Automated Pricing
Suggestions

]
TUDelft

-P 115306

Automated Pricing
Suggestions

To obtain the degree of Bachelor of Science at the Delft University of Technology, to be presented and
defended publicly on Thursday July 5, 2018 at 10:00 AM.

Authors: Jonathan Katzy
Tim Rietvield
Jaap-Jan van der Steeg
Erik Wiegel
Project duration: April 23, 2018 - July 5, 2018
Guiding committee: Roel Bloo CFO Sjauf, Client
Stefan Dorresteijn CTO Sjauf, Client
Dr. M. Birna van Riemsdijk TU Delft, Coach
Dr. Huijuan Wang Bachelor Project Coordinator

]
TUDelft

Abstract

As Machine Learning is becoming more accessible to small businesses, thanks to the rapid advance in com-
puting power, smaller start-ups such as Sjauf (a ride sharing start-up) are starting to get interested in imple-
menting Machine Learning solutions in their product. Sjauf needed a system that could automatically tell its
customers how much a certain trip would cost them. Using this information multiple different models were
developed and integrated into an ensemble. This ensemble as well as the models used by it were then used
for price prediction. This project is a proof of concept to show that Machine Learning is capable of solving
this problem in real time.

After researching state of the art Machine Learning models for price recommendation, the architecture of
the system was designed. The supplied data was preprocessed, after which a custom Genetic Algorithm was
developed for optimising models and ensembles. After validation on real-life company data, a comparison
using empirical metrics was conducted. We use these empirical metrics to show that a bagging ensemble is
the most efficient and accurate model for this purpose. This bagging ensemble outperformed the currently
implemented functions, whilst adhering to the set boundaries on response times. Lastly, recommendations
are made to the company with an overview of potential future work in this subject.

Preface

This project was conducted as final Bachelor project, part of the Computer Science Bachelor at the TU Delft
and is worth 15EC. We want to thank Sjauf for their guidance and the opportunity to work in the context of
areal project at their company. Special thanks go out to Stefan Dorresteijn who has invested his time in our
project and has always answered our questions. We want to thank Prof. Dr. C. M. Jonker for coaching us in
the early stages of the project. We would also like to show our gratitude to Dr. M. Birna van Riemsdijk who
took over the coaching mid-way through the project when Prof. Dr. Jonker was unable to continue coaching
us. Dr. van Riemsdijk has gone through the trouble of coaching us unexpectedly regardless of her already
busy schedule.

ii

Contents

1 Introduction
2 Research Report 2
2.1 Problemdefinitionand Analysis L L L 2
2.1.1 Problemdefinition. Lo 2
2.1.2 Problemanalysis. e e e e e e e e e e 3
2.1.3 Projectrequirements. L i oo e e e e e e e e e e 3
2.2 Preprocessing. L. e e e e e e e e e e 4
2.2.1 DataFiltering e e e e e e 4
222 Missingdata e e e e e 6
2.2.3 Datalntegrationo e e e e e e e e e e 6
2.24 DataTransformation. Lo e e e e e 6
2.3 Generatingrecommendations Lo Lo Lo 7
2.3.1 Recommender SYyStEmMSo u e e e e e e e e e 7
2.3.2 MachineLearningo 8
24 GeneratingpriCe L. Lo e e e e e 10
2,5 LanguageChoice L e e e e e 11
25.1 Interface. e e e e e e e 11
2.6 Conclusion L e e e e e e e e e 11
3 Architecture 12
3.1 Interfaceformodels. 12
3.2 ElixirInterface L e e e e 13
4 DataProcessing 15
4.1 CreatingtripsS« o o e e e e e e e e 15
4.2 Transformingdata L. L e e e 16
4.3 Creatingmoreinformation L L L 16
4.4 Removingdatapoints. L e e e e e e e e e 17
4.5 Balancingthedataset. L. e e 17
451 Undersampling Lo e e e e 18
452 Oversampling e e 19
5 Genetic Algorithm 21
5.1 Imnerworkings L L L e e e e 21
5.2 Implementation L e e e e e e 21
5.2.1 Creatinginitial population. Lo Lo 21
5.2.2 Selectingfittestgenomes. Lo e e e e e e e e e 22
5.2.3 Creatinganewpopulation. Lo 23
6 Price generation 25
6.1 Models e e e e e e e e e 25
6.1.1 Baseline e e e e e e e e 25
6.1.2 Contentbased L e 25
6.1.3 Feedforward Neural Network 26
6.1.4 Recurrent Neural Network o 26
6.1.5 Convolutional Neural Network. 26
6.1.6 SUPPOItVECIOITEEGIeSSOT v v v v v v e e e e e e e e e e e e e e 27
6.1.7 k-Nearest Neighbourmodel L o 27
6.1.8 Ensemblemodel. L 27

iii

CONTENTS

6.2 ComparisOns e e e e e e e e e e e e e
6.2.1 Comparisons.o e e e e e e e e
6.3 Generatingpricefornewdata. Lo Lo

7 Ethics
7.1 Natureofthedata. L . e
7.2 Rejected Predictors L e e e e e e e
7.3 Fairwages. e e e e e e e

Conclusion

Future work and Recommendations

9.1 Feedbackforthemodels o

9.2 Usingthe generated priceassetprice. L L Lo

9.3 Usinglocations for price generation Lo o e

9.4 Under/Over Sampling. L e e e

9.5 General Recommendations using Machine Learning
9.5.1 Evaluation. L e

Bibliography

A Process
Al QualityControl & Testing o v b i v e e e e e e e e
A2 Communicationt i i e
A3 SCcrum.o e e e e e e e e e e e e e e

Use-Case Diagram
Optimal values

First SIG feedback
Second SIG feedback

Standalone platform for automated price suggestions using Al

O M m g O W

Project Description

iv

Introduction

Ride sharing and Machine Learning are two topics that are currently booming in the start-up business. After
companies like Uber and Lyft have both managed to reach billion dollar valuations in just a short time after
being founded, there are plenty of start-ups that are attempting to get into the ride sharing market. Each
start-up has their own spin on the ride-sharing business plan being used by Lyft and Uber. One of these is
Sjauf which is a Rotterdam based start-up that offers its customers the ability to hire a driver that will come
to them when requested and then drive the customer to their requested destination using the customer’s
own car. The main group of people that make use of this service are people who want to drive to an event
themselves, and be driven back home at the end. This enables them to be able to drink alcohol and have the
convenience of taking their own car to the location. The Machine Learning aspect of the project comes into
play when a customer is requesting a quote for a trip from Sjauf.

The use of Machine Learning in the prediction of prices is not a new idea, in the past many open Machine
Learning competitions have been hosted by companies. These competitions range from predicting movie
ratings, such as in the famous Netflix prize [20] to predicting the price of real estate [1] or tractors [2]. The
developments in Machine Learning have inspired Sjauf to use Machine Learning models to create a price pre-
diction for their customers. The goal of this Machine Learning model is to give the customers an idea of how
much they should expect to pay for a trip. In the end the driver does still set the price he wants to drive for
himself. However, the customer will now have an idea of what the trip could cost before requesting a quote.

Building such a custom Machine Learning model requires the correct application of different models in order
to function accurately. To start off the project report, the results of the research are documented in Chapter
2, it defines the challenges faced in this project and how Machine Learning algorithms can be used to solve
the problem. After this, Chapter 3 discusses the structure of the software system that we created. In order
to understand how we processed the received data to make it usable for Machine Learning, Chapter 4 is
included. In Chapter 5 the Genetic Algorithm used to optimise the models is explained. The following chapter
(Chapter 6) explains how the models work and how they are optimised using the genetic algorithm. This
chapter concludes with a comparison of the various models. Chapter 7 discusses the ethical considerations
made in this project. In the second-to-last chapter, Chapter 8, the conclusion of this project is provided.
Chapter 9 concludes the report by exploring the possible future work and makes recommendations to the
client.

Research Report

To understand the requirements of a good Machine Learning model, a research report was created. This
research report discusses different techniques to preprocess data and generate a price from it. In Section 2.1
the problem will be defined and analysed thoroughly. Next, in Section 2.2 different techniques to preprocess
the data are stated and explained. In Section 2.3 we explore a variety of methods to analyse the data and
generate prices. Section 2.4 explains our fail-safe in case our program would fail. The choice of programming
language is described in Section 2.5 and Section 2.6 concludes our findings in this research report.

2.1. Problem definition and Analysis

In order to get a good overview of what the customer wants and what exactly is expected of the program
in terms of performance and accuracy, a clear definition of the problem has to be constructed. Also, an
analysis has to be made of what will actually be implemented during the project. Once this is known, a set of
requirements can be created which will have to be adhered to for the remainder of the project.

2.1.1. Problem definition

To improve the user experience, Sjauf wants to implement an automatic price suggestion system for both
their drivers and customers. The motivation being that currently a complicated and non-transparent process
is used to request a driver. The goal is to improve the user experience and ease of use.

Currently users request a certain trip, wait until there are enough offers to make a good decision about what
is a good price, and then accept an offer or cancel the trip. Drivers check out currently requested trips, make
their offers, and wait until they get a message whether their offer is accepted. A use-case diagram can be
found as Figure B.1 in Appendix B.

An additional problem is that a lot of trips are requested just to see how the system works or to get an in-
dication of the price, without any intention to really go on the trip. By implementing an automated pricing
system we seek to improve this situation. Originally the end goal was to provide a set price, so that users
simply request a trip and wait until it is provided for (or not). Drivers would simply accept a job for a certain
price or not. This would make the process much easier to use, but because of the feedback problem of set
prices, and the fact that Sjauf wants their freelance drivers to choose their own price, this approach is not
implemented during this project.

Instead, our system should allow a price range to be indicated before the trip is requested and consequently
discourage users from requesting trips they don’t intend to go on. Additionally, this price range should indi-
cate what a good price is and as a consequence users will have to wait for less offers to know which offer is
acceptable. On the driver side a generated suggested price acts as guidance for their offer to make offers fall
within this price range.

Sjauf wants to suggest a price through the use of Artificial Intelligence (AI) or Machine Learning (ML) tech-
niques with the restriction that even for very rarely taken trips the price suggestions should be reasonable.

2.1. Problem definition and Analysis 3

There are two datasets available to train these machines on, an older database with more, but also less ac-
curate data from the beginning of the company, and the new database with fewer but more accurate data
entries. Regretfully, within these databases, incomplete, erroneous and test data is present. Both databases
also have a different structure. Thus part of our project is pulling the appropriate data from these databases
and filtering this data.

2.1.2. Problem analysis

With the current system Sjauf has noticed that only 35% of the requested rides by customers are fulfilled by
a driver. They attribute this low percentage to the fact that currently the customer has no indication of what
a trip should cost. This means that the customer has to come up with a valuation without having a price to
compare with which can lead to a large disparity between what customers want to pay and for how much
the drivers are willing to make the trip. With the implementation of the price recommendation system, Sjauf
hopes that giving customers an idea of how much a trip will cost will help them decide if they want to post a
trip in the first place. If they do choose to request a driver, they will have a price indication beforehand.

It is important to note that this problem is in fact a multi-stakeholder problem. The different stakeholders
that can be distinguished are the customer, the driver and Sjauf. Generally speaking, each of these stakehold-
ers has a different wish for a predicted price. The customer wants to pay as little as possible, whereas the
driver wants to earn as much as possible. On the other hand, Sjauf does not mind about how high the price
is, but they want to make the biggest difference between the price that the client wants to pay, and the price
that the driver wants to drive for, since this difference is the earning of Sjauf. One question that rises from this
multi-stakeholder problem is which of the stakeholders will be favoured by the price suggestion algorithm.
To answer this question it is important to note that the price suggestion will be based on trips that have been
made in the past. This means that this suggestion takes both the needs of the client and the driver into ac-
count. However, the stakeholder that is favoured most by this suggestion is Sjauf. This is because they can use
the suggested price to decide a price range, give the client the upper-bound of this price range as indication
and give the driver the lower bound of this range as suggested price. This way, the difference between what
the driver earns and the client pays is maximised, but everyone’s needs are satisfied.

Another problem that needs to be addressed is the amount of data that is available for this project, as the avail-
able datasets are really small; they only contain around 3000 completed trips. In comparison, other (publicly)
available transit datasets, such as the New York City Taxi Trip! dataset and the Taxi Service Trajectory ECML
PKDD? dataset contain 1.1 billion and around 1.7 million completed trips respectively. Inherently, drawing
conclusions from limited data will be hard as certain incorrect correlations in the data might be found, while
actual correlations in data may not be deduced.

2.1.3. Project requirements

As the final product needs to be integrated into an already existing application, there are a certain set of re-
quirements that have been posed in order to ensure that the ML program is compatible with the application.
The application itself is an umbrella application where each sub-application has its own Docker® container
making it very modular. This also means that the first requirement demanded of the product is that it can be
run isolated in its own Docker container.

Due to the fact that the algorithm is intended to be used in a commercial setting, any bugs in the code could
negatively impact the company, therefore all code that is written has to be tested sufficiently. This means that
whereas the performance of a Neural Network cannot be confirmed with testing, it can be tested whether
certain actions lead to crashes.

Furthermore, there were limitations on the languages that could be used in the program set by the CTO of
Sjauf. These limitations were that the algorithm had to be callable through an Elixir API. This means that the
program itself can still be written in any language as long as it can be called from an Elixir API. Furthermore,
due to the required maintainability of the code the CTO did not want it to be written in Java.

Ihttp://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
2https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge, +ECML+PKDD+2015
3https://www.docker.com/

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://archive.ics.uci.edu/ml/datasets/Taxi+Service+Trajectory+-+Prediction+Challenge,+ECML+PKDD+2015
https://www.docker.com/

2.2. Preprocessing 4

Another hard requirement is that the result of the algorithm needs to be returned as quickly as possible as
the aim is to supply users in real time with suggested prices. In order to ensure that the user is not left waiting
for a price we want the algorithm to return a prediction within 200ms.

