
A Three Dimensional Spring-Mass Model for Bipedal
Locomotion and Prosthetic Leg Design

Bachelor Thesis
Author J.J. Sleijfer*

Supervisors dr. V. Vaniushkina
dr. P.M. Visser
prof. dr. J.M. Thijssen

Faculties EEMCS and AS
Delft University of Technology

* J.J.Sleijfer@student.tudelft.nl
July 20, 2023

Laymen Summary

Walking is a very complex motion. This report aims to approximate this complex mo-
tion with a very simple system consisting of one mass and two springs connected to two
massless feet. The model could be used to design springs in simple prosthetic legs. The
model can create data that is periodic and also find the best springs to emulate a person
walking or running. The periodic data generation shows there are two distinct ways to
walk, but only one way to run. The model also shows that the maxima of the vertical
and lateral trajectories are very close to where the feet are placed. The fit describes the
general characteristics of the motion well, but fine details are lost. Future research should
investigate how problematic these deviations of the data are perceived by people using a
simple prosthetic.

1

Summary

Humans are efficient at moving due to their exceptional mastery of bipedal locomotion.
Several models have been made that attempt to model the motion of the centre of mass
with a spring-mass system with various degree of success. For example, a two dimen-
sional model tracks the height of the centre of mass well and a three dimensional model
explains the normal force exerted on the ground.

In this report a three dimensional model is constructed to describe the motion of the
centre of mass, with the purpose to determine the spring constant and the rest length in
a simple prosthetic leg. The research question is: can a three dimensional spring-mass
model accurately track the centre of mass and can this be used to determine the optimal
properties of the spring of a simple prosthetic leg?

The spring mass model consists of two springs connected to the ground and the centre
of mass. The springs do not exert a force on the centre of mass if they are extended. The
model incorporates steps by moving the ground connection points instantaneously over
fixed points on a rail. The model can be used in two distinct ways. The first generates
a periodic trajectory by finding the optimal initial positions y0 and z0 (PPFA) and the
second finds the optimal spring parameters k and u to fit a data set (DFA). The optimal
conditions are found by discretizing the parameter space and using an iterative process.
The space around the best parameters becomes the parameter space for the next iteration.

The PPFA shows that the initial lateral displacement z0 is nearly constant with re-
spect to the spring constant when the rest length is chosen such that the centre of mass
is at constant height if the model is stationary. The PPFA also shows that there are two
distinct y-trajectories possible for walking. Running, however, has only one trajectory.
Several versions of the model are fit to the data: only discretised step widths, discretised
step widths and a x0-offset, and distinct legs. There is not much difference between these
models. The x0-offset is only ∆s = −0.02m confirming that the position of the feet
does align with the extreme values of the y- and z-position. The model fits the general
characteristics well but fine details in the motion are lost. Future research should investi-
gate how cumbersome these deviations of the data are perceived by people using a simple
prosthetic.

2

Table of Quantities

Quantity Unit Explanation
1 and 2 [-] 1 refers to the left leg and 2 to the right leg.
k [Nm−1] Spring constant of a spring.
kv [Nm−1] Virtual spring constant that is a function of position of the centre

of mass of the feet.
u [m] Rest length of a spring.
M [kg] Total mass.
U [J] Potential of the system.
H [J] Hamiltonian of the system.
R [m] Position of the centre of mass with components x, y, z.
R0 [m] Initial position with components x0, y0, z0.
Rd [m] Position points of the data.
n [-] Number of data points.
p [kgms−1] Momentum of the centre of mass with components px, py, pz.
p0 [kgms−1] Initial momentum with components px0 , py0 , pz0 .
pd [kgms−1] Momentum points of the data
r [m] Position of a foot.
t [s] Time.
tt [s] Termination time, the duration that a simulation runs before it

terminates.
tc [s] Computation time. The time that it takes to compute a simulation.
T [s] Period of a trajectory, provided that it has one.
e [-] Error of either the PPFA or the DFA.
g [ms−2] Gravitational constant
sw [m] Step width. The distance between the foot is 2sw.
ss [m] Step size. The distance in the forward (x)-direction between r1

and r2.
∆s [m] Displacement of the initial position with respect to the feet.
ss [m] The step size vector that has value (ss, 0, 0)

⊤.
N [-] The maximum number of steps that a simulation may consist of.

If this number is reached the simulation terminates.
x [m] Coordinate along the direction of motion.
y [m] Coordinate of the height.
z [m] Coordinate of the lateral position.

3

Contents

1 Introduction 5

2 Theory 9
2.1 Setup of a Three Dimensional Spring-Mass Model 9
2.2 Equations of Motion of a Spring-Mass System 10
2.3 Virtual Spring Constant . 11
2.4 Incorporating Movement by Taking Steps 12
2.5 Periodic Properties of the Solution . 13

3 Implementation 14
3.1 Numerical Methods . 14
3.2 Setup of Periodic Path Finding . 16
3.3 Scoring Method of PPFA . 17
3.4 Setup of Data Fitting . 18
3.5 Termination Criteria . 19
3.6 Parameter Estimation . 20

4 Data 22
4.1 A Data set of 100 Self-set Gait Cycles 22
4.2 Processing of the Data . 23

5 Results and Discussion 27
5.1 Characteristics of the Model . 27
5.2 Fitting the Model to the Data . 38

6 Conclusion 46

Bibliography 47

Appendix 49
A Additional Figures . 49
B Parameter Tables . 53
C Code . 59

C.1 Periodic Path Finding Algorithm 59
C.2 Data Fitting Algorithm . 67

4

CHAPTER

ONE

Introduction

Walking is the most fundamental form of movement for humans. Moving on two legs,
more generally called bipedal locomotion, is a special skill. Humans are not unique in
this, some other animals walk, hop, or run bipedally. The difference between running and
walking is that running has a period each stride where both feet are off the ground, while
walking does not. For example, birds walk on two feet, just as some apes do occasionally.
On the other hand, many lizards and cockroaches run bipedally at their highest speed (fig-
ure 1.1). There are also animals that move solely on two feet other than humans, such as
kangaroos. However, the level of mastery that humans have achieved regarding bipedal
locomotion is one of a kind in the animal kingdom [1].

Figure 1.1: Several animals moving bipedally. Left: Eliud Kipchoge running. He is considered
to be the best marathon runner of all time [2]. Centre: front view of a walking mallard [3]. Right:
a double-crested basilisk running over a water surface [4]

Learning to walk is a step by step process. From birth we spend years trying to mimic
other humans in their way of motion. This undertaking is quite literally a process of
falling and rising back up. On average, children aged 12 to 19 months fell 17 times per
hour walked. A benefit of walking in comparison to crawling is the ease of movement. A
novice walker can travel farther and faster than expert crawlers, while having comparable
fall rates. So the risk is the same, with higher rewards making walking a very attractive
alternative, motivating to improve on the skill even further [5].

5

Chapter 1. Introduction

Among the animals, humans are not the fastest, do not have the sharpest claws, are
not the strongest, and are not the best swimmers. However, there is something that hu-
mans are truly marvelous at: bipedal locomotion. In an experiment, chimpanzees were
monitored while they were walking on two legs. The investigators found that this is on
average more energy intensive than walking on all fours, the so called knuckle walk. And
the knuckle walk already uses 75% more energy than when humans walk, requiring a
mere 0.050 ± 0.004mlO2(kgm)−1 versus 0.210 ± 0.014mlO2(kgm)−1 [6]. This is true in
general: humans are exceptionally efficient at moving [7].

Suppose there would be a running competition between animals, say the cheetah, a
horse and a human. If the distance is a hundred metres, the cheetah will win by reaching a
tremendous speed. If the distance is longer, for instance ten kilometres, then the horse will
win. If the competition is a marathon, then the human will win, provided that the climate
is hot. Otherwise either the human or the horse could be victorious, neither one having a
clear advantage over the other. The competitiveness of humans at a large distance can be
extrapolated even further. Humans can win at marathon distance from all other mammals.
The reason being that, at this distance, elite marathon runners run at speeds over 5 ms−1,
which is above the trot-gallop transition speed of all quadrupedal mammals. This is rel-
evant because the trotting speed of a mammal is the endurance running speed: the speed
that mammals can run at for sustained periods of time [8].

