Efficient Resource Virtualization and Sharing
Strategies for Heterogeneous Grid Environments

Pawel Garbacki
Dellt University of Technology
Delft, The Netherlands
Hmail: pj.garbacki@tudelftnl

Abstraci— Resource virtualization has emerged as a powerful
technigue for customized resource provisioning in grid and data
center environments. In this paper, we describe efficient strategies
for policy.based contrelling of virfualizafion of the physical
resources, With these strategles, virtualization is conirolied iaking
into account workload requirements, available capacities of
phivsical rescurces, and the governing policies. Realizing (his
conirol requires simulianeous handling of three problems: (i)
determining the virtual resource confignrations, (H) the mapping
of resuiting virinal resources to physical resonrces, and (ifi} the
mapping of workloads to the virtial resources. We pose this as
an optinization problemn and solve this problein using a linear
programuning {LP) based approach. We evaluale this approach
by implementing il in the Harmony grid environmenl consisting
of heterogeneous resourees and heterogeneonus workioad, Experi-
menial results indicate that our approach is efficient and effective.
We extend this approach further by using a two-phase heuristic
that allows the decision making component to scale up to handle
iarge seale grid sysiems,

I INTRODUCTION

(rid syslems, in parlicular those of large scale, are com-
posed of resowrces belonging to multiple administrative do-
mains, Resources from different administrative domains tend
to be heterogeneous, at least in terms of their capacilies and
performance, and often in terms of OS5 platforms. Unless
this heterogeneity can be masked from the grid workload?,
grid regources remain fragmented and cannot be used as one
large cohesive set of resources, thus defeating the purpose of
forming the grid m the first place.

Aside from heterogeneily, muolliple adiministrative domains
result in resocurce specific governing policies. As a result, the
avallability of grid resources camiot always be guaranteed
nor is their availahility always predictable. However, for
grid systems to become viable in enterprize environments,
resource availability issues must be addressed transparent to
the grid users. Grid users are willing o trade some perfor-
mance degradations if the resource management issues are
handled transparently by the grid management middleware.
This means, when a physical resource becomes unavailable,
the grid resource managemnent system is expected to provision

Uin this paper, by workload we mean a set of service requests, transaction
mquests, jobs, eic. Services or jobs within a workload may be mun simultane-
ously or individually or in some other combination. For naming consistency,
in the rest of the paper we shall mfer to a workload as a composition of
sarvice requests that are executed by service instances

Vijay K. Naik
IBM T, J. Watson Research Center
Yorktown Heights, NY, USA
Email: vkn@us.ibm.com

for alternate resources or migrate the waorkload handled by the
affected resource Lo another available grid resource.

Recently, resource virtualization [11, [2] is being mcreas-
ingly comsidered to address some of the above mentioned
grid specific requirements [3], [4). The key advantages of
virtualization technology, in the context of grid systems, are
(1) the ability to share physical resources in a confrolled and
precise manner, (i) the ability to migrate, (iil) the ability
to customize the resource environment to meet workload
requirements, and (iv) the ability to control the virtual resource
execution and thus, allowing better policy enforcement.

Resource virlualization facilitates controlled and precise
sharing of underlying physical resources such as processor cy-
cles, memory units, and disk space, With virtualized resources,
service instances are not directly deployed on lop of specific
physical resource instances. But instead are deploved on a col-
lection of virtualized resources including virtualized processor,
memory, filesystem, network, and so on. These virtualized
resources are mapped to physical resources transparent to the
services deployed in the virtual machme (VM) In case of a
policy change or unexpected capacity degradation, e.g., due
to a hardware failure, an entive virtual resource can be moved
from one physical resource instance fo the other. In most
Y™ technology implementations, the VM migration across
rescurces essentially boils down o copying of a VM image file
from one physical resource to ancther. Similarly, virtualization
technology allows a service to customize ifs execution envi-
romnent withoul affecting the execulion environtnents of other
services. Services with incompatible resource configurations or
conflicting co-allocation requirements can still use the same
physical resource instance as long as they use different virtual
resources. Finally, resource specific policies can be more eagily
enforced at the virtual resource level. For exatople, by confrol-
ling the phvsical capacities assigned to virtual resources, it is
possible (o conirol the resource capacities used by services
rumming inside a VM even if such a [acility is nol provided by
the OS5 platform.

The virtualization technology, however, cannot be used “oul
of the box”. The performance degradation caused by running
workloads on virtualized mstead of hare grid resources, the
VM instantialion cosl, and addilional storage capacily needed
to host VM images requires judicious use of virtualization.

Focus of this paper is to describe the decision making com-

1-4244-0799-0/07/$25.00 ©2007 IEEE 40

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

ponent associated with the management layer used to manage
and control the virtualized resources. The decision making
component takes into account: (i) the costs associated with
resource virtualization, (ii) available physical resources, their
capacities and associated policies, (iii) the current demand of
the grid workload, and (iv) existing VM configurations and
instantiated services. Based on these parameters, we determine
the virtnalization strategy that is optimal according to the
current system objectives. Depending on the tradeoffs, the
virtualization sirategy may result in using existing VMs to run
new workload (by increasing the level of sharing), configuring
and deploying of new VMs, or migrating of existing VMs.
We also describe the implementation of our approach in the
context of Harmony grid environment — a VM-based grid
system developed at IBM T. J. Watson Research Center [5],
[6]. Our implementation is evaluated using real-world data to
model the grid environment.

The rest of the paper is organized as follows. In Section 1T
we describe the virtual resource allocation problem considered
in this paper. In Section IIT we present an algorithmn that finds
the optimal solution of the virtual resource allocation problem.
Section IV extends the optimal algorithm with an execution-
time-efficient heuristic. In Section V we present integration of
our algorithms with Harmony. Section VI describes the results
of the performance evaluation of our algorithms. Section VII
gives an overview of the related work. Finally, Section VIII
concludes the paper.

