
t a i
EicientResource ation an arin

Strategies for eterogeneous Grid Envi"ronmients
Pawel Garbacki

Delft University of Technology
Delft, The Netherlands

Email: pj.garbacki@tudelft.nl

Abstract-Resource virtualization has emerged as a powerful
technique for customized resource provisioning in grid and data
center environments. In this paper, we describe efficient strategies
for policy-based controlling of virtualization of the physical
resources. With these strategies, virtualization is controlled taking
into account workload requirements, available capacities of
physical resources, and the governing policies. Realizing this
control requires simultaneous handling of three problems: (i)
determining the virtual resource configurations, (ii) the mapping
of resulting virtual resources to physical resources, and (iii) the
mapping of workloads to the virtual resources. We pose this as
an optimization problem and solve this problem using a linear
programming (LP) based approach. We evaluate this approach
by implementing it in the Harmony grid environment consisting
of heterogeneous resources and heterogeneous workload. Experi-
mental results indicate that our approach is efficient and effective.
We extend this approach further by using a two-phase heuristic
that allows the decision making component to scale up to handle
large scale grid systems.

I. INTRODUCTION

Grid systems, in particular those of large scale, are corn-
posed of resources belonging to multiple administrative do-
mains. Resources from different administrative domains tend
to be heterogeneous, at least in terms of their capacities and
performance, and often in terms of OS platforms. Unless
this heterogeneity can be masked from the grid workload',
grid resources remain fragmented and cannot be used as one
large cohesive set of resources, thus defeating the purpose of
forming the grid in the first place.

Aside from heterogeneity, multiple administrative domains
result in resource specific governing policies. As a result, the
availability of grid resources cannot always be guaranteed
nor is their availability always predictable. However, for
grid systems to become viable in enterprize environments,
resource availability issues must be addressed transparent to
the grid users. Grid users are willing to trade some perfor-
mance degradations if the resource management issues are
handled transparently by the grid management middleware.
This means, when a physical resource becomes unavailable,
the grid resource management system is expected to provision

'In this paper, by workload we imnean a set of service requests, transaction
requests, jobs, etc. Services or jobs within a workload may be run simultane-
ously or individually or in some other combination. For namning consistency,
in the rest of the paper we shall refer to a workload as a composition of
service requests that are executed by service instances

Vijay K. Naik
IBM T. J. Watson Research Center

Yorktown Heights, NY, USA
Email- vkn@us.ibm.com

for alternate resources or migrate the workload handled by the
affected resource to another available grid resource.

Recently, resource virtualization [1], [2] is being increas-
ingly considered to address some of the above mentioned
grid specific requirements [3], [4]. The key advantages of
virtualization technology, in the context of grid systems, are
(i) the ability to share physical resources in a controlled and
precise manner, (ii) the ability to migrate, (iii) the ability
to customize the resource environment to meet workload
requirements, and (iv) the ability to control the virtual resource
execution and thus, allowing better policy enforcement.

Resource virtualization facilitates controlled and precise
sharing of underlying physical resources such as processor cy-
cles, memory units, and disk space. With virtualized resources,
service instances are not directly deployed on top of specific
physical resource instances. But instead are deployed on a col-
lection of virtualized resources including virtualized processor,
memory, filesystem, network, and so on. These virtualized
resources are mapped to physical resources transparent to the
services deployed in the virtual machine (VM). In case of a
policy change or unexpected capacity degradation, e.g., due
to a hardware failure, an entire virtual resource can be moved
from one physical resource instance to the other. In most
VM technology implementations, the VM migration across
resources essentially boils down to copying of a VM image file
from one physical resource to another. Similarly, virtualization
technology allows a service to customize its execution envi-
ronment without affecting the execution environments of other
services. Services with incoumpatible resource configurations or
conflicting co-allocation requirements can still use the same
physical resource instance as long as they use different virtual
resources. Finally, resource specific policies can be more easily
enforced at the virtual resource level. For example, by control-
ling the physical capacities assigned to virtual resources, it is
possible to control the resource capacities used by services
running inside a VM even if such a facility is not provided by
the OS platform.
The virtualization technology, however, cannot be used 'out

of the box". The performance degradation caused by running
workloads on virtualized instead of bare grid resources, the
VM instantiation cost, and additional storage capacity needed
to host VM images requires judicious use of virtualization.

Focus of this paper is to describe the decision making com-

1-4244-0799-0/07/$25.00 t2007 IEEE 40
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

ponent associated with the management layer used to manage
and control the virtualized resources. The decision making
component takes into account: (i) the costs associated with
resource virtualization, (ii) available physical resources, their
capacities and associated policies, (iii) the current demand of
the grid workload, and (iv) existin'g VM configurations and
instantiated services. Based on these parameters, we determine
the virtualization strategy that is optimal according to the
current system objectives. Depending on the tradeoffs, the
virtualization strategy may result in using existing VMs to run
new workload (by increasing the level of sharing), cornfiguring
and deploying of new VMs, or migrating of existing VMs.
We also describe the implementation of our approach in the
context of Harmony grid environment -a VM-based grid
system developed at IBM T. J. Watson Research Center [5],
[6]. Our implementation is evaluated using real-world data to
model the grid environment.
The rest of the paper is organized as follows. In Section II

we describe the virtual resource allocation problem considered
in this paper. In Section III we present an algorithm that finds
the optimal solution of the virtual resource allocation problem.
Section IV extends the optimal algorithm with an execution-
time-efficient heuristic. In Section V we present integration of
our algorithms with Harmony. Section VI describes the results
of the performance evaluation of our algorithms. Section VII
gives an overview of the related work. Finally, Section VIII
concludes the paper.

