that the wall shear stress is provided by the OpenFOAM solver. The negative sign is
present due to the sign convention used by OpenFOAM to export the wall shear stress. The
pressure drag force, Fx,p, is obtained by integrating the x component of the vector that results
from the product of the pressure and the wall normal vector over the solid surface S (Belligoli
[62]):

Fx,p =

∫
S

(
[1, 0, 0]T · (p · n⃗)

)
dS (5.3)

Note that the normal vector n⃗ is pointing into the solid.

95
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To perform the integrations the post-processing software ParaView1 is used. This software
also allows calculating the wall normal vector required for the pressure force. Similar to the
work by Srikumar [63] the drag force is computed on multiple geometries. This means that
cuts are made in the domain to exclude irrelevant parts for the drag comparison. The different
geometries and their naming are displayed in Figure 5.1 for the bottom wall and in Figure 5.2
for the wing. Note that for the anti-fairing geometry, the wing span is slightly longer compared
to the baseline version due to the indents present in the bottom wall. This is because in the
analysis the wing is cut at a certain y value and since the wing in the anti-fairing starts at a
negative value of y instead of y = 0 (baseline geometry) the span is slightly longer.

The four geometries that will be used are labelled complete (complete bottom and wing
wall), small, which uses a small portion of the bottom wall and half of the wing span and
medium. The latter has two configurations one that uses half the wing span and one that uses
a short span which equals 5% of the complete span (indicated by medium ss).

Finally, to non-dimensionalise the drag force the drag coefficient is computed as:

Cd =
Fd

1
2ρU

2
∞δinletT

(5.4)

Due to the changing wetted area, it is decided to use δinlet · T as the reference area.
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Figure 5.1: The four bottom wall geometries for the drag computation.

1https://www.paraview.org/, Last accessed: 05-07-2023

https://www.paraview.org/
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Figure 5.2: The four wing geometries used for the drag computation.

5.2. Drag Results
This section discusses the outcome of the drag computation as described above in Section 5.1.
The drag coefficient of the previously mentioned geometries is displayed below in Figure 5.3.
This figure shows that the anti-fairing geometry has a drag advantage for the Medium ss ge-
ometry with respect to the baseline geometry. In the right plot, it can be seen that the Medium
ss geometry has the propulsive pressure force as described by Belligoli et al. [22]. According
to Belligoli et al., this is due to the incomplete pressure recovery over the anti-fairing geome-
try resulting in a propulsive net force. For all other geometries, the drag computed over the
anti-fairing is higher than for the baseline geometry.

Interestingly, the only contribution to the pressure drag on the baseline geometry is by
the wing since the normal vector of the bottom wall is constant, namely [0, 1, 0]T . Hence the
pressure force by the bottom wall in the x-direction is always zero for the baseline geometry.
Together with Figure 5.3 this confirms that the propulsive pressure force seen in the right plot
by the anti-fairing for the Medium ss geometry is indeed due to a propulsive mechanism by
the bottom wall, as the pressure force by the wing in x-direction is close to zero due to the
short span. This pressure drag advantage seems to disappear, however, when increasing the
wing span, see the Medium geometry.

To further investigate this drag advantage of the Medium ss geometry an analysis was
performed for which the wing span was changed step-wise. The result of this analysis is
displayed in Figure 5.4 in which the x-axis displays the wing span length. Note the Medium
geometry is used for the bottomwall and remained constant. Besides, the drag force increases
with y/T since the wetted surface area increases, recall that Cd is computed using δinlet ·T as
the reference area. From Figure 5.4, it is more clear that the drag advantage of the anti-fairing
geometry comes from the pressure drag difference. From the left plot, it is deduced that the
anti-fairing has a lower drag force compared to the baseline geometry up to a wing span of
approximately 0.8y/T which corresponds to 20% of the complete wing span used in this work.

The non-linear behaviour seen in the pressure drag curve explains why the propulsive
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Figure 5.3: Bar chart of the drag components for the four geometries, (left) the complete drag coefficient,
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pressure force seen for theMedium ss geometry in Figure 5.3 does not translate to theMedium
geometry. Since according to the right plot in Figure 5.4 the pressure drag shows a non-linear
trend with wing span length with the added observation that the pressure drag increases more
rapidly for the anti-faring geometry.
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Figure 5.4: Drag coefficient curve showing the combination of the Medium bottom wall plus a portion of the wing
for which the height is indicated by the y/T -axis. (left) Complete drag coefficient, (middle) viscous drag

coefficient, (right) pressure drag coefficient.