Finally there are a set of loose requirements that have to be met in relation to the way in which the model
is trained. Currently, only 70 transactions per week are requested. In order to incorporate this data into the
model, the model has to be retrained. This leads us to the final requirement which is that the algorithm
should be trainable on the available hardware within 8 hours (over night).

2.2. Preprocessing

Sjauf uses two different datasets to keep track of their past rides. As these datasets have different schemes, it
is necessary to merge these sets when one wants to train on all the available data. Also, both datasets contain
test entries as well as entries with missing data, which need to be filtered out before training the model. As
not all data fields in the datasets are numeric (strings for example) and the input for the model can strictly be
a vector of numeric values, it is necessary to transform these data fields. Finally some data fields might not
be relevant for predicting a price and these should be removed to be able to train the model faster. To find the
preprocessing method(s) that are best suitable for our problem, we discuss multiple relevant techniques and
compare them on key characteristics. We start by discussing different data filtering techniques in Subsection
2.2.1 and discuss data integration techniques in Subsection 2.2.3. Subsection 2.2.4 concludes with multiple
data transformation techniques.

2.2.1. Data Filtering

As described in the introduction of this section, it is necessary to filter out the dummy data that are present
in the different datasets in order to train the model on real data. As this is as simple as ignoring the data
entries posted by certain test accounts, we will not discuss techniques for doing this. However, to only train
the model on valid data, it is also necessary to remove data entries with incorrect data fields. This can be
done by using so called anomaly detection (also known as outlier detection), which relies on the assumption
that incorrect data will result in a data entry non-similar to others. There exist several techniques for outlier
detection, all with advantages and disadvantages (as identified in [8]), which will be discussed briefly in the
following paragraphs.

Classification based detection

Classification based models (such as Neural or Bayesian Networks [4, 13]) are used to learn a function from
a set of labelled data entries to classify such an entry into one of the labelled classes. These techniques as-
sume that a classifier can be taught to distinguish between normal and anomalous classes in a given space.
Advantages of these models are that they are able to perform multi-class classification and that determining
whether an instance is an outlier or not can be done very fast. Disadvantages of this approach are that they
rely on the availability of accurate labels for normal classes and that they do not return a score based on how
anomalous an entry is. As Sjauf’s data does not contain labels whether an entry is an outlier or not, and the
fact that labelling the data by hand is unfeasible in the amount of time available for this project, we will not
use this approach.

Nearest Neighbour based detection

Nearest Neighbour based detection techniques [22, 33] rely on the assumption that normal data entries occur
close to other data entries, while the anomalous data entries are far from their closest neighbours. These
models work either by using the distances between either the k-nearest neighbours as the anomaly score,
or compute the relative density of each data entry to use as the anomaly score. Advantages of these models
are that they are unsupervised, i.e. they don’t need labelled data to work and that they are easily adaptable
to other types of data, since only the distance function needs to be changed. The disadvantages of these
models are that when the data has normal instances far from all their neighbours, it will be considered as
an outlier. Furthermore, when an anomaly has close neighbours, this technique will fail to correctly classify
this data entry. Also, testing a data entry is computationally intensive, as all nearest neighbours have to be
computed. A last disadvantage is that the performance of these models is completely dependant on the used
distance measure, which can be difficult to determine when the data is complex. As we do not care about the
computational intensity of the algorithm, because filtering can be done offline, this approach is viable and
will be tested for effectiveness.

2.2. Preprocessing 5

Clustering based detection
Clustering based detection techniques try to group similar data entries into clusters. There are several differ-
ent approaches to clustering based anomaly detection, which all rely on different assumptions [8]:

1. Normal data entries belong to a cluster in the data, while anomalies do not.

2. Normal data entries lie close to their closest cluster centroid, while anomalies lie far away from cluster
centroids.

3. Normal data entries belong to large and dense clusters, while anomalies belong to small or sparse clus-
ters.

A important difference between clustering based techniques and nearest neighbour techniques is that each
instance is evaluated based on the cluster it belongs to, rather than the nearest neighbour it has. Advantages
of clustering based techniques are similar to those of the nearest neighbour technique: they are unsupervised
and are easily transferable to different data. In contrast to nearest neighbour techniques, testing whether an
instance is an anomaly or not is fast, since the number of clusters to be evaluated is small. One disadvantage
of this approach is that the performance of clustering-based techniques is highly dependent on how well the
structure of clusters for normal data entries can be captured. Another disadvantage is that the main goal of
clustering is not to detect anomalies, but to group similar data entries together. Therefore these approaches
are not optimised for anomaly detection. An example of this are clustering techniques which require that
every data point is assigned to a cluster. This approach would violate assumption 3 whenever a anomaly
is assigned to a dense and large cluster. Lastly, clustering techniques are not effective when the anomalies
form large and dense clusters themselves. Clustering techniques where outliers do not need to be assigned
to clusters will be evaluated for effectiveness.

Statistical detection

Statistical anomaly detection uses the principle that an anomaly is a data point which is suspected to be ir-
relevant because it does not follow from the assumed stochastic model [3]. It relies on the assumption that
normal data entries occur in high probability regions of a stochastic model, while anomalies only occur in
low probability regions. Advantages of this approach are that when this assumption holds, a statistical justi-
fiable solution for anomaly detection is provided. Also, this approach inherently results in a confidence value
for whether an entry is an outlier or not, which can be used for decision making. Lastly, if the distribution
estimation is robust to anomalies in the data, this approach can be used in an unsupervised manner. A major
disadvantage of this approach is that these techniques assume that data is generated from a particular distri-
bution. This does not hold often. For this reason we will not use statistical detection to test for outliers in our
data.

Information Theoretic based detection

Information theoretic techniques use the information content of a dataset using different measures, such as
entropy and relative entropy. These techniques rely on the assumption that anomalies in data result in ir-
regularities in the information content of the dataset. Advantages of this approach are that these techniques
operate in an unsupervised manner and that they do not make any assumptions about the statistical distri-
bution for the data. A disadvantage is that the performance is highly dependent on the choice of information
theoretic measures. Often, such measures can only detect anomalies when there is a large number of them
present in the dataset. Another disadvantage is that with this technique it is hard to create an anomaly score
for a certain test entry. Lastly, this technique is usually applied to sequences, which may be hard to obtain. As
itis hard to divide our data into meaningful sequences, we will not use Information Theoretic based detection
methods.

Spectral based detection

Spectral techniques [27] try to find an estimation of the data with a combination of attributes that capture
most of the variability of the data. They rely on the assumption that data can be mapped into a subspace
with a smaller dimension where normal instances and anomalies have completely different appearances. An
advantage of this approach is that it performs a dimensionality reduction, which is another preprocessing
step we perform before feeding the data into the price generator. Another advantage is that these techniques
can be used in an unsupervised manner. Disadvantages of these techniques are that they are only useful when
a lower dimensional space exists such that anomalies look different than normal entries. Another problem

2.2. Preprocessing 6

is that these techniques often have a high computational complexity. This is not a big problem as the outlier
detection can be done offline, therefore this technique will be tested to see whether it is possible to reduce
the dimensionality of the data in such a way that outliers can be detected.

Conclusion

In conclusion, for our problem it is not possible to use a classification based technique, as no labelled data is
available and hand-labelling it ourselves is unfeasible in the amount of time available for this project. Also,
it is not possible to use statistical based detection methods, as we highly doubt that a distribution exists
from which our data is generated. Lastly, we will not be using information theoretic based detection, as
this needs to be applied to sequences and our data is not sequential. Therefore, 3 methods remain: nearest
neighbour- clustering- and spectral-based techniques. Problems might occur with nearest neighbour and
clustering techniques, when outliers lie close to each other in the feature space. With spectral based tech-
niques however, it might be impossible to reduce the dimensions of our data, as its number of dimensions is
already rather small. Trials with these three techniques will have to be conducted to determine the optimal
technique for outlier detection on our data. To determine this optimal technique the different pre-processing
techniques will be used on the same, unbiased and non-random model and the error and variance of the re-
sults are compared with each other.

2.2.2. Missing data
Another case where data might become invalid is the case where data is missing. There are multiple methods
to deal with this problem([30].

e Ignore the tuple

e Fill in the missing values manually

¢ Use a global constant to fill in the missing values

¢ Use attribute mean to fill in the missing values

¢ Use the attribute mean for all samples belonging to the same class as the missing tuple
¢ Use the most probable value to fill in the missing value

It will be dependent on the importance of the missing value which of the stated methods will be applied.
If the attribute that is missing has a strong influence on the price, the best solution is ignoring the tuple
since incorrectly guessing an important value will have a big influence on the results. On the other hand,
just ignoring all the tuples with missing data would influence the accuracy of the predictions, as less data is
available. Therefore, missing attributes that are of lesser importance should somehow be filled in, or these
attributes should be removed from every entry. As the data from Sjauf does not contain many attributes
already, dropping attributes in which missing values occur might be harmful to the accuracy of the model.
However, manually filling in these values is very time consuming and is not feasible. Therefore it is necessary
to find the most probable value to fill in for attributes of lesser importance. To do this, inference-based tools
using Bayesian formalism or decision tree induction might be used(30].

2.2.3. Data Integration

Since Sjauf has two databases with data, the data has to be integrated. Data integration is the act of com-
bining data from different sources to present it in a unified way. In this application this means that the two
databases have to be combined into one dataset that can be presented to the price recommending algorithm.
To make this combination possible, decisions have to be made on which columns need to be selected from
both databases. Ideally the important columns are present in both the databases. If this is not the case, we
will need to decide on the importance of said attributes and whether the column is indeed necessary. If such
a column is necessary, the missing values have to be filled in (see also Subsection 2.2.2).

2.2.4. Data Transformation

After filtering the data and integrating the two databases, it is required to transform the data to an easily com-
parable format that we call feature vectors. In this application, the feature vector is a vector that represents
one trip. However, since a vector consists of only numbers, all non-numeric attributes need to be encoded.

2.3. Generating recommendations 7

This might be challenging in cases where the attributes do not have clear numeric values, such as the desti-
nation of a trip, or the day of the week. For all of these cases, a suitable transformation of the data has to be
found. A location might be represented using as a latitude and a longitude. For categorical data such as the
day of the week, each category can be represented as an integer.

2.3. Generating recommendations

For the purpose of generating recommendations, there are two main classes of algorithms; Recommender
Systems and Machine Learning algorithms. Recommender Systems have already found a great degree of
success in the prediction of ratings people would give to a movie they had not yet seen[20]. On the other
hand, Machine Learning algorithms such as Neural Networks can be used in a regressive capacity in order to
generate predictions of continuous values.

2.3.1. Recommender Systems

In the realm of Recommender Systems there are many different types of algorithms that all essentially achieve
the same goal of recommending a product. In this case, a price should be recommended for a trip. The dif-
ferent algorithms will be briefly touched upon in the following sections, starting with content based filtering,
followed by collaborative filtering, and ending with an overview of a hybrid approach.

Content-Based Filtering

Content-Based filtering uses the attributes of an item to find similar items. It could then use the prices of
similar items to decide a price for the current item. We have the advantage that we know the exact attributes
(such as distance and driving time) of rides which can be easily compared in a meaningful way. Because our
items are similar, but often not exactly the same, Content-Based filtering allows us to create groups of similar
rides to reduce sparsity. There are advantages of new rides being able to be compared to any similar previous
ride, and it is possible to have an explanation why this value has been decided.

An important disadvantage of this approach is that the quality is dependent on a large historical dataset[5].
Where normally there are challenges with creating and maintaining user profiles to make correct recommen-
dations, we only want to make a suggestion based on a current item and do not take user preference into
account; therefore we avoid this problem completely.

Collaborative Filtering

Collaborative filtering uses user responses to find out which items are similar to each other. There are two
separate approaches, user-user filtering, or item-item filtering. The first technique tries to group users with
similar ratings together, whereas the latter tries to group items with similar ratings together. Notably, this
technique completely omits the content of items, and only looks at rating similarity. Because we have the re-
quirement that prices are not user-dependent we can’t use the user-user filtering that looks for similar users.

When using item-item filtering we could group together similar rides and compare different sets with similar
prices to decide the price of the current ride. The problem with this approach is that it does not work when a
ride is the first in an otherwise empty set, also known as the cold-start problem, or when no similar rides can
be found in a non-empty set, which is known as the "Gray sheep" problem|5]. This approach also suffers from
the problem that the quality is based on a large historical dataset. Also, because there is a limited amount of
users that have taken multiple trips using this approach is ineffective as the price matrix in which similarities
have to be found is very sparse.

Hybrid Filtering

Three classes of hybrid mechanisms can be distinguished, those that run both mechanisms and combine the
results, those that combine both mechanisms into one and those that use the output of the first system as
input in the second system.

The effectiveness of the first class is dependent on whether both mechanisms cover cases that are not cov-
ered by another, if one algorithm is very good at new items but the other at good at common items it might
be worthwhile to run both. The second class is essentially making an algorithm that uses features of both
algorithms with only a single mechanism but at the cost of e.g. speed and simplicity. The last class uses the
result of one system in consideration with all other attributes to make a decision.

2.3. Generating recommendations 8

All these hybrid approaches are very flexible and dependent on the performance of the separate parts, thus
experimentation is required to know if this works efficiently in our use-case. However as it is ineffective to
create a collaborative filtering model (as described above) a hybrid approach will not be used.

2.3.2. Machine Learning

Contrary to how Recommender System predict a result using the similarities of other trips, Machine Learning
(ML) takes a slightly different approach to predicting an appropriate price for a trip. In Machine Learning the
individual characteristics that make up the data are analysed and used to come up with a prediction. The
main methods which will be discussed are Neural Networks, Support vector machines and Ensembles.

