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Abstract

The shift towards zero-emission transport has driven rapid adoption of Heavy Goods Electric Vehicles
(HGEVs) across Europe. This trend is also evident in the Netherlands, where their numbers have grown
exponentially over the past six years. The integration of HGEVs into fleet operations introduces new
challenges for fleet planning due to limited battery ranges and significant operational uncertainties in both
the time and energy domains.

To address these challenges, this thesis introduces CertERoute, an Adaptive Robust Optimization (ARO)
framework that allows for joint optimization of routing and charging scheduling under time and energy
consumption uncertainty. It incorporates both depot and en-route charging while accounting for charger
availability and other realistic operational constraints.

Time-related uncertainties in service, waiting, travel, and charging durations are modelled using uncertainty
sets, which require minimal assumptions about the underlying probability distributions. Energy consumption
is modelled as a function of time-domain uncertainty, with environmental and vehicle-specific energy
uncertainty factors accounted for through Monte Carlo Simulation (MCS). The adaptive design of the
framework supports a two-stage decision process where routing and charger visits are planned in advance
to hedge against worst-case scenarios, while charging amount and timing decisions remain flexible during
route execution to avoid overly conservative and costly solutions.

To ensure computational tractability, the framework employs a Column and Constraint Generation (CCG)
approximation method enhanced by a novel One-Step Look-ahead Pessimization (OSLP) algorithm, which
selectively integrates only provably infeasible scenarios into the optimization problem. Despite its theoretical
vulnerability to premature convergence, this algorithm empirically produces highly robust solutions. To
improve scalability to larger instances, a multi-scenario Adaptive Large Neighbourhood Search (ALNS)
metaheuristic is developed, integrating charging and timing decisions into neighbourhood generation to
enable more informed solution exploration.

The framework is evaluated using representative yet synthetic European HGEV planning scenarios. The
results highlight the scalability of the proposed solution methods and demonstrate that the resulting plans
are highly robust under operational uncertainty. As a result, this work offers a practical foundation for
integrated fleet and energy management systems and supports Shell eMobility’s strategic goal of enabling
sustainable, cost-efficient transport through offering intelligent charging solutions.
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1
Introduction

1.1. Motivation
The transport of people and goods contributed approximately one-fifth of global carbon dioxide emissions
in 2020, with road freight transport accounting for a third of this share [1]. The push towards zero-emission
mobility has accelerated the adoption of Heavy Goods Electric Vehicles (HGEVs) as replacements for diesel
trucks in the European transport sector [2]. This trend is also evident in the Netherlands, where the total
number of HGEVs has grown exponentially over the past six years, showing a tenfold increase in annual
sales between 2022 and 2023 [3].

The integration of HGEVs into fleet operations introduces new challenges for fleet planning, primarily due
to their limited battery range and the presence of operational uncertainties in both the time and energy
domains. Energy consumption is influenced by external uncertainty factors such as weather conditions, road
quality, and traffic congestion, as well as internal factors like the vehicle’s drive train efficiency and driver
behavior, all of which significantly affect the vehicle’s effective range [4, 5, 6]. Time-related uncertainties
further complicate operations. These include varying charging durations stemming from both vehicle- and
infrastructure-related uncertainties, fluctuating service times at customer locations caused by unloading
delays and waiting periods, and uncertain travel times due to traffic congestion [7, 8].

Due to their signficantly greater mass and associated energy demands, HGEVs are equipped with larger
batteries than electric passenger cars or delivery vans, leading to extended charging durations. As a result,
charging sessions must be planned more carefully. Currently, fleet operators rely heavily on overnight
charging to fully replenish vehicle batteries, ensuring that planned routes can be completed without the
need for additional charging during the day. On-the-go charging during route execution is used only
incidentally [9]. This strong reliance on overnight charging limits route flexibility and can lead to congestion
at depot chargers. Moreover, charging operations are frequently handled separately from route planning,
overlooking opportunities for improved operational efficiency through integrated co-optimization.

Shell eMobility provides charging solutions to its customers both in the public and private space. To better
service its customers in the provisioning of cost-efficient energy and charging solutions for HGEV fleets, Shell
aims to better understand the operational planning behind these fleets. By understanding the customers
better it is possible to collaborate more closely, unlocking potential for demand side flexibility, which in
turn offers cost reduction potential, supporting the shared goal of zero-emission transport. Additionally,
Shell seeks to gain insights into the fleet routing and charging patterns of their customers to make informed
decisions about the optimal placement and sizing of new public charging infrastructure, prioritizing locations
that align with customer routes to maximize charger utilization. In this broader context, this thesis aims
to establish a foundation for integrated fleet and energy planning by addressing the routing and charging
scheduling problem from a fleet operations perspective.

1
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1.2. Objectives and Research Questions
Concretely, the primary goal of this thesis is to develop and evaluate an optimization framework for
integrated routing and charging scheduling that emphasizes cost-efficiency while ensuring robustness against
uncertainties in time and energy consumption. Moreover, the solution methods within the framework must
be computationally efficient so that they can be used for day-ahead fleet operation planning. Aligned with
these objectives, we formulate the following main research question:

Main Research Question

How can the cost-efficiency of Heavy Goods Electric Vehicle (HGEV) fleet operations in road
freight transport be optimized through integrated vehicle routing and charging scheduling, while
ensuring robustness under time and energy consumption uncertainty, and maintaining computational
tractability?

Research Sub-questions
To systematically address the main research question, the study is structured around four research
sub-questions, each targeting a critical aspect of the thesis:

Research Sub-question 1

What is the current state of research on optimization under uncertainty in HGEV fleet planning,
and what gaps can be identified?

Research Sub-question 2

How can uncertainties in time and energy consumption be formally represented and incorporated
into an optimization model for HGEV charging scheduling and routing?

Research Sub-question 3

Which solution methods can be employed to robustly solve the formulated optimization problem,
while ensuring computational tractability?

Research Sub-question 4

How do the proposed solution methods perform when applied to realistic HGEV fleet planning
scenarios, in terms of robustness, cost-efficiency, scalability, and adaptability?
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1.3. Contributions
In response to our research questions, we present CertERoute, an optimization framework grounded in
Robust Optimization (RO) principles. It incorporates a comprehensive suite of solvers and uncertainty sets
that support deterministic, robust, and adaptive robust optimization. Designed to effectively solve the
HGEV routing and charging scheduling problem under time and energy consumption uncertainty, its name
reflects its core objective: ensuring operational certainty of HGEV routes in the face of uncertainty.

Concretely, our contributions include the following:

1. Realistic modelling of HGEV fleet operations: We introduce the Heavy Goods Electric Vehicle
Fleet Planning Problem under Time and Energy Consumption Uncertainty (HGEV-FPP-TECU), a
new variant of the Electric Vehicle Routing Problem (EVRP) that formalizes the uncertainty in time
and energy consumption and explicitly incorporates coordinated charging scheduling at the depot.

2. Joint consideration of time and energy uncertainties: To the best of our knowledge, we are
the first to jointly address uncertainties in both time and energy consumption through an Adaptive
Robust Optimization (ARO) model for an EVRP. To capture the interdependency between the two
domains, we model energy consumption as a function of the uncertainty set in the time domain and
perform Monte Carlo Simulations (MCS) to estimate its parameters.

3. Novel pessimization algorithm for robust optimization: To address the computational
complexity of the ARO model, we propose the One-Step Look-ahead Pessimization (OSLP)
procedure, a novel pessimization algorithm for the Column and Constraint Generation (CCG)
framework. This algorithm is designed to quickly identify provably infeasible scenarios, and despite
its theoretical vulnerability to premature convergence, it empirically produces highly robust solutions.

4. Custom ALNS metaheuristic to ensure scalability: To maintain computational tractability
on large-scale HGEV-FPP-TECU instances, we implement a tailored multi-scenario Adaptive Large
Neighborhood Search (ALNS) metaheuristic for the Restricted Master Problem (RMP) in CCG.
This approach explicitly models charging and timing decisions within its neighbourhood generation
mechanisms, thereby facilitating more informed exploration of the solution space. The metaheuristic
was found to significantly enhance computational performance over exact methods.

5. Generation of realistic benchmark instances: We present a set of realistic HGEV-FPP-TECU
benchmark instances that are grounded in real-world data and expert knowledge to capture the
operational conditions of European HGEV fleets. These instances serve as a testbed for evaluating
the proposed methodology.

6. Comprehensive empirical evaluation: We conduct an extensive evaluation of the proposed
methodology across the benchmark instances, offering insights into the robustness, cost-efficiency,
scalability, and adaptability of the generated solutions.
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1.4. Thesis Outline
The remainder of this thesis is outlined as follows:

• Chapter 2 first provides the necessary background by introducing foundational concepts relevant to
this research. It provides an overview of the electric vehicle routing problem and common solution
strategies. Additionally, it discusses energy consumption modelling and established techniques for
handling uncertainty in optimization, with a focus on the robust optimization framework adopted in
this work. The chapter then provides a review of related literature and identifies the research gaps
addressed by this work.

• Chapter 3 details our methodological framework. It begins with a formal definition of the HGEV-
FPP-TECU problem and a justification for the key modelling assumptions. The chapter then presents
the proposed adaptive robust optimization model, including its constraints, uncertainty sets, and
the proposed energy consumption function. The solution methodology is subsequently described,
including the column and constraint generation approach, the novel OSLP pessimization algorithm,
and the metaheuristic solution method. The chapter concludes with the synthesis of these components
into a suite of solvers that constitute the CertERoute framework.

• Chapter 4 outlines the experimental design. It describes the process of generating realistic HGEV-
FPP-TECU instances, elaborates on the energy consumption modelling, and provides implementation
and configuration details necessary for reproducibility.

• Chapter 5 presents the results of the computational experiments. This includes an evaluation of the
deterministic solution approach, a sensitivity analysis to assess the impact of uncertain parameters, a
comparative analysis between adaptive and static robust optimization, and a robustness assessment.
The performance of the proposed metaheuristic approach is also evaluated.

• Chapter 6 concludes the thesis by addressing the research questions, offering practical guidelines
for implementing the CertERoute framework, discussing the limitations of the current work, and
suggesting directions for future work.



2
Background and Literature Review

This chapter provides relevant background information and reviews the existing literature, addressing the
research sub-question:

Research Sub-question 1

What is the current state of research on optimization under uncertainty in HGEV fleet planning,
and what gaps can be identified?

Specifically, Section 2.1, introduces the vehicle routing problem, a theoretical problem that underlies fleet
planning optimization. Section 2.2 details how this problem can be adapted to consider electric vehicles.
Section 2.3 describes various solution methods for the problem. Section 2.4 describes how the energy
consumption of electric vehicles can be modelled. Section 2.5 provides a background on methods for
optimization under uncertainty. Section 2.6 then describes how such methods are used in practice to deal
with uncertainty in fleet operations. Finally, Section 2.7 gives an overview of closely related work from
the literature, identifying the research gaps addressed with this work. Readers already familiar with the
electric vehicle routing problem and its solution methods may proceed directly to Section 2.5.

2.1. An Introduction to the The Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a combinatorial optimization problem in logistics. It involves
determining the most efficient set of delivery routes for a fleet of vehicles across multiple locations within
a transport network, while satisfying specific constraints such as meeting the demand at each location.
Efficiency is typically measured using an objective function that minimizes total traversal distance or cost.
The VRP generalizes the Travelling Salesman Problem (TSP), extending it from a single salesperson visiting
all locations to a fleet of vehicles collectively serving all locations. Dantzig and Ramser [10] originally
introduced the VRP as the Truck Dispatching Problem, in which a homogeneous fleet of gasoline delivery
trucks was tasked to serve the gasoline demands of a set of chargers, starting from a central bulk terminal
and minimizing the travelled distance. Clarke and Wright [11] generalized further to a linear optimization
problem and proposed an iterative heuristic to solve the problem. Since the survey by Christofides [12],
the problem is known as the Vehicle Routing Problem or Capacitated Vehicle Routing Problem (CVRP),
referring to the limited load capacity of the vehicles.

The VRP is classified as a NP-hard problem [13], meaning no known algorithm can solve all instances to
optimality within polynomial time as the problem size grows. Today, the VRP knows countless variations
and is one of the most extensively studied problems in operations research [14]. Notable research directions
include accounting for heterogeneous vehicle characteristics [15], time constraints [16], the introduction of
multiple depots [17], backhauls [18], dynamic routing [19] and rich combinations of the previously mentioned
[20]. Comprehensive reviews of more VRP variants can be found in the works by Konstantakopoulos,
Gayialis, and Kechagias [14] and Braekers, Ramaekers, and Van Nieuwenhuyse [21].

A recent line of research builds upon the work of Erdoğan and Miller-Hooks [22], concentrating on green
vehicles powered by alternative fuels and incorporating the option of refueling at chargers along the route
to extend their often limited driving ranges. This thesis focuses on a specific variation that involves

5
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electric vehicles, known as the Electric Vehicle Routing Problem (EVRP). In the next section, we outline
the most elementary EVRP considered in the literature and discuss several extensions leading up to our
Heavy Goods Electric Vehicle Fleet Planning Problem under Time and Energy Consumption Uncertainty
(HGEV-FPP-TECU).

2.2. Electrifying the Vehicle Routing Problem
While Battery Electric Vehicles (BEVs) have the potential to reduce transport costs and environmental
impact compared to traditional fossil-fuel vehicles, they face significant new challenges in road freight
transport such as limited driving range, long charging durations, and a lack of widespread charging
infrastructure. These challenges require meticulous planning of charging operations to ensure that BEVs can
complete their routes without depleting their battery or taking extensive detours [23, 24, 25]. The Electric
Vehicle Routing Problem, introduced by Conrad and Figliozzi [26], extends the CVRP by incorporating
battery constraints and allowing electric vehicles to recharge at designated customer locations before
proceeding with their routes. A more comprehensive version was later introduced by Erdoğan and Miller-
Hooks [22], enabling vehicles to visit separate chargers situated anywhere. This subsequent formulation
has become the starting point for numerous later studies [27, 28].

2.2.1. Elementary Formulation
Kucukoglu, Dewil, and Cattrysse [27] conducted an extensive and systematic review of 136 papers from the
extensive body of literature surrounding the EVRP. They clearly discuss its various extensions, providing
a mathematical formulation that captures the core aspects of the problem. Consolidating from their
review, we establish that in its most elementary form, the EVRP can be formulated based on the following
fundamental assumptions:

Assumptions
1. The fleet of delivery vehicles contains identical electric vehicles with fixed load and battery capacity.
2. Each vehicle performs a single tour starting and ending at a central depot, or remains at the depot.
3. Each customer to be served has a known demand and is served by exactly one vehicle.
4. Each vehicle can visit a charger for recharging between any two customers.
5. A vehicle’s initial State of Charge (SoC) is full.
6. Each charger can be visited by more than one vehicle.
7. A vehicle’s battery is always fully charged when visiting a charger (full-charging policy).
8. The battery level of a vehicle must always be between 0 and its battery capacity.
9. The load of a vehicle must always be between 0 and its load capacity.

10. The energy consumption and cost for traversing road connections between the depot, customers, and
chargers are known.

Mathematical Definition
We define the Elementary Electric Vehicle Routing Problem (EEVRP) accordingly:

Definition 1 – Elementary EVRP (EEVRP)

Consider a transport network modelled as a complete directed graph G := (V, E), where V :=
{0} ∪ C ∪ F ′ ∪ {N + 1} represents the set of vertices, with C := {1, 2, . . . , N} representing the
set of N customers i having delivery demand qi. Let F ′ := {N + 2, . . . , N + 1 + NF,N + 2 +
NF, . . . , N + 1 + nvisits +NF} represent a set of dummy vertices to allow nvisits to each of the
NF chargers f in set F := {N + 2, . . . , N + 1 +NF}. Let vertices 0 and N + 1 represent the exit
and entrance of the central depot, respectively. For convenience, let V ′ := C ∪ F ′, V ′

0 := V ′ ∪ {0},
and V ′

N+1 := V ′ ∪ {N + 1}. Let the set of edges E := {(i, j) | i ∈ V ′
0, j ∈ V ′

N+1, i 6= j} contain all
possible road connections (i, j), each associated with a known energy consumption hij and cost cij .
Let K represent a fleet of homogeneous electric vehicles k with known individual load capacity C
and battery capacity Q. Furthermore, let yk denote the variable battery state of charge of vehicle k,
which declines by hij for every traversed edge (i, j) ∈ E and is set to Q according to the full-charging



2.2. Electrifying the Vehicle Routing Problem 7

policy when departing from depot 0 or any of the chargers f ∈ F ′, so that yki denotes the battery
SoC upon arrival at destination i ∈ V ′. Let uk denote the variable remaining load quantity of
vehicle k. The EEVRP is then defined as constructing a set of routes R := {Rk | Rk ⊂ E , k ∈ K}
such that every Rk is a path starting at vertex 0 and ending at vertex N + 1, every customer i ∈ C
is part of exactly one route Rk, vehicles k do not run out of battery (yk ≥ 0) nor exceed their load
capacity (uk ≤ C) during Rk, and the total cost associated with R is minimized.

Mixed Integer Linear Program Formulation
Based on the above mathematical definition, a Mixed Integer Linear Programming (MILP) [29] formulation
for the EEVRP can be constructed, following standard practices in VRP literature. An MILP is an
optimization problem where both the constraints and the objective function are linear, with some decision
variables restricted to integer values. Solving an MILP exactly results in an optimal solution to the problem.
The formal definition of an MILP is as follows:

Definition 2 – Mixed Integer Linear Progamming (MILP)

Let a matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn, and a subset I ⊆ {1, 2, . . . , n} be given.
An MILP seeks to find scalar ζ∗, known as the objective value, such that

ζ∗ := min{c>x : x ∈ Rn, Ax ≤ b, xi ∈ Z, ∀i ∈ I}.

The set S := {x : x ∈ Rn, Ax ≤ b, xi ∈ Z, ∀i ∈ I} is called the feasible set.
A solution x∗ ∈ S is considered optimal if c>x∗ = ζ∗.

A typical MILP modelling approach for VRPs involves introducing a binary decision variable xkij for all
vertices i ∈ V ′

0, j ∈ V ′
N+1, and each vehicle k ∈ K. Here, xkij = 1 indicates that edge (i, j) ∈ E is included

in route Rk, and xkij = 0 otherwise. In addition, auxiliary continuous decision variables yki and uki are often
introduced for each vehicle k ∈ K and each location i ∈ V ′

N+1. These variables represent the battery SoC
and the remaining load quantity at location i upon arrival, respectively. A corresponding MILP formulation
for the EEVRP is detailed in Table 2.1 and Model 1 based on the work of Schneider, Stenger, and Goeke
[30], Keskin and Çatay [31], Schiffer and Walther [32], and Kucukoglu, Dewil, and Cattrysse [27].

Sets
0, N + 1 Exit and entrance vertices of the central depot
C Set of customers vertices C := {1, 2, . . . , N}
F Set of charger vertices F : {N + 2, . . . , N + 1 +NF}

F ′ Set of dummy charger vertices F ′ := {N + 2, . . . , N + 1 + NF,N + 2 +
NF, . . . , N + 1 + nvisits +NF} to allow nvisits visits to every f ∈ F

V ′ Set of customer and charger vertices V ′ := C ∪ F ′

V ′
0 Set of source location vertices V ′

0 := V ′ ∪ {0}
V ′
N+1 Set of destination location vertices V ′

N+1 := V ′ ∪ {N + 1}
V Set of all vertices V := {0} ∪ C ∪ F ′ ∪ {N + 1}
E Set of edges E := {(i, j) | i ∈ V ′

0, j ∈ V ′
N+1, i 6= j}

K Set of homogeneous electric vehicles
R Set of vehicle routes R := {Rk | Rk ⊂ E , k ∈ K}

Decision Variables

xkij
Binary decision variable indicating whether edge (i, j) ∈ E is included in the
route of vehicle k ∈ K

yki
Continuous decision variable tracking the battery SoC of vehicle k ∈ K upon
arrival at destination i ∈ V [in kWh]
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uki
Continuous decision variable tracking the remaining load quantity of vehicle
k ∈ K upon arrival at destination i ∈ V [in units]

Parameters
qi Delivery demand at customer i ∈ C [in units]
hij Energy consumption over edge (i, j) ∈ E [in kWh]
cij Traversal cost over edge (i, j) ∈ E [in €]
C Individual vehicle load capacity [in units]
Q Individual vehicle battery capacity [in kWh]

Table 2.1: Notation overview for the EEVRP

Model 1 – MILP Formulation for the EEVRP

c∗total = min
∑
k∈K

∑
i∈V′

0

∑
j∈V′

N+1, j 6=i

cijx
k
ij (2.1)

subject to (s.t.): ∑
k∈K

∑
j∈V′

N+1, j 6=i

xkij = 1 ∀i ∈ C, (2.2)

∑
k∈K

∑
j∈V′

N+1, j 6=i

xkij ≤ 1 ∀i ∈ F ′, (2.3)

∑
j∈V′

N+1

xk0j ≤ 1 ∀k ∈ K, (2.4)

∑
i∈V′

0, i 6=j

xkij =
∑

i∈V′
N+1, i 6=j

xkji ∀j ∈ V ′, ∀k ∈ K, (2.5)

ukj ≤ uki − qixkij + C(1− xkij) ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀k ∈ K, i 6= j, (2.6)

uk0 ≤ C ∀k ∈ K, (2.7)

ykj ≤ yki − hijxkij +Q(1− xkij) ∀i ∈ V, ∀j ∈ V ′
N+1, ∀k ∈ K, i 6= j, (2.8)

ykj ≤ Q− hijxkij ∀i ∈ F ′ ∪ {0}, ∀j ∈ V ′
N+1, ∀k ∈ K, i 6= j, (2.9)

yk0 ≤ Q ∀k ∈ K, (2.10)

yki ∈ R≥0 ∀i ∈ V ′
N+1, ∀k ∈ K, (2.11)

uki ∈ R≥0 ∀i ∈ V ′
N+1, ∀k ∈ K, (2.12)

xkij ∈ B ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, i 6= j. (2.13)

Here, the objective function in Eq. (2.1) aims to minimize the total traversal cost of the routes. Note that
in this formulation, recharging operations do not incur additional costs, as the emphasis lies on feasibility.
The constraints in Eq. (2.2) ensure that every customer is visited once. The constraints in Eq. (2.3) ensure
that each dummy charger can be visited at most once. The constraints Eq. (2.4) make sure that every
electric vehicle can be used in at most one route plan. The constraints in Eq. (2.5) are flow conservation
constraints ensuring that the total number of incoming edges is equal to the total number of outgoing
edges at customer and charger vertices, providing continuity in the routes. The constraints in Eq. (2.6) are
the so called Miller-Tucker-Zemlin (MTZ) [33] constraints that, together with the constraints in Eq. (2.7),
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ensure the load capacity of the vehicles is never exceeded and unconnected subtours that do not start and
end at the depot are eliminated. The constraints in Eq. (2.8) to Eq. (2.10) track the battery SoC of the
electric vehicles and their battery state after the recharging operations at the chargers following a full
charging policy. The constraints in Eq. (2.11) to Eq. (2.13) ensure that the decision variables are restricted
to the appropriate domains.

Alternative formulations
The MILP formulation presented in Model 1 is based on the vehicle flow model formulation for VRPs,
ensuring that each customer location is visited by exactly one vehicle [34]. Although, this model is very
intuitive and wide-spread, there are alternative formulations, such as the commodity flow formulation
[35, 36], which constrains the flow of commodities (goods or services) through the network, and the
set partitioning formulation [37, 34], which focuses on selecting subsets of feasible routes to cover all
customers while minimizing cost, assuming individual route feasibility. These alternatives have stronger
MILP relaxations than the vehicle flow model, allowing for more efficient solutions using branch-and-bound
methods [38, 36]. However, the set partitioning formulation can lead to an exponential number of feasible
routes, requiring complex techniques like column generation and branch-and-price [34]. More details on
these solution methods are provided in Subsection 2.3.1.

The sub-tour elimination constraints from Miller, Tucker, and Zemlin [33] in Eq. (2.6) can also be formulated
differently. The capacity-cut constraints presented by Toth and Vigo [36] provide an alternative way to
simultaneously impose solution connectivity and vehicle capacity requirements. Using branch-and-cut
methods, this formulation yields a stronger bound than the MTZ constraints. However, the number of
associated constraints grows exponentially rather than quadratically with the number of customers [39].

Constraint Programming
While not as commonly featured in VRP literature, Constraint Programming (CP) is another powerful
approach for modelling and solving combinatorial optimization problems. In contrast to MILP, CP does
not require constraints and objective functions to be linear, enabling the use of more expressive constraints
and specialized algorithms to tackle the corresponding constraint satisfaction subproblems. CP techniques
typically prioritize feasibility over optimization, making them particularly well-suited for discrete rather
than continuous problems. Similar to MILP, CP faces scalability challenges and is often combined with
local search heuristics to find solutions quicker [40]. Notable applications of CP in VRP include the works
of Shaw [41] and Backer et al. [42]. The application of CP to solve the EVRP remained largely unexplored,
such that only the work by Booth and Beck [43] could be identified.

2.2.2. Time Windows
A popular extension to the EEVRP is the Electrical Vehicle Routing Problem with Time Windows
(EVRPTW), as introduced by Schneider, Stenger, and Goeke [30]. This variant is the electrified version
of the standard Vehicle Routing Problem with Time Windows (VRPTW), where customers are required
to be served within a designated time window. Each customer has a service duration that represents the
time required for unloading. At the depot, this corresponds to the time needed to load the vehicle. For
simplicity, service durations are generally considered independent of the demand. Furthermore, chargers
have specific time windows during which they are available for visits.

Keskin, Laporte, and Çatay [44] introduced the EVRPTW with soft time windows. Time windows are
classified as soft when they are flexible and can be exceeded at the cost of a penalty. Such a penalty is
often modelled using slack variables that represent the degree of constraint violation. These can then be
added to the objective function under minimization to minimize violations. Conversely, time windows are
considered hard when they are strictly enforced. That is, vehicles must wait if they arrive earlier than the
start of the time window and are prohibited from arriving late [45]. For simplicity, we focus on the hard
time window formulation, which can be defined as follows:

Definition 3 – EVRP with Time Windows (EVRPTW)

Consider the EEVRP from Definition 1, with the following added characteristics. In addition to
known traversal cost cij and energy consumption hij , let tij denote a known traversal duration
associated with every edge (i, j) ∈ E . Furthermore, let ei and li represent the earliest and latest
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possible service start times for every vertex i ∈ V, respectively. Let νi denote the corresponding
loading/unloading duration for every location i ∈ C∪{0}. Let gf be a known and constant recharging
rate for every charger f ∈ F ′, so that the full-charging operation has a duration of gf (Q− ykf ) for
every k ∈ K. Lastly, let τi be the variable service start time for every location i ∈ V . The EVPRTW
is defined as constructing a set of routes R with the same constraints as in the EEVRP and the
added constraint that service start times τi should be between ei and li for every location i ∈ V,
taking the traversal, service and charging durations within R into account.

A corresponding MILP formulation is detailed in Table 2.2 and Model 2 [30, 27].

Decision Variables

τi
Continuous decision variable indicating the service start time at location
i ∈ V [in minutes]

Parameters
tij Traversal duration associated with edge (i, j) ∈ E [in minutes]
ei Earliest possible service start time for location i ∈ V [in minutes]
li Latest possible service start time for location i ∈ V [in minutes]
νi Loading/unloading duration for location i ∈ C ∪ {0} [in minutes]
gf Inverse recharging rate at charger f ∈ F ′ [in minutes/kWh]

Table 2.2: Notation overview for the EVRPTW

Model 2 – MILP Formulation for the EVRPTW

c∗total = min
∑
k∈K

∑
i∈V′

0

∑
j∈V′

N+1, j 6=i

cijx
k
ij (Eq. (2.1))

s.t:

Eq. (2.2)− Eq. (2.13),

τi + (tij + νi)
∑
k∈K

xkij ≤ τj + l0(1−
∑
k∈K

xkij) ∀i ∈ C ∪ {0}, ∀j ∈ V ′
N+1, i 6= j, (2.14)

τf + tfjx
k
fj + gf (Q− ykf ) ≤ τj + (l0 + gfQ)(1− xkfj) ∀f ∈ F ′, ∀j ∈ V ′

N+1, ∀k ∈ K, f 6= j, (2.15)

ei ≤ τi ≤ li ∀i ∈ V, (2.16)

τi ∈ R≥0 ∀i ∈ V. (2.17)

Here, the constraints in Eq. (2.14) guarantee time feasibility for edges leaving customers and the depot
based on the traversal and service durations, while the constraints in Eq. (2.15) do the same for edges
leaving chargers, based on the charging duration associated with a full-charging policy. The constraints in
Eq. (2.16) enforce the time windows of the locations, whereas the constraints in Eq. (2.17) ensure that the
service start time variables are restricted to take real values.

2.2.3. Heterogeneous Fleets
A homogeneous fleet consists of identical vehicles, whereas a heterogeneous or mixed fleet includes different
types of vehicles that vary in aspects such as propulsion technology, load capacity, operating cost, and/or
environmental impact. In practice, most transport companies that operate HGEVs use mixed fleets
comprising both electric and diesel trucks. When focusing on electric fleets, heterogeneity may arise from
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variations in charging technology, battery capacity, and energy consumption between truck manufacturers
and/or models. Choosing the wrong type of vehicle for a specific route can lead to increased traversal costs
and may result in capacity constraint violations [46]. On the other hand, the overall transport costs or
energy consumption can be optimized by assigning the most suitable vehicle to each route [27]. Hence,
an extension to the EEVRP was proposed, relaxing Assumption 1 to accommodate heterogeneous fleets.
The works of Jiang et al. [46], Hiermann et al. [47], and Goeke and Schneider [48] build on the EVRPTW,
introducing the Mixed Fleet Electric Vehicle Routing Problem with Time Windows (MF-EVPRTW). We
consider a variant in which the load capacity, battery capacity, energy consumption, and battery charging
rates are specified for each vehicle type, resulting in the following definition:

Definition 4 – Mixed Fleet EVRPTW (MF-EVRPTW)

Consider the EVRPTW from Definition 3, with the homogeneous load capacity C, battery capacity
Q, energy consumption hij , and battery charging rate gf parameters replaced by the respective
heterogeneous parameters Qk, Ck, hkij , and gkf for every vehicle k ∈ K, charger f ∈ F ′ and edge
(i, j) ∈ E . The constraints are adapted accordingly and the definition of the MF-EVRPTW further
remains the same as that of the EVRPTW.

A corresponding MILP formulation is detailed in Table 2.3 and Model 3 [47, 27].

Parameters
Qk Individual vehicle battery capacity of vehicle k ∈ K [in kWh]
Ck Individual vehicle load capacity of vehicle k ∈ K [in units]
hkij Energy consumption of vehicle k ∈ K over edge (i, j) ∈ E [in kWh]
gkf Inverse recharging rate for vehicle k ∈ K at charger f ∈ F ′ [in minutes/kWh]

Table 2.3: Notation overview for the MF-EVRPTW

Model 3 – MILP Formulation for the MF-EVRPTW

c∗total = min
∑
k∈K

∑
i∈V′

0

∑
j∈V′

N+1, j 6=i

cijx
k
ij (Eq. (2.1))

s.t:

Eq. (2.2)− Eq. (2.5),

ukj ≤ uki − qixkij + Ck(1− xkij) ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀k ∈ K, i 6= j, (2.18)

uk0 ≤ Ck ∀k ∈ K, (2.19)

ykj ≤ yki − hkijxkij +Qk(1− xkij) ∀i ∈ V, ∀j ∈ V ′
N+1, ∀k ∈ K, i 6= j, (2.20)

ykj ≤ Qk − hkijxkij ∀i ∈ F ′ ∪ {0}, ∀j ∈ V ′
N+1, ∀k ∈ K, i 6= j, (2.21)

yk0 ≤ Qk ∀k ∈ K, (2.22)

Eq. (2.11)− Eq. (2.14),

τf + tfjx
k
fj + g

k
f (Qk− ykf ) ≤ τj +(l0+ g

k
fQk)(1−xkfj) ∀f ∈ F ′, ∀j ∈ V ′

N+1, ∀k ∈ K, f 6= j, (2.23)

Eq. (2.16)− Eq. (2.17).
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Here, the constraints in Eq. (2.6) to Eq. (2.10) are replaced by the constraints in Eq. (2.18) to Eq. (2.21)
and those in Eq. (2.15) by those in Eq. (2.22) to account for the heterogeneous vehicle parameters.

2.2.4. Partial Recharging
Thus far, we have assumed that a vehicle is always fully recharged whenever it visits a charger (Assumption
7). However, this is not always necessary to complete the route successfully. Partial recharging can
help lower both costs and duration, reducing the likelihood of time window violations [31]. To address
this, studies such as those by Bruglieri et al. [49], Keskin and Çatay [31], Schiffer and Walther [32], and
Desaulniers et al. [50] relax Assumption 7 by incorporating partial recharging strategies. In essence, this
involves introducing a new decision variable to monitor the battery’s state of charge upon departing a
charger. Formally, we define the Mixed Fleet Electric Vehicle Routing Problem with Time Windows and
Partial Recharging (MF-EVRPTW-PR) as follows:

Definition 5 – MF-EVRPTW with Partial Recharging (MF-EVRPTW-PR)

Consider the MF-EVRPTW from Definition 4. Let ykf ≤ Y k
f ≤ Qk be the variable SoC on departure

from charger f ∈ F ′ ∪ {0} for every vehicle k ∈ K. The constraints are adapted accordingly and the
definition of the MF-EVRPTW-PR further remains the same as that of the MF-EVRPTW.

A corresponding MILP formulation is detailed in Table 2.4 and Model 4 [31, 27].

Decision Variables

Y k
f

Continuous decision variable indicating the SoC of vehicle k ∈ K on departure
from charger f ∈ F ′ [in kWh]

Table 2.4: Notation overview for the MF-EVRPTW-PR

Model 4 – MILP Formulation for the MF-EVRPTW-PR

c∗total = min
∑
k∈K

∑
i∈V′

0

∑
j∈V′

N+1, j 6=i

cijx
k
ij (Eq. (2.1))

s.t:

Eq. (2.2)− Eq. (2.5),

Eq. (2.18)− Eq. (2.20),

ykj ≤ Y k
f − hkfjxkfj +Qk(1− xkfj) ∀f ∈ F ′ ∪ {0}, ∀j ∈ V ′

N+1, ∀k ∈ K, (2.24)

ykf ≤ Y k
f ≤ Qk ∀f ∈ F ′ ∪ {0}, ∀k ∈ K, (2.25)

Eq. (2.11)− Eq. (2.14),

τf + tfjx
k
fj + g

k
f (Y

k
f − ykf ) ≤ τj +(l0+ g

k
fQk)(1−xkfj) ∀f ∈ F ′, ∀j ∈ V ′

N+1, ∀k ∈ K, f 6= j, (2.26)

Eq. (2.16)− Eq. (2.17),

Y k
f ∈ R≥0 ∀f ∈ F ′ ∪ {0}, ∀k ∈ K. (2.27)

Here, the constraints in Eq. (2.21) and Eq. (2.22) are replaced by the constraints in Eq. (2.24) and Eq. (2.25),
respectively, to model the adjusted battery ranges under partial recharging. The constraints in Eq. (2.23)
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are replaced by the constraints in Eq. (2.26) to ensure that time window constraints are also adapted for
the partial recharging. The constraints in Eq. (2.27) enforce the correct domain for the state of charge.

Alternative formulations
Note that the partial charging formulation from Model 4 assumes a single and constant recharging rate
gkf for each charger f ∈ F ′ and vehicle k ∈ K, as in Basso et al. [51]. However, other variations are also
possible. For instance, Küçükoğlu, Dewil, and Cattrysse [52] introduce two distinct charging rates per
charger, supporting both fast and slow charging. Ceselli et al. [53] present a model where each charger
offers a subset of different charging technologies, each with a unique recharging speed and associated cost.

With any constant rate, the battery SoC is assumed to be a linear function of the charging duration.
Nevertheless, in reality the charging process is nonlinear, consisting of a constant-current phase with a
linear battery level increase followed by a constant-voltage phase with a concave battery level increase as
the current decreases [54]. Many studies that address this non-linear behavior rely on piecewise-linear
approximations, as introduced by Montoya et al. [55] and later improved upon by Froger et al. [56].

2.3. Solving the Vehicle Routing Problem
The solution methods for VRPs can be divided into three main categories: exact methods, heuristics, and
learning-based optimization methods [57]. Exact methods focus on MILP formulations and guarantee
an optimal solution by systematically exploring all possible solutions. While they are precise, their
computational complexity makes them intractable for large-scale problem instances. Heuristic methods, on
the other hand, are problem-specific and leverage the special structure of the problem to take shortcuts,
so that they are faster but yield approximate solutions. Lastly, learning-based methods utilize machine
learning from input data or reinforcement learning to derive solutions, adapting to problem instances and
patterns observed during training. Both heuristic and learning-based methods prioritize computational
efficiency over guaranteed optimality, offering solutions that are typically “good enough” for real-world
applications [58]. In the following subsections, we delve into foundational and related work on solution
methods for VRPs within each of these categories.

2.3.1. Exact Methods
In this section, we first provide an integer programming primer, outlining the fundamental concepts and
techniques for solving the VRP exactly. We then discuss how exact methods are typically employed in
practice. For more details about solving integer programs exactly, we refer to the textbook by Wolsey [29].

Linear Relaxatation
The complexity of solving the VRP as an MILP arises primarily from the presence of the integer constraints,
making the problem NP-hard. One common approach is to relax these integrality constraints, leading to
the Linear Program (LP) relaxation of the problem. By doing so, the resulting formulation can be solved
in polynomial time using techniques such as the simplex method [59] or interior point methods like the
ellipsoid method [60]. However, the solutions obtained from the LP relaxation are often infeasible for the
original problem since the integer restrictions are ignored. Despite this, a solution to an LP relaxation is
useful as its objective value serves as a lower bound (or upper bound) for the objective value of the original
minimization (or maximization) problem [29].

Cutting Planes
A technique known as the cutting plane method can be applied to iteratively refine solutions of an LP
relaxation. This technique was introduced by Gomory [61] and uses the MILP constraints violated in the
LP relaxation to introduce additional implied LP constraints, known as cutting planes, to systematically
eliminate (cut) non-integer solutions from the search space without discarding any feasible MILP solutions.
The resulting formulations tend to produce solutions with fewer and fewer fractional values, until all
integrality constraints are satisfied.

Branch-and-Bound
Another fundamental technique for solving MILP problems is the branch-and-bound method, as introduced
by Land and Doig [62]. This tree-based approach, in which nodes represent subproblems, begins by solving
the LP relaxation of the MILP. If the solution does not meet all integrality constraints, the problem is split
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into two subproblems (branches) by imposing additional constraints to round a selected constraint-violating
variable up and down, respectively. This branching process continues until all nodes either satisfy the
integrality constraints or are found to be LP-infeasible. Nodes that are LP-infeasible are pruned since adding
more constraints can never make them MILP-feasible. Similarly, nodes are pruned if their MILP-feasible
solution does not improve the objective function compared to previously found solutions, or if a node’s
lower bound (in a minimization problem) is worse than that of the best MILP-feasible solution found so
far. The branch-and-bound method ensures optimality by systematically exploring all branches until every
node in the search tree is pruned.

Branch-And-Cut
The branch-and-bound method can be further strengthened by integrating it with the cutting plane method,
resulting in the branch-and-cut method. In this hybrid approach, first introduced by Padberg and Rinaldi
[63], cutting planes are dynamically added to subproblems generated during the branching process. These
additional constraints enhance the formulation beyond simply bounding specific variables, leading to a
more efficient exploration of the solution space.

Column Generation
Column generation is a powerful technique to solve linear programs with a large number of variables
and was first described in depth by Dantzig and Wolfe [64]. The method begins by solving a simplified
version of the problem, known as the Restricted Master Problem (RMP), which considers only a subset
of the problem’s variables while the remaining variables are temporarily excluded (implicitly set to zero).
Solving the RMP provides an initial solution and an upper bound for the objective value in the case of a
minimization problem. To enhance this solution, a subproblem (SP) is formulated and solved to identify
new variables (columns) that can improve the objective value. Specifically, the subproblem uses the dual
variables of the RMP solution and seeks for the variable with the most negative reduced cost, which is a
metric that indicates how much the objective value would decrease if that variable was introduced into the
solution of the RMP. If the reduced cost of the identified variable is negative, it is added to the RMP, and
the process is repeated until no further variables with negative reduced cost can be identified. This iterative
approach allows the algorithm to operate with only a subset of variables at any given time, gradually
adding variables as needed. This makes it possible to efficiently solve large-scale linear programs that would
otherwise be computationally infeasible.

Branch-And-Price
Combining branch-and-bound with column generation gives rise to the branch-and-price method, a widely
used exact approach for solving VRPs. This method was originally introduced by Desrochers, Desrosiers,
and Solomon [65] and is rooted in the formulation of a set-covering master problem to ensure that every
customer is served, considering all feasible individual vehicle routes. Due to the exponential number of
possible routes, column generation is employed within the branch-and-price framework to iteratively identify
beneficial routes (columns) that could potentially improve the objective function of the master problem.
The overarching set-covering master problem remains consistent across different variations of the VRP.
This flexibility makes branch-and-price one of the most effective tools for tackling VRPs in practice. Many
state-of-the-art commercial MILP solvers like Gurobi [66] and CPLEX [67] integrate it.

Exact Methods in Practice
Due to their limited scalability, only a small number of works rely entirely on exact methods to solve
(E)VRPs. Notable examples include Soysal, Çimen, and Belbağ [68] and Wang et al. [69], both solving
a pickup and delivery problem with electric vehicles under energy consumption uncertainty; Kopfer and
Vornhusen [70], focusing on heterogeneous vehicles; Tahami, Rabadi, and Haouari [71], using the branch-
and-cut method for the CVRP; and Lee [72], employing the branch-and-price algorithm to solve the EVRP
with nonlinear charging durations.