II. PROBLEM SETTING

We consider a grid environment that provides a platform
for execution of customized services. A task executed in batch
mode or invocation of a transaction in response to a request
are examples of services provided by the platform. Multiple
instances of the same service may manifest at the same time.
Services are not instantiated directly on physical resources, but
they are embedded inside VMs.

Although several projects [3], [4], [7] advocate resource
virtualization as the right approach to service workload ex-
ecution in grid environments, they all assume that services are
executed in private VMs. However, deploying a separate VM
for each service is an expensive and inefficient proposition
because of the VM mreumory overheads and VM instantiation
costs. Similarly because of the VM image size and possibly
large number of different VM configurations required to satisfy
various requests, it is not practical to replicate VM images
on all physical machines. Instead they are stored in a central
repository. Transferring a virtual machine image from the
image repository to the hosting machine consumes significant
network bandwidth, which can lead to bottlenecks at the image
repository. In the extreme case of services with low resource
requirements and short execution time, the VM instantiation
itself can consume more resources than the deployed service.
Hostimng of a VM also has overheads. In addition to the disk
space consumed by the VM image, the OS processes and
demons in the VM consume memory and CPU cycles of the
host.

Service Service Service Service Service
Instance Instance Instance Instance Instance

I
Phsca ri Tsuc

Fig. 1. Sharing of virtualized grid resources.

The costs associated with resource virtualization can be
decreased by enabling sharing of VMs among the services
(see Figure 1). A virtual resource is shared, if two or more
services use the same VM. Obviously, VM sharing also has
its limitations. The isolation benefits disappear when services
are placed inside the same VM. Furthermore, service specific
policies may prohibit co-deployment of some services in the
same VM. Such policies are common in environments where
services may process sensitive data. In such cases, resource
virtualization provides the necessary isolation guarantees while
sharing the physical resource. Finally, the VM configuration
required by one service may not be compatible with the
requirements of another service (e.g., services may require
VMs to be configured with different operating systems).
In short, to benefit the most from resource virtualization,
sharing of both the physical and virtual resources should be
analyzed simultaneously. Efficient mechanisms are required
to deteurmiine the allocation and sharing of physical and virtual
resources such that global system ohjectives are achieved while
respecting service-specific and resource-specific policies. We
refer to this as the resource virtualization problem and in
this paper, we propose a systematic approach for solving the
problem. Our approach guarantees optimality of the solution
according to a set of global system objectives. Specifically, the
problems addressed in this paper are:

. determining the optimal numfber of VMs to instantiate at
any given time,

. the configuration of each VM including the amounts of
physical capacities assigned to the VM and the set of
software components to be installed inside the VM to
satisfy the requirements of the embedded services,

* the mapping of services to VMs such that service specific
policies and requirements are satisfied,

. the mapping of VMs to physical resources respecting
physical capacity constraints, resource specific policies,
and global system objectives.

We note that our approach is also applicable to resource
matching in a grid environment where the virtual resource
layer is absent or consists of a single VM for each service,
although in those cases more straightforward approaches ex-
ist [8], [9].

41
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

III. MODELING T:H[E VIRTUALIZATION PROBLEML
In the following, we first describe a model of the grid

environment. Using this model, the problem described in
Section II is then modeled as an optimization problem in
terms of linear programming formulation. The solution of the
linear program provides an optimal strategy for the controlling
resource virtualization.

A. Model of a Grid Environment
The grid environment consists of resources that can be either

hardware configurations or software packages. Resources are
assigned types such as server machine, database, network
subsystem, file server, etc. Each type is attached a set of
attributes with values specific to the resource instances of
that type. Attribute values can be either immutable, as in
case of static attributes, or they can be affected by the set of
VMs assigned to the resource instance, as in case of dynamic
attributes. Some examples of static attributes for resource type
server are. IP address, CPU architecture, number of CPUs. The
set of server s dynamic attributes contains: amount of available
memory, free disk space, CPU utilization.

For deployment, each service requires a set of VMs de-
ployed on resources of certain types with specific values
of the static attributes and sufficiently large values of the
dynamic attributes. A service can be deployed only if all of its
requirements are satisfied by the set of assigned (virtualized)
resources. By assigning a service to a resource we assume that
a certain amount of resource capacities, specified individually
for each service, is consumed.

Since large-scale grid environments usually span multiple
administrative domains governed according to local rules, we
allow each resource instance to define specific usage policies.
A simple resource policy may, e.g., allow the resource to
share its capacity only during certain hours. More complex
policies can condition the access to the resources based
on the service properties, e.g., by giving priority to VMs
running local services deployed by users that belong to the
same administrative domain as the resource. Analogous to
resource usage policies, we allow services to specify isolation
requirements, prohibiting isolated services to share the same
VM. Service isolation provides protective measures against
malicious services that try to affect correct execution of other
services.

In addition to resource usage policies and service prefer-
ences, we define global objectives that allow us to compare the
quality of allocations in terms of fulfilling system-wide goals.
Somre examples of global objectives include maximiziLng the
throughput, balancing of load across resources, minimizing the
number of resources used.

B. Notation
We model the virtual resource allocation problem as a linear

program (LP) [10]. Linear programming has been extensively
investigated in the literature and a variety of solvers for
these optimization problems has been proposed [11]. Before
presenting the set of linear expressions that describe the virtual

resource allocation problem, we introduce some notation. Our
linear program takes the following input parameters describing
services and grid resources:
S is the set of services (service instances),
R is the set of physical resources,
T is the set of physical resource types,
A is the set of dynamic resource attributes. Attributes

are unique across resource types -resources of
different types are assigned distinct attributes,

N(r a) is the capacity of attribute a, a C A of resource r,
r e R,

U(,,a) is the capacity of attribute a, a C A consumed by
service s, s C S,

E(S,t) is the set of resources of type t, t C T, with static
attribute values satisfying requirements of service s,
s i S.