A possible explanation for the dissimilar non-linear behaviour of the baseline geometry
versus the anti-fairing geometry could lie in the presence of the laminar separation bubble
(LSB). Because the presence of an LSB will influence the drag forces. It, namely, increases
the pressure drag and marginally decreases the friction drag due to the flow reversal in the
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bubble. Fortunately, an LSB was present in both the LES of the baseline geometry and the
anti-fairing geometry which allows the LES simulations to be compared. Yet it must be noted
that it is likely that the anti-fairing influences the behaviour of the LSB as it influences the HSV
as shown in Vigner [24], which, in its turn, impacts the motion of the laminar flow. And thus
it could impact the pressure drag behaviour of the anti-fairing simulation. Next to that, since
the wing span of the anti-fairing is slightly longer, a larger portion of the LSB is present when
computing the drag.

An investigation regarding the impact of the anti-fairing on the shape of the LSB is missing
in this work and would be left as a recommendation if the impact of the anti-fairing on the drag
force would be significant for more a realistic geometry (such as Small or Medium).

It should be noted that this trend of the anti-fairing only being effective for a portion of the
complete geometry was also observed by Srikumar [63] who performed a wall-modelled LES
of the anti-fairing geometry. However, the results by Skrikumar were influenced by an unex-
pected trailing edge separation above the vorticity region. Next to that, it is unclear whether
an LSB was present in the simulation by Srikumar [63].

5.3. Concluding Remarks
To conclude the comparison, it is seen that indeed the anti-fairing will reduce the drag of the
wing-body junction flow by approximately 8% using a propulsive pressure mechanism over the
bottom wall if observing a specific geometry, that is the Medium ss geometry. However, this
specific geometry is rather unrealistic. If increasing the wing span length used to compute the
drag force to a more realistic value, the drag force of the anti-fairing is approximately equal to
the baseline geometry and can therefore, according to this LES comparison, not be labelled
as a drag-reducing geometry.

As counterarguments to the latter conclusion, one could mention the negative effect of the
LSB and the slightly longer wing span of the anti-fairing. To investigate the effect of the LSB
another wall-resolved LES will be required for which the flow is tripped close to the leading
edge. Yet it could be argued whether this is worth the extra computational effort as it is shown
in the experimental study by Belligoli et al. [22] that the achievable drag reduction of the anti-
fairing computed by the numerical methods seems to be too optimistic. Next to that, the extra
wing span will increase the drag due to the extra wetted area of the wing compared to the wing
of the baseline geometry. Yet in a realistic scenario, the anti-fairing would likely be retrofitted
to an already existing commercial aircraft, for which it is not expected that the wing span will
be changed due to the presence of a new wing fairing. Hence it is more realistic to compare
the baseline geometry to the anti-fairing with the same span measuring from y = 0 and thus
to take the extra wing area below y = 0 for granted.





6
Conclusion

This chapter gives the conclusion of the work performed in this thesis. For which the main
research question was formulated as follows:

Can the discrepancy in the flow field of a standard RANS simulation with respect to a large
eddy simulation for the wing-body junction flow be reduced using the SpaRTA machine

learning algorithm?

Prior to addressing this main question, is to answer the sub-questions as defined in Chapter 2.
Subsequently, the main question will be discussed followed by a set of recommendations for
future work.

Which regions in the RANS solution require significant corrections? From the comparison
of the baseline RANS simulation with the LES data as well as from the k-corrective frozen
results, several discrepancies between the RANS and LES flow fields were found. First of
all, is the difference in the location of flow separation upstream of the leading edge, which
causes the horseshoe vortex (HSV) to be misplaced throughout the flow domain in the RANS
solution. Secondly is the lack of secondary vortices in the RANS result. This was linked to
the inaccurate prediction of anisotropy of the Reynolds stress tensor by the k-ω SST model
for this flow. The lack of the secondary vortices also answers the sub-question: is the vortex
topology different between the LES and the baseline RANS? And finally, a dissimilar skin
friction profile on the wing was observed. This dissimilarity is due to the presence of a laminar
separation bubble (LSB) on the surface of the wing in the LES solution and due to the corner
separation present in the RANS solution. Thus to answer the question, the two regions that
require significant corrections are the location where the time-mean HSV is formed, that is
upstream of the leading edge. And the corner region wrapping the complete wing where the
secondary vortices and corner vortex live. Recall that it has been decided to not correct the
RANS to predict the LSB since the original k-ω SSTmodel is not meant to incorporate transition
prediction.