Other works combine the branch-and-cut method and the branch-and-price method into the Branch-Price-
and-Cut (BCP) method. Desaulniers et al. [50] apply it to the EVRPTW, Ceselli et al. [53] on an EVRP
with multiple charging technologies, and Lera-Romero, Bront, and Soulignac [8] on an EVRPTW with
time-dependent traversal durations and energy consumption. The common denominator in these works
is their focus on new concepts, tested on small, artificial instances instead of realistic ones, as a proof of
concept.
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Many other works, including those by Hiermann et al. [47] on mixed fleets, Keskin, Laporte, and Çatay [44]
on time-dependent waiting durations at rechargers, and Amiri, Zolfagharinia, and Amin [73] on uncertain
energy consumption, employ exact solvers exclusively for small problem instances. The obtained solutions
are often used to benchmark newly proposed metaheuristics, essential for solving larger instances [28]. The
classification of “small” and “large” instances is typically determined by the number of customers. Small
instances generally involve 5-15 customers, whereas large instances can include up to a hundred customers,
according to the widely used benchmark developed by Schneider, Stenger, and Goeke [30].

2.3.2. Heuristics and Metaheuristics
In contrast to exact methods, inexact methods are generally fast but cannot provide any guarantee on the
solution quality. Heuristics can be separated into constructive heuristics, that construct a solution from
scratch by iteratively building upon a partial solution, and improvement heuristics, that generate a final
solution by iteratively modifying an existing solution in order to obtain a better one [74]. In this section,
we provide a few examples of fundamental constructive heuristics and detail the concept of local search,
which is an improvement heuristic used by many state-of-the-art solution methods. For a more elaborate
discussion on heuristic methods tailored to the VRP, we refer to surveys presented by Cordeau et al. [74]
and Laporte, Ropke, and Vidal [75].

Constructive Heuristics
Notable examples of fundamental constructive heuristics for VRPs include the savings heuristic by Clarke
and Wright [11], the sweep algorithm by Gillett and Miller [76] and nearest neighbour heuristics described
by Applegate et al. [77]. The savings heuristic begins by treating each customer as if they are served
by a separate vehicle. It then evaluates the potential cost savings of combining routes between pairs of
customers. Starting with the pair that offers the highest savings, the heuristic iteratively merges routes as
long as load capacity constraints remain satisfied. In contrast, the sweep algorithm operates by converting
customer locations to polar coordinates and arranging them by their polar angles. Customers are grouped
by “sweeping” around the depot in a circular manner, assigning them to a vehicle until its capacity is
reached. The nearest neighbour heuristic begins at the depot and repeatedly visits the nearest unvisited
customer until its capacity is reached. Once a vehicle has reached its load capacity, a new route is started,
and the process continues until all customers have been assigned. For the EVRP, these heuristics can
be adapted by introducing a second phase in which the nearest charger is inserted into a constructed
route whenever the battery constraint is violated. This is done in the Modified Clarke and Wright Savings
(MCWS) or two-phase heuristic as introduced by Erdoğan and Miller-Hooks [22].

While these approaches are effective for constructing feasible solutions, achieving a solution with a near-
optimal objective value remains challenging. This limitation highlights the importance of improvement
heuristics, such as local search techniques, to refine the initial solutions further.

Local Search
Improvement heuristics for VRPs are often based on local search [74]. Local search or neighbourhood
search methods define the neighbourhood N(x) of a reference solution x as the set of all solutions that are
conceptually close to x, according to the problem specification. The algorithm then explores a candidate
solution x′ ∈ N(x) to determine whether it improves the objective value. If an improvement is found,
the process is repeated with x′ as the new reference solution. This iterative approach continues until
no further improvements can be achieved, so that the algorithm converges to a local optimum. The
performance of local search methods is highly influenced by how the neighbourhood is defined and which
candidate solutions are explored. The exploration can follow different strategies, such as random selection
or steepest-descent, which evaluates all neighbours and chooses the best [78]. Local search methods do not
guarantee convergence to a global optimum, as they can be trapped in local optima. To address this, local
search is often enhanced through metaheuristics [79].

Neighbourhoods
Typical neighbourhoods N(x) for a VRP solution x are constructed using operators such as the swap
and relocate operators, introduced by Savelsbergh [80]. These operators can be applied within a single
vehicle route (intra-route) or between routes (inter-route) within the current solution. Other frequently
used operators include the 2-opt (intra-route) operator by Lin [81] and the 2-opt* (inter-route) operator by
Potvin and and [82], which was specifically proposed for the VRPTW [83]. A specialized operator for the
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EVRP is the stationInRe operator, as introduced by Schneider, Stenger, and Goeke [30]. Specifically, these
operators can be described as follows:

• Swap: exchanges the positions of two customers within the same route or across different routes.
• Relocate: removes a customer from its current position in a route and inserts it into another position,

either in the same route or in a different route.
• 2-opt: removes two edges (i, j) and (k, l) from a route R = l→ . . .→ i→ j → . . .→ k → l, resulting

in two paths P1 = l→ . . .→ i and P2 = j → . . .→ k. The edges in P2 are reversed and reattached
to P1 to form a new route l→ . . .→ i→ k → . . .→ j → l. This effectively eliminates crossings.

• 2-opt*: removes one edge from every route. Let R1 and R2 be two routes for which an edge was
removed, resulting in parts P 1

1 , P 1
2 and P 2

1 , P 2
2 , respectively. Two new routes R′

1 and R′
2 are formed

by concatenating P 1
1 with P 2

2 and P 2
1 with P 1

2 . No reversal is required for inter-route moves as there
cannot be crossings.

• stationInRe: handles the addition and removal of chargers. It is applicable to all edges (v, w),
where v represents a charger. Let w− denote the predecessor of vertex w. If edge (v, w) is not in
the current route, it is inserted alongside with edge (w−, v), else it is removed and edge (w−, w) is
inserted instead.

Note that each of these operators gives rise to a neighbourhood whose size is at most quadratic O(n2) in
the size of the problem instance n, which is determined by the total number of customers. Typically the
neighbourhood size for local search does not exceed O(n3) [84].

Metaheuristics
A metaheuristic is a higher-level framework that can be used to combine basic heuristics into a general
algorithm that is problem-independent so that it can be applied to a wide set of problems [85]. The
strength of the metaheuristic search mechanism lies in its ability to balance two complementary strategies:
exploration (diversification) and exploitation (intensification). Exploration focuses on investigating new
search areas, while exploitation concentrates on searching within the vicinity of the best-known solutions
[79]. In this section, we will give an overview of metaheuristic methods that are often used in VRP literature.
For an extensive overview, we refer to surveys by Glover [85] and Awad and Elshaer [86].

Variable Neighbourhood Search
Variable Neighbourhood Search (VNS) is a metaheuristic proposed by Mladenović and Hansen [87], that
extends the local search heuristic. VNS is the most commonly used method for solving VRPs in practice
[14, 86]. The key idea of VNS is to leverage multiple neighbourhood structures to escape local optima and
explore a broader solution space. VNS starts by constructing an initial solution x using a construction
heuristic such as those described in Subsection 2.3.2, proceeding as follows:

1. Shaking: In each iteration, a solution x′ is randomly selected from the so-called shaking neighbour-
hood Nk(x) of the current solution x, where k indicates the current neighbourhood structure. The
purpose of this step is to diversify the search and move to unexplored regions of the solution space.

2. Local Search: A local search with neighbourhood N(x′) is then performed on x′, yielding solution
x′′. This step ensures intensification by refining the candidate solution to a local optimum.

3. Update: If the objective value of x′′ is better than that of x, or some other acceptance criterion is
met, x′′ is set as the new reference solution. If not, x′′ is discarded and the algorithm picks the next
shaking neighbourhood Nk+1(x) in line, looping through the neighbourhoods.

If no improvement is found after evaluating all neighbourhoods, the search terminates. The shaking
neighbourhoods often have a nested structure with Nk(x) ⊂ Nk+1(x), ensuring exploitation where possible,
and exploration of broader regions of the solution space when no improvements can be found locally. This
makes VNS a powerful search method that converges towards high-quality solutions. For more information
regarding VNS, we refer to Hansen et al. [88].

Large Neighbourhood Search
Large Neighbourhood Search (LNS) is a metaheuristic introduced by Shaw [89], that is similar to VNS
and other local search heuristics but works with larger neighbourhoods that are implicitly defined by a
two-stage heuristic process. By “larger”, we refer to neighbourhoods of size O(nk), with k > 3 and n
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denoting the size of the problem instance [84]. Starting from an initial solution x, the algorithm first
employs a destroy heuristic to partially destruct x, yielding a partial solution x′. A repair heuristic is then
applied to x′ to reconstruct a feasible solution x′′. For the EVRP, a removal operator would typically
remove a subset of customers and/or chargers from the routes, while a repair operator would reintroduce
them, potentially into different routes.

The degree of destruction should be chosen carefully. If only a small part of the solution is destroyed, the
heuristic may struggle to explore the search space. Conversely, if a large part of the solution is destroyed, the
heuristic almost degrades into repeated re-optimization. Typically, the subset of removed elements is chosen
stochastically, ensuring that each iteration focuses on a different part of the solution. Alternative removal
strategies include targeting customers with high traversal costs in the current route, customers that are
geographically close to one another, or customers with similar demands. For the repair operator, customers
can be reinserted in the route with smallest cost increase (greedy) or regret, which is the difference in cost
of inserting it in the best and one but best route. After performing a destroy-and-repair cycle, the newly
generated solution x′′ can either be accepted as the new reference solution or be discarded based on some
acceptance criterion. The acceptance criterion is typically based on the objective value but can also include
stochastic elements. For more information about LNS, we refer to Pisinger and Ropke [84].

Adaptive Large Neighbourhood Search
Adaptive Large Neighbourhood Search (ALNS) is also recognized as a leading algorithm for solving VRPs
in practice [86, 14]. It was developed specifically for VRPs by Ropke and Pisinger [90] and extends LNS by
incorporating multiple destroy and repair heuristics into a pool rather than relying on a single heuristic
pair. Each heuristic in the pool is assigned a weight that determines the likelihood of its selection. These
weights are dynamically adjusted during the search process based on the empirical success of each heuristic,
measured by the quality of solutions they produce. This dynamic adjustment allows the algorithm to
adapt to the specific problem instance and the current state of the search. The adaptive nature of ALNS
enables it to explore diverse regions of the solution space, reducing the likelihood of becoming trapped in
local optima. It also simplifies calibration efforts, as the algorithm automatically tunes the influence of
each heuristic. One notable downside of ALNS is that it often favors complex repair methods to achieve
high-quality solutions. While this can result in superior solution quality, it typically comes at the cost of
increased computational time. We refer to Pisinger and Ropke [84] for a more detailed discussion on ALNS.

Tabu Search
Tabu Search (TS) was introduced by Glover [91] as an alternative metaheuristic designed to avoid getting
stuck in a local optimum during search. Gendreau, Hertz, and Laporte [92] were the first to apply it
to solve VRPs. The key concept is maintaining a list of previously seen solutions that are deemed tabu
(forbidden) and may not be revisited, thus allowing solutions with worse objective values to be visited for
exploration and preventing the search process from cycling. Even short tabu lists can be highly effective in
escaping local optima. An initial solution x is obtained using a construction heuristic. In each iteration,
the best non-tabu solution x′ ∈ N(x) is selected from the neighbourhood. Once the move from x to x′ is
made, x is added to the tabu list. Solutions can also be removed from the tabu list with each iteration.
The algorithm proceeds until no further improvements can be made or another stopping criterion is met.
Important design parameters include the content of the tabu list and the tabu tenure, which determines
how long elements reside in the tabu list. For VRPs, the content of the tabu list can be certain routes,
entire schedules or certain moves such as the two edges removed by a 2-opt operator. The tabu tenure can
be fixed by a specified number of iterations, vary based on the quality of the current solution or vary based
on the progress of the search. For example, the tenure could be set to gradually increase over the iterations
to focus on exploration in the beginning and focus on intensification in later stages of the search. For more
information on TS, we refer to Gendreau and Potvin [93].

Simulated Annealing
Similarly to TS, Simulated Annealing (SA) is a metaheuristic that allows degradations of the objective
value in order to escape local minima. This probabilistic method was introduced by Kirkpatrick, Gelatt Jr,
and Vecchi [94] and is inspired by the annealing process in metallurgy. It begins with an initial solution x
obtained through a construction heuristic and explores neighbouring solutions x′ ∈ N(x). If x′ improves the
objective function, it is always accepted. If x′ is worse, it may still be accepted with a probability defined
by exp(−∆(x,x′)/T ), where ∆(x,x′) is the difference in their objective values, and T is the “temperature”



2.3. Solving the Vehicle Routing Problem 18

parameter. Higher temperatures make it more likely to accept worse solutions, enabling broad exploration
early in the process. Over time, T decreases according to a cooling schedule (e.g., T = 0.99 ·T per iteration),
reducing the likelihood of accepting worse solutions and allowing the algorithm to converge towards an
optimal or near-optimal solution. Osman [95] was the first to apply SA to solve VRPs. For more details
regarding SA, we refer to Delahaye, Chaimatanan, and Mongeau [96].

Evolutionary Algorithms
Evolutionary Algorithms (EAs) are population-based stochastic search algorithms that mimic the processes
of natural evolution. Inspired by Darwin’s theory of natural evolution [97], these algorithms model the
adaptation of species to their environment over successive generations. In this metaphor, optimization is
viewed as the creation of highly-fit, well-adapted individuals through a process of reproduction, genetic
inheritance, and survival of the fittest [98]. In this study, we limit our discussion to genetic algorithms
and ant colony optimization, as those are the most prevalent EAs used in VRP literature. For a more
comprehensive discussion on evolutionary algorithms, we refer to Bartz-Beielstein et al. [98] and Yu and
Gen [99].

Genetic Algorithms
Genetic Algorithms (GAs) were introduced by Holland [100] and first applied to VRPs by Van Breedam
[101]. Rather than starting with a single solution that iteratively evolves, GAs work with a population of
individuals (genotype), each representing different candidate solutions (phenotype), that evolves over time.
During each iteration, the fitness of every individual in the population, which is determined by a function
tied to the problem’s objective, is evaluated. Individuals with higher fitness are more likely to influence the
composition of the next generation. The new generation is formed based on three key mechanisms:

1. Selection: determines which individuals from the current generation will contribute genetic material
to the next based on their fitness value.

2. Cross-over: combines selected parents to produce offspring, incorporating traits from both parents.
3. Mutation: randomly modifies offspring with a low probability to maintain diversity and ensure

exploration of the search space.

The integration of natural selection, which focuses on exploitation, and genetic inheritance, which promotes
exploration, enables GAs to effectively tackle complex optimization problems [98]. For a more detailed
discussion on genetic algorithms, refer to the textbook by Goldberg [102].

Ant Colony Optimization
Ant Colony Optimization (ACO) was introduced by Dorigo, Maniezzo, and Colorni [103] to solve TSPs
and later applied to VRPs by Bullnheimer, Hartl, and Strauss [104]. The method draws inspiration from
foraging behavior within ant colonies, where individual ants find the shortest paths between their nest
and food sources by following pheromone trails left by others. The algorithm starts by deploying a set
(population) of artificial ants, which represent vehicles, from random customers in the network. These ants
explore paths across the customer graph G = (V, E) randomly, selecting the next unvisited customer with
equal probability until all customers are visited by every ant. The ants deposit pheromones ∆τij on the
edges (i, j) ∈ E they traverse, making those paths more likely to be chosen in subsequent iterations. In
later iterations, the selection of edges by ants is determined by two factors: how effective the traversal of
that edge was in previous iterations (stored in pheromone trails τij) and the inherent promise of that edge
(based on local heuristics like distance dij , energy consumption hij , or traversal duration tij). Over time,
pheromones on less optimal routes evaporate, reducing their influence, while shorter and better routes
accumulate more pheromone and thus become increasingly favored. Note that this process yields solutions
for the TSP. To adapt it for the EVRP, capacity and battery constraints can be incorporated by having
ants return to the depot when load capacity is met [104] and by inserting the nearest charger when the
remaining battery energy is insufficient for the next customer [105]. For more information on ant colony
optimization, we refer to Dorigo and Stützle [106].

Memetic Algorithms
Memetic algorithms are a class of population-based metaheuristics that leverage the exploratory strength
of evolutionary methods alongside the intensification capabilities of neighbourhood-based local search
heuristics [107]. One notable example is Hybrid Genetic Search (HGS), introduced by Vidal et al. [108] to
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address the Multi-Depot Periodic Vehicle Routing Problem (MDPVRP), which involves multiple depots
and multi-day planning. This approach was later extended into a unified framework capable of solving a
wide range of multi-attribute VRPs [109].

In HGS, offspring are created through genetic crossover and subsequently refined using local search with
swap and relocate operators. The offspring are then categorized into feasible and infeasible populations.
Infeasible solutions undergo a repair process with a certain probability, during which the penalty for
constraint violations in the cost function is increased tenfold and another round of local search is performed
to restore feasibility. Successfully repaired solutions are moved to the feasible population. A greedy
elimination strategy is applied whenever the population exceeds a predefined limit, keeping the fittest
individuals in the population.

Metaheuristics in Practice
All the aforementioned metaheuristics have successfully been applied to solve larger instances of EVRPs.
For a detailed overview per metaheuristic, we refer to the review by Kucukoglu, Dewil, and Cattrysse [27].

Among all methods, ALNS stands out as the most frequently employed in works addressing the EVRP.
Demir, Bektaş, and Laporte [110] were among the first to apply ALNS to the green vehicle routing problem
introduced by Erdoğan and Miller-Hooks [22]. Subsequent studies have extended its use to various EVRP
variants: Goeke and Schneider [48] addressed the MF-EVRPTW, Keskin and Çatay [31] focused on the
EVRPTW-PR, Keskin, Laporte, and Çatay [44] incorporated time-dependent waiting durations at charging
stations, Keskin, Çatay, and Laporte [111] considered time uncertainty, and Pelletier, Jabali, and Laporte [4]
and Wang, Zheng, and Zhou [112] used it to solve the EVRPTW-PR under energy consumption uncertainty.

The combination of VNS with TS was introduced by Schneider, Stenger, and Goeke [30] for the EVRPTW
and later adopted by Bruglieri et al. [49] for the EVRPTW-PR. Jeong et al. [113] also applied this hybrid
approach to a variant involving energy consumption uncertainty. SA has been used as the primary heuristic
by Felipe et al. [114], who integrated multiple local search strategies to solve the EVRPTW-PR.

Evolutionary and memetic algorithms are gaining traction in this domain too. For instance, Zhang et al.
[105] and Mao et al. [115] utilized an ACO approach, while Amiri, Zolfagharinia, and Amin [73] combined
ALNS with a multi-objective GA to address energy consumption uncertainty. Additionally, Xiao et al.
[116] proposed a memetic algorithm that integrates GA with local search under TS to handle mixed
backhaul scenarios, whereas Dong, Wang, and Zhang [117] introduced one with Adaptive Local Search
(ALS) to solve a variant of the VRP with dynamic demands. Hiermann et al. [118] applied HGS to solve
the MF-EVRPTW with a mixed fleet of conventional and electric vehicles, while Vidal et al. [119] used it
to address a variant with time-dependent service and traversal durations.

2.3.3. Learning-based Methods
Learning-based methods for solving the VRP come in many flavours. Since we do not focus on learning-
based methods in this work, we limit our discussion to an overview of some useful applications. We refer to
the surveys by Li et al. [57], Bai et al. [120], and Bogyrbayeva et al. [121] for more comprehensive reviews
of learning-based optimization methods for the VRP.

Problem Decomposition
In practical settings, a widely adopted approach to manage the complexity of large-scale VRP instances is the
Cluster First, Route Second (CFRS) strategy [122]. This paradigm begins by assigning customers to specific
vehicles through clustering and then constructs individual vehicle routes using either (meta)heuristics
or exact optimization techniques [120]. This introduces the challenging task of making optimal clusters,
which is in itself an NP-hard problem. However, unsupervised learning methods, such as K-Means [123]
and density-based clustering [124], can be used to cluster the customers efficiently, like in the work by
Erdoğan and Miller-Hooks [22], where a density-based spatial clustering method is combined with the
MCWS heuristic.

End-To-End Learning
End-to-end-learning approaches aim to directly learn a mapping from problem instances to routing solutions,
without relying on intermediate optimization steps. Hence, once trained, they can quickly generate solutions
for unseen instances during inference. Models for end-to-end learning often take the shape of advanced
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deep learning models including Graph Neural Networks (GNNs) [125] to extract network features and
Recurrent Neural Networks (RNNs) [126] to deal with sequential information. Supervised end-to-end-
learning approaches are typically only applied to simpler routing problems that resemble a TSP, because
they depend on large datasets of high-quality VRP solutions, which are often unavailable [57, 121].

To overcome this limitation, Reinforcement Learning (RL) [127] has emerged as a promising end-to-end-
learning alternative. In this approach, an agent interacts with the environment, represented by the current
routing solution, by selecting actions, such as assigning a customer to a specific vehicle route. The agent
then receives a reward, which reflects the impact of that action on the objective function. This feedback
loop enables the agent to refine its decision-making strategy over time based on the outcomes of its actions
in various environment states. Unlike supervised learning methods, RL methods do not rely on precomputed
solutions, making them particularly well-suited for tackling complex and dynamic VRPs [57, 121]. A
notable application of RL to solve complex EVRPs is the study by Basso et al. [128], in which a safe RL
approach is used to address uncertainties in energy consumption.

Improving Heuristics
Instead of replacing them, machine learning methods can also be used to improve heuristic solution methods
for the VRP. These often involve a large number of hyper-parameters, such as the destroy rate in ALNS,
the acceptance criteria in SA or the population size in GAs. The challenge of finding good parameters to
ensure high quality solutions is a problem on its own, known as the Parameter Setting Problem (PSP)
[120]. Data-driven regression models can be used to link problem-specific features to optimal parameter
values. An example is the work by Calvet et al. [129] that introduces statistical learning to fine-tune an
Iterated Local Search (ILS) heuristic [130] for the multi-depot VRP.

Beyond parameter tuning, machine learning can be made to play a role in guiding the search process itself,
learning which neighbourhood functions to select during local, variable, and large neighbourhood search
procedures. An example is the work by Lopes Silva et al. [131], who utilized a multi-agent RL framework
to train agents for LS neighbourhood selection in solving the VRP with time windows.

More recently, Nadi et al. [132] explored the use of Bayesian optimization [133] to learn spatial and temporal
preferences of human fleet planners from partially observed tours. These learned preferences were then
integrated into the ALNS objective function, enabling the metaheuristic to generate routes that better
reflect human decision-making.

2.4. Modelling the Energy Consumption of Electric Vehicles
The modelling of energy consumption for electric vehicles is a critical aspect of the EVRP, as it directly
influences the feasibility of the planned routes in practice. Thus far, we have abstracted energy consumption
into a deterministic parameter hkij that is assumed to be known for every edge (i, j) ∈ E and vehicle
k ∈ K. In reality, this highly complex value is often not readily available as it depends on many factors
including traversal distance, traffic and road conditions, vehicle characteristics, load level, and environmental
conditions [27]. Works such as those by Erdoğan and Miller-Hooks [22] and Schneider, Stenger, and Goeke
[30] consider the energy consumption to simply be a linear function of the the travelled distance. Although
such a linear formulation eases the formulation of a MILP, non-linear approaches modelling the longitudinal
dynamics of the vehicles can often obtain more realistic results [27].

2.4.1. Longitudinal Vehicle Dynamics Model
Many non-linear modelling techniques stem from the research by Barth, Younglove, and Scora [134],
modelling the longitudinal dynamics of vehicles to estimate engine power demand. Such models, as first
applied to the VRP setting by Demir, Bektaş, and Laporte [135], calculate the mechanical power required
to overcome rolling resistance, aerodynamic drag, and gravitational forces, while accounting for engine
power losses. Examples include the works of Pelletier, Jabali, and Laporte [4], Goeke and Schneider [48],
Basso et al. [51], and Amiri, Zolfagharinia, and Amin [73].

What sets HGEVs apart from combustion engine Heavy Goods Vehicles (HGVs) is their ability to recuperate
energy. During deceleration or while driving downhill, the traction force can become negative, allowing
energy to be transferred back to the battery. In this process, known as regenerative breaking, the electric
motor functions as a generator, converting the vehicle’s kinetic energy back into electrical energy that can
be reused to power the vehicle.
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Since regenerative braking can extend the vehicle’s range, it is often excluded to provide more conservative
range estimates, as in Pelletier, Jabali, and Laporte [4]. However, to obtain more realistic estimates, the
model by Asamer et al. [6] includes recuperation. Table 2.5 and Model 5 illustrate the longitudinal vehicle
dynamics modelling approach including recuperation to model the total energy consumption of a vehicle as
a function of the total traversal duration [6, 134].

Parameters
g Gravitational constant [in m/s2]
cr Rolling friction coefficient [in N/kN]
ρa Air density [in kg/m3]
vmin Minimum velocity of the vehicle required for regeneration [in m/s]
cd Aerodynamic drag coefficient
Af Frontal area of the vehicle [in m2]
ηM Energy efficiency of transmission, motor and power conversion [in %]
ηG Energy efficiency of transmission, generator and in-vehicle charger [in %]
P0 Power demand of auxiliary components (e.g: airco, infotainment) [in W]
T Route duration [in s]
t Timestep within range 0 . . . T [in s]

Variables
m(t) Total vehicle mass at timestep t [in kg]
θ(t) Gradient angle of the road at timestep t [in degrees]
v(t) Velocity of the vehicle at timestep t [in m/s]
a(t) Acceleration of the vehicle at timestep t [in m/s2]

Fr(t) Rolling resistance at timestep t [in N]
Fa(t) Aerodynamic drag at timestep t [in N]
Fg(t) Gravitational force at timestep t [in N]
Ft(t) Traction force at timestep t [in N]

PM (t) Mechanical power at timestep t [in W]
Pout(t) Total power demand at timestep t [in W]
Pin(t) Recuperation energy at timestep t [in W]
P (t) Total powerat timestep t [in W]

E(T ) Total vehicle energy consumption for route duration T [in kWh]

Table 2.5: Notation overview for the Longitudinal Vehicle Dynamics Model for Energy Consumption
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Model 5 – Longitudinal Vehicle Dynamics Formulation for Energy Consumption

Rolling resistance:
Fr(t) = cr ·m(t) · cos θ(t). (2.28)

Aerodynamic drag:
Fa(t) =

1

2
· ρa ·Af · cd · v(t)2. (2.29)

Gravitational force:
Fg(t) = m(t) · g · sin θ(t). (2.30)

Traction force:
Ft(t) = m(t) · a(t) + (Fr(t) + Fa(t) + Fg(t)). (2.31)

Mechanical power:
PM (t) = Ft(t) · v(t). (2.32)

Total power demand:

Pout(t) =
PM (t)

ηM
+ P0. (2.33)

Recuperation of energy:

Pin(t) =

{
0, if v(t) ≤ vmin.

Ft(t) · v(t) · ηG + P0, otherwise.
(2.34)

Total power:

P (t) =

{
Pout(t), if Ft(t) ≥ 0.

Pin(t), if Ft(t) < 0.
(2.35)

Total energy consumption:

E(T ) =
1

3.6 · 106
·
∫ T

0

P (t) dt. (2.36)

Here, Eq. (2.28) to Eq. (2.30) model the forces acting on the vehicle, which vary with speed (v(t), a(t)), the
curb and cargo weight of the vehicle (m(t)), and the road, environmental, and tire conditions (θ(t), ρa, cr).
The traction force from Eq. (2.31) is the force required to achieve the desired acceleration a(t), according to
Newton’s Second Law. Equations Eq. (2.32) and Eq. (2.33) translate this to the total power Pout(t) that the
electric motor needs to deliver, given the current velocity v(t), while accounting for the energy efficiency ηM
of the transmission, motor, and power conversion, as well as additional energy consumption P0 by auxiliary
components such as air conditioning and infotainment systems. Eq. (2.34) describes the recuperation of
energy. During recuperation, parameter ηG accounts for the efficiency of the transmission, generator, and
in-vehicle charger. Note that the total power P (t) in Eq. (2.35) can be negative due to energy recuperation.
To determine the total energy consumption from the vehicle’s battery in kWh, Eq. (2.36) integrates the
total power P (t) over the route duration T .

2.4.2. Parameter Analysis
The parameters in Table 2.1 are assumed to be known and fixed for every tour. The gravitational constant
g is known to be 9.81m/s2. The values for the rolling friction coefficient cr for heavy duty (category C3)
tyres found within the literature lie within the range of 5.01 to 6.80 N/kN. This value is also regulated
by the European Union to be at most 6.5 N/kN since 2020. In the baseline heavy duty tractor-trailer
combination model developed by Oscar Delgado and Muncrief [136], a value of 5.5N/kN is taken as the
baseline. The air density ρa depends on the temperature and ranges from 1.34 to 1.16 kg/m3 assuming
temperatures ranging from −10 to 30 ◦C [137]. The minimum velocity vmin required to recuperate energy
while breaking or descending is estimated to be around 15 km/h [6, 138]. The aerodynamic drag coefficient
cd and the vehicle’s frontal area Af vary based on the manufacturer and model. These two factors are
frequently combined into a single measurement known as the air drag area cd · Af , expressed in m2. In
2021, the average air drag area across all European truck manufacturers was approximately 5.63m2 [139].
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However, several truck brands have introduced new cabins with more aerodynamic designs since then.
Considering the energy efficiency as a constant is a simplification of reality as it varies depending on
the vehicle and environmental conditions such as temperature. Notably, Fetene et al. [140] found a 34%
decrease in the overall energy efficiency of BEVs during winter compared to summer. Asamer et al. [6]
analyzed values ranging from 0.63 to 0.90 for ηM and from 0.64 to 0.82 for ηG in their sensitivity analysis,
setting baseline values at 0.9 and 0.8, respectively. Moreover, their sensitivity analysis concludes that the
energy consumption is most sensitive to ηM out of all constants. Basso et al. [51] models the overall energy
efficiency as a second-degree polynomial in the velocity and estimates the values using regression. The power
demand of auxiliary components such as air conditioning is highly dependent on driver behavior. Pelletier,
Jabali, and Laporte [4] report a baseline of 1.58 and an upper bound of 4.43 kW for medium-duty electric
vehicles. Oscar Delgado and Muncrief [136] report slightly higher values for heavy duty tractor-trailer
combinations ranging from 4.55 to 6.65 kW, and establish a baseline of 5.5 kW.

2.4.3. Variable Simulation
In Model 5, the variables under simulation are the total vehicle mass m(t), gradient angle of the road θ(t),
velocity v(t) and acceleration a(t). To obtain energy consumption values hkij for every edge (i, j) ∈ E and
vehicle k ∈ K, one could explicitly model the underlying road network of every edge (i, j) ∈ E as a separate
graph Er = (Vr, Er) of road segments in which the traversal of the shortest path Sij ⊆ Er from i to j can
be simulated for vehicle k to obtain the values of the variables for t = 0 . . . T , setting T to be the time tij
required to traverse (i, j) ∈ E , according to the simulation [51].

Vehicle Mass
The curb mass of heavy duty tractor-trailer combinations typically lies in the range of 14,000 to 15,700 kg,
with Oscar Delgado and Muncrief [136] setting baselines of 7,000 kg for the tractor and 7,400 kg for
the trailer. On European roads, the vehicle’s total mass including the cargo, also referred to as Gross
Combination Mass (GCM), is restricted to be 40,000 kg, which leaves a maximum payload of 25,600 kg.
However, in practice the payload is typically around 19,300 kg [136].

In Model 5, note that the total mass m influences all forces but aerodynamic drag, making mass a crucial
factor in energy consumption. During a trip, the total mass m of a vehicle changes over time as it makes
stops to partially unload its cargo. However, for a traversed road connection (i, j) ∈ E , the mass remains
constant. Therefore, instead of being a function of timestep t, it can also be expressed as a linear function
of the currently loaded cargo quantity u, using

m(u) := mk
c +muu, (2.37)

where mk
c is the curb mass of vehicle k ∈ K and mu is the mass of one unit of cargo [48]. Note that in

Section 2.2, we defined ukj to denote the amount of cargo in the vehicle upon arrival at location j. Hence,
the total vehicle mass of vehicle k ∈ K when traversing edge (q, r) ∈ Sij is equal to m(ukj ).

To maintain linearity in the optimization problem, Wang et al. [69] and Goeke and Schneider [48] pre-
compute edge-based energy consumption values using simulations for different mass values and vehicles.
They then model the energy consumption hkij as an affine function of the vehicle’s mass m(ukj ) defined by
Eq. (2.37), for every edge (i, j) ∈ E and vehicle k ∈ K.

Gradient Angle
Although the Netherlands is characterized by predominantly flat terrain, such that gradient angles
seem insignificant, Donkers, Yang, and Viktorović [5] considered the effect of gradient angles on energy
consumption of passenger BEVs in the Netherlands and found that a slight slope of 1◦ could already
double the energy consumption when driving at velocities around 30 km/h, while adding 30 to 35% to the
energy consumption when driving at higher velocities at the motorway. Although similar studies tailored
to HGEVs could not be identified, the impact of gradient angles on energy consumption is expected to
be even more significant for HGEVs due to the larger mass term in the gravitational force. To take the
gradient of traversed road segments (q, r) ∈ Er into account, one can leverage elevation data from APIs
such as HERE [141] or open data projects such as Shuttle Radar Topography Mission (SRTM) [142] and
European Digital Elevation Model (EU-DEM) [143].
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Velocity and Acceleration
The velocity and the acceleration are closely related as the acceleration at timestep t directly determines the
velocity at timestep t+1. Note that in Model 5, the velocity term in Eq. (2.29) for aerodynamic drag is the
only higher-order term in the entire model, making it the most influential factor for the energy consumption
at high velocities. Goeke and Schneider [48], Amiri, Zolfagharinia, and Amin [73], and Pelletier, Jabali,
and Laporte [4] assume a constant velocity of 90, 60 and 45 km/h, respectively over each edge (i, j) ∈ E ,
omitting acceleration and disregarding the characteristics of the underlying road network Er.

Basso et al. [51] found that estimating total energy solely based on average velocity accounts for only about
76% of the total energy estimated when the acceleration and deceleration contributing to that average
velocity are also considered. Hence, they consider the traversal of underlying road segments (q, r) ∈ Er,
which are each subdivided into three phases to account for acceleration and deceleration. During the
acceleration phase, the vehicle speeds up from an initial velocity to a cruising velocity with a constant
acceleration of at most 2m/s2. In the cruising phase, acceleration is zero, and the velocity remains constant.
Finally, in the braking phase, the velocity decreases with constant deceleration. The energy consumption
per phase is calculated based on its average velocity and constant acceleration. The energy consumption for
edge (q, r) ∈ Er is the sum of that of its three phases and the total energy consumption per edge (i, j) ∈ E
is determined by summing over Sij .

Some works consider traffic and other road conditions to craft accurate duty cycles, which give a second-
to-second speed profile using data or detailed simulations over the road segments (q, r) in the road graph
Er. Basso et al. [51] validate their three phase model by using the Simulation of Urban MObility (SUMO)
simulator developed by Lopez et al. [144] to model various traffic conditions. In SUMO the traffic is
continuously simulated whilst a vehicle follows a predetermined route. In this case, SUMO continuously
sends a target speed to a proprietary vehicle model, which simulates the driver and vehicle attempting to
follow the duty cycle, accelerating and braking to reach the target velocity. Traffic lights, turns, surrounding
vehicles, and other traffic situations are all simulated by SUMO to generate an accurate speed profile.
Although accurate and therefore great for validation purposes, the application of SUMO requires a detailed
mapping of the entire operational area of the vehicles, rendering it infeasible for country-wide operations.

Wang et al. [69] instead pair the AMBER vehicle simulator [145] with the HERE [141] routing API,
which accounts for traffic conditions and returns the driving path to follow as well as the duty cycle.
Keyantuo et al. [146] do not employ their own longitudinal vehicle model and instead rely entirely on
the energy calculations performed by the HERE API internally based on its integrated vehicle dynamics
model. Similarly, Woo et al. [147] input the routes returned by HERE to another API named WideSense
[148] to calculate high-precision estimates of the traversal durations and energy consumptions for every
edge (i, j) ∈ E based on a proprietary model. The drawback of using such APIs is that they have limited
free quotas and often require paid subscriptions to handle the number of requests needed to populate a
reasonably sized traversal duration or energy consumption matrix.

2.5. Incorporating Uncertainty into Optimization Problems
In classical EVRPs modelled as MILPs, parameters such as traversal durations, service durations, and
energy consumption are assumed to be deterministic. However, in many real-life scenarios, these parameters
are uncertain. When this uncertainty is ignored, the resulting solutions can often violate real-world
constraints, leading to vehicles arriving late or running out of battery. Hence, various methods have been
developed to account for such uncertainties within optimization models. We discuss the two primary
approaches to optimization under uncertainty: stochastic optimization, and robust optimization [149, 150,
151, 152].
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2.5.1. Stochastic Optimization
Stochastic Optimization (SO) refers to optimization techniques where some parameters are uncertain
(stochastic) and modelled as random variables with known probability distributions. These techniques aim
to make decisions that perform well on average, often incorporating probabilistic guarantees [149].

Recall the definition of an MILP from Definition 2. We now consider an extension where uncertainty
affects a part of the constraint system. Let the constraint matrix A ∈ Rm×n and the right-hand side vector
b ∈ Rm be known and fixed (deterministic). Additionally, let L(z) ∈ Rm1×n and l(z) ∈ Rm1 form a second
set of constraint parameters, whose elements are given by affine functions of the random variable vector
z ∈ Rl, which is assumed to have a known probability distribution and probability measure P, resulting in

L(z)x ≤ l(z). (2.38)

A naive method to address the uncertainty is to replace the random vector z with its expected value E[z],
and solve the resulting deterministic problem. However, this approach provides no formal guarantee on the
feasibility of the solution under realizations of z 6= E[z] that deviate from their expectation. To explicitly
account for such realizations, one may instead adopt a chance-constrained approach, where Eq. (2.38) is
enforced to hold with a high probability of least (1− ε) for some tolerance level ε ∈ (0, 1). This leads to a
Stochastic Linear Program (SLP) with probabilistic constraints, formulated as follows [153]:

Model 6 – SLP with Probabilistic Constraints

ζ∗ = min
x

c>x (2.39)

s.t.

Ax ≤ b, (2.40)
P(L(z)x ≤ l(z)) ≥ 1− ε. (2.41)

The chance constraint modelled by Eq. (2.41) is generally non-linear in x and can be computationally
challenging to evaluate or optimize over, especially when the distribution of z is complex. Moreover, in
practice, the exact probability distribution may not be known a priori, so it has to be estimated from
finite data samples using methods such as Monte Carlo simulation, which introduces additional modelling
uncertainty.

Stochastic Optimization with Recourse
An alternative way of dealing with stochasticity is to divide the decision-making process into two stages, a
technique known as stochastic optimization with recourse. In this setup, first-stage decisions are made
before the uncertainty is revealed, whereas second-stage decisions or recourse actions are made after the
uncertainty is realized, allowing adjustments to the initial decisions to maintain feasibility under the true
conditions. The goal is to minimize the expected total cost, which includes both the first-stage cost and
the expected cost of recourse actions given the first-stage decisions.

Starting from the MILP definition from Definition 2, the corresponding SLP can be modelled as follows.
Let z ∈ Rl be a random vector representing uncertainty, defined on a probability space with a known
distribution. Next to the decision vector x ∈ Rn for first-stage decisions, let the vector y ∈ Rn2 comprise
second-stage decision variables that depend on the realization of z. Let the cost coefficients for the recourse
actions be given by vector d ∈ Rn2 and let F (z) ∈ Rm2×n2 and f(z) ∈ Rm2 be the constraint matrix and
right-hand vector imposing constraints on y. Similarly, let matrices G(z) ∈ Rm3×n and H(z) ∈ Rm3×n2

and right-hand vector j(z) ∈ Rm3 define coupling constraints between the first- and second-stage variables.
The parameters of these matrices and vectors are again affine functions of the uncertainty realization z.

Ω(x, z) can then be defined as the set of all feasible second-stage decisions y for given first-stage decisions
x and uncertainty realization z:
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Definition 6 – Second-Stage Feasible Region

Ω(x, z) := {y : F (z)y ≤ f(z), G(z)x+H(z)y ≤ j(z), y ≥ 0}.

Furthermore, a recourse function Q(x, z) can be defined to give the optimal value of the second-stage
problem given the first-stage decisions x and uncertainty realization z:

Definition 7 – Recourse Function

Q(x, z) := min
y∈Ω(x,z)

{d>y}.

Now, the resulting SLP with recourse is given by:

Model 7 – SLP with Recourse

ζ∗ = min
x

c>x + Ez[Q(x, z)] (2.42)

s.t.

Ax ≤ b. (2.43)

In practice, the expectation Ez[Q(x, z)] is typically not readily available in closed form. However, if a finite
set of scenarios is given {zs}Ss=1, where each scenario zs occurs with known probability ps, the expectation
amounts to

Ez[Q(x, z)] =

S∑
s=1

psQ(x, zs). (2.44)

Substituting this into Model 7 results in a linear optimization problem, that can be solved using the
techniques discussed in Section 2.3. If the exact probabilities are unknown but a dataset of observed
uncertainty realizations is available, MCS can be used to estimate the expected value. For further reading
on stochastic optimization techniques, we refer to the textbooks by Birge and Louveaux [149], Kall, Mayer,
et al. [153], and Heyman and Sobel [150].

2.5.2. Robust Optimization
Unlike stochastic optimization, Robust Optimization (RO) does not rely on known probability distributions
for the uncertain parameters. Instead, uncertainty is represented through uncertainty sets, which contain
all plausible realizations of uncertainty. Uncertainty sets are often constrained by an uncertainty budget
that controls how much uncertainty is allowed. Robust optimization techniques aim to identify solutions
that perform well under the worst-case scenario within these sets, rather than to optimize for the expected
outcome, thereby providing stronger guarantees on feasibility than SO techniques [151].