The ability to run for long distances is a significant physiological trait separating hu-
mans from the other mammals. Walking is a complex process where all sorts of organs in
the human body collaborate. For complex processes it is generally a good idea to reduce
the complexity of the system in order to be able to model it. A simplified model will
improve upon the understanding of primary walking characteristics, but comes at the cost
of nuance. This is a fine balance that some recent papers tried to address.

In 2006, Geyer, Seyfarth and Blickhan reduced the complete walking motion to a
two dimensional dual spring, spring-mass model [9]. Although this model yields accu-
rate height tracking relative to the forward direction, the model falls short in explaining
the lateral motion, and therefore also in explaining the ground reaction forces. In 2019,
the model has been extended to a three dimensional model (figure 1.2) which has been
validated against the ground reaction forces. In the same year, Schreiber and Moissenet
published a data set [10] that tracks the movement of 52 sensors on human participants
walking on a treadmill at different speeds.

Even more recent, in January of 2023 to be precise, a cost-effective prosthetic leg de-
signed by Hoque et al. showed an elegant simplistic design (figure 1.3). This prosthetic
leg costs only 277 dollars which is over an order of magnitude less than other simple pros-
thetic legs [12]. The drastically lower price makes this prosthetic leg, in stark contrast with
other prosthetics, a suitable option for people missing a leg in developing nations.

6

Chapter 1. Introduction

Figure 1.2: The three dimensional spring-mass model as proposed by Liang et al. This model
includes a damper and sphere like feet [11].

Figure 1.3: The prosthetic leg designed by Hoque consists of a single spring [12] .

7

Chapter 1. Introduction

This report aims to unify the three dimensional spring-mass model with the data set
with two main goals in mind. The first is the verification of the model in the first place:
does the three dimensional mass spring model accurately describe the motion of a human
bipedal gait cycle? If this is the case, then the second goal may be addressed. The second
goal is to investigate the properties of the simple prosthetic with the verified model in
order to find the optimal spring given a persons key characteristics. These goals are cap-
tured in the research question: can the three dimensional spring-mass model accurately
track the centre of mass and can this be used to determine the optimal properties of the
spring of a simple prosthetic leg?

First the chapter Theory will set up the model and derive the equations of motion.
Then the chapter Implementation will discuss the numerical implementation of the equa-
tions of motion, the construction of two fitting algorithms, and the estimation of param-
eters. In the Data chapter the processed data is introduced. Finally there is a chapter
Results and Discussion which is followed by the Conclusion.

8

CHAPTER

TWO

Theory

In this chapter, we will build up the model for two legs and discuss the forces in the
system. The goal of the model is to track the centre of mass, just as the three dimensional
spring-mass model proposed by Liang et al. [11]. That model is not satisfactory for
the goal of this report because it cannot simulate steps without performing coordinate
transformations. This limits the possibilities for acquiring insight regarding the behaviour
of the model over several steps. Hence a new foundation must be made. First the setup
will be explained. Then the equations of motion are derived with Hamiltonian mechanics.
The last sections discuss the position dependent spring constant, taking steps, and periodic
properties of the solution.

2.1 Setup of a Three Dimensional Spring-Mass Model
Consider three dimensional space with a single point mass connected to two ideal mass-
less springs. The other ends of the springs are fixed in place. A spring represents an entire
leg. This is the most significant assumption of the model. Let R denote the position of
the point mass. Let r1 and r2 denote the position of the fixed ends of the springs. Let
the springs have spring constant k1 and k2 and rest length u1 and u2 respectively. Fig-
ure 2.1 illustrates the setup. In this system, there are several forces that are acting on
the system. The gravitational force is defined as: Fg = −Mgŷ, where M is the mass of
the object, g the gravitational constant, and ŷ the unit vector in the vertical direction. [13]

Hooke’s law states that the force of a spring is linearly dependent with the compression
(or extension). This empirical law forms the basis of the ideal spring. The total length of
the spring is given by ∥R− r∥. By applying Hooke’s law, the spring force Fs for a spring
with rest length u and fixed to a point mass at R and at r is

Fs = −k(∥R− r∥ − u)
R− r

∥R− r∥
. (2.1)

In this equation, the spring constant k is the proportionality coefficient. The next section
derives the Hamiltonian from the forces [14, 15].

9

Chapter 2. Theory 2.2. Equations of Motion of a Spring-Mass System

k1, u1 k2, u2

p

x̂
ŷ

R

r1 r2

ss

k2, u2 k1, u1

ẑ
ŷ

2sw

R

r1r2

Figure 2.1: The setup of the three dimensional spring-mass model. The left figure shows a side
view and the right figure a front view. The centre of mass is positioned at R. The two springs are
connected to the centre of mass and the ground at r1 and r2. The momentum is denoted by the
vector p. The ground contact points r1 and r2 differ in the x-direction one step size ss and in the
z-direction two step widths sw.

2.2 Equations of Motion of a Spring-Mass System
Both the gravitational force and the spring force are conservative forces. Therefore there
exists a potential U(R) : R3 → R such that F = −∇U [16]. It is clear that U = Us + Ug

due to the linearity of the gradient operator. Near the surface of the earth, the potential
of gravity is: Ug(R) = Mgy, where R = (x, y, z)⊤. The potential of a one dimensional
spring is given by: k

2
(x − u)2 [15]. It is easily verified that this also works for the three-

dimensional case:
Us(R) =

k

2
(∥R− r∥ − u)2. (2.2)

The next step is to find the potential of our complete system. This potential is given by:

U(R) = U

x
y
z

 =
k1
2
(∥R− r1∥ − u1)

2 +
k2
2
(∥R− r2∥ − u2)

2 +Mgy. (2.3)

Note that this expression is independent of time and velocity. This is as expected from
a potential consisting solely of conservative forces. Moreover, taking the derivative and
adding a minus sign returns the spring forces and gravitational force.

With the potential derived, the Hamiltonian of the system can be stated. The Hamilto-
nian is in this case just the total energy of the system. Also, the Hamiltonian is indepen-
dent of time, implying that the total energy is conserved [15]. Finally, the kinetic energy
of the point mass can be written as p·p

2M
[16], where p is the momentum of the centre of

10

Chapter 2. Theory 2.3. Virtual Spring Constant

mass. The Hamiltonian is:

H(R,p) = H

x
y
z

 ,

px
py
pz

 =
p · p
2M

+
k1
2
(∥R−r1∥−u1)

2+
k2
2
(∥R−r2∥−u2)

2+Mgy

(2.4)
The equations of motions follow from Hamilton’s equations (equations (2.5)) for the

generalised coordinates and momenta [15]. Recall that the generalised coordinates are
simply x, y, and z with corresponding momenta px, py, and pz.

q̇i =
∂H
∂pi

and ṗi = −∂H
∂qi

(2.5)

Therefore, the two vector equations of motion follow and completely describe the motion
of the point mass. The equation expressing the derivative in momentum is:

Ṙ = ∇pH =
p

M
. (2.6)

This states that momentum is the product of velocity and mass. The remaining equation
is:

ṗ = −∇RH

= −k1 (∥R− r1∥ − u1)
R− r1

∥R− r1∥
− k2 (∥R− r2∥ − u2)

R− r2
∥R− r2∥

−Mgŷ.
(2.7)

The equations of motion now have been derived, but the model is not yet complete. For
example, if the spring is extended, then the springs will pull the centre of mass towards the
fixed end. However, this is of course not realistic. Generally when walking, feet are fixed
in the (x, z)-plane and the feet can not move below ground. There is neither a friction
force nor a normal force holding back an upwards movement.