In Machine Learning, two different types of outputs can be used. The first type of output for ML models
is classification. In classification one tries to map an input value to a discrete value that indicates to which
class said input belongs. An example in which classification is used is when one wants to determine whether
a picture contains either a dog or a cat. The second type of output is called regression, where the model tries
to map an input to a continuous value, where similar items receive similar values. An example use-case of
regression is predicting the price of real-estate. As our goal is to predict prices for trips, no clear maximum
price is present. Consequently, it is not convenient to regard this problem as a classification problem as this
would mean that we have to define how 'big’ each category will be. Decisions would have to be made regard-
ing whether to favour the precision of the recommendation (a cent/euro per category) or to favour a smaller
output dimensions (5/10 euros per category) for more accurate prediction. This problem is not present when
regarding this as a regression problem, because regression does not require such categories. For this reason,
we will use a regression model. Although most of the models in this chapter have both a classification and a
regression approach, this chapter will only go into the regression approaches.

Neural Networks

Feedforward Neural Network Systems A Feedforward Neural Network is an algorithm inspired by the human
brain. The algorithm consists of nodes that simulate neurons in the human brain [24]. These neurons are
organised in layers in the network, see Figure 2.1. Every neuron in a layer is connected to all the neurons in
the previous layer using weighted links. This means that every connection has a certain weight, or strength.
The knowledge of the network is encoded in the strengths of the connections. The first layer of a Feedforward
Neural Network is called the input layer. This is were the data enters the network. The data travels through
every layer of the network and in every layer the input is multiplied by the weight, after which an activation
function is applied to it. The last layer of the network is called the output layer, which returns the final result.
Every layer that is in between the input- and output layer is called a hidden layer[15].

Hidden layer
Input layer OQutput layer

Qp ut2 » <§;’E<§
Figure 2.1: Example of a simple Feedforward Neural Network

o)
Outp LID
Outp LID

R

mw

2.3. Generating recommendations 9

Before the network can be used for price generation, the network needs training. During the training phase
the weights in the network are updated. This training can happen in a supervised and unsupervised manner.
When training in a supervised setting, every input has a known output. When training in an unsupervised
setting, the network tries to find commonly occurring patterns in the input data, without knowing the correct
outputs. Unsupervised learning is of no importance to us, as all data is labelled.

The steps taken in the training phase when using supervised learning are as follows:
1. Initialize all weights to a random value

2. Network predicts outputs on train data

3. Calculate error gradient

4. Update weights based on error gradient

5. Repeat steps 2, 3 & 4 until convergence or iteration limit is reached

After the training phase, the network can be used for price predictions and the weights can be saved for future
use.

Working with Neural Networks has both advantages and disadvantages. First of all, given appropriate data,
Neural Networks can usually find a trends invisible to data scientists. Secondly, the network finds relation-
ships autonomously, limiting the need for human intervention. On the other hand, the architecture of a
Neural Network can be challenging to get right, especially due to its black box nature which prevents data
scientists from understanding which changes to the architecture could be beneficial. However, because of
the known power of finding relations in data, the Feedforward Neural Network could yield significant results
for this application.

Recurrent Neural Networks In many aspects, the Recurrent Neural Network (RNN) works similarly to a Feedfor-
ward Neural Network, however RNNs contain cycles between their hidden layers; the output of the previous
time step is taken into account when predicting for the next time step. This allows RNNs to be able to predict
time series as well as capture long and short term effects. This can be useful to capture changing user inter-
ests in for example movie or music recommendation. A common problem in RNN systems is the vanishing
gradient problem, where the gradient used to correct the weights of the model during training becomes very
small, preventing the weights from updating. Numerous solutions to this problem have been proposed, of
which the most popular ones are Gated Recurrent Units (GRUs) [10] and Long Short Term Memory models
(LSTMs) [17]. GRUs are simplified and memory-less versions of the LSTM and have been found to often yield
similar accuracy as LSTMs, while they reduce training times [12]. Just like the Feedforward networks, RNNs
predict an output value by learning a function from input to output. However, where the input in Feedfor-
ward networks is a single input vector, in RNNs a sequence of input items is fed into the network. This has
as an advantage that the order of data is taken into account, which is not possible in Feedforward Neural
Networks. Another advantage of RNNs over Feedforward NN is that they are able to evolve over time. Disad-
vantages of RNNs are that they, just like Feedforward NNs, often require large amounts of data to be trained
correctly, which also causes these models to have high training times. Also, the inner workings of such a
model are hardly visualizable, which causes that it is hard to understand which factors are highly influencing
the output of the model. Lastly, as an RNN uses a more complex structure than normal Feedforward models,
they contain more free parameters which leads to a harder and longer optimisation of the model. While it
might be worth trying the Recurrent Neural Network, we believe that since Sjauf’s data does not contain se-
quences, there won't be much of an improvement over the Feedforward Neural Networks to compensate for
the increased complexity.

2.4. Generating price 10

Support Vector Regression

Like Neural Networks, Support Vector Machines (SVMs) work by dividing an n-dimensional sample space
by a hyper plane. However, unlike Neural Networks that try to find any hyper-plane that satisfies the label
assigned to most of the datasets, a SVM will find a hyper-plane that separates the sample space with the max-
imum spacing between each separate cluster[18]. A SVM can be used in a classification sense or regressions
sense just like Neural Networks; if a SVM is used for the purpose of regression it is called a Support Vector
Regressor.

The main advantage of a SVM over a Neural Network for this application is that if data is scarce it will find
the most optimal solution for the general case, making the predictions more accurate for a wider variety of
predictions compared to a Neural Network, which needs a lot more data. However this advantage also comes
at a cost as if there is an outlier in the data that lies in the wrong cluster, a SVM will never converge as it needs
all of the values to be separable. This means that if we want to use a SVM in the product, the data has to be
thoroughly scanned for any outliers. In the case that there is no simple hyper-plane that bisects the sample
space, a mapping function I" can be used in order to transform the data into a more easily separable dataset
without loosing the characteristics of the dataset[26].

In the past SVRs have been successfully used in areas such as the prediction of house prices in the hous-
ing market as well as predicting future stock prices in the stock market[25, 28]. Because Sjauf also needs
price-predictions we will definitely try to implement a SVR.

Ensemble learning

As has been seen previously, many different algorithms for price prediction are possible. Each of these meth-
ods have their own strengths and benefits. In the world of Machine Learning, Ensemble learning can be used
to combine the strengths of different models; it is comparable to consulting different experts when trying to
solve a problem. The way Ensemble learning works is that it consults different Machine Learning algorithms
which all have their own speciality, and through the combination of these algorithm the ensemble (a combi-
nation of algorithms) comes up with a more precise prediction than it would have, given that only one of the
algorithms was consulted[6].

Conclusion

There are many techniques possible to generate a price, as described above. From all discussed approaches,
we will not be considering User-User Collaborative filtering, because of the requirement that price recom-
mendations are independent between users. Item-Item Collaborative filtering will not be applied because
there is a limited amount of users making multiple rides, resulting in a sparse interaction matrix. Recurrent
Neural Networks will only be implemented when there is extra time, as we do not believe they will improve
the accuracy enough to warrant the development time involved in creating one. Ensemble learning tech-
niques may not be used depending on whether they can deliver a prediction within the allotted 200ms. All
other methods will be considered and their outputs evaluated when deciding on the most optimal model for
predictions.

2.4. Generating price

Since the price suggestion algorithm for Sjauf directly influences the amount of profit the company makes, it
is important that the suggestions are correct and within the permissible range. It is hard to speculate about
an upper bound on how high the suggested price can be, since a lot of variables might have influence on
this price. We can however decide on a lower bound. We will call this lower bound the minimum price. After
generating a price by using one of the above mentioned algorithms, we can check whether this price lies above
the computed minimum price. The minimum price can be calculated by taking the time that the trip will take
plus the time it will take for the driver to get back to the start point, and multiply it with some standard wage
for the driver. These times can be calculated using the Google maps API. The standard wage for the driver will
be determined by Sjauf. Therefore, for each trip it is possible to check if the recommendation by our system
is below the minimum price and action can be taken accordingly.

2.5. Language Choice 11

2.5. Language Choice

When choosing a language for this project we took a few factors into account. In order to comply with the
requirements set in Subsection 2.1.3 we were not able to use Java, and an efficient language would increase
the chance of staying within the set time constraints.

On top of the requirements for the language we had from the project requirements, we also had our own
requirements. These were that the language had to have a lot of support in the Machine Learning community
as we would be relying on libraries in order to implement most of the different models, since the time frame
of the project was too short to write everything ourselves. Furthermore, the language should be easy to use
on different operating systems as far as downloading dependencies goes, as we already expect to be using
quite a few libraries.

Keeping all these requirements in mind, we agreed on using Python, more specifically Python 2.7. This is
because of the extensive Machine Learning library support, such as MLLib* and Tensorflow®. On top of this,
Elixir has an easy to use way of calling code from Python by using the native Python library. Lastly, as Python
is an interpreted language, it allows us to use an interpreter like CPython that converts the Python code to
C. This gives us the rapid execution time of programming in C with only a small amount of overhead whilst
developing. During deployment, we can use the compiled C code for faster train and prediction times.

2.5.1. Interface

In order to comply with the final requirement set out by the client, our code needs to be callable from an Elixir
environment. Python is also a good choice to fulfil this requirement as Elixir natively contains the Erlport®
library, which allows the calling of Python modules. We will create an Elixir interface, making it possible to
call Python functionality from the Elixir environment used by the client.

2.6. Conclusion

Analysis of the problem showed that Sjauf wants a price suggestion system build in to their service to improve
the rate of fulfilled requested rides and to inform the customer beforehand on the cost of a trip. To make this
possible multiple requirements have been noted and different approaches to deal with this problem have
been investigated.

There are multiple steps to be taken when preprocessing the data into a usable dataset. First the data has
to be filtered, which includes the detection and removal of outliers and filling in missing data. Secondly, the
data from the different databases needs to be merged into a uniform scheme. Third, the data needs to be
transformed to feature vectors. Lastly, the dimensions need to be reduced as much as possible, without los-
ing critical information.

To be able to generate a price for a requested trip it is necessary to predict prices on past data. This can
be done with multiple different models, such as Content-Based filtering and several Machine Learning ap-
proaches. After these models have predicted a price for the requested trip, it is needed to verify whether the
models predicted a realistic price. Therefore, a minimum pricing component will be added to ensure a fair
wage for the driver. Once this has been ensured, the recommendation will be accessible through the created
API and can be presented to the drivers and customers.

There may be a future problem when using these methods, because they are incompatible with the planned
second phase envisioned by Sjauf. If an exact price is generated and used then all new data is generated by
the model itself. Therefore, it would be necessary to change the type of feedback that the model is trained
on (from explicit to implicit), to prevent the model from reinforcing itself. This would mean that the created
model needs to be adjusted to continuously improve itself, instead of converging to a set of prices and never
change again. Another option would be to stop training the model and just use it as is. This would however
require an alternative solution in the long run.

4https:/ /spark.apache.org/milib/
Shttps:/ /www.tensorflow.org/api_docs/python/
Shttp://erlport.org/, Elixir is ran in an Erlang VM

Architecture

The main goal of this project was to create a module that can be used with Sjauf’s application. As a conse-
quence of our language choice it was decided to create a standalone API in Python which would be called
by an interface written in Elixir, the language used by Sjauf’s back-end. This chapter is dedicated to illustrat-
ing the setup of the project and the architecture of the final product. It elaborates on the relations between
various components of the Python module. In section 3.1 the layout of the standalone API is explained to-
gether with the interface that enforces consistency. To ensure that Sjauf can use this API, an Elixir interface is
created, which is explained in Section 3.2.

3.1. Interface for models

To predict the prices for trips many models have been created and tested. To ensure that these different
models are consistent with each other, and to make sure that these models can be trained, optimised and
used in a unified manner an interface was created. This interface enforces each model to implement the
same methods. These methods are the following:

train(features, targets) Trains the model using features of the training data with their corresponding targets
generate_price(features) Applies the trained model to the features of a new trip to predict its price
export_model(location) Saves the trained model to the specified location

import_model(location) Reads the trained model from the specified location

random_initialization() Used in the genetic algorithm to create random instances with random variables of
the model

crossover(dad_genome) Used in the genetic algorithm to crossover the parameters two models
mutate() Used in the genetic algorithm to mutate the parameters of a model

get_params() Returns all the parameters from a specific model

set_params(params) Sets the parameters for a model

It is important to note that the random_initialization, crossover and mutate methods in the model interface
are used for the genetic algorithm. Every model has many parameters that decide the quality of the result of
the model. To find the optimal combinations of the parameters, a genetic algorithm has been implemented
that can be applied on every model. This genetic algorithm works by generating random instances of a model
with random parameters and training them. Using crossovers and mutations of the best parameters, an opti-
mal combination of parameters can be found. The genetic algorithm will be further explained and discussed
in Chapter 5. Figure 3.1 shows how the model interface is implemented in the price suggestion algorithm.

12

3.2. Elixir Interface 13

Modelinterface

+ frain{features, targets): Type

+ generate_price(features): Float

+ expori_model(location): Void

+ import_model{location): Void

[it # + crossover{dad_genome): Void [€-------------- 1
+ mutate(): Void \

) ! + random_intialization(): void implements

implements + get_params(): params :

i + get_params(params). void

PriceGenerator model

+ train(features, targeis). Type
— * model + generate_price(features): Float
+ export_model{location). Void

+ import_model(location): Void

+ crossover(dad_genome): Void
Handler for + mutate(): Void

+ random_intialization{): void

+ get_params(): params

+ set_params(params); void

+ frain(features, targets): Type

+ generate_price(features): Float
+ expori_model(location): Void

+ import_model(location): Void

+ crossover(dad_genome): Void
+ mutate(): Void

+ random_intialization(): void

+ get_params(): params

+ sef_params(params): void

ontains

Figure 3.1: A representation of the Classes involved with the models

The Modellnterface enforces the methods described previously. The interface is implemented by both the
PriceGenerator and the model. The PriceGenerator is a class that is able to generate the price for every model.
Since many models are implemented and tested, this PriceGenerator only requires a model as input and is
able to handle the training, testing, optimisation and verification of the model.