What are the discrepancies in the flow fields between the propagated correction fields
and the high-fidelity simulation? The propagation results showed that the effectiveness of the
correction fields on the baseline turbulence model was very good. To such an extent that there
are hardly any significant discrepancies found between the propagation and the LES data. The
differences that are notable are present in the peak magnitude of the vorticity of the HSV and
the peak magnitude of the turbulent kinetic energy. However, these dissimilarities can be
neglected compared to the major improvements with respect to the baseline RANS. Which
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include the correct location, shape and topology of the system of vortices and a matching skin
friction curve on the surface of the wing.

What is the error between the regressed model and the training data? From the regression
it was found that the mean squared error (MSE) for the regression of R was equal to 0.95 · 109
[m4/s6] and 1.36 · 10−2 for b∆ij . However, these values cannot be compared to each other nor
be solely used to quantify the prediction performance of the model. The latter is because the
MSE was used as one of multiple tools to compare different models. Regarding the regression
of the correction to the k-equation R, the fit of the found models with an R2-score of at least
0.9 was quite satisfactory. From the flow fields and scatter plots, it was concluded that the
regressed models were able to correctly predict the location of the required corrections and to
some extent the correct magnitude of the correction values. However, it was also noticed that
the negative values present in the target data were not determined by the models.

The satisfactory result forR does unfortunately not hold for the regression of the anisotropy
correction b∆ij . From the flow field visualisation and the scatter plots, it was concluded that the
fit was poor. This has the consequence that a correct prediction of the secondary vortices
in any model propagation cannot be expected due to the incorrect anisotropy determination.
Next to that is the fact that the turbulent production correction by the b∆ij model was found to be
zero throughout the flow domain. This is significant since it was found in the results of the k-
corrective frozen method that the magnitude of this production correction cannot be neglected
in comparison to R.

Do the regressed models run stable in a RANS simulation? From the various model prop-
agations performed for this work, of which only the best is shown, it was found that both cor-
rection models ran stable in a CFD solver for the same flow case on which the models have
been trained. The latter is an important note since testing for generalisability of the models,
which will be discussed below, is missing in this work. However, it was found for b∆ij that only
the low complexity models would be stable, this is likely a side-effect of the poor regression
fit.

What are the discrepancies in the flow fields between RANS with correction models and
the high-fidelity simulation? and; is the vortex topology present in the LES solution predicted
by the custom turbulence model? Based on the results obtained from the model propagation,
it was demonstrated that both the complete model propagation and the model propagation
of R improved the calculation of the HSV location. However, in the corner region, significant
discrepancies were found in the complete model propagation. First of all the corner vortex
was reduced in magnitude and secondly, the secondary vortices were lacking. The latter
was expected due to the poor fit of the b∆ij model. In the model propagation of R the vortex
topology in the corner region was correct. However, regarding the secondary vortices, this
correct determination is mainly due to the fact that b∆ij is correct in this model propagation.
Finally, the skin friction profile on the wing revealed that the complete model propagation did
not have a corner separation, which was not expected due to the lack of (secondary) vortices
in the corner region. It was deduced that this is likely due to the increased turbulence in the
boundary layers which is a result of the production correction by b∆ij being zero instead of the
negative value as found in the frozen method.

Is the new turbulence model generally applicable? Will the new model also improve wing-
body junction flows with different types of fairings and wing geometries? A big topic in the
quest to find new turbulence models (and or techniques) is the question of whether these
new models are generally applicable. Unfortunately, this question cannot be answered for
the SpaRTA methodology on the junction flow by this work. Due to the limited time frame of
a Master’s thesis, generalisability tests, both a priori and a posteriori, are missing. A final
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step would be to propagate the found models on the anti-fairing geometry, as this geometry
could represent a design iteration in an aerodynamic shape optimisation problem. For which,
originally, the objective of this work was meant. However, before performing this test it is
recommended to first improve the machine-learning methodology for generating a b∆ij model,
but more on that later.

Before going to the general conclusion of this thesis a final sub-question which followed
from the literature review is remaining: What is the difference in drag force between the LES on
the baseline wing-body geometry by Alberts [23] and the LES on the anti-fairing geometry by
Vigner [24]? The comparison of the two LES’s showed that indeed the anti-fairing reduces the
drag force by a propulsive pressure mechanism over the bottom wall. However, this reduction
in total drag was only measured if a small portion of the complete wing span was included in
the geometry over which the drag was computed, that is 5% to 20% of the original span. If
this span was increased to larger values the drag reduction vanished and for some geometries
even increased the total drag. However, it should be kept in mind that both LES simulations did
include an LSB over a large portion of the wing, this very likely influenced the drag comparison
since it is expected that the anti-faring influences the location and form of the LSB with respect
to the baseline geometry.