2.3 Virtual Spring Constant
The springs should not apply a force to the centre of mass when they are extended. This
has not been taken into account in the equation of motion, neither in the corresponding
numerical derivations. This problem is solved by introducing virtual spring constants, one
for the left spring and one for the right spring. The virtual spring constant has value zero
if the distance between the centre of mass and the base vector of the spring is larger than
the rest length:

kv =

{
0 if ∥R(t)− r(t)∥ > u

k otherwise.
(2.8)

On the trajectory where the position of the feet is fixed, the spring constant is a func-
tion of position. The spring constant is constant on the extended and contracted domains.
There the derivative is zero. So if ∥R − r∥ ̸= u, then the potential and the equations of
motion will remain the same. ∥R − r∥ = u is only a single point and will not impact a
discretised solution.

11

Chapter 2. Theory 2.4. Incorporating Movement by Taking Steps

2.4 Incorporating Movement by Taking Steps
The mass of the system is concentrated in the centre of mass. This means that the springs
are massless. The fixed end r will therefore only move if the coordinates are changed,
not as a result of the equations of motion. The model will assume that the steps are of
equal size and on a rail in the forward x-direction. The rail consists of two lines, one for
the left foot r1 and one for the right foot r2. Each line is spaced one step width sw from
the centre plane (x̂, ŷ). The step width is constant. On each line there are periodically
spaced points that act as possible coordinates for each foot. These points are spaced two
step sizes sw apart. The actual location of the foot may only be on one coordinate at the
time. The x-distance between the left and right foot is one step length ss. The step size is
predetermined.

A step is a translation of a foot from a location r to a new location two step lengths
forward. The forward motion of all trajectories makes backwards steps unnecessary. A
step should be performed only if the upcoming possible location is closer. Consider r(t)
to be a function of time. Then that function must satisfy the following inequality:

∥R− r∥ < ∥R− (r+ 2ss)∥ ∀t > 0, (2.9)

where ss represents the step size vector (ss, 0, 0)⊤. Steps are instantaneous and therefore
not modelled. Equation (2.9) states that a step is taken as soon as the next possible position
is closer to the position of the centre of mass than the current end of the spring. This
condition is satisfied just after the distances are equal. That is, ∥R−r∥ = ∥R−(r+2ss)∥.
Hence the energy in the system is conserved. Figure 2.2 shows the layout of the rails and
the connection with the possible ground connections points.

r1 − 2ss r1 + 2ss

r2 − 2ss r2 + 2ss

p

r1

r2

x̂

ẑ

R

2sw

Figure 2.2: Top view of the model with guide rails (dashed lines) for the left and right foot . The
dots on these lines are the possible positions of the feet. The centre of mass is connected with a
spring to the closest point on the left and right rail. The gray circle is the centre of mass a fraction
of a second earlier. Then the left foot is still connected to the previous ground contact point. The
vector p is the momentum of the centre of mass.

12

Chapter 2. Theory 2.5. Periodic Properties of the Solution

2.5 Periodic Properties of the Solution
There are also boundary conditions that have to be specified. We will use the expected
periodic behaviour of the solution. Let T be the period time of a solution R,p in seconds.
That is, the time for a solution to reach the following criteria:

R(t) = R(t+ T) + 2ss, ∀t ≥ 0,

p(t) = p(t+ T), ∀t ≥ 0.
(2.10)

These conditions state that the x-position is shifted by two step sizes ss. Equation (2.9)
states that the closest possible ground contact points are the locations for the feet. The
possible locations are spaced 2ss apart. Hence the functions describing the location of the
feet are also periodic:

r1(t) = r1(t+ T) + 2ss, ∀t > 0,

r2(t) = r2(t+ T) + 2ss, ∀t > 0.
(2.11)

Let R0 = (x0, y0, z0)
⊤ and p0 = (px0 , py0 , pz0)

⊤ denote the initial conditions. Suppose
that the solution corresponding to these initial conditions is determined. We assume that
the trajectory has a monotone increasing x-coordinate. This is reasonable for a walking
person. In order to verify periodicity only one point of that trajectory has to be compared
with the initial conditions. This trajectory is periodic if for some t > 0 the values R0+2ss
and p0 are attained.

The valid trajectories have periodic properties that make a determination of periodicity
of a trajectory in a shorter time period possible. A time span of T

2
is sufficient. The first

half of the gait cycle should deviate by a reflection in the (x, y) plane and a translation by
ss. So the following conditions determine periodicity:

x

(
T

2

)
= x0 + ss, px

(
T

2

)
= px0 ,

y

(
T

2

)
= y0, py

(
T

2

)
= py0 ,

z

(
T

2

)
= −z0, pz

(
T

2

)
= −pz0 .

(2.12)

These conditions will be used in the Implementation chapter to determine a scoring
method for trajectories.

13

CHAPTER

THREE

Implementation

This chapter consists of three main parts. The first is about the numerical implementa-
tion of the derived equations of motion (2.6) and (2.7). The second part will set up two
algorithms for finding optimal parameters. The first algorithm will find the optimal initial
conditions y0 and z0 for periodicity of the trajectory and the second will find the optimal
spring constant and rest length to fit a data set. The last part discusses the parameter
estimation of the algorithms.

3.1 Numerical Methods
The numerical implementation is done with two well-known methods: central differences
and Runge-Kutta integration. The benefit of the former is that the computation of the
trajectory is less computationally intensive than the latter for equal time step sizes. The
benefit of Runge-Kutta is that it is a fourth order method, whereas central differences is a
second order method. The higher order implies that if the time step is sufficiently small
and the machine precision sufficiently high, then Runge-Kutta integration will always
have a smaller numerical error.

First the numerical approximation of equation (2.6) will be treated. Let ∆t denote
the step size in time and suppose the initial position R0 = (x0, y0, z0)

⊤ and the initial
momentum p0 = (px0 , py0 , pz0)

⊤ are known. The initial position and the initial momen-
tum are together the initial conditions. As an example, the x-coordinate will be worked
out completely. The other coordinates y and z are similar. For x, the first order differ-
ential equation reads Ṙi

x = 1
M
pix at time t = i∆t, with i ∈ N. The central difference

approximation [17] has been substituted for Ṙi
x:

Ri+1
x −Ri−1

x

2∆t
+O((∆t)2) =

pix
M

, ∀i ∈ N. (3.1)

Rewriting this gives the equation for Ri+1
x . The resulting vector equation is:

Ri+1 = Ri−1 +
2∆t

M
pi +O((∆t)2), ∀i ∈ N. (3.2)

14

Chapter 3. Implementation 3.1. Numerical Methods

This equation is ill-defined for i = 0. This problem can be solved by applying Backwards
Euler [17] for i = 0 to the differential equation (2.6). The resulting equation where the
virtual point R−1 has been extracted is:

R−1 = R0 − ∆t

M
p0 +O(∆t). (3.3)

Substituting this equation in equation 3.2 gives:

R1 = R0 − ∆t

M
p0 +O(∆t) +

2∆t

M
p0 +O((∆t)2) = R0 +

∆t

M
p0 +O(∆t). (3.4)

Next is the derivation of the numerical expression of equation (2.7). In order to make
the notation more manageable, the force function F(R) : R3 → R3 is defined as:

F(R) = −k1 (∥R− r1∥ − u1)
R− r1

∥R− r1∥
−k2 (∥R− r2∥ − u2)

R− r2
∥R− r2∥

−Mgŷ (3.5)

Equation (2.7) reduces with this simplified notation to ṗ = F(R). The exact same method
as for equation (2.6) can then be applied. So ṗi = 1

2∆t
(pi+1−pi−1)+O((∆t)2) = F(Ri).