II. PROBLEM SETTING

We consider a grid environment that provides a platform
for execution of customized services. A task executed in batch
mode or invocation of a transaction in response to a request
are examples of services provided by the platform. Multiple
instances of the same service may manifest at the same time.
Services are not instantiated directly on physical resources, but
they are embedded inside VMs.

Although several projects [3], [4], [7] advocate resource
virtualization as the right approach to service workload ex-
ecution in grid environments, they all assume that services are
executed in private VMs. However, deploying a separate VM
for each service is an expensive and inefficient proposition
because of the VM memory overheads and VM instantiation
costs. Similarly, because of the VM image size and possibly
large number of different VM configurations required to satisfy
various requests, it is not practical to replicate VM images
on all physical machines. Instead they are stored in a central
repository. Transferring a virtual machine image from the
image repository to the hosting machine consumes significant
network bandwidth, which can lead to bottlenecks at the image
repository. In the extreme case of services with low resource
requirements and short execution time, the VM instantiation
itself can consume more resources than the deployed service.
Hosting of a VM also has overheads. In addition to the disk
space consumed by the VM image, the OS processes and
demons in the VM consume memory and CPU cycles of the
host.

Service Service Service Service Service
Instance || Instance Instance || Instance || Instance
F Y 11 A A Jr
v b v v r

Virtual Virtual
Machine Machine
F Y 4
v v
Physical Grid Resource
Fig. 1. Sharing of virtualized grid resources.

The costs associated with resource virtualization can be
decreased by enabling sharing of VMs among the services
(see Figure 1). A virtual resource is shared, if two or more
services use the same VM. Obvicusly, VM sharing also has
its limitations. The isolation benefits disappear when services
are placed inside the same VM. Furthermore, service specific
policies may prohibit co-deployment of some services in the
same VM. Such policies are common in environments where
services may process sensitive data. In such cases, resource
virtualization provides the necessary isolation guarantees while
sharing the physical resource. Finally, the VM configuration
required by one service may not be compatible with the
requirements of anocther service (e.g., services may require
VMs to be configured with different operating systems).
In short, to benefit the most from resource virtualization,
sharing of both the physical and virtual resources should be
analyzed simultaneously. Efficient mechanisms are required
to determine the allocation and sharing of physical and virtual
resources such that global system objectives are achieved while
respecting service-specific and resource-specific policies. We
refer to this as the resource virfualization problem and, in
this paper, we propose a systematic approach for solving the
problem. Our approach guarantees optimality of the solution
according to a set of global system objectives. Specifically, the
problems addressed in this paper are:

s determining the optimal number of VMs to instantiate at
any given time,

s the configuration of each VM including the amounts of
physical capacities assigned to the VM and the set of
software components to be installed inside the VM to
satisfy the requirements of the embedded services,

s the mapping of services to VMs such that service specific
policies and requirements are satisfied,

¢ the mapping of VMs to physical resources respecting
physical capacity constraints, resource specific policies,
and global system objectives.

We note that our approach is also applicable to resource
matching in a grid environment where the virtual resource
layer is absent or consists of a single VM for each service,
although in those cases more straightforward approaches ex-
ist [8], [9].

41

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

II1. MODELING THE VIRTUALIZATION PROBLEM

In the following, we first describe a model of the grid
environment. Using this model, the problem described in
Section II is then modeled as an optimization problem in
terms of linear programming formulation. The solution of the
linear program provides an oplimal sirategy for the controlling
resouice virtualization.

A, Model of a Grid Environment

The grid environment consists of resources that can be either
hardware confipurations or software packages. Resources are
assigned rypes such as server machine, database, network
subsystem, file server, efc. Bach ifype is aftached a set of
attributes with values specific fo the resource instances of
that type. Atiribute values can be either immutable, as n
case of stafic aftribufes, or they can be alfecied by the set of
VYMs assigned to the resource instance, as in case of dynanic
affrifafes. Some examples of static aliribules for resource type
server are: IP address, CPU architecture, number of CPUs, The
set of server’s dynamic atfributes confains: amount of available
memory, ree disk space, CPU utilization.

For deplovment, each service requires a set of VMs de-
ployed on resources of cerfain types with specific values
of the static attributes and sufficiently large values of the
dynamic attributes. A service can be deployed only if all of its
requirements are satisfied by the set of assigned (virtualized)
resources. By assigning a service to a resource we assume that
a cerlain amount of resource capacities, specified mdividually
for cach service, is consumed.

Since large-scale grid environments usually span multiple
adminisirative domains govemed according o Joeal rules, we
allow each resource instance to define specific usage policies.
A simple resource policy may, e.g., allow the resowce to
share ils capacity only during certain hours. More complex
policies can condition the access to the resources based
on the service properties, e.g., by giving priorily o VMs
running local services deploved by users that belong o the
same administrative domain as the resource. Analogous o
resource usage policies, we allow services to specily iselation
requirements, prohibiting isolated services to share the same
VM. Service isolation provides profective theasures against
malicious services that try to affect correct execution of other
services,

In addition Lo resource usage policies and service prefer-
ences, we define global objectives that allow us to compare the
quality of allocations in terms of fulfilling system-wide goals.
Some examples of glohal objectives include maximizing the
throughput, balancing of load across resources, minimizing the
mumber of resources used.

B. Notation

We model the virtual resource allocation problem as a linear
program (LP) [10]. Linear programming has been extensively
investigaled in the lilerature and a variety ol solvers lor
these optimization problems has been proposed [11]. Before
presenting the set of Hnear expressions that describe the virtnal

resource allocation problem, we introduce some notation. Our
linear program Lakes the following inpul paramelers describing
services and grid resources:

s is the set of services (service instances),

B i the set of physical resources,

1 is the set of physical resource types,

A is the set of dynamic resource atiributes. Allribules

are unigue across resource types resources of
different types are assigned distinet attributes,

Nipay 18 the capacity of aliribule o, o € A of resource 7,
re 1

Uioay 18 the capacity of atfribute o, o € A consumed by
service &, 8 € 5,
B,y Is the set of resources of type ¢, ¢ « 1, with static

aftribute values satisfying requiremenis of service s,
e 5.