Finally, to answer the main question of this work on whether the discrepancy of a RANS
simulation on the wing-body junction flow can be decreased using the SpaRTA methodology
the answer would be no. This is mainly due to the methodology in its current state not being
able to find a sufficiently good model for the anisotropy correction, which causes the vortex
topology in the corner region to be more dissimilar with respect to the truth compared to a
baseline RANS simulation. Yet, it cannot be overlooked that an improvement is found in the
positioning of the HSV. Next to that, the propagation results, as well as the model propaga-
tion of R, showed that with the right determination of the correction fields, a steady RANS
simulation can be very close to the time average of the true flow field.

Logically, design optimisation with the turbulence correction models found in this work is
undesirable. Despite the improved positioning of the HSV, it is preferred to have the correct
vortex topology since the drag force is dependent on this vortex system.

6.1. Recommendations
Naturally, from the conclusion flows a set of recommendations for future work. Although some
have already been given throughout the various chapters they will be repeated in this section.
First of all, is improving the methodology of finding a model for the anisotropy correction. Ideas
that were established in Chapter 4 were:

• To focus on the important Reynolds stress components with respect to the secondary
vortices instead of the complete tensor, that is to focus on v′v′, w′w′ and v′w′ in the
current reference system. This is, however, specific for the junction flow problem and
not for the SpaRTA methodology overall. Besides, it should be checked whether the
resulting correction does not deteriorate the other components of the stress tensor.

• Inspired by the complexity of some explicit ARSM ([35, 36]), to increase the complexity
of the basis functions, for example, include multiple secondary variables in a single non-
linear function.

• For more complex three-dimensional problems, such as the junction flow, to represent
the b∆ij correction by a more sophisticated machine learning approach such as a neural
network (for example the TBNN by Ling et al. [41]). This will reduce the ability to un-
derstand the correction model, however, in the view of design optimisation for which the
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model would only be used on a single flow problem this would not pose a big problem.
Especially if a neural network could increase the accuracy prediction.

A second recommendation flowing from this work is to include the junction flow in the set
of test cases for novel turbulence models and or novel turbulence model methodologies. This
is because this flow includes, as shown, both a misprediction in the separation of a larger flow
structure (the HSV) and a required Reynolds stress anisotropy correction to get the correct
vortex topology. Naturally, one would only run this case after the novel technique has shown
promising results on more academic flow cases, such as the square duct. To include the wing-
body junction flow in the test cases it is, however, recommended to rerun the LES by Alberts
[23] for which the flow is tripped close to the leading edge to prevent any (negative) influence
on the results by the laminar separation bubble.

Thirdly, it is recommended to test the generalisability of the found models using the anti-
fairing geometry (i.e. the LES by Vigner [24]). Yet, it is only recommended to do so if improved
b∆ij models have been found. An a posteriori test can be done by comparing the LES data
to the model propagation results. Next to that, performing a k-corrective-frozen simulation
on the anti-fairing LES data also allows to use the test case as an a priori test by using the
propagation or LES data as input for the found models.

Finally, as shown in Chapter 3, in comparison to the original SpaRTA methodology the
R term has been omitted from the ω equation in this work. It is thus recommended to more
thoroughly investigate the effect of this by running small academic flow cases such as the
periodic hill and comparing the results.
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A
SpaRTA Nomenclature

In the table displayed below the translation of the nomenclature used within SpaRTA is dis-
played. This table is useful when reading the mutual information plot as well as the coefficient
matrices.

SpaRTA Math symbol SpaRTA Math symbol

S2_s Is G1_s G
(1)
s

W2_s IIs G1 G(1)

W2S_s IVs G6_s G
(6)
s

W2S2_s Vs T2_s T
(2)
ij,s

W2SWS2_s V Is T4_s T
(4)
ij,s

S2 I T7_s T
(7)
ij,s

W2 II T8_s T
(8)
ij,s

S3 III q_Q qQ
W2S IV q_nu qν
Ak2WS_s IXk,s q_tauk_B qτkB
W2AkS_s V IIIk,s q_perp q⊥
Ak2WS2_s XIIk,s q_pS qpS
W2AkS2_s Xk,s q_gamma qγ
Ak2SWS2_s XIIIk,s q_V qV
W2SAkS2_s XIk,s q_Re qRe