This gives the recursive expression for finding all pi:

pi+1 = pi−1 + 2∆tF(Ri) +O((∆t)2). (3.6)

This equation is also not defined for i = 0. Backwards Euler is used to approximate
the momentum at the virtual point t = −∆t. This first order approximation gives:
p−1 = p0 −∆tf(R0). By substitution we can find the relation between p0 and p1:

p1 = p0 −∆tF(R0) + 2∆tF(R0) +O(∆t) = p0 +∆tF(R0) +O(∆t). (3.7)

Apart from the method above, another option is to use the Runge-Kutta equations.
To be more precise, the fourth order, classic, Runge-Kutta equations that, as the name
suggest, have been contrived by Carl Runge and Wilhelm Kutta. As this model consists of
three pairwise coupled differential equations, a modified version must be used. Equation
3.8 gives the iterative result which has been adapted from [18].

Rn+1 = Rn +
1

6
(b1 + 2b2 + 2b3 + b4) +O((∆t)4)

pn+1 = pn +
1

6
(a1 + 2a2 + 2a3 + a4) +O((∆t)4)

(3.8)

In these equations, the eight dummy variables a1, . . . a4,b1 . . .b4 are determined each
time step as follows:

15

Chapter 3. Implementation 3.2. Setup of Periodic Path Finding

a1 = ∆tF(Rn,pn),

b1 =
∆t

M
pn,

a2 = ∆tF(Rn +
b1

2
,pn +

a1

2
),

b2 =
∆t

M
(pn +

a1

2
),

a3 = ∆tF(Rn +
b2

2
,pn +

a2

2
),

b3 =
∆t

M
(pn +

a2

2
),

a4 = ∆tF(Rn + b3,p
n + a3),

b4 =
∆t

M
(pn + a3).

(3.9)

3.2 Setup of Periodic Path Finding
The program is split into two parts: the periodic path finding algorithm (PPFA) which
will be introduced this section and the data fitting algorithm (DFA). The PPFA has as goal
the generation of synthetic data according to the spring mass model. The DFA should be
able to fit the data generated by the PPFA, enabling the observation of numerical prop-
erties of the solution trajectory. Moreover, several relations between parameters can be
determined with the PPFA such as between the spring constant k and rest length u and
the initial conditions y0 and z0.

The PPFA will, given the spring constant k and the rest length u, find the optimal ini-
tial conditions y0 and z0. In this algorithm, the parameters for the step size ss, step width
sw, and the initial momentum in the forward direction px0 are assumed to be known. A
given search range is divided into linearly spaced points. Another option could be loga-
rithmically spaced points. This alternative will barely bring any benefit, as only the first
few iterations have a range spanning multiple orders of magnitude. Moreover, the first
few iterations already require a fine mesh grid in order to locate the optimal parameter
values (or optimal initial conditions). There has to be at least one point in the region
around the optimal points such that it is not only within the region where the score map is
monotone decreasing, but also the best scoring point. These demands require a fine mesh
grid, negating the benefit a coarsely logarithmically spaced grid might have brought.

The simulation is run for all discretised points. The best initial condition is chosen
and the space around that initial condition is discretised again (figure 3.1). One parameter
defines the fineness of the mesh grid. A second parameter is the number of discretised
steps around the optimal solution that becomes the range in the following iteration. These
parameters together determine the rate of convergence of the solution, provided that the
algorithm locates the optimal parameters. Setting the rate of convergence too high could
result in the optimal solution becoming unobtainable. The iterative process keeps going
until one of the stopping criteria is met.

16

Chapter 3. Implementation 3.3. Scoring Method of PPFA

ẑ0

ŷ0

Figure 3.1: The discretisation of the parameter space (y0, z0) for the PPFA. The mesh discretisa-
tion equals 11 and the convergence rate is 2. The green square is the parameter space for the next
iteration, which is 2 steps sizes in each direction from the best found solution (big green dot). The
small black dots are the discretisation of the next iteration. Some of these coincide with the points
of the previous discretisation.

3.3 Scoring Method of PPFA
The best initial condition should satisfy the earlier discussed periodic properties (equation
(2.12)). As for each guess, the initial conditions are known, just like the phase space
values at half a period T . The position at half a period is exactly one step length from the
initial condition. Consequently there is a point in phase space (RT

2
, pT

2
) to compare the

simulation against. The distance between this benchmark point and the closest point in
the simulation is used to define a scoring algorithm. Closest is defined as the closest point
in time. Because the x-trajectory is very linear with time, this is also the point with the
lowest x-distance. This gives the following scoring function:

eT
2
=

(
∥Rimin −RT

2
∥2

∥R̂T
2
∥2

+
∥vimin − vT

2
∥2

∥v̂T
2
∥2

)
. (3.10)

where imin the index of the point closest in time to T
2

. The velocity v = p
M

is used in-
stead of the momentum to keep all coordinates roughly the same order. Otherwise there
is a bias favouring the momentum. For zero distance the scoring method will result in a
perfectly periodic solution to the differential equations, provided it exists. Furthermore,
the discretisation of the initial condition space should consist of a sufficient number of
points such that the best found point is in the monotone decreasing domain of the scoring
function around the optimal point. There is a way to improve the method such that some
of these imperfections are included.

17

Chapter 3. Implementation 3.4. Setup of Data Fitting

A problem with the scoring method is the discretisation of the path. There will never
be a point in the trajectory exactly at one step size. A solution could be to interpolate be-
tween the points around it. Then the numerical error in the x direction can be eliminated.
However, this makes the simulation less stable. The reason is that this eliminates the
effect of the numerical discretisation. This might seem preferred but the opposite holds
true. The scoring method does not force the division of half a period in an integer amount
of steps by not taking into account the numerical deviation in the forward direction. This
results in an ever growing offset that causes instability. Note that the numerical deviation
from the periodic trajectory is amplified because the trajectory is inherently unstable. The
numerical approximations are either based on central differences or on Runge-Kutta in-
tegration. The central difference equations depend on the two previous points in time to
calculate the upcoming point. Therefore only using a single point is not sufficient and two
points must be taken into consideration. The second point is based on the first calculated
point R1, p1. If these two points coincide perfectly with two points of the trajectory, then
the trajectory must be periodic. In practise this is of course prohibited by the numerical
error due to the finite time step. The second point RT

2
+∆t, pT

2
+∆t is determined by using

the same mirroring principles as with the initial conditions, but for the first calculated
time step R1, p1. The scoring method then becomes:

ePPFA = eT
2
+

∥Rimin −RT
2
+∆t∥2

∥R̂T
2
+∆t∥2

+
∥vimin − vT

2
+∆t∥2

∥v̂T
2
+∆t∥2

, (3.11)

where imin is the point closest in time to the second benchmark point.

3.4 Setup of Data Fitting
The DFA has as goal to fit data to the model by finding the best spring constant k and rest
length u. The implementation has many parts in common with PPFA. For example, the
iterative mesh grid is set up the same but in (k, u) space. Also, the simulation is run the
same way, as well as the stopping criteria. The DFA differs substantially from PPFA in
the scoring algorithm. This is logical as the goal is different, namely fitting the model to
data, instead of generating periodic data with the model.

Before discussing the scoring algorithm, the setup must be clarified a bit more. It is
assumed that the data is not error free. In that case, it is not valid to assume that the initial
conditions are perfect. Of course it would be impossible to perform a proper fit with an
incorrect premise. A solution is to run PPFA (with modified scoring) to find the optimal
initial conditions. Using PPFA in tandem with DGA has the additional benefit of forcing
a periodic fit. However, this is computationally expensive. The doubling in fitting vari-
ables to also include y0 and z0 approximately squares the computational time as both use
a similar algorithm. A more rational approach is to observe the data. If the data is smooth
and periodic, then the fit will be already quite periodic. If the data is periodic but very
noisy, then an approach would be to take the average of the first few values. This model
is not applicable without a sufficient degree of periodicity of the data.