The above set of parameters provides a formal description
of the considered grid environment. In this environment the
properties of grid resources are defined by specifying capac-
ities of their attributes (N(.,.)). E.g., a resource representing
a server may define capacities for the attributes describing
available memory and CPU cycles. Services describe depen-
dencies on resources by specifying the consumptions of the
attribute capacities (U(.,.)). As described in Section III-A, in
addition to resource capacity consumptions, a service specifies
the required values of the static resource attributes. E.g.,
some services can run only on a server located in a certain
network domain. Based on the observation that resources with
required values of the static attributes can be identified in
a preprocessing step, we do not include the static-attributes-
related requirements in the set of input parameters. Instead,
we define for each service and dependent resource type a set
of resource instances of that type with required values of the
static attributes (E(..)).
The following parameters relate to the virtual resource layer:
V is the set of virtual machines,
Qa is the capacity of attribute a, a C A, consumed by

a VM in addition to the consumption of the services
running inside that VM. We assume that the attribute
capacity consumption is the same for all VMs,

I(slns2)equals 1 if isolation requirements allow services s
and s2, s, 82 C S, to run inside the same VM,

r) equals 1 if virtual machine v, v C V is currently
deployed on physical resource r, rc R, equals 0
otherwise,

M/(W)equals 1 if service s, s S, is currently instantiated
inside virtual machine v, v C V, which is, in turn,
deployed on physical resource r, r C R, equals 0
otherwise. Note that MI'(s,v r) equal to I implies
that also Yv r equals 1,

Csrv is the cost of creating, removing or modifying of a
configuration of a service inside a VM. We assume
that this cost is constant for all the services and VMs,

Cvm is the cost of creating, modifying or changing of a
VM configuration on a physical resource. We assume

42
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

that this cost is constant for all the VMs and physical
resources.

The set of virtual machines (V) represents VMs that already
exist in the system as well as new VMs that will be assigned
configurations and physical resources during the matching
process. As explained in Section II, hosting of a VM itself
incurs a non-zero cost. We express this cost as resource
capacity consumption in addition to the resource consumptions
by the services configured inside the VM (Q). Service isolation
requirements (I()) restrict service co-allocations in the same
VMs. Existing mappings of VMs to physical resources (Y')
and services to VMs (k()) are also included in the set of
input parameters. As motivated in Section II, there are non-
negligible costs involved in configuring a service (C r) and
a VM (C,ym,).

In addition to the input parameters, we define a set of output
variables that store the solution of the matching problem:

Y(v r) is a 0/1 variable equal to 1 if virtual machine v,
v c V has been mapped to resource r, r c R,

Zs is a 0/1 variable set to 1 if service s, s e S, has
been assigined all the required resources,

M(,,v r) is a 0/1 variable set to 1 if service s, s C S, has
been assigned virtual machine v, v C V, that has
been mapped to resource r, r C R. Note that NI(s vr)
equal to 1 implies that also Y(v,r) is equal to 1,

Note that the mappings of services to VMs and VMs to
physical resources can be deduced from the values assigned to
V(.,.,.). Thus, the values of M(.,.,.) are sufficient to represent a
solution to the resource virtualization problem. The remaining
(auxiliary) variables are introduced only for simplifying the
problem formulation as a linear program.

C. Constraints

The feasibility of a particular assignment of values to the
output variables in the context of the virtual resource allocation
problem is determined by a set of constraints. All constraints
in the linear program have to be linear expressions.

1) Gang Matching Constraints. Gang matching constraints
ensure that we allocate to a service either all resources
requested by that service or none of the requested resources.
Formally, we can write this requirement as:

E_ -NI(s,v,r) =Zs7 1)

v(EV,r(EE(,,,l)
for all services s C S and dependent resource types t C T.

Since i'I. and Z are 0/1 variables, gang matching
constraints guarantees that Zs equals I only if, for a fixed
service and a fixed resource type, exactly one of the variables
M(.,.,.) is equal to 1. Zs is, thus, set to 1 only if service s is
assigned to exactly one VM deployed on a resource of each
of the dependent types.

2) Resource Capacity Constraints. The resource capacity
constraints guarantee that the consumption of the resource
capacities does not exceed the total available capacity declared
by the resources. Two factors determine the consumption of

the capacities of a physical resource. the VMs deployed on
the resource, and the service instances configured in these
VMs. Hence, the resource capacity constraints translate to the
following set of linear expressions defined for each resource
r C R and its dynamic attribute a C A.

vXE2-, U(s, al) * MI(s,v,r)
s,VGCv

EQa Y(v,r) < N(r,a). (2)
vGV

3) Service Isolation Constraints: Two services can be
placed inside the same VM only if it is not against their
isolation requirements. For all services SI,82 C S, virtual
machines v C V, and resources r C R:

VI(S v, r) + XN(s2 v,r) < 1 + I(s 2 (3)
MI(s,v, r) and AI(f v,r) are both equal to 1 if services si

and S2 run inside the same VM. This is possible only if the
value of 1(¾1,2) is also 1.

4) VM Deployment Constraints: All VMs that are assigned
services have to be deployed on physical resources.

M(SV,yr) vY(V,r), (4)

for each virtual machine v, v C V, service s e S, and resource
r C R.

5) Resoarce Allocation Uniqueness Constraints: Every vir-
tual machine v C V is deployed on at most one physical
resource,

E Y(v,r) < 1.
rER

(5)

Not every VM has to be instantiated. In particular, to
minimize physical resource consumption, a VM that does not
embed any service need not be assigned a physical resource.
We consider this requirement to be part of the objectives of
the optimization problem.