Ak2WS IXk q_TI qTI

Ak2S2 IIIk sqrt_abs(x)
√
|x|

WAkS2 V IIk tanh(x) tanh (x)
epsilon ϵ x**a xa
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B
Mesh Study

In the methodology description (Chapter 3) it is described that in order to resolve the smaller
vortex structures in the corner region a mesh with y+ ≈ 1 is required. This appendix discusses
the small mesh study performed for this work which resulted in that conclusion. Three meshes
were established for which the y+ values are summarised in Table B.1. These meshes were
established by refining or coarsening the mesh towards the wall in the boundary layer region
over the bottom wall and the wing. Note that Mesh 3 has been coarsened towards the outer
parts of the domain to keep the total number of cells similar to Mesh 2.

Table B.1: Values of yplus and the total number of cells for the different meshes.

Wing Bottom Wall
min. y+ max. y+ mean y+ min. y+ max. y+ mean y+ num. of cells

Mesh 1 1.91 55.62 28.98 1.47 68.91 30.55 ∼ 15.1m
Mesh 2 0.56 25.32 14.15 0.62 27.58 12.22 ∼ 16.4m
Mesh 3 0.035 1.86 0.96 0.019 2.54 0.94 ∼ 16.4m

The mesh study was performed using the baseline RANS configuration, i.e. steady state
RANS with the k-ω SST turbulence model. The resulting vorticity field in the symmetry plane
upstream of the leading edge for the three meshes is given in Figure B.1. From this figure, it
can be concluded that the HSV is not very sensitive to the mesh and that Mesh 2 would have
been sufficient. Although it must be argued that the mean y+ value of Mesh 2 is neither in the
viscous sub-layer nor in the log-law layer, therefore using wall models can be difficult.

Figure B.1: Vorticity in z-direciton in the symmetry plane upstream of the wing for the different meshes.
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When closer examining the corner region of Figure B.1, that is Figure B.2, it becomes more
clear why Mesh 3 is required for this work. That is, to be able to resolve the smaller vortex
structures, a fine mesh is required in the corner region. Since both Mesh 1 and 2 do not show
the corner vortex nor the smaller vortex structures. Therefore it was decided to use Mesh 3
for all RANS and SpaRTA related simulations in this work.

Figure B.2: Vorticity in the corner region in the symmetry plane for the different meshes.

For completeness the pressure and skin friction profiles (Cp and Cf ) over the wing both
close to and far away from the corner region are displayed in Figure B.3 and Figure B.4. In
which it is seen that especially far away from the corner region the profiles match very well.
However,Mesh 1 does show the tendency to a laminar separation region, yet sinceCf remains
positive the flow stays attached. In the corner region (y/T = 0.025) the Cf profiles show a
larger discrepancy with respect to each other.
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Figure B.3: Pressure coefficient profiles of the wing for the different meshes at two y-levels.
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Figure B.4: Skin friction coefficient profiles of the wing for the different meshes at two y-levels.





C
Simulation Residual Plots

This appendix displays the residual plots of the simulations performed in this thesis.
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Figure C.1: Residuals of the baseline RANS simulation.
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Figure C.2: Residual of the k-corrective frozen simulation.
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Figure C.3: Residuals of the propagation simulation.
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Figure C.4: Residuals of the model propagation of R simulation.
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Figure C.5: Residuals of the model propagation simulation.





D
Code Implementations

The modification to the k-ω SST turbulence model for the model propagation to account for
the newly introduced lower limit of the production term is displayed in the code snippet below.
The complete model propagation code is available in Hoefnagel [61].

1 // ...
2 // Modification: the production term G2 will be always equal or larger than 0
3 volScalarField GbyNu(dev(twoSymm(tgradU())) && tgradU());
4 volScalarField::Internal G(this->GName(), nut()*GbyNu);
5 volScalarField G2
6 (
7 "G2",
8 max(0.0*nut*GbyNu, nut*GbyNu - xi_ * useRST_ * sigma_ * (2*(this->k_)*

bijDelta_ && tgradU()))
9 );
10 // ...