18

Chapter 3. Implementation 3.5. Termination Criteria

The score of a parameter guess will be determined by calculating the distance in phase
space between every data point and the closest simulated point:

eDFA =
n−1∑
j=0

∥Rimin,j −Rj
d∥2

∥R̂j
d∥2

+
∥vimin,j − vj

d∥2

∥v̂j
d∥2

, (3.12)

where n is the number of data points and imin,j is the index of the simulation point that
is closest in time to the j th data point. Here it is essential that the density (in time) of
simulated points is much greater than the density of data points. Only then is the expected
distance between those points is negligible in comparison to the distances between the
trajectories.

3.5 Termination Criteria
Once the fitting has commenced, it is required to specify the stopping criteria. Other-
wise the program would keep trying to find more optimal points. These conditions are
applicable for both PPFA and DFA. To begin, it is not necessary iterate beyond machine
precision, which is approximately 14 decimal digits. As the rest length is in the order of
metres and the spring constant in the order of kilo Newtons per metre, a value of 10−12m
and 10−9Nm−1 respectively are sufficient to stay above machine precision. Similarly, the
step size for DFA should be above 10−12m for both y0 and z0. This is quite a theoreti-
cal limit. A fit to experimental data should never require such precision. Therefore, as
there is only fitting on half a gait cycle, it should not even be necessary to make such fine
adjustments to the model parameters or initial conditions. The next termination criterion
addresses this task.

If better scoring parameters are found, then these parameters should provide a sig-
nificant improvement over the previous best parameters. An improvement is considered
significant if the new score is at least 0.1% lower than the previous score. This will reduce
the number of iterations but comes at the cost of not finding the absolute best parameters.

Until now we have only considered termination criteria of the iterative phase of the
model. In order to boost the efficiency of the program, individual simulations should also
terminate eventually, preferably as soon as possible. To put an absolute upper bound on
the length of simulations, a parameter N is included to define the maximum number of
steps of a simulation. A value of N = 5(∆t)−1 proves to be more than sufficient. This
means that the maximum simulation duration is 5 seconds. This criterion is hardly ever
used, as it should. Instead the following criteria defining the allowable range of the simu-
lation will address simulations that are known to fail.

If an individual simulation is destined to fail, then there is no reason to waste comput-
ing power for it. Because the springs can only contract due to the virtual spring constant,
once the centre of mass has moved too much laterally the program should terminate. This
is when it has either moved one step width to the left or one step width to the right. The
step width is the parameter that determines the lateral position z of the feet. Even more,
if the y coordinate of the centre of mass is below zero, then there is also no more use in

19

Chapter 3. Implementation 3.6. Parameter Estimation

continuing as the model has fallen over. Too much lateral deviation is the primary termi-
nation criterion.

Finally, as there is only half a step to be simulated in the fitting phase, the program
should terminate as soon as the forward x-coordinate is higher than one step length. How-
ever, if a complete simulation is run, then this condition should be inactive.

3.6 Parameter Estimation
The algorithms introduced in the previous sections come with many parameters. Some
assumptions have to be made in order to reduce the the number of parameters. A search
range of these parameters also has to be established. Otherwise the program would be
computationally too intensive. For both the PPFA and DFA, the assumption of equal legs
is made. There is only one spring constant and one rest length. This assumption comes es-
pecially in hand with PPFA, halving the amount of parameters that have to be estimated.
The next section will discuss the bounds on the spring constant and rest length for the
DFA.

There are four degrees of freedom regarding the springs. Moreover, there are six de-
grees of freedom in the initial condition. It is crucial to determine sufficient bounds on
the parameters to enable completion in an acceptable amount of time. For example each
parameter is discretised in (only) ten equally spaced values, 1010 simulations would have
to be run. We will begin by stating the bounds on all parameters, after which we will
assign numerical values to these bounds.

First note that the springs are equivalent in all but the fixed coordinate. We will assert
that u is in [umin, umax]. Clearly the spring constant must be at least Mg

2u
, otherwise the

centre of mass will never be able to overcome gravity and fall down immediately. This
gives a lower bound for the spring constant of Mg

2umax
. This bound can be improved a bit

by taking the angle in between the spring into consideration. However, the marginal gains
are negligible and therefore deemed superfluous. The range for the spring constant is
bounded from above by a value kmax.

Table 3.1 gives an overview of the parameters for DFA. Note that these ranges are
still quite broad but manageable as only two parameters have to be determined. PPFA, on
the other hand, consists of six parameters. Hence the ranges should be very small, or the
number of parameters should be reduced significantly. The latter turns out to be the case,
as will be discussed in the next paragraph.

Now the parameters of the PPFA will be discussed. For continued periodic loco-
motion, the center of mass will traverse every value of x, hence we choose x0 = 0.
Moreover, we fix the step-length at ss, with lateral width sw. Then r1 = (0, 0,−sw)

⊤

and r2 = (ss, 0, sw)
⊤. It is an assumption that the initial coordinates have the same x-

coordinate as the left foot r1.

20

Chapter 3. Implementation 3.6. Parameter Estimation

Table 3.1: The parameters of the Data Fitting Algorithm of the spring mass model with the given
search ranges.

Parameter Reduced Minimum value Maximum value
Spring constant [Nm−1] k1 k Mg

2umax
kmax

k2 k Mg
2umax

kmax

Rest length [m] u1 u 0 umax

u2 u 0 umax

Continuing, we will assume that the centre of mass is initially at the left most point of
the lateral cycle. That is, z0 = zmin. For stability, it must be that z is always in between
the fixed coordinates of the legs. That is, z ∈ [−sw, sw]. Therefore, zmin ∈ [−sw, 0].
As the left most point is an extreme value, it must be that pz0 = 0 due to equation (2.6).
We will first assume that py0 is 0 here as well: the y-coordinate attains an extreme value
here. However, this is not necessarily the case and therefore has to be verified with the
data. In any case the extreme values should coincide closely, keeping the assumption of
no offset valid. For px0 , if the velocity is high enough, the average momentum px is an
adequate estimator of the initial momentum. After fitting, the simulation can be run again
with a different velocity if the modelled average velocity deviates too much from the data.

To summarize, the initial conditions are (0, y0, z0)⊤ and (p̄x, 0, 0)
⊤ with y0 and z0 in a

bounded range. It would make sense if px0 would be an extreme value as well. Table 3.2
gives an overview of the ranges corresponding to each initial condition.

Table 3.2: The parameters of the Periodic Path Finding Algorithm of the spring mass model with
the given ranges or values.

Parameters Minimum value Maximum value
Position [m] x0 0 0

y0 ymin ymax

z0 −sw 0
Momentum [kgms−1] px0 px px

py0 0 0
pz0 0 0

The four parameters have been halved for the DFA and reduced by a factor of three
for the PPFA. All remaining parameters have been assigned a range in which the optimal
parameter has to be located. These ranges have yet to be determined variables, namely
kmax and umax for the DFA and ymin and ymax for the PPFA. However, the exact choices
of these variables are not that important. If the optimal parameters are excluded from the
range, then the model will only find fits with a high error. Moreover, it could be that the
optimal found parameters are outside of the initial search ranges. This is an indication
that the model is not able to locate a proper fit.

21

CHAPTER

FOUR

Data

This chapter treats the acquisition and processing of the data of the 2019 paper [10] by
Schreiber and Moissenet.

4.1 A Data set of 100 Self-set Gait Cycles
The paper measured the gait of 50 participants. These participants completed a series of
walking trials on a treadmill. The velocity of the treadmill was always fixed, but in some
trials it was prescribed while in others it was self-set. As this research investigates natural
motion, only the self-set motion is taken into account.

The self-set motion measurements sets are split into two velocities. The first is set as
normal by a healthy asymptomatic participant and the other is defined as fast. The expec-
tation is that the model is better fitted to the faster prescribed motion. The reason is that
the higher velocity results in shorter, more intense contact with the ground. That allows
for less active mid step corrections.