3.2. Elixir Interface

Sjauf’s back-end is written in Elixir!, which is a functional programming language based on the Erlang Virtual
machine BEAM. As Erlang, or more specifically Elixir, is a functional programming language, it is not intended
to be used for Machine Learning applications, and so there are few to no Machine Learning libraries available.
To fix this gap between required functionality and what Elixir can offer, a bridge was built that let an Elixir
program call functions from the Python scripts that were used to build the Machine Learning models. This
bridge is managed by the supervisor (Pricing.Api.Application).

This supervisor manages both the interface (Pricing.Api.Interface) and the Python instance. The interface
is managed through the standard supervisor implementation of Elixir?, this means that on exceptions or
crashes the supervisor terminates the failed instance and relaunches another instance to take its place. The
ErlPort library used to connect Python and Elixir is not compatible with the native supervisor method. In-
stead, the Python instance is separately launched in the start function, and a monitor ensures the Python
instance is relaunched if it crashes. This setup is shown in Figure 3.2. The process ID of the Python process is
stored separately in python_process_name for easy access from both supervisor and interface.

Ihttps://elixir-lang.org/
2https://hexdocs.pm/elixir/ Supervisor.html

3.2. Elixir Interface

python_process_name

+ Python Process ID

Pricing_Api.interface

+ Init()

+ Import_Model(Location): string
+ generate_price(Datum, Cartime, Distance, Ovtime) : Date, Int, Int, Int
+ Export_Model{Location): string
+ Train(Features) Dataset

+ Qptimise(Features, Validation) Dataset

Forwards Calls fo

Pricing. Api.Application
+ Stari(type, args)
manages + Restart()
+ Terminate()
Launches
Python Instance

Figure 3.2: Relations of the Elixir-Python Bridge

14

The main part of the bridge is the interface as seen in Figure 3.3, this forwards the calls made to the Python
instance and transforms some of the Elixir data formats into an usable format for Python. The Python in-
stance is reachable through its process ID, which is available through an agent which spans both supervisor

and interface.

PriceGenerator
+ model

+ frain{features, targets): Type

+ generate_price(features): Float
+ export_model(location): Vioid

+ import_model(location): Vioid

+ crossover{dad_genome): Void
+ mutate(): Void

+ random_intialization(): void

+ get_params(). params

+ set_params(params): void

HES‘T

has.

model

Handler for—— ™

+ frain{features, targets): Type

+ generate_price(features): Float
+ expori_model{location): Void

+ impori_model{location): Void

+ crossover(dad_genome): Void
+ mutate(): Void

+ random_intialization(): void

+ get_params(). params

+ get_params(params). void

elixir_interface
+ MODEL

+ frain({features). void

+ generate_price(features): Float

+ export_model(location): Vioid

+ import_model{location): Void/

+ optimise(features, validation): void

[(F—Recieves Calls over Erlport

Elixir

Figure 3.3: The structure of the Elixir Interface

Should the client decide on a different implementation in the future, all that would need to be changed is the
bridge that can call the functions from the Python module.

Data Processing

The focus of this chapter is the preprocessing of the raw data received from the database. Section 4.1 discusses
how the trips are reconstructed from the received data. The following section (Section 4.2) shows how the data
is transformed into an usable format for Machine Learning. Section 4.3 explains how more information about
the trips is gathered. In Section 4.4, useless data points are dealt with by removing them from the dataset. The
final section, Section 4.5, describes how the dataset can be balanced so that every class is evenly represented.

4.1. Creating trips

As the data that we need for predicting a price is divided into two databases (an older and newer one), the first
step to unify the data is to agree on a common database schema to which both databases will be transformed.
Figure 4.1 shows the database schema that contains every column needed to generate good predictions. After
the data from the two datasets has been merged, it has to be transformed. As both the old and new databased
stored offers instead of trips, all entries that were not accepted had to be removed in order to find the price of
trips.

offer_id

price status trip_id | request_location_id latitude longitude street house Zip city country requested_trip_date

1657

55.0 | accepted 950 1967 51.9353964 | 4.4608784 | Lisztrode 5 2717 EW | Zoetermeer | Netherlands | 2017-05-17 11:13:00+02

Figure 4.1: A simplified example dataframe of unprocessed unified data from both databases after being merged together

As an offer is made on a trip, but the schema only contains one latitude and longitude, we have to group the
data from the merged database on the ’offer_id’ field and decide which latitude and longitude correspond
to the start-, via- and end-location. To do this, we sort the grouped data on the 'request_locations_id’ and
assume that the start location has a lower value for this field than the end- and possible via-locations. As a
maximum of two via-locations is allowed in the app from Sjauf, the created group size is never bigger than 4
(start-, two via- and an end-location), therefore to transform the offers into a trip we create a new database
schema. This schema contains four latitude and 4 longitude fields and is visualised in Figure 4.2. The latitude
and longitude values from the grouped offers are filled in accordingly. After this has been done, the other
column fields from the grouped offers (which are the same for every trip) are copied to the created schema.
The only exception is the status value, that says whether a trip is accepted or not. This field will first be
transformed from a 't/f’ character to a '0/1’ integer value to create a numeric representation of this field.
After this is done, the trips have been created from offers and can be used in consequent preprocessing steps.

offer | offer status request | request confirmed requested accented start start vial lat | vial long | via2 lat | via2 lon end end
id price id loc_id tripdate tripdate P latitude longitude - —ong - —ong latitude longitude
1657 | 55.0 1 23 1967 2017-05-17 11:13:00+02 | 2017-05-17 11:13:00+02 1 51.9353964 | 4.4608784 null null null null 51.0752405 | 4.7980408

Figure 4.2: An example dataframe with a trip going from start to end

15

4.2. Transforming data 16

4.2, Transforming data

To be able to compare different trips with each other it is desirable to transform all information to numeric
values. There are two main items from the trips that need transformation: the date and the time of the day.
The date by itself does not say much in this case because the data from Sjauf is only from the past 18 months.
However, the day of the week on which the trip will take place can say a lot. One could imagine that a trip
during the weekend is priced differently than a trip during the week. Therefore, the dates are transformed to
days of the week, represented by numbers (0 for Monday, 1 for Tuesday etc.). On the other hand, the time of
the day can also say a lot about the price of the trip. A trip at midnight might be priced different from a trip
around noon. Therefore it was decided to divide the day into time buckets. Another intuitive option would
be to just transform the time of day into hours. However, the problem with this approach is that a difference
is introduced between for instance 10PM and 11PM while these trips are both in the evening and around the
same time. Therefore, bigger time buckets were chosen to capture these times as being the same. Currently
time buckets of six hours are used, which means that each trip is assigned a value between 0 and 3. A 0 is
assigned between 00:00 - 06:00, a 1 indicates a time between 06:00 - 12:00, and so on. The length of these
time buckets is variable, which means that they can easily be changed, for instance to buckets of four hours.
Figure 4.3 shows an example of how this transformation works.

24/517 11:13

24/5M17 11:13

Monday | Tuesday | Wednesday |Thursday| Friday |Saturday| Sunday 0:00-6:00 | 6:00-12:00 | 12:00-18:00 | 18:00-24:00

02 3wsE 0123

Figure 4.3: A high-level explanation of transforming the time

4.3. Creating more information

At this point the data is transformed to trips and completely represented by numeric values. This data could
already be used to in Machine Learning, but in that case, a lot of useful information might be forgotten which
is implicitly embedded in the data. The distance of a trip or the required travel time might for instance have
influence on the trip. However, this information is not yet contained in the trip data. To create this data the
Google Maps Distance Matrix API' was used. This API takes two coordinates and returns trip information in
a JSON format. It also calculates the travel times for trips by car, as well by public transport. This is useful
information because the public transport time might influence the price, since the driver will need to use
public transport to return from the destination to their home. From this information the trip distance, travel
time and the public transport travel time were extracted and included in the trip data.

Since the majority of the trips in the data are direct trips, the fields for the via-locations are often empty.
As empty fields cannot be handled by the majority of the recommendation models, these empty fields need
to be filled. To avoid introducing unnecessary inaccuracies by using dummy values, total distance and total
travel times were used instead of intermediate destinations. An example data entry with new information is
shown in Figure 4.4.

Ihttps://developers.google.com/maps/documentation/distance-matrix/intro

https://developers.google.com/maps/documentation/distance-matrix/intro

4.4. Removing data points 17

offer | offer request requ.est confirmed requested start start end end . . . day time
. . status ¢ locations . H accepted X X . ; cartime | distance | ovtime | of .
id | price id id tripdate tripdate latitude longitude latitude longitude week period

1657 | 55.0 1 23 1967 2017-05-17 11:13:00+02 | 2017-05-17 11:13:00+02 1 51.9353964 | 4.4608784 | 51.0752405 | 4.7980408 1342 2304 7653 2 1

Figure 4.4: An example dataframe after more information is gathered

4.4. Removing data points

To be able to train on clean data, anomalies and entries with missing values have to be removed in order to
predict reasonable prices for trips. To do this, we first remove every trip which is not accepted as these trips
could be cancelled for various reasons unknown to us (price too high/ride not needed anymore, etc.). From
the remaining trips, we remove any entry which contains an empty value in one of its columns, as every of the
remaining columns do contain critical values needed for prediction. Correcting this missing data by hand is
not feasible in the amount of time available for this project. This part of the process is done before anything
else, to reduce the load on following steps.

After the processes described in above paragraphs are finished, we combine the 'confirmed_trip_date’ and
‘requested_trip_date’ fields, where the value of 'confirmed_trip_date’ is used whenever this is available. This
is done as most of the data entries do not have a 'confirmed_trip_date’ value, however this value is important
as it denotes the agreed upon departure time. We also remove the columns containing IDs used to construct
trips, as these are no longer useful and should not be trained on.

After this has been done, we use an Isolation Forest [23] to find anomalies. The Isolation Forest uses an
ensemble of Isolation Trees, which isolate every data point in the dataset. Isolation Forests are based on the
assumption that anomalies are far more likely to be isolated early. This means that the paths of anomalies to
the root of the tree are shorter than the paths of normal entries, and therefore it is possible to detect anomalies
based on the length of their average path. The anomalies that are found are removed from the dataset which
results in the cleaned dataset that will be used during training. The fields present in the finalised dataset are
described in Table 4.1.

confirmed_trip_date The agreed upon departure time.
time_period The time period of the day, set to 4 buckets of 6 hours each.
day_of week The day of the week as a number, starting with Monday as 0.
offer_price The price of the trip.
cartime The expected time taken to drive from start to end in seconds.
distance The distance to drive from start to end in meters.
ovtime The expected length of the return trip using public transport, in seconds.
start_latitude The latitude of the origin location.
end_latitude The latitude of the destination.
start_longitude The longitude of the origin location.
end_longitude The longitude of the destination.

Table 4.1: Description of columns present in the dataset after preprocessing

4.5. Balancing the dataset

Two databases have been provided by the client, which are both processed to contain the fields described in
Table 4.1. The first dataset, referred to as the 'old’ dataset contains the trips up to December 12, 2017, while
the other 'new’ database contains the trips from December 13, 2017 up to April 24, 2018. Models are evalu-
ated on both the new dataset, as well as on the 'merged’ dataset which is a concatenation of the old and new
dataset. Upon inspection of both of these datasets it becomes evident that the distribution of the prices for
trips is heavily skewed towards €50,-. Figures 4.5a and 4.5b show the price distributions of the datasets before
data is removed.

4.5. Balancing the dataset 18

Distribution of offer prices in merged dataset Distribution of offer prices in new dataset
1750

™ [] II
II 1500 1

1 II
II 12501

4000 4 II

3000 - I

2000 -I

1000 +

H
3 8
=] (=]

Frequency
Frequency

L
|
o
<]
o
l
I

I~
I
s}

7 T T T -
0 25 50 75 100 125 150 175 200 o] 25 50 75 100 125 150 175 200
Offer price Offer price

(a) Histogram showing the offer price distribution in (b) Histogram showing the offer price distribution in
the merged database the new database

Figure 4.5: Visualisation of the price distribution in the 'merged’ and 'new’ datasets

Distribution of offer prices in processed merged dataset Distribution of offer prices in processed new dataset

&
s}
=)

Frequency
W
&
S

Frequency

N
S
e

=
o
S

60 70
Offer price Offer price

60

(a) Histogram showing the offer price distribution in (b) Histogram showing the offer price distribution in
the processed 'merged’ database the processed 'new’ database

Figure 4.6: Visualisation of the price distribution in the processed 'merged’ and 'new’ datasets

After filtering the data and using the IsolationForest to remove outliers from both the new and merged datasets,
itwould be ideal if the resulting datasets had been balanced by the filtering methods. However, as can be con-
cluded from Figures 4.6a and 4.6b this is not the case, as the data is still centred around €50,-. To ensure that
the models learn the patterns in the data rather than the dataset, it is beneficial to have an equal amount
of entries for each price. Due to the distribution the data currently has, a model could perform decently by
simple predicting €50 for each trip. In order to prevent this, under- or oversampling techniques can be used,
which balance out under- or over represented prices.