The removal of theR term in the ω-equation in the turbulence model for the model propagation:
1 // ...
2 // Modification: kDeficit term R is omitted from the omega-eq
3 // Turbulent frequency equation
4 tmp<fvScalarMatrix > omegaEqn
5 (
6 fvm::ddt(alpha, rho, omega_)
7 + fvm::div(alphaRhoPhi , omega_)
8 - fvm::laplacian(alpha*rho*this->DomegaEff(F1), omega_)
9 ==
10 alpha()*rho()*gamma
11 *min(
12 // Production modified due to RST correction
13 G2 / nut(),
14 (this->c1_/this->a1_)*this->betaStar_*omega_()
15 *max(this->a1_*omega_(), this->b1_*F23()*sqrt(S2()))
16 )
17 - fvm::SuSp((2.0/3.0)*alpha()*rho()*gamma*divU, omega_)
18 - fvm::Sp(alpha()*rho()*beta*omega_(), omega_)
19 - fvm::SuSp
20 (
21 alpha()*rho()*(F1() - scalar(1))*CDkOmega()/omega_(),
22 omega_
23 )
24 + this->Qsas(S2(), gamma, beta)
25 + this->omegaSource()
26 + fvOptions(alpha, rho, omega_)
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27 );
28 // ...

Below the two Python functions that were used to perform the far-field spatial blending and
the spatial blending close to the wing (blending() and LSB_blending() respectively). In the
model propagation, the flowfield in each iteration is passed from the OpenFOAM solver to a
Python interpreter that calculates the value of R and b∆ij based on the flow field and the model
equations (Hoefnagel [61]). Therefore, the functions shown below were inserted in the Python
routine just before the arrays for R and b∆ij were passed back to the OpenFOAM solver.

1 def blending(y, x, bijD=None, kD=None):
2 """
3 This function applies the spatial blending towards the top and outlet of

the domain
4

5 Args:
6 y (numpy array): Cell y values
7 x (numpy array): Cell x values
8 bijD (numpy array): bijDelta
9 kD (numpy array): kDeficit
10 """
11 y_start = 0.2 # hardcoded; y > y_start -> blending (top domain)
12 y_max = 0.281973
13

14 x_start = 0.9 # hardcoded; x > x_start -> blending (outlet)
15 x_max = 1.022
16

17 factor_y = (y - y_max) / (y_start - y_max)
18 factor_x = (x - x_max) / (x_start - x_max)
19 factor_x[factor_x < 0.0] = 0.0
20 mask_y = (y >= y_start)
21 mask_x = (x >= x_start)
22

23 # apply blending functions
24 if kD is not None:
25 kD[mask_y] *= factor_y[mask_y]
26 kD[mask_x] *= factor_x[mask_x]
27 if bijD is not None:
28 # Note!: bijD has shape (6, Npoints)!!!
29 bijD[:, mask_y] *= factor_y[mask_y][np.newaxis, :]
30 bijD[:, mask_x] *= factor_x[mask_x][np.newaxis, :]
31

32 # to clean memory space, gc.collect() (collection) occurs outside of this
function

33 del y_start, x_start, y_max, x_max, factor_y , factor_x, mask_y, mask_x
34

35 if kD is not None:
36 return kD
37 if bijD is not None:
38 return bijD
39

40

41 def LSB_blending(walldist , y, bijD=None, kD=None):
42 """
43 This function applies the spatial blending on the wing to filter the LSB
44

45 Args:
46 walldist (numpy array): Cell walldistance
47 y (numpy array): Cell y values
48 bijD (numpy array): bijDelta
49 kD (numpy array): kDeficit
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50

51 Useful image:
52 |<------>|
53 |\ H | ^
54 | \ | |
55 | \ f1()| |
56 | \ | |
57 | \ | |B
58 | \ | |
59 wing | \ | |
60 | f2() \| |
61 |________\ v
62 | ^
63 | |H
64 | |
65 |__v____________
66 Bottom wall
67 """
68

69 # hardcoded values
70 H = 0.0052 # height junction region (i.e. corner region)
71 B = 0.0052 # distance to blend y over
72 wmin = 9.6e-6 # minium walldist (found using OpenFoam)
73

74 # Blending functions:
75 def f1(w):
76 return ((1.0/H)*w - (wmin/H))
77

78 def f2(y):
79 return 1.0 - ((1.0/B) * (y-H))
80

81 # for the following statement:
82 # if True -> in the (triangle -shaped) region where blending on y should

occur
83 # that is just above the junction region
84 # if False -> in the region where blending based on walldist should occur
85 factor = np.where((y-H) < ((-B/H)*walldist + B), f2(y), f1(walldist))
86

87 mask = ((y > H) & (walldist < H))
88

89 # Apply blending
90 if kD is not None:
91 kD[mask] *= factor[mask]
92 if bijD is not None:
93 # Note!: bijD has shape (6, Npoints)!!!
94 bijD[:, mask] *= factor[mask][np.newaxis, :]
95

96 # to clean memory space, gc.collect() (collection) occurs outside of this
function

97 del factor, mask, H, B, wmin
98

99 if kD is not None:
100 return kD
101 if bijD is not None:
102 return bijD

The script below displays the code that was used to regress R and b∆ij . Note that the script
heavily relies on the SpaRTA Python library by the group of Dr. R.P. Dwight.