D. Optimization Objectives
The objective function defines the quality of a virtual

resource allocation when multiple feasible solutions exist.
Virtual resource allocation algorithm uses obljective function
to select the best among the feasible solutions.

The virtual resources layer increases the number of service
placement possibilities, consequently allowing more expres-
sive objective functions to be defined. The common denomina-
tor for these objective functions is that they all have to take into
account the cost of configuring services and VMs as well as
the cost of migrating existing service and VM configurations.

The cost C, of (re)configuring services in VMs equals:

(6)C, = E Csry Vr(sV Mr)-ms,v,r)l
sGS,vSV,rGR

Note that services assigned to the same VMs deployed on the
same physical resources as during the previous virtual resource
allocation do not incur any additional cost. Services that have
just been added to the system affect C, with the configuration
cost C ,,. For services that have to be reconfigured inside a
VM (VMnVe) other than the one where they are currently
deployed (V VcIarr ent) C1 is increased by 2 * C,,,, which is

43
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

the cost of migrating the service from V Xlcurrert tO VMIewr
Cost C1 also captures the case where the service is deployed
in the same VM as previously, but the physical resource of that
VM has changed. VM migration impacts the service specific
cost since during VM migration embedded services have to
be suspended.

The cost C, of (re)deploying of VMs on resources can be
expressed as:

C2= E CVn
vcv,rcR

IY(v,r) Y i,r)

Similarly, as in the case of service reconfigurations, the cost
associated with restructuring of the virtual layer depends on
the modifications required to the current structure of this layer.
Cost C2 is independent of the services configured inside VMs.
All service specific costs are included in the value of Cl.

The global optimization objective is composed of costs Cl,
C2, and a customized objective function 0 defining the current
matching objectives that do not relate to the virtualization
costs. As an example, consider the objective function of
maximizing the throughput, i.e., the number of service requests
processed per unit time.

0 Zs (8)
S

In [8], we define linear constraints for customized objective
functions optimizing the prioritized throughput, the number
of resources used, the load balance, and service preferences
on resources. Any of those objective functions can be easily
combined with the cost functions as:

TrnaxrtTnzP (f + kL * C, + k2 * C2). (9)

The constants k, and k2 control the impact of the cost
functions on the value of the global optimization objective.

IV. ON-LINE RESOURCE MATCHING

In this section we extend the requirements of the virtual
resource allocation (matching) problem by introducing con-
straints on the amount of time required to decide on the service
placements. We address those additional requirements by
combining the LP-based virtual resource allocation algorithm
presented in Section III with a time-efficient heuristic method
of finding suboptimal allocations. The matching heuristic de-
composes the virtual allocation problem into two subproblems
which are solved independently by an algorithm that provides
(suboptimal) solutions in a designated amount of time.

A. On-line Matcher
The linear program formulated in Section III can be classi-

fied as a 0-1 integer program (IP) since the optimization vari-
ables are all required to be 0 or 1. Although the sophistication
of the existing linear solvers allows finding the solution of a
0-1 integer program very efficiently for most of the problem
instances, solving of a 0-1 IP is in general NP-hard.
The negative impact of the possibly long virtual resource

allocation time escalates if some of the services are attached

hard deadlines. To address this problem, we propose a resource
matching heuristic that makes instant decisions regarding
virtual machine allocation. The heuristic approximates the
optimal virtual resource allocation by considering only some
of the matching objectives. Since no guarantees about the
optimality of the matchings found by the heuristic are pro-
vided, we periodically run the LP-based resource allocation
algorithm presented in Section III to reduce the possible drift
from the optimum. Thus, the on-line matcher combining the
heuristic with the LP-based resource allocation algorithm can
keep up with a high arrival rate of the matching requests while
maintaining high quality of the virtual resource allocations.

B. Heuristic Approach to Resource Matching
The heuristic resource matching is performed in two steps

(phases). During the first phase we select for each service a
VM(s) where it will be deployed. The objective of the second
phase is to map those VMs to physical resources.

1) First Phase, In the first matching phase we take into
account only the services that are not assigned to any VM
and VMs that are deployed on physical resources. For each
VM and each dynamic attribute of the resource where the VM
is deployed, we define a virtual attribute with capacity equal to
the available capacity of the physical attribute. Note that since
more than one VM can run on a single physical resource,
the aggregate capacity of the virtual attributes can exceed the
total available capacity of the corresponding physical attribute.
Once the values of the virtual attributes are defined, the match-
ing of services with the virtual resources is performed. During
the matching, service requirements are compared against the
virtual attribute values.

The way the virtual attribute values are defined does not
guarantee that, after the matching, the physical capacities will
be preserved. To bring the system back to a consistent state,
we iterate over the mappings found by the matching algorithm
and invalidate those that violate the physical resource capacity
constraints.

If no existing virtual resources have been allocated to a par-
ticular service, we logically (without assigning it to a physical
resource) create a new VM with a configuration conforming
to the embedded service requirements. The output of the first
phase of the resource matching heuristic algorithm is, thus, a
set of mappings of services to the already instantiated as well
as logical VMs.

2) Second Phase, In the second phase of our resource
matching algorithm, we allocate physical resources to the new
VMs that have been logically created during the first phase.
The physical resources are selected based only on the VM
specifications defined in the first phase. Further no knowledge
of the requirements of individual services is needed in the
second phase.