The provided data set is primarily a collection of c3d files which can be imported into
Python by the ezc3d module [19]. Each c3d file in the data set is of a specific participant
at a specified velocity and only contains the gait-cycle of 52 markers scattered all over the
body. Figure 4.1 shows the position of all markers placed. Each individual data set is the
average of multiple gait-cycles. A pressure sensor is used to define the start and end of
a gait cycle by determining events. The initial touchdown of a foot can, for example, be
considered such an event. All gait-cycles of a measurement set can with the event data be
transposed onto itself, yielding the single gait cycle. Finally, a fourth order Butterworth
filter [20] with a 6Hz cutoff frequency has been applied to the result. The Butterworth has
been constructed to eliminate higher frequencies.

Apart from the c3d files containing the trajectories, there is a file that includes relevant
properties of the participants such as the height and mass of the participant. The mass is
essential, as it is a variable in the derived equations of motion (2.6) and (2.7). The height
is important because it allows the estimation of the vertical position of the centre of mass
of that participant. When standing erect, the position of the centre of mass is approxi-
mately 56% of ones height [21]. Moreover, the length of the legs have been measured.

22

Chapter 4. Data 4.2. Processing of the Data

Figure 4.1: The markers placed over the participants bodies with corresponding names. This
research will use the IPS and IAS markers [10].

The difference between the two legs range from no difference at all to over two centime-
ters. It seems likely that a large difference will lead to an asymmetric gait cycle.

4.2 Processing of the Data
The centre of mass has to be determined from the available markers. It will be calculated
by taking an average of the left- and right-, anterior- and posterior-superior iliac spine.
The anterior- and posterior-superior iliac spine are represented by IAS and IPS in figure
4.1. The markers are quite rigid with respect to the centre of mass. Taking the average
will definitely result in a correct z-trajectory. The trajectory of the y-coordinate could
deviate by a constant, but the shape of the trajectory and the momentum will be correct.
Hence the position of the centre of mass is given by:

23

Chapter 4. Data 4.2. Processing of the Data

Ri
d =

1

4
(LIPSi + RIPSi + LIASi + RIASi). (4.1)

The height can be verified by the aforementioned 56%.

With the single gait cycle data sets the next step is to process it such that the model can
be fitted to it. The model works best on about half a gait cycle beginning at the left most
lateral (z-axis) displacement. This can be achieved by a translation of the data, where
the minimum and maximum points define half a gait-cycle. Because the z-trajectory can
be quite aperiodic, the extreme values of the y-trajectory will also be taken into account.
Figures 4.2, 4.3, and 4.4 display the processed data for several people. The data has been
processed by inverting the x-axis and subtracting the mean value of a half gait cycle of the
z-position from the z-values. Apart from that the x-data is translated such that x0 = 0m.
The unprocessed data spans between one and two gait cycles. The method only requires
a half gait cycle. The DFA can use more than a half gait cycle but due to deviations in
feet placement this is not possible. Then the assumption of constant step size and step
width is no longer accurate, which is necessary for the model. Moreover, then it is not
longer possible to subtract the mean of the z-trajectory. Using less than half a gait cycle
will limit the fitting capabilities. For each participant the most periodic half gait cycle has
been selected. Sometimes this is from a right foot to a left foot as support, in which case
the z-axis is inverted such that the initial z-coordinate is negative. The first and last data
points are set to be as close to the extreme y- and z- values as possible. This way the
assumption of aligning feet and extreme values can be verified or disproved.

The momentum is calculated with the position data and the Forward Euler method:

pi
d = M

Ri+1
d −Ri

d

∆t
, (4.2)

where ∆t = 0.01s is the time step of the data. It is not necessary to account for the case
i = n (recall that n is the size of the data set) because only the best half gait cycle is used,
which in the cases of table 4.1 does not include the endpoints.

Table 4.1: Several key characteristics of participants of the gait cycle analysis study [10].

General Lengths
ID M [kg] Sex age [years] Height [m] Left leg [m] Right leg [m]
1 74.0 man 21 1.78 0.840 0.833
2 98.0 man 67 1.83 0.855 0.874
3 60.5 woman 41 1.67 0.805 0.806
4 61.9 woman 28 1.69 0.750 0.758

24

Chapter 4. Data 4.2. Processing of the Data

0.0 0.1 0.2 0.3 0.4 0.5
t [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
[m

]
Person 1
Person 2
Person 3
Person 4

Figure 4.2: The x-coordinate of the processed data of the centre of mass of several people walking
at speeds self defined as fast for a single step plotted against time t. Data obtained from [10].

0.0 0.1 0.2 0.3 0.4 0.5
t [s]

0.875

0.900

0.925

0.950

0.975

1.000

1.025

1.050

y
[m

]

Person 1
Person 2
Person 3
Person 4

Figure 4.3: The y-coordinate of the processed data of the centre of mass of several people walking
at self-set speeds for one step which is half the period T

2 plotted against time t. Data obtained from
[10].

25

Chapter 4. Data 4.2. Processing of the Data

0.0 0.1 0.2 0.3 0.4 0.5
t [s]

0.03

0.02

0.01

0.00

0.01

0.02

0.03

z [
m

]
Person 1
Person 2
Person 3
Person 4

Figure 4.4: The z-coordinate of the processed data of the centre of mass of several people walking
at self-set speeds plotted against time t. The data has been processed such that the initial z-position
is negative. Data obtained from [10].

Although the half gait cycles are similar, there are some differences. The lateral posi-
tion of person 1 is the most periodic and of person 4 the least periodic. On the other hand,
the x-position of person 1 shows the greatest deviation. This implies that the momentum
of person 1 is the least constant. Finally, the y-trajectories of persons 2 and 3 are the most
periodic. All y-trajectories attain the value of 56% of the height of a person at some point
in time. Hence we can conclude that the data tracks the centre of mass sufficiently. For
the fitting of the model the data of person 1 will be used. Persons 2 and 3 are also viable
options. The model can not fit to the data set of person 4 because the periodicity of the
z-trajectory is too low. This is a significant limitation of the model.

26

CHAPTER

FIVE

Results and Discussion

This chapter consists of two sections. The first section discusses the PPFA and how it
improves the understanding of the behaviour of the model. The second section discusses
the verification of the model with synthetic data of the PPFA and the fitting to real data of
the individual introduced in chapter 4, to test the feasibility of the model in practise.

5.1 Characteristics of the Model
In this section we first model the situation of a professional marathon runner. Key param-
eters include an initial forward speed of vx0 = 5.83ms−1. This comes from the average
pace of the world record marathon run. The mass M is 52kg. The spring constant is cho-
sen as k1 = k2 = 15kNm−1 and the rest length of the spring is set to u1 = u2 = 0.90m.
The full set of parameters is stated in table 5.1. The trajectory of the x-component is an
elementary straight line due to the high velocity of the centre of mass (figure A.1). The
trajectories for the y- and z- position are more interesting.

The y- and z- position of the optimal periodic path are shown in figures 5.1 and 5.2
respectively. The figures show optimised paths for several time steps, all executed with
central differences and Runge-Kutta integration. These figures show the entire simula-
tions until they are unstable. Only the first half step is modelled in the iterative fitting
process. This shows that all time steps eventually become unstable. A smaller time step
does result in a more stable trajectory. The time step ∆t = 0.01s shows a major deviation
in the z-direction, even in the fitting range of half a step. On the other hand, the time
step ∆t = 0.001s is much more stable in the y-direction. However, it only manages to
be stable for one gait cycle in the z-direction. Even then it shows significant deviation
from a periodic trajectory. The smallest time step computed is ∆t = 0.0001s. This time
step performs by far the best, managing five steps with high periodicity. The gains of
reducing the time step by an order of magnitude do not yield even close to an order of
magnitude improvement in stability. This confirms the expected chaotic behaviour of the
system. The results for the time steps have been computed using both central differences
and Runge-Kutta integration. Only ∆t = 0.01s shows a major difference between the two
in figure 5.2. These trajectories differ significantly. Another difference is the numerical
stability of the solution. Central difference shows a larger variation than Runge-Kutta

27

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

integration. These oscillations are especially present at higher values for t. The optimal
trajectory is physically unstable. Hence small numerical deviations amplify, resulting in
oscillations around the unstable solution.