1 """
2 The goal of this script is to regress the training data using the SpaRTA
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python library by the research group of Dr. R. P. Dwight.
3 Author: Matthijs van Ede
4 """
5

6 ## Importing libraries
7 import sys
8 import json
9 import numpy as np
10 import sparta.util_plot as util_plot
11 from myfunc import boxing, print_settings
12 from sparta import util
13 from sparta.features import FlowFeatures
14 from sparta.discovery import SymbolicRegressionElasticNet
15 from sparta.library import CandidateLibraryScalarPrincipal
16 from sparta.transform import TransArray , TransformScaler , transform_db
17 from sparta.model import ModelSort , print_models , compute_score
18

19

20 def model_bijD(bijDeltaEq , _flow):
21 # This function evaluates the bijDeltaEq using _flow
22 featureDict = _flow.vv # Double check if its OK to use this beform

transformScaler
23 featureDict['const'] = lambda : np.ones(_flow.vv["k"].shape) # Can use any

scalar feature for shape
24 funcDict = {'exp': np.exp, 'abs': np.abs, 'tanh': np.tanh, #Numpy
25 'rdiv': util.rdiv, 'rlog': util.rlog, 'sqrt_abs': util.

sqrt_abs} #Custom
26 bijD_model = eval(bijDeltaEq , funcDict , featureDict)
27 return bijD_model.T
28

29

30 def Pk_bijD(bijD, _flow):
31 # This function calculates Pk_bijD from bijDelta (bijD)
32 # from openfoam code:
33 # nut*GbyNu - xi_ * useRST_ * sigma_ * (2*(this->k_)*bijDelta_ && tgradU()

)
34 # from Smelzer et al:
35 # Pk_bijD = -2k * bijD_ij * (dU_i/dx_j)
36 _bijD = util.as_fulltensor(bijD)
37 _k = _flow.vv["k"]
38 _gradU = _flow.vv["gradU"]
39 return -2.0 * np.einsum("n,nij,nij->n", _k, _gradU, _bijD)
40

41

42 ## Settings =========================================================
43 input_file_name = \
44 "/home/mvanede/scratch/MachineLearning/sparta_iM_yp1_extra/inputs_bijD.

json"
45

46 # Inputs are read from "inputs.json"
47 input_file = open(input_file_name)
48 inputs = json.load(input_file)
49 input_file.close()
50

51 froz_data_path = inputs["froz_data_path"] # Path to frozen data
52 thinning_factor = inputs["thinning_factor"] # 0.5 -> 50% thinning
53 box_coords = inputs["box_coord"] # Box coordinates
54 target_name = inputs["target_name"] # Name of the target data
55 lib_degree = inputs["lib_degree"] # Degree in generating library
56 system_mem = inputs["system_mem_gb"] # Available memory in gb
57 max_complex = inputs["max_complex"] # Maximum complexity
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58 p_vars = inputs["p_vars"] # Principle variables
59 read_lib = inputs["read_lib"] # Read library (bool)
60 lib_path = inputs["lib_path"] # Path to library file
61

62 print_settings(inputs)
63 sys.stdout.flush()
64 # ====================================================================
65

66 ## Reading flow field
67 flow = FlowFeatures.from_openfoam(openfoam_casepath=froz_data_path ,
68 verbose=True)
69

70 ## Thin and box the flow
71 print("Boxing and thinning flow befor setting up features")
72 flow = boxing(flow=flow, box_coord=box_coords) # Boxing the flow
73 flow.thin(factor=thinning_factor) # thinning flow
74

75 # define func. for all features (lazily)
76 flow.setup_features(WallinTimeScale=True)
77

78 ## Selecting principle and secondary variables
79 # s_vars = flow.invariant_names + flow.scalarfeature_names
80 # These were found with Mutual Information:
81 s_vars = ['S2', 'W2', 'S2_s', 'W2_s', 'q_gamma', 'q_nu', 'q_Q', 'q_Re']
82