4.5.1. Undersampling

Undersampling techniques try to find the bias in the data and use this bias to remove entries of the major-
ity class. By removing data points from over represented classes, an evenly distributed dataset is generated
which contains fewer items than the original dataset. Examples of undersampling techniques are Cluster
Centroids, which for each majority class removes a complete cluster except its centroid, and Tomek links [31]
which removes all entries from the majority classes that have a nearest neighbour from another class. For
our experiments with under- and oversampling we have used the imbalanced-learn Python library [21], from
which we ran both the Cluster Centroids and Tomek-links undersampling methods. The resulting distribu-
tion of the datasets after applying these techniques can be found in Figure 4.7.

4.5. Balancing the dataset 19

Distribution of offer prices in the undersampled merged dataset Distribution of offer prices in the undersampled merged dataset
700

. .‘ Il I. .-
1.75

1.50

a

o

1.25 A

1.00 A

Frequency
Frequency

60 70 60 70
offer price Offer price
(a) Price distribution of the merged database after (b) Price distribution of the merged database after
applying Cluster Centroids undersampling applying Tomek-links undersampling
Distribution of offer prices in the undersampled new dataset Distribution of offer prices in the undersampled new dataset

2.001
1.75 4 a0

1.50

=

e

w
@
<]

Frequency

Frequency
-
[=]
S
8
!

o
-
o

o
w
=}

S
5]
w

50 60 70 100
Offer price Offer price
(c) Price distribution of the new database after applying (d) Price distribution of the new database after applying
Cluster Centroids undersampling Tomek-links undersampling

Figure 4.7: Visualisation of the price distribution of the datasets after applying undersampling techniques

As becomes apparent from Figures 4.7b and 4.7d, there are no Tomek-links present in our datasets. There-
fore, this technique does not remove any samples from majority classes and is consequently ineffective. The
Cluster Centroids technique on the other hand, removes too many data points, resulting in a far too small
dataset, as is depicted in Figures 4.7a and 4.7c. As both the Cluster Centroids and Tomek-links undersam-
pling techniques do not result in the desired result, undersampling has not been applied to the dataset.

4.5.2. Oversampling

Oversampling techniques attempt to generate more data points for minority classes to balance the dataset. By
creating new artificial data points for all minority classes an evenly distributed dataset is created with more
entries than the original dataset. Popular oversampling techniques are Synthetic Minority Over-sampling
Technique (SMOTE) [9] and Adaptive Synthetic Sampling (ADASYN) [16]. SMOTE creates new samples for a
minority class by taking a sample from this class and find the k nearest neighbours of this sample. A new data
pointis then created by interpolating the values of these k nearest neighbours and multiplying this result with
a random number (0,1]. ADASYN follows the same methodology as SMOTE, however additionally it uses a
weighted distribution for minority classes according to their level of difficulty to learn. This results in more
datasamples in minority classes that are hard to learn than in minority classes that are easier to learn. In our
experiments we have used both techniques to create a new balanced dataset, whose results can be found in
Figure 4.8

4.5. Balancing the dataset

Distribution of offer prices in the oversampled merged dataset

700

600 4

w
=]
S

Frequency
&
5]

&
=]

200 4

5]

offer price

(a) Price distribution of the merged database after
applying SMOTE oversampling

Distribution of offer prices in the oversampled new dataset

120

100 -

@
o

Frequency
@
o

201

Offer price

(c) Price distribution of the new database after applying

SMOTE oversampling

20

Distribution of offer prices in the oversampled merged dataset

O -
500 - .------
400 | ..------
e

50 60 20

700 +

600

Frequency

Offer price

(b) Price distribution of the merged database after
applying ADASYN oversampling

Distribution of offer prices in the oversampled new dataset

.| I
N

s}

Frequency
(=]
S
!

20

50
Offer price

(d) Price distribution of the new database after applying
ADASYN oversampling

Figure 4.8: Visualisation of the price distribution of the datasets after applying oversampling techniques

Upon first inspection, these techniques seem to have created a balanced dataset in which every class contains
roughly the same amount of elements. However, in reality these algorithms have created a dataset in which
the elements from the minority classes are heavily duplicated. An explanation for this could be that there
are too few distinct data points in the data’s minority classes, which all lie closely to each other, causing the
synthetic interpolated data points to lie closely to these points as well, forming almost exact duplicates. This
causes the algorithm to learn a mapping of said duplicate values, rather then learning the effect each separate
entry has on the output. As a result of this, oversampling has not been applied to the dataset, but may become

viable in the future once more data has been gathered.

Genetic Algorithm

When working with Machine Learning models, especially in ensembles, there are many different variables
that need to be optimised in order to reach a good result. This can vary from the type of kernel functions
being used in the Support Vector Regressor, to the layout of the network in the different Neural Networks. In
order to find an optimal solution, a naive method can be used such as a grid search, where many different
parameters are tested and the best ones are selected. This can require a lot of time to run all combinations,
as an improvement on this Genetic Algorithms can be used.

5.1. Inner workings

A genetic algorithm as the name suggests is an algorithm that is based on the idea that all things have a cer-
tain set of genes that determine what that thing will look like, similar to how it works in humans and animals.
This idea was mimicked by Computer Scientists when they designed the Genetic algorithms [32].

A genetic algorithm consists of a number of phases. In the first phase a population of genomes is created,
where each genome represents a set of values for the parameters of the model. During the second phase, all
genomes are evaluated using a fitness function which defines how well a genome has performed. In the third
phase a portion of genomes is selected for the creation of a new population, based on the value of the fitness
function computed in the previous step. After this has been done, the selected genomes are combined with
each other using a so called crossover function to form new genomes. In the final step, values of genomes can
be mutated with a certain probability, to avoid getting stuck in local maxima/minima.

After all these steps have been taken, a new population is created and the aforementioned steps will repeat
themselves until a certain exit criteria has been reached. This exit criteria can be a maximum amount of
epochs in which it may evolve, convergence due to a too small increase of fitness over consecutive genera-
tions, or the fitness has reached a set threshold. As during every iteration only the best genomes are selected
for crossover and mutation, this algorithm can be used to search a (semi)optimal value for the parameters
without having to perform a full grid search, which would be far more time-consuming.

5.2. Implementation

The genetic algorithm is implemented as a static method which can be run on every model that adheres
to the Modellnterface. As described above, the algorithm performs three key steps in order to optimise the
variables of a model: creating an initial population, selecting the best performing genomes and use crossover
and mutation functions to create a new population. The implementation of each step will be discussed below.

5.2.1. Creating initial population

Creating the initial population is done by another static method which randomly creates models and adds
them to the population until a certain population size has been reached. However, as each model has dif-
ferent parameters and different possible values for these parameters, each model has to have a method to
randomly initialise it. This ensures that the parameters of each model are set within an acceptable range.

21

5.2. Implementation 22

The generic method will call this function and add the result to the population. The sequence diagram of this
method can be found in Figure 5.1, where a population of the Content-based filtering model is created.

Optimization.py ContentModel
Actor ' i
create_population{ContentModel, 100) ri i
repeat E
100 " i
i random_initialization() X
A ContentModel Instance !
b List=ContentModel= :

Figure 5.1: Example flow diagram of the creation of a population

5.2.2. Selecting fittest genomes

In order to approach an optimal solution, the genetic algorithm needs a way in which it can measure how well
a model predicts the price of a trip. For this purpose there are many different fitness functions, we use the
Root Mean Squared Error, which as the name hints takes the root of the average squared error. A deviation to
either side of the price is cancelled out with the squaring (all values will be positive) and then the square root
is taken in order to return to the same order of magnitude as which the errors are.

Once the top n genomes with the lowest RMSE have been selected, they can be passed along to the next
function. This function uses these genomes to create a new population of better algorithms based on the top
selection of the current population. The flow of this method is visualised in Figure 5.2.

Optimization.py ContentModel

Actor

-
Ll

select_fittest{pop, x_train, y_train, x_test, y_test, nr_fittest)

repeat _pop.length
times train(x_train, y_train)

Y

generate_price(x_test)

[
JRURR (RS . A SR, A SR

List=Float=

A

List=ContentModel>

Figure 5.2: Example flow diagram of the selection of the fittest genomes from a population

5.2. Implementation 23

5.2.3. Creating a new population

To repopulate the population it is required that new genomes can be created from the selected genomes. As
every model uses different parameters and has different values for these parameters, a crossover and mutate
method is defined in each model. Both of these methods return a new genome with modified values, which
will be added to the new population. This is repeated until the maximum population size has been reached.

In the crossover phase of the new population 2 genomes are taken from the population that will play the
role of mom and dad. From these 2 genomes, with an equal probability, a trait is taken either from the mom
or the dad. This will create an offspring genome that can be used in the next population which will result in a
more optimal solution over multiple generations[7]. The crossover of the genome is more clearly depicted in
Figure 5.3.

Mom

Offspring

Dad
Figure 5.3: Graphical representation of the crossover of a genome

One of the problems that arises when using the genome of the mom and dad is that depending on the avail-
able options for the genome there may be some settings that are not represented at all in the population.
Therefore, these settings will never be evaluated whilst searching for a solution. To fix this, the mutate func-
tion is introduced which for each feature in the genome has a certain low probability of randomly switching
one of the features in the genome for a random other applicable one. This helps to make sure all possible
settings get a chance to be represented as well as making it possible for the algorithm to escape from a local
maxima or minima in which it would otherwise get stuck [7]. The mutation of genes is shown more clearly in
Figure 5.4, while in Figure 5.5 the complete flow of creating a new population can be found.

11111
|

Mutation

1101|110

Figure 5.4: Graphical representation of the mutation of a genome. Mutated genes are highlighted

5.2. Implementation 24

Optimization.py ContentModel
Actor : :
renew_population(fittest, 100) ’ :
repeat (100 - fittest. Iengthﬂ :
times |
| crossover(fittest{rand_int]) i
r ContentModel Instance i
repeat E E
100 i i
E mutate() ‘E
A ContentModel Instance E
| List=ContentModel> ’

Figure 5.5: Example flow diagram of the renewal of a population

Price generation

In this chapter the most important part of the project is explored; the price generation for a new trip based on
past trip data. Used models and their underlying architecture are discussed, as well as how the performance
of each model is evaluated. Based on these results, a conclusion is drawn about which model will be used for
price prediction. Section 6.1 looks at the created machines one by one and explain how they function. The
following section (Section 6.2) describes how a comparison is made between the various models and how the
results are used to select the best model. The final section, Section 6.3, focuses on the exact flow of how a new
incoming trip is processed to generate a price for that trip.

6.1. Models

Various models were created over the course of this project. Additional information about the inner workings
of the models are laid out in the following section. Additional changes that have been made to the Genetic
Algorithm on a case by case basis are discussed when applicable.

6.1.1. Baseline
The first model that was implemented is a linear function. This linear function is a function of the drivers’
travel time and a standard entry cost. This function will be used as baseline for every other model such that
the predicted prices by the model is never lower than the baseline. This is implemented because Sjauf wants
to ensure that the drivers are paid a minimum wage of €11.20 an hour. Sjauf defined the formula for the
baseline as follows:

price=15+11.20 * hours—min(15, 3 * hours) (6.1)

This means that the baseline for the price of a trip equals to €11.20 per travel hour together with a flat rate of
€15 which gets decreased by €3 for every travel hour. For example, a trip of 2 hours has a baseline of

154+11.20%2—-min(15, 3 *2) =15+22.40-6=31.40 (6.2)

6.1.2. Content based

The Content based Recommender System predicts the price of new trips by looking at known trips with simi-
lar attributes. The attributes in this application are the distance, travel time, the day of the week and the time
of the day. It would be very time consuming to have to calculate the similarity of attributes between the new
trip and all the trips in the database. To reduce the amount of trips in the database that need comparing,
only the trips that have approximately the same travel distance are checked. The similarities are calculated
between the unknown trip and the database trips with about the same travel distance. After this, a weighted
average of the prices of the database trips with the highest similarities is calculated and returned as prediction
for the price of the new trip. The similarity between two vectors X and Y is calculated using the Bray-Curtis

distance, and is defined as:
Xi— Vi
similarity = 1 - =1 Y1 6.3)
2lxi+yil
This results in a value [0, 1], where 1 denotes a complete similarity and 0 denotes a complete dissimilarity.
This similarity metric is selected using empirical comparison using the same test dataset.

25

6.1. Models 26

6.1.3. Feedforward Neural Network

The Feedforward Neural Network that has been created for this application consists of multiple layers with
multiple neurons. To find an optimal architecture the genetic algorithm was used. The shape of the Feedfor-
ward Neural Network consists of a variable amount of layers. Each layer has a random activation function!
and arandom initializer?. The network also has a randomly generated loss function, batch size, optimizer and
amount of epochs. The implementation is done using the Keras library[11], because Keras has the feature of
creating layers as a whole. The optimal combination of all the variables is noted in Appendix C.

6.1.4. Recurrent Neural Network

The shape of the Recurrent Neural Network is different from the Feedforward Neural Network. The Recur-
rent Neural Network consists of a variable amount of the same GRUs (Gated Recurrent Units) with a random
(recurrent) activation function, (recurrent) dropout, kernel initializer and recurrent initializer. These random
layers are followed by a dropout which randomly sets a fraction of the input units to 0; this counters over-
fitting. The layer after the dropout is a normal dense layer with a random amount of nodes and a random
initializer and activation functions. This dense layer is followed by another dropout to prevent overfitting be-
fore it goes into the output layer which outputs a suggested price. The loss function, optimizer, batch size and
amount of epochs are random again. This Neural Network has also been implemented using the the Keras
library[11].

6.1.5. Convolutional Neural Network

The Convolutional Neural Network is very similar to the Feedforward networks, but it typically uses different
hidden layers between the input and output layer. Similarly it also does not allow loops in the network. Four
types of layers are used in the Convolutional Neural Network:

¢ Convolutional Layers
e Activation Layers

¢ Pooling Layers

¢ Fully-Connected layers

A Convolutional layer generates a value by looking at the input from the previous layer and the neighbouring
inputs. This is done by using a filter matrix which decides how many neighbours are used and with which
weights they are used. This only effects the output corresponding with the original input and not the neigh-
bouring values. The goal of this layer is to extract features from the original data. Because the Convolutional
layer uses a linear function, activation layers are used to make sure the Neural Network is not simply a linear
function. The Convolutional network in this project uses leaky rectified linear unit (leaky ReLU), which di-
vides any negative value by ten.