Table 5.1: The parameters of the PPFA for the marathon runner case. The time step ∆t varies per
fit.

Parameter Value or range Unit
Springs k 15000 [Nm−1]

u 0.90 [m]
System M 52 [kg]

ss 1.91 [m]
sw 0.10 [m]
∆s 0.00 [m]
p0 M · (5.83, 0, 0)⊤ [kgms−1]

Numerical ∆t [0.1, 0.0001] [s]
N 5(∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences

and Runge-Kutta integration
minimum improvement 0.001 [-]

Search range y0 [0.6, 1.0] [m]
z0 [−sw, 0] [m]

Figure 5.1 and 5.2 show that there is a difference in the initial conditions. This dif-
ference is visible in the (y, t)-plot, but only when ∆t = 0.01s is compared with the other
time step sizes. The deviations are more pronounced in the (z, t)-plot, where it is visible
for all time step sizes.

The added precision of a smaller time step requires additional computational power.
Runge-Kutta integration requires consistently more computing power than Central differ-
ences (figure A.2). As other analysis of the model demands hundreds of simulations to
be run, there has to be made a trade off. It is most important that the first half step, the
fitting range, shows no numerical oscillations. Therefore ∆t = 0.01s is rejected. The
Runge-Kutta method does not provide an additional benefit over central differences in the
first half gait cycle for smaller time step sizes. At last, time steps smaller than 0.0005s
require too much computational power, while providing no significant benefit in the first
half of the gait cycle.

28

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

0.0 0.5 1.0 1.5 2.0
t [s]

0.65

0.70

0.75

0.80

0.85

y
[m

]

Central difference, t = 0.0001
Runge-Kutta, t = 0.0001
Central difference, t = 0.001
Runge-Kutta, t = 0.001
Central difference, t = 0.01
Runge-Kutta, t = 0.01

Figure 5.1: An hefty decrease in time step size results in a small increase in stable simulation
length. The y-values of the optimal trajectories for the marathon running case. the vertical axis is
the height y and the horizontal axis is time t. The trajectories have been plotted using both central
differences as well as Runge-Kutta integration for different time steps. The spring constant has
value 15kNm−1 and the rest length has value 0.90m.

0.0 0.5 1.0 1.5 2.0
t [s]

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

z [
m

]

Central difference, t = 0.0001
Runge-Kutta, t = 0.0001
Central difference, t = 0.001
Runge-Kutta, t = 0.001
Central difference, t = 0.01
Runge-Kutta, t = 0.01

Figure 5.2: The z-values of the optimal trajectories for the marathon running case plotted against
the z-position and the time axis t. The trajectories have been plotted for both central differences
as well as Runge-Kutta integration and for different time steps.

29

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

Initially the spring constant k was fixed to a value of 15kNm−1. Now that a proper
time step and method have been chosen, this assumption can be relaxed. Then it becomes
possible to study the behaviour of the initial conditions as a function of the spring con-
stant. By adhering to the condition that the y-coordinate of the centre of mass of a person
at rest is 56% of a persons height, the rest length of the spring is calculated:

u(k) = 0.56l +
Mg

2k
, (5.1)

where l is the length of the person, which is set to 1.67m. The spring constant k spans a
search range from 2kNm−1 to 20kNm−1. Table B.1 provides all parameters. Figure 5.3
shows the relation between the fitted initial conditions and the spring constant. The initial
height of the centre of mass appears to converge as k goes to infinity. This is a conse-
quence of two elements. The first is the convergence of the equation of the rest length
(equation 5.1) as k tends towards infinity. The second is the behaviour of the spring in
this limit case. As the spring constant increases, the required deviation for a certain force
decreases. Therefore the initial height must converge towards rest length, otherwise the
spring force would be infinite. The initial height y0 will not exactly converge towards u
as z0 also has to be taken into account. Hence limk→∞∥(0, y0, z0)∥ = u.

2500 5000 7500 10000 12500 15000 17500 20000
k [Nm 1]

0.55

0.60

0.65

0.70

0.75

0.80

y 0
 [m

]

2500 5000 7500 10000 12500 15000 17500 20000
k [Nm 1]

0.03

0.02

0.01

0.00

0.01

z 0
 [m

]

Figure 5.3: The relation between the spring constant k (plotted on the horizontal axis) and the
initial conditions. The left figure plots the initial height y0 and the right figure plots the initial
lateral displacement z0 on the vertical axis. The rest length u is determined by: 0.56l+ Mg

2k , where
l = 1.67m.

The relation between k and z0 is displayed in the right plot of figure 5.3. The plot
shows a relatively constant trend until k equals 12500Nm−1. Then the optimal value for

30

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

the initial height z0 changes rapidly, eventually even becoming larger than 0. This shows
that this range of k values is non-physical because it is impossible for the system to be
stable if z0 > 0m. This is confirmed by the error plot in figure 5.4 (and figure A.3) which
shows a severe increase in the error for values of k above 12500Nm−1 Hence the regime
of feasible solutions is bounded. Not every combination of k and u has an initial condi-
tion that results in a periodic trajectory. Moreover, there are oscillations present in region
k < 12500Nm−1. Changing the spring constant changes the time until the benchmark
points are reached. Which discretised simulation point is closest changes then, resulting
in oscillations.

2500 5000 7500 10000 12500 15000 17500 20000
k [Nm 1]

10 4

10 3

10 2

10 1

e
[-]

Figure 5.4: The error e of the simulation of the marathon runner. The error is plotted on a logarith-
mic scale against the spring constant k. The error shows a major increase when k ≥ 12500Nm−1

and oscillations for lower values.

The trajectory of the y-position in figure 5.1 does not match the data in figure 4.3.
Where the data set has a maximum at z = zmin and z = zmax, the simulation has a min-
imum. On the other hand, the data has a minimum at z = 0, while the simulation has a
crest. This could pose to be major issue that will be addressed in the next simulation. A
y-trajectory where the maximum occurs at z = 0 is referred to as a positive trajectory. A
y-trajectory where the maximum occurs at z = zmax and z = zmin is called a negative
trajectory.

If the spring constant can be varied, so can the rest length. Equation 5.1 will not be
used this time. Otherwise the generated data would be nearly identical, at most consist-
ing of a different range. Moreover, this simulation will simulate a person walking. The
spring constant is set to 4kNm−1 and the rest length u ranges from 0.7m to 1.2m. Other
parameters have been changed to simulate the modelling of a person walking. The main

31

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

differences are a much shorter step size ss = 0.66m, a wider lateral step width sw = 0.2m,
and a lower initial speed of 1.2ms−1. The complete set of parameters is in table B.2.

The initial conditions y0 and z0 are given as a function of the rest length u in figure
5.5. These figures have a much more consistent trend line than when varying the spring
constant. There are five points that deviate from the trend line. Four are cluttered to-
gether around u = 0.75m. Figure 5.6 shows that these points result in a much shorter
stable simulation. Therefore these deviations can be the result from the mesh grid being
too coarse. The last one is a sole point at approximately u = 1.16m. Even though the
sole point deviates clearly from the pattern, it still runs for quite some time (but the error
does deviate, figure A.4). Rerunning the simulation with a finer mesh grid shows that the
iterative method has failed when the mesh discretisation is 11 and the convergence rate
is 2. This figure does not provide an explanation for the transition of y0 being either a
maximum or a minimum as there is no sudden change.

0.7 0.8 0.9 1.0 1.1 1.2
u [m]

0.5

0.6

0.7

0.8

0.9

1.0

y 0
 [m

]

0.7 0.8 0.9 1.0 1.1 1.2
u [m]

0.08

0.07

0.06

0.05

0.04

z 0
 [m

]

Regular mesh grid
Fine mesh grid

Figure 5.5: The initial conditions y0 and z0 plotted on the y-axis against the rest length. The fine
mesh grid has double the mesh discretisation (22) and convergence rate (4) of the regular mesh
grid.