83 vars = p_vars + s_vars
84 print(vars)
85 sys.stdout.flush()
86

87 ## Determine scale factors of the features
88 vars_rm_list = []
89 for var in vars:
90 v = flow.vv[var]
91 std = np.std(v)
92 # checking if std and v are 'reasonable', if not remove them
93 if (std < 1.e-10) or (util.is_nan_or_inf(v)):
94 vars_rm_list.append(var)
95 transform_db[var] = TransformScaler(std)
96

97 if target_name == "kDeficit":
98 kDeficit_std = np.std(flow.vv[target_name])
99

100 ## Scaling the features
101 for var in vars:
102 v = flow.vv[var]
103 flow.vv[var] = TransArray(v, transform_db[var])
104

105 ## Define target
106 if (target_name == "kDeficit"):
107 target = TransArray(flow.vv[target_name],
108 TransformScaler(kDeficit_std))
109 else: # -> bijDelta
110 target = TransArray(flow.vv[target_name],
111 TransformScaler(1))
112

113

114 ## Removing the bad variables from p_vars and s_vars
115 print(f'Removing variables: {vars_rm_list} due to nan/inf or too small std')
116 p_vars = [pi for pi in p_vars if pi not in vars_rm_list]
117 s_vars = [si for si in s_vars if si not in vars_rm_list]
118 vars = p_vars + s_vars



124 Appendix D. Code Implementations

119

120

121 ## Build the regression library
122 lib = CandidateLibraryScalarPrincipal(
123 flow=flow,
124 principal_names=p_vars,
125 secondary_names=s_vars,
126 target=target
127 )
128 # Generate , evaluate and filter library
129 if read_lib:
130 lib.read(
131 filename=lib_path
132 ).evaluate(
133 available_memory_gb=system_mem
134 ).filter(
135 available_memory_gb=system_mem
136 )
137 else:
138 lib.generate(
139 degree=lib_degree
140 ).evaluate(
141 available_memory_gb=system_mem/2
142 ).filter(
143 available_memory_gb=system_mem/2
144 )
145 # Write library to text file
146 lib.write(filename="library.txt")
147

148

149 ## Defining the regression matrices
150 if lib.Beval.ndim == 3: # Tensor regression -> bijDelta
151 num_functions , num_locations , num_components = lib.Beval.shape
152 X = lib.Beval.reshape(num_functions , -1).T # reshape to desired form
153 y = lib.target.q().reshape(-1) # reshape to desired form
154 if target_name == "bijDelta":
155 print("Weighing by k")
156 _weight = flow.vv["k"]
157 weight = (_weight[:,np.newaxis] * np.ones((1,6))).reshape(-1)
158 elif lib.Beval.ndim == 2: # Scalar regression -> kDeficit
159 X = lib.Beval.T # Beval is generated with transformed
160 y = lib.target.q() # q() func gives transformed array
161 print("check if lib.targtet == target:", np.sum(lib.target - target))
162 weight = None
163

164 if weight is not None:
165 print("Weighting is applied!")
166

167 ## Regression
168 regression = SymbolicRegressionElasticNet(
169 library=lib,
170 target_transform= target.op,
171 # max_iter= ...,
172 # l1_ratios= ...,
173 # alphas= ...,
174 verbose=True
175 )
176 # model discovery
177 models = regression.discover(
178 X=X,
179 y=y,
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180 scaling=lib.B_scaling ,
181 weight=weight
182 )
183

184 # Sort the discovered models
185 modelsort = ModelSort(models)
186 modelsort.cull_degenerate()
187 modelsort.cull_low_score(flow, lib.target, threshold=0.1)
188 modelsort.cull_complex(max_complex)
189 modelsort.uniqueify(flow, lib.target, sort='mse') # useless !, only usefull if

after refitting
190 modelsort.sort_complexity_mse(flow, lib.target)
191

192 # print and plot models before refitting
193 print_models(modelsort.models, [flow], [lib.target], ['Train'])
194 util_plot.scatter(modelsort.models, [flow], [lib.target], 'pre_scatter.png')
195 util_plot.model_matrix(modelsort.models, flow, lib.target, 'pre_matrix.png')
196

197 # Refit and print models
198 modelsort.refit(flow, lib.target)
199 print_models(modelsort.models, [flow], [lib.target], ['Train'])
200

201 ## Plotting
202 util_plot.scatter(modelsort.models, [flow], [lib.target], 'post_scatter.png')
203 util_plot.model_matrix(modelsort.models, flow, lib.target, 'post_matrix.png')
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