Pooling layers reduce the size of the network by applying an operation over a group of values. An exam-
ple of this is outputting only the max of every 3 consecutive inputs.

Fully-Connected layers work as described in the Feedforward network. These layers are the part of a Con-
volutional network that facilitate learning, and are necessary because the other layers are deterministic.

The genetic algorithm is used to find the optimal variables and shape for the model. The general shape is
constant, but the exact amount of layers and what they do can vary greatly. The Convolutional in this project
uses the mean absolute error as loss function, and the optimiser function is decided by the genetic algorithm.

Thttps://keras.io/activations/
Zhttps:/ /keras.io/initializers/

6.2. Comparisons 27

First the network has a generated amount of groups containing a variable amount of Conv2D layers. Each
Conv2D layer in a group has the same variable filter matrices, but each group uses different matrices. Each
group is followed by a leaky ReLU layer. After these layers follows a single pooling layer with variable size
followed by a flatten layer to reduce the values to a one-dimensional array. Then there is a single Fully-
Connected layer with variable amount of nodes followed by another leaky ReLU layer. Finally a value is de-
cided with a Fully-Connected layer with size 1 and a linear activation function. The Keras library[11] was used
for the implementation of this model.

6.1.6. Support vector regressor

The Support Vector Regressor (SVR) used in this project is simply the standard SVR provided by the sklearn
library®. To optimise this model we use the Genetic Algorithm to find the best fitting kernel and size of the
epsilon tube. This will ensure that we have a converging model with the highest fitness.

6.1.7. k-Nearest Neighbour model

For the k-Nearest Neighbour model the KNeighborsRegressor of the sklearn library is used?. This model has
a few variables that could be optimised by the Genetic Algorithm. First of all the number of neighbours says
a lot about how the algorithm performs. The algorithm used to compute the nearest neighbours and the
initialisation of the weights have an influence on the results. Lastly the leaf size is an important variable that
needs optimising. In Appendix C the optimised values for this model are given.

6.1.8. Ensemble model

Two variations of ensembles are used, a bagging ensemble and a stacking ensemble. The bagging ensemble
simply takes the weighted average of the output of the models to determine a final price (further referred
to as weighted ensemble). The stacking ensemble works by feeding the output of the models into a final
Feedforward Neural Network. In order to optimise both of these ensembles, a Genetic Algorithm was used
as described in Section 5. The models used in the ensembles are not changed by the ensemble, and should
be optimised themselves prior to being added to the model list of an ensemble. Besides changing the list of
used models, the weighted ensemble does also change the weights used on each models’ result. The stacking
ensemble mutates the Feedforward model used to combine the values during optimisation.

6.2. Comparisons

Some models might be superior to others with respect to price suggestions. The models described in Sections
2.3 and 6.1 have been implemented and optimised for the application of generating prices for Sjauf. To make
sure the best models are chosen to predict the prices the different models have to be compared to each other.
This process of comparing models is complex as each of these models work differently and use different
parameters. To be able to compare these methods in a legitimate manner, unified metrics and validation
methods have to be chosen that work for each of these methods. For validation the k-fold cross validation
method is used and to compare the models the Root Mean Squared Error (RMSE), variance and R2-score
metrics are used.

k-fold cross validation

To be able to compare different models it is required that the same validation method is used. A commonly
used method for validation is called k-fold cross validation. This method works through splitting the available
data into k randomly chosen different sets of the same size, also called folds. Whenever the data is split into,
for example, 5 distinct sets, one would speak of 5-fold cross validation. After splitting the data into k folds,
the same steps are taken. First, a fold is chosen as validation set, and the model is trained on the other k-1
folds. The result of this validation (expressed by some metric, for example an RMSE value) is saved and this
process is repeated for all k folds. In the case of 5-fold cross validation, five results are obtained from every
fold which are averaged to receive a final result for the model. Models that are evaluated on the same dataset
can now be compared using this averaged result.

Shttp:// scikit-learn.org/stable/modules/svm.html
4http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html

6.2. Comparisons 28

Metrics
Now that a validation method is chosen, metrics need to be chosen. For this application the RMSE, R2-score
and variance were used as metrics as well as the average time taken per prediction. The RMSE, Root Mean
Squared Error, gives the root of the average squared error of the test dataset between the predicted price and
the real price. Let be the predicted price, y the real price and 7 the size of the test set the RMSE is calculated
as follows:

er'l:l (J7: _.yi)z

RMSE =\| ——— (6.4)
n

Besides the RMSE, another frequently used metric in regression is the R2-score, also known as the coefficient
of determination. This metric describes how well future samples are likely to be predicted correctly by the
model. The function for this metric is defined as follows:

Nsamples—1 ~ N2
= (yi=i

1 Zi=0
R2=1 Nsamples—1 - \2
X (yi—yi)

(6.5)

where y; is defined as:
Znsamplesfl

Al (6.6)

Nsamples
In the case that the model perfectly predicts the price of every trip, the R2-score would be 1. The score de-
creases as the accuracy decreases and can even get become negative.

The last metric in terms of prediction accuracy is the variance. The variance tells the consistency of the
results. Two models might end up with the same mean error, but one could be consistently predicting €5 too
high, while the other could predict correctly in most cases but sometimes predict €40 too high. The first case
would have a low variance, while the latter case would have a high variance. In this application, it is desirable
to have both a low error and a low variance, because predicting €40 too high or too low would be catastrophic
for either the customer or Sjauf.

6.2.1. Comparisons

After optimising and testing each model and comparing them with the RMSE, variance and R2-score, the
following table was created. To be able to compare the models on accuracy and execution speed, the time to
train the model and the time to generate a price for a new trip is also included. The 'Train-Time’ is computed
on a dataset with 3120 entries and the 'Generate-Time’ is calculated on 1 input. Both times are calculated on
a machine with an Intel Core i5 Dual-core 7200U 2500 MHz with Intel HD Graphics 62.

Table 6.1: RMSE, variance and R2-score of the different models using k-fold validation. Bold values indicate the best value of the
column. The best model is highlighted.

Model RMSE Variance | R2-score | Train-Time | Generate-Time
Baseline 16.5612 | 85.9120 -4.0639 0s <lms
Content-based 10.1382 | 102.3666 | -1.2731 0.002s 688ms
Convolutional NN 8.1926 62.6237 | 0.2386 460s 3ms
Feedforward NN 7.9461 | 63.2648 0.2384 4s 4ms

Recurrent NN 8.7340 76.1419 -0.6782 82s 2ms

k-Nearest Neighbour 9.6783 | 92.8077 -1.6808 0.008s 140ms

Support Vector Regressor | 8.1991 67.5085 0.1596 1.5s 6ms

Most importantly, what can can be seen from Table 6.1 is that the created models outperform the baseline
model, which was put forward by Sjauf. Another thing that can be concluded from the table is that three out
of six models that were created had more accurate predictions than the others. These three models are the
Feedforward Neural Network, the Convolutional Neural Network and the Support Vector Regressor. Although
the error is a little higher than both of the Neural Networks, the Support Vector Regression model has a RMSE,
variance and R2-score that is better than the other models. A big advantage of the Support Vector Regression
model is that the model has a significantly faster train time than the Neural Networks and the ensembles.

6.3. Generating price for new data 29

However, the allowed train time is 8 hours as stated in the requirements and every model has a train time that
is within the 8 hours. Therefore, the train time is not a deciding factor, which eliminates the Support Vector
Regressor as best overall model.

The Convolutional Neural Network and the Feedforward Neural Network both outperform all other indi-
vidual models, and have a similar variance and R2-score. However, the Feedforward Neural Network has a
significantly lower RMSE out of the two models. Due to this, we select the Feedforward Neural Network as the
best individual model.

Table 6.2: RMSE, variance and R2-score of the different ensembles using k-fold validation. Bold values indicate the best value of the
column. The best ensemble is highlighted.

Model RMSE | Variance | R2-score | Train-Time | Generate-Time
Weighed Ensemble | 7.8950 | 62.6664 | 0.2731 129s 10ms
Stacking Ensemble | 8.2642 | 68.6632 -0.0081 249s 11ms

From Table 6.2 it can be seen that the weighted ensemble performs best. It has an RMSE and R2-score that
is better than any of the individual models, and a variance that is almost as good as the best variance in both
lists. This optimal weighted ensemble consists of two Feedforward Neural Networks and one Convolutional
network. See Appendix C for the exact networks and weights of the optimal network. The fact that these
networks are present in the ensembles is not surprising since these networks individually also performed well.
Since this ensemble of networks conforms to the requirements of both train time and the time to generate a
price, this is the ensemble that we recommend Sjauf implements in their app.

6.3. Generating price for new data

Now that the models have been evaluated the algorithms are ready for deployment. This means that the
created algorithms can be used for price suggestion in the Sjauf app. The algorithm can be retrained regularly
by using the train function. This means that the model is trained using the latest and updated data after
which the model can be saved. When a trip is selected by the customer the trip information can be sent to the
algorithm using the generate_price method (see Section 3.1). This method uses the features of the new trip
and runs them through the saved model to predict a price for the new trip. This price can then be returned as
a suggested price to the customer.

Ethics

When developing a software program, special care must be taken to ensure that the implementation fol-
lows ethical standards, especially in the case of Machine Learning. There have been many situations when
even multi-billion dollar companies such as Google and Microsoft have made blunders when training Neu-
ral Networks meant for end users. These Neural Networks made mistakes ranging from misidentifying black
people as gorillas[19] to being turned racist by malicious users[29]. In addition to wanting to avoid blatant
racism, Sjauf also had some guidelines that they felt were important when recommending a price. In order to
demonstrate that the program being delivered handles ethically to the best of our knowledge we will discuss
the nature of the training data used to train the models, and which models are not used as they could have
been in conflict with the ethical requirements set forward by Sjauf.

7.1. Nature of the data

In the aforementioned cases of Neural Network failures, the failures could be attributed to either the input
data during runtime, or the data that the network is being trained on. For Tay the Twitter bot, Microsoft did
not check what kind of data was being given to the network by the user, and thus some people manipulated
the outcome. In the case of the misidentification by Google the image being used just happened to have the
traits the network was checking for, which is a known flaw for all Neural Networks. For the network that was
developed for this project these errors should not be exploitable as the input being given to the network is
validated in the app, before being sent to the database.

Furthermore, the Neural Networks do not receive any data about individuals. Special attention was given
to this problem, because Sjauf has noticed that non-Caucasian drivers get paid less by users. In order to com-
ply with the wish of Sjauf that all users will be treated equally, any information about the users or drivers is
not taken into account. This removes any chance that the network will start profiling users, and giving differ-
ent prices depending on looks, or names. Even if using user or driver information could have lead to a better
prediction, the risk of it going wrong, and the damage caused, far outweighed the benefit it could have had.

7.2. Rejected Predictors

In Machine Learning there are more than just Neural Networks that can be used to predict prices. Another
class of models are Collaborative Filtering models. These models can be split into 2 groups, user-user and
item-item Collaborative Filtering. Just like with Neural Networks these models also have the chance to dis-
criminate between different users.

When using Collaborative Filtering models to get a price recommendation, we had to make a choice be-
tween using a Item-Item or User-User model. As the name already hints Item-Item collaborative filtering
models only take the trips into account, predicting the price on the similarity to other trips. However, price
recommendations can also be made by looking only at the type of users that is requesting a price recommen-
dation without looking at the trip itself. This is what happens in a User-User collaborative filtering model.
This obviously is not a smart choice to use when trying to generate a price that is the same for every user.

30

7.3. Fair wages 31

7.3. Fair wages

One of the main dangers with using Machine Learning to decide prices, and thus also wages of drivers, is
that the model can optimise results by exploiting the drivers. Sjauf wanted to make sure that their drivers are
always paid a minimum of €11,20 per hour. In order to ensure that this price is always offered, an extra check
is done on the output of the model. If the price generated is lower than the hourly rate paid out to the driver,
the baseline model is used which is based purely on the time taken to drive the trip. This ensures that in the
worst case the drivers will be paid €11,20 per hour and in the best case they will make more.

Looking at the design decisions that have been made whilst developing the price prediction models, it should
be clear that the guideline set forth by Sjauf regarding the equal treatment of customers, is adhered to, to the
best of our ability. This has been done by omitting models that in this situation would have guaranteed dif-
fering treatment between different customers. It is however still possible for the Neural Networks to have
implicit bias through the provided data.

Conclusion

This project was started with the goal of predicting prices for Sjauf’s chauffeur service. This would allow
customers to have an indication of the price of a trip without requiring the drivers to make a bid on trips.
Machine Learning approaches are well-known for their capability to find correlations in multidimensional
data without having to define a similarity function manually and are for this reason a good fit for this project.

After ten weeks of research and implementation, the system is fully developed and tested and is ready for
implementation. All set requirements for this project have been met in the final product. The best perform-
ing models all adhere to the timing constraints on training (8 hours) and prediction times (200ms). They can
therefore be deployed in a real-time environment. Moreover, a performance check has been built in, which
assures that a predicted price for a trip is never lower than a set hourly wage, multiplied by the duration of said
trip, to avoid advertising trips for a price that is too low. Additionally, all of the functionality can be accessed
through a stand-alone Elixir API, which offers train, optimise and price generation capabilities. As required
the whole project can be run isolated in a docker environment, The project requirements of using Machine
Learning or Artificial Intelligence and testing sufficiently have also been fulfilled.