Let z ∈ U ⊂ Rl be an l-dimensional vector containing uncertain variables (z1, . . . , zl), so that every
uncertainty realization z is part of uncertainty set U . Borrowing Eq. (2.38) from the stochastic formulation
to represent constraints on x under the uncertainty realization z ∈ U , one can formulate the robust
optimization problem as follows:

Model 8 – Robust Optimization

ζ∗ = min
x

max
z∈U

c>x (2.45)

s.t.
Ax ≤ b, (2.46)

L(z)x ≤ l(z) ∀z ∈ U . (2.47)
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Since the uncertainty vector z ∈ U can take infinitely many real-valued realizations, Eq. (2.47) generally
represents an infinite family of constraints. To make the problem tractable, the uncertainty set U is
typically chosen to be a compact and convex subset of Rl, meaning it is both closed and bounded. For
formal definitions of these concepts, we refer to the textbook by Bertsimas, Brown, and Caramanis [151].

According to Carathéodory’s theorem, any point z ∈ U can be expressed as a convex combination of at
most l + 1 extreme points of U , provided that U is compact and convex. Furthermore, since the constraint
function (left-hand side) of Eq. (2.47) is linear in z, it is also convex. A fundamental result in convex
analysis states that a convex function over a compact convex set attains its maximum at an extreme point
of that set. Therefore, to ensure that the constraint in Eq. (2.47) holds for all z ∈ U , it is sufficient to
verify that it holds for all extreme points of U [154, 155]. This reduces the infinite constraint set to a finite
one, indexed by the set of extreme points ext(U):

L(z)x ≤ l(z) ∀z ∈ ext(U). (2.48)

Thus, substituting Eq. (2.48) for Eq. (2.47) results in a robust model with finitely many constraints.

Adaptive Robust Optimization
In Model 8, all decisions are made simultaneously, accounting for every possible uncertainty realization.
This results in a single solution that is heavily biased towards the worst-case scenario and therefore very
conservative [151]. Like stochastic optimization with recourse, the robust optimization paradigm also has
an adaptive variant, named Adaptive Robust Optimization (ARO), in which the decision process is split in
two stages to make the solutions less conservative.

Using the definition and notation for the recourse function from Definition 7, one can formulate the adaptive
robust optimization model as follows:

Model 9 – Adaptive Robust Optimization

ζ∗ = min
x

(c>x+max
z∈U

Q(x, z)) (2.49)

s.t.
Ax ≤ b. (2.50)

≡

min
x, η

η (2.51)

s.t.
Ax ≤ b, (2.52)

η ≥ c>x+Q(x, z), ∀z ∈ U , (2.53)

η ∈ R≥0. (2.54)

Here. the equivalent second variant is based on the assumption that the maximum of an infeasible problem
with Ω(x, z) = ∅ is defined as −∞.

Essentially, this just replaces the expectation in Model 7 with a maximization over the uncertainty set
U to account for the worst-case scenario, and incorporates the constraints defined in Eq. (2.47) into the
coupling constraints from Definition 7. Under the assumption of a compact, convex set, ext(U) can again
be substituted for U .

2.5.3. Uncertainty Sets
Usually, uncertainty sets for RO are modelled as polyhedra, which are closed and compact sets that can be
described by finitely many linear equations, so that membership can be modelled using an MILP. Next, we
review several commonly used uncertainty sets in robust optimization, as presented in the textbook by
Bertsimas, Brown, and Caramanis [151]:
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Box Uncertainty Set
The most trivial uncertainty set is the box uncertainty set. Let znomi denote the nominal or mean values of
zi for i = 1 . . . l, which we will henceforth denote as i ∈ [l]. Similarly, let zdevi be the symmetric maximal
deviation from znomi , so that all variables zi reside within intervals [znomi − zdevi , znomi + zdevi ]. This gives
rise to the box uncertainty set Ubox:

Definition 8 – Box Uncertainty Set

Ubox := {z ∈ Rl : ∀i ∈ [l] , znomi − zdevi ≤ zi ≤ znomi + zdevi }.

Budgeted Uncertainty Set
The box uncertainty set assumes that all l variables zi can attain their worst-case deviation |zi − znomi | at
the same time, giving rise to very pessimistic scenarios that are very unlikely in reality. Hence, a parameter
Γ, denoting the maximum number of simultaneous worst-case deviations, is often introduced to bound the
total uncertainty within a realization z. This gives rise to the budgeted uncertainty set Ubudget:

Definition 9 – Budgeted Uncertainty Set

Ubudget := {z ∈ Rl : ∀i ∈ [ l ] , znomi − zdevi ≤ zi ≤ znomi + zdevi ,

l∑
i=1

|zi − znomi |
zdevi

≤ Γ}.

Note that setting Γ ≥ l yields the box uncertainty set and that shrinking Γ can be thought of as cutting
corners of the box uncertainty set. Determining an appropriate Γ value without any information on the
covariance of the uncertain variables is generally difficult. However, if a dataset is available, one can
estimate Γ by adjusting it to create the smallest-volume set that comprises all data points.

Ellipsoidal Uncertainty Set
Alternatively, constructing an uncertainty set can be thought of as constructing a confidence interval like in
statistics. An uncertainty set can be defined as an ellipsoid with scaling matrix P , center p, and radius r:

Definition 10 – Ellipsoidal Uncertainty Set

Uellipsoid := {z ∈ Rl : ‖Pz − p‖2 ≤ r}.

A nice property of the ellipsoidal uncertainty set is that it can easily be fitted to given uncertainty
realizations zs, assuming these originate from a multivariate Gaussian distribution. The LP described in
Model 10 minimizes r to determine the minimal confidence level of the multivariate Gaussian N (µ,Σ)

estimated from S given data points {zs}Ss=1, with sample mean µ̂ ∈ Rl and covariance matrix Σ̂ ∈ Rl×l

containing all S scenarios or data points [156]:

Model 10 – LP Fitting an Ellipsoidal Uncertainty Set Based on Sampled Data

min
r

r

s.t:
‖(Σ̂

1/2
)−1(zs − µ̂)‖2 ≤ r, ∀s ∈ [S].

Unlike the box and budgeted uncertainty sets, the ellipsoidal uncertainty set is non-polyhedral, which
means that it cannot be described by finitely many linear equations, such that membership cannot be
enforced using an MILP. Instead a Second-Order Cone Programming (SOCP) has to be solved [151].

Data-Driven Uncertainty Sets
While the aforementioned uncertainty sets are conceptually straightforward and allow for reduced con-
servatism by adjusting parameters such as Γ and r, doing so typically requires domain-specific expertise.
Furthermore, these methods rely on the assumption that uncertainty dimensions are independently and
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symmetrically distributed, which limits their effectiveness in capturing correlations among uncertain
variables. When data is available, uncertainty sets for robust optimization can be directly estimated from
it, as demonstrated in recent studies [157, 158].

Early works focused on the creation of polyhedral uncertainty sets, such as the study by Shang, Huang,
and You [157] employing Kernel-based Support Vector Clustering (K-SVC) and the work by Ning and You
[159] combining Principal Component Analysis (PCA) with Kernel Density Estimation (KDE). Although
computationally efficient, these methods lacked adaptivity to complex uncertainty distributions. Later,
Goerigk and Kurtz [160] employed a Deep Neural Network (DNN) to construct highly compact but
non-convex uncertainty sets, demanding high computational resources.

Recently, Li, Yorke-Smith, and Keviczky [158] introduced an alternative approach for constructing uncer-
tainty sets by combining several machine learning techniques. The method begins with Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [124] to filter out low-probability outliers. Next,
Gaussian Mixture Models (GMM) [161] are used to form a predefined number of clusters. Within each clus-
ter, PCA is applied to de-correlate features. This results in box-shaped uncertainty sets in the transformed
PCA space. The overall uncertainty set is then defined as the union of these individual subsets, which
forms a non-convex but computationally tractable structure that can be represented using a limited number
of linear constraints. This approach effectively captures complex uncertainty distributions while preserving
computational efficiency. A similar methodology can also be used to construct ellipsoidal uncertainty sets
that better align with Gaussian-shaped clusters, although this again requires solving an SOCP.

2.5.4. Solution Methods for Adaptive Robust Optimization
Even if the uncertainty set U is compact and convex, such that it can be substituted with the set of its
extreme points, ext(U), the number of scenarios that need to be considered to arrive at a robust feasible
solution can grow large when the dimensionality l is high [156]. This is particularly troublesome for ARO,
where the number of variables and constraints scales with the number of considered scenarios. Hence,
numerous techniques have been developed to approximately solve adaptive robust optimization problems.
We distinguish between inner-approximation methods and outer-approximation methods.

Inner Approximation Methods
The optimal second-stage decision can be represented as a function y(z), known as a decision rule [156].
A notable example of such an approach is the work by Ben-Tal et al. [162], modelling y(z) as an affine
function of z, whose parameters are learned through co-optimizing them with x. However, Jeong et al.
[113] reject this approach for the EVRPTW-PR, as the learning of the affine parameters increases the
already large number of decision variables, such that the problem easily becomes intractable. Another
downside of such an inner approximation technique is that it might not cover all optimal decision rules,
such that only a subset of all feasible x is considered.

Outer Approximation Methods
On the other hand, outer approximation methods operate on a superset of the feasible x. The most prevalent
examples are the Benders decomposition with cutting planes technique, as introduced by Bertsimas et al.
[154], and the Column and Constraint Generation (CCG) technique by Zeng and Zhao [155]. Both methods
are very similar and decompose the problem into a Restricted Master Problem (RMP) and subproblem (SP).
The RMP solves the main optimization problem over a finite subset of scenarios Ū ⊆ U . The SP is also
known as the pessimization or adversary’s problem. It aims to find a new scenario q defined by uncertainty
realization zq ∈ U \ Ū that would violate the constraints given the current routing solution x for any of
the possible second-stage solutions yq or existing second-stage solution ys with zs ∈ Ū , depending on the
formulation. An identified scenario q is added to the RMP after which the procedure is repeated until the
SP fails to find a new scenario. This indicates that the RMP provides an optimal first-stage solution x
that is robust to all scenarios z ∈ U .

These methods typically yield robust solutions within a few RMP iterations, avoiding the need to exhaustively
enumerate all possible scenarios in the potentially infinite uncertainty set, offering substantial computational
advantages [156]. Note that CCG is an extension of the column generation method described in Section
2.3.1 that adds both variables (columns) as well as constraints (rows) to the problem. The major difference
between the Benders and CCG methods lies in the type of constraints added to the RMP. In CCG, a copy
of the adaptive variables y and the corresponding constraints from the original model are added to the
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master problem. Conversely, in the Benders decomposition approach, the new constraints define cutting
planes that eliminate infeasible solutions.

2.6. Uncertainties in Electric Vehicle Fleet Planning
Having examined how uncertainties can be modelled in optimization problems, and the methods available
to address them, we now shift our focus to related works from the literature to explore the types of
uncertainties encountered as well as the chosen solution methods.

Stochastic VRPs
Uncertainty in conventional VRPs was initially addressed through the Stochastic Vehicle Routing Problem
(SVRP). Most formulations of this problem focus on uncertainty in customer locations, demand quantities,
or traversal and service durations [163, 164]. A foundational contribution by Laporte, Louveaux, and
Mercure [165] introduced a VRPTW model incorporating stochastic traversal and service durations through
chance constraints and a recourse strategy to repair solutions. This approach has since become a standard
in the field, inspiring a wide range of subsequent research. Since we do not focus on stochastic optimization
in our work, we refer to surveys by Gendreau, Jabali, and Rei [163] and Oyola, Arntzen, and Woodruff
[164] for a comprehensive overview of recent developments in stochastic VRPs.

Robust VRPs
More recently, robust optimization techniques have also been applied to conventional VRPs under uncertainty.
Notably, Sungur, Ordónez, and Dessouky [166] and Gounaris, Wiesemann, and Floudas [167] proposed
branch-and-cut algorithms for solving robust CVRPs with uncertain customer demands. Expanding
on this, Hu et al. [168] addressed the combination of demand and traversal duration uncertainty using
a branch-and-price-and-cut approach for the VRPTW. Similarly, Hoogeboom et al. [169] developed a
robust VRPTW model that accounts for uncertainty in both traversal and service durations, using a
branch-and-cut scheme to solve the problem exactly. Adaptive robust optimization approaches using
Benders decompositions have been employed by Jaillet, Qi, and Sim [170] and Lei, Lin, and Miao [171] to
handle uncertainty in traversal durations and customer demands, respectively.

EVRPs under Customer Uncertainty
One of the earliest contributions involving uncertain EVRPs is by Schiffer and Walther [172], who addressed
uncertainties in customer information such as spatial distribution, demand, and service time windows,
through a scenario-based robust optimization approach. Their solution methodology combined ALNS with
dynamic programming. Zhang, Chen, and Zhang [173] explored a setting with stochastic customer demands,
while omitting time window considerations. They proposed a hybrid metaheuristic that integrates VNS
with an evolutionary algorithm.

EVRPs under Energy Consumption Uncertainty without Timing Considerations
Pelletier, Jabali, and Laporte [4] considered the energy consumption of EVs as the source of uncertainty in
the EVRP and solved the problem by integrating a robust optimization model under various uncertainty
sets with a two-phase metaheuristic involving LNS to sketch solutions and LS to refine them. Basso,
Kulcsár, and Sanchez-Diaz [7] predicted the time-dependent energy consumption by applying a probabilistic
Bayesian machine learning technique and integrated chance-constrained partial recharging into a model that
was solved exactly using CPLEX [67]. Although traversal durations and service durations are included to
model precedence constraints, time window constraints are not incorporated. Basso et al. [128] applied safe
reinforcement learning to deal with stochastic customer requests and stochastic energy consumption. Kim,
Park, and Jeong [174] proposed a robust optimization model to address uncertainty in energy consumption
by employing edge segmentation. In this approach, a separate uncertainty budget is used for each edge in
the transport network, which is divided into multiple segments competing for the overall uncertainty budget,
effectively reducing the model’s conservatism. The problem was solved using a GA. Amiri, Zolfagharinia,
and Amin [73] tackled the EVRP with HGEVs under uncertain energy consumption. Energy consumption
was modelled using a box uncertainty set that included both weight-dependent and weight-independent
variables that were applied uniformly across all edges. To manage the trade-off between energy efficiency
and route robustness, they employed multi-objective optimization techniques, combining a non-dominated
sorting GA with ALNS.
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EVRPs under Energy Consumption Uncertainty with Timing Considerations
While the previously mentioned works on energy consumption uncertainty did not consider the temporal
dimension, some other studies did incorporate it, albeit by treating timing-related parameters as determinis-
tic. Wang et al. [69] and Soysal, Çimen, and Belbağ [68] both solved a Pickup and Delivery Problem (PDP)
with electric vehicles and time windows under energy consumption uncertainty. Wang et al. [69] estimated
an ellipsoidal uncertainty set using a probabilistic method for modelling the energy consumption of HGEVs
and solved the corresponding SOCP using Gurobi [66]. Soysal, Çimen, and Belbağ [68] used artificial data
and chance constraints to formulate a model that was solved exactly using CPLEX. Basso et al. [51] utilized
a probabilistic Bayesian machine learning approach to estimate time-dependent energy consumption per
edge for the EVRP. While traversal durations were also modelled as time-dependent, they were treated
deterministically based on estimated values. Time windows were omitted in the problem formulation. Wang,
Zheng, and Zhou [112] employed a combination of ALNS and LS to solve the EVRPTW-PR under budgeted
energy consumption uncertainty. Jeong et al. [113] addressed energy consumption uncertainty in the
EVRPTW-PR using adaptive robust optimization. They employed a budgeted uncertainty set and tackled
the problem using CCG, employing a hybrid VNS-TS metaheuristic in combination with a corridor-based
generalized cost function, as introduced by Schiffer and Walther [172], to solve the RMP. The Alternating
Direction (AD) algorithm proposed by Konno [175] was used to solve the associated pessimization problem.
In a recent study, Damianakis et al. [176] focused on smart charging control strategies and adopted a robust
optimization framework with a budgeted uncertainty set to capture operational uncertainties from the
perspective of an Energy Management System (EMS) connected to the chargers. Their model incorporates
uncertainties in arrival state-of-charge, energy demand, and the arrival and departure times of the electric
vehicles.

EVRPs under Time Variability and Uncertainty
Time-dependent waiting durations at recharging stations for the EVRPTW-PR were addressed by Keskin,
Laporte, and Çatay [44], who segmented the day into multiple time intervals with varying queue lengths.
They applied a queuing model to estimate waiting durations specific to each interval. The routing decisions
were tackled using ALNS, whereas charging and scheduling decisions were refined through an MILP
model solved with CPLEX. Lera-Romero, Bront, and Soulignac [8] incorporated time-dependent traversal
durations and energy consumption into the EVRPTW-PR, treating the parameters for each of the intervals
as deterministic and employing an exact branch-cut-and-price algorithm to solve the problem. Keskin,
Çatay, and Laporte [111] considered stochastic waiting durations at charging stations, applying ALNS to
solve the EVRPTW-PR. They then relied on Monte Carlo Simulation (MCS) to estimate the reliability
and the expected cost of the solutions.

2.7. Overview of Closely Related Work
Building on our extensive literature review, we now present an overview of the most related works,
highlighting the research gaps our work addresses. Table 2.6 presents a summary of the related literature
and our contributions, as stated in Section 1.3.

Addressing Heavy-Duty Electric Vehicle Operations under Uncertainty
While the EVRP has been extensively studied, research specifically targeting heavy-duty electric vehicle
operations under uncertainty remains scarce. Notable exceptions include the works of Basso et al. [7,
51], which focus on electric buses, and those by Pelletier, Jabali, and Laporte [4], Wang et al. [69] and
Amiri, Zolfagharinia, and Amin [73] which target HGEVs in a North American setting, showing differences
in vehicle specifications (e.g., frontal area, mass) and regional factors (e.g., road and traffic conditions)
compared to a European setting. No works with realistic case studies involving a European setting with
HGEVs could be identified.

Basso et al. [7, 51] employ proprietary, high-fidelity vehicle simulation models validated on Swedish bus
operations, which differ significantly from typical HGEV operations, being more urban and stop-intensive.
Their problem formulation lacks practical considerations for delivery problems such as transport costs,
customer demands, and time windows. While their first work relies on deterministic energy consumption
forecasts, their second work utilizes a stochastic optimization approach with chance constraints, which can
lead to route plans that may not be feasible under worst-case scenarios.

Wang et al. [69] use realistic vehicle parameters and simulate energy consumption via duty cycles to define
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an ellipsoidal uncertainty set. However, their model requires solving a second-order cone program, is limited
to small fleets (up to 10 vehicles), and is tested on a static static network, where only the demand changed
between the instances. Pelletier, Jabali, and Laporte [4] incorporate detailed energy modelling but assume
constant velocities, neglecting acceleration and recuperation effects. They also omit charging station visits
and time windows. Amiri, Zolfagharinia, and Amin [73] present a comprehensive optimization model but
simplify energy consumption using only two uncertain variables applied uniformly across the network,
assuming constant velocity.

Employing Scalable Solution Methods for Robust Optimization
The recent work by Wang, Zheng, and Zhou [112] shares methodological similarities with ours, employing
a scalable ALNS metaheuristic to solve a robust formulation based on a budgeted uncertainty set for
the energy consumption. However, their model assumes unlimited charger availability, overlooks partial
recharging, and their evaluation is based on the synthetic examples introduced by Schneider, Stenger, and
Goeke [30], which lack any real-world grounding.

Although adaptive robust optimization has proven effective across a broad spectrum of optimization
problems [177], including vehicle routing problems [170, 171], its application to EVRPs under uncertainty
remains largely unexplored. To date, the only study applying this approach in the EVRP context is by
Jeong et al. [113]. This work employs a budgeted uncertainty set and solves the resulting RMP using a
VNS-TS metaheuristic, in contrast to the ALNS algorithm used in many other studies. Their pessimization
method employs a relaxed version of the problem, which means it does not strictly rule out feasible
scenarios from being added to the RMP. This allows for potential enhancements that could limit the
number of scenarios introduced. Moreover, their evaluation is again based on modified artificial instances
from Schneider, Stenger, and Goeke [30], where expected energy consumption is uniformly assigned across
all arcs and deviations are arbitrarily defined, omitting realistic energy modelling. Lastly, a comparison
with a static robust optimization technique is missing in their work.

Incorporating the Combination of Time and Energy Uncertainties
To the best of our knowledge, no existing research has jointly addressed the uncertainties in both energy
consumption and timing within the EVRP using a robust optimization framework. The study by Lera-
Romero, Bront, and Soulignac [8] incorporates time-varying energy and timing characteristics to account
for traffic congestion effects. However, it does so by dividing the planning horizon into a limited number of
intervals with fixed, known parameters, capturing time variability rather than true uncertainty. Additionally,
their energy consumption model excludes recuperation effects, and the instances used are adapted from those
proposed by Desaulniers et al. [50], which lack real-world grounding. Basso et al. [51] apply a stochastic
optimization approach that includes time-dependent velocity predictions for each edge, influencing the
stochastic energy consumption function. Yet, these predictions are precomputed and treated as deterministic
inputs in the optimization model. Keskin, Çatay, and Laporte [111] do consider true time uncertainty
through stochastic waiting durations at charging stations, but rely on Monte Carlo simulation, which does
not provide formal robustness guarantees.

Enforcing Realistic Constraints on Charging Sessions
Furthermore, there a no works that account for charger availability beyond fixed time windows. Most
EVRP models even overlook the initial charging session at the depot, assuming that vehicles start their
routes with fully charged batteries. Although the recent work by Saklaoui et al. [178] explicitly models the
initial charging phase and limits the total power drawn by simultaneously charging vehicles, focusing on the
integration with the depot’s energy management system, it does not incorporate any form of uncertainty
and omits energy consumption modelling. A similar limitation applies to the study by Keskin and Çatay
[31], which presents a detailed EVRPTW-PR model and utilizes a scalable ALNS-based solution approach,
yet also neglects any uncertainty.
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Closing the Gaps
As stated in Section 1.3, our work addresses the identified research gaps by proposing an ARO framework
that accounts for both time and energy consumption uncertainty. We model energy consumption as a
function of time-domain uncertainty, with parameter estimation performed via MCS. To improve the
computational efficiency of the CCG approximation method for ARO, we introduce a refined pessimization
strategy that selectively incorporates only provably feasible scenarios into the master problem.

To ensure scalability to larger problem instances, we develop a multi-scenario ALNS metaheuristic. Unlike
previous corridor-based methods that rely on complex cost functions and implicit second-stage modelling,
our approach explicitly integrates second-stage decisions and employs intelligent operators to guide the
search. This shifts the complexity from the objective function to the search process, enabling more informed
solution exploration.

Furthermore, we incorporate realistic operational constraints often overlooked in prior studies, including
charger availability, partial recharging, and initial depot charging. Our evaluation is grounded in a realistic
though synthetic European context, using realistic HGEV specifications and operational parameters,
contrasting with prior works that often rely on fully synthetic or North American datasets. Table 2.6
compares our approach with prior work.
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Reference Time Energy Depot Source of Modelling Solution
Windows Modelling Charging Uncertainty Approach Approach

Soysal, Çimen, and Belbağ [68] Energy SO MILP Exact
Kim, Park, and Jeong [174] Energy RO MILP GA
Basso et al. [51] X - MILP Exact
Basso, Kulcsár, and Sanchez-Diaz [7] X Energy SO MILP Exact
Wang et al. [69] X X Energy RO SOCP Exact
Pelletier, Jabali, and Laporte [4] X Energy RO MILP LNS-LS
Amiri, Zolfagharinia, and Amin [73] X X Energy RO MILP ALNS-GA
Wang, Zheng, and Zhou [112] X Energy RO MILP ALNS-LS
Lera-Romero, Bront, and Soulignac [8] X X - MILP Exact
Keskin, Çatay, and Laporte [111] X Time MILP ALNS + MCS
Hoogeboom et al. [169] X Time RO MILP Exact
Hu et al. [168] X Demand + Time RO MILP Exact
Saklaoui et al. [178] X X - MILP GA
Jeong et al. [113] X Energy ARO MILP VNS-TS (RMP) + AD (SP)
This work X X X Time + Energy (A)RO MILP ALNS (RMP) + Exact (SP) + MCS

Table 2.6: Summary of literature review



3
Methodology

This chapter describes the methodological components underlying CertERoute, addressesing the following
two research sub-questions:

Research Sub-question 2

How can uncertainties in time and energy consumption be formally represented and incorporated
into an optimization model for HGEV charging scheduling and routing?

Specifically, Section 3.1 describes the HGEV charging scheduling and routing problem under time and
energy consumption uncertainty that we aim to address with this work. Section 3.2 details an adaptive
robust optimization model for this problem that accounts for the uncertainties in the time and energy
domain by using uncertainty sets in the time domain and establishing a mapping to the energy domain.

Research Sub-question 3

Which solution methods can be employed to robustly solve the formulated optimization problem,
while ensuring computational tractability?

Section 3.3 introduces a robust solution method for the optimization problem based on the column and
constraint generation framework, including a novel pessimization method that allows for an efficient
exploration of the search space. Section 3.4 details a metaheuristic approach that can embedded into
this procedure to ensure scalability to larger instances. Lastly, Section 3.5 outlines how the previously
introduced methodological components are synthesized into a suite of solvers that constitute CertERoute.

3.1. Problem Description
In this section, we introduce the Heavy Goods Electric Vehicle Fleet Planning Problem under Time and
Energy Consumption Uncertainty (HGEV-FPP-TECU). We begin by outlining the scope of the problem,
providing a formal definition of an HGEV and detailing the key assumptions that underpin our problem
formulation. Subsequently, we offer a formal problem definition and introduce the associated notation.
Lastly, we show that the problem is NP-complete, establishing its computational complexity.

Formal definition of an HGEV
We refrain from using the widespread but ambiguous term Heavy-Duty Electric Vehicle (HDEV), which
can also be associated with electric buses, for which operating conditions differ significantly. Instead, we
define the term HGEV in alignment with the EU’s definition of a Heavy Goods Vehicle (HGV) [179]:

Definition 11 – Heavy Goods Electric Vehicle (HGEV)

Consider a vehicle suitable for the transport of freight/goods over land, often referred to as lorry or
(semi-)truck. We define such a vehicle to be a Heavy Goods Electric Vehicle (HGEV) if both of the
following conditions are met:

35
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1. The vehicle’s total mass including the cargo, also referred to as Gross Combination Mass
(GCM), exceeds 3,500 kg.

2. The vehicle is equipped with a fully battery-electric drive.

This excludes combustion engine HGVs as well as battery electric passenger cars, buses, and delivery vans
from the scope of our research, although a similar methodology might be applicable to those vehicle types.

Assumptions
We agreed upon the following set of assumptions for the HGEV-FPP-TECU with Shell:

1. A fixed-size heterogeneous fleet of HGEVs is given, each defined by physical properties, load capacity,
battery capacity, maximum charging rate, per-kilometre cost, and hourly operating cost.

2. Fleet operations are planned one day in advance and comprise a single day.
3. Driving time regulations do not have to be accounted for explicitly.
4. All vehicles are dispatched from a single depot.
5. A fixed set of customers is given, each with a known location and delivery demand.
6. Each customer is served by exactly one vehicle.
7. Delivery demands are expressed in terms of mass.
8. A fixed set of private chargers is located at the depot.
9. A fixed set of public or semi-public chargers is located outside the depot.

10. Each vehicle either performs a single tour starting and ending at the depot or remains at the depot.
11. Each vehicle’s load must not exceed its load capacity.
12. Each vehicle’s battery state of charge (SoC) must remain within its usable range.
13. Each vehicle starts its tour with the SoC at the lower bound of its usable range.
14. Each tour begins with recharging at a depot charger.
15. Each location is reachable from every other location via a directed road connection.
16. Each location has a fixed service time window during which loading/unloading/charging may begin.
17. The service end time at the depot specifies the latest time by which vehicles must return to the depot.
18. Vehicles arriving before a location’s service window may wait; late vehicles cannot be serviced.
19. Vehicles may visit a charger between any two locations.
20. Each charger may be visited by zero, one, or multiple vehicles, with a per-vehicle bound on the

number of visits.
21. Charging sessions at a charger may not overlap.
22. Each vehicle may be partially recharged at a charger.
23. Each road connection has a known, fixed traversal distance.
24. Each road connection has an uncertain but bounded traversal duration, identical for all vehicles.
25. Energy consumption is uncertain but bounded and depends on the vehicle, road connection, and load

level.
26. Service durations for loading and unloading are uncertain but bounded and independent of demand.
27. Multiple vehicles may be loaded simultaneously at the depot.
28. Waiting durations before loading, unloading, or recharging are uncertain but bounded.
29. Charging rates are uncertain but bounded, depend on the vehicle–charger pair, and are independent

of SoC.
30. The effect of battery degradation is insignificant.
31. Energy costs per kWh are known and fixed per charger.
32. Distance costs are known and fixed per driven kilometre.
33. Operating costs are counted per minute from the end of the initial depot charging session until the

final arrival at the depot.
34. The objective is to minimize total operational cost.
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Justification
Most of the assumptions are adapted from classical EVRP literature, including the studies by Schneider,
Stenger, and Goeke [30], Keskin and Çatay [31], Schiffer and Walther [32], and Hiermann et al. [47].
However, these works generally assume that vehicles leave the depot with fully charged batteries. In
contrast, our approach explicitly models the charging process at the depot, recognizing its importance
for co-optimization with energy management. This modelling choice aligns with more recent works such
as those by Klein and Schiffer [180] and Saklaoui et al. [178], which focus more on charging schedule
optimization. Additionally, we assume that charging sessions on the same charger cannot overlap, diverging
from conventional assumptions that chargers are perpetually available.

The assumption that the charging rate is independent of the state of charge simplifies reality, where charging
rates typically decline beyond an SoC of 80% [54]. However, this simplification is less problematic for
HGEVs than for passenger cars and delivery vans due to their larger battery capacities. By incorporating
uncertain charging rates, we can implicitly reflect the slower rates at a higher SoC, setting the lower bound
of the uncertainty range accordingly. Since our framework focuses on day-to-day route planning, we do
not account for long-term battery degradation. However, this effect can be incorporated over time by
applying established degradation models (see Ruiz, Damianakis, and Mouli [181] for a recent review) to
adjust battery capacity parameters and refine the uncertainty bounds of the charging rates before applying
the optimization model.

To narrow the scope of the problem, driving regulations have been excluded. We realize that this is a
limitation of our work. Nonetheless, total route durations can easily be constrained to comply with these
regulations. We assume that the mandatory 45-minute break after 4.5 hours of driving [182], which is
allowed to be split into two shorter intervals, can always be aligned with unloading or charging operations.
Lastly, while our study focuses on a single-depot scenario, we believe that the framework can be readily
extended to accommodate multiple depots [17] or backhaul operations [18].

Mathematical Definition
We define the HGEV-FPP-TECU as in Definition 12, building upon the EVRP formulations and notation
introduced in Section 2.2. An overview of the introduced notation is given in Table 3.1.

Definition 12 – HGEV-FPP-TECU

Network:
Consider a transport network modelled as a complete directed graph G := (V, E), where
V := {0} ∪ C ∪ F ′ ∪ {N + 1} represents the set of vertices (locations), with C := {1, 2, . . . , N}
representing the set of customers i having known and fixed delivery demand qi. Let
F ′ := {N+2, . . . , N+1+NF,N+2+NF, . . . , N+1+nvisitsK+NF} represent a set of dummy ver-
tices to allow nvisitsK visits to each of the NF chargers f in set F := {N +2, . . . , N +1+NF}. Let
vertices 0 and N +1 represent the exit and entrance of the central depot, respectively. Let F ′′ ⊂ F ′

represent the set of chargers located at the depot. For convenience, let V ′ := C ∪ F ′, V ′
0 := V ′ ∪ {0},

and V ′
N+1 := V ′ ∪ {N + 1}. Let the function Parent(o) map every dummy vertex o ∈ F ′ to its

corresponding base charger f ∈ F . Let the set of edges E := {(i, j) | i ∈ V ′
0, j ∈ V ′

N+1, i 6= j}
contain all possible road connections (i, j), each associated with a known and fixed traversal
distance dij .

Vehicles:
Let K represent a fleet of K heterogeneous HGEVs k with known and fixed individual load capacity
Ck, battery capacity Qk and empty curb mass mk

c . Let rk be a decision variable tracking whether
vehicle k is deployed or not and let decision variables xkij indicate whether an edge (i, j) ∈ E is
traversed by vehicle k or not. Let ukj be the decision variable tracking the load quantity of vehicle k
upon arrival at destination j ∈ V ′

N+1.

Uncertainty:
Let S be a given set of scenarios s, each giving rise to different realizations of the uncertain
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parameters in the time and energy domains.

Time:
Let tsij denote the traversal duration associated with every edge (i, j) ∈ E under scenario s ∈ S.
Furthermore, let ei and li represent the earliest and latest possible service start times for every
location i ∈ V, respectively. Let ws

j denote the waiting or queuing duration before service start
associated with every location j ∈ V and νsi the loading/unloading duration for every location
i ∈ C ∪ {0}. Let τsi be a decision variable that tracks the actual service start time for every
location i ∈ V . Let gksf be the inverse charging rate that determines the charging duration per kWh
associated with the combination of every charger f ∈ F ′ and vehicle k ∈ K. Let τsk be a decision
variable representing the start time of vehicle k’s route, corresponding to the moment it is loaded at
the depot. Let δsk be a decision variable denoting the time it departs from its initial charging session
at one of the depot chargers f ∈ F ′′, and let decision variable σs

k indicate the time it returns to the
depot, marking the end of its route.

Energy:
Let decision variables yksi and Y ks

f jointly track the battery SoC of vehicle k ∈ K, measuring it
upon arrival at destination i ∈ V ′ and upon departure from charger f ∈ F ′, respectively, so that the
amount of recharged energy at charger f is given by Y ks

f − yksf . Let hksij be the energy consumption
for every traversed edge (i, j) ∈ E in scenario s ∈ S, by which the battery SoC of vehicle k is
decreased upon traversal.

Costs:
Let ckkm denote the distance cost per driven kilometre for vehicle k ∈ K, cfkWh the energy cost per
kWh at charger f ∈ F ′ and let cmin be the time cost per minute that is charged for the duration
σk − δk that requires a driver for vehicle k.

Objective:
The HGEV-FPP-TECU is defined as constructing a set of routes R := {Rk | Rk ⊂ E , k ∈ K} such
that every Rk is a path starting at vertex 0 and ending at vertex N + 1 and every customer i ∈ C is
part of exactly one route Rk. The sum of the customer demands qi assigned to a vehicle k should
respect the load capacities Ck. Furthermore, R should be robust, meaning that for all scenarios
s ∈ S, timing and charging decisions can be made such that the vehicles do not run out of battery,
time windows are respected, and charging sessions do not overlap. Lastly, the worst-case total
operational cost ctotal over all scenarios s ∈ S, given by summing the distance, energy and time
costs associated with R, should be minimized.

Sets

0, N + 1 Exit and entrance vertices of the central depot
C Set of customers vertices C := {1, 2, . . . , N}
F Set of charger vertices F : {N + 2, . . . , N + 1 +NF}

F ′ Set of dummy charger vertices F ′ := {N + 2, . . . , N + 1 +NF,N + 2 +
NF, . . . , N + 1 + nvisits +NF} to allow nvisitsK visits to every f ∈ F

F ′′ Set of depot charger vertices F ′′ ⊂ F ′

V ′ Set of customer and charger vertices V ′ := C ∪ F ′

V ′
0 Set of source location vertices V ′

0 := V ′ ∪ {0}
V ′
N+1 set of destination location vertices V ′

N+1 := V ′ ∪ {N + 1}
V Set of all vertices V := {0} ∪ C ∪ F ′ ∪ {N + 1}
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E Set of edges E := {(i, j) | i ∈ V ′
0, j ∈ V ′

N+1, i 6= j}
K Set of K heterogeneous HGEVs
R Set of vehicle routes R := {Rk | Rk ⊂ E , k ∈ K}

S Set of scenarios representing the uncertainty in the energy and time
domains

Functions

Parent(o)
Function F ′ → F mapping dummy charger o ∈ F ′ to the corresponding
base charger f ∈ F

Decision Variables

rk Binary decision variable indicating whether vehicle k ∈ K is deployed

xkij
Binary decision variable indicating whether edge (i, j) ∈ E is included in
the route Rk of vehicle k ∈ K

uki
Continuous decision variable tracking the remaining load quantity of
vehicle k ∈ K upon arrival at destination i ∈ V [in kg]

yksi
Continuous decision variable tracking the battery SoC of vehicle k ∈ K
upon arrival at destination i ∈ V under scenario s ∈ S [in kWh]

Y ks
f

Continuous decision variable indicating the SoC of vehicle k ∈ K on
departure from charger f ∈ F ′ under scenario s ∈ S [in kWh]

τsi
Continuous decision variable indicating the service start time at location
i ∈ V under scenario s ∈ S [in minutes]

τsk
Continuous decision variable indicating the route start time of vehicle
k ∈ K under scenario s ∈ S [in minutes]

δsk
Continuous decision variable indicating the departure time from the
initial depot charger under scenario s ∈ S [in minutes]

σs
i

Continuous decision variable indicating the service end time at location
i ∈ V under scenario s ∈ S [in minutes]

σs
k

Continuous decision variable indicating the route end time of vehicle
k ∈ K under scenario s ∈ S [in minutes]

Uncertain Parameters

hksij
Energy consumption of vehicle k ∈ K over edge (i, j) ∈ E under scenario
s ∈ S [in kWh]

tsij
Traversal duration associated with edge (i, j) ∈ E under scenario s ∈ S
[in minutes]

νsi
Loading/unloading duration for location i ∈ C ∪{0} under scenario s ∈ S
[in minutes]

gksf
Inverse charging rate for vehicle k ∈ K at charger f ∈ F ′ under scenario
s ∈ S [in minutes/kWh]

ws
i

Waiting/queuing duration for location i ∈ V under scenario s ∈ S [in
minutes]

Parameters

qi Delivery demand at customer i ∈ C [in kg]
dij Traversal distance associated with edge (i, j) ∈ E [in km]
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Qk Battery capacity of vehicle k ∈ K [in kWh]
Ck Load capacity of vehicle k ∈ K [in kg]
mk

c Empty curb mass of vehicle k ∈ K [in kg]
ei Earliest possible service start time for location i ∈ V [in minutes]
li Latest possible service start time for location i ∈ V [in minutes]
nvisits Maximum number of visits to the same charger per vehicle [in minutes]
ckkm Distance cost associated with vehicle k ∈ K [in €/km]
cfkWh Energy cost associated with charger f ∈ F ′ [in €/kWh]
ckmin Time cost associated with vehicle k ∈ K [in €/minute]
nvisits Number of allowed visits per charger f ∈ F per vehicle k ∈ K

Table 3.1: Notation overview for the HGEV-FPP-TECU

NP-completeness of the HGEV-FPP-TECU
The HGEV-FPP-TECU is an NP-complete problem. This can be readily demonstrated using reduction by
restriction. For the sake of brevity, we do not provide the full proof, but the main idea is as follows: starting
from an instance of the conventional VRP, which is known to be NP-complete [13], one can construct a
corresponding instance of the HGEV-FPP-TECU by assigning energy and timing parameters such that
the additional constraints become trivially satisfied. This includes setting the energy consumption and
traversal duration to zero over all edges. Such a transformation can be performed in polynomial time of the
input size. As a result, solving the HGEV-FPP-TECU allows one to solve the VRP, demonstrating that
the former is at least as hard as the latter. Together with the fact that the HGEV-FPP-TECU belongs to
the complexity class NP , as its solutions can be verified in polynomial time with respect to the input size,
this proves its NP-completeness.

3.2. Formulating a Robust Optimization Model
Due to the lack of available data to estimate the probability distributions necessary for stochastic opti-
mization, and our aim to provide strong guarantees on the feasibility of the generated routes, we adopt
a robust optimization approach to solve the HGEV-FPP-TECU. In the following subsections, we define
uncertainty sets in the time domain (Subsection 3.2.1), introduce a novel mapping to the energy domain
(Subsection 3.2.2), and formulate a linear robust optimization model, consistent with established practices
in the EVRP literature (Subsection 3.2.3). The choice for an adaptive formulation of this model is justified
in Subsection 3.2.4.

3.2.1. Formulation of the Uncertainty Sets
With a slight abuse of notation, we redefine the scenario set S as an index set S(U) over an underlying
uncertainty set U . As a starting point for U , we adopt the box uncertainty set Ubox from Definition 8, which
assumes that each uncertain parameter is independently bounded and that all uncertain parameters may
simultaneously attain their worst-case values. The box uncertainty set is suitable when there is insufficient
data available to construct more sophisticated uncertainty sets, such as data-driven or ellipsoidal sets.
Although conservative, it ensures robustness against all possible realizations within the specified bounds.

However, in practice, it is highly unlikely that all road connections are congested at once or that every
customer simultaneously experiences extended service durations. To better reflect realistic conditions and
reduce conservatism, we also introduce and experiment with a locally budgeted uncertainty set Ulocal,
that assigns a separate uncertainty budget to each type of uncertain parameter, following the approach
proposed by Goerigk and Lendl [183]. The separate budgets allow for more flexibility compared to the
regular budgeted uncertainty set Ubudget from Definition 9.

A key modelling decision is to limit both uncertainty sets to the time domain. Incorporating uncertain
energy consumption directly into the uncertainty set would introduce dependencies between the edge-
specific traversal time tsij and energy consumption hksij , which are difficult to enforce and conflict with the
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independence assumption inherent in the uncertainty sets. Instead, we establish a mapping from the time
domain to the energy domain by expressing hksij as a function of traversal duration tsij and vehicle mass
mk

c + ukj , as detailed in Subsection 3.2.2.