The above set of parameters provides a formal description
of the copsidered gnid environmenl. In this environment the
properties of grid resources are defined by specifying capac-
ities of their aftributes (/V. 4. L.g., a resource representing
a server may define capacities for the atfribules describing
available memory and CPU cyeles. Services describe depen-
dencies on resources by specilying the consumptions of the
attribute capacities ({/r.). As described in Section [II[-A, in
addition to resource capacity consumptions, a service specifies
the reguired values of the stalic resource afiribufes. E.g.,
some services can run only on a server located in a cerfain
network domain. Based on the ohservation thatl resources with
required values ol the static aliributes can be identified in
a preprocessing step, we do not include the static-attributes-
relaled requirements m the sel of impul paramelers. Instead,
we define for each service and dependent resource type a set
of resource instances of thal type with required values of the

static attributes (F¢.).
The following parameters relate to the virtual resource layer:

vV is the set of virtual machines,

s 16 the capacity of atiribute o, o = A, consumed by
a VM in addition to the consumption of the services
rumning inside that VM. We assume that the attribute
capacily copnsurnplion is the same {or all VMs,

L+ equals 1 if isolation requirements allow services s;

“and 59, 81,89 C &, to run inside the same VM,

equals 1 if virtual machine o, v € V is currently

deployed on physical resource », r £ R, equals O

otherwise,

M s ewmEquals 1if service s, s € S, is currently instantiated
inside virtual machine v, » € V, which is, in um,
deployed on physical resource », » € H: eguals 0
otherwise. Note that M'(s, v,) equal to 1 implies
that also Yéi . cquals 1,

is the cost of creating, removing or modifying of a
configuration of a service inside a VM. We assuine
that this costis constant for all the services and VMs,

Cym Is the cost of creating, modifying or changing of a
VM configuration on a physical resource. We assume

I

(=1

e
(w7}

-y
<—/ sTU

42

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

that this cost is cor
TESOUTLES.

stant for all the VMs and physical

The sel of virlual machines (V) represents VMs thal already
exist in the system as well as new VMs that will be assigned
configurations and physical resources during the matching
process. As explained in Section II, hosting of a VM itself
incurs a non-zero cost. We express this cost as resource
capacily consumplion i addition to the resource consumplions
by the services configured inside the VM ({}). Service isclation
requirernents (1 (-) restrict service co-allocations n the same
VMs. Bxisting mappm s of VMs o physical resources (}(Q
and services to VMs (W) are also included in the set of
input parameters. As motivated in Section I, there are non-
negligible costs involved in configuring a service () and
a VM (T
I addition to the input parameters, we define a set of ontput
variables that store the solution of the matching problem:
Yy 18 a 0/1 variable equal to 1 if virtual machine v,
v & V has been mapped (o resource v, r € R,
2y is a 0/1 variable set to 1 if service 5, s € 9, has
been assigned all the required resources,
Mgy s 2 0/1 variable sel to 1 if service s, s € 5, has
 been assigned virtual machine v, v ¢ V, that has
been mapped to resource v, » < K. Note that M, 5
equal to 1 implics that also Yy, is cqual to |,
Note that the mappings of services to VMs and VMs (o
phvsi-cai resources can be deduced from the values assigned to
M.y Thus, the values of M.y are sufficient to represent a
boiunon to the resource virtualization problem. The remaining
(auxiliary) variables are introduced only for simplifying the
problem formulation as a linear program.

C. Constrainis

The feasibility of a particular assignment of values to the
oulpul variables in the contest of the virtual resource allocation
problem is determined by a set of constraints. All constraints
in the linear program have o be linear expressions.

1) Gang Matching Constraints: Gang matching constraints
ensure that we allocate to a service either all resources
requested by that service or none of the requested resources.
Formally, we can write this requirement as:

Z ﬁjp,“}f} - Zs« (1}

VEVrER, 4

for all services 5 € & and dependent resource types t € T

Since M.y and Z are O/1 variables, gang matching
constraints omuanteeb that Z, equals 1 only if, for a fixed
service and a fixed resource type, exactly one of the variables
ﬂff(.’.,_) ig equal to 1. 7, ig, thas, set to 1 only if service s is
assigned to exactly one VM deploved on a resource of each
of the dependent types.

2} Resource Capacity Consfraints: 'The resource capacity
constraints guaraniee that the consumplion of the resource
capacities does not exceed the total available capacity declared
by the resources. Two factors determine the consumption of

the capacities of a physical resource: the VMs deploved on
the resource, and the service inslances configured in these
VMs. Hence, the resource capacity constraints translate to the
following set of Inear expressions defined for each resource
7 € H and its dynamic atfribute a = A:

Z {’T(*,(J} * iﬁd{?u,?‘) + Z Qa *

sESweEV vl

3) Service Isolation Constraints: Two services can be
placed inside the same VM only if iU is not against their
isolation requirernenis. For all services &1, 82 &, virtual
machines v & V, and resources r & H:

ﬂ’{{si,v,’ﬁ) + ﬂ’{(s-‘q,v,r} <1 1(31,32}- (3)

Moy vy and My, o are both equal to 1 il services sy
and s run inside the same VM., This is possible only if the
value of {18 also 1.

4} VM Deployment Constraints: All VMs that are assigned
services have Lo he deployed on physical resources:

ﬂ/f{\sm’ﬂ < }T(U’T.)v (4:1

w

for each virtual machine v, v & V, service 5 € 5, and resource
rc R
5) Resource Allocation Unigueness Constraings: Bvery vir-
tual machine » ¢ V is deploved on at most one physical
TESOUTCE!
> Yo = 1.)
rER
Not every VM has to be instantiated. In particular, to
thinimize physical resource consamplion, a VM that does not
embed any service need not be assigned a physical resource.
We consider this requirement to be part of the cbjectives of
the oplimization problern.

D. Oprimization Objectives

The objective function defines the gquality of a virual
resource allocation when multiple feasible solstions exist
Virtual resource allocation algorithin uses objective function
to select the best among the feasible solutions.