Performance-wise, all developed models greatly outperform the originally used baseline formula in terms of
accuracy and serve well as a proof of concept. The weighted ensemble is currently the most accurate model.
For the models to work at the best of their capabilities however, more data is needed, for example to balance
the train dataset. Therefore, we expect the models to improve over time, as more data is added. The generic
train and optimise methods allow the models to be trained on future data, to allow the models to adapt to
possible price fluctuations over time. Changes in the data will result in different accuracy scores for all mod-
els and could cause a different model to be the most accurate.

In conclusion, we have developed a stand-alone future-proof API, which allows Sjauf to generate prices for
requested trips. The API can easily be extended, by implementing all interface methods for a new model.
The delivered product proves that generating prices for trips is possible using Machine Learning techniques,
however we advise Sjauf to wait with a full implementation of the system until more data has been gathered
to allow for higher model robustness.

32

Future work and Recommendations

A big danger when developing any kind of project is feature creep. This is when developers continually keep
adding functionalities to a project, and thus never finish a product. As this project has a hard deadline some
possible features and improvements have intentionally been left out as they would have taken too long to
implement. In the following sections these improvements will be laid out, and their benefits explained.

9.1. Feedback for the models

The nature of Machine Learning models requires that some form of feedback is provided about the data that
they are being trained on. This means that when using the current models only the offers that have been
accepted can be used when training models. The consequence of this is that when a trip was accepted but
has to be cancelled by the customer for reasons other than pricing, a data point is lost that could have been
used for training. A solution to this is to ask the customer for a reason when they decide to cancel a trip.

Furthermore, using a different type of model, it may have been beneficial to use data about trips that were
not accepted, to improve the accuracy of predictions. Improvements in Recommender Systems using nega-
tive feedback have been shown to be possible as Zhao et al. have shown in their paper on 'Recommendations
with Negative Feedback via Pairwise Deep Reinforcement Learning’[34]. This can increase the amount of us-
able training points in the data greatly, as each requested trip only has one accepted price but can have many
rejected prices.

9.2. Using the generated price as set price

In the future, it could be viable to return a single price instead of a price range. Currently, this has the down-
side that there is not a lot of data, meaning that the predictions are not accurate enough. When more data
becomes available, accuracy can be improved greatly. Returning a single price however also means that the
data regarding offer prices that are created by the model can not be used while training the models, as this
would create a self-reinforcing loop.

9.3. Using locations for price generation

In the current input for the models the location of where the trip comes from has been omitted fully. This
is partially due to the fact that this is a sure way to prevent discrimination against certain areas from an
ethical point of view. However, another problem is that there are simply not enough trips in the dataset for
the models to find an accurate correlation between the departure location and how it influences the price.
Once more data has been collected from different locations the accuracy of price prediction can most likely
be improved by checking the location of the trips.

33

9.4. Under/Over Sampling 34

9.4. Under/Over Sampling

A big problem in Machine Learning is that when certain entries are over or under represented in the dataset
the model will become biased against them. This can be fixed as has been laid out earlier through the use of
over- or under-sampling. However, as at this moment that would result in having either barely any data points
left (in the case of undersampling) or having many of the exact same data points (in the case of oversampling).
We suggest that the client should wait until there is more data in the database, especially with outlier trips
before implementing over- or under-sampling.

9.5. General Recommendations using Machine Learning
Due to the fact that the client is not well versed in the use of Machine Learning, we deem it important to give
some general advice about the use of data and retraining the models in the future.

Discarding old data

As the accuracy of the model depends on the spending habits of the people requesting the trip, caution has
to be taken on the age of the data used when training the model. Over time the spending habits of people
could change, although this does not happen from one day to the next there is a definite trend that has been
observed in for example the relation between the expectation for inflation and consumption [14]. In order to
maintain the accuracy of the model despite having stale data, at some point in time the older data has to be
removed from the dataset. Unfortunately there is no guaranteed time period that decides how often this has
to be done and Sjauf will need to use their own judgement for this. The most important aspect that they have
to remember is that removing a lot of data will reduce the accuracy of the model because there is not enough
data, but keeping too much old data will decrease the accuracy of predictions as the user’s spending habits
will have changed.

Garbage in, Garbage out

An important saying in the Machine Learning community is 'Garbage in garbage out’ this means that if the
models are trained using bad data, then they will give bad predictions. The source of bad data can range from
test entries that were entered into the database being used as training points by accident, to users inputting
illogical values.

Currently there is a filter in place that removes as many 'bad’ data points from the data as possible, how-
ever the definition of 'bad’ data points will change over time. Due to this, we recommend to not put test
entries in the production database, or at least remove the test entries before they enter the models.

Retraining and re-optimising the model

The more data that is available, the better the models can be trained. When enough data is collected over the
lifetime of the company it is useful to retrain the models using this extra data. Especially when there are only
small amounts of data available, adding new data will have a larger effect than in the future when there is a
larger dataset available. Therefore, we recommend that the model is retrained more frequently at the start
to be able to incorporate large effects quickly. Once more data is collected and used for training, the model
can be trained less frequently. As re-optimising takes far longer than retraining the model, it is advised to do
this less often than retraining, but still as often as possible when enough new data is gathered. Optimising is
similarly dependent on the amount of available data.

9.5.1. Evaluation

When evaluating a Machine Learning model, it is important that the data on which the model is evaluated
is not part of the training dataset. This is due to the fact that the models train to adapt as well as possible to
the training data. So if one were to take the same data in the training data as validation data (to evaluate the
model) it would not give a good representation of how well the model will work with predicting prices with
data it has never seen before.

9.5. General Recommendations using Machine Learning 35

We recommend to the client to maintain 2 sets of data. One set of data contains the train data which has
all data from the new database up to 3 weeks prior, and a secondary dataset, the validation dataset, that we
use for evaluating the models that contains all the data from the last 3 weeks. This has the benefit that the
evaluation gives a better idea of how well the models fit to the current spending habits of the customers,
rather than taking random samples from the data.

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]
(19]
(20]

Bibliography

Zillow prize. URLhttps://www.zillow.com/promo/zillow-prize.
Blue book for bulldozers, Jan 2013. URL https://www.kaggle.com/c/bluebook-for-bulldozers.
Frank] Anscombe. Rejection of outliers. Technometrics, 2(2):123-146, 1960.

L Douglas Baker, Thomas Hofmann, Andrew McCallum, and Yiming Yang. A hierarchical probabilistic
model for novelty detection in text. In Proceedings of International Conference on Machine Learning,
1999.

Robin Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted
Interaction, 12(4):331-370, Nov 2002. ISSN 1573-1391. doi: 10.1023/A:1021240730564. URL https:
//doi.org/10.1023/A:1021240730564.

Yungian Ma Cha Zhang. Ensemble Machine Learning. Springer, 2012. ISBN 978-1-4419-9325-0.

Lance Chambers, editor. The practical handbook of Genetic Algorithms. Chapman & Hall, 2001. ISBN
1-58488-2409-9.

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM computing
surveys (CSUR), 41(3):15, 2009.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Francois Chollet et al. Keras. https://keras.io, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject or not to reject: that is the question-an
answer in case of neural classifiers. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Appli-
cations and Reviews), 30(1):84-94, 2000.

Ioana A Duca, Geoff Kenny, and Andreas Reuter. Inflation expectations, consumption and the lower
bound: Empirical evidence from a large micro panel. 2017.

Laurene Fausett, editor. Fundamentals of Neural Networks: Architectures, Algorithms, and Applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994. ISBN 0-13-334186-0.

Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling approach
for imbalanced learning. In Neural Networks, 2008. JCNN 2008.(IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on, pages 1322-1328. IEEE, 2008.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735—
1780, 1997.

Andreas Christmann Ingo Steinwart. Support Vector Machines. Springer, 2008. ISBN 9780387772424.
Jana Kasperkevic. Google says sorry for racist auto-tag in photo app. Jul 2015.

Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 81:1-10,
2009.

36

https://www.zillow.com/promo/zillow-prize
https://www.kaggle.com/c/bluebook-for-bulldozers
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1023/A:1021240730564
https://keras.io

BIBLIOGRAPHY 37

(21]

(22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

Guillaume Lemaitre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research,
18(17):1-5,2017. URL http://jmlr.org/papers/v18/16-365.html.

Yihua Liao and V Rao Vemuri. Use of k-nearest neighbor classifier for intrusion detectionl. Computers
& security, 21(5):439-448, 2002.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation-based anomaly detection. ACM Transactions
on Knowledge Discovery from Data (TKDD), 6(1):3, 2012.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115-133, 1943.

Phayung Meesad and Risul Islam Rasel. Predicting stock market price using support vector regression.
2013 International Conference on Informatics, Electronics and Vision (ICIEV), pages 1-6, 2013.

Rashmi Raghava M.N. Murty. Support Vector Machines and Perceptrons. Springer, 2016. ISBN 978-3-
319-41062-3.

Lucas Parra, Gustavo Deco, and Stefan Miesbach. Statistical independence and novelty detection with
information preserving nonlinear maps. Neural Computation, 8(2):260-269, 1996.

Abirami R. and Vijaya M.S. Stock price prediction using support vector regression. In P. Venkata Krishna,
M. Rajasekhara Babu, and Ezendu Ariwa, editors, Global Trends in Computing and Communication Sys-
tems, pages 588-597, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-29219-4.

Hope Reese. Why microsoft’s 'tay’ ai bot went wrong, Mar 2016. URL https://www.techrepublic.
com/article/why-microsofts-tay-ai-bot-went-wrong/.

Winter School. Data Mining Techniques and Tools for Knowledge Discovery in Agricultural
Datasets. pages 139-144, 2011. URL http://iasri.res.in/ebook/win_school_aa/notes/Data_
Preprocessing.pdf.

Ivan Tomek. An experiment with the edited nearest-neighbor rule. IEEE Transactions on systems, Man,
and Cybernetics, (6):448-452, 1976.

Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65-85, 1994.

Ji Zhang and Hai Wang. Detecting outlying subspaces for high-dimensional data: the new task, algo-
rithms, and performance. Knowledge and information systems, 10(3):333-355, 2006.

Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei Yin. Recommendations
with negative feedback via pairwise deep reinforcement learning. CoRR, abs/1802.06501, 2018. URL
http://arxiv.org/abs/1802.06501.

http://jmlr.org/papers/v18/16-365.html
https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/
https://www.techrepublic.com/article/why-microsofts-tay-ai-bot-went-wrong/
http://iasri.res.in/ebook/win_school_aa/notes/Data_Preprocessing.pdf
http://iasri.res.in/ebook/win_school_aa/notes/Data_Preprocessing.pdf
http://arxiv.org/abs/1802.06501

Process

This appendix describes the steps that are taken to guarantee a successful project. This has not been put in
the main body of the report because it does not influence the end product directly.

A.1. Quality Control & Testing

To ensure we deliver high quality code, we used various techniques and processes. Most importantly we used
peer reviews to check code before any merge, to ensure that the most obvious errors and oversights are re-
moved before moving code to the main branch. We decided to require two reviews before a merge which
occasionally led to complications because our team consists of four people. To maintain consistent style ac-
cross all group members, Pylint! was used.

It is important to the client that the code we delivered conforms to their standard. To ensure this, multi-
ple code reviews with the CTO of Sjauf have been realised. As a result of this, we have chosen to use continue
statements instead of elif statements to improve the clarity of the code. Luckily there were no huge discrep-
ancies between the way we wrote code and what Sjauf’s preferred style is and thus we did not need to make
drastic changes.

We have decided not to use continuous integration (CI) because many Machine Learning models run for
a long time. Moreover, our unittests run the models to make sure the models function as intended. From
experience we know that (free) CI provides a rather slow execution of the tests, which would result in an inef-
fective use of time.

After consulting Sjauf, we have chosen to aim for tests with a 80% line coverage and have mostly maintained
this throughout the project. This did mean that we, at some points, did have to write additional tests to keep
the percentage high, but overall it has provided a great indicator when things are changed in a unsuspected
way.

A.2. Communication

In view of the fact that clear communication with the client is necessary for a good product we decided that
we would be at Sjauf’s office in Amsterdam every Monday and Friday so that we could start and end our sprint
with the CTO. Barring the few times this was not possible or unnecessary this plan was executed. To commu-
nicate with Sjauf whilst working in Delft we were added to the Slack channel of the client. Moreover, we also
used a WhatsApp group for more immediate communication with both Sjauf and our coach.

Communication with the coach was done through weekly meetings and by sending the notes of every meet-
ing. Setting dates and scheduling was done with the secretary of our coach.

Thttps://www.pylint.org/

38

A.3. Scrum 39

A.3. Scrum

As with any project, division of labour is an important part of the process. In order to do this in an efficient
and clear way, the scrum methodology was used throughout the project. During the scrum process there
always has to be a development team, a scrum leader and a client. In this case the client was always Stefan
from Sjauf. However, in order for all group members to learn something about the Scrum method, Stefan
wanted each member to lead at least one sprint, ensuring that everyone got experience in being a scrum
leader.

User

Driver:

Use-Case Diagram

New Ride Request)

Request route -

-1 generated before

‘Automated price—rangé

“.._ submitting request .

Driver Informed o
accepted offer

@

QOwner

Cancel Request

Figure B.1: Use-Case Diagram for handling of trip requests. The dotted elements indicate parts that are implemented by this project.

40

Optimal values

This appendix shows the best values found by the genetic algorithm for each model. In the Neural Networks,
lists of values are given for some parameters. The position in the list refers to the layer in the model it applies
to, i.e. if the 'nodes’ parameter would have the value [64, 32, 2], this would indicate a model with layers of 64,
32 and 2 nodes respectively.

Content Based
distance: 0.16905940518063323
top_n: 23
return_val: 46

Feedforward Neural Network

optimizer:

batch_size:

activation_functions:

initializers:
epochs:
loss:

nodes:

"RMSprop’

580

['linear’, 'linear’, 'linear’]

['glorot_uniform’, 'glorot_uniform’, 'VarianceScaling’]
322

'logcosh’

[118, 55, 1]

Recurrent Neural Network

optimizer:
epochs:
kernel_initializers:
activations:
layer_nodes:
recurrent_nodes:
dropouts:

loss:

batch_size:

recurrent_activation:

recurrent_dropout:

recurrent_initializer:

’Adamax’

429

['Zeros’, ’RandomUniform’, 'TruncatedNormal’]
[elu’, 'linear’]

268

99

[0.761150252623648, 0.6820661847377243, 0.6433832619310824]
‘mean_absolute_percentage_error’

1065

'softsign’

0.9874462438136483

’lecun_normal’

41

Convolutional Neural Network

nr_filters: [78, 108, 150, 237, 255]
batch_size: 128

loss: ‘'mean_absolute_error’
epochs: 240

optimizer: ’Adamax’

dense_size: 151

filter_size [6,1),(4,1),(3,1),(1,1), (6, 1]

Support Vector Regressor

gamma: 434

C: 1
kernel: ‘linear’
degree: 609
max_iter: 8953
shrinking: 1
epsilon: 0.001
tol: 5e-05

k-Nearest Neighbour model

algorithm: ‘brute’
n_neighbor: 22
leaf_size: 202
initialization: 'distance’
Weighted Ensemble
model_pool: List of the 5 best models by optimisation found per class
weights: [0.2992895161850744, 0.4502198213144899, 0.25049066250043583]
models: [Feedforward1, Convolutional, Feedforward?]

Feedforward Neural Network 1

optimizer: ’Adadelta’

batch_size: 451

activation_functions: ['softplus’, "linear’]

initializers: [RandomNormal’, "VarianceScaling’]
epochs: 123

loss: 'logcosh’

nodes: [376, 1]

Convolutional Neural Network

nr_filters: [150, 164, 11, 194]
batch_size 186
loss ‘mean_absolute_percentage_error’

epochs 244

42

optimizer
dense_size

filter_size

’Adam’
580
(5,1, 4,1, (5,1, (1,1)]

Feedforward Neural Network 2

optimizer:
batch_size:

activation_functions:

’Adam’
641

['softplus’, "linear’]

initializers: ['RandomNormal’, "VarianceScaling’]
epochs: 110
loss: 'logcosh’
nodes: [376, 1]
Stacking Ensemble

model_pool:
models:

combiner_model:

List of the 5 best models by optimisation found per class
[Convolutionall, Feedforward, Convolutional2]
Feedforward2

Convolutional Neural Network 1

nr_filters:
batch_size
loss
epochs
optimizer
dense_size

filter_size

[150, 164, 11, 194]

186
‘mean_absolute_percentage_error’
1244

"Adam’

580

(5,1, (4,1), (5,1), (1,1)]

Feedforward Neural Network 1

optimizer:
batch_size:
activation_functions:
initializers:

epochs:

loss:

nodes:

’Adamax’

431

['softplus’, "linear’]
[RandomNormal’, 'lecun_normal’]
123

'logcosh’

[376, 1]

Convolutional Neural Network 2

nr_filters:
batch_size
loss
epochs
optimizer
dense_size

filter_size

[181, 93, 177, 16, 255]

128

‘'mean_absolute_error’

: 149

"Adam’

179

(1, 1,3 1,61, 41,6 1)]

43

Feedforward Neural Network 2 (Combiner)

optimizer:
batch_size:
activation_functions:
initializers:

epochs:

loss:

nodes:

'Nadam’

326

['tanh’, 'linear’]

["TruncatedNormal’, 'RandomNormal’]
493

'logcosh’

[396, 1]

44

First SIG feedback

Feedback:

De code van het systeem scoort 3.7 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
marktgemiddeld onderhoudbaar is. We zien Unit Interfacing en Unit Size vanwege de lagere deelscores als
mogelijke verbeterpunten.

Voor Unit Interfacing wordt er gekeken naar het percentage code in units met een bovengemiddeld aantal
parameters. Doorgaans duidt een bovengemiddeld aantal parameters op een gebrek aan abstractie. Daar-
naast leidt een groot aantal parameters nogal eens tot verwarring in het aanroepen van de methode en in de
meeste gevallen ook tot langere en complexere methoden.

In jullie project heeft de constructor van support_vector_regressor.py een groot aantal parameters nodig,
waarvan de meeste default-waardes hebben. Het is beter om dit soort constructies in een parameter-object
onder te brengen, dat houdt zowel de constructor zelf als de aanroepen van de constructor beter leesbaar op
het moment dat het aantal opties in de toekomst gaat toenemen.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het opsplitsen van dit
soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen en daar-
door eenvoudiger te onderhouden wordt. Binnen de langere methodes in dit systeem, zoals bijvoorbeeld,
zijn aparte stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte methodes.

store_distance_matrix_api_results.py bevat nu drie verschillende strategieén, die allemaal in-line worden
afgehandeld. Door daar aparte methodes van te maken hou je de code leesbaar, en het wordt zo ook makke-
lijker om unit tests te schrijven.

Als laatste nog de opmerking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk aan
te raden om in ieder geval voor de belangrijkste delen van de functionaliteit automatische tests gedefinieerd

te hebben om ervoor te zorgen dat eventuele aanpassingen niet voor ongewenst gedrag zorgen.

Over het algemeen is er dus nog wat verbetering mogelijk, hopelijk lukt het om dit tijdens de rest van de
ontwikkelfase te realiseren.

45

46

Commentary: While we are happy with receiving the feedback from SIG, we also had some questions regard-
ing the feedback. Most importantly we are fairly sure that the tests where included in our submission, so we
have mailed for a double-check for this part.

On top of that we are not sure how we can reduce the amount of parameters without losing functionality
or introducing unnecessary complexity and have asked for clarification. This is because moving the model’s
constructor parameters to a parameter object would require a separate parameter object for each model as
each model requires completely different parameters. This would mean that the problem would be moved
from the model’s constructors to the parameter object constructors. Reading parameters from a file is no op-
tion either as it removes the ability to have models of the same type with different parameters in for example
an ensemble. Lastly, setter methods have been considered, but found as bad practice as creating a model
with set values and immediately overwriting these would not only lead to confusing model initialisation, but
also to unnecessary overhead. Regarding the constructor parameters, these purposely have default values,
which allows for easy creation of a model with the current best found parameter values.

We have split our in-line functions in store_distance_matrix_api_results.py as advised in the feedback. Re-
gretfully we have not received a response to our email asking for further clarification. Because of this, no
better option was provided for the other indicated problems. After a discussion with the Client about the
best possible solution to this problem, we agreed that no further changes had to be made as we feel the best
solution was already implemented.

Second SIG feedback

Feedback: In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onder-
houdbaarheid is in vergelijking met de eerste upload iets gedaald.

In de eerste upload werden Unit Size en Unit Interfacing als verbeterpunten genoemd. We zien bij Unit Size
een kleine verbetering, die echter weer teniet gedaan is omdat in de nieuwe code ook weer nieuwe lange
methodes zijn geintroduceerd (de constructor van RNN in ecurrent.py [sic] is hier een voorbeeld van). Bij
Unit Interfacing zien we dat de genoemde voorbeelden zelfs erger zijn geworden. Dat is een logische on-
twikkeling als je de onderhoudbaarheid van de code niet expliciet in de gaten houdt. In vergelijking met
andere Python-systemen hebben jullie wel erg veel parameters nodig, en dat probleem zal ook steeds erger
worden als er steeds meer functionaliteit aan het systeem tegevoegd wordt.

Zoals jullie per email hebben aangegeven hadden jullie in de eerste upload wel degelijk testcode, dus die
opmerking uit de feedback op de eerste upload komt te vervallen. Qua testcode is het goed dat jullie naast
nieuwe productiecode ook nieuwe tests hebben geschreven, maar de hoeveelheid nieuwe tests is wel een
stuk lager dan bij de eerste upload. Probeer ook hier scherp op te zijn, zelfs als de deadline van het project in
zicht komt.

Uit deze observaties kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload deels
zijn meegenomen tijdens het ontwikkeltraject.

Commentary: We disagree with using the amount of tests as a measurement of how good we tested, the
test coverage is far more important, and we have kept the test coverage far above 80%. Therefore we feel that
the complaint about the amount of tests is invalid.

The complaint regarding Unit Interfacing has been evaluated as described in Appendix D and has, because
of alack of better alternatives, not been changed. Furthermore, our client has looked at the code, and agrees
that the amount of parameters has been kept to a minimum. Unfortunately however, this many parameters
are required by the various Machine Learning libraries. We also do not see a clear connection between func-
tionality and the amount of parameters.

We agree that the Unit size is sometimes on the long side. We assume this is mostly aimed at constructors of
various models. In these constructors, we simply set a large amount of parameters which are, again, required
by the various Machine Learning libraries. An example of this is our Convolutional Neural Network, which is
implemented using the Convolutional Neural Network from the Keras library !, in which 16 arguments can
be passed to construct it. To be able to mutate these variables, we need to store them in the object, hence a
big constructor is needed.

Ihttps://github.com/keras-team/keras/blob/master/keras/layers/convolutional.py

47

Standalone platform for automated price
suggestions using Al

Name of client: Sjauf

Date of final presentation: 5 Juli 2018

Sjauf is a start-up which allows customers to book a driver for their own car. Currently, ordering a trip with
Sjauf is done without prior indication of the cost of the trip; drivers bid on incoming offers which can then
be accepted by the customers. To remedy this, Sjauf wishes to have an automated price recommendation
algorithm that can indicate a price for both the customer and driver. To be able to adjust to the changing
spending habits of users over time, a Machine Learning algorithm should be used. The challenge of this
project is to create an Machine Learning implementation that is based on a limited dataset. It is therefore
key to find a good balance between current accuracy and the ability to improve based on future data. These
models should also allow for real-time price generation.

The main focus during the research phase was to find state-of-the-art regression models, but also on ways
to preprocess (i.e. filter and transform) our data. During development, we used Scrum to be able to quickly
adapt to wishes of the client and used unit tests to verify our code base. At the end, we have developed a stand-
alone price prediction API, where multiple models are available for price prediction. All of the developed
models outperform the initial implementation, however it should be noted that accuracy and robustness
could vastly improve when more data is available. Therefore, it is recommended that Sjauf waits until more
data is available before switching to this approach completely.

Team Members:

Jonathan Katzy

Interests: Real life application of Machine Learning techniques

Contribution: Lead Al Developer

Tim Rietvield

Interests: Pattern Recognition, Data Visualisation and Data Filtering

Contribution: Head of Communications, Developer

Jaap-Jan van der Steeg

Interests: Data Mining and Machine Learning

Contribution: Quality control, Developer

Erik Wiegel

Interests: Machine Learning and Economics

Contribution: API designer, Developer

Coach: Dr. M. Birna van Riemsdijk Dept. of Intelligent Systems, Interactive Intelligence Group
Prof. Dr. Catholijn M. Jonker = Dept. of Intelligent Systems, Interactive Intelligence Group

Client: Stefan Dorresteijn CTO Sjauf
Roel Bloo CFO Sjauf
Contact: Erik Wiegel erik@jwiegel.com

The final report for this project can be found at: http: // repository. tudelft. nl

48

http://repository.tudelft.nl

Project Description

Sjauf Technologies

https://sjauf.nl/

Sjauf is the country’s only private driver app & platform. Using our services you can book a driver who will
take you home, wherever you might be.

Our backend tech stack is completely modular, using GraphQL to use multiple APIs using a singular gate-
way. Most of our backend applications are written using Elixir and our frontend apps are written entirely
using React Native.

Our platform allows customers to book trips in advance as well as on the spot. Our drivers make offers on the
trips made and customers can accept or decline these offers. Once an offer is accepted, the trip is booked.

We're hoping to move towards an automated pricing system (instead of the offer-based system) and would
like to have a group of students build a standalone system/application for this, using Al to improve itself con-
tinuously. This application can be written using any language as long as the API on top of it is written in Ruby,
Elixir or JS.

Other information
Interns will be compensated for their work as well as their travel and food/drinks. We're a pretty small, young
team who are extremely motivated to come up with innovative solutions for this market’s biggest problems.

49

https://sjauf.nl/

	Introduction
	Research Report
	Problem definition and Analysis
	Problem definition
	Problem analysis
	Project requirements

	Preprocessing
	Data Filtering
	Missing data
	Data Integration
	Data Transformation

	Generating recommendations
	Recommender Systems
	Machine Learning

	Generating price
	Language Choice
	Interface

	Conclusion

	Architecture
	Interface for models
	Elixir Interface

	Data Processing
	Creating trips
	Transforming data
	Creating more information
	Removing data points
	Balancing the dataset
	Undersampling
	Oversampling

	Genetic Algorithm
	Inner workings
	Implementation
	Creating initial population
	Selecting fittest genomes
	Creating a new population

	Price generation
	Models
	Baseline
	Content based
	Feedforward Neural Network
	Recurrent Neural Network
	Convolutional Neural Network
	Support vector regressor
	k-Nearest Neighbour model
	Ensemble model

	Comparisons
	Comparisons

	Generating price for new data

	Ethics
	Nature of the data
	Rejected Predictors
	Fair wages

	Conclusion
	Future work and Recommendations
	Feedback for the models
	Using the generated price as set price
	Using locations for price generation
	Under/Over Sampling
	General Recommendations using Machine Learning
	Evaluation

	Bibliography
	Process
	Quality Control & Testing
	Communication
	Scrum

	Use-Case Diagram
	Optimal values
	First SIG feedback
	Second SIG feedback
	Standalone platform for automated price suggestions using AI
	Project Description