Box Uncertainty Set
In the box uncertainty set, each uncertain parameter is assumed to lie within a symmetric interval centered
at its nominal value. This introduces the following additional parameters for the HGEV-FPP-TECU:

Parameter Description Indices

tnom
ij Nominal traversal duration i ∈ V ′

0, j ∈ V ′
N+1

tdev
ij Maximum deviation in traversal duration i ∈ V ′

0, j ∈ V ′
N+1

νnom
i Nominal service duration i ∈ C ∪ {0}
νdev
i Maximum deviation in service duration i ∈ C ∪ {0}
g
k(nom)
f Nominal inverse charging rate f ∈ F ′, k ∈ K
g
k(dev)
f Maximum deviation in inverse charging rate f ∈ F ′, k ∈ K
wnom

j Nominal waiting duration j ∈ V
wdev

j Maximum deviation in waiting duration j ∈ V

Table 3.2: Parameters used to define the uncertainty set

Using these parameters, we redefine the box uncertainty set Ubox as follows:

Definition 13 – Box Uncertainty Set

Let uncertainty set Ubox ⊂ Rl be indexed by s ∈ S(Ubox) and defined over the uncertainty vector

zs =


ts

νs

gs

ws

 , with dimension l = l1 + l2 + l3 + l4,

where
• ts ∈ Rl1 : traversal durations tsij ∈ [tnom

ij ± tdev
ij ], for i ∈ V ′

0, j ∈ V ′
N+1,

• νs ∈ Rl2 : service durations νsi ∈ [νnom
i ± νdev

i ], for i ∈ C ∪ {0},
• gs ∈ Rl3 : inverse charging rates gksf ∈ [g

k(nom)
f ± gk(dev)

f ], for f ∈ F ′, k ∈ K,
• ws ∈ Rl4 : waiting durations ws

j ∈ [wnom
j ± wdev

j ], for j ∈ V.

Let znom
i and zdev

i denote the nominal value and maximum deviation of the i-th component of zs,
respectively. The following uncertainty set now correspond to Definition 8:

Ubox :=
{
zs ∈ Rl : ∀i ∈ [l], zi ∈ [znom

i ± zdev
i ]

}
.

We define the nominal-scenario to be described by the vector

znom =


znom1

znom2

. . .

znoml

 .
A nice property of Ubox is that it also yields a unique worst-case scenario. This is because, for
all its uncertain parameters, higher values correspond to more challenging real-world conditions.
Hence, the worst-case scenario can be defined by the vector in which all uncertain parameters
simultaneously attain their maximum values, given by
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zworst =


znom1 + zdev1

znom2 + zdev2

. . .

znoml + zdevl

 .

Locally Budgeted Uncertainty Set
We introduce the following additional parameters to the HGEV-FPP-TECU to budget the uncertainty
associated with each of the uncertain parameter types:

Parameter Description

Γt Uncertainty budget for traversal durations
Γν Uncertainty budget for service durations
Γg Uncertainty budget for inverse charging rates
Γw Uncertainty budget for waiting durations

Table 3.3: Parameters used to define the locally budgeted uncertainty set

Focusing on scenarios where uncertainty leads to more adverse real-world conditions, we account only for
deviations above the nominal values in the uncertainty budget. Using the definition for the box uncertainty
set, we define the locally budgeted uncertainty set Ulocal as follows:

Definition 14 – Locally Budgeted Uncertainty Set

Consider the partition
P = {(Iν ,Γν), (It,Γt), (Ig,Γg), (Iw,Γw)} ,

where each I• ⊆ [l] denotes the index set corresponding to one of the components of zs ∈ Ubox.

Then the locally budgeted uncertainty set Ulocal ⊆ Ubox is defined as

Ulocal :=

zs ∈ Ubox : ∀(Ij ,Γj) ∈ P,
∑
i∈Ij

zsi − znom
i

zdev
i

≤ Γj

 .

3.2.2. Modelling Energy Consumption
Recall from Section 2.4 that accurately modelling the energy consumption of HGEVs is inherently complex
due to its dependence on various dynamic and interrelated factors. Following the approaches of Wang et al.
[69] and Goeke and Schneider [48], we model the energy consumption as being linear in the distance and
dependent on the vehicle’s total mass.

The energy consumption also depends on the effects of velocity and acceleration, as per the longitudinal
vehicle dynamics model described in Model 5. However, we do not incorporate the longitudinal dynamics
model directly into our optimization problem. It includes a quadratic velocity term, which, being inversely
related to the uncertain traversal duration tsij , would render the model non-linear.

To preserve linearity, while implicitly incorporating the effect of velocity, we redefine the uncertain energy
consumption hksij for each vehicle k ∈ K on edge (i, j) ∈ E in scenario s ∈ S(U) as a function of the traversal
distance dij , total vehicle mass m(ukj ) := ukj +mk

c and uncertain traversal duration tsij :

Definition 15 – Energy Consumption Function

h(dij , t
s
ij ,m(ukj )) :=

(
βk
ij + αk

ijm(ukj ) + γkij
tsij
dij

+ κkijm(ukj )
tsij
dij

)
ψk
ijdij , (3.1)
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where
• tsij

dij
denotes the inverse velocity [in min/km],

• βk
ij ∈ R denotes the intercept term,

• αk
ij ∈ R denotes the mass coefficient,

• γkij ∈ R denotes the inverse velocity coefficient,
• κkij ∈ R denotes the interaction coefficient,
• ψk

ij denotes the robustness multiplier.

Note that the interaction term contains a product between the decision variable ukj and the uncertain
parameter tsij , which may initially suggest a non-linearity. However, as detailed later, we adopt a two-phase
pessimization approach: during the minimization phase, decision variables are adjusted while uncertain
parameters are held fixed, and during the maximization phase, uncertain parameters vary while decision
variables remain constant. Since only one set of variables changes at a time, the interaction term preserves
linearity within each phase. The preserved linearity allows for rapid pessimization through solving linear
programs, for which highly efficient solution methods are included in contemporary off-the-shelf solvers.

The coefficients βk
ij , αk

ij , γkij , κkij , and ψk
ij are assumed to be pre-computed and to represent the nominal

scenario with respect to time-independent uncertainties in the energy domain. We compute these coeffi-
cients using a combination of simulation and function approximation techniques, as further discussed in
Subsection 4.2.1. The robustness multiplier ψk

ij can be used to achieve different levels of robustness against
energy consumption uncertainty, with ψk

ij = 1 corresponding to nominal-value optimization. Consequently,
the remaining sources of variability in the energy domain are limited to changing mass levels and traversal
duration uncertainty in the time domain.

3.2.3. Formulation of a Robust Mixed Integer Linear Program
Next, we formulate a linear optimization model for the HGEV-FPP-TECU, following standard practices
in EVRP literature. In theory, this model can be solved to optimality using off-the-shelf solvers such as
Gurobi [66] and CPLEX [67]. However, in practice, more advanced methods are typically required to
maintain the tractability of the problem. In the formulation presented in Model 11, we anticipate the
adaptive robust optimization approach via column and constraint generation by distinguishing between
adaptive and non-adaptive variables, introducing scenario-specific copies of the non-adaptive variables, and
formulating constraints across all scenarios within the uncertainty set. This modelling choice is further
motivated in the next subsection.

To promote clarity, the non-adaptive or first-stage decision variables are indicated in purple, the adaptive
or second-stage decision variables in lightblue, and the uncertain parameters in red. We employ a constant
M , also known as the big-M, that is conditionally subtracted or added to equations to make the associated
constraints trivially satisfied, allowing for conditional constraints to be modelled.

Model 11 – ARO MILP Formulation for the HGEV-FPP-TECU

Objective:
Minimize the total worst-case operational cost

c∗total = min (
∑
k∈K

∑
i∈V′

0

∑
j∈V′

N+1

xkijdijc
k
km + max

s∈S(U)

∑
k∈K

∑
f∈F ′

(Y ks
f − yksf )cfkWh +

∑
k∈K

(σs
k − δsk)ckmin),

(3.2)
s.t:

Route and Load Level Constraints:
Every customer is visited exactly once:∑

k∈K

∑
j∈V′

N+1, j 6=i

xkij = 1 ∀i ∈ C. (3.3)
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Dummy chargers are visited at most once:∑
k∈K

∑
j∈V′

N+1, j 6=f

xkfj ≤ 1 ∀f ∈ F ′. (3.4)

Vehicles leave the depot at most once:∑
j∈V′

N+1

xk0j ≤ 1 ∀k ∈ K. (3.5)

Flow is conserved at intermediate stops:∑
i∈V′

0, i 6=j

xkij =
∑

i∈V′
N+1, i 6=j

xkji ∀j ∈ V ′, ∀k ∈ K. (3.6)

Load levels decrease upon departure from locations with demand:

ukj ≤ uki − qixkij + Ck(1− xkij) ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀k ∈ K, i 6= j. (3.7)

The maximum number of visits to the same charger per vehicle is respected:∑
i∈V′

0

∑
o∈F ′, Parent(o)=f

xkio ≤ nvisits ∀f ∈ F , ∀k ∈ K. (3.8)

Vehicle deployment is tracked:

rk ≥ xkij ∀i ∈ V ′
0, ∀j ∈ V ′

N+1. (3.9)

Initial load levels correspond to the summed location demand over the route:

uk0 =
∑
i∈V′

0

∑
j∈V′

N+1, j 6=i

xkijqj . (3.10)

The summed demand of subsequent locations do not exceed a vehicle’s capacity:

qi + qj ≤ Ck − (1− xkij)M. (3.11)

Self loops are prevented:

xkij = 0 ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀k ∈ K, Parent(i) = Parent(j). (3.12)

Every deployed vehicle starts with an initial charging session at the depot:∑
f∈F ′′

xk0f ≥ rk ∀k ∈ K. (3.13)

Timing and Charging Constraints:
Battery initial SoC is 0:

yks0 = 0 ∀k ∈ K, ∀s ∈ S(U). (3.14)

Battery SoC when visiting a charger is non-decreasing:

yksf ≤ Y ks
f ∀f ∈ F ′, ∀k ∈ K, ∀s ∈ S(U). (3.15)

Departure time at customers is based on the service duration:

σs
i ≥ τsi + νsi ∀i ∈ C, ∀s ∈ S(U). (3.16)

Departure time at chargers is based on the charging duration:

σs
f ≥ τsf + gksf (Y ks

f − yksf ) ∀f ∈ F ′, ∀k ∈ K, ∀s ∈ S(U). (3.17)
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Charging sessions at the same charger do not overlap:

σs
f ≤ τso , ∀f, o ∈ F ′, ∀s ∈ S(U), o > f, Parent(f) = Parent(o) (3.18)

Battery SoC decays over traversed edges:

yksj ≤ yksi −h(dij , tsij ,m(ukj ))x
k
ij +M(1− xkij) ∀i ∈ C ∪ {0}, ∀j ∈ V ′

N+1, ∀k ∈ K, ∀s ∈ S(U), i 6= j.
(3.19)

Battery is recharged at visited chargers:

yksj ≤ Y ks
f − h(dij , tsij ,m(ukj ))x

k
fj +M(1− xkfj) ∀f ∈ F ′, ∀j ∈ V ′

N+1, ∀k ∈ K, ∀s ∈ S(U), f 6= j.
(3.20)

Arrival time at locations is based on the travel and waiting duration:

τsj ≥ σs
i + tsij + ws

j − (1−
∑
k∈K

xkij)M ∀i, j ∈ V ′, ∀s ∈ S(U), i 6= j. (3.21)

Route start times are tracked:

τsk ≤ τsj − ws
j − tsij − νs0 + (1− xk0j)M ∀j ∈ F ′′, ∀k ∈ K, ∀s ∈ S(U). (3.22)

Route end times are tracked:

σs
k ≥ σs

i + tsi(N+1) − (1− xki(N+1))M ∀i ∈ V ′, ∀k ∈ K, ∀s ∈ S(U). (3.23)

Driver start times correspond to departure from the depot charger:

δsk ≤ σs
f + (1− xk0f )M ∀k ∈ K, ∀f ∈ F ′′, ∀s ∈ S(U), (3.24)

The driver start times for undeployed vehicles is fixed to zero:

dsk ≤ rkM, ∀k ∈ K, ∀s ∈ S(U). (3.25)

The SoC upon arrival corresponding unvisited locations is fixed to zero:

yksj ≤ (
∑
i∈V′

0

xkij)M, ∀k ∈ K, ∀j ∈ V ′
N+1, ∀s ∈ S(U). (3.26)

Edges whose traversal always leads to a time violation are avoided:

ei + νsi + tsij + ws
j ≤ lj + (1− xkij)M ∀i ∈ V ′

0, ∀j ∈ V ′
N+1, ∀k ∈ K, ∀s ∈ S(U). (3.27)

Customers whose visit leads to a late arrival at the depot should not be added:

ei+ν
s
i +t

s
ij+w

s
j+ν

s
j +t

s
j(N+1) ≤ lN+1+(1−xkij)M ∀i ∈ V ′

0, ∀j ∈ V ′
N+1, ∀k ∈ K, ∀s ∈ S(U). (3.28)

Edges that cannot be traversed with the current battery capacity are avoided:

Qk − h(dij , tsij ,m(ukj )) ≥ (xkij − 1)M ∀k ∈ K, ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀s ∈ S(U). (3.29)

Bounding Constraints:
Vehicles do not arrive at locations before their earliest service start time:

ei ≤ τsi ∀i ∈ V ′, ∀s ∈ S(U). (3.30)

Vehicles do not arrive at locations after their latest service start time:

τsi ≤ li ∀i ∈ V ′, ∀s ∈ S(U). (3.31)
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Vehicles do not leave the depot before its earliest service start time:

e0 ≤ τsk ∀k ∈ K, ∀s ∈ S(U). (3.32)

Vehicles do not arrive at the depot after its latest service start time:

σs
k ≤ lN+1 ∀k ∈ K, ∀s ∈ S(U). (3.33)

Battery SoC remains in the usable range:

yksi ≤ Qk ∀i ∈ V, ∀k ∈ K, ∀s ∈ S(U), (3.34)

Y ks
f ≤ Qk ∀f ∈ F ′, ∀k ∈ K, ∀s ∈ S(U). (3.35)

Load capacity is not exceeded:
uki ≤ Ck ∀i ∈ V ′, ∀k ∈ K. (3.36)

Domain Constraints for the Decision Variables:

xkij ∈ B ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, ∀k ∈ K, i 6= j, (3.37)

rk ∈ B ∀k ∈ K, (3.38)

uki ∈ R≥0 ∀i ∈ V ′, ∀k ∈ K, (3.39)

τsi , σ
s
i ∈ R≥0 ∀i ∈ V ′, ∀s ∈ S(U), (3.40)

τsk , σ
s
k, δ

s
k ∈ R≥0 ∀k ∈ K, ∀s ∈ S(U), (3.41)

Y ks
f ∈ R≥0 ∀f ∈ F ′, ∀k ∈ K, ∀s ∈ S(U), (3.42)

yksi ∈ R≥0 ∀i ∈ V, ∀k ∈ K, ∀s ∈ S(U), (3.43)

For simplicity, we fixM = 105 across all constraints, though tighter, constraint-specific values could improve
numerical stability and strengthen the model formulation. The arrival time variables τsi and departure time
variables σs

i are modelled without an index over the vehicles as every customer or charger dummy i ∈ V ′

can be visited by at most one vehicle. While this reduces the number of decision variables, it requires
introducing vehicle-specific variables τsk and σs

k to capture the start and end times of each route, as all
deployed vehicles depart from and return to the depot, so that the depot does not have unique arrival and
departure times. The SoC upon departure Y ks

f is only modelled for charger dummies f ∈ F ′, as there are
no constraints involving the SoC upon departure from other locations.

The constraints in Eq. (3.10) to Eq. (3.13) and Eq. (3.26) to Eq. (3.29) are redundant but strengthen
the model formulation, restricting the search space further so that solutions can be found quicker. These
constraints are adapted from the work by Schneider, Stenger, and Goeke [30]. The constraints in Eq. (3.25)
are non-redundant and prevent the objective value in Eq. (3.2) from being artificially lowered by assigning
large positive values to the otherwise unconstrained variables δsk outside the designated routes Rk. For
yksf this is already prevented by the non-decreasing constraints from Eq. (3.15). The non-overlapping
constraints in Eq. (3.18) also function as symmetry-breaking constraints, as they enforce that charger
dummies f ∈ F ′ with lower indices are always assigned to earlier charging sessions than those with higher
indices o > f .

Technically, the equality constraints, such as in Eq. (3.3), are non-linear. However, since they can be
expressed as a pair of ≤ and ≥ constraints, we treat them as linear constraints in our representation.
The constraints are presented in a non-standard form for clarity and readability. However, they can be
converted to standard form by rewriting each one as a ≤ constraint [29]. This allows us to represent the
MILP into a compact matrix form.
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3.2.4. Reducing Conservatism with Adaptive Robust Optimization
Recall from Subsection 2.5.2 that the key idea of Adaptive Robust Optimization (ARO) is to divide the
decision process in multiple stages to decrease the inherent conservatism of static or single-stage RO models.
In a static robust formulation of the problem, routing, load level, timing and charging decisions are all
made simultaneously, accounting for every possible uncertainty realization. This results in a single solution
that is heavily biased towards the worst-case scenario and therefore very conservative [151].
The route and the associated loads for each vehicle should be decided upon before the trip, immunizing it
against all possible uncertainty realizations. We include the choice for charger visits along the route in this
first-stage as well. If not, the problem would turn into a dynamic VRP, where vehicles can be redirected
after the uncertainty realization. This variant is known to be even more computationally intractable than
a normal VRP [19]. More importantly, optimizing routes solely based on customer sequences overlooks
the locations of the chargers, which can result in less efficient trips in practice when chargers far from the
anticipated path have to be visited to ensure energy feasibility. Planning the visits to chargers in advance
allows for co-optimizing the allocation of charging resources at the depot and paves the way to charger
reservations at Shell service stations. Lastly, drivers generally favor the predictability of a fixed route over
one that constantly changes. Therefore, we consolidate the routing and load level variables (xkij , rk, ukj )
into a first-stage decision vector x, which is determined prior to the realization of uncertainty.
In contrast, we do not strictly need a single charging and timing solution that works for every uncertainty
realization. It suffices to know that for a chosen load-feasible route, some feasible charging and timing
solution exists for any realization of the uncertainty. Once the uncertainty is revealed during the execution
of the trip, charging and timing decisions can be made accordingly. This adaptability allows for improved
cost, timing and energy efficiency during the execution of the trip. Hence, we consider the timing decision
variables (τi, τk, σi, σk, δk) and the charging decision variables (ykj , Y k

f ) as adaptive. By replicating these
decision variables and their corresponding constraints for each scenario s ∈ S(U) in Model 11, it is able to
account for all possible scenarios during the first decision stage. When represented in vector form, the
scenario-specific variables form a set of candidate decision vectors, denoted by {ys}. In the second decision
stage, the final second-stage decision vector, y can be selected from this set.

Compact Matrix Form
To streamline notation, we introduce a compact matrix representation for Model 11 in Model 12, analogous
the representations used in Section 2.5. We refer to Appendix A for the exact definition of the notation.

Model 12 – HGEV-FPP-TECU in Compact Matrix Form

c∗total = min
x, {ys}

(c>x + max
s∈S(U)

d>ys) (3.44)

s.t.
A(x) ≤ b, (3.45)

F (zs)ys ≤ f(zs) ∀s ∈ S(U), (3.46)

G(zs)x+H(zs)ys ≤ j(zs) ∀s ∈ S(U), (3.47)

L(zs)x ≤ l(zs) ∀s ∈ S(U). (3.48)

≡

c∗total = min
x, η, {ys}

η (3.49)

s.t.

A(x) ≤ b, (3.50)

L(zs)x ≤ l(zs) ∀s ∈ S(U). (3.51)

η ≥ c>x + d>ys ∀s ∈ S(U), (3.52)

ys ∈ Ω(x, zs) ∀s ∈ S(U), (3.53)

η ∈ R≥0. (3.54)
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The second formulation follows from the definition of the second-stage feasible region Ω(x, zs) from
Definition 6. This region includes all feasible second-stage decisions y for a given combination of first-stage
decisions x and scenario zs.

3.3. Exploring Scenarios via Column and Constraint Generation
When using the box uncertainty set Ubox, a single worst-case scenario can directly be identified and
optimized for. However, for more sophisticated uncertainty sets, such as the locally budgeted uncertainty
set Ulocal, no single worst-case scenario exists. Instead, multiple scenarios must likely be evaluated to
ensure feasibility across the entire set. Since Ulocal is compact and convex [183], robust feasibility can be
achieved by optimizing over all of its extreme points, denoted by ext(Ulocal) [154, 155]. Nevertheless, the
number of corresponding scenarios

∑
(Ii, Γi)∈P

bΓic∑
k=0

(
|Ii|
k

)
(3.55)

can become prohibitively large for high dimensional uncertainty sets, which naturally come with larger
HGEV-FPP-TECU instances.

To limit the number of scenarios evaluated during optimization, we utilize the Column and Constraint
Generation (CCG) method for ARO, as introduced in Subsection 2.5.2. This outer approximation technique
starts with solving the problem under the nominal scenario and incrementally adds new scenarios to the
problem through a pessimization process, aiming to ensure robustness across the entire uncertainty set
without exhaustively enumerating all (extreme) scenarios.

A key advantage of the CCG approach is that the corresponding Restricted Master Problem (RMP) can be
formulated as Model 12, operating on a finite subset of scenarios Ū ⊆ U , indexed by S(Ū), over which the
original problem constraints and variables are copied (see Model 13). This allows the use of a wide range
of existing solution techniques developed for EVRPs, in contrast to the Benders decomposition method,
which requires the use of exact methods to generate cutting planes. Following the approach of Jeong et al.
[113], we therefore opt to use CCG. However, we employ an alternative and novel pessimization procedure
to identify constraint-violating scenarios that are added to the RMP.

Model 13 – Restricted Master Problem (RMP)

ctotal = min
x, η, {ys}

η (3.56)

s.t.
Ax ≤ b, (3.57)

L(zs)x ≤ l(zs) ∀s ∈ S(Ū), (3.58)

η ≥ c>x + d>ys ∀s ∈ S(Ū), (3.59)

ys ∈ Ω(x, zs) ∀s ∈ S(Ū), (3.60)

η ∈ R≥0. (3.61)

Fig. 3.1 describes our full CCG framework with a flow chart. Algorithm 1 gives the top-level pseudocode.
The next subsections detail the pessimization approach. Subsection 3.3.1 outlines two established pes-
simization approaches and highlights their limitations, which motivate the introduction of the novel OSLP
pessimization algorithm, which is discussed in Subsection 3.3.2.
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Figure 3.1: Flow chart of the CCG solution approach
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Algorithm 1 – Column and Constraint Generation Framework

Input: Uncertainty set U , RMP solver RMPSolver, maximum number of iterations ι,
tolerance parameter ε

Output: Anticipated worst-case total operational cost c∗total, best first-stage decisions x∗,
second-stage candidate solutions {ys∗}

1 Ū ← {znom};
2 {ys∗} ← ∅;
3 x∗ ← 0;
4 c∗cost ←∞;
5 i← 0;
6 while i < ι do
7 (ctotal,x, {ys})← RMPSolver(Ū ,x∗, {ys∗});
8 if |c∗total − ctotal| < ε then
9 break;

10 end
11 c∗total ← ctotal;
12 x∗ ← x;
13 {ys∗} ← {ys};
14 yr ← ys for most recently added s ∈ S(Ū);
15 zp ← OSLP(x,yr, Ū ,U);
16 if zp ∈ Ū then
17 break;
18 end
19 Ū ← Ū ∪ {zp};
20 i← i+ 1;
21 end
22 return (c∗total,x

∗, {ys∗})

Here, the RMPSolver is passed as an argument to the algorithm to allow different solution methods
to be used. We further detail the employed solvers in Section 3.5. The OSLP procedure corresponds
to Algorithm 3. The current best RMP solution (x∗, {ys∗}) is passed to the RMPSolver in order to
allow warm restarts where the variables are initialized using the current first- and second-stage decisions.
Parameter ι determines the computational budget for the CCG procedure. Setting low values for ι ensures
that a solution is found quickly. However, it may not be robust to all scenarios. In contrast, setting ι high
ensures that the procedure is only stopped whenever the algorithm is unable to find any violating scenarios.
Nevertheless, this does not guarantee robust feasibility, as we will discuss shortly. The value of ε decides
which improvements to the objective value are deemed significant enough to continue the procedure.

3.3.1. Established Formulations of the Pessimization Problem
To check the robustness of first-stage solution x, resulting from solving the RMP from Model 13, against
uncertainty realizations in U r Ū , we solve a pessimization problem that identifies constraint violating
scenarios zp ∈ U r Ū . We begin by presenting two established formulations of such a pessimization problem
from the literature, which serve as the foundation for our novel OSLP pessimization approach.

Naive Pessimization Approach
In the original CCG approach outlined by Zeng and Zhao [155], the pessimization problem is formulated
as the problem of finding a new uncertainty realization zp ∈ U r Ū such that at least one constraint is
violated for every scenario-specific solution (x,ys) with s ∈ S(Ū), and the overall minimum constraint
violation κ is maximized. This problem can be formulated as an MILP, as shown in Model 14.
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Model 14 – Naive Pessimization Problem

max
z,{vi},{wj},κ

κ (3.62)

s.t.
G(z)ix+H(z)iys ≥ j(z)i + κ−M(1− vi) ∀s ∈ S(Ū), ∀i ∈ [m3] (3.63)

L(z)jx ≥ l(z)j + κ−M(1− wj) ∀s ∈ S(Ū), ∀j ∈ [m4] (3.64)
m3∑
i=1

vi +

m4∑
j=1

wj ≥ 1 (3.65)

vi ∈ B ∀i ∈ [m3] (3.66)

wj ∈ B ∀j ∈ [m4] (3.67)

κ ∈ R≥0 (3.68)

z ∈ U (3.69)

Here, we decompose matrices G(z) and H(z) and vector j(z) back into their m3 rows i that define coupling
constraints between the adaptive and non-adaptive variables. We do the same for constraint matrix L(z)
and vector l(z), giving m4 rows j that define constraints on the non-adaptive variables under uncertainty.
This ensures that we can impose restrictions on the violations of individual constraints. The binary variable
vi indicates whether a specific constraint in Eq. (3.63) is violated, whereas wj does the same for Eq. (3.64).
The big-M term is conditionally subtracted from the right-hand side of the equations to ensure that the
constraints are violated by at least κ only if the corresponding binary constraint violation variable is set to
1. Finally, Eq. (3.65) ensures that at least one constraint is violated.
Initially, we implemented the naive pessimization approach within our framework and observed that, for
many of the identified scenarios zp, the corresponding second-stage feasible region Ω(x, zp) was non-empty.
This revealed the presence of false positives where the constraints in Model 14 were violated, yet feasible
second-stage solutions y did exist, albeit not among the current candidate set {ys}. Even minor variations
in z required different y values to satisfy all constraints, making it unlikely for any of the existing candidate
solutions to remain feasible. This effect was amplified by the continuous nature of the decision variables.
As an example, when the traversal duration on a specific edge increased, the current service start time
at the next customer would become invalid, as it occurred before the vehicle’s revised arrival time, thus
requiring the generation of a new candidate decision to preserve feasibility. This issue arose even when
the new arrival still fell within the customer’s time window. Consequently, many scenarios were added
to the RMP not because they led to meaningful violations (e.g., battery depletion or late arrivals), but
simply because their feasible second-stage decisions were not already captured in the current candidate set.
This significantly reduced the effectiveness of the pessimization method, requiring a large number of CCG
iterations to convergence.

Bilinear Pessimization Approach
Jeong et al. [113] propose an alternative pessimization approach that introduces slack variables κ = (κ1,κ2)
and associated penalty terms π = (π1,π2) to relax both the second-stage and coupling constraints,
modelling the objective function as a corridor-based generalized cost function [32, 184]. Unlike the naive
pessimization approach, this bilinear method does not restrict the second-stage decision variable y to
the current candidate solutions ys for s ∈ S(Ū). Instead, it identifies new scenarios by solving a bilevel
optimization problem that maximizes the generalized cost over z while minimizing it over all possible y.
This results in identifying a scenario zp for which the best possible second-stage response yp results in the
highest generalized cost.
Such a bilevel optimization problem, as displayed in Model 15, cannot be solved with many off-the-shelf
MILP solvers directly as it is non-convex. However, as the inner minimization problem over y is an LP,
it can be dualized as a maximization problem over dual variables λ and φ, yielding a bilinear term only
in the objective function, such that the feasible region can be separated between primal variables z and
dual variables (λ,φ). For z the region simply corresponds to U . For (λ,φ) the corresponding dual feasible
region is described by Definition 16.
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Model 15 – Bilinear Pessimization Problem

(Primal)
max
z∈U

min
y

d>y + π>κ (3.70)

s.t.
F (z)y ≤ f(z) + κ1, (3.71)

G(z)x∗ +H(z)y ≤ j(z) + κ2, (3.72)

(Dual)
max
z,λ,φ

φ>(G(z)x∗ − j(z))− λ>f(z) (3.73)

s.t.
−λ>F (z)− φ>H(z) ≤ d> (3.74)

0 ≤ λ ≤ π1 (3.75)

0 ≤ φ ≤ π2 (3.76)

z ∈ U (3.77)

λ ∈ Rm2 (3.78)

φ ∈ Rm3 (3.79)

Definition 16 – Dual Feasible Region

Π := {(λ,φ) : Eq. (3.74)− Eq. (3.79)} (3.80)

The problem’s separability enables the use of the Alternating Direction (AD) cutting plane algorithm
introduced by Konno [175], which is guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point [185].
Although the optimal solution is always among the KKT points, there is no guarantee that the found
scenario is in fact the optimal solution. Algorithm 2 details the procedure, which alternately solves the
maximization problem over (λ,φ) and the maximization problem over z to obtain a Lower Bound (LB)
and Upper Bound (UB) on the dualized cost function, while keeping z and (λ,φ) fixed, respectively. The
algorithm starts by considering the current first-stage decisions x obtained from solving the RMP under
the nominal scenario znom ∈ U , and is stopped whenever the difference between upper and the lower bound
falls below a predefined tolerance term ε. The scenario zp identified through this process is then added to
the RMP. The corresponding upper bound on the generalized cost serves as a benchmark for the optimal
robust feasible solution over U and can be used to define a stopping criterion for the CCG procedure.
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Algorithm 2 – Alternating Direction (AD)

Input: Uncertainty set U , tolerance parameter ε, first-stage decisions x
Output: Chosen scenario zp ∈ U , upper bound on generalized cost UB

1 zp ← znom ;
2 LB ← 0, UB ←∞ ;
3 while UB − LB > ε do
4 Compute: LB ← max

(λ,φ)∈Π
φ>(G(zp)x− j(zp))− λ>f(zp) and let (λ∗,φ∗) be its

optimal solution;
5 Compute: UB ← max

z∈U
φ∗>(G(z)x− j(z))−λ∗>f(z) and let z∗ be its optimal solution;

6 zp ← z∗;
7 end
8 return (zp, UB)

A significant drawback of the bilinear pessimization method is its lack of theoretical guarantees regarding
the infeasibility of the scenarios it identifies. Since the objective function is a generalized cost function,
combining both actual costs and penalties for constraint violations, it cannot reliably differentiate between
scenarios that are truly infeasible and those that simply lead to high costs. Consequently, the method may
identify a scenario zp for which the second-stage feasible region Ω(x, zp) is non-empty, thereby limiting
the practical relevance of such a scenario in guiding robust decision-making.

3.3.2. Novel One-Step Look-ahead Pessimization Method
Because neither the naive nor the bilinear pessimization approach offers explicit guarantees about the
infeasibility of the scenarios they identify, we propose a novel pessimization approach that takes inspiration
from both methods but focuses on finding scenarios that lead to proven constraint violations with practical
relevance, such as running out of energy, arriving late, or experiencing overlapping charging sessions. We
name this the One-Step Look-ahead Pessimization (OSLP) algorithm as it repeatedly performs a
One-Step look-ahead for a given RMP solution (x, {ys}) to identify uncertainty realizations zp ∈ U r Ū
for which the second-stage feasible region Ω(x, zp) is empty. The key innovation of OSLP lies in its ability
to sidestep the complexity of solving a non-convex bilevel optimization problem by decomposing it into
two alternating procedures, each solvable via linear programming and without the need to relax any of
the original problem constraints. By focusing only on practically relevant violations, OSLP avoids adding
false positives so that the identified scenarios are guaranteed to be infeasible, thereby accelerating CCG
convergence.

Fig. 3.2 illustrates the concept of a one-step look-ahead to detect potential constraint violations. Based on
the current routing solution and a chosen second-stage decision candidate, the pessimization procedure
seeks values for the uncertain parameters that would cause a violation at the next location in the route,
considering the implied new second-stage decisions. In this example, a time window violation occurs at
customer C3 due to an increased traversal duration on the edge from C2 to C3.

C2 C3C1

[12:30, 13:30]
13:25
13:35

[08:00, 16:00]
12:00
12:05

[12:00, 13:00]
12:25
12:30

25 min
30 min

60 min
70 min

Figure 3.2: Example of a time window violation occurring one step ahead in the current routing solution given
the current arrival times and increased traversal durations under pessimization

The OSLP algorithm consists of two sub-procedures that are alternately executed. In the Maximization
procedure, potentially infeasible scenarios are uncovered by identifying those that lead to the greatest
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constraint violations one step ahead in the routing and charging schedule, given the current first- and second-
stage decisions. In the Minimization procedure, we attempt to mitigate these violations by adjusting
the second-stage decisions, thereby verifying whether the scenario is truly infeasible. The second-stage
candidate decisions corresponding to the most recently added scenario in the RMP are used as the starting
point for pessimization. Intuitively, this scenario reflects the most challenging conditions encountered so
far. Using its associated decisions as a starting point is beneficial because if they fail under a new scenario,
this new scenario must be even harder, such that none of the candidate solutions currently in the RMP
will work. This approach helps guide the search towards progressively harder scenarios.

Maximization Procedure
A scenario is marked potentially infeasible by the maximization procedure if, for any of the vehicles, it
leads to at least one of the following violations:

1. A vehicle depletes its battery before reaching the next customer due to increased energy consumption,
given its current SoC upon departure.

2. A vehicle arrives at the next customer after the latest possible service start time due to increased
travel, service, and/or waiting durations, given it’s current departure time (such as in Fig. 3.2).

3. A vehicle’s charging session overlaps with a subsequent session at the same charger due to reduced
charging rates, given the current start times of both charging sessions.

To identify such scenarios, we take the second-stage decision vector yr corresponding to scenario r that was
last added to the RMP as a starting point and solve the LP from Model 16, maximizing the total potential
constraint violation, and returning the corresponding scenario zp.

Model 16 – Maximization LP within OSLP

max
z

∑
j∈V′

N+1

(κjtime+κ
j
energy)+

∑
f,o ∈F ′ o>f, Parent(o)=Parent(f)

κfooverlap+ csmall

∑
i∈[l], zdev

i >0

zi − znomi

zdevi

(3.81)
s.t.

One-Step-Ahead Violation Constraints:
Potential energy violations after a charger visit are tracked:

Y k
f − h(dfj , tfj ,m(ukj )) ≤ 0− κ̂jenergy ∀k ∈ K, ∀f ∈ F ′, ∀j ∈ V ′

N+1, x
k
fj = 1. (3.82)

Potential energy violations after a customer visit are tracked:

yki − h(dij , tij ,m(ukj )) ≤ 0− κ̂jenergy ∀k ∈ K, ∀i ∈ V ′
0, ∀j ∈ V ′

N+1, x
k
ij = 1. (3.83)

Potential time violations after a charger visit are tracked:

τf + gkf (Y
k
f − ykf ) + tfj + wj ≥ lj + κ̂jtime ∀k ∈ K, ∀f ∈ F ′, ∀k ∈ K, ∀j ∈ V ′

N+1, x
k
fj = 1. (3.84)

Potential time violations after a customer visit are tracked:

τi + νi + tij + wj ≥ lj + κ̂jtime ∀i ∈ V ′
0, ∀j ∈ V ′

N+1,
∑
k∈K

xkij = 1. (3.85)

Potential time violations after departure from the depot are tracked:

τk + ν0 + t0j + wj ≥ lj + κ̂jtime ∀k ∈ K, ∀j ∈ V ′
N+1, x

k
0j = 1. (3.86)

Potential charging overlap violations are tracked:

τf + gkf (Y
k
f − ykf ) ≥ τo + κ̂fooverlap ∀k ∈ K, ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f). (3.87)
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Route Membership Constraints:
Only positive violations occurring within the current routing solution are counted towards the
optimization objective:

κjtime ≥ κ̂
j
time ∀j ∈ V ′

N+1, (3.88)

κjtime ≤
∑
k∈K

∑
i∈V′

0

xkijM ∀j ∈ V ′
N+1, (3.89)

κjenergy ≥ κ̂jenergy ∀j ∈ V ′
N+1, (3.90)

κjenergy ≤
∑
k∈K

∑
i∈V′

0

xkijM ∀j ∈ V ′
N+1, (3.91)

κfooverlap ≥ κ̂
fo
overlap ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f), (3.92)

κfooverlap ≤
∑
k∈K

∑
i∈V′

0

xkif ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f), (3.93)

κfooverlap ≤
∑
k∈K

∑
i∈V′

0

xkio ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f). (3.94)

Domain Constraints for the Decision Variables:

κjtime, κ
j
energy ∈ R≥0 ∀j ∈ V ′

N+1, (3.95)

κ̂jtime, κ̂
j
energy ∈ R ∀j ∈ V ′

N+1, (3.96)

κfooverlap ∈ R≥0 ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f), (3.97)

κ̂fooverlap ∈ R ∀f, o ∈ F ′, o > f, Parent(o) = Parent(f), (3.98)

z ∈ U . (3.99)

Here, the uncertain parameters under optimization are indicated in red. The current second-stage decisions
only serve as a starting point for the one-step look-ahead and are not adapted during the maximization
procedure to maintain the convexity of the problem. The κ̂• variables are auxiliary variables to track
the slack, which only take positive values in case a violation occurs. By restricting the values κ• to be
non-negative and 0 for locations not included in the route, only actual violations are counted towards the
objective value under maximization.

The final term in the objective function from Eq. (3.81) rewards higher relative deviations from the nominal
value for each uncertain parameter, and is multiplied by a very small constant csmall = 10−5, so that it
does not influence the total objective too much. This encourages full utilization of the available uncertainty
budget, helping to prevent premature convergence (as discussed later). The uncertainty set membership
constraint in Eq. (3.99) can be enforced linearly for any convex compact set. For brevity, the corresponding
linear constraints are omitted.

Minimization Procedure
To confirm that a potentially infeasible scenario zp is truly infeasible, meaning Ω(x,ys) = ∅, the minimiza-
tion procedure subsequently solves the RMP from Model 13 with x fixed and the uncertainty set restricted
to Ū = {zp}, so that it becomes an LP. If the resulting total cost ctotal is finite, then this indicates that
a feasible second-stage solution exists, so that zp is not truly infeasible. This could happen for example
when the maximization step suggests that a vehicle arrives late due to increased travel time, after which
the minimization step adjusts the timing or charging schedule, so that timely arrival is still possible under
adjusted decisions yp. In such a case, we set yp as the new starting point for the maximization procedure
and repeat the process. The OSLP algorithm terminates either when the maximization step fails to uncover
a new violating scenario or when the minimization step confirms that Ω(x, zp) = ∅. In both cases, the
latest identified scenario zp is returned to be included in the RMP. In the first case, this serves the purpose
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of checking if there exists an alternative routing solution x′ for Ū ∪ {zp} that has a lower worst-case cost
than the current feasible solution x. In the latter case, a feasible solution x′ for Ū ∪ {zp} is yet to be
found. The full procedure is detailed in Algorithm 3.

Algorithm 3 – One-Step Look-ahead Pessimization (OSLP)

Input: First-stage decisions x, latest second-stage decision candidate yr, restricted
uncertainty set Ū , full uncertainty set U

Output: Identified scenario zp

1 y∗ ← yr;
2 Û ← Ū ;
3 zp ← 0;
4 while True do
5 z∗ ← Maximization(Model 16, x,y∗);
6 if z∗ ∈ Û then
7 break;
8 end
9 zp ← z∗;

10 (ctotal,y
p)← Minimization(Model 13, x, {zp});

11 if ctotal =∞ then
12 break;
13 end
14 y∗ ← yp;
15 Û ← Û ∪ {zp};
16 end
17 return zp

Discussion
While the proposed algorithm effectively avoids false positives, it remains vulnerable to premature conver-
gence. This issue arises when no scenario within the uncertainty set triggers a one-step-ahead violation,
and the maximization step fails to uncover scenarios that lead to violations occurring further in the future.
We refer to such undetected scenarios as false negatives. As a result, the CCG procedure may terminate
early, yielding a solution that is not robustly feasible.

To remedy this, the additional term in the objective function incentivizes the solver to fully utilize the
uncertainty budget, while distributing it in a way that most adversely affects one-step-ahead violations
along the current route. When residual budget remains, uncertain parameters outside the route also attain
higher values, ensuring that the resulting scenarios always lie at the extreme points of the uncertainty set.

As all constraints are linear in the uncertain parameters, the scenario that reveals multi-step-ahead
violations must also be among the extreme points of the uncertainty set. Hence, this approach is effective
for directly identifying the single extreme point zworst ∈ Ubox. However, it does not eliminate the issue
of premature convergence under a budgeted uncertainty set such as Ubudget and Ulocal, where the budget
can be distributed in many different ways, giving rise to many extreme points. The likelihood of blindly
selecting the scenario that reveals multi-step-ahead violations among all of them remains low. For a more
detailed discussion, we refer to the formal argument in Appendix B.