The virtual resources layer increases the number of service
placement possibilities, consequently allowing more expres-
sive ohjective functions to be defined. The common denomina-
tor for these objective functions is that they all have to take into
account the cost of configuring services and VMs as well as
the cost of migraling existing service and VM confligurations.

The cost 'y of (re)eonfiguring services in VMs equals:

«—

L

Suc Ve R

=

i) fs{(«qs‘,} (6)

s:u3

Note that services assigned to the same VMs deploved on the
same physical resources as during the previous virtaal resource
allocation do not incur any additional cost. Services that have
just been added to the systern affect Cy with the configuration
cost (g For services that have 1o he reconfigured inside a
VM (V Al other than the one where they are cwrently
deployed (V M yrene), O 18 increased by 2 % (g, which is

43

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

the cost of migrating the service from V' Moy rpene 10 V Myew.
Cost O also caplures the case where the service is deployed
in the same VM as previously, but the physical resource of that
VM has changed. VM migration impacts the service specific
cost since during VM migration embedded services have to
be suspended.

The cost Ch of re)deploying of VMs on resources can be
expressed as:

= O |V AN 7
Lg = T Lo ‘S {v,r} Y‘U’J‘}'" {}
veViro R

Simnilarly, as in the case of service reconfigurations, the cost
associated with restructuring of the virtual layer depends on
the modifications required to the current structure of this layer.
Cost Oy is independent. of the services configured nside VMs.
All service specific costs are included in the value of Cy.

The global optimization objective is composed of costs 'y,
(g, and a cusfomized objective function O defining the carrent
matching obijectives that do not relate to the virtualization
costs. As an example, consider the objective function of
maxirnizing the throughput, e, the number of service requests
processed per unit time:

0=3 7. (8)
sC &
In {8], we define linear constramis for customized objective
functions optimizing the prioritized throughput, the number
of resources used, the Joad balance, and service preferences
om resources. Any of those objeclive funclions can he easily
combined with the cost functions as:

mazimize {04k x O+ ke + Ca). (N

The constants &; and ke control the impact of the cost
functions on the value of the glohal optimization objective.

IV, ON-LINE RESOURCE MATCHING

In this section we extend the reguirements of the virtual
resource allocation (maiching) problem by introducing con-
straints on the armount of dme required to decide on the service
placements. We address those additional requirements by
combining the LP-based virtual resource allocation algorithin
presented in Section HI with a time-cfficient heuristic method
of finding suboptimal allocations. The matching heuristic de-
composes the virtual allocation problem wito two subproblems
which are solved independently by an algorithm that provides
{(suboptitnal) solutions in a designated amount of time.

A, On-fine Matcher

The linear program formulated in Section I can be classi-
fled as a 0-1 integer program (IP) since the optimization vari-
ables are all required to be 0 or 1. Although the sophistication
of the existing linear solvers allows finding the solution of a
0-1 integer program very elficiently for most of the problem
instances, solving of a 0-1 IP is in general NP-hard.

The nepative impact of the possibly long virtual resource
allocation time escalates if some of the services are altached

hard deadlines. To address this problem, we propose a resource
malching heuristic thal makes instant decisions regarding
virtual machine allocation. The heuristic approximates the
optimal virtnal resource allocation by considering only some
of the matching objectives. Since no guarantees about the
optimality of the matchings found by the heuristic are pro-
vided, we periodically run the LP-hased resource allocation
algorithm presented in Section 1T to reduce the possible drift
from the optitnum. Thus, the on-line malcher combining the
heuristic with the 1.P-based resource allocation algorithm can
keep up with a high arrival rate of the matching requests while
thaintaining high quality of the vittual resoarce allocations.

B. Heuristic Appreach to Resource Maitching

The heuristic resource matching is performed in two sleps
{phases). During the first phase we select for each service a
V() where it will be deployed. The objective of the second
phase is to map those VMs to physical resources.

1} First Phase: In the first matching phase we take info
account. only the services that are nol assigned to any VM
and VMs that are deployed on physical resources. For each
VM and each dynamic attribute of the resource where the VM
is deployed, we deline a virfua! alfribnde with capacily equal to
the available capacity of the physical attribute. Note that since
more than one VM can run on a single physical resource,
the aggregate capacity of the virtual atfributes can exceed the
total available capacity of the corresponding physical atiribute.
Omnce the values of the virtual attributes are defined, the match-
ing of services with the virtual resources is performed. During
the matching, service requirements are compared against the
virtaal atiribute values.

The way the virtnal attribute values are defined does not
guarantee that, after the matching, the physical capacities will
be preserved. To bring the system back to a consistent state,
we iterate over the mappings found by the matching algorithm
and mvalidale those that violale the physical resource capacily
constraints,

I no existing virtual resonrces have been allocated to a par-
ticular service, we logically twithout assigning it to a physical
resource) creale a new VM with a configuration conforming
to the embedded service requirements. The output of the first
phase of the resource alching heuristic algorithm s, thus, a
set of mappings of services fo the already instantiated as well
as logical VMs.

2) Second Phase: In the second phase of our resource
matching algorithm, we allocate physical resources to the new
VMs that have been lopically created during the first phase.
The physical resources are selected based only on the VM
specifications defined in the first phase. Further no knowledge
of the requirements of individual services is needed in the
second phase.

3) Time-Constrained Matching: The decomposition of the
resource malching into two phases execuled separately de-
creases the complexity of the virtual resource allocation prob-
lem. On the baseline, the matching problems considered in
these two phases are similar. While in the first phase, matching

44

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

takes into account service-gpecific requirements and capacities
of the VMg, in the second phase VM-specific requirernents
and physical resource capacities are considered. The only
difference in the matching problems of the two phases lies in
the policy interpretation aspect. The objective of the first phase
is to produce matchings that conform to service policies. In
the second phase, service policies are replaced by the resource-
specific policies. Any of the standard grid rescurce matching
algorithns that accepls the policy deseriptions passed as the
parameters of the resource matching moedel and additionally
provides execution time guarantees, cait be used to solve the
matching problems of the two phases. Some examples of grid
resource matching algorithms that satisfy these criteria have
been described m [B], {21

V. INTEGRATION WITH HARMONY

In our previous work we have developed Harmony, a
platform for delivery of customized services configured on
virtualized grid resources {5], [6]. In this section we desceribe
the integration with Harmony of the virtual resource allocation
mechanisms wiroduced in Sections Hl and 1V, We st present
the highlights of the Hanmnony archilecture. Then, we describe
the method of extracting resource requirements from service
workloads. Finally, we deseribe the implementation of the
virtual resource allocation mechanisms in Harmony.