3) Time-Constrained Matching: The decomposition of the
resource matching into two phases executed separately de-
creases the complexity of the virtual resource allocation prob-
lem. On the baseline, the matching problems considered in
these two phases are similar. While in the first phase, matching

44
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

takes into account service-specific requirements and capacities
of the VMs, in the second phase VM-specific requirements
and physical resource capacities are considered. The only
difference in the matching problems of the two phases lies in
the policy interpretation aspect. The objective of the first phase
is to produce matchings that conform to service policies. In
the second phase, service policies are replaced by the resource-
specific policies. Any of the standard grid resource matching
algorithms that accepts the policy descriptions passed as the
parameters of the resource matching model and additionally
provides execution time guarantees, can be used to solve the
matching problems of the two phases. Some examples of grid
resource matching algorithms that satisfy these criteria have
been described in [8], [9].

V. INTEGRATION WITH HARMONY

In our previous work we have developed Harmony, a
platform for delivery of customized services configured on
virtualized grid resources [5], [6]. In this section we describe
the integration with Harmony of the virtual resource allocation
mechaniisms introduced in Sections III and IV. We first present
the highlights of the Harmony architecture. Then, we describe
the method of extracting resource requirements from service
workloads. Finally, we describe the implementation of the
virtual resource allocation mechanisms in Harmony.

A. Overview of the Harmony Architecture

The architecture of Harmony is defined using a layered
approach presented in Figure 2. The components of our
architecture can be divided into two functional blocks, namely
Service Provisioning Infrastructure and Service and Resource
Management Infrastructure.

1) Service Provisioning Infrastructure: The Service Pro-
visioning Infrastructure consists of four layers that represent
service access point, service instances, VMs embedding the
service instances, and the physical grid resources hosting VMs.

System users and applications that invoke the services are
collectively called Service Clients. Access Layer is represented
by Gateway which is a well known access point where
service clients direct their requests. Gateway reroutes the client
requests to service instances where the requests are processed.
Request routing is fully transparent to the service clients-
clients do not have any influence on, or knowledge of which
service instance handles their requests.

Service instances, collectively forming the Service Layer,
are not running directly on the physical resources, but are
rather embedded inside VMs. Multiple service instances may
be placed inside different VMs and a single service instance
may require multiple VMs. Depending on the policies defined
by the services and compatibility issues between service
configurations, multiple service instances may reside inside
a single VM.
The virtualized resources and the associated control in-

frastructure form the Virtual Resources Layer. Every VM is
controlled by the Virtual Machine Manager which runs as

a privileged process inside the VM. Virtual Machine Man-
ager coordinates service instantiation and monitors the CPU,
memory, disk, and bandwidth usage of the configured service
instances.

Physical Resources Layer represents the grid resources.
Physical Machines may join and leave this layer dynamically.
Typically, the resource availability schedule is governed by a
set of policies defined by the resource owner. The counterpart
of the Virtual Machine Manager for physical resources is the
Host Agent. The Host Agent runs in a demon mode on each
physical resource, monitoring the CPU, memory, disk space,
and network bandwidth usage of the VMs, ensuring that none
of the local policies is being violated. The task of instantiating
VMs on physical resources is assigned to the Virtual Machine
Instantiator.

2) Service and Resource Management Infrastructure: Ful-
filling certain QoS requirements, while respecting resource
usage policies, requires coordination of the management de-
cisions at different layers of the Resource Provisioning In-
frastructure. For example, configuring more service instances
improves the client request throughput but also increases the
resource capacity consumptions which can exceed the policy-
allowed limits. The integration of the management across the
layers of the Resource Provisioning Infrastructure is realized
by the components of the Service Management Infrastructure.

The Active State Repository gathers the virtual and physical
resource usages measured by the monitoring components
(Virtual Machine Manager and Host Agent). The individual
measurements are correlated with each other to produce higher
level statistics, e.g., describing for each service the aggregate
resource usage of all existing instances of this service.

Predictor generates forecasts of the future service workload
and resource availability based on the current system state
as well as historical data. On-line Resource Matcher decides
on the structure of the bindings between service instances,
VMs and physical resources. Predictor and On-line Resource
Matcher are extensively described further in the paper.

To provide service agility, Harmony system has an au-
tomated service instance configuration feature that allows
dynamic migration of service instances to the point of resource
availability. In Harmony, Configuration and Deployment En-
gine customzlLes the process of instantiatiing new VMs. It
also installs and configures services and dependent software
components inside those VMs.
The Grid Resource Manager (GRM) deals with the high

level QoS guarantees. The objective of GRM is to guarantee
that there are enough resources allocated to services to meet
certain QoS requirements, while ensuring that the service
workload does not violate the resource usage policies.

B. Identifying Service Requirements
The capacity requirements of service instances depend on

the client demands. Demands are constantly changing over
time [12]. Service resource requirements cannot be, thus,
predefined, but they have to be extracted dynamically during
the system operation. We present here a method of determining

45
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

.------..........A------------------------------------~ ~

Reore .. Prdco Res
Mace Man.

A ..

,ervice Provisioning Infrastructure vice and Resource Management Infrastructur

Fig. 2. Harmony architecture.

the resource capacities required by individual services based
on resource usage predictions. To decrease the amount of
processed data, we aggregate service requests over fixed-length
time intervals before applying the prediction algorithm.

Instead of modeling workload demands at a single request
resolution, we use prediction methods to identify longer term
trends in the service invocation patterns. These trends are

computed for each service separately. Trend provides a basis
for the estimation of the client demand for a particular service.
The demand, in turn, directly translates to the resource capac-

ities required to satisfy this demand. The required resource

capacities are considered while allocating virtual and physical
resources to service instances.

Predicting of grid resource usages has been recognized
as a difficult problem [13]. In particular, there is no single
prediction algorithm that fits all workloads. Having the gener-

ality of our design in mind, instead of supporting a single
prediction algorithm, we use a wide range of forecasting
algorithms, starting with simple methods such as running
mean or exponential smoothing, to end up with current state-
of-the-art approaches such as ARIMA, Holt Winters, FFT,
Wavelet, or Kalman Filter [14]. For each prediction method,
we measure its accuracy in a certain context, e.g., we estimate
the load exercised by clients of a particular service, and select
the most reliable method for this context. In this respect,
our prediction approach is similar to the one adopted in the
Network Weather Service [15]. For a detailed description of
workload characteristics prediction in Harmony we refer to [5].