Note that the additional term in the maximization objective also ensures that the OSLP algorithm always
terminates under convex and compact uncertainty sets. In the most computationally intensive case, the
Maximization procedure systematically enumerates all extreme points zext ∈ ext(U), incrementally
extending the set Û . For every identified scenario, the Minimization step identifies that Ω(x, zext) 6= ∅, so
that the process continues until Û = ext(U), at which point the Maximization procedure must select a
point already in Û , thereby terminating the algorithm.
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3.4. Scalability through Adaptive Large Neighbourhood Search
As the problem size grows, solving the HGEV-FPP-TECU exactly becomes computationally infeasible due
to the exponential growth in the number of decision variables needed to account for all possible routes.
This is further amplified by the replication of adaptive decision variables across all scenarios included in
the RMP as a result of making the model adaptive. To address scalability to larger instances, we adopt a
metaheuristic solution method to solve the RMP, in line with the work by Jeong et al. [113].
Their approach is centered around a complex corridor-based generalized cost function, as proposed by
Schiffer and Walther [172]. This method maps energy consumption to the time domain by considering
the time required to recharge the consumed energy. As a result, corridors can be constructed to represent
all possible arrival times at a location, depending on the energy that can or needs to be replenished
at preceding chargers along the route. By comparing these corridors with the service time windows at
each location, violations related to time and energy constraints can be detected and penalized. This cost
function only implicitly incorporates second-stage decisions, enabling the use of a relatively simple Variable
Neighbourhood Search (VNS) that focuses solely on modifying route structures.
We take a fundamentally different approach, in which we employ Adaptive Large Neighbourhood Search
(ALNS), explicitly model second-stage decision candidates and utilize more sophisticated operators that
act on both adaptive and non-adaptive variables, while relying on a much simpler generalized cost function.
In essence, the intelligence is shifted from the objective function to the operators. By leveraging insights
from second-stage constraints, the operators construct neighbourhoods that inherently exclude routing
choices likely to be dismissed due to their high generalized cost. This enables a more informed exploration
of the solution space. Moreover, the explicit representation of second-stage decisions is essential for our
OSLP algorithm, which relies on the most recent second-stage decision candidate to identify one-step-ahead
violations. The selection of ALNS as a metaheuristic is primarily motivated by its extensive and successful
application in previous works addressing various forms of the EVRP [31, 44, 48, 110], including those
involving uncertainty [4, 111, 112].
In Subsection 3.4.1, we slightly revise the definition of HGEV-FPP-TECU to better align with the
ALNS framework. Following this, we introduce a customized generalized cost function to effectively guide
the search process (Subsection 3.4.2), along with a modified nearest neighbour heuristic to construct an
initial solution (Subsection 3.4.3). We adopt commonly used destroy operators from existing literature
(Subsection 3.4.4) and design a custom repair operator that guarantees the energy feasibility of the resulting
routes (Subsection 3.4.5). We make sure that new scenarios can easily be added to the problem, as described
in Subsection 3.4.6. The employed adaptive selection mechanism and acceptance criterion are described in
Subsection 3.4.7 and Subsection 3.4.8, respectively. Subsection 3.4.9 outlines the resulting ALNS procedure
for solving the RMP, integrating all components.

3.4.1. Problem Redefinition
We adopt a tuple-based representation of routes to bypass the use of binary decision variables xkij required
by the MILP formulation. To reduce the size of the neighbourhoods, we do not consider dummy vertices
and include only the parent chargers f ∈ F , recording the values of the second-stage decision variables over
the entries within the routes. Formally, this leads to the following redefinition of the HGEV-FPP-TECU:

Definition 17 – Redefinition of HGEV-FPP-TECU for ALNS

Consider the HGEV-TECU from Definition 12 with the following modifications:

Let F ′ := F , omitting dummy notes to decrease the size of the neighbourhoods. The
original task of the dummy nodes, enabling each vehicle to visit a charger up to nvisits times, is
now fulfilled by tracking all charging sessions per charger and ensuring that no vehicle exceeds the
allowed nvisits.

Let the route set be redefined as
R := {Rk : k ∈ K},

with redefined vehicle routes
Rk := (vk1 , v

k
2 , . . . v

k
nk
),
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where nk ∈ N denotes the variable route length for vehicle k ∈ K. The route starts at vk1 = 0 and
ends at vknk

= N + 1. The initial depot charger is represented by the decision variable vk2 ∈ F ′′.
For j = 3, . . . , nk−1, the decision variables vkj define the remainder of the route by taking values in V ′.

Let the first stage-decisions x solely include R.

Let the second-stage decisions ys for each scenario s ∈ S(Ū) include decision variables
• τksj tracking the service start time,
• σks

j tracking the service end time,
• yksj tracking the SoC on arrival, and
• Y ks

j tracking the SoC on departure
for every vehicle k ∈ K and location vkj ∈ Rk.

That is, τsk from Definition 12 corresponds to τks1 , δsk to σks
2 and σs

k to σks
nk

for all k ∈ K and
s ∈ S(Ū). Furthermore, rk now corresponds to nk > 0 and ukj to

∑
vk
j ∈Rk

qvk
j
, both of which are

implied by R.
This results in a problem redefinition suitable for the application of ALNS.

3.4.2. Generalized Cost Function
Other than in the exact approach, where feasibility of the solutions is always enforced, we allow infeasible
solutions during the execution of the ALNS, to promote exploration. In order to assess the quality of a
solution and guide the search towards feasibility, we employ a Generalized Cost (GC) function over the
RMP solution (x, {ys}). This function is a special variant of the objective function from Eq. (3.2) that
also penalizes constraint violations, much like in Lagrangian relaxation [29].

Definition 18 – Generalized Cost Function

GC(x, {ys}) := DC(x) + πcvCV (x) + max
s∈S(Ū)

{SC(x,ys)}, (3.100)

where

DC(x) :=
∑
k∈K

nk−1∑
i=1

nk∑
j=i+1

dvk
i v

k
j
ckkm (3.101)

accounts for the distance costs,

CV (x) :=
∑
k∈K

max(
∑

vk
i ∈Rk

qvk
i
− Ck, 0) (3.102)

accounts for load-capacity violations penalized by πcv ∈ R≥0,

SC(x,ys) := TC(x,ys) + EC(x,ys) + πtvTV (x,ys) + πevEV (x,ys) + πovOV
s(x,ys), (3.103)

accounts for the scenario-dependent cost under RMP scenario s ∈ S(Ū), with

TC(x,ys) :=
∑
k∈K

(σks
nk
− σks

2 )ckmin (3.104)

accounting for the time costs,

EC(x,ys) :=
∑
k∈K

∑
vk
j ∈Rk∩F ′

(Y ks
j − yksj ) (3.105)

accounting for the energy costs,

TV (x,ys) :=
∑
k∈K

∑
vk
j ∈Rk

max(τksj − lj , 0) (3.106)
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accounting for time violations penalized by πtv ∈ R≥0,

EV (x,ys) :=
∑
k∈K

∑
vk
j ∈Rk

max(−yksj , 0) (3.107)

accounting for energy violations penalized by πev ∈ R≥0, and

OV (x,ys) :=
∑
k∈K

∑
l∈K, k 6=l

∑
vk
i ∈Rk∩F ′

∑
vl
j∈Rl, vk

i =vl
j

max(min(σks
i , σls

j )−max(τksi , τ lsj ), 0) (3.108)

accounting for charging overlap violations penalized by πov ∈ R≥0.

This generalized cost function builds upon the one employed by Wang, Zheng, and Zhou [112] by adding
the notion of multiple scenarios and extending it with the the charging overlap term from Eq. (3.108).

We also define the insertion cost IC(i, u, j) for inserting a location u ∈ V ′ between i and j in a given route
Rk as the added traversal distance resulting from that insertion:

Definition 19 – Insertion Cost

IC(i, u, j) := diu + duj − dij . (3.109)

3.4.3. Construction Heuristic
To construct an initial solution that serves as a starting point for the ALNS procedure, we follow the
approach proposed by Keskin and Çatay [31]. Their nearest neighbour method incrementally constructs
routes by adding the closest unvisited customer until the vehicle’s capacity is reached or further additions
would result in time window violations. In contrast to Wang, Zheng, and Zhou [112], who implement a
similar method considering the worst-case realizations of the uncertain parameters, we use the nominal
scenario znom as the baseline for route construction, as this aligns with the first scenario considered by the
RMP during CCG.

Concretely, every route k is started by selecting an initial depot charger f ∈ F ′′ that, considering the
inverse charging rate gk(nom)

f , enables the vehicle to reach its maximum state of charge at the earliest
possible time. We then apply the nearest neighbour insertion procedure, continuing to append the nearest
customer c ∈ C, in terms of distance, to the end of the route until doing so would result in a capacity
violation or time window violation directly at the customer or upon a subsequent arrival at the depot. At
that point, the vehicle is routed back to the depot.

If the vehicle risks depleting its battery before reaching the next customer, a greedy charger insertion
routine is triggered. This routine considers potential chargers f ∈ F in order of increasing insertion cost,
checking whether each charger is reachable with the current SoC and whether it can recharge the vehicle to
full capacity within a time frame that allows timely arrival at the next customer, following the approach
proposed by Keskin and Çatay [31]. A novelty introduced by our heuristic is that charger availability is
coordinated across the fleet, respecting non-overlapping constraints for charging sessions and seeking gaps
between scheduled charging sessions to recharge vehicles as timely as possible.

If no charger allows the timely arrival at the subsequent customer, the vehicle is redirected to the depot,
resolving any remaining energy deficits by inserting intermediate chargers as needed. Time window and
charging overlap constraints are relaxed during this process, so that a feasible charger can always be found.
After all vehicles are assigned routes through this process, any unassigned customers are allocated to
vehicles with spare load capacity, even if doing so violates time window constraints. If no such vehicle is
available, the customer is assigned to the vehicle with the greatest remaining load capacity, ensuring that
all customers are eventually assigned a vehicle.

The worst-case time complexity of the construction heuristic is O(N · (N + F )), as each of the N customer
insertions requires checking up to N neighbours and evaluating up to F = |F| candidate chargers.
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3.4.4. Destroy Heuristics
As discussed in Subsection 2.3.2, ALNS works with implicitly defined neighbourhoods, constructed through
a two-phase process. In the first phase, destroy heuristics are dynamically chosen to partially destroy
existing routes. In the second phase a repair heuristic reconstructs them. Among our destroy heuristics, we
differentiate between three types of operators: customer removal, route removal, and charger removal.

Customer Removal
Customer removal operators destroy the route set R by removing n = ρN customers, where ρ denotes
the customer removal rate that can be tuned based on the instance size. Removed customers are inserted
into a removal set L that can be passed to the repair operator. All routes Rk are considered at once. To
simplify the notation used in the time complexity expressions, we use V = |V| and S = |S(Ū)|.

1. Random Removal: Removes n randomly selected customers from across all routes to introduce
diversity. The worst-case time complexity of this operator is O(N).

2. Worst Removal [31, 112]: This group of operators aims to remove the worst customers based on a
given criterion. n customers are removed by repeatedly drawing a number λ ∈ [0, 1] uniformly at
random and selecting the customer at position bnλχworstc in the sorted cost list for removal. This
mechanism ensures that customers with higher cost values are more likely to be removed, while the
randomness introduced by λ and determinism factor χworst prevents overly deterministic behavior.
Specifically, we adopt the following operators using this scheme:

(a) Worst Objective Removal: Removes customers contributing most to the generalized cost.
For each customer, we calculate the GC of the solution (x′, {y′s}) obtained by removing the
customer from its route and subtract it from GC(x, {ys}). The customers are sorted by
descending difference value GC(x, {ys})−GC(x′, {y′s}). The worst-case time complexity for
this operator is O(N · V · S) as the computation of GC(x′,y′s) has complexity O(V · S).

(b) Worst Time Violation Removal: Removes customers i causing the largest time window
violations over all RMP scenarios by sorting them by descending value maxs∈Ū (τ

ks
j − lj). The

worst-case time complexity of this operator is O(N · S).
(c) Worst Energy Violation Removal: Removes customers i causing the largest energy violations

over all RMP scenarios by sorting them by ascending value maxs∈Ū (y
ks
j ). The worst-case time

complexity of this operator is O(N · S).
(d) Worst Distance Removal: Removes customers u between i and j causing the greatest detours,

sorting them by descending insertion cost IC(i, u, j). The worst-case time complexity of this
operator is O(N).

3. Shaw Removal [186, 110]: This group of operators aims to remove customers that are similar to
each other with respect to spatial, temporal, and/or demand characteristics. First, a customer i
is selected randomly. Then the remaining customers are sorted by ascending relatedness measure
rij = φ1dij + φ2|ei − ej |+ φ3|qi − qj | + φ4kij , where a smaller rij corresponds to high similarity and
kij = −1 if i and j are in the same route and 1 otherwise. Then the remaining customers are selected
as in worst removal, but using a separate determinism factor χshaw. We adopt the following variants,
each with a worst-case time complexity of O(N2):

(a) Original Shaw Removal: Removes customers based on ascending relatedness measure rij for
given Shaw parameters φ1, φ2, φ3, φ4.

(b) Proximity-Based Removal: Removes customers that are geographically close to each other,
exploiting spatial correlation, setting φ1 = 1 and all others to 0.

(c) Time-Based Removal: Removes customers with similar service time windows, setting φ2 = 1
and all others to 0.

(d) Demand-Based Removal: Removes customers with similar demand levels to balance the load
in the remaining solution, setting φ3 = 1 and all others to 0.

4. Zone Removal based on K-Means Clustering [110]: Spatially clusters customers into k zones
using K-Means [123]. A single zone is randomly selected for removal to disrupt a local area. The
worst-case time complexity of this operator is O(N2).
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Route Removal
Route removal operators remove entire routes at once, trying to make significant improvements by
redistributing their customers over other vehicles. The worst-case time complexity of these operators is
O(V ).

1. Random Route Removal: Randomly selects a single route Rk and removes it from R.
2. Greedy Route Removal [187]: Randomly selects a percentage ρr ∈ [ρmin

r , ρmax
r ] of the routes to

remove and selects the corresponding number of routes greedily according to a given criterion:

(a) Length-Based Removal: Removes routes with the fewest customers, thus smallest |Rk ∩ C|,
aiming for solutions with fewer deployed vehicles.

(b) Worst Capacity Violation Removal: Removes routes with the largest capacity violation∑
vj∈Rk∩C qvj − Ck to improve feasibility.

Charger Removal
In addition to customer and route removal, we adopt a random charger removal operator, which removes a
percentage ρf of the charging stations in the route set R. This encourages the algorithm to reconsider
second-stage charging decisions by either reinserting the same charger with a different charging amount
during the repair phase or a different charger altogether. The worst-case time complexity of this operator
is O(F ). While more advanced charger removal strategies, such as those proposed by Keskin and Çatay
[31], have not yet been incorporated, we follow their approach by introducing two additional variants for
each customer removal operator, complementing the previously described Removing Customer Only (RCO)
variant:

• Remove Customer with Preceding Station (RCwPS): This variant removes each customer in
the removal set L along with the immediately preceding charger, if one exists. The rationale is that
the preceding charger visit may no longer be necessary when the customer is removed from the route.

• Remove Customer with Succeeding Station (RCwSS): This variant removes the customer
and the immediately succeeding charger together, following the same rationale.

The time complexities for these variants are the same as for the RCO variant.

Propagation of Timing and Charging Decisions
Since second-stage decisions {ys} are integrated into the ALNS procedure, they must be updated for each
scenario s in the RMP set whenever a customer or charger is removed from the route set. In case of a
customer removal, we execute a propagation subroutine that begins at the start of the route, since the
removal of the corresponding customer demand changes the load level and therefore the energy consumption
over the entire route.

This potentially enables more cost-efficient timing and charging decisions. As we traverse the route, we
update the SoC levels according to the newly calculated energy consumption using the energy consumption
function from Definition 15. When a charging station is encountered, we ensure that the SoC upon
departure matches the maximum of the departure SoC pre-removal and the arrival SoC post-removal. This
allows the charging session to be shortened whenever the SoC upon arrival is higher than before, or even to
be skipped entirely in case the new arrival SoC exceeds the previous departure SoC.

However, chargers are not removed from the route in the latter case, as their inclusion in the route may
prove beneficial when customers are reinserted during the repair phase. Arrival times are recalculated as
the maximum of the earliest service start time ei and the earliest possible arrival time, allowing for earlier
arrivals at customers succeeding the removed location when permitted by their time windows.

If a charger is removed from the route, the load levels remain unchanged. As a result, propagation begins
only from the preceding location, with both timing and charging decisions updated accordingly for the
rest of the route. For the RCwPS and RCwSS operators, two propagation passes are made. One for
the customer removal, followed by one for the charger removal. The worst-case time complexity of the
propagation procedure is O(V · S), which leads to an overall complexity of O(V 2 · S) for the destroy phase,
when paired with one of the removal operators.
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3.4.5. Repair Heuristics
During the repair phase, we apply a single, customized repair heuristic to reinsert customers from the
removal set L back into the route set R. This heuristic dynamically adjusts the second-stage decisions
{ys} for each scenario s in the RMP set, while proactively addressing potential battery, time window,
and charging overlap constraint violations on a best-effort basis. The repair process consists of two main
components: a customer insertion heuristic and a charger insertion heuristic.

Customer Insertion
We employ a greedy customer insertion heuristic, where for every customer in L, we evaluate the insertion
cost from Definition 19 for all possible insertion positions within R. Insertions are rejected whenever
a load or time window violation is introduced in any RMP scenario. We track the insertion positions
corresponding to the lowest insertion cost. If no feasible position was found among existing routes, we
consider starting a new route with the undeployed vehicle corresponding to the highest load capacity. If
all vehicles are deployed, we consider inserting the customer at the end of the route corresponding to the
vehicle with the largest remaining load capacity and record the insertion cost for that. Then we insert
the removed customer with the overall lowest insertion cost into the corresponding position, repeating the
process until all removed customers are reinserted, so that L = ∅. This procedure has a worst-case time
complexity of O(N2 · V ), as each insertion involves evaluating all customers in L.

Alternative Heuristics
We also tested a sequential greedy insertion variant in which L was randomly shuffled and customers were
inserted in order, reducing the complexity to O(N · V ). However, despite being faster, this approach led to
significantly poorer performance and was therefore ultimately discarded.

A key limitation of the greedy insertion heuristic is its myopic nature. While it selects the customer with
the lowest immediate insertion cost, this short-term focus can lead to scenarios where customers with
limited good insertion options are later forced into poor positions due to earlier greedy choices. To address
this, we also explored the Regret-k insertion heuristic proposed by Potvin and Rousseau [188]. This method
evaluates, for each customer in L, the difference in insertion cost between its best and k-th best feasible
insertion position (regret), and prioritizes customers with the highest regret for insertion. In our preliminary
experiments, Regret-2 and Regret-3 insertion proved significantly slower than the greedy heuristic, despite
the same time complexity of O(N2 · V ), likely due to a memory-inefficient implementation. Consequently,
we opted to continue using only the greedy insertion heuristic.

Charger Insertion
Note that our customer insertion heuristic only considers time and load violations, basing insertion cost on
a distance metric. Implications in the energy domain are not considered directly upon customer insertion.
However, to ensure energy feasibility, we repair energy deficits resulting from a customer insertion as follows.
We define an energy deficit ED(i, j, k, s) between locations i and j in route the route of vehicle k under
scenario s as the difference between the SoC upon arrival at j and the energy required to reach both j as
well as the closest (in the energy domain) charger f in its vicinity:

Definition 20 – Energy Deficit

ED(i, j, k, s) := yksi − (hksij +min
f∈F

hksjf ), (3.110)

where hksij := h(dij , t
s
ij ,m(ukj )) and hksjf := h(dfj , t

s
fj ,m(ukj )).

By resolving energy deficits after each customer insertion, we ensure that, for feasible problem instances,
the routes generated by our ALNS heuristic always remain energy feasible. However, this may come at
the expense of introducing time window violations.

Similar to the work by Keskin and Çatay [31], we first consider the previous charger in the route if any
is present and try to resolve energy deficits by increasing the amount of energy charged there. What is
novel is that we also keep track of the charger bookings in each of the scenarios to prevent charging overlap
as much as possible. We check the timing interval required to resolve the energy deficit by obtaining a
high enough SoC at the previous charger. If there are any charger bookings that overlap that interval, we
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only recharge until the earliest start of such a booking, resolving the energy deficit only partially and for
every scenario separately. This addition is especially useful to extend initial charging sessions whenever the
chargers are still available so that no new and more costly on-the-go chargers need to be inserted.
In case an energy deficit remains for at least one of the RMP scenarios, we proceed by greedily inserting
a new charger into the route. Like in the construction heuristic, we first sort the chargers by insertion
cost, and then check whether the energy deficit can be resolved by booking a new charging session at the
earliest possible start time, respecting non-overlapping constraints, so that the vehicle can still arrive in
time at the next customer. If that is not possible, we move to the next charger. If no chargers satisfy the
constraints, we relax the time window restrictions, falling back to the reachable charger with the smallest
insertion cost to address the energy deficit. Multiple chargers may need to be inserted between i and j to
eliminate the energy deficit ED(i, j, k, s). In this case, after adding the first charger f , we only consider
adding other chargers f ′ with hksf ′j < hksfj to ensure that the vehicle is getting closer to the goal of reaching
j. After repairing the energy deficits, we try to push the initial charging session at the depot charger
forward in time as much as possible, maintaining the arrival time at the first customer in line. This helps
reduce additional time costs incurred by leaving the depot too early, so that a paid driver has to wait at the
location of the first customer for it to begin service, while waiting at the depot without any driver before
departure would save time costs. Following each insertion, we perform a propagation procedure similar to
that used during removal, updating the second-stage decisions to account for the newly introduced detour
and/or the resulting changes in load levels for the entire route. The worst-case time complexity of the
charger insertion procedure including propagation is O(V · S · F ), which leads to an overall complexity of
O(N · (NV ·+S · F )) or O(V 3 · S) for the repair phase, when paired with greedy customer insertion.

3.4.6. Adding Scenarios to the RMP
In subsequent iterations of the RMP, the use of the construction heuristic is no longer necessary. Instead,
we initialize the process using the previous RMP solution (x, {. . . ,yr}). For the newly introduced scenario
p, we set the departure from the depot to timestep 0 for every route Rk, while replicating the charging
amount decisions for chargers f ∈ F on Rk from the previously added scenario yr. We then propagate the
associated timing and state-of-charge levels along the routes. Any resulting violations are incorporated into
the generalized cost function and fixed by the repair heuristic after application of the destroy operator.
The worst-case time complexity of this procedure is O(V ).

3.4.7. Adaptive Operator Selection
In ALNS, the adaptive selection of operators plays a crucial role in guiding the search process. Using
the framework by Wouda and Lan [189], we employ the roulette wheel scheme to dynamically adjust the
weights of the destroy operators based on their past performance. Since we only employ a single repair
operator, it will always be selected. At the start of the algorithm, each destroy operator o is initialized
with a weight ωo = 1. During each iteration, an operator is selected probabilistically, with its selection
probability proportional to its normalized weight ω̄o. The quality of the candidate solution after repair is
evaluated using the generalized cost function from Definition 18, resulting in one of four possible outcomes:

1. The candidate is a new global best.
2. The candidate improves upon the current solution but is not globally best.
3. The candidate is accepted (but not better).
4. The candidate is rejected.

Each outcome j ∈ {1, 2, 3, 4} is associated with a score sj . We ensure s1 > s2 > s3 > s4, so that higher
scores correspond to a better performance. The weight of the selected operator o is then updated using a
convex combination of the current weight and the score

ωo ← θωo + (1− θ)sj , (3.111)

where θ ∈ [0, 1] is the memory decay rate, controlling the influence of past versus current performance [189].

3.4.8. Acceptance Criterion
To avoid premature convergence of the ALNS algorithm and promote thorough exploration of the solution
space, various acceptance criteria for candidate solutions can be employed. Santini, Røpke, and Hvattum
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[190] investigated several such criteria across standard ALNS benchmark problems, including the CVRP.
Based on their recommendations, we adopt the Record-to-Record Travel (RRT) acceptance criterion
introduced by Dueck [191]. To minimize the need for parameter tuning, we implement a linear acceptance
threshold that gradually decreases to zero over time.

The RRT criterion is similar to the Simulated Annealing (SA) metaheuristic discussed in Subsection 2.3.2
in the sense that it allows for the acceptance of non-improving solutions to promote the exploration of the
search space. However, instead of using a probabilistic acceptance rate, RRT accepts candidate solutions if
the absolute difference between their cost and that of the global best solution is less than a threshold T ,
which is dynamically updated in each iteration to gradually tighten the acceptance criterion. T is updated
using

T ← max{0, T − γ}, (3.112)

with γ being the step size or decay factor. T is initially set to Tstart, which is a parameter that can be
tweaked next to γ.

This combination of adaptive operator selection with a flexible acceptance mechanism enables ALNS to
balance intensification and diversification effectively, improving its ability to escape local optima and
converge towards high-quality solutions [189, 190].

3.4.9. Full ALNS Metaheuristic for Solving the RMP
The full ALNS metaheuristic for solving the RMP is outlined in Algorithm 4.

The algorithm begins by checking for the existence of a previous RMP solution. If one is available,
second-stage solutions for the newly introduced scenario p are copied from the previously added scenario r
and propagated using the AddScenario procedure. Otherwise, an initial solution is constructed using the
described nearest neighbour ConstructionHeuristic.

A StoppingCriterion determines whether to proceed with another destroy-repair cycle. This criterion is
based on either a maximum number of iterations or a maximum number of iterations without improvement,
as specified per experiment.

Next, one of the DestroyOperators is selected using the RouletteWheelSelection scheme to
destroy the current solution (x, {ys}). The RepairOperator then greedily inserts the customer and
chargers into the destroyed solution (x′, {y′s}), ensuring energy feasibility.

The acceptance of the resulting candidate solution (x′′, {y′′s}) is based on its generalized cost and governed
by the RRTAcceptanceCriterion, which returns one of the scores (s1, s2, s3, s4) for the selected destroy
operator based on the outcome. This score is then used to update the weight of the chosen operator o via
Eq. (3.111). The acceptance threshold for RRT is updated using Eq. (3.112).

The remaining steps handle bookkeeping, ensuring that the current solution (x, {ys}) and the best-known
solution (x∗, {ys∗}) are properly tracked. The best solution is updated whenever a candidate solution
(x′′,y′′s) is accepted by the acceptance criterion and ultimately returned.

Provided that the StoppingCriterion is set to a fixed maximum number of iterations, the worst-case
time complexity of the full procedure becomes O(V 3 · S). In other words, the metaheuristic is pseudo-
polynomial because S can grow exponentially, rather than polynomially, with respect to the dimension
l of the uncertainty set U , even when Ū = ext(U). However, as our results later show, the number of
RMP scenarios typically remains limited, so that the pseudo-polynomial runtime does not compromise
performance too much.
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Algorithm 4 – ALNS Metaheuristic for Solving the RMP

Input: Restricted uncertainty set Ū , first-stage decisions x, second-stage decision
candidates {ys}, stopping criterion StoppingCriterion, acceptance starting
threshold Tstart, acceptance decay factor γ, operator scoring vector
s = (s1, s2, s3, s4), operator decay factor θ

Output: Best generalized cost c∗gcost, best first-stage decisions x∗, second-stage candidate
solutions {ys∗}

1 if x = 0 then
2 (x, {ys}, cgcost)← ConstructionHeuristic(znom);
3 end
4 else
5 yr ← ys for previously added s ∈ S(Ū);
6 yp ← AddScenario(x,yr);
7 {ys} ← {. . . ,yr} ∪ {yp};
8 cgcost ← GC(x, {ys});
9 end

10 ω ← 1;
11 x∗ ← x;
12 {ys∗} ← {ys};
13 i = 1, i∗ = 1;
14 c∗gcost = cgcost;
15 T ← Tstart;
16 while not StoppingCriterion(i, i∗) do
17 (o,DestroyOperator)←RouletteWheelSelection(ω);
18 (x′, {y′s},L)← DestroyOperator(x, {ys});
19 (x′′, {y′′s})←RepairOperator(x′, {y′s},L);
20 (sj , Accepted)←RRTAcceptanceCriterion(cgcost, c∗gcost, T, s);
21 ωo ← θωo + (1− θ)sj ;
22 T ← max{0, T − γ};
23 if Accepted then
24 x← x′′;
25 {ys} ← {y′′s};
26 cgcost ← GC(x′′, {y′′s));
27 if cgcost < c∗gcost then
28 x∗ ← x′′;
29 {ys∗} ← {y′′s};
30 c∗gcost ← cgcost;
31 i∗ ← i;
32 end
33 end
34 i← i+ 1;
35 end
36 return (c∗gcost,x

∗, {ys∗})
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3.5. Solver Synthesis
Having introduced all key methodological components, we now synthesize several solver variants as part of
the CertERoute framework to address the HGEV-FPP-TECU under different problem settings.

Exact Deterministic Solver (EXA-DET):

• Solves Model 13 directly for a single scenario q, using the uncertainty set Ū = {zq}.
• Returns the total cost ctotal and static solution (x,yq).
• Guarantees optimality under the given scenario.

Exact Adaptive Robust Optimization Solver (EXA-ARO):

• Solves Model 13 taking the role of the RMPSolver within the CCG framework from Algorithm 1.
• Returns the total cost ctotal, first-stage decisions x, and second-stage decision candidates {ys} for all

scenarios s ∈ S(Ū).
• Guarantees optimality under Ū but might suffer from lacking robustness due to premature convergence.

Exact Robust Optimization Solver (EXA-RO):

• Similar to EXA-ARO but considers a single second-stage decision candidate y to perform static
robust optimization.

• Guarantees optimality under Ū but might suffer from lacking robustness due to premature convergence.

Metaheuristic Deterministic Solver (META-DET):

• Similar to EXA-DET but employs the ALNS procedure from Algorithm 4 to find the static solution.
• Provides no optimality under Ū and might suffer from lacking robustness due to premature convergence.

Metaheuristic Adaptive Robust Optimization Solver (META-ARO):

• Similar to EXA-ARO but employs the ALNS procedure from Algorithm 4 to solve the RMP.
• Guarantees no optimality under the given scenario.

Justification for Deterministic Solver Variants
The inclusion of the deterministic solvers EXA-DET and META-DET addresses practical scenarios where
only nominal or average-case estimates are available. When robustness is not a priority, or costs of expected
failure can be anticipated and incorporated in the objective function, optimizing directly for the nominal
scenario can yield cost-efficient and pragmatic solutions.

In the adaptive optimization setting, the optimal second-stage decisions yq for a realized scenario q may
not be part of the candidate set {ys}, as the objective in Eq. (3.2) focuses on minimizing the worst-case
operational cost. Consequently, it suffices to identify feasible, though not necessarily optimal, second-stage
decision candidates for less adverse scenarios. The deterministic solvers can be used post-realization to
refine these decisions.

Justification for Static Solver Variant
While the adaptive solver variants EXA-ARO and META-ARO offer the flexibility to adjust second-stage
decisions during route execution based on the realized scenario, potentially enhancing cost-efficiency,
this adaptability may not always be practical. It relies on accurate real-time tracking of vehicle energy
consumption and timing realizations. Inaccurate measurements can compromise robustness, and constantly
shifting optimal timing decisions may prevent reliable arrival time estimates, complicating customer
communication and integration with reservation systems for chargers. In such cases, a non-adaptive solver
like EXA-RO may be more suitable, providing a single, robust solution with stronger guarantees, albeit
potentially at the cost of reduced cost-efficiency.



4
Experimental Setup

This chapter focuses on the experimental setup required to address the research sub-question:

Research Sub-question 4

How do the proposed solution methods perform when applied to realistic HGEV fleet planning
scenarios, in terms of robustness, cost-efficiency, scalability, and adaptability?

Section 4.1 details the process of generating realistic HGEV-FPP-TECU instances. Section 4.2 describes how
we model the energy consumption of the HGEVs in our experiments. Section 4.3 covers the implementation
and configuration of the models and algorithms, as well as the hardware setup used during experimentation.
The actual experiments and their results are discussed in detail in Chapter 5.

4.1. Instance Generation
To evaluate our methodology, we introduce five distinct classes of synthetic yet realistic HGEV-FPP-TECU
instances, each containing five benchmark instances. The first two classes, Toy Single Vehicle (T-SV)
and Toy Dual Vehicle (T-DV), include small-scale, illustrative instances involving one and two vehicles,
respectively. These toy instances are solvable to optimality using exact methods and are particularly useful
for visual interpretation and analysis, which becomes challenging with larger instances.

The Small (S) class simulates operations of small companies managing a limited number of HGEVs, each
serving up to four customers a day. For simplicity, these instances include only a single depot charger, such
that the satisfaction of non-overlap constraints for charging sessions can easily be verified.

The Medium (M) and Large (L) classes represent more complex instances with 30 or more customers
and 10 or more vehicles. These are typically computationally intractable for exact methods and are thus
used to assess the performance of our metaheuristic solution methods. An overview of the key design
parameters for all instance classes is provided in Table 4.1.

Class Customers Vehicles Depot Chargers On-the-Go Chargers Demand UB
T-SV 3 1 1 2 0.7 · Cmax

T-DV 5 2 1 2 0.7 · Cmax

S 10 3 1 5 0.7 · Cmax

M 30 12 10 20 0.5 · Cmax

L 100 40 30 30 0.3 · Cmax

Table 4.1: Instance classes and their design parameters. Cmax denotes the maximum vehicle load capacity.

The procedure for sampling charger and customer locations is detailed in Subsection 4.1.1. Baseline vehicle
parameters are described in Subsection 4.1.2. The construction of the uncertainty set for each instance is
outlined in Subsection 4.1.3. Subsection 4.1.4 provides an overview of the cost parameters adopted for the
experiments.
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4.1.1. Location Sampling
To make the instances as realistic as possible, we sample locations that are commonly visited by transport
companies in actual operations. To do this, we utilize a synthetic dataset derived from European road freight
traffic, comprising 1,514,573 directed transport flows between 1,630 origin points and 1,667 destination
points all across Europe, including the Netherlands. It provides data on freight volumes in tons as well as
the number of vehicles involved [192]. Specifically for 2019, the dataset includes 385 destination locations
within the Netherlands. We construct a probability distribution over these data points, weighting every
location by the total tonnage transported to that destination and used this to sample customer locations
for our instances. We sample the location of the depot at the center of the bounding box containing The
Netherlands, which corresponds to a location in the village Eemnes (Noord-Holland). For the Large
instance class, we pose the constraint that the sampled customers can only be located in the eastern
half of the Netherlands, to improve the likelihood of finding feasible instances. Additionally, the depot is
preferentially sampled further east, resulting in its placement in Deventer (Overijssel).

For the chargers, we distinguish between depot chargers, located at the depot and on-the-go chargers,
which are situated elsewhere. Among the on-the-go chargers, we further differentiate between three types:

• Private chargers: sampled among the sampled customer locations.
• Semi-public chargers: sampled from the full set of potential customer locations in the synthetic

dataset.
• Public chargers: sampled from a set of service area locations.

In reality, the current public charging infrastructure for HGEVs is limited and insufficient to cover the
entire country. Sampling public chargers only from the current known charger locations would make the
generation of feasible routing instances very challenging. To remedy this, we instead sample potential
charger locations from a set of highway service areas, which are considered to be representative for future
charger locations based on a policy report prepared for the Dutch government. This report specifically
recommends service area locations for the expansion of public charging infrastructure [193]. We extracted
the coordinates of all current highway service areas from Wikipedia [194] using a Python script and compiled
these into a dataset from which the charger locations are sampled uniformly at random.

We apply sampling weights of [0.1, 0.8, 0.1] for the on-the-go charger categories consistently across all exper-
iments. This ensures that smaller instances predominantly feature public chargers, while larger instances
incorporate a more diverse mix. An illustrative example corresponding to instance S-1 demonstrates the
outcome of our location sampling method, as shown in Fig. 4.1.

Customer demand is sampled between 10% and an upper bound, which is initially set at 70% of the
maximum vehicle load capacity Cmax, following Wang et al. [69]. For larger instances, this upper bound is
reduced to increase the likelihood of generating capacity-feasible instances. If the total demand exceeds the
fleet’s total load capacity, the upper bound is iteratively decreased by 5%, resampling customer demands
until a capacity-feasible set of demands is found.

The operation window is assumed to span the full day, from 00:00 to 24:00. Time windows [ei, li] for the
depot and chargers i ∈ F ′ ∪ {0, N + 1} are set accordingly, assuming charger availability unless booked by
other vehicles. For customer locations i ∈ C, time window lengths are randomly drawn between 3 and 6
hours, with earliest start times ei sampled between 06:00 and 18:00 to represent typical opening hours for
customers.
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Figure 4.1: Example of sampled locations with the depot location indicated in red, charger locations in green
and customer locations in blue. The sampled locations correspond to those in the instance S-1.
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4.1.2. Crafting a Realistic Baseline Vehicle
To further promote the realism of our experiments, we construct a representative baseline vehicle informed
by a brief market analysis and actual configurations observed among Shell clients. According to the
International Council on Clean transport, long-haul tractor-trailer combinations account for approximately
75% of the CO2 emissions produced by the entire HGV fleet. The predominant configuration in this
segment features a 4× 2 drivetrain and a gross combination weight of 40 tonnes [136]. Electrification of
this vehicle type is progressing rapidly, with all seven major European HGEV manufacturers currently
offering at least one electric model [195].

The Tractor
Volvo has led the European market in this segment for the past five years, achieving a 47% market share
in 2024 [196]. Its flagship model, the Volvo FH Electric, as shown in Fig. 4.2, exhibits an average energy
consumption of 1.1 kWh/km and a range of up to 300 kilometres. It delivers a power output between
330 and 490 kW, supports charging at 250 kW, and accommodates 4 to 6 batteries for a total capacity of
360–540 kWh [197]. The curb mass of the vehicle is 9,890 kg.

Figure 4.2: Volvo FH Electric Tractor coupled to a Shell AC Fast Charger. Image published by Shell



4.1. Instance Generation 71

The Trailer
In the trailer segment, Schmitz Cargobull holds a leading position in Europe with a market share of
approximately 23% [198]. Of particular relevance is its fully electric refrigerated S.KOe COOL trailer [199],
illustrated in Fig. 4.3, which is frequently used in for example supermarket distribution applications.
Although the trailer is equipped with a 32kWh battery that enables up to 4.5 hours of standalone operation,
a Shell client in the Netherlands chose to power the 7,980 kg trailer directly from the Volvo FH Electric
tractor via its Power Take-Off (PTO) system. This results in a demanding but interesting scenario, where
the refrigeration unit imposes an additional continuous auxiliary power demand of 7.1 kW [200].

Figure 4.3: Schmitz S.KOe COOL Trailer. Image adapted from [200]

We select the Volvo FH Electric, configured with a 540 kWh battery and coupled to the Schmitz S.KOe
COOL trailer, as the baseline vehicle for our experimental study. Note that our model formulation from
Model 11 allows for a heterogeneous fleet of vehicles. However, for our experimental study, we only
consider a single vehicle type to begin with. Due to the unavailability of exact data on the vehicle’s frontal
area, auxiliary power demand, and tire rolling resistance, standard reference values are adopted from
Oscar Delgado and Muncrief [136]. For the driver, we consider a maximum mass of 100 kg. An overview of
all relevant baseline vehicle parameters and their values is provided in Table 4.2.

Usable Battery Range
The usable battery range of HGEVs is often guided by the 20 to 80% rule, which recommends maintaining
the battery’s SoC within this range to extend battery lifespan and account for uncertainties in energy
consumption. However, we aim to explicitly account for energy consumption uncertainty in our optimization
such that applying this rule on top of that would make our already conservative model, even more restrictive.
To strike a better balance between realism and robustness, we instead adopt a usable SoC range of 10 to
90%. This approach avoids excessive conservatism while still preserving a buffer for unexpected events that
are difficult to predict or model accurately. Mathematically, applying this rule is equivalent to reducing
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Parameter Description Value
ckr Rolling resistance coefficient 0.0055

(cd ·Af )k Air drag area [in m2] 5.63

mk
c Total curb mass [in kg] 9,890 + 7,980 + 100

Qk Battery capacity [in kWh] 0.8 · 540
gk Inverse charging rate [in minutes/kWh] 0.24

P k
0 Auxiliary power demand [in kW] 5.5 + 7.1

Table 4.2: Baseline Vehicle Parameters

the battery capacity to 80%, while maintaining the SoC within 0 to 100% of this reduced capacity. This
explains the multiplier 0.8 for the battery capacity in Table 4.2.

4.1.3. Bounding Uncertainty
To construct our uncertainty sets, we establish realistic bounds on the uncertainties in the time domain,
which include the service and waiting durations, charging rates, and traversal durations. In the following,
we detail this process, which is based on informed assumptions and expert consultation. The resulting
parameter values are summarized in Table 4.3.

Service and Waiting Durations
We utilize a private case study conducted by Shell for a major road transport client in the Netherlands to
gain insights into unloading durations. The case study shows an average waiting duration of 27.5 minutes,
with over 50% of the values lying within the range of 15 to 40 minutes and more than a quarter of the
values falling between 15 and 20 minutes. For the construction of our uncertainty set, we align the lower
and upper bounds with the found first and third quartile, considering waiting durations between 15 and 40
minutes. This corresponds to setting νnomi to 27.5 and νdevi to 12.5 for all locations i ∈ C ∪ {0}, so that
the nominal value within the uncertainty set is close to the mean of the actual distribution.

We assume that the bounds for unloading at customers can also be used to bound the loading duration at
the depot, for which no data is available. This assumption is based on the premise that a full truck load
can often be loaded quickly from a dock using methods such as cross-docking, where cargo is unloaded from
incoming vehicles and almost immediately loaded into outgoing vehicles with minimal delay [201]. Other
companies prepare the cargo for a Full Truck Load (FTL) at the dock, allowing it to be loaded in one
piece using automated truck loading systems. However, during distribution operations, partial unloading at
customer locations often cannot be done as efficiently, resulting in significantly longer unloading durations.

As for waiting durations, we envision a scenario where the timeslots for visits to public or semi-public
chargers are reserved ahead of time through a booking system, eliminating any waiting time at charging
stations. Additionally, we assume that the waiting durations at the depot and unloading locations are
already included within the unloading duration. This corresponds to setting wnom

i = wdev
i = 0min for all

locations i ∈ V.

Charging Rates
In our experiments, we consider two charger types: a 50kW Alternating Current (AC) charger for overnight
charging at the depot, and a 400 kW Direct Current (DC) charger aimed at fast charging. These represent
typical infrastructure found at Shell eDepots and public charging facilities, respectively. To illustrate, the
AC charger could hypothetically fully charge the Volvo FH Electric’s 540 kWh battery in approximately 11
hours, whereas the DC charger would only require 1.5 hours to do so.

However, the power levels of the chargers represent their theoretical maximum. For the AC charger, the
corresponding C-rate, which gives the ratio of charger power (in kW) to battery capacity (in kWh), is
approximately 50

540 ≈ 0.093. Such a low C-rate indicates a slow, battery-friendly charging process. As
a result, AC charging is typically stable and predictable, justifying the use of a constant charging rate
of 50 kW in our experiments. This corresponds to setting gk(nom)

f = 1.2, g
k(dev)
f = 0 min/kWh for all

f ∈ FAC , where FAC ⊂ F denotes the set of all AC chargers.
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In contrast, the DC charger, while rated at 400 kW, is limited by the vehicle’s maximum intake of 250 kW,
yielding a C-rate of 250

540 ≈ 0.46. At this higher rate, charging becomes more dynamic. As the battery’s SoC
increases, internal resistance and heat buildup cause the vehicle’s Battery Management System (BMS) to
gradually reduce power intake. This results in a tapering charging curve, especially beyond 80 to 90% SoC.
However, due to the large battery size of HGEVs, this effect is less pronounced than for passenger BEVs,
as elucidated in Fig. 4.4. Hence, for simplicity, we assume a constant DC charging rate of 250 kW during
our experiments, which is rather conservative for 400 kWh chargers but reflects the vehicle’s charging
limitations. This corresponds to setting gk(nom)

f = 0.24, g
k(dev)
f = 0 min/kWh for all f ∈ FAC , where

FDC ⊂ F denotes the set of all DC chargers.