Figure 5.7 does provide some insight. This figure shows the difference between the
y-values at t = 0.1s and t = 0s. If this value is positive then y0 is a minimum. If the
value is negative, then y0 is a maximum. The y-trajectory is either consistently higher or
consistently lower than y0 in the first half of the gait cycle. Hence the indicator y33 − y0

is valid up to a period of T = 0.2s. For higher stride frequencies the difference used in
the indicator has to be smaller. This figure shows that the transition from a maximum to a
minimum is a gradual process. The deviating points visible once again.

32

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

0.7 0.8 0.9 1.0 1.1 1.2
u [m]

1.0

1.5

2.0

2.5

3.0

3.5

4.0
t t

[s
]

Regular mesh grid
Fine mesh grid

Figure 5.6: The termination time tt of each simulation as a function of the rest length u. The fine
mesh grid has double the mesh discretisation (22) and convergence rate (4) of the regular mesh
grid (11 and 2).

0.7 0.8 0.9 1.0 1.1 1.2
u [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

y33
y0 [

m
]

Regular mesh grid
Fine mesh grid

Figure 5.7: The difference between the y-position of the centre of mass of the walking person
simulation at t = 0.1s and t = 0s. The spring constant is fixed at 4kNm−1. The horizontal axis is
the rest length u, which is given by the solid black line. The fine mesh grid has double the mesh
discretisation (22) and convergence rate (4) of the regular mesh grid (11 and 2).

33

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

The optimal y-trajectory for several values of the rest length u is shown in figure 5.8.
y0 is at t = 0s initially a minimum, but as the rest length increases, the shape of the
trajectory changes. Between u = 0.92m and u = 0.98m the extreme value at t = 0s
changes from a minimum to a maximum. Finally, as the rest length u increases further,
the trajectory again becomes a cosine alike function as it was for lower values of the rest
length. The difference is apparent in a (y, z)-plot for u = 0.7m and u = 1.2m (figure 5.9).
The parameters are stated in table B.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.445

0.450

0.455

0.460

0.465

0.470

0.475

y
[m

]

u = 0.7m

0.0 0.2 0.4 0.6 0.8 1.0

0.515

0.520

0.525

0.530

0.535 u = 0.76m

0.0 0.2 0.4 0.6 0.8 1.0

0.582

0.584

0.586

0.588

0.590

0.592

0.594

0.596 u = 0.81m

0.0 0.2 0.4 0.6 0.8 1.0
0.650

0.651

0.652

0.653

0.654

0.655

0.656

0.657

y
[m

]

u = 0.87m

0.0 0.2 0.4 0.6 0.8 1.0

0.7160

0.7165

0.7170

0.7175

0.7180

0.7185

0.7190

0.7195 u = 0.92m

0.0 0.2 0.4 0.6 0.8 1.0

0.776

0.778

0.780

0.782

0.784
u = 0.98m

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

0.8325

0.8350

0.8375

0.8400

0.8425

0.8450

0.8475

0.8500

y
[m

]

u = 1.03m

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

0.890

0.895

0.900

0.905

0.910

0.915
u = 1.09m

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

0.950

0.955

0.960

0.965

0.970

0.975
u = 1.14m

Figure 5.8: The optimal y-trajectories for certain values (0.7m to 1.14m) of the rest length u as
a function of time t. The graph transitions from an initial minimum to an initial maximum. The
spring constant k equals 4kNm−1.

There are two distinct walking trajectories according to the model. These distinct tra-
jectories are actually walking and not running. There is a normal force exerted on the
ground at all times. This is shown in figure 5.10. The figure also shows that a longer rest
length results in a more consistent force by the springs. A person walking is capable of
performing these different trajectories. The negative trajectory (u = 1.20m) is the normal
method of walking. A constant load on the spring could imply a higher efficiency. The
positive trajectory (u = 0.7m) is a more exited method of walking. This method of walk-
ing can be achieved by applying a higher force to the ground.

34

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

Notice that the height of positive trajectory in figure 5.9 is much lower than the
height of the negative trajectory. So much so that the positive trajectory, given the mass
M = 74kg, does not model a real person anymore. The length of such a person is ap-
proximately 0.80m, corresponding to a bmi of 116. Modifying the parameters can change
this height to be more realistic. Solely changing the rest length is insufficient because
then the y-trajectory transitions into the negative trajectory. The parameters k = 7kNm−1

and u = 1.1m have been used in figure 5.11. It shows a positive trajectory that is at a
reasonable height. The other parameters are in table B.4.

0.075 0.050 0.025 0.000 0.025 0.050 0.075
z [m]

0.445

0.450

0.455

0.460

0.465

0.470

0.475

y
[m

]

u = 0.7m

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03 0.04
z [m]

1.005

1.010

1.015

1.020

1.025

1.030

1.035

1.040

y
[m

]

u = 1.2m

Figure 5.9: The two distinct trajectories as a result of a different rest length. The trajectories are
plotted until t = 1s. The spring constant k equals 4kNm−1. The height y is plotted on the vertical
axis and the lateral z-position on the horizontal axis.

The model also shows that there is only one feasible way of running in the marathon
case (figure 5.12). The exact parameters used are in table B.3. There is, however, still
a downwards linear trend. Hence for very large values of u there is a second running
possibility. Such a high rest length is not realistic. Moreover, for very large values of u
the model would not be running but walking instead.

There is a reason why there are two ways to walk but only one exists for running.
When running, there is a period where there is no spring force acting on the centre of
mass. This period includes the part of the trajectory around z = 0m. Gravity, however,
does still act upon the centre of mass. If there would be a minimum at z = 0m, then the
trajectory would have to go down even further. But z = 0m was a minimum. Therefore
z = 0m can not be a minimum. Hence the negative trajectory can not exists when running.

35

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

E
[J]

u = 0.7m, spring 1
u = 0.7m, spring 2

0.0 0.2 0.4 0.6 0.8 1.0
t [s]

0

10

20

30

40

E
[J]

u = 1.2m, spring 1
u = 1.2m, spring 2

Figure 5.10: The spring energies of two distinct y-trajectories with different rest lengths. the
vertical axis is the energy E and the horizontal axis is time t. The total spring energy is always
larger than zero.

0.06 0.04 0.02 0.00 0.02 0.04 0.06
z [m]

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

y
[m

]

0.0 0.5 1.0 1.5 2.0 2.5
t [s]

0

10

20

30

40

50

60

70

E
[J]

spring 1
spring 2

Figure 5.11: Left: a (y, z) projection of a positive trajectory of a person walking. The right plot
shows the spring energies corresponding to this trajectory. The energy E is plotted against the
time t axis. The total spring energy is always larger than zero. The unstable, aperiodic part of this
trajectory continues until z = 0.2m.

36

Chapter 5. Results and Discussion 5.1. Characteristics of the Model

0.6 0.8 1.0 1.2 1.4
u [m]

0.04

0.02

0.00

0.02

0.04

0.06

y33
y0 [

m
]

Regular mesh grid

Figure 5.12: The difference between the y-values at t = 0.1s and t = 0s of the optimal trajectory
of the marathon runner case. The vertical axis is the difference y33 − y0 and the horizontal axis is
the rest length u. The black line is the horizontal axis. The model is unable to fit the values of u
lower than 0.6m.

37

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

5.2 Fitting the Model to the Data
This section consists of two parts. The first part will fit the model to generated data. The
second part will fit the model to experimental data. For the first part, synthetic data has
to be generated. The walking case will be used for the generation with k = 4kNm−1 and
u = 1.1m. The time step is set to ∆t = 0.01s to match the frequency of the experimental
data. Then the integration method is Runge-Kutta integration and not central differences
to keep the fit from oscillating. Table B.5 provides all other parameters for the data gen-
eration.

The DFA will fit the model to the data set using a time step of ∆t = 0.001s and cen-
tral differences. The step size ss is obtained from