A, Overview of the Harmony Architecture

The architecture of Harmony is defined using a layered
approach presented in Figare 2. The components of our
architecture can be divided into two functional blocks, namely
Service Provisioning Infrastructure and Service and Resource
Management Infrastructure.

1) Service Provisioning Infrastructiive: The Service Pro-
vistoming Infrastructure consists of four layers that represent
service access point, service instances, VMs embedding the
service instances, and the physical grid resources hosting VMs.

Systermn users and applications that invoke the services are
collectively called Service Clients, Access Layer is represented
by (ateway which 18 a well known access point where
service clients direct their requests. Gateway reroutes the client
requests to service instances where the requests are processed.
Request routing is fully transparent to the service clients —
clients do not have any Infinence on, or knowledge of which
service instance handles their requests.

Service inslances, collectively forming the Service layer,
are nol ranming directly on the physical resources, bul are
rather embedded inside VMs. Multiple service instances may
he placed mside different VMs and a single service mstance
may require multiple VMs. Depending on the policies defined
by the services and compatibilify issues between service
configurations, multiple service mstances may reside inside
a single VM.

The virtualized resources and the associated control in-
frastructure form the Virtual Resources Layer. Every VM is
controlled by the Virtual Machine Manager which runs as

a privileged process inside the VM. Virtual Machine Man-
ager coordinales service instanfiation and monitors the CPU,
memory, disk, and bandwidth vsage of the configured service
nstances.

Physical Resources Layer represents the grid resources.
Physical Machines may join and leave this layer dynamically.
Typically, the resource availability scheduole is governed by a
set of policies defined by the resource owner. The counterpait
of the Virtual Machine Manager for physical resources is the
Host Agent. The Host Agent runs in a demon mode on each
phiysical resource, monitoring the CPU, memory, disk space,
and network bandwidth usage of the VMs, ensuring that none
of the local policies is being violated. 'The task of instantiating
VMs onn physical resources is assigned to the Virtual Machine
Instantiator.

2) Service and Resource Management Infrastructure: Fal-
filling certain QoS requirements, while respecting resource
usage policies, requires coordmation of the management de-
cisions at different layers of the Resource Provisioning In-
frastructure. For example, configuring more service instances
improves the chient request troughput but alse increases the
resource capacity consumptions which can exceed the policy-
allowed limits. The integration of the management across the
layers of the Resouwrce Provisioning Infrastructure s realized
by the components of the Service Management Infrastiucture.

The Active State Repository gathers the virtual and physical
resource usages measured by the monitoring componends
(Virtual Machine Manager and Host Agent). The individual
measurements are comrelated with each other 1o produce higher
level statistics, e.g., describing for each service the aggregate
resource usage of all existing instances of this service.

Predictor generates forecasts of the Tuture service worklead
and resource availability based on the cuirent system state
as well as historical dala. On-line Resource Matcher decides
on the structure of the bindings befween service instances,
YMs and physical resources. Predictor and On-line Kesource
Matcher are extensively described further in the paper.

To provide service agility, Harmouy system has an au-
tomated service instance configuration feature that allows
dynamic migration of service instances to the point of resource
availability. In Harmony, Configuration and Deployment En-
gine customizes the process of instantiating new VMs. It
also installs and configures services and dependent. soflware
components inside those VMs,

The Grid Resource Manager (GEM) deals with the high
level Qo8 guarantees. The objective of GRM is (o guaraniee
that there are enongh resources allocated to services to meet
certain QoS requirements, while ensuring that the service
workload does not violate the resource usage policies.

B. Tdenfifving Service Requirements

The capacity requirements of service instances depend on
the client demands. Demands are constanily changing over
time [12] Service resource requirements carmol be, thus,
predefined, but they have to be extracted dynamically during
the systemn operation. We present here a method of determining

45

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

Access Layer

Sernne Ranuest/Response

b

Ceplsymant

e ~
{ instanae of
L Sawined

v ~
Instanes of
Sardes 2

Sarvice Layar

Component Dependeney

asmsaseaacle

Witz
Magtiize

Winiual
i aciine

istuai
Maching

irtual Fesaurcas Lave

By

Physical Resources ¢

Bervice Provisiening infrastrociuse

Zervice and Resouree Management infrastruciure

A

Fig. 2.

the resource capacities required by individual services hased
o1l resouice usage predictions. To decrease the amount of
processed data, we aggregate service reguests over fixed-length
tirne intervals before applying the prediction algorithm.

Instead of modeling workload demands at a single request
resolution, we use prediction methods to identify longer term
frends in the service invecalion patterns. These trends are
computed for each service separately, Trend provides a basis
for the estimation of the client demand for a particular service.
The demand, in tum, directly translates to the resource capac-
ities required to satisfy this demand. The required resource
capacities are considered while allocating virtual and physical
resources to service instances,

Predicting of grid rescurce usages has been recognized
as a difficult problem [13]. In particular, there is no single
prediction algorithm that fits all workloads. Having the gener-
ality of our design in mind, instead of supporting a single
prediction algoritlun, we use a wide range ol lorecasting
algorithms, starting with simple methods such as running
mean or exponential stoothing, (o end up with current slale-
of-the-art. approaches such as ARIMA, Holt Winters, FFT,
Wavelet, or Kalman Filter [14]. For each prediction method,
we measure ifs accuracy in a certain context, c.g., we estimate
the load exercised by clients of a particular service, and select
the most reliable method for this context. In this respect,
our prediction approach is similar o the one adopted in the
Network Weather Service [15]. For a detailed description of
workload characteristics prediction in Harmony we refer to [5].

i
!
]
]
i
!
i
!
H
]
i
L.E_J .
"I‘ L
!