The possibly short execution time of a service request,
resulting in a high number of requests per time interval,
makes service requests expensive to analyze individually.
Furthermore, the execution time of a single request does not
provide a reliable estimate of the long-term behavior of a

typical service that usually exhibits a high level of burstiness
on short-term time scales [12]. When it comes to selecting
the resources for service instance deployments, the longer-
time estimates are more relevant. This is due to the fact that
deploying services is an expensive operation [5]. The lifetime
of the instance should be, thus, long enough to amortize the
instantiation cost.

To support services with many short requests efficiently, we
aggregate multiple requests over predefined time intervals. The
length of the aggregation interval controls the granularity of
the predictions. The longer the aggregation interval, the higher
is the discrepancy between the predicted and the actual load in
this interval. On the other hand, longer aggregation intervals
result in more stable deployments, decreasing the overhead
incurred by restructuring on the Service and Virtual Resources
layers (see Figure 2).

Finding the optimal length of the aggregation interval re-

quires considering several properties of the workload execution
environment. First, the characteristics of the workload itself
influence the aggregation method. High fluctuations of client
demands provide rationale for shorter aggregation intervals
that will better cope with the frequent changes in the demand.
Second, the set of policies specifying the resource usage rules

46

Legend

Service Request/Respon

Deployment

..> Comnponent Dependency
..A...

.. tb

>5

I

a)

76

:L

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

Fig. 3. Dataflow between the On-line Resource Matcher and Harmony
components.

and workload orchestration guidelines can impose implicit
bounds on the length of the aggregation interval. E.g., resource
usage policies allowing the resource instance to be used by a
particular service only for a certain amount of time disposes
aggregation intervals longer than that amount of time. Finally,
the cost of the deployment and configuration of a new service
instance should be taken into account while performing the
workload aggregation. Shorter aggregation intervals motivated
by high fluctuations in client request patterns lead to more
redeployments and reconfigurations of the service instances.

C Implementation of the On-line Resource Matcher

The method of identifying service requirements presented
in Section V-B provides a prerequisite for the virtual resource
matching. We have implemented the on-line resource matching
approach described in Section IV and integrated it with the
Harmony infrastructure. The functionality of allocating the
virtual resources is provided in Harmony by the On-line
Resource Matcher. The On-line Resource Matcher is logically
divided into several components that interact with each other
and external Harmony components as presented in Figure 3.
An arrow in Figure 3 indicates a dataflow direction.

Service client requests are reported by the Gateway at
Workload Aggregator. Workload Aggregator analyzes the re-
quests at a granularity determined by the aggregation interval.
Predictor is involved in workload analysis, helping to identify
patterns in service invocation schemes. Workload Aggregator
is implemented as a web service which makes its functionality
easily accessible for the Gateway.

Service requirements arising from the workload aggregation
are appended to the Tcsk Queue. Depending on the current
system load, the matching is performed by either the LP
Matcher or the Heuristic Matcher. The extent of the system
load is determined by the length of the Task Queue. If the
current length of the Task Queue is lower than a predefined
threshold indicating that the system is lightly loaded, then the
virtual resource allocation is performed by the LP Matcher. If,
however, the size of the Task Queue increases over the thresh-
old, the Heuristic Matcher is activated. Heuristic approach aids
the LP algorithm in processing of the matching tasks until the
size of the queue drops below the threshold. Note that during
the activity period of the heuristic algorithm, the LP matching
is also performed and the possible divergence from the optimal
resource allocation strategy caused by the inaccuracies of the
heuristic is corrected by the LP Matcher execution.

Resource Resource Resource Number of
Type Static Attributes Dynamic Attributes Iustauces

CPU architecture, utilization, 50
server #CPUs, domain memory

database vendor connections 50
network IP. protocol bandwidth 50

file st:o:r:ag=e filesystem size 50

TABLE I
RESOURCE MODEL.

The Task Queue contains only the description of the work-
load characteristics. The specification of the system resources,
VMs and configured service instances is provided by the Ac-
tive State Repository. Service capacity requirements extracted
from the workload in combination with the current system
configuration provides the complete description of the virtual
resource allocation problem.

Our implementation of the LP Matcher models the virtual
resource allocation problem in the GNU MathProg language,
which is a subset of AMPL [16], a well established standard
among LP languages. The LP solving functionality is provided
by the open source GNU Linear Programming Kit [17]. In
our implementation of the Heuristic Matcher we use a method
based on an Evolutionary Algorithm described in detail in [9].
The evolutionary optimization process can be stopped practi-
cally at any time, still producing the best suboptimal solution
found until that time. Hard execution time guarantees of the
Heuristic Matcher can be, thus, provided.
The resource allocation decisions taken by the On-line

Resource Matcher are executed by the Configuration and
Deployment Engine. Configuration and Deployment Engine
performs the necessary restructuring at the Service and Virtual
Resource Layers of the Harmony infrastructure.

VI. PERFORMANCE EVALUATION

In this section we describe experimental evaluation of
the virtual resource allocation mechanisms described in Sec-
tions III, IV, and V.

A. Experimental Setup
The model of the grid resources used in our experiments is

based on real-world traces of a deployed service provisioning
infrastructure. Namely, we have obtained the detailed informa-
tion on the resources hosting IT services of IBM customers.
These statistics are provided by the Server Resource Manage-
ment (SRM) [18] system that reports historical and near real
time trends of resources serviced by IBM. Some illustrative
examples of such services are described in a series of case
studies available for download from IBM e-Business Hosting
Services pages [19].
Our model of grid environment consists of 200 resources

divided into four types: server, database, network, and file
storage. Each resource type is assigned one or two dynamic
attributes and one, two or three static attributes. Table I
summarizes the resources and their attributes.