Figure 4.4: Synthetic charging curves showing the relation between charging power and time comparing HGEVs
with passenger BEVs. Figure adapted from Liebig et al. [202]

Within our scope, overnight charging at public and semi-public chargers is not considered relevant, since
the HGEVs are assumed to complete a single trip per day and remain at the depot overnight. As such,
only DC fast chargers are deployed at these locations. Due to the current limited deployment of eDepot
infrastructure, statistical data on the distribution of charger types at depots is not yet available. Therefore,
we assume that 60% of future depot chargers will be AC chargers for overnight charging, while the
remaining 40% will be DC fast chargers. This balance is intended to ensure operational resilience in case
of DC charger outages and to support daytime charging needs. We adopt these percentages in our charger
sampling procedure, except for the toy instances, where only DC chargers are sampled for simplicity.

Traversal Durations
According to experts in the field, European HGEVs travel around 50 to 60 km/h, accounting for traffic
congestion, driving regulations and speed limits. We make use of the open-source OpenRouteService Matrix
API developed by Neis and Zipf [203] to determine the edge distances dAPI

ij and traversal durations tAPI
ij

between all sampled locations i, j ∈ V . This API uses Dijkstra’s Algorithm [204] to find the shortest paths
from one location to the other based on the traversal time per underlying road segment, as taken from
OpenStreetMap (OSM) [205] data. The traversal time for each road segment is calculated using the known
speed limits for HGVs on different waytypes, which are then adjusted for the surface types and qualities of
the road segments if such annotations are available. If multiple annotations apply to a road segment, the
most restrictive one is used [206]. As a small validation experiment, we randomly sampled 100 different
locations in the Netherlands and used the OpenRouteService API to calculate the mutual distances and
traversal durations, from which we derived the average velocity. The resulting distribution of the average
velocity values is shown in Fig. 4.5 and shows ranges between 40 to 60 km/h with both the median and
mean value around 50, which corresponds to observations made by field experts.
To account for uncertainty in traversal durations, we utilize statistics published by the Dutch government
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Figure 4.5: Average velocities for all possible trajectories between 100 randomly sampled locations in the
Netherlands calculated using the OpenRouteService Matrix API

[207] on the annual additional travel hours incurred due to driving below the reference speed of 100 km/h in
the Netherlands. However, the maximum speed of HGVs in the Netherlands is restricted to 80 km/h, which
means they always experience additional travel time according to this metric. Despite this limitation, this
metric provides some insight into the potential impact of road congestion, for which no specific measures
exist specifically for HGVs. The data indicates that in 2024, 62 million hours were lost over a total of 69
billion kilometres driven annually. This translates to an additional 3.23 seconds per kilometre. For our
uncertainty set, we consider the traversal durations returned by the API as the lower bound and construct
an upper bound by multiplying the distance by the extra travel duration of 0.0538 minutes per kilometre.

Table 4.3 summarizes the resulting parameters for the construction of the uncertainty sets. The uncertainty
budgets are determined per experiment in Chapter 5.

Parameter Description Value Indices

dij Traversal distances [in km] dAPI
ij i ∈ V ′

0, j ∈ V ′
N+1

tnom
ij Nominal traversal duration [in min] tAPI

ij i ∈ V ′
0, j ∈ V ′

N+1

tdev
ij Maximum deviation in traversal duration [in min] 0.0538 · dij i ∈ V ′

0, j ∈ V ′
N+1

νnom
i Nominal service duration [in min] 27.5 i ∈ C ∪ {0}
νdev
i Maximum deviation in service duration [in min] 12.5 i ∈ C ∪ {0}
g
k(nom)
f Nominal AC inverse charging rate [in min/kWh] 1.2 f ∈ FAC , k ∈ K
g
k(dev)
f Maximum AC deviation in inverse charging rate [in min/kWh] 0 f ∈ FAC , k ∈ K
g
k(nom)
f Nominal DC inverse charging rate [in min/kWh] 0.24 f ∈ FDC , k ∈ K
g
k(dev)
f Maximum DC deviation in inverse charging rate [in min/kWh] 0 f ∈ FDC , k ∈ K
wnom

j Nominal waiting duration [in min] 0 j ∈ V
wdev

j Maximum deviation in waiting duration [in min] 0 j ∈ V

Table 4.3: Parameters used to define the uncertainty sets

4.1.4. Setting Cost Parameters
Throughout our experiments, the main objective is to minimize the total operational costs, as defined by
Eq. (3.2) and embedded in the generalize cost function (Definition 18) for ALNS. We consider a distance



4.2. Energy Consumption Modelling 75

cost ckkm of 0.08 €/km and a time cost ckmin of 0.83 €/min (equivalent to €50 per hour for a driver) for
each vehicle k ∈ K. Additionally, we account for an energy cost cfkWh of 0.25 €/kWh for all private depot
chargers f ∈ F ′′ and a cost of 0.60 €/kWh for all on-the-go chargers in f ∈ F ′ r F ′′, based on cost
evaluations made by the Shell sales team.

4.2. Energy Consumption Modelling
As discussed in Subsection 4.2.1, energy consumption is inherently complex and uncertain. To address
this, we adopt a modelling approach based on simulation and function approximation. This method allows
us to account for energy-related uncertainties, without explicitly including them into the optimization
problem. Based on a large number of energy consumption simulations, we approximate a function that
yields the expected energy consumption for every edge in the transport network, given a realization of the
uncertain traversal duration, load level, and distance over that edge. By multiplying the function values
with a certain robustness multiplier, the level of robustness to uncertainties in the energy domain can be
tweaked. The following two subsections elaborate on this methodology.

4.2.1. Simulation of the Energy Consumption
While we aim to capture the significant [51] impact of acceleration and deceleration on HGEV energy
consumption, we do not perform high-fidelity simulations over the road network Er due to the lack of
detailed vehicle and traffic simulators and access to paid APIs, unlike in prior works [51, 69, 146].
Instead, we simulate energy consumption using the longitudinal dynamics model from Model 5 across
representative HGV duty cycles from VECTO [208], including UrbanDelivery, InterUrban, SubUrban,
RegionalDelivery, and LongHaul profiles. These profiles capture varying driving conditions, from
low-velocity stop-and-go traffic to continuous high-velocity motorway driving. We preprocess each profile
for simulation, with results shown in Fig. 4.6 and further details in Appendix C.
For each duty cycle, we perform 100,000Monte Carlo (MC) simulations over the uncertain model parameters,
fixing vehicle mass at five discrete values from curb weight to 40 tonnes. To account for weather variability,
we sample air density values (ρa) [137] based on temperatures from −10 ◦C to 30 ◦C observed in the 2024
Dutch weather data [209]. Motor and generator efficiencies (ηM , ηG) are varied within the sensitivity ranges
from Asamer et al. [6], reflecting environmental and vehicle-specific uncertainties. Auxiliary power demand
(P0) is simulated using the range from Oscar Delgado and Muncrief [136], adjusted for the continuous load
of the refrigerated baseline trailer.
We adopt Gaussian distributions for sampling the uncertain parameters, as they more accurately reflect the
probabilistic nature of environmental phenomena compared to uniform distributions [210]. Each random
variable is modeled with a marginal Gaussian distribution centered at the midpoint of its uncertainty range,
with endpoints corresponding to the 99% confidence interval. While we currently assume independence
among variables due to the lack of correlation data, we structure the sampling process to support multivariate
Gaussian distributions. This is achieved via a Cholesky decomposition [211] of the covariance matrix, which
defaults to the identity matrix under the independence assumption. Table 4.4 summarizes the parameters
subject to simulation and their associated uncertainty intervals. All other vehicle parameters follow the
baseline from Subsection 4.1.2. Each simulation yields the energy consumption per kilometre for a given
average velocity and mass level.

Variable Description Uncertainty Interval Distribution
ρa Air density [in kg/m3] [1.341, 1.127] N (1.246, 0.318)

ηM Motor energy efficiency [in %] [0.63, 0.90] N (0.75, 0.0582)

ηG Generator energy efficiency [in %] [0.64, 0.82] N (0.70, 0.388)

P0 Auxiliary power demand [in kW] [13.5, 16.5] N (12,600; 388.22)

Table 4.4: Sampled energy consumption parameters with their uncertainty ranges and sample distribution

The resulting mean energy consumptions per kilometre and the corresponding standard deviations are
summarized in Table 4.5.
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Figure 4.6: Duty cycles for LongHaul, RegionalDelivery, InterUrban, SubUrban and UrbanDelivery
delivery operations showing the recorded velocity and elapsed time over different trajectories. The dashed line

indicates the characteristic average velocity for the profile in the time domain.
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Cycle Velocity (km/h) Inv. Velocity (min/km) Load Level (kg) Consumption (kWh/km)

LongHaul 82.64 0.726

17,970 0.964± 0.068

25,000 1.004± 0.072

30,000 1.033± 0.076

35,000 1.062± 0.078

40,000 1.091± 0.080

RegionalDelivery 64.85 0.925

17,970 1.016± 0.073

25,000 1.098± 0.081

30,000 1.157± 0.087

35,000 1.215± 0.093

40,000 1.274± 0.100

InterUrban 37.65 1.594

17,970 1.428± 0.111

25,000 1.719± 0.143

30,000 1.926± 0.166

35,000 2.133± 0.189

40,000 2.340± 0.212

SubUrban 36.84 1.629

17,970 1.627± 0.130

25,000 2.032± 0.175

30,000 2.318± 0.207

35,000 2.606± 0.238

40,000 2.894± 0.269

UrbanDelivery 32.78 1.830

17,970 1.948± 0.158

25,000 2.441± 0.210

30,000 2.796± 0.248

35,000 3.145± 0.286

40,000 3.499± 0.323

Table 4.5: Monte Carlo simulation results presenting the mean and standard deviation of energy consumption
per kilometre across various duty cycles and mass configurations

4.2.2. Function Approximation for the Energy Consumption
By aggregating simulation results across different profiles and mass levels, we construct a function ap-
proximation that maps inverse velocity and mass to the average energy consumption in kWh/km. The
approximation process yields generalized parameters (αk, βk, γk, κk) for the energy function from Defini-
tion 15. These are applied uniformly across all instances, vehicles k ∈ K and edges (i, j) ∈ E , as we consider
a homogeneous fleet in our experiments and edge-specific simulations would require a velocity profile per
road segment.

For the robustness multiplier ψk, we adopt the baseline value of 1 during our experiments. This reflects
nominal-case optimization with respect to energy consumption uncertainty. Since HGEVs generally operate
at average velocities that fall between those of the RegionalDelivery and InterUrban profiles (as
shown in Fig. 4.5), and the approximated function already yields a conservative estimate for these profiles
(see Fig. 4.7), we consider the estimates for energy consumption given by this function to be robust enough
for our experiments. For more conservative planning, fleet operators may opt to use higher coefficients,
up to ψ = 1.45. Using this coefficient roughly corresponds to applying a chance constraint that limits
the risk of battery depletion under energy consumption uncertainty to below 5%, provided that average
velocities remain within the simulated range [32.78, 82.64] km/h. However, this approach may significantly
overestimate energy consumption and operational costs at lower average velocities.

The final energy function used in our experiments corresponds to the one defined in Definition 15, with
the estimated parameters applied. The corresponding Mean Squared Error (MSE) and the coefficient of
determination (R2) were found to be 0.02 and 0.95, respectively, indicating that the function represents
the simulated data well. Further details on the approximation process can be found in Appendix C.

h(dij , t
s
ij ,m(ukj )) = (0.963−3.970× 10−5m(ukj )−1.125× 10−1

tsij
dij

+ 5.511× 10−5m(ukj )
tsij
dij

)1dij (4.1)
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Figure 4.7: Simulated and approximated energy consumption for the RegionalDelivery and InterUrban
duty cycles, illustrating the mean values and 95% confidence intervals from the Monte Carlo simulations, alongside

the approximated function values for various robustness coefficients ψk

4.3. Implementation and Configuration Details
This section outlines the implementation details of the models and algorithms, along with the hardware
configuration and parameter settings used in our experiments.

Implementation Details
All models and algorithms are implemented in Python (v3.12) using object-oriented programming principles.
The MILPs for Model 9 and Model 16 are implemented using the Pyomo library [212], which provides a
Pythonic syntax for constraint modeling and supports integration with various commercial solvers. Gurobi
Optimizer [66] (v12.0.0) is selected to power the exact RMPSolver variants and the Maximization and
Minimization procedures within the OSLP algorithm due to its top-tier performance and integration
within the Shell technology stack. To implement the ALNS metaheuristic from Algorithm 4, we build on
the framework by Wouda and Lan [189], adapting its roulette wheel selection and RRT acceptance criterion.
The multi-scenario solution state and the destroy/repair operators are implemented from scratch.

Computational Setup
All experiments are conducted on an HP ZBook Fury 16 G10 Mobile Workstation, equipped with a 13th
Gen Intel® Core™ i9-13950HX processor running at 2.20 GHz, featuring 24 cores and 32 logical processors,
along with 64 GB of RAM. This setup is intentionally selected to demonstrate that our methodology can be
used to solve reasonably large instances of the HGEV-FPP-TECU problem within a timeframe of several
hours on a single, albeit high-performance, laptop. By avoiding reliance on costly and energy-intensive
cloud infrastructure, our approach becomes more accessible and practical for transport companies to adopt.

ALNS and MILP Configuration
We employed the META-DET solver to verify the feasibility of potential benchmark instances during
instance generation. For the toy and small instance classes, a maximum of 1000 iterations proved sufficient
to find feasible instances due to their simplicity. For the medium and large instance classes, the solver was
made to terminate after 100 iterations without improvement to avoid excessive computation on unpromising
instances. Only instances feasible at termination were retained.

For the RRT acceptance criterion, we use the default starting threshold of Tstart = 0.02 proposed by Wouda
and Lan [189]. The decay factor γ is automatically calibrated so that T would reach zero at the final
iteration. This is done in combination with a default stopping criterion of 1000 iterations. When using an
alternative criterion based on a fixed number of iterations without improvement, where the total iteration
count is unknown, we assume an upper bound of 100,000 iterations for calibration. For the roulette wheel
selection mechanism, we also follow the defaults from Wouda and Lan [189], setting the score vector to
s = (25, 5, 1, 0) and using a memory decay parameter of θ = 0.8.

The parameters for the ALNS operators are mostly adopted from Keskin and Çatay [31], who performed
parameter tuning on EVRPTW-PR instances with up to a 100 customers. The customer removal rate ρ is
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set to 0.2, 0.1, and 0.05 for toy/small, medium, and large instances, respectively. For zone removal, we
use k = 2, 5, 10, and 25 clusters for toy, small, medium, and large instances. For the penalty coefficients
in the generalized cost function, we employ the parameters πcv = 4, πov = 6, πtv = 10, πev = 3. These
penalize time violations and charging overlap violations more harshly to guide the search into the direction
of feasible instances, reflecting early observations that the algorithm struggled the most to satisfy timing
related constraints, while capacity violations were less common and energy feasibility was maintained by
design. For some experiments, we use higher values for πov to prevent situations where infeasible solutions
with charging overlap have lower generalized cost than feasible solutions, as indicated in Chapter 5. Given
the large number of parameters and time limitations, we perform little parameter tuning. Table 4.6 provides
an overview of all chosen parameter values for ALNS.

Parameter Description Value
ρ Customer removal rate (0.2, 0.2, 0.2, 0.1, 0.05)

k Number of zones (2, 2, 5, 10, 25)

χworst Worst-case determinism factor 4

χshaw Shaw determinism factor 12

φ1 Shaw distance coefficient 0.5

φ2 Shaw time coefficient 13

φ3 Shaw demand coefficient 0.15

φ4 Shaw route coefficient 2

ρmin
r Route removal lower bound 0.1

ρmax
r Route removal upper bound 0.3

ρf Charger removal rate 0.5

πcv Capacity violation coefficient 4

πov Charging overlap violation coefficient 6

πtv Time window violation coefficient 10

πev Energy violation coefficient 3

Tstart Candidate acceptance start gap 0.02

γ Candidate acceptance decay rate auto
s1 Operator weighting score new global best 25

s2 Operator weighting score improvement 5

s3 Operator weighting score acceptance 1

s4 Operator weighting score rejection 0

θ Operator weighting memory decay rate 0.8

Table 4.6: ALNS parameters and their values

To speed up instance generation and repeated experiments, we use multiprocessing with up to 15 parallel
processes. The CCG procedure described in Algorithm 1 is executed with a maximum of ι = 50 iterations
and a minimum improvement threshold of ε = 0.01, disregarding objective improvements smaller than 1
cent. The procedure is modified to also terminate when, after pessimization fails to find a violating scenario,
re-solving the RMP with META-ARO yields a worse objective. This prevents redundant iterations where
the condition |c∗total−ctotal| > ε persists. Such behavior can occur because META-ARO does not guarantee
solution consistency when no improvement is possible.

In the MILP formulation, each vehicle is limited to at most two charger visits (nvisits = 2) to prevent a
combinatorial explosion in the number of dummy vertices. After solving the RMP with META-ARO,
solutions are mapped to a dummy-augmented route set R′ using the symmetry-breaking constraints from
Eq. (3.18), ensuring compatibility with the pessimization MILPs. To reduce the number of irrelevant
pessimization variables and ensure that the pessimization models fit into memory, index sets are intersected
with R′ for META-ARO. Identified scenarios are altered by removing dummy nodes, enabling their
reintegration into the RMP. Lastly, we employ warm-restarts to accelerate the RMP and OSLP procedures.



5
Experiments and Results

This chapter focuses on the evaluation of the CertERoute framework, addressing the research sub-question:

Research Sub-question 4

How do the proposed solution methods perform when applied to realistic HGEV fleet planning
scenarios, in terms of robustness, cost-efficiency, scalability, and adaptability?

In Section 5.1, we evaluate our exact deterministic solver on toy HGEV-FPP-TECU instances by
comparing nominal and worst-case scenarios. This allows us to analyze the total impact of uncertainty
on the decision-making and resulting cost-efficiency. In Section 5.2, we conduct a sensitivity analysis to
identify which (uncertain) factors most significantly influence total cost, both within an individual instance
and across multiple instances.

Section 5.3 focuses on assessing the robust optimization approach including the OSLP pessimization
procedure. We compare our static and adaptive robust optimization solvers to evaluate the robustness of
their solutions under budgeted uncertainty, and test the influence of the added adaptability on cost-efficiency.
In Section 5.4, we test our metaheuristic deterministic solver by comparing its performance on toy and
small instances against that of the exact deterministic solver in terms of runtime and cost-efficiency. We
then evaluate its scalability on medium and large instances that are computationally intractable for exact
solvers. Lastly, we assess the robustness of its adaptive robust counterpart under budgeted uncertainty.

5.1. Evaluation of the Deterministic Optimization Approach
In our initial experiment, we assess the performance of the Exact Deterministic Solver (EXA-DET)
under two deterministic scenarios: the nominal scenario znom and the worst-case scenario zworst, both
derived from the box uncertainty set Ubox. In Subsection 5.1.1, we examine the impact of uncertainty on
the solver’s runtime and the objective values of the obtained solutions. Subsequently, in Subsection 5.1.2,
we analyze the solver’s routing, timing, and charging decisions, uncovering the black box behind it through
graphical representations of the solutions.

5.1.1. Analyzing Runtime and Objective Values
We first considered the five instances from the class Toy Single Vehicle (T-SV), with three customers
and a single vehicle, which we solved exactly and to proven optimality. Table 5.1 shows the resulting
runtimes and objective values, comparing the nominal and worst-case scenario for every instance.

80
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Instance Time Proven Opt. (s) Opt. Obj. (€)
znom zworst znom zworst ∆%

T-SV-1 0.508± 0.045 0.580± 0.016 993.35 1051.15 5.82

T-SV-2 0.338± 0.019 0.294± 0.029 806.45 905.74 12.3

T-SV-3 0.220± 0.022 0.268± 0.013 943.14 1000.44 6.08

T-SV-4 1.048± 0.066 1.030± 0.044 566.30 609.71 7.67

T-SV-5 0.516± 0.049 0.540± 0.047 447.26 483.37 8.07

Overall 0.526± 0.292 0.542± 0.282 751.30 810.08 7.82

Table 5.1: Comparison of runtimes to proven optimality and optimal objective values between the nominal
scenario znom and worst-case scenario zworst across T-SV instances solved by EXA-DET over five runs

Every instance could be solved to proven optimality within milliseconds, with no significant difference in
the runtimes between both scenarios. In terms of the objective value, we see that even with these toy
instances, the difference in operational cost between the nominal and the worst-case scenario can be as
high as 12.31% for case T-SV-2, highlighting the relevance to account for uncertainties in the planning.

Dual Vehicle Instances
When we examined the slightly larger instances from the Toy Dual Vehicle (T-DV) class, involving
two vehicles and five customers, Gurobi was able to find feasible solutions within a matter of seconds. For
the nominal scenario, significant improvements in objective value were only made in the first ten seconds,
after which the objective values stabilized. For the worst-case scenario, notable improvements were found
within the first two minutes (see Fig. D.1). However, Gurobi was unable to prove optimality for any of the
instances within an hour. The improvements in the MIP gap, which measures the difference in objective
value between the lower bound obtained from the LP relaxation and the best known feasible solution, were
minimal. The MIP gap decreased only slightly over the course of an hour, remaining above 90% for all
instances (see Fig. D.2). As the objective values ceased to improve by more than a euro cent after two
minutes of computation, we decided to report the best objective value achieved at the two-minute mark,
along with the timestep at which this solution was initially found, in addition to the objective value of the
first identified solution. The corresponding results are presented in Table 5.2.

Instance First Sol. Obj. (€) Time Best Sol. (s) Best Obj. (€)
znom zworst ∆% znom zworst znom zworst ∆%

T-DV-1 1390.10 1384.90 −0.37 0.800± 0.447 1.000± 0.000 821.88 899.62 9.46

T-DV-2 973.62 2882.58 196.07 1.000± 0.000 8.200± 0.447 933.67 1008.14 7.98

T-DV-3 1405.86 1638.65 16.56 4.400± 0.548 36.400± 1.342 1323.04 1404.87 6.18

T-DV-4 2202.20 3003.47 36.38 4.400± 0.548 23.200± 0.837 1506.71 1585.93 5.26

T-DV-5 1432.11 1697.53 18.53 1.000± 0.000 5.600± 12.522 797.41 865.61 8.55

Overall 1480.78 2121.43 43.26 2.120± 1.965 14.680± 14.519 1076.54 1152.83 7.09

Table 5.2: Comparison of runtimes for identifying first and best solutions and corresponding objective values
between the nominal scenario znom and worst-case scenario zworst across T-DV instances solved by EXA-DET

over five runs with a two-minute timeout

In the nominal scenario, objective values all stabilized within the first five seconds, with two seconds being
the average time required to find the best solution. In the worst-case scenario, an average of nearly 15
seconds was required to reach the best solution. Interestingly, the final worst-case solution for T-DV-1 was
found within milliseconds, while for T-DV-3 it took over 30 seconds to find a stable solution. Overall,
the gap in optimal objective values between the worst-case and nominal scenarios was slightly bigger for
the T-SV class (7.8%) compared to the T-DV class (7.1%), though the latter still exhibited substantial
differences, reaching up to 9.5%.
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Breakdown of the Objective Values
Fig. 5.1 shows the breakdown of the objective values into the distance, time, and energy-based costs
associated with the solutions for the T-DV instances. The time costs have by far the largest overall share
(72.8%), followed by energy costs (22.6%) and the distance cost (4.5%). These results align with the
magnitudes of the chosen cost parameter values from Subsection 4.1.4.

Moving from the nominal to the worst-case scenario, the overall share of the time cost increased by 2.4
percentage points (pp), with the share of the distance cost decreasing by 0.3 pp and the share of the energy
cost decreasing by 2.1 pp. The results for the T-SV instances showed the same trend. This suggests that
making effective timing decisions becomes increasingly critical under more adverse conditions, which aligns
well with our expectations.

The findings for T-DV-4 are especially noteworthy. In the worst-case scenario, both the total energy
costs and their share of the overall operational costs decreased compared to the nominal scenario. The
higher energy demand in the worst-case justified a shift from using an on-the-go charger to a cheaper depot
charger, an option that was not advantageous under the nominal scenario, where the additional time costs
associated with the detour outweighed the energy cost savings.
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Figure 5.1: Breakdown of the objective values into distance, energy and time-related costs for the solutions to
the T-DV instances for the nominal scenario znom and worst-case scenario zworst

Discussion
This results for the T-DV class show the main limitation of solving the HGEV-FPP-TECU exactly: even
a small increase in instance size, such as adding a vehicle or a customer, leads to an exponential growth in
the solution space. When more vehicles are available for a small number of customers, many potentially
nearly optimal solutions arise, making it difficult for the solver to close the MIP gap. For example, one
solution might use a single vehicle and incur higher timing costs, while another might deploy two vehicles,
reducing travel time per vehicle but doubling driver costs, resulting in similar overall objective values.

Our MILP formulation of the HGEV-FPP-TECU from Model 11 might be further strengthened through the
use of symmetry-breaking constraints, the incorporation of redundant variables with associated channeling
constraints, and other advanced modeling techniques designed to reduce the search space and facilitate a
tighter MIP gap closure. However, these enhancements lie beyond the scope of this research, where we
work towards developing a metaheuristic approach capable of solving even larger, more realistic instances
for which exact MILP formulations are generally intractable.
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5.1.2. Interpreting Routing, Timing, and Charging Decisions
We have just established that the operational costs can vary significantly between the nominal and worst-
case scenario, with timing-related costs holding a major share in the objective value. However, the solver’s
internal process for arriving at a solution that minimizes the objective for a given scenario remains abstract.
To uncover this black box, we examine the solver’s decision-making in both scenarios, using the instance
T-SV-3 as a case study. It demonstrates how timing and charging decisions can be adjusted in an effort to
make a nominal route feasible under worst-case conditions.

The EXA-DET solver produced provably optimal solutions for instance T-SV-3, which is shown geograph-
ically in Fig. 5.2. The routing and load level decisions for T-SV-3, as shown in Fig. 5.3, are identical for
the nominal and worst-case scenarios. However, due to the differences in service and traversal duration as
well as energy consumption, the timing and charging decisions differ between both scenarios.

In both scenarios, the vehicle begins by loading at the depot, requiring 27.5 minutes in the nominal case
and 40 minutes in the worst-case. As shown in Fig. 5.4, the vehicle directly starts charging at the depot
charger in the nominal scenario, after which it waits at the charger until departure at 09 : 16. In the
worst-case scenario, the charging is started only at 07 : 08 so that the vehicle can depart immediately after
finishing a full charging session. This difference does not influence the time costs, as they are counted
only from the minute the vehicle departs from the depot charger. For both scenarios, the departure from
the initial charger is scheduled as late as possible (constrained by the latest possible service start time at
Customer 1) so that the driver spends no idle time waiting for service to start at any of the locations in
the remaining route, thereby minimizing time costs.

During the initial charging session at the depot, the battery is fully charged, while respecting the usable
range of 10% to 90%, as shown in Fig. 5.5. This strategy is cost-effective as the depot’s electricity rate
(0.25 €/kWh) is significantly lower than that of the on-the-go chargers (0.60 €/kWh), and no detours are
required for the initial charging session.

The vehicle then visits the customers in order of their earliest service deadlines, beginning with Customer
3, whose deadline is at 11 : 17. After completing service there, the vehicle returns to the depot to take
advantage of low-cost charging once again. This is feasible because service at Customer 1 does not begin
until 14 : 05. The second charging session is carefully timed so that the vehicle can fully recharge its battery
to the maximum state of charge and arrive just in time for the latest allowable service start at Customer 1.
Consequently, the vehicle arrives at depot Charger 1 (F1’) earlier in the worst-case scenario (13 : 41) than
in the nominal case (13 : 47), allowing more time for recharging due to its lower SoC upon arrival.

On the way from Customer 1 to Customer 2, the vehicle makes a brief stop at Charger 3 to recharge just
enough energy to return to the depot with the minimum allowed SoC of 54 kWh after completing the final
delivery. Since only a small amount of additional energy is needed and Charger 3 is more conveniently
located along the route than Charger 1, the time cost savings by preventing a detour via the depot outweigh
the potential savings in energy costs.

After completing the visit to Customer 2, the vehicle returns to the depot as quickly as possible, arriving
well before the end-of-day deadline, at 23 : 00 in the nominal scenario and 23 : 23 in the worst-case scenario.
Notably, the combination of an earlier departure and a later arrival at the depot in the worst-case scenario
leads to increased time and overall costs.
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Figure 5.2: Geographical depiction of instance T-SV-3 with the locations of the depot, chargers, and customers
on the map of The Netherlands
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Figure 5.3: Graphical depiction of the optimal routing decisions for instance T-SV-3 for the nominal and
worst-case scenario
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Figure 5.4: Graphical depiction of the optimal timing decisions for instance T-SV-3 for the nominal and
worst-case scenario
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5.2. Sensitivity Analysis
After evaluating our deterministic solver and developing intuition about how uncertainty affects its decisions,
we now systematically quantify the influence of each uncertain parameter on the objective function. To
achieve this, we employ a variance-based sensitivity analysis approach, as described in Subsection 5.2.1.

First, we conduct a local sensitivity analysis (Subsection 5.2.2), where we independently vary each uncertain
parameter within its predefined bounds and observe the resulting changes in the objective value for a
single instance. Next, we perform a global sensitivity analysis across the full set of T-SV instances
(Subsection 5.2.3), examining how global variations in the realizations of the uncertainty sets influence the
objective values across multiple instances, to provide a broader view of sensitivity. In Subsection 5.2.4, we
also include an assessment of the impact of vehicle and charging infrastructure parameters.

5.2.1. Details on the Sensitivity Analysis
To assess the sensitivity of the optimization model outputs with respect to various input parameters, we
employ a variance-based sensitivity analysis using Sobol indices. This analysis was introduced by Sobol�
[213] and is frequently used for sensitivity analysis [214]. We consider the first-order Sensitivity Index (SI)
(Definition 21) which focuses on individual contributions of the parameters, and the Total Sensitivity Index
(TSI) (Definition 22), which focuses on interactions with other parameters.

Definition 21 – First-Order Sobol Index

The first-order Sobol index SIi quantifies the proportion of the total output variance that can
be attributed to variations in the input parameter Xi, independent of interactions with other
parameters:

SIi :=
V (E[Y | Xi])

V(Y )
,

where E[Y | Xi] is the expected value of the output conditioned on Xi, and V(Y ) is its total variance.

Definition 22 – Total Sobol Index

The total Sobol index TSIi measures the overall contribution of Xi to the output variance, including
both its first-order effect and all higher-order interaction effects with other parameters:

TSIi :=
E [V(Y | X∼i)]

V(Y )
,

where X∼i denotes the set of all input parameters except Xi and V(Y | X∼i) represents the variance
of the output when all inputs but Xi are fixed. The expectation is taken over all possible values of
X∼i.

We again consider the EXA-DET solver, now modeled as a black-box function f : Rl → R that maps a
vector of l independent, uniformly distributed input parameters X = {X1, . . . , Xl} to the total operational
cost Y = f(X) = c∗total. The uniform distribution reflects a neutral assumption due to the lack of prior
knowledge about the distribution of the inputs for the HGEV-FPP-TECU instance.

Computing the Sobol indices allows us to decompose the total variance in cost into individual and interactive
contributions, assuming that the input parameters are independent. Since the function f(X) is deemed
a black box, for which the variances and expected values cannot be estimated analytically, Monte Carlo
simulations are used to approximate these terms. The inputs are sampled in a quasi-random manner using
Saltelli’s extension of the Sobol sequence, as implemented by the SALib library [215]. For more details on
the sampling procedure, we refer to Campolongo, Saltelli, and Cariboni [216].

Discussion
A limitation of using a uniform sampling distribution is that it assigns equal probability to all combinations
of parameter values, including those that are highly improbable in practice, which may distort the sensitivity
analysis by overrepresenting unrealistic scenarios. However, such scenarios are also inherently considered
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within the robust optimization framework under the box uncertainty set. Therefore, for the purposes of
this study, it suffices to establish a general methodological framework for sensitivity analysis, with the
flexibility to incorporate more accurate distributions as additional data becomes available.

5.2.2. Local Sensitivity Analysis
Local sensitivity analysis identifies customers and road connections within the network that significantly
impact operational costs for a specific instance. This information helps to further uncover the black box of
the optimization model and can be used by fleet planners to assess risks associated with a model-generated
solution, enabling informed manual adjustments. For example, planners might optimize for the nominal
scenario to avoid overly conservative planning and ensure that links with a substantial negative effect on
costs, when their traversal durations deviate from their nominal value, are avoided.

To provide an example, we again considered instance T-SV-3 and calculated the first-order and total Sobol
indices for the uncertain service durations {νsi : i ∈ C∪{0}} and traversal duration {tsij : i ∈ V ′

0, j ∈ V ′
N+1}

within the associated box uncertainty set Ubox. This resulted in L = 99 random variables Xi, with ranges
J (Xi) set according to Ubox, for which M(2L+2) = 25,600 MC simulations were performed using sampling
parameter M = 128. The resulting indices with non-zero values can be found in Table 5.3:

Parameter Uncertainty Range SIi TSIi

νi : Customer 1 [15, 40] 0.292 0.275

νi : Customer 2 [15, 40] 0.303 0.272

νi : Customer 3 [15, 40] 0.266 0.275

tij : Charger 1→ Customer 3 [115.16, 121.08] 0.052 0.045

tij : Charger 1→ Customer 1 [131.63, 138.18] 0.075 0.074

tij : Charger 3→ Customer 2 [96.28, 100.71] 0.013 0.018

tij : Customer 1→ Charger 3 [89.82, 94.32] 0.022 0.017

tij : Customer 3→ Charger 1 [122.04, 128.26] 0.053 0.055

tij : Customer 2→ Depot [70.50, 73.36] 0.006 0.010

Table 5.3: First-order and total Sobol indices for uncertain parameters in the T-SV-3 instance

Discussion
We find that the cost in this instance is insensitive to the service duration at the depot. The vehicle can
be loaded early and remain idle at the depot or charger, thereby minimizing the time-related cost, which
only start accumulating once it leaves the charger. The service durations at the customers give rise to the
highest Sobol indices, together accounting for 86% of the variance of the total operational cost. Keep in
mind that the uncertainty intervals for service durations are significantly broader than those for traversal
durations, allowing them to fluctuate more and thereby impact cost more severely.

Notably Customer 2 has a higher SI compared to Customers 1 and 3, whereas its TSI is slightly lower.
This may be attributed to Customer 2’s later time window, which results in it being placed at the end
of the route, thereby directly influencing the route’s end time so that it has a slightly greater impact on
time-related costs. Fig. 5.4 showed that Customers 1 and 3 have time windows that are closer together
than those of Customers 2 and 3. Since the mutual traversal durations and distances are similar, this leads
to stronger coupling between Customers 1 and 3. While the coupling between Customers 1 and 2 due to
time windows is comparable, the longer distance and traversal duration between them reduce their overall
interaction, resulting in slightly lower TSI for Customer 2 compared to Customers 1 and 3.

The remaining 14% of the variance is attributed to the traversal durations. All relevant links are part
of the routing solution from Fig. 5.3, which remained constant when moving from the nominal to the
worst-case realization of the uncertainty set. The critical link appears to be the link from Charger 1 to
Customer 1. Recall from our case study and Fig. 5.4 that the vehicle tries to arrive as late as possible
at Customer 1, while charging as much as possible at Charger 1, which is a depot charger with a lower
tariff. The traversal duration between Charger 1 and Customer 1 is therefore pivotal in determining the
departure time from the charger and therefore the amount of energy that can be recharged, explaining
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the high SI and TSI value. Similarly, the traversal duration between Customer 3 and Charger 1 shows a
high sensitivity score, as it determines when the vehicle can start charging at the depot and therefore also
influences the amount of energy that can be recharged at low costs. Based on that, we can conclude that
the operational cost of the solution is highly influenced by the intermediate charging session at the depot.
More surprisingly, the link from Customer 2 to the Depot, which directly influences the route end-time,
has low SI and TSI scores. This may be attributed to the link having the narrowest uncertainty interval,
resulting in small increments or decrements to the costs.

5.2.3. Global Sensitivity Analysis
Global sensitivity analysis evaluates the impact of global variations across different types of parameters
over multiple instances, rather than focusing on individual parameters. For example, instead of examining
the influence of traversal duration for a specific link, we consider the overall effect of traversal durations.
We expand this approach beyond the uncertainty set to analyze the impact of energy-related parameters
associated with fleet and charging infrastructure investments, such as the charging rate, battery capacity,
and the energy consumption function. This analysis can offer valuable insights into the most critical factors
in routing, regardless of specific instances, and assist fleet operators in assessing the suitability of various
vehicle types and charging infrastructure configurations.

To provide an example, we considered the full set of T-SV instances and set the worst-case scenario
zworst ∈ Ubox for every instance as the baseline for its parameter values. We then sampled multipliers
{X1, . . . , X4} in range [0.5, 1.0] for the service duration, traversal duration, inverse charging rate and
robustness multiplier from Eq. (4.1) respectively, whilst sampling a multiplier X5 ∈ [1.0, 1.5] for the battery
capacity. We again employed sampling parameter M = 128, resulting in 1,536 MC simulations during
which the sampled multipliers were uniformly applied across all instances and Y was set to the mean
optimal objective values c∗total over all instances.

The chosen sampling intervals allow each parameter to fluctuate by 50% and ensure that the instances
remain feasible, giving rise to more optimistic scenarios than the worst-case scenario. Conversely, making
the scenario more pessimistic in a similar manner would render some instances infeasible for certain
parameter combinations that were not anticipated for during instance generation. Note that a scenario
with a traversal duration multiplier of 0.5 would correspond to the vehicles driving at twice their nominal
velocity. While this is an unrealistic scenario, it helps us to provide an insight into the theoretical global
influence of varying the traversal duration. The resulting Sobol indices are listed in Table 5.4:

Parameter Sampling Range SIi TSIi

X1 : Service duration multiplier [0.5, 1.0] 0.026 0.027

X2 : Traversal duration multiplier [0.5, 1.0] 0.891 0.927

X3 : Inverse charging rate multiplier [0.5, 1.0] 0.000 0.000

X4 : Energy consumption multiplier [1.0, 1.5] 0.084 0.074

X5 : Battery capacity multiplier [0.5, 1.0] 0.004 0.003

Table 5.4: First-order and total Sobol indices for parameter types across the T-SV instances

Discussion
The total operational cost seems to be most sensitive to the traversal duration, which accounts for 89%
of the variance in the objective value. The TSI value for traversal duration is even higher, indicating a
stronger combined effect with other factors. Energy consumption, which has the second largest SI and TSI
values, accounts for approximately 8.4% of the variation in the objective value. The high TSI value was
expected since the total energy consumption over a link is a function of the traversal duration, linking the
two in their impact on energy and timing costs.

The pronounced impact of traversal duration is consistent with our expectations, given that HGEVs in the
studied distribution transport setting spend the majority of their time in transit rather than unloading or
recharging. However, this pattern may differ in other HGEV operational contexts. While service durations
exhibited high SI and TSI indices in the local sensitivity analysis, largely due to their broader uncertainty
ranges compared to traversal times, they contributed only 2.6% to the total variation in operational costs



5.2. Sensitivity Analysis 89

at the global level. Nonetheless, we expect service durations to play a more prominent role than traversal
duration in transport settings characterized by shorter travel distances and more frequent stops.

The inverse charging rate appears to have no impact on costs, suggesting sufficient flexibility within the
T-SV instances to fit charging sessions between customer visits, utilizing idle time. This observation is
consistent with our case study from Subsection 5.1.2 and local sensitivity analysis, where vehicles return to
the depot to recharge while waiting for the next customer to begin service. Similarly, battery capacity
seems to have a minimal effect on the operational costs, as there is enough time to recharge with minimal
detours, limiting the impact of a larger battery. It is important to note that the time windows in our
instances are relatively wide, ranging from 3 to 6 hours. In practice, these windows may be significantly
narrower, although we currently lack data to confirm this. Under tighter time constraints, we expect the
influence of charging rate and battery capacity to become more pronounced.

5.2.4. Further Evaluation of Battery Capacity and Charging Rate
The results from the global sensitivity analysis appeared somewhat counterintuitive in the sense that
the total operational cost was shown to be relatively insensitive to both the charging rate and battery
capacity compared to other factors, while we expected these factors to have a more profound influence. To
demonstrate that battery capacity and charging rate can still significantly impact the operational costs
of a given instance, we created two modifications of the instances in the T-SV class and compared the
operational costs of these modified instances with those of the original instances under both nominal and
worst-case realizations of the uncertainty set. These instances also mimic a future scenario where both the
charging rate and battery capacity increase for HGEVs.

In the first modification class, denoted by T-SV-B, the battery capacity of the baseline vehicle from
Subsection 4.1.2 was increased from 540 to 780 kWh, aligning with the upcoming second generation of the
Volvo FH Electric, whose production is expected to start in early 2026 [217]. In the second modification
class, denoted by T-SV-C, the maximum charging rate of the vehicle was increased from 250kW to 400kW
to match the maximum rate of modern DC fast chargers at Shell sites. The resulting objective values are
listed in Table 5.5:

Instance Optimal Objective (€)
znom ∆% zworst ∆%

T-SV-1-B 901.36 -9.26 954.78 -11.55
T-SV-2-B 700.85 -13.09 756.03 -16.67
T-SV-3-B 755.21 -19.93 804.85 -19.58
T-SV-4-B 535.63 -5.41 576.69 -6.23
T-SV-5-B 447.26 0.00 483.37 0.00
Overall T-SV-B 668.06 −9.54 715.14 −10.81

T-SV-1-C 962.90 -3.07 1019.18 -3.04
T-SV-2-C 789.89 -2.05 885.56 -2.22
T-SV-3-C 914.77 -3.01 970.50 -2.99
T-SV-4-C 561.90 -0.78 604.52 -0.85
T-SV-5-C 447.26 0.00 483.37 0.00
Overall T-SV-C 735.344 −1.78 799.07 −1.82

Table 5.5: Comparison of objective values across the modified instances of class T-SV-B and T-SV-C for the
nominal scenario znom and worst-case scenario zworst. ∆% denotes the percentage difference in objective value

between the modified instance and the original instance from the T-SV class.