Hurnony archilecture.

The possibly shorl execulion time of a service request,
resulting in a high mimber of requests per time interval,
makes service requests expensive o analyze individually.
Furthermore, the execulion time of a single request does nol
provide a reliable estimate of the long-term behavior of a
typical service thal usually exhibits a high level of burstiness
on shorf-term time scales [12]. When it comes to selecting
the resources for service instance deplovments, the longer-
time estimales are more relevant. This 18 due to the fact that
deploying services is an expensive operation [51. The lifetime
of the nstance should be, thus, long enongh to amortize the
instantiation cost,

To support services with many short requests efficiently, we
aggregale multiple requests over predefined time intervals. The
length of the aggregafion inferval controls the granolarity of
the predictions. The longer the agpregation interval, the higher
is the discrepancy between the predicted and the actual load in
this interval. On the other hand, longer aggregation intervals
result in more stable deployments, decreasing the overhead
mewrred by restructaring on the Service and Virtual Resources
layers (see Figure 2).

Finding the optimal length of the aggregation interval re-
quires considering several properties of the workload execution
environment, First, the characteristics of the workload itself
nfluence the aggregation method. High fuctuations of client
demands provide rationale for shorler aggregalion inlervals

that will better cope with the frequent changes in the demand.
Second, the set of policies specifying the resource usage roles

46

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

©On-line Rescurce Matcher

» LP {
1 Matcher i
| w Configuration &

Predictor

- *y
| Workload |
Gateway — }SM» Deployment
3‘ Aggredsatar i = Engine
“ Task R
Active sk Sunte » T
State > Heuristic i
Repository i Matcher
Fig. 3. Dataflow between the On-line Resource Matcher and Harmony

components.

and workload orchestration guidelines can impose implicit
bounds on the length of the aggregation interval. E.g., resource
usage policies allowing the resource instance to be used by a
particular service only for a certain amount of time disposes
aggregation intervals longer than that amount of time. Finally,
the cost of the deployment and configuration of a new service
instance should be taken into account while performing the
workload aggregation. Shorter aggregation intervals motivated
by high fluctuations in client request patterns lead to more
redeployments and reconfigurations of the service instances.

C. Implementation of the On-line Resource Matcher

The method of identifying service requirements presented
in Section V-B provides a prerequisite for the virtual resource
matching. We have implemented the on-line resource matching
approach described in Section IV and integrated it with the
Harmony infrastructure. The functionality of allocating the
virtual resources is provided in Harmony by the On-line
Resource Matcher. The On-line Resource Matcher is logically
divided into several components that interact with each other
and external Harmony components as presented in Figure 3.
An arrow in Figure 3 indicates a dataflow direction.

Service client requests are reported by the Gateway at
Workload Aggregator. Workload Aggregator analyzes the re-
quests at a granularity determined by the aggregation interval.
Predictor is involved in workload analysis, helping to identify
patterns in service invocation schemes. Workload Aggregator
is implemented as a web service which makes its functionality
easily accessible for the Gateway.

Service requirements arising from the workload aggregation
are appended to the Tusk Quene. Depending on the current
systemn load, the matching is performed by either the LP
Matcher or the Heuristic Matcher. The extent of the system
load is determined by the length of the Task Queue. If the
current length of the Task Queue is lower than a predefined
threshold indicating that the system is lightly loaded, then the
virtual resource allocation is performed by the LP Matcher. If,
however, the size of the Task Queue increases over the thresh-
old, the Heuristic Matcher is activated. Heuristic approach aids
the LP algorithm in processing of the matching tasks until the
size of the queue drops below the threshold. Note that during
the activity period of the heuristic algorithm, the LP matching
is also performed and the possible divergence from the optimal
resource allocation strategy caused by the inaccuracies of the
heuristic is corrected by the LP Matcher execution.

Resource Resource Resource Number of
Type Static Attributes | Dynamic Attributes Instances
D CPU architecture, utilization, 50

CPUs, domain memory

database vendor connections 50

network IP, protocol bandwidth 50

file storage filesystem size 50

TABLE I

RESCURCE MODEL.

The Task Queuve contains only the description of the work-
load characteristics. The specification of the system resources,
VMs and configured service instances is provided by the Ac-
tive State Repository. Service capacity requirements extracted
from the workload in combination with the current system
configuration provides the complete description of the virtual
resource allocation problem.

Our implementation of the L.P Maltcher models the virtual
resource allocation problem in the GNU MathProg language,
which is a subset of AMPL [16], a well established standard
among LP languages. The LP solving functionality is provided
by the open source GNU Linear Programming Kit [17]. In
our implementation of the Heuristic Matcher we use a method
based on an Evolutionary Algorithm described in detail in [9].
The evolutionary optimization process can be stopped practi-
cally at any time, still producing the best suboptimal solution
found until that time. Hard execution time guarantees of the
Heuristic Matcher can be, thus, provided.

The resource allocation decisions taken by the On-line
Resource Matcher are executed by the Configuration and
Deployment Engine. Configuration and Deployment Engine
performs the necessary restructuring at the Service and Virtual
Resource Layers of the Harmony infrastructure.

V1. PERFORMANCE EVALUATION

In this section we describe experimental evaluation of
the virtual resource allocation mechanisms described in Sec-
tions III, IV, and V.

A. Experimental Setup

The model of the grid resources used in our experiments is
based on real-world traces of a deployed service provisioning
infrastructure. Namely, we have obtained the detailed informa-
tion on the resources hosting IT services of IBM customers.
These statistics are provided by the Server Resource Manage-
ment (SRM) [18] system that reports historical and near real
time trends of resources serviced by IBM. Some illustrative
examples of such services are described in a series of case
studies available for download from IBM e-Business Hosting
Services pages [19].

Our model of grid environment consists of 200 resources
divided into four types: server, database, network, and file
storage. Bach resource type is assigned one or two dynamic
attributes and one, two or three static attributes. Table I
summarizes the resources and their attributes.