In this paper we concentrate on evaluation of the efficiency
of the virtual resource allocation mechanisms only. The per-
formance aspects of the workload aggregation mechanisms are

47
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

Total services; LP Matcher
Total services; Heuristic Matcher
Services per phase; LP Matcher

nstances per phase; Heuristic Matcher

S--

2 3 4 5 6 7 8 9 10 11 12
Simulation step

500
LP Matcher

Heuristic Matcher
400

a)

a 300E
c
0

200 k

101)

,\ P

1 2 3 4 5 6 7 8
Simulation step

A,;X -y - -

Fig. 4. Comparison of the throughput of the LP and heuristic approaches.

outside of the scope of this work. On the baseline, the quality
of the aggregations depends on the accuracy of the forecasts
provided by the Predictor component described in more detail
in [5]. We believe that the variety of the forecasting methods
implemented in our Predictor component and the presence of
mechanisms allowing to dynamically select the best method
for a particular workload will cope with the heterogeneity of
the workloads. We leave the validation of this claim for the
future work.
The workload used in the evaluation is generated syntheti-

cally. For each service we select the dependent resource types
making sure that each service depends on at least one resource
type. The dependency of a service on a resource type is
determined by Bernoulli distribution with the probability of
success equal to 0.5. After the dependent resource types have
been chosen, a set of dependent attributes for each of these
types is selected. Each service selects one or more dynamic
attributes and zero or more static attributes of the dependent
resource type. Also at this stage the selection is performed
according to Bernoulli distribution with the probability of
success equal to 0.5. The required value of the dependent static
attribute is selected randomly and uniformly from the set of
available values of this attribute. The minimal required value
of the dynamic attribute is selected randomly and uniformly
from the interval bounded by 0 and the maximal available
value of that attribute among the defined resources.

The objective function that we optimize is the throughput
we maximize the number of configured services while mini-
mizing the cost of modifying the current system configuration,
as described in Section III-D. The values of service and VM
configuration costs, C, and C ,m, are both set to 0.1 while
the parameters k, and k2 are equal to -0.5 giving the cost
functions the same weight as the throughput maximization.

B. Experimental Results

Using a series of experiments we compare the quality of the
allocations computed by the LP and the heuristic approaches.
The experiments are performed in steps. During each step
we try to allocate virtual resources for 10 services with
requirements generated synthetically according to the method
described in Section VI-A. The simulation is repeated 10

Fig. 5. Execution time of a simulation step for the LP and heuristic
approaches.

times with different random seeds and the average number
of services matched in each step is taken.

In our simulation, the resource allocations are preserved
between the steps. Consequently, after a number of steps the
system becomes congested and no further service instances can

be configured unless some other instances are removed. From
that point on, only the LP Matcher can lead to any improve-
ment since the heuristic cannot free capacities -it can only
add new configurations. Note that in a realistic environment the
congestion point is never reached since service instances are

removed when the client demand decreases. In our simulation
we do not, however, remove the instances, which allows us to
investigate how the algorithms perform under different system
load conditions.
The congestion point cannot be easily detected as there may

always come a service with demand low enough to be satisfied
by the available resource capacities. Therefore, we stop our

simulation when no improvement (no new matchings found)
between two consecutive phases is observed for the Heuristic
Matcher.

Figure 4 shows the numbers of service configurations added
in a single simulation step and the total number of services
assigned resources for each of the matchers. During the first
phases both matchers allocate resources for similar number of
services. As the system size grows, the LP matcher outper-
forms the heuristic being able to satisfy the requirements of
up to 20%O more services.

The better quality of the matching found by the LP approach
come at the cost of higher execution time. Figure 5 presents
the execution time of each simulation step for both matchers.
During the first two steps the execution time of LP and
heuristic algorithms is comparable. In the consecutive steps
the heuristic algorithm maintains roughly the same execution
time while the execution time overhead of the LP Matcher
keeps growing.

VII. RELATED WORK

The properties of resource virtualization such as the ease of
policy enforcement, ability to provide isolation, facilities for
fine-grained resource management, the ability to instantiate
independently configured services on a single resource, make

48

a)

0

CD

0

ao(3

80

70

60

50

40

30

20

10i

0
9 10 11 12

n- - -)K- --K- ---f- - -- X- -A- -)I-- --&- -X

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

it an attractive enabler of grid computing [3], [4], [7]. The
Xenoserver project [20] builds a distributed infrastructure as
an extension of the Xen VM [21]. The In-Vigo project [22]
proposed a distributed grid infrastructure based on VMs,
while the Violin [23] project addresses the virtual networking
issues. Although all these projects use VMs to improve the
efficiency of resource sharing in grid environments, none of
them considers sharing of VMs between multiple workloads
or proposes a strategy for determining the optimal allocation
of virtual resources.

In [24], authors consider the problem of assigning servers in
a data center to application components such that the resulting
traffic-weighted average inter-server distance is minimized
while satisfying the application resource requirements and net-
work capacity constraints. The resource assignment problem is
modeled and solved using mixed integer linear programming
formulations. Although this problem is motivated by resource
virtualization, their work does not address the two level opti-
mization problem arising in mapping application components
to virtual resources and virtual resources to physical resources.
The resource matching problem in grid environments has also
been studied extensively in [25], [26], [27]. Grid resource
matchers satisfying on-line execution time constraints have
been described in [8], [9]. All these approaches are, however,
limited to traditional grid and data center architectures where
services are deployed directly on physical resources. The
virtual resource allocation problem presented in this paper is
an extension of the traditional resource matching problem in
a sense that the traditional problem can be solved using the
method introduced in this paper.