Discussion
Increasing battery capacity seems to significantly impact the total cost, with reductions of up to 20% for
instance T-SV-3, and an overall average decrease of around 10-11% across all T-SV instances in both
nominal and worst-case scenarios. A larger battery allows the vehicle to initially recharge more energy at
the depot, taking advantage of cheaper rates and avoiding costly on-the-go recharges that require detours.
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Although increasing the charging rate to 400 kW appears less impactful than boosting the battery to
780 kWh, it still achieves cost reductions of up to 3%, averaging around 1.8% for both scenarios. In the
logistics industry, where profit margins are often just a few percentage points, due to high operating costs
and intense competition, even a modest improvement in cost-efficiency can have a meaningful impact on
profitability. That is, a nearly 2% reduction in costs through optimization is quite significant.

For both instance classes, reductions are slightly higher in the worst-case scenario compared to the nominal
one. This is expected, as the problem becomes more constrained, making a larger battery or faster charging
more influential on operational costs. Notably, for T-SV-5, neither modification affects the vehicle’s
performance, as it can complete the route using less than 540 kWh of energy and has sufficient time for its
initial charging session.

5.3. Evaluation of the Robust Optimization Approach
So far, we have focused on the Exact Deterministic Solver (EXA-DET), which optimizes for a single
fixed scenario. We now evaluate the Exact Robust Solver (EXA-RO) and Exact Adaptive Robust
Solver (EXA-ARO), which account for uncertainty using our One-Step Look-ahead Pessimization
(OSLP) algorithm to extend the scenario set starting from the nominal scenario.

In Subsection 5.3.1, we compare scenario-specific solutions from the robust EXA-RO and EXA-ARO
solvers to those from the deterministic EXA-DET on T-SV and T-DV instances under the box uncertainty
set, evaluating cost-efficiency and adaptability. In Subsection 5.3.2, we assess the robustness of the solutions
to the T-SV instances obtained using the EXA-RO and EXA-ARO solvers under the locally budgeted
uncertainty set, for which premature convergence might occur, to test the robustness of the resulting
solutions.

5.3.1. Assessing Adaptability and Cost-Efficiency
Recall that EXA-RO aims to find a single solution (x,y) that is feasible and cost-efficient across the entire
uncertainty set. This often leads to conservative solutions biased towards worst-case scenarios. In contrast,
EXA-ARO fixes the routing decisions x but allows timing and charging decisions ys to adapt per scenario
s ∈ S(U), enabling more flexible and potentially less conservative outcomes. To quantify this adaptability,
we compare the best objective values under znom and zworst, given the decisions made by EXA-DET
and EXA-ARO under the uncertainty set Ubox, with those obtained through direct optimization for these
scenarios using EXA-DET. The results are presented in Table 5.6.

The EXA-RO and EXA-ARO solvers both required two RMP iterations per instance to reach convergence.
In the first iteration, they identified the worst-case scenario zworst and incorporated it into the RMP. The
final solution was found in the subsequent RMP iteration so that both solvers achieved the same worst-case
objective value as EXA-DET. Since the objective function minimized the worst-case cost, EXA-ARO did
not tune the second-stage decisions for the nominal case automatically. To assess nominal performance,
we applied EXA-DET to find the best second-stage decisions given the routing solutions generated by
EXA-ARO.

For the T-SV instances, EXA-ARO adjusted its routing decisions to anticipate the worst-case scenario
only for T-SV-2, which led to a higher cost compared to EXA-DET under the nominal scenario. For
all other T-SV instances, its nominal performance matched that of EXA-DET. For the T-DV instances,
routing changes occurred for T-DV-1, again resulting in higher costs for EXA-ARO. However, for T-DV-4,
EXA-ARO produced a better nominal solution than EXA-DET, indicating that the latter had not yet
reached optimality at the two-minute mark. This suggests that anticipating worst-case scenarios can
accelerate the discovery of high-quality nominal solutions. The adaptability of EXA-ARO proved beneficial,
yielding cost reductions of 6.2% and 6.8% over EXA-RO for the T-SV and T-DV instances under the
nominal scenario, respectively.
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Instance Runtime (s) Best Obj. znom (€) Best Obj. zworst (€)
EXA-RO EXA-ARO EXA-DET (zworst) EXA-RO EXA-ARO EXA-DET All

T-SV-1 1.393± 0.140 1.544± 0.083 0.580± 0.016 1051.15 993.35 993.35 1051.15

T-SV-2 0.812± 0.035 1.316± 0.085 0.294± 0.029 905.74 849.66 806.45 905.74

T-SV-3 0.966± 0.039 1.291± 0.047 0.268± 0.013 1000.44 943.14 943.14 1000.44

T-SV-4 2.512± 0.210 3.855± 0.155 1.030± 0.044 609.71 566.30 566.30 609.71

T-SV-5 1.626± 0.093 2.487± 0.145 0.540± 0.047 483.37 447.26 447.26 483.37

T-SV Overall 1.462± 0.613 2.099± 0.987 0.542± 0.282 810.08 759.94 751.30 810.08

T-DV-1 242.196± 0.149 242.401± 0.422 1.000± 0.000 899.62 831.76 821.88 899.62

T-DV-2 243.255± 0.573 242.121± 0.333 8.200± 0.447 1008.14 933.67 933.67 1008.14

T-DV-3 242.394± 0.135 242.441± 0.177 36.400± 1.342 1404.87 1323.04 1323.04 1404.87

T-DV-4 242.268± 0.183 242.044± 0.049 23.200± 0.837 1585.93 1488.51 1506.71 1585.93

T-DV-5 244.911± 1.437 242.349± 0.209 5.600± 12.522 865.61 797.41 797.41 865.61

T-DV Overall 243.005± 1.243 242.271± 0.314 14.680± 14.519 1152.83 1074.88 1076.54 1152.83

Table 5.6: Comparison of runtimes and scenario-specific objective values resulting from solving instances of the T-SV and T-DV classes under the box uncertainty set
Ubox using EXA-DET, EXA-RO and EXA-ARO over five runs with a timeout of two minutes
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In terms of runtime, EXA-RO and EXA-ARO took 3 to 4 times longer than EXA-DET on the T-SV
instances, due to the more elaborate solution process involving RMP solving, pessimization, and handling
the overhead of translating results between the MILPs. About half of the total runtime was attributed to
this overhead. For the T-DV instances, a two-minute timeout was enforced, limiting the comparability of
runtimes. Nonetheless, overhead was minimal in these cases, with RMP solving dominating the runtime.
Gurobi efficiently solved the linear pessimization problems in under 20 ms across all instances, leveraging
its advanced LP presolve capabilities. EXA-ARO exhibited slightly longer runtimes than EXA-RO on
the T-SV instances, primarily due to the second RMP iteration. While the second iteration in EXA-RO
was 6% slower (despite warm starts), it was 26% slower for EXA-ARO, owing to the added complexity
introduced by the additional second-stage decision variables.

5.3.2. Assessing Robustness under Budgeted Uncertainty
The box uncertainty set Ubox used in our previous experiments leads to very pessimistic scenarios as all
uncertain parameters can attain their worst case value simultaneously. In an effort to consider more realistic
scenarios, where only a subset of the uncertain parameters attain their worst-case value simultaneously, we
also experimented with the locally budgeted uncertainty set Ulocal from Definition 14.

We focused on instances from the T-SV class, all with three customers and a depot subject to the service
duration budget Γν , along with 100 edges (i, j) ∈ E governed by traversal duration budget Γt. We tested
values Γν ∈ {0, 1, 2, 3, 4} and Γt ∈ {0, 25, 50, 75, 100} to construct different locally budgeted uncertainty
sets Ulocal. We recorded the objective values and the number of RMP iterations until convergence for
solving the instances using the EXA-RO and EXA-ARO solvers. For EXA-ARO, we again applied the
EXA-DET solver to adjust the second-stage decision variables after the uncertainty realization.

To assess the robustness of solutions after convergence, we sampled 1000 scenarios from the set of extreme
points ext(Ulocal) for each uncertainty configuration and instance. This involved randomly choosing Γt

traversal duration parameters and Γν service duration parameters, each of which was set to its maximum
allowed deviation from the nominal value, while all other parameters were set to their nominal values.
The EXA-ARO solver was then applied to derive second-stage decisions given the first-stage solutions
obtained from EXA-RO and EXA-ARO. If a feasible solution could be found, this indicated robustness,
whereas proven infeasibility suggested that OSLP had converged prematurely, without having considered
this scenario. Table 5.7 summarizes the robustness percentages, average number of RMP iterations, and
average reductions in worst-case cost relative to zworst across all T-SV instances and variants of the locally
budgeted uncertainty set.

When both Γν and Γt were set to 0, the objective matched that of znom. Conversely, Γν = 4 and Γt = 100
led to the same result as for zworst, validating our implementation of the locally budgeted uncertainty set.
We note that cost reductions occur mainly in scenarios with lower traversal budgets Γt, while the influence
of Γν seems to be less pronounced.

Notably, with Γt = 25, both EXA-RO and EXA-ARO experienced premature convergence, with minimum
robustness scores of 94.8%. All other configurations achieved 100% robustness, leading to the high overall
robustness rates of 99.4% for EXA-RO and 99.0% for EXA-ARO. Although the difference is small,
the robustness for the more conservative EXA-RO is slightly higher. In contrast, the more adaptive
EXA-ARO solver achieved a slightly greater reduction in worst-case cost compared to the EXA-RO
solver, with overall reductions of approximately 3.6% versus 3.3%, respectively. Convergence was generally
achieved within 2 to 3 RMP iterations, with EXA-ARO (2.1 iterations) converging slightly faster than
EXA-RO (2.2 iterations) overall. The results indicate that the deployment of the OSLP algorithm for
pessimization can ensure a high level of robustness by introducing only a small number of additional
scenarios to the RMP, despite the risk of premature convergence under budgeted uncertainty.
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Γν Γt Avg. Scenario Rel. Obj. Improv. (∆%) Avg. Num. RMP Iterations Sample Robustness (%)
EXA-RO EXA-ARO EXA-RO EXA-ARO EXA-RO EXA-ARO

0 0 -7.36 ±1.96 -7.36 ±1.96 1.00 ±0.00 1.00 ±0.00 100.00 100.00 (znom)

0 25 -6.44 ±2.71 -6.62 ±2.56 2.20 ±0.75 2.20 ±0.75 94.82 94.82

0 50 -4.93 ±1.25 -4.93 ±1.25 2.20 ±0.40 2.20 ±0.40 100.00 100.00
0 75 -4.24 ±1.34 -4.24 ±1.34 2.40 ±0.49 2.40 ±0.49 100.00 100.00
0 100 -4.22 ±1.35 -4.22 ±1.35 2.00 ±0.00 2.00 ±0.00 100.00 100.00
1 0 -7.15 ±2.16 -7.15 ±2.16 1.20 ±0.40 1.20 ±0.40 100.00 100.00
1 25 -4.56 ±2.34 -5.52 ±2.87 2.60 ±0.49 2.00 ±0.63 94.94 94.94

1 50 -3.33 ±1.18 -3.50 ±0.80 2.20 ±0.40 2.40 ±0.49 100.00 100.00
1 75 -2.21 ±0.77 -2.85 ±0.93 2.40 ±0.49 2.20 ±0.40 100.00 100.00
1 100 -3.35 ±1.17 -3.78 ±1.71 2.20 ±0.40 2.00 ±0.00 100.00 100.00
2 0 -6.06 ±1.94 -6.06 ±1.94 2.00 ±0.00 2.00 ±0.00 100.00 100.00
2 25 -3.04 ±1.41 -4.75 ±2.76 2.80 ±1.17 2.00 ±0.00 100.00 94.82

2 50 -2.23 ±1.06 -2.49 ±0.86 2.60 ±0.49 2.20 ±0.40 100.00 100.00
2 75 -1.76 ±1.14 -1.82 ±0.91 2.40 ±0.49 2.20 ±0.40 100.00 100.00
2 100 -1.73 ±1.13 -2.82 ±0.91 2.40 ±0.49 2.00 ±0.00 100.00 100.00
3 0 -4.65 ±2.01 -4.65 ±2.01 2.00 ±0.00 2.00 ±0.00 100.00 100.00
3 25 -1.79 ±0.78 -3.24 ±2.81 3.00 ±1.10 2.40 ±0.49 100.00 94.82

3 50 -1.25 ±0.60 -1.25 ±0.60 2.40 ±0.49 2.40 ±0.49 100.00 100.00
3 75 -0.57 ±0.67 -0.57 ±0.67 2.40 ±0.49 2.40 ±0.49 100.00 100.00
3 100 -0.98 ±0.55 -1.41 ±0.45 2.20 ±0.40 2.00 ±0.00 100.00 100.00
4 0 -5.95 ±1.96 -5.95 ±1.96 2.00 ±0.00 2.00 ±0.00 100.00 100.00
4 25 -3.31 ±2.55 -3.93 ±3.31 2.60 ±0.49 2.20 ±0.40 94.94 94.82

4 50 -0.71 ±0.39 -0.71 ±0.39 2.20 ±0.40 2.20 ±0.40 100.00 100.00
4 75 -0.03 ±0.04 -0.03 ±0.04 2.20 ±0.40 2.20 ±0.40 100.00 100.00
4 100 -0.00 ±0.00 -0.00 ±0.00 2.00 ±0.00 2.00 ±0.00 100.00 100.00 (zworst)

Overall −3.27± 2.64 −3.59± 2.76 2.22± 0.66 2.07± 0.49 99.39 98.97

Table 5.7: Comparison of average objective improvement, number of required RMP iterations, and robustness across T-SV instances solved by EXA-RO and
EXA-ARO under locally budgeted uncertainty sets Ulocal with varying uncertainty budgets Γν for service duration and Γt for traversal duration, using 1,000 random

samples from ext(Ulocal) to assess robustness. ∆% indicates the deviation from the worst-case objective value found for zworst.
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5.4. Evaluation of the Adaptive Large Neighbourhood Search
So far, our experiments have only involved simplified toy instances from the T-SV and T-DV classes,
which are significantly smaller than those encountered in real-world transport settings. However, as
we will demonstrate, even deterministic exact optimization becomes infeasible when considering more
realistic instances involving 10 or more customers and at least three vehicles. This is precisely where our
metaheuristic solvers, Metaheuristic Deterministic Solver (META-DET) and Metaheuristic
Adaptive Robust Solver (META-ARO), prove essential.

In Subsection 5.4.1, we compare META-DET with EXA-DET on T-SV, T-DV, and Small (S) instances,
focusing on the cost-efficiency of the solutions and identifying the practical limitations of EXA-DET. In
Subsection 5.4.2, we assess the scalability of META-DET by evaluating its performance on the Medium
(M) and Large (L) instance classes. In Subsection 5.4.3 we assess the integration of all methodological
components in CertERoute, using META-ARO to solve instances of the M class under budgeted
uncertainty while assessing the robustness of the resulting solutions.

5.4.1. Comparison with the Exact Deterministic Solver
We first conducted exploratory testing with 100,000 iterations of the ALNS metaheuristic on toy and small
instances to assess convergence. Based on the observed stagnation in objective values (see Fig. D.3 to
Fig. D.5), we selected 100, 600, and 12,000 iterations for reporting results on the T-SV, T-DV, and S
instances, respectively. Each instance was solved five times using different random seeds [42, 10, 99, 41, 69].
We reported the runtimes, means, and standard deviations of the resulting objective values, and compared
the best solutions found by META-DET with those obtained via the exact EXA-DET solver, which was
given a one-hour timeout. For the T-SV instances, the difference in objective value directly corresponds to
the optimality gap. In contrast, for the other instance classes, this difference is referred to as a performance
gap, since the exact solver could not confirm optimality within the one-hour time limit. The complete
results for the worst-case scenario are presented in Table 5.8, while the full nominal results are provided in
Appendix D (Table D.1).

Under the nominal scenario znom, only instance T-SV-4 could be solved to optimality, with an average
optimality gap of 10.9% across the T-SV instances. Notably, T-SV-5 exhibited a substantial optimality
gap of 35.7%. All T-SV instances except T-SV-1 showed consistent results across seeds. For the T-DV
instances, META-DET converged for two out of five instances (0 variance across seeds), yielding an
average performance gap of 7.5%. For the Small instance class, EXA-DET was only able to solve S-2
and S-3 within the time limit, while META-DET found feasible solutions for all instances in under 100
seconds. However, the results showed considerable variability across seeds, particularly for S-4. The
performance gaps for S-2 and S-3 were 9.1% and 10.7%, respectively.

In the worst-case scenario zworst, the average optimality gap for the T-SV instances decreased to 8.15%,
while both T-SV-2 and T-SV-4 could be solved to optimality. For the T-DV instances, the performance gap
slightly increased to 8.2%, but META-DET now demonstrated a significant runtime advantage. While the
average runtime for EXA-DET increased from 2 seconds under the nominal scenario to over 14.5 seconds
under the worst-case scenario, META-DET experienced only a marginal increase from 2 to 2.5 seconds.
For the Small instance class, EXA-DET could only solve S-3, failing on S-2. In contrast, META-DET
could solve all instances within 100 seconds. On S-3, META-DET was on average 20 seconds faster than
EXA-DET, though the best solution found had a performance gap of 13.1%.
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Instance Runtime (s) Avg. Obj. (€)
EXA-DET META-DET EXA-DET META-DET ∆%

T-SV-1 0.580± 0.016 1.178± 0.475 1051.15 1167.40± 29.12 9.18

T-SV-2 0.294± 0.029 0.807± 0.171 905.74 905.74± 0.00 0.00

T-SV-3 0.268± 0.013 0.450± 0.574 1000.44 1028.87± 0.00 2.84

T-SV-4 1.030± 0.044 0.900± 0.095 609.71 609.71± 0.00 0.00

T-SV-5 0.540± 0.047 0.614± 0.335 483.37 622.13± 0.00 28.71

T-SV Overall 0.542± 0.282 0.790± 0.451 810.08 866.77± 221.34 8.15

T-DV-1 1.000± 0.000 0.674± 0.189 899.62 899.64± 0.00 0.00

T-DV-2 8.200± 0.447 1.171± 0.000 1008.14 1094.07± 0.00 8.52

T-DV-3 36.400± 1.342 4.150± 2.411 1404.87 1469.98± 0.00 4.63

T-DV-4 23.200± 0.837 1.823± 0.308 1585.93 1897.05± 65.99 11.34

T-DV-5 5.600± 12.522 3.763± 1.567 865.61 1020.09± 26.89 16.29

T-DV Overall 14.680± 14.519 2.534± 2.004 1152.83 1310.85± 389.46 8.16

S-1 - 181.394± 82.165 - 2375.84± 2.17 -
S-2 - 81.173± 36.140 - 2517.63± 120.31 -
S-3 109.400± 3.715 93.573± 57.981 1519.34 1631.89± 4.26 13.09

S-4 - 8.933± 6.429 - 2746.18± 216.81 -
S-5 - 116.171± 112.376 - 2415.75± 69.16 -
S Overall - 96.249± 88.987 - 2337.46± 392.74 -

Table 5.8: Comparison of runtimes and objective values for the worst-case scenario zworst across T-SV, T-DV,
and S instances solved by EXA-DET and META-DET over five runs with varying random seeds and a one-hour
timeout. ∆% denotes the performance gap between the best objective value from META-DET and the value found

by EXA-DET.

Breakdown of the Objective Values
To better understand the causes for the performance gaps, we once again decomposed the objective values
into their constituent distance-, time-, and energy-related costs for the T-DV instances. This time, we
compared the outcomes produced by EXA-DET with those from META-DET, as illustrated in Fig. 5.6.

On average, the energy costs associated with the solutions produced by META-DET are 16.1% higher,
while time costs increase by 6.3%, and distance costs show only a marginal rise of 0.6%. This suggests
that META-DET performs comparably well in its routing decisions, occasionally even outperforming
EXA-DET in terms of distance cost, as seen in instances like T-DV-2 and T-DV-4. However, it tends
to be significantly less effective in its energy-related decisions and, to a lesser extent, in timing decisions,
which leads to the overall worse objectives.
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Figure 5.6: Breakdown of the objective values into distance, energy and time-related costs for the solutions to
the T-DV instances for the worst-case scenario zworst, showing the percentage increase of the costs for the

META-DET results compared to the EXA-DET results

Discussion
While the ALNS algorithm seems to be effective at modifying the route structure (first-stage decisions), it
is less successful at anticipating the corresponding second-stage candidate solutions.

For instance T-SV-5, which is associated to the largest optimality gap, the routing and charging decisions
made by META-DET are identical to those made by EXA-DET. However, the initial charging session
is scheduled too early, leading to significantly higher time costs. Although our current ALNS strategy
attempts to delay the first charging session as much as possible given the earliest service start time of the
first customer, it does not account for the start times of subsequent customers. In this particular case, the
early departure results in the vehicle arriving 166 minutes before the service window opens at the final
customer, causing idle waiting time that contributes to the overall time cost. Incorporating the service
start times of later customers could allow for further postponement of the initial charging session, thereby
reducing the total time-related cost.

A possible explanation for the suboptimal energy decisions can be found in Fig. 5.7, which shows that
the most effective destroy operator was the random charger removal operator. Currently, deleting and
reinserting chargers is the only mechanism within ALNS to revise energy decisions. Consequently, the
random removal operator was frequently applied in efforts to fine-tune these decisions, which significantly
contributed to global improvements. However, the reliance on a single, random-based operator likely limited
the algorithm’s ability to consistently target the most detrimental charging sessions. Introducing more
sophisticated charger removal operators could enhance the algorithm’s ability to reduce energy-related
costs.

Fig. 5.7 further indicates that removing customers that contribute the most to route distance, along with
any preceding charger, was also effective. This again reflects an effort to refine charging decisions. Among
the Shaw-based operators, time-based customer removal proved most effective. Interestingly, the random
route removal operator outperformed others in its category. The randomness it introduced likely helped
the algorithm escape local minima, as it forced the relocation of entire routes to different vehicles.
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Figure 5.7: Counts across the T-DV instances for the number of times a specific ALNS operator in META-DET
resulted in the discovery of an improved global solution

5.4.2. Assessing Scalability to Larger Instances
To evaluate the scalability of the ALNS metaheuristic, we conducted experiments on the two largest
problem classes: Medium instances with 30 customers, 12 vehicles, and a total of 30 chargers, and Large
instances featuring 100 customers, 40 vehicles, and 60 chargers. Fig. 5.8 illustrates representative examples
from each class. As discussed in the previous section, EXA-DET already encountered difficulties with the
Small instances, comprising just 10 customers and 3 vehicles, whereas META-DET was able to produce
feasible but suboptimal solutions within a matter of minutes. For the more complex M and L instances, we
observe that even the metaheuristic incurs significant computational times to converge to good solutions.
Nonetheless, feasible solutions to all problem instances could be obtained within at most 10 minutes.
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(a) Instance M-1

(b) Instance L-3

Figure 5.8: Geographical depiction of instances M-1 and L-3 with the locations of the depot, chargers, and
customers on the map of The Netherlands



5.4. Evaluation of the Adaptive Large Neighbourhood Search 99

Medium Instances
We started our evaluation with exploratory tests, performing 100,000 ALNS iterations on the M instances
(see to Fig. D.6). The results showed that after the 12,000-iteration limit used for the S instances, little
further improvement was made to the objective values. However, we observed that many solutions still
exhibited charging overlap violations, while all other constraints where satisfied. Hence, we increased the
value of the charging overlap violation coefficient πov in the generalized cost function from 6 to 10 in an
effort to penalize charging overlap more severely. We then performed five runs with 12,000 iterations, using
the same random seeds as before. We report the runtime, the number of feasible solutions obtained, the best
feasible objective value across all runs, and the maximum charging overlap observed in any infeasible run.
The progression of the objective value over the iterations is illustrated in Fig. 5.9, while Table 5.10 presents
the numerical results for the worst-case scenario zworst. For brevity, results for the nominal scenario are
included in the Appendix D (see Fig. D.7 and Table D.2), although we briefly discuss them here.
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Figure 5.9: Development of the best objective value found using META-DET on M instances under the
worst-case scenario zworst over 12,000 iterations and five runs with varying random seeds. Both axes are

represented on a logarithmic scale.

Instance Runtime (s) Num. Feas. Runs Best Feas. Obj. (€) Worst Overlap (min)
M-1 1281.07± 18.06 5/5 4640.11 −
M-2 1513.52± 21.27 4/5 5040.43 2.71

M-3 1368.32± 77.48 4/5 4398.66 5.04

M-4 1503.07± 16.23 5/5 5151.13 −
M-5 1478.71± 11.52 2/5 5347.04 6.46

M Overall 1428.94± 98.33 20/25 4398.66 6.46

Table 5.9: Performance comparison for solving the M instances under the worst-case scenario zworst using the
META-DET solver with a budget of 12,000 iterations over five runs with varying random seeds
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Under the nominal scenario znom, 18 out of 20 runs yielded feasible solutions. Specifically, feasible solutions
were produced by 4 out of 5 runs for instances M-1 through M-4, while only 2 feasible solutions were found
for M-5. Among the infeasible cases, the maximum observed charging overlap was 19 minutes. In contrast,
under the worst-case scenario zworst, all runs successfully identified feasible solutions for M-1 and M-5.
The results for the remaining instances remained unchanged, resulting in a total of 20 feasible solutions out
of 25 runs. Notably, the maximum charging overlap among the infeasible cases decreased significantly to
just 6.5 minutes.

Large Instances
For the L instances, our exploratory analysis was limited to the worst-case scenario and 12,000 iterations
due to the considerable runtime, which averaged around 3 hours and 15 minutes. However, as shown in
Fig. 5.10, the objective values had not yet converged by the end of the 12,000 iterations. The numerical
results are provided in Table 5.10.
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Figure 5.10: Development of the best objective value found using META-DET on L instances under the
worst-case scenario zworst over 12,000 iterations and five runs with varying random seeds. Both axes are

represented on a logarithmic scale.

Instance Runtime (s) Num. Feas. Runs Best Feas. Obj. (€) Worst Overlap (min)
L-1 11531.73± 2925.99 4/5 13212.82 5.18

L-2 12519.37± 593.52 2/5 13885.61 4.71

L-3 11550.55± 2968.85 4/5 13377.73 4.85

L-4 11470.23± 2996.68 3/5 13944.93 32.82

L-5 11519.81± 3213.72 2/5 14131.91 15.53

L Overall 11684.96± 2563.55 15/25 13212.82 32.82

Table 5.10: Performance comparison for solving the L instances under the worst-case scenario zworst using the
META-DET solver with a budget of 12,000 iterations over five runs with varying random seeds
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A key observation is the high variability in runtimes, with deviations of up to 45 minutes. These were
largely caused by memory limitations that led to execution pauses during the final runs. Among the 25
runs, 15 yielded feasible solutions. The worst-performing solution exhibited a charging overlap exceeding
30 minutes, despite the elevated value of πov. Although no optimal benchmarks were available for direct
comparison, a qualitative review of the solutions revealed that many vehicles returned to the depot with a
high state of charge, suggesting suboptimal charging decisions. Furthermore, as previously noted, timing
decisions were also suboptimal, leading to costly idle time.

Alternative Stopping Criterion
Due to the lengthy runtimes associated with 12,000 iterations, we also conducted experiments on the
worst-case scenario using an alternative stopping criterion. Specifically, the ALNS procedure was terminated
after 1,000 (M) and 100 (L) consecutive iterations without improvement to the current best objective value,
aiming to obtain feasible solutions more quickly. The corresponding results are presented in Table 5.11.

Instance Runtime (s) Num. Feas. Runs Best Feas. Obj. (€) ∆%
M-1 218.74± 69.92 4/5 4689.44 +1.06

M-2 252.15± 58.64 3/5 5320.29 +5.55

M-3 214.59± 67.50 2/5 4548.36 +3.40

M-4 223.70± 73.64 4/5 5360.53 +4.07

M-5 188.65± 47.06 2/5 5877.95 +9.93

M Overall 219.57± 62.04 15/25 5159.31 +4.80

L-1 575.62± 208.84 2/5 16557.90 +25.32

L-2 487.84± 156.38 2/5 16985.10 +22.32

L-3 340.35± 202.93 3/5 17390.79 +30.00

L-4 416.76± 171.52 2/5 16818.66 +20.61

L-5 329.89± 85.32 1/5 17894, 14 +26.62

L Overall 430.09± 182.31 10/25 17129.32 +24.97

Table 5.11: Performance comparison for solving the M and L instances under the worst-case scenario zworst

using the META-DET solver over five runs with different random seeds, with respective budgets of 1,000 and 100
consecutive iterations without improvement. ∆% denotes the difference in best feasible objective value with the

best known solution from the previous experiments.

The resulting runtimes decreased significantly, showing overall speedup factors of 6.5 and 27 for the M
and L classes, respectively. Feasible solutions could be identified for each of the instances, with 15/25 runs
yielding feasible solutions for the M class and 10/25 for the L class. Compared to the experiments using
12,000 iterations, the increase in objective values was moderate (4.80%) for the M instances. However, for
the L instances, the objective values rose sharply by nearly 25%, indicating that this stopping criterion
was ineffective for finding cost-efficient solutions.

Discussion
While the results demonstrate that the ALNS metaheuristic is capable of generating feasible solutions for
Medium and Large instances within a limited time-frame, the cost-efficiency of these solutions varied
heavily and could not be assessed properly. As a result, the solutions may be highly inefficient and of
limited practical value.

Moreover, the experiments conducted were largely exploratory, involving only a narrow range of ALNS
configurations and parameters tested on a small set of instances. Due to time constraints, we were unable to
perform comprehensive parameter tuning, such as a grid search, which might have revealed more effective
hyper-parameters to further reduce charging overlap violations and improve solution quality. When we
increased the penalization coefficients for charging overlap (πov ∈ [20, 100]) in isolation, the resulting
solutions exhibited additional time window violations, ultimately worsening the overall solution quality.
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5.4.3. Assessing Robustness under Budgeted Uncertainty
In our final experiment, we evaluate the integration of all methodological components that shape
CertERoute by analyzing the performance of EXA-ARO as the RMPSolver within the CCG framework,
in combination with the OLSP algorithm for identifying violating scenarios under the locally budgeted
uncertainty set Ulocal. This evaluation is similar to the one performed in Subsection 5.3.2 but now we
use the metaheuristic solution approach and consider more computationally demanding instances from
the Medium instance class. The results show that META-ARO is capable of producing highly robust
solutions for these instances within a practical runtime, highlighting the potential of our approach.

To assess the robustness of the solutions produced by META-ARO, we sampled 100 extreme points from
the corresponding locally budgeted uncertainty sets. The reduced sampling size was chosen due to the
significant time required for sampling and verification, ranging from 10 to 20 minutes depending on the
instance and configuration. A single run was performed per instance and configuration of the uncertainty
set. As before, we employed the EXA-DET solver to find feasible second-stage solutions based on given
first-stage decisions and a sampled scenario. For both Γν and Γt, we considered the absolute budget values
corresponding to 0%, 10%, 25%, 50%, and 100% of the total number of locations and/or edges attaining
their maximum values. We set the stopping criterion for the ALNS procedure to a maximum of 1,000
iterations without improvement to the current best objective. The results are summarized in Table 5.12.

The average runtime across all instances and uncertainty set configurations was 7.35 minutes, with on
average 2.2 RMP iterations required for convergence. The maximum number of RMP iterations observed
was 8. The low number of RMP iterations can be attributed to the effective pessimization achieved via
the OSLP algorithm. As a result, the pseudo-polynomial time complexity of the ALNS algorithm did not
pose a significant challenge, despite the high dimensionality of the uncertainty set (l = 31 + 3721). The
resulting solutions demonstrated high levels of robustness, averaging 92.6%.

Discussion
The solutions obtained for the nominal scenario (Γν = 0, Γt = 0) did not yield the greatest relative improve-
ment in objective value compared to the worst-case scenario. For instance, the solutions corresponding to
configurations (Γν = 0, Γt = 372) and (Γν = 3, Γt = 3721) resulted in lower average objective values across
the instances. This suggests that the solutions found for the nominal scenario were sometimes suboptimal.
This is not an unexpected outcome given that the metaheuristic does not guarantee optimality.

On average, more than two RMP iterations were needed to reach convergence under the budget configuration
(Γν = 31, Γt = 3721), which corresponds to the box uncertainty set Ubox. This indicates that the overall
worst-case scenario zworst was not consistently identified in the first RMP iteration, in contrast to the
results observed for EXA-RO and EXA-ARO. This difference arises from a deliberate design choice in
META-ARO, where pessimization was restricted to variables associated with locations currently included
in the route, while all other uncertain parameters were fixed at their nominal values (see Section 4.3). This
choice was made following preliminary experiments in which the pessimization LP models grew too large
to fit into memory due to the excessive number of decision variables required for the Medium and Large
instances. Consequently, the OSLP procedure lost its termination guarantees, and the overall worst-case
scenario could not always be immediately captured. Nonetheless, META-ARO consistently achieved
robustness against the worst-case scenario within at most three iterations.

The lowest robustness score observed was 60%, corresponding to the configuration (Γν = 31, Γt = 372).
For this configuration, three out of five solutions achieved 100% robustness. In the remaining two cases,
META-ARO was unable to identify a feasible solution during the initial RMP iteration, causing the CCG
procedure to terminate prematurely. The resulting solution, already infeasible under the nominal scenario,
was tested against 100 extreme scenarios and failed in all cases. Hence, this premature convergence was
due to the ALNS stopping criterion, rather than a failure of the OSLP to identify violating scenarios.

The most significant cost reductions were associated with lower values of the service duration budget Γν ,
whereas for the smaller T-SV instances (see Subsection 5.3.2), such reductions were linked to lower traversal
duration budgets Γt. This may be attributed to the larger fleet size and higher vehicle-to-customer ratio of
the M instance class compared to the T-SV class, which results in vehicles serving geographically closer
customers. Consequently, traversal durations are reduced, and the proportion of time spent at customer
locations becomes more prominent in the overall route duration.
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Γν Γt Runtime (s) Avg. Rel. Obj. Improv. (∆%) Avg. Num. RMP Iterations Sample Robustness (%)
0 0 103.68± 26.29 −5.61± 8.19 1.00± 0.00 100.00 (znom)

0 372 562.94± 349.05 −11.65± 3.18 2.60± 1.36 100.00

0 930 371.50± 143.44 −5.19± 7.38 1.60± 0.80 99.80

0 1860 247.71± 73.49 −5.38± 7.95 1.20± 0.40 99.80

0 3721 246.83± 73.15 −5.38± 7.95 1.20± 0.40 98.80

3 0 399.29± 143.43 −10.23± 1.81 2.60± 0.49 93.80

3 372 475.89± 259.68 −10.23± 3.45 2.20± 1.17 91.20

3 930 430.58± 205.03 −5.17± 7.23 2.00± 0.89 94.20

3 1860 443.13± 180.55 −8.80± 4.39 2.60± 1.02 92.40

3 3721 453.45± 186.64 −9.68± 4.55 2.40± 1.02 88.80

7 0 426.89± 259.18 −6.47± 8.03 2.00± 1.10 76.40

7 372 399.73± 167.50 −9.11± 4.03 2.20± 0.75 84.40

7 930 717.94± 478.19 −6.92± 2.27 3.40± 1.96 99.60

7 1860 348.45± 69.38 −3.12± 5.96 2.20± 0.75 92.40

7 3721 410.42± 94.64 −5.54± 1.70 2.60± 0.49 99.80

15 0 522.62± 191.97 −4.32± 6.54 2.60± 1.02 85.80

15 372 529.72± 201.59 −6.48± 2.05 2.60± 0.80 98.20

15 930 566.50± 214.40 −5.30± 3.73 2.80± 0.75 98.20

15 1860 599.53± 161.11 −4.74± 1.34 3.00± 1.10 98.20

15 3721 586.92± 167.04 −4.76± 1.36 2.80± 1.17 98.20

31 0 362.90± 70.69 −3.05± 1.87 2.60± 0.49 100.00

31 372 507.97± 226.62 −1.19± 5.03 2.20± 0.98 60.00

31 930 702.86± 277.24 −5.78± 2.78 3.40± 1.36 80.00

31 1860 304.29± 89.46 −0.74± 1.48 2.20± 0.40 100.00

31 3721 306.84± 89.30 0.00± 0.00 2.20± 0.40 100.00 (zworst)

Overall 441.14± 245.60 −5.79± 5.67 2.33± 1.11 92.61

Table 5.12: Comparison of the averaged runtimes, relative objective improvement, number of required RMP iterations, and sample robustness resulting from solving
the instances from the M class with locally budgeted uncertainty set Ulocal under different uncertainty budgets Γν for service duration and Γt for traversal duration using
the META-ARO and assessing robustness using 100 randomly sampled scenarios from ext(Ulocal) of the corresponding locally budgeted uncertainty sets. ∆% denotes

the percentage difference with the worst-case objective value found for zworst.



6
Conclusion and Discussion

This chapter concludes the thesis by addressing the main research question:

Main Research Question

How can the cost-efficiency of Heavy Goods Electric Vehicle (HGEV) fleet operations in road
freight transport be optimized through integrated vehicle routing and charging scheduling, while
ensuring robustness under time and energy consumption uncertainty, and maintaining computational
tractability?

We first reflect on the work carried out in the previous chapters to address the research sub-questions and
the main research question in Section 6.1. We then provide guidance on the practical application of the
proposed methodology informed by our research findings in Section 6.2. Lastly, we discuss limitations of
our work and outline possible avenues for future work in Section 6.3.

6.1. Addressing the Research Questions
In Chapter 2, we started our thesis by presenting a comprehensive review of the existing literature on
optimization under uncertainty in the context of HGEV fleet planning, addressing the research sub-question:

Research Sub-question 1

What is the current state of research on optimization under uncertainty in HGEV fleet planning,
and what gaps can be identified?

Our review highlights a solid foundation in formulating and solving vehicle routing problems, including
those involving electric vehicles under energy consumption uncertainty, through methods such as stochastic
optimization [7, 68], robust optimization [4, 69, 73, 113] and reinforcement learning [128].

We established that uncertainty or variability in the time domain remained underexplored, with only a few
works addressing time-varying traversal durations [7, 8] and stochastic waiting times at charging stations
[111]. Truly uncertain traversal durations and service durations at customers were explored [168, 169],
although not in a setting with electric vehicles. The link between time and energy consumption uncertainty
was only formalized before by Basso, Kulcsár, and Sanchez-Diaz [7], who precomputed estimates on traversal
velocities and performed stochastic optimization using a velocity-dependent energy consumption function.
However, the integration of joint time and energy consumption uncertainty in a robust optimization
framework was not considered before.

The joint optimization of depot charging operations and vehicle routing, an essential step towards integration
with energy management systems, was also not yet explored under uncertain operating conditions. Finally,
none of the studies focusing on heavy-duty electric vehicles [7, 4, 69, 73] addressed large-scale HGEV
operations in realistic European settings.

104
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Modelling Uncertainties and Formulating an Optimization Model
In Chapter 3, we set out to close the identified research gaps, addressing the research question:

Research Sub-question 2

How can uncertainties in time and energy consumption be formally represented and incorporated
into an optimization model for HGEV charging scheduling and routing?

The Heavy Goods Electric Vehicle Fleet Planning Problem under Time and Energy Consumption Uncertainty
(HGEV-FPP-TECU) introduced in this work provides a formalism for the charging scheduling and routing
problem at hand, incorporating a set of uncertain parameters including the energy consumption and
traversal duration over links in the transport network, next to the charging rates at chargers and service
and waiting durations at customers. To model uncertainties in the time domain, one can employ box
and locally budgeted uncertainty sets, which use symmetric intervals around nominal values and require
minimal distributional information.

Energy consumption uncertainty beyond time and mass related factors can be abstracted away from
the optimization problem by introducing a linear and parameterized energy consumption function that
estimates energy consumption given an HGEVs load level and its uncertain velocity over a link in the
network. Its parameters represent the nominal energy consumption scenario and can be precomputed
using Monte Carlo simulations and function approximation. A robustness multiplier can be applied to the
predicted energy consumption to adjust protection against energy-related uncertainties in a way akin to
chance-constraints in stochastic optimization.

The problem can then be formulated as a linear adaptive robust optimization model that guarantees the
feasibility of routing and charging schedules across the entire uncertainty set. Our proposed model explicitly
accounts for the initial depot charging session and enforces non-overlapping constraints on charging sessions.
The adaptive design of this optimization model enables a two-stage decision process where routing decisions,
including charger visits, are made prior to the uncertainty realization, anticipating the worst-case scenario,
while charging quantity and timing related decisions remain flexible and can be refined upon route execution
to prevent overly conservative and cost-inefficient solutions.

Solution Methods for the Optimization Problem
While the defined uncertainty sets can be represented by their extreme points to limit the number of
constraints in the optimization model, the vast number of such points can still render the optimization
problem computationally infeasible. Hence, we addressed the following research sub-question:

Research Sub-question 3

Which solution methods can be employed to robustly solve the formulated optimization problem,
while ensuring computational tractability?

The Column and Constraint Generation (CCG) method can be employed to maintain computational
tractability by minimizing the number of scenarios considered. It begins by solving the model for the
nominal scenario and then iteratively applies a pessimization procedure to identify and solve for scenarios
that render the current routing decisions infeasible. This iterative process continues until no further
violating scenarios can be identified, thereby ensuring the robustness of the solution.

The novel One-Step Look-ahead Pessimization (OSLP) algorithm can be employed to facilitate and accelerate
this procedure. It selectively targets only those scenarios that are provably infeasible, thereby avoiding
the inclusion of unnecessary scenarios in the Restricted Master Problem (RMP). Both its maximization
and minimization procedures can be formulated as linear programs, allowing for efficient resolution using
off-the-shelf solvers.