In this paper we concenfrate on evaluation of the efficiency
of the virtual resource allocation mechanisms only. The per-
formance aspects of the workload aggregation mechanisms are

47

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

50 i i I ; v ; [
Total services; LP Matcher

w 0L Total services: Heurstic Matcher i
3 _ Services per phase; 1P Matcher
‘%_: &0 L instences per phase; Heuristic Matcher -~ B
@ P m——— Y
ER e TR
En aT "
= P e Y=
=40 o *
=]
£
s
[+]
%
o)
=
=
Z

SRR - T .

G 1 12

Simuistion step

Fig. 4. Comparison of the throughput of the LP and beudstic approaches.

outside of the scope of this work. On the baseline, the quality
of the aggregations depends on the accuracy of the forecasis
provided by the Predictor component described n more detail
in [5]. We believe that the variety of the forecasting methods
implemented in our Predictor component and the presence of
mechanisms allowing to dynamically select the best method
for a particular workload will cope with the heterogeneity of
the workloads. We leave the validafion of this claim for the
fature work.

The workload used n the evaluation is generated syntheti-
cally, For each service we select the dependent resource types
making sure thal each service depends on al least one resource
type. The dependency of a service on a resource fype is
determined by Bernoulli distribution with the probability of
suceess equal to (L5, After the dependent resource types have
beenn chosen, a set of dependent attributes for each of these
types is selected. Bach service selects one or more dynamic
aliribules and zero or more static atiribules of the dependent
resource type. Also at this stage the selection is performed
according o Bemoulli distribution with the probability of
success equal to 0.5, The required value of the dependent static
attribute is selected randomly and uniformly from the set of
available values of this attribute. The mindmal reguired value
of the dynamic atfribule is selected randomly and unitormly
from the inferval bounded by 0 and the maximal available
value of that atiribuie among the defined resources.

The objective function that we optimnize is the throughput -
we maximize the number of configured services while mini-
mizing the cost of modifying the current system configuration,
as described in Section [11-12. The values of service and VM
configuration costs, Uy and Oy, are both set to 0.1 while
the parameters &y and kg are equal to 0.5 giving the cost
functions the same weight as the throughput maximization.

B, Ixperimental Results

Using a series of experithents we compare the guality of the
allocations computed by the LP and the heuristic approaches.
The experiments are performed m steps. During each slep
we bry 1o allocate virlual resources for 10 services with
requirements generated synthetically according to the method
described in Section VI-A. The simulation is repeated 10

500 T T T T T T T
LP Matcher —— |
Heuristic Matcher — A
400 - P
] -
= 7
= ¥
=}
£ uo b -4 i
a s r =1
100 + g .
_g-—aF
BB R
1 2 4 5 8 7 5 g 10 L iz
Simulation step
Fig. 5. Hxccution time of a simulation step for the LP and heuristic
approaches.

fimes with different random seeds and the average number
of services matched in each step is Iaken.

In our simulation, the resource allocations are preserved
between the steps. Consequently, alter a nummber of sleps the
system becomes congested and no further service instances can
be confligured unless some other mstances are removed. From
that point on, only the LP Matcher can lead to any improve-
ment since the heuristic cannot free capacities — it can only
add new configurations. Note thal in a realistic environment the
congestion point is never reached since service instances are
removed when the client demand decreases. In our simuolation
we do not, however, remove the imstances, which allows us to
investigate how the alporithms perform under different system
load conditions.

The congestion point canmol be easily detected as there may
always come a service with demand low enough to be satisfied
by the available resource capacities. Therefore, we stop our
simulation when no improvement (no new matchings found)
between two consecutive phases is observed for the Heuristic
Matcher.

Figure 4 shows the numbers of service configurations added
in a single simulation step and the total number of services
assigned resources for each of the matchers, During the firgt
phases both matchers allocate resonrces for similar mumber of
services. As the systemn size grows, the LP matcher oulper-
forms the heuristic being able to satisfy the requirements of
up to 20% more services.

The hetter quality of the matching found by the LP approach
come at the cost of higher execution time. Figure 5 presents
the execution time of each simulation step for both matchers.
During the firsl two steps the execuliom time of LP and
heuristic algorithms is comparable. In the consecutive steps
the heuaristic algorithm maintains roughly the same execution
time while the execution time overhead of the LP Maicher
keeps growing.

VII. RELATED WORK

The properties of resource virlualization such as the ease of
policy enforcement, ability (o provide isolation, facilities for
fine-grained resource management, the ability to instantiate
ndependently configured services on a single resource, make

48

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

it an attractive enabler of grid computing [3], [4], [7]. The
Xenoserver project [20] huilds a disinibuted mfrastructure as
an extension of the Xen VM [21]. The In-Vigo project [22]
proposed a distributed grid infrastrocture based on VMs,
while the Violin [23] project addresses the virtual networking
issnes. Although all these projects use VMs to improve the
efficienicy of resource sharing in grnid environments, none of
them considers sharing of YMs between multiple workloads
or proposes a strategy for determmiming the optimal allocation
of virfual resources.

In [24], authors consider the problem of assigning servers in
a data center to application components such that the resulting
fraffic-weighled average mier-server distance is minimized
while satisfving the application resource requirements and net-
waork capacily conslraints. The resource assignmnent problem is
modeled and solved using mixed integer linear programming
formulations. Although this problem s motivated by resource
virtuahization, their work does not address the two level opfi-
mization problem arising in mapping application components
o virtual resources and virlual resources Lo physical resources.
The resource matching problem in grid environments has also
been smdied extensively in [25], [26], [27]. Grid resource
matchers satisfying on-line cxeculion time consiraints have
beenn described in [8], [9]. All these approaches are, however,
hmited to traditional grid and data center architectures where
services are deployed directly on physical resources. The
virtual resource allocation problem presented in this paper is
an extension of the fraditional resource matching problem in
a sense that the traditional problem can be solved using the
method introduced in this paper.

VI, CONCLUSION

In this paper, we have developed an approach for managing
and controlling resource virtualizalion in the context of grid
environments by defining oplimal and heuristic sirategies
for policy-based resource sharing. Virlualization sirategies
described here take into account the propertics of the grid
resources, grid workload characteristics, and global system
objectives. We have shown that in spite of the complexity and
the number of factors that have to be considered while com-
puting the virtualization strategy, it is possible to efficiently
find a strategy that is optimal according te some costomized
objectives. The hewuristic algorithm proposed here improves
the execution time of the virtualization strategy computation
even more, allowing the matching to be performed m an on-
line mode. Both the approaches have been implemented and
inlegrated with Harmony an existing platform for service
delivery in grid environments. The experimental evaluation
indicates that our approach is able fo handle virualization
strategies efficiently. Results presented here help to determine
how our solution performs in a realistic environment modeled
using real-world grid resource characteristics. Finally, we note
that the concepls desceribed in this paper apply Lo other shared
distributed environments such as clusters and data centers, in
addition to the shared grid environments.

i
2]

Y

{4

[13]

[ie]

(171
(18]
f12}
[20]

271

REFERENCES

“Virtualization defipition from

hitp:/ffen wikipedia. orgAviki/Virtualization.

IEEE Computer. Special Issue on Vitualization, May 2005
R. Figueiredo, P Dinda, and J. Fores, “A case for grnd computing on
vistual imachines,” in JCDCS 03, Providence, RI, May 2003

i. Foster, T. Freeman, K. Keahey, . Schefiner, B. Sotomayor and
X. Zhang, “Virtual clusters for grd communities,” in COGrid 2006,
Singapore, May 2006,

V. K. Naik, P Garbacki, and A. Mohindra, “Architectnre for service re-
quest driven solution delivery using gdd systems,” in IEEE Infernational
Conference of Services Computing (SCC'06), Chicago, IL., September
2066.

V. K. Naik, S Sivasubraimmanian, and S. Koshnan, “Adaplive resource
sharing in a web services enviromment,” in Middleware 04, Toronto,
Canada, October 2004,

A, Sundwraraj and P Divda, “Towards virlnal networks for virual
machine grid compnting,” in Ixd USENIY VM'O4, San Jose, CA, May
2004.

V. K. Naik, €. Lig, L. Yang, and 1. Wagney, “Online resource matching
for heternpencous goid environments” in COGRID 33, Cardiff, UK, May
2005,

V. Naik, P Garbacki, K. Kumimamury, and Y. Zhao, “On-line evolution-
ary issonice matching for job scheduling in heterogeneous grid environ-
ments” v Znd Int’l Workshop on Scheduling and Resource Managemen!
For Farallei and Distributed Systems {SRMFPIDS'06), Chicago, 1L, July
2004.

A, Scheijver, Theory of Linear and Iieger Programming.
& Sons, June 1908,

K. Fourer, “Linear programuming softwate survey” June 2005,

. A Menasce, “Warkload characterization,” JEEE Infernet Computing
{(Special issue on Grid Computing), September 2003,

N. H. Kapadia, 1. A, B. Foites, and €. E. Brodley, “Predictive
applicativs-perfonmance modeling tn a computational god environment,”
in AFDC-8, Redondo Beach, CA, August 1900,

G Box, G M. Jenking, and G. Reinsel, Time Series Analysis: Forecast-
ing and Control, 3rd ed. Prentice Hall, February 1994,

K. Wolsla, “Expenences with predicting msource performance oon-
line in computational grid settings,” ACM SIGMETRICS Ferformance
Evaluation Review, vob. 30, no. 4, March 2003,

R. Towrer, D. M. Gay, and B. W. Xeruighan, AMPL: A Modeling
Language for Mathematical Programming, 2nd ed. Duxbury Press,
November 2002,

“GNLU linear prograroming kit page.” hitp/fwvww gnu.orgfsoftware/glpk/.
“SRM pape” https/fsrmraleighibmoom.

“IBM e business hosting services” http fibm com/e business/hosting.
D. Reed, L Prait, P. Menage, S. Early, and N, Stratford, “Xenoservers:
Acecountable execution of untrusted programs,” in HorO5 Vil Rio Rice,
AZ, 1990,

P Barham, B. Diragovic, K. Faser, 5. Hand, T Haris, A, Ho, R, Neuge-
baver, I Pratt, and A, Waclield, “Men and the att of viduadivation,” in
SOSEP 03 Froceedings of the nineteenth ACM symposium on Opevating
systems principles. New York, NY: ACM Press, 2003

S. Adabzla, V. Chadba, P Chawla, R. Fgusiredo, . Fodes, 1. Krsal
A, Matsunaga, M. Tengawa, [Zhang, M. Zhao, L. Zhn, and X Zhy,
“From virualized msources to vitual computing grds: the io-vigo
systemy,” Future Gener. Comput. Syst, vol. 21, no. 6, 20035,

F Ruth, X. Jiang, D. Xu. and S. Goasguen, “Towards virtval distobuted
environments in a shared infrastouctire” IERE Computer {Special Issue
on Virtuahizution Techuologies), 2005,

XK. Zbu, C. Santos, J. Ward, 2. Bever, and S. Singhal, “Resonrce
assigninent for larpe-scale computing wilities wsing mathematical pro-
gramming,” HP Labs, Tech. Rep. HPL-2003.243R1, 2003

C. Liy, L. Yang, I Foster, and D Angulo, “Destgn and evaluation
of a msowrce selection framework for god applications.” in HPDC-41,
Hdinburgh, Scotland, July 2002.

R. Rammau, M. Livny, and M. Solomou., “Policy diiven heterogencous
resonrce co-allocation with gangmatehing,” in HPDC-72, Seattle, WA,
June 2003,

X, Bah, Ho Yu, Y Ji, and 1. C. Madnescu, “Resouse matching
and a matchroakiog service for an intellipent gnd,” Trunsaclions on
Engincering, Compiting and Technelogy, December 2004,

wikipedia”

Toha Wiley

49

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