VIII. CONCLUSION

In this paper, we have developed an approach for managing
and controlling resource virtualization in the context of grid
environments by defining optimal and heuristic strategies
for policy-based resource sharing. Virtualization strategies
described here take into account the properties of the grid
resources, grid workload characteristics, and global system
objectives. We have shown that in spite of the complexity and
the number of factors that have to be considered while com-
puting the virtualizatioln strategy, it is possible to efficiently
find a strategy that is optimal according to some customized
objectives. The heuristic algorithm proposed here improves
the execution time of the virtualization strategy computation
even more, allowing the matching to be performed in an on-
line mode. Both the approaches have been implemented and
integrated with Harmony -an existing platform for service
delivery in grid environments. The experimental evaluation
indicates that our approach is able to handle virtualization
strategies efficiently. Results presented here help to determine
how our solution performs in a realistic environment modeled
using real-world grid resource characteristics. Finally, we note
that the concepts described in this paper apply to other shared
distributed environments such as clusters and data centers, in
addition to the shared grid environments.

REFERENCES

[1] "Virtualization definition froimn wikipedia."
http://en.wikipedia.org/wiki/Virtualization.

[2] IEEE Computer, Special Issue on Virtualization, May 2005.
[3] R. Figueiredo, P. Dinda, and J. Fortes, "A case for grid coim-puting on

virtual machines," in 1CDCS'03, Providence, RI, May 2003.
[4] I. Foster, T. Freeman, K. Keahey, D. Scheftner, B. Sotomayor, and

X. Zhang, "Virtual clusters for grid coim-nmnunities," in CCGrid 2006,
Singapore, May 2006.

[5] V. K. Naik, P. Garbacki, and A. Mohindra, "Architecture for service re-
quest driven solution delivery using grid systems," in IEEE International
Coiiference of Services Computiing (SCC'06), Chicago, IL, September
2006.

[6] V. K. Naik, S. Sivasubramanian, and S. Krishnan, "Adaptive resource
sharing in a web services environment," in Middleware'04, Toronto,
Canada, October 2004.

[7] A. Sundararaj and P. Dinda, "Towards virtual networks for virtual
machine grid computing," in 3rd USENIX VM'04, San Jose, CA, May
2004.

[8] V. K. Naik, C. Liu, L. Yang, and J. Wagner, "Online resource matching
for heterogeneous grid environments." in CCGRID'05, Cardiff, UK, May
2005.

[9] V. Naik, P. Garbacki, K. Kummamuru, and Y Zhao, "On-line evolution-
ary resource matching for job scheduling in heterogeneous grid environ-
ments." in 2nd Int'l Workshop on Scheduling and Resource Management
fJr Parallel and Distributed Systems (SRMPDS'06), Chicago, IL, July
2006.

[10] A. Schrijver, Theoi}y of Linear and Integer Programnming. John Wiley
& Sons, June 1998.

[11] R. Fourer, "Linear prograimnming software survey," June 2005.
[12] D. A. Menasce, "Workload characterization," IEEE Internet Computing

(Special issue on Grid Computing), September 2003.
[13] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley, "Predictive

application-performance modeling in a computational grid environment,"
in HPDC-8, Redondo Beach, CA, August 1999.

[14] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis: Forecast-
ing and Control, 3rd ed. Prentice Hall, February 1994.

[15] R. Wolski, "Experiences with predicting resource performance on-
line in computational grid settings," ACM SIGMETRICS Pe;fbrmnance
Evaluation Review, vol. 30, no. 4, March 2003.

[16] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling
Language for Mathenmatical Programmitg, 2nd ed. Duxbury Press,
November 2002.

[17] "GNU linear prograimnming kit page." http://www.gnu.org/software/glpk/.
[18] "SRM page." https://srmr.raleigh.ibm.comn.
[19] "IBM e-business hosting services." http://ibm.cornle-business/hosting.
[20] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford, "Xenoservers:

Accountable execution of untrusted programs," in HotOS-VII, Rio Rico,
AZ, 1999.

[21] P. Barharm, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, "Xen and the art of virtualization," in
SOSP '03: Proceedings of the nineteenth ACM syniposium on Operatilng
systems principles. New York, NY: ACM Press, 2003.

[22] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul,
A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu,
"From virtualized resources to virtual coim-puting grids: the in-vigo
system," Future Gener Comput. Syst., vol. 21, no. 6, 2005.

[23] P. Ruth, X. Jiang, D. Xu, and S. Goasguen, "Towards virtual distributed
environments in a shared infrastructure." IEEE Computer (Special Issue
oni Virtualization Techn(ologies), 2005.

[24] X. Zhu, C. Santos, J. Ward, D. Beyer, and S. Singhal, "Resource
assignment for large-scale computing utilities using mathematical pro-
gramming," HP Labs, Tech. Rep. HPL-2003-243RI, 2003.

[25] C. Liu, L. Yang, I. Foster, and D. Angulo., "Design and evaluation
of a resource selection framework for grid applications," in HPDC-1],
Edinburgh, Scotland, July 2002.

[26] R. Raman, M. Livny, and M. Solomon., "Policy driven heterogeneous
resource co-allocation with gangmatching," in HPDC-12, Seattle, WA,
June 2003.

[27] X. Bai, H. Yu, Y Ji, and D. C. Marinescu, "Resource matching
and a matchmaking service for an intelligent grid," Tranisactionis on
Engineering, Comiputinng and Technoicogy, December 2004.

49
Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on October 10, 2008 at 05:29 from IEEE Xplore. Restrictions apply.