The resulting CCG method was found to be prone to premature convergence, as OSLP cannot guarantee
the discovery of scenarios for which constraint violations occur more than one step ahead in the routing
schedule. Consequently, robustness against all scenarios within the uncertainty set cannot be assured under
budgeted uncertainty. Nevertheless, our experiments demonstrated that the resulting solutions exhibited a
high degree of robustness in practice.
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To maintain computational tractability for large problem instances, where solving the RMP exactly becomes
infeasible, a multi-scenario Adaptive Large Neighbourhood Search (ALNS) metaheuristic can be employed.
The variant proposed in this work explicitly incorporates second-stage decisions to enable an efficient
exploration of the solution space and ensure energy-feasible solutions.

Building on these solution techniques, the CertERoute framework provides a comprehensive suite of solvers
that can be employed for deterministic, robust, and adaptive robust optimization of the HGEV-FPP-TECU.

Experimental Evaluation of the Proposed Methodology
In Chapter 4, we detailed the process of generating realistic HGEV-FPP-TECU instances by sampling
representative customer and charging locations, defining plausible vehicle and cost parameters, and bounding
uncertainties in the time domain through informed assumptions and expert evaluation. We showed how
key parameters of the energy consumption function can be estimated through function approximation,
using Monte Carlo simulations applied to a longitudinal vehicle dynamics model. This approach accounts
for both environmental and vehicle-specific uncertainties, and incorporates representative duty cycles that
capture real-world HGEV velocity and acceleration patterns.

Building on this experimental framework, we conducted a series of computational experiments, presented
in Chapter 5, to evaluate our proposed methodology, addressing the research sub-question:

Research Sub-question 4

How do the proposed solution methods perform when applied to realistic HGEV fleet planning
scenarios, in terms of robustness, cost-efficiency, scalability and adaptability?

Our experiments revealed operational cost differences of up to 12% when optimizing for the worst-case
scenario versus the nominal case, with time-related costs accounting for more than 70% of the total
operational cost. Sensitivity analysis highlighted that uncertain service durations, due to their wide
intervals, significantly impacted cost-efficiency within a single instance, while traversal durations emerged
as the dominant factor across instances when considering equal variability for each uncertain parameter.

The exact deterministic solver (EXA-DET) could solve small-scale, single-vehicle instances to optimality.
While feasible solutions were quickly found for two-vehicle instances, optimality remained unconfirmed
within the set time limit of an hour. For instances with three vehicles and ten customers, the solver typically
failed to find feasible solutions within the time limit.

In contrast, the metaheuristic deterministic solver (META-DET), based on ALNS, exhibited large
optimality gaps of up to 36% on these small instances, primarily due to suboptimal charging and timing
decisions. Nevertheless, it demonstrated strong scalability, solving instances with up to 100 customers
and 30 vehicles to feasibility within 10 minutes, although the high variability in objective values limits
conclusions about the cost-efficiency of its solutions.

Adaptability proved to be a key advantage in robust optimization. The adaptive solver (EXA-ARO)
consistently outperformed its static counterpart (EXA-RO), achieving 6 to 7% cost reductions under the
nominal scenario when considering the box uncertainty set. This came at the expense of slightly increased
runtimes due to a larger number of decision variables. Despite the risk of premature convergence in the
OSLP algorithm, both solvers maintained strong performance under budgeted uncertainty, achieving 99%
overall robustness against randomly sampled extreme points.

Finally, the metaheuristic adaptive solver (META-ARO) achieved 93% robustness on medium-sized
instances with 30 customers and 12 vehicles under budgeted uncertainty. It required only 2 to 3 RMP
iterations on average to converge. This highlights the effectiveness of our approach, which combines the
CCG procedure, the novel OSLP pessimization algorithm, and a metaheuristic RMP solver to deliver
highly robust solutions while maintaining computational tractability.
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Answer to the Main Research Question
In conclusion, our findings demonstrate that the cost-efficiency of HGEV fleet operations in road freight
transport can be effectively optimized, while maintaining computational tractability and ensuring high
levels of robustness against time and energy consumption uncertainties, through the application of the
proposed CertERoute framework. Specifically, this involves:

• Formulating the problem as a linear adaptive robust optimization model that integrates vehicle
routing and charging scheduling and explicitly incorporates time uncertainty.

• Representing time uncertainty using (locally budgeted) uncertainty sets that account for uncertain
service, waiting, traversal and charging durations.

• Modelling energy consumption using a simulation-based function that accounts for environmental
and vehicle-specific uncertainties, vehicle mass, acceleration, and velocity.

• Balancing robustness and computational efficiency through tailored solution methods that
combine:

– CCG to limit the number of considered scenarios in the RMP,
– OSLP to identify and incorporate provably infeasible scenarios into the RMP,
– A suite of exact and metaheuristic solvers based on ALNS to address the RMP.

• Reducing conservatism via two-stage robust optimization, where routing decisions are made prior
to route execution, but timing and charging decisions can be tweaked during route execution.
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6.2. Guidance on Practical Application
To guide the practical application of the CertERoute framework, we present a decision diagram (see
Fig. 6.1) that synthesizes our methodology and research findings. This diagram is designed to help
fleet planners select the most suitable solver and uncertainty set by considering key factors such as data
availability, problem scale, robustness requirements, and operational constraints.

Further Elaboration
Our experiments revealed that most instances involving 10 customers and 3 vehicles could not be solved
exactly within an hour. Therefore, we recommend using metaheuristic solvers, which demonstrated
significantly better scalability, for problems of this size and beyond. However, if hardware resources permit,
one can attempt to solve such instances exactly to obtain stronger optimality guarantees.

In practical scenarios where only nominal or average-case estimates are available for the uncertain parameters,
deterministic optimization under the estimated scenario is the only option.

If cost-efficiency is most important, and robustness is not a priority, such that constraint violations under
other scenarios are allowed, optimizing directly for the nominal scenario yields cost-efficient and pragmatic
solutions.

If 100% robustness needs to be guaranteed and cost-efficiency is less important, we recommend exact
deterministic optimization considering the worst-case scenario, as this method is quick and guarantees
optimality under the worst-case scenario. For larger instances, the metaheuristic approach can be used
although this provides no guarantees on the feasibility of the solution.

If robustness and cost-efficiency need to be balanced, we recommend using a CCG-based solver in com-
bination with an uncertainty set that is as compact as possible to limit conservatism. If information is
available on the number of uncertain parameters that can attain their worst-case value at the same time,
through covariance data, we recommend to use the budgeted uncertainty set. If such data is available per
parameter type, a locally budgeted uncertainty set can be constructed to further limit conservatism. If no
such data is available, the box uncertainty set is the only option.

If the vehicle energy consumption and time uncertainty realizations can accurately be tracked, so that
adaptive optimization during route execution is possible, we recommend to use the adaptive solver variants
to produce the routing solution and the deterministic solvers during route execution to find the best
decisions given the routing solution and the observed scenario at hand.

However, inaccurate measurements during route execution can compromise robustness, and constantly
shifting optimal timing decisions may prevent reliable arrival time estimates, complicating customer
communication and integration with reservation systems for chargers. In such cases, we recommend using
the non-adaptive solver variants to produce a single solution prior to the route execution with stronger
robustness guarantees, albeit potentially at the cost of reduced cost-efficiency.
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Figure 6.1: Decision diagram representation of the CertERoute framework for charging scheduling and routing under time and energy consumption uncertainty
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6.3. Limitations and Avenues for Future Work
In this final section of the thesis, we discuss the main limitations of our work and outline possible avenues
for future research.

Modelling HGEV Fleet Operations
While we improved the realism of existing HGEV fleet planning models by explicitly incorporating depot
charging scheduling and enforcing non-overlapping constraints on charging sessions, the current model’s
applicability remains limited beyond the considered distribution transport setting. This is due to simplifying
assumptions such as single-day operations, single trips starting and ending at the same depot, and the
exclusion of back-hauls or pickups along the route.
As battery and charging technologies continue to evolve, enhancing vehicle range and reducing charging
durations, the simplified setting considered here may no longer present major obstacles to ensuring time and
energy feasibility of the routes, even under time and energy consumption uncertainty. However, we believe
that significant operational cost-efficiency (OPEX) gains can still be obtained through co-optimization
with energy management systems, which presents a promising avenue for future work. Further cost-
efficiency improvements can likely be achieved through the co-optimization of scarce asset management and
operational planning. For instance, limiting the number of deployed chargers would introduce additional
constraints on the HGEV operations, but would also reduce infrastructure requirements, ultimately lowering
capital expenditures (CAPEX).
Future research could also focus on extending the model to international transport settings, where
maintaining time and energy feasibility is expected to remain more challenging due to the increased
uncertainty stemming from longer travel distances and a stronger reliance on public and semi-public
charging networks. Such an extension would require incorporating more practical elements such as driver
rest regulations and the availability of suitable parking infrastructure, both of which are essential for
ensuring operational viability in long-haul transport.

Dealing with Energy Consumption Uncertainty
In this work, energy consumption was modelled as a function of the uncertainty set in the time domain,
essentially decoupling it from the robust optimization framework. This approach was chosen to preserve
the inherent relationship between traversal duration and energy consumption, as mediated by a vehicle’s
velocity. Introducing energy consumption uncertainty as an independent dimension within the box or
locally budgeted uncertainty set would risk generating unrealistic scenarios. For instance, it could lead to
cases where energy consumption reflects heavy congestion on an edge, while the corresponding traversal
duration suggests free-flow conditions.
However, our modelling choice also comes with limitations. By not explicitly incorporating energy
consumption uncertainty, beyond that arising from variable traversal durations, into the robust optimization
framework, we were unable to establish any formal guarantees on true energy feasibility. Instead, we
relied on Monte Carlo simulations and mean-value approximations of the energy consumption function,
reducing the problem to nominal optimization with respect to energy consumption. That is, we more
ore less transferred the limitation present in the work by Basso et al. [51], who accounted for stochastic
energy consumption but considered nominal traversal durations, from the time domain to the energy
domain. While the use of a larger robustness multiplier could offer a heuristic means to account for energy
uncertainty, providing some probabilistic guarantees, it could also lead to overly conservative estimates,
particularly under low-velocity conditions where energy consumption tends to be overestimated.
The limited guarantees on energy feasibility also undermine the timing feasibility, as charging durations
are directly dependent on the estimated energy consumption and demand. Future research could address
this limitation by exploring more expressive uncertainty models, such as ellipsoidal uncertainty sets, which
can better capture the interdependence between energy consumption and traversal duration. Additionally,
a promising direction would be to adopt a non-linear optimization model that directly incorporates a
longitudinal vehicle dynamics model. Although this would result in a second-order cone program, modern
solvers like Gurobi [66] are capable of solving such problems to optimality. Techniques such as arc
segmentation, as proposed by Kim, Park, and Jeong [174], could be employed to enable robust optimization
over a detailed road network, considering uncertain velocities over every edge. In such a framework, the
uncertain energy-consumption parameters currently handled via simulation could also be embedded directly
into the uncertainty set.
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Incorporating Operational Data
Due to the limited availability of operational data, the uncertainty bounds in our experiments were
established based on expert judgment and informed assumptions. Additionally, the uncertainty budgets
were more or less generated by uniformly selecting points between the uncertainty bounds. Due to
the absence of empirical validation, these bounds and budgets may not accurately capture the level of
uncertainty typically encountered in practice.

In the presence of more operational data, future research could address this limitation by constructing
data-driven uncertainty sets, leveraging methodologies such as those proposed by Li, Yorke-Smith, and
Keviczky [158]. Additionally, when sufficient data is available to reliably estimate the underlying probability
distributions, stochastic optimization techniques may offer a promising alternative. Such approaches can
provide strong probabilistic robustness guarantees while mitigating the conservativeness typically associated
with robust optimization.

Improving the Experimental Evaluation
A key limitation lies in the evaluation of our novel OSLP algorithm. We did not benchmark it against
the naive pessimization method from Zeng and Zhao [155] or the bilinear pessimization approach used
by Jeong et al. [113]. While we empirically demonstrated the shortcomings of the naive method, we only
discussed the theoretical limitations of the bilinear approach. We initially intended to implement a bilinear
approach ourselves but encountered significant modelling overhead in Pyomo. This led us to develop OSLP
instead. Only later did we discover out-of-the-box two-stage optimization tools such as those proposed by
Wiebe and Misener [218] and Sherman et al. [219]. Future research could utilize these tools to implement
the bilinear pessimization model or investigate alternative two-stage optimization strategies that avoid
premature convergence, enabling a comprehensive comparison with and potential improvements over OSLP.

Additionally, the scope of our experimental evaluation was limited by the small number of benchmark
instances (25), most of which involved relatively small problem sizes (≤ 10 customers). These instances,
while useful for rapid experimentation, are not really representative of real-world planning scenarios. Due to
time constraints, we focused primarily on these smaller instances, which could be solved to optimality using
exact methods. This facilitated the large number of repeated evaluations required for the sensitivity analysis
and the robustness assessments under various budgeted uncertainty sets. Although we demonstrated the
scalability of our deterministic metaheuristic optimization approach on instances with up to 100 customers,
the integration of the metaheuristic within the robust column and constraint generation framework was
only tested on instances with up to 30 customers. In contrast, established VRP literature includes studies
with up to 1000 customers [220]. However, such such works often rely on simplified models and synthetic
instances that omit many real-world constraints.

Beyond instance size, the diversity of our test cases also remained limited. Our experiments focused solely
on uncertainties in traversal and service durations within the time domain, while charging rates and waiting
durations were treated deterministically. Additionally, although our model supports heterogeneous fleets,
we only evaluated a homogeneous fleet setting. The time windows were deliberately set to be wide in
order to find feasible instances more easily during instance generation. However, in practical applications,
narrower windows would likely amplify the impact of charging rates and battery capacities, an aspect that
warrants further investigation.

Although we considered the EVRPTW benchmark proposed by Schneider, Stenger, and Goeke [30] during
the early stages of development, we did not evaluate our final metaheuristic on standard deterministic
EVRPTW benchmarks. This was mainly due to the inclusion of the initial depot charging session in our
model. This rendered many instances from commonly used benchmarks, including those by Schneider,
Stenger, and Goeke [30] and Desaulniers et al. [50], infeasible, as the associated time windows required
vehicles to depart from the depot much earlier than possible when starting with a low initial state of
charge. However, future work could adapt these benchmarks to accommodate initial charging, enabling
more standardized comparisons.

Further Development of the Metaheuristic Solution Approach
The ALNS metaheuristic applied in this study remains relatively untuned and rudimentary, offering limited
mechanisms for refining charging and timing decisions. As a result, the approach exhibited substantial
performance gaps and struggled to find optimal solutions even for small problem instances. Future work
could likely improve the performance of the current algorithm by conducting systematic parameter tuning,
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using techniques such as grid search or learning-based methods like those proposed by Calvet et al. [129],
to identify more effective configurations. The current implementation of the operators is also not yet
fully optimized for computational efficiency. Performance could be improved further by reducing the
time complexity of the operators, for example, by caching and incrementally updating components of the
generalized cost function rather than recalculating them across the entire solution.

Enhancements to the algorithm itself could also be explored. For instance, one could incorporate more
advanced charger removal operators, introduce dedicated phases for adjusting charging decisions (as in
Keskin and Çatay [31]), or integrate linear programming components to efficiently optimize charging
and timing decisions (as in Keskin, Laporte, and Çatay [44]). These would likely help to reduce the
optimality gap. A simpler variant, using operators restricted to modifying the routing decisions, while
using a corridor-based generalized cost function, could also be explored. This would more closely resemble
the VNS-based approach proposed by Jeong et al. [113]. Adhering to this approach might significantly
reduce implementation overhead. The current repair operator is overly complex due to the need to manage
numerous edge cases with respect to the second-stage decisions, which has made the implementation
susceptible to errors.

Another promising avenue for future research involves investigating alternative metaheuristic approaches
for solving the RMP beyond ALNS. In particular, population-based metaheuristics present significant
potential due to their inherent support for multi-objective optimization, which can help to address the
trade-offs between cost-efficiency and robustness more effectively than with the current generalized cost
function. Additionally, population-based metaheuristics tend to be more amenable to parallelization,
thereby improving scalability. Memetic algorithms, like HGS [118], that combine the exploratory power of
population-based strategies with the intensification strengths of large neighborhood search heuristics, are
especially compelling.

Generating Managerial Insights using the Framework
From a business perspective, future work could investigate how the CertERoute framework may be used
to generate actionable managerial insights for Shell and its clients. This could be achieved through case
studies that analyze real-world operational data and explore various optimization scenarios. For instance,
the framework could be used to assess the impact of different fleet configurations (e.g., battery capacity,
average energy consumption, supported charging speeds) and depot infrastructure setups (e.g., number
and type of chargers) on the total expected operational cost under specific demand patterns.

Such an application would also benefit from a more comprehensive sensitivity analysis than the one
conducted in this study to better capture the nuanced effects of key input parameters. Our current
analysis, limited to small-scale instances, occasionally produced counterintuitive results. Notably, the Sobol
indices failed to accurately reflect the true influence of some parameters on operational costs. For example,
parameters like battery capacity and charging speed yielded Sobol indices close to zero, implying negligible
impact, despite the fact that varying these parameters led to significant absolute changes in cost.
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“Essentially, all models are wrong, but some are useful.”
— George E. P. Box [221]
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A
Compact Matrix Form Notation

Definition 23 – Compact Matrix Form Notation

Vectors:
Let the first-stage decision vector be defined as

x =

x1

r

u

 , with dimension n1 = n3 + n4 + n5,

where
• x1 ∈ Bn3 : edge selections xkij , for k ∈ K, i ∈ V ′

0, j ∈ V ′
N+1,

• r ∈ Bn4 : vehicle deployments rk, for k ∈ K,
• u ∈ Rn5 : load levels uki , for k ∈ K, i ∈ V ′.

Let the associated first-stage cost vector be defined as

c =

c10
0

 , with dimension n1,

where c1 ∈ Rn3 : distance cost dijckkm, for k ∈ K, i ∈ V ′
0, j ∈ V ′

N+1.

Let the candidate decision vector corresponding to scenario s ∈ S(U) be defined as

ys =



τ s
1

τ s
2

σs
1

σs
2

δs

ys
1

ys
2


, with dimension n2 = 3n4 + 2n6 + n7 + n8,

where
• τ s

1 ∈ Rn6 : location arrival times τsi , for i ∈ V ′,
• τ s

2 ∈ Rn4 : route start times τsk , for k ∈ K,
• σs

1 ∈ Rn6 : location departure times σs
i , for i ∈ V ′,

• σs
2 ∈ Rn4 : route end times τsk , for k ∈ K,

• δs ∈ Rn4 : driver start times δsk, for k ∈ K,
• ys

1 ∈ Rn7 : SoCs on arrival yksi , for k ∈ K, i ∈ V,
• ys

2 ∈ Rn8 : SoCs on departure Y ks
f , for k ∈ K, f ∈ F ′.

Let {ys} be the shorthand notation for {ys : s ∈ S(U)}.
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Note that replacing all second-stage decision vectors ys with a single vector y would cor-
respond to a static robust optimization formulation.

Let the associated second-stage cost vector be defined as

d =



0

0

0

d1

−d1

−d2

d3


, with dimension n2,

where
• d1 ∈ Rn4 : time cost ckmin, for k ∈ K,
• d2 ∈ Rn7 : energy cost cikWh if i ∈ F ′ and 0 otherwise, for k ∈ K, i ∈ V
• d3 ∈ Rn8 : energy cost cfkWh, for k ∈ K, f ∈ F ′.

Matrices:
Let the matrix A ∈ Rm1×n1 and the vector b ∈ Rm1 denote the left-hand side and right-hand side
coefficients of the first-stage constraints given by equations Eq. (3.3) to Eq. (3.13) and Eq. (3.36),
when expressed in standard form.

Similarly, let the matrix F (zs) ∈ Rm2×n2 and the vector f(zs) ∈ Rm2 denote the left-
hand side and right-hand side coefficients of the second-stage constraints from equations
Eq. (3.14) to Eq. (3.18) and Eq. (3.30) to Eq. (3.35), in standard form for each scenario s ∈ S(U).
The notation emphasizes that F (zs) and f(zs) are affine functions of the uncertainty vector zs ∈ U .

Let the matrices G(zs) ∈ Rm3×n1 and H(zs) ∈ Rm3×n2 , along with the vector j(zs) ∈ Rm3 ,
denote the coefficients associated with the first-stage decision variables, second-stage decision
variables, and the right-hand side, respectively, of the coupling constraints given in equations
Eq. (3.19) to Eq. (3.25), in standard form for each scenario s ∈ S(U).

Finally, let the matrix L(zs) ∈ Rm4×n1 and the vector l(zs) ∈ Rm4 denote the coefficients
of the left-hand side and right-hand side, respectively, of the redundant first-stage constraints from
Eq. (3.27) to Eq. (3.29), again in standard form for each scenario s ∈ S(U).



B
Premature Convergence of the OSLP

Algorithm

Counterexample 1 – Premature Convergence of the OSLP Algorithm

Claim:
Whenever a violating scenario q ∈ S(U) exists for the current first-stage decisions x, so that
Ω(x, zq) = ∅, the OSLP Algorithm will identify it.

Counterexample:
Consider a simplified instance of the HGEV-FPP-TECU problem with

• U = Ubudget,
• V = {a, b, c, d},
• K = {k},
• k is a single vehicle,
• a and d are the entrance and exit of the depot, respectively,
• b is a depot charger,
• c is the only customer to be served.

Let the current routing solution x correspond to the route a→ b→ c→ d, which is in fact the only
feasible route.

Let the traversal durations are uncertain within the intervals

tsab ∈ [0, 0], tsbc ∈ [3, 7], tscd ∈ [4, 6], ∀s ∈ S(Ubudget).

Let the uncertainty budget be Γ = 1 and let the time windows [ei, li] be

[0, 12] for i ∈ {a, b, c}, and [4, 11] for i ∈ {d}.

Let all other uncertain parameters be deterministic, with for all s ∈ S(Ubudget):
• ea = νsa = νsb = νsc = νsd = 0,
• gksb = 0, so that vehicle k can depart from b with a full battery at time 0,
• Qk sufficiently large to complete the route.

Let the nominal scenario znom be the last scenario added to the RMP, resulting in solution
(x, {. . . ,ynom}) with,

τnom
a = σnom

a = τnom
b = τnom

b = 0,

tnom
bc = 5, tnom

cd = 5,

τnom
c = σnom

c = 0 + 5 = 5, τnom
d = 5 + 5 = 10.

The OSLP now maximizes the sum of one-step-ahead violations under the uncertainty budget
Γ. Since the budget is enforced via constraints linear in the the uncertainty, the scenario that
maximizes constraint violation lies at an extreme point of the uncertainty set, so that it is part of
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ext(Ubudget).

That is, the scenario that maximizes constraint violation must be among
• q1: tq1bc = 7, tq1cd = 5,

• q2: tq2bc = 5, tq2cd = 6.

In both cases, the OSLP does not detect a one-step-ahead time violation, as

σnom
b + tq1bc = 0 + 7 = 7 ≤ 12, σnom

c + tq1cd = 5 + 5 = 10 ≤ 11,

σnom
b + tq2bc = 0 + 5 = 5 ≤ 12, σnom

c + tq2cd = 5 + 6 = 11 ≤ 11.

However, scenario q1 leads to a violation in the original problem, as

τ q1d ≥ t
q1
bc + tq1cd = 7 + 5 = 12 > 11.

Furthermore, under q1, the charging nor timing decisions can be improved any further to fix this
violation, as σnom

b = 0, denoting the earliest possible time to leave location b.

That is Ω(x, zq1) = ∅.

Despite this, the OSLP cannot distinguish between q1 and q2, as both are extreme points and both
result in the same maximum objective value during OSLP. If q1 is selected, which is just as likely
as choosing q2, this leads the algorithm to incorrectly conclude that no violating scenario exists,
resulting in premature convergence.



C
Energy Consumption Modelling

C.0.1. Further Details on the Duty Cycles
The duty cycles employed in our energy consumption simulations were adopted from the Vehicle Energy
Consumption calculation TOol (VECTO) [208], the official tool of the European Comission for regulating
and standardizing CO2 emissions and fuel consumption of HGVs. This tool, which is also based on a
longitudinal energy consumption model, comes with duty cycles that are representative for different types
of HGV operations and track the velocity and position over a traversed trajectory. VECTO makes a
distinction between UrbanDelivery, InterUrban, SubUrban, RegionalDelivery and LongHaul
operations. Where the first three are associated with lower average velocities and frequent deceleration, the
regional profile mixes such sections with sections between cities where the velocity reaches higher values as
the vehicle drives on regional or motorways. During the LongHaul cycle, the vehicle is mainly located
on the motorway, showing a high average velocity and little acceleration and deceleration. In case the
vehicle stopped at a certain position, for example, to wait at a traffic light, the stop duration in seconds
was recorded. The resulting profiles are displayed in Fig. C.1.

On a critical note, the accelerations found in the profiles do not always appear to be physically sound.
For example, the LongHaul profile starts with a velocity of 0 km/h to record a velocity of 83 km/h after
having traversed only a single meter. This is highly unlikely, given that the maximum acceleration for
HGEVs is estimated to be around 2m/s2 [51]. Additionally, the included road gradients that range from
−10.93◦ to 13.69◦ might not be fully representative for the flat Dutch landscape.

As our energy simulation ran in the time domain, we converted the profiles by considering the difference in
time between any two measurements based on the average velocity and the distance between the two. We
enforced the stops by introducing additional points in time. We then linearly interpolated the velocities
over the timesteps that did not directly correspond to a measurement in the distance domain to obtain a
velocity value per second of the simulation, and calculated the accelerations accordingly. The interpolation
also aimed to mitigate unrealistically high decelerations and accelerations occurring immediately before or
after stops. The resulting duty cycles are illustrated in Fig. 4.6. Notably, in the regional delivery cycle plot,
a significant stop occurs just after 5000 seconds. The subsequent linear segment reflects the interpolated
velocity during the stop, effectively reducing the acceleration magnitude when the vehicle resumes its trip.
It is also worth noting that the duty cycles differed in length, with most spanning approximately 100 km,
while the SubUrban cycle covered only 23.5 km. Additionally, the characteristic average velocities tended
to be slightly lower when analyzed in the time domain compared to the distance domain. This discrepancy
arose from the interpolation process and the inclusion of additional stop points, which reduced the average
velocity.
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Figure C.1: Original duty cycles for LongHaul, RegionalDelivery, InterUrban, SubUrban and
UrbanDelivery operations, showing the recorded velocity and traversed distance over a 100 km trajectory. The

dashed line indicates the characteristic average velocity for the profile in the distance domain.
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C.0.2. Generating Synthetic Duty Cycles
Note that a single average velocity value can correspond to numerous possible velocity profiles, each
resulting in a different perspective on the energy consumption. The VECTO duty cycles provide only one
such perspective for a limited set of average velocities, so that intermediate velocities are treated as a
mix of the closest two available profiles. In an attempt to address this limitation, we generated synthetic
duty cycles for a given average velocity using an MILP model. This model acted like a controller and
imposed constraints on maximum velocity and acceleration, ensured consistency with the target average
velocity, and incorporated stochastic elements, such as acceleration and deceleration events, to emulate
real-world traffic dynamics. At higher average velocities, the model was more constrained, as it had to
maintain near-maximum velocities to complete the trajectory within the allotted time. In contrast, lower
average velocities offered greater flexibility in velocity assignment across time steps, occasionally resulting in
irregular or random patterns. When the profiles corresponding to different average velocities were evaluated
through MC simulation, they produced very similar energy consumption distributions, thereby offering
limited discriminatory capacity with respect to the average velocity. Therefore, we chose to continue using
only the VECTO profiles, as they exhibited more variations in energy consumption in response to changes
in average velocity, aligning more closely with our expectations and reality.

C.0.3. Analyzing the Simulation Results
As discussed in Subsection 2.4.1, velocity is the only quadratic term in the longitudinal energy model,
making it an important factor at higher velocities. Consequently, one might intuitively expect energy
consumption to increase with average velocity due to greater aerodynamic drag. However, Table 4.5 reveals
higher energy consumption values for the low-velocity urban driving profiles compared to the higher-velocity
regional and long-haul profiles. While this observation aligns with expectations for HGVs with combustion
engines, which lack regenerative braking, it contrasts with findings for battery electric passenger vehicles,
such as those reported by Konzept et al. [222] and Mamarikas et al. [223], where lower average velocities
typically correspond to lower energy consumption due to effective energy recuperation. However, the
study by Galvin [224] found that the energy consumption of passenger BEVs follows a parabolic trend: it
decreases up to around 60 km/h, after which it begins to rise again due to increasing aerodynamic drag.
We hypothesize that for HGEVs, this inflection occurs at higher velocities as a result of their greater
aerodynamic efficiency relative to their mass, which explains why we observe a continuous decrease in
energy consumption over the simulated velocity range.

Looking at the longitudinal dynamics model, the higher mass of HGEVs compared to passenger BEVs
increases the influence of the acceleration component in the traction force. In the LongHaul cycle, the
vehicle’s traction force component is primarily influenced by aerodynamic drag due to the high but steady
velocity. In contrast, for the UrbanDelivery cycle, where aerodynamic drag is limited but accelerations
are more common, the acceleration component is most dominant. Fig. C.2 illustrates this dynamic by
comparing the cumulative energy demanded by the engine (excluding auxiliary loads) with the energy
recovered through regenerative braking. Despite lower aerodynamic losses, the frequent acceleration events
in the UrbanDelivery cycle result in a net increase in energy demand. However, this cycle also offers
more opportunities for regenerative breaking. When we sum both effects and include the auxiliary power
consumption, the cumulative energy consumption curves for both cycles (as shown in Fig. C.3) exhibit
similar slopes. Yet, because the UrbanDelivery cycle takes approximately 2.5 times longer to complete
than the LongHaul cycle, its total energy demand is proportionally larger.
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UrbanDelivery cycle over time under simulation with a vehicle mass level of 40,000 kg and mean values for the
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Figure C.3: Cumulative energy consumption for the LongHaul and UrbanDelivery cycle over time under
simulation with a vehicle mass level of 40,000 kg and mean values for the uncertain parameters
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Assessing Normality
Fig. C.5 presents a histogram and boxplot for the LongHaul duty cycle at 40 tonnes. The simulated
energy consumption values exhibit a distribution that visually resembles a normal distribution. Notably,
the distribution is centered around a mean of 1.1 kWh/km, which aligns exactly with the reference value
reported by Volvo [197]. To statistically assess normality, we applied the Shapiro-Wilk test [225] across
all combinations of duty cycle and mass level. The resulting test statistics were consistently 0.99 out of
1.00, indicating a strong similarity to a normal distribution. However, the corresponding p-values were all
0 < 0.05, which technically leads to the rejection of the null hypothesis of normality. It is important to note
that with large sample sizes, normality tests like Shapiro-Wilk tend to detect even negligible deviations
from normality, often resulting in rejection of the hypothesis despite the data being practically normal
[226]. Therefore, based on visual inspection and the high test statistics, we conclude that the data can be
considered normally distributed. This allows us to reason about Confidence Intervals (CI), in the sense
that approximately 95% of the data resides between two standard deviations.
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Figure C.4: Histogram and boxplot of the resulting energy consumption values per kilometre resulting from a
MC simulation on the LongHaul duty cycle with a mass level of 40,000 kg

Relation with Vehicle Mass
Fig. C.5 illustrates how energy consumption increases across all duty cycles as the mass increases. Notably,
the three profiles that include urban conditions exhibit both higher variability and steeper slopes compared
to the regional and long-haul profiles. This confirms that energy consumption in urban settings is more
sensitive to changes in mass. The flatter slopes and lower standard deviations observed in the regional
and long-haul cycles indicate more consistent energy consumption, likely due to the steadier driving
conditions with fever acceleration and deceleration. Consequently, in the UrbanDelivery cycle, the
energy consumption of the simulated HGEV is nearly twice that observed in the LongHaul profile when
operating under curb mass. This difference becomes even more pronounced under full load conditions,
where the energy consumption in urban settings reaches approximately 3.5 times that of the long-haul
equivalent.
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Figure C.5: Energy consumption per kilometre for different duty cycles and mass levels resulting from the MC
simulation

C.0.4. Further Analysis of the Energy Function
To find appropriate values of the edge-independent parameters, we fitted a linear regression model using
the Scikit-Learn library [227] with the target variable being the mean energy consumption per kilometre
and the feature variables being the total vehicle mass (coefficient αk), the inverse velocity (coefficient γk),
and their product (coefficient κk). The model was fitted on output data from the MC simulations, which
was split into training and testing sets using an 80% to 20% ratio, yielding five random test points. The
resulting function is shown graphically in Fig. C.6 to Fig. C.8 and the resulting parameter values are listed
in Table C.1.

Parameter Description Value
βk Intercept 0.963
αk Mass coefficient −3.970× 10−5

γk Inverse velocity coefficient −1.125× 10−1

κk Interaction coefficient 5.511× 10−5

Table C.1: Estimated Parameters

Note that, unlike in strictly additive linear models, the coefficients here cannot be directly interpreted as
measures of individual influence, as the interaction term means the relationship is conditional.
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Evaluation of the Resulting Function
The insights drawn from Fig. C.5 support the inclusion of the term κk, which scales both the mass term
ukj +mk

c and the inverse velocity term tsij . After all, the slope of energy consumption per kilometre appears
to vary depending on the combination of mass and average velocity (and thus inverse velocity).

To evaluate the function fit, we calculated the Mean Squared Error (MSE) and the coefficient of determination
(R2) on the test set, yielding values of 0.02 and 0.95, respectively. These values indicate that the function
approximation represents the means of the simulated data well.

Graphically, we observe in Fig. C.7 that the function tends to bend around the data points for the regional
delivery and suburban profiles, while matching the other profiles less accurately. This behavior is also
evident in Fig. C.9 and Fig. C.10, which compare the energy consumption values obtained from the MC
simulations with those predicted by the approximated function across various duty cycles and mass levels.

Figure C.6: Perspective 1 on the approximated energy consumption function, showing the average energy
consumption per kilometre given the simulated inverse velocities and mass levels
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Figure C.7: Perspective 2 on the approximated energy consumption function, showing the average energy
consumption per kilometre given the simulated inverse velocities and mass levels

Figure C.8: Perspective 3 on the approximated energy consumption function, showing the average energy
consumption per kilometre given the simulated inverse velocities and mass levels
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Introducing a Robustness Multiplier
From a duty cycle perspective, Fig. C.9 shows that the function approximates the energy consumption
for the LongHaul cycle as being entirely independent of the load level. This assumption is physically
inaccurate and may lead to underestimations of energy consumption, particularly at high average velocities
in combination with high load levels. For the UrbanDelivery cycle, the function also tends to underesti-
mate energy consumption compared to the mean values from the MC simulations. In contrast, for the
InterUrban cycle, the predicted energy consumption is very robust across load levels and aligns well
with the upper bounds of the 95% confidence interval resulting from the MC simulations. The predictions
for the RegionalDelivery cycle are slightly higher than the simulation mean values, while those for
the SubUrban profile closely match the mean. Fig. C.10 further illustrates that energy consumption is
underestimated at both ends of the velocity spectrum compared to the mean simulation values, although the
predicted values generally remain within the 95% confidence bounds for each load level. In the mid-range
velocities, the function tends to overestimate consumption, aligning with the worst-case values from the
simulations.

Given that HGEVs are expected to operate at average velocities falling between those of the Region-
alDelivery and InterUrban cycle (see Fig. 4.5), the function offers a reasonably conservative estimate
of nominal energy consumption for a given edge distance, load level, and traversal time. Nonetheless,
more risk-averse fleet operators may wish to apply a robustness multiplier ψk > 1 to the estimated energy
values to ensure higher levels of robustness. Fig. C.9 and Fig. C.10 present results for several robustness
coefficients ψk ∈ [1.1, 1.2, 1.45]. Choosing ψk = 1.1 corresponds to a mildly conservative strategy, ensuring
that predicted energy values for velocities within the RegionalDelivery to InterUrban range always
exceed the upper bound of the 95% confidence interval. This roughly imposes a chance constraint that
ensures battery depletion risk remains below 5%, assuming average velocities remain within the simulated
range [37.65, 64.85] km/h. A coefficient of ψk = 1.3 represents a more robust approach, covering all profiles
except LongHaul. To extend robustness to high average velocities of over 80 km/h, a coefficient of
ψk = 1.45 or greater is required. However, such a high value significantly overestimates energy consumption
at lower velocities, thereby inflating projected operational costs.



140

20000 25000 30000 35000 40000
Mass (kg)

0.9

1.0

1.1

1.2

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h/
km

)

17970

25000
30000

35000
40000

LongHaul

Mean Values
±2 STD (95% CI)
Nominal (x1.0)
Mildly Robust (x1.15)
Mostly Robust (x1.3)
Fully Robust (x1.45)

20000 25000 30000 35000 40000
Mass (kg)

1.0

1.2

1.4

1.6

1.8

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h/
km

)

17970

25000
30000

35000
40000

RegionalDelivery

Mean Values
±2 STD (95% CI)
Nominal (x1.0)
Mildly Robust (x1.15)
Mostly Robust (x1.3)
Fully Robust (x1.45)

20000 25000 30000 35000 40000
Mass (kg)

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h/
km

)

17970

25000
30000

35000
40000

InterUrban

Mean Values
±2 STD (95% CI)
Nominal (x1.0)
Mildly Robust (x1.15)
Mostly Robust (x1.3)
Fully Robust (x1.45)

20000 25000 30000 35000 40000
Mass (kg)

1.5

2.0

2.5

3.0

3.5

4.0

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h/
km

)

17970

25000

30000

35000

40000

SubUrban

Mean Values
±2 STD (95% CI)
Nominal (x1.0)
Mildly Robust (x1.15)
Mostly Robust (x1.3)
Fully Robust (x1.45)

20000 25000 30000 35000 40000
Mass (kg)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h/
km

)

17970

25000

30000

35000

40000

UrbanDelivery

Mean Values
±2 STD (95% CI)
Nominal (x1.0)
Mildly Robust (x1.15)
Mostly Robust (x1.3)
Fully Robust (x1.45)

Figure C.9: Simulated and approximated energy consumption per duty cycle for all mass levels, illustrating the
mean values and 95% confidence intervals from the Monte Carlo simulations, alongside the approximated function

values for various robustness coefficients ψk
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Figure C.10: Simulated and approximated energy consumption per mass level for all duty cycles, illustrating the
mean values and 95% confidence intervals from the Monte Carlo simulations, alongside the approximated function

values for various robustness coefficients ψk
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class T-SV over 100 iterations and five runs with varying random seeds. The objective value is represented on a

logarithmic scale.
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(b) Worst-case Scenario

Figure D.4: Development of the best objective value found using the META-DET solver on instances of the
class T-DV over 600 iterations and five runs with varying random seeds. Both axes are represented on a

logarithmic scale.
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Figure D.5: Development of the best objective value found META-DET on instances of the class S over 12,000
iterations and five runs with varying random seeds. Both axes are represented on a logarithmic scale.
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Instance Runtime (s) Avg. Obj. (€)
EXA-DET META-DET EXA-DET META-DET ∆%

T-SV-1 0.508± 0.045 1.197± 0.552 993.35 1124.81± 33.09 9.85

T-SV-2 0.344± 0.019 0.732± 0.084 806.45 840.32± 0.00 4.20

T-SV-3 0.220± 0.022 0.441± 0.557 943.14 989.27± 0.00 4.89

T-SV-4 1.048± 0.066 0.688± 0.335 566.30 566.30± 0.00 0.00

T-SV-5 0.516± 0.049 0.463± 0.261 447.26 606.99± 0.00 35.71

T-SV Overall 0.526± 0.292 0.704± 0.485 751.30 825.54± 215.71 10.93

T-DV-1 0.800± 0.447 0.587± 0.076 821.88 821.88± 0.00 0.00

T-DV-2 1.000± 0.000 0.587± 0.076 933.67 974.30± 26.73 2.92

T-DV-3 4.400± 0.548 3.779± 1.464 1323.04 1396.02± 0.00 5.52

T-DV-4 4.400± 0.548 1.502± 0.529 1506.71 1731.90± 25.30 12.89

T-DV-5 1.000± 0.000 2.208± 1.664 797.41 955.40± 43.19 16.27

T-DV Overall 2.120± 1.965 1.921± 1.497 1076.54 1175.90± 339.23 7.52

S-1 - 119.224± 83.218 - 2261.55± 53.50 -
S-2 85.403± 11.150 149.279± 52.700 2092.04 2349.44± 90.39 9.14

S-3 52.807± 11.952 76.831± 54.378 1438.36 1615.13± 21.59 10.73

S-4 - 16.106± 11.833 - 2436.24± 229.39 -
S-5 - 136.983± 59.280 - 2262.97± 65.39 -
S Overall - 99.685± 74.905 - 2185.07± 314.72 -

Table D.1: Comparison of runtimes and objective values for the nominal scenario znom across T-SV, T-DV, and
S instances solved by EXA-DET and META-DET over five runs with varying random seeds and a one-hour

timeout. ∆% indicates the performance gap between the best objective value from META-DET and the value
found by EXA-DET
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Figure D.6: Development of the best objective value found using META-DET on instances of the class M over
100,000 iterations. Both axes are represented on a logarithmic scale.
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Figure D.7: Development of the best objective value found using META-DET on M instances under the
worst-case scenario znom over 12,000 iterations and five runs with varying random seeds. Both axes are represented

on a logarithmic scale.

Instance Runtime (s) Num. Feas. Runs Best Feas. Obj. (€) Worst Overlap (min)
M-1 1153.94± 47.91 4/5 4279.04 4.42

M-2 1328.64± 73.09 4/5 4543.83 18.95

M-3 1255.96± 43.86 4/5 3840.18 11.38

M-4 1410.08± 7.50 4/5 4897.31 0.23

M-5 1369.76± 11.18 2/5 4970.77 7.60

Overall 1300.92± 102.01 18/25 3840.18 18.95

Table D.2: Performance comparison for solving the M instances under the nominal scenario znom using the
META-DET solver with a budget of 12,000 iterations over five runs with varying random seeds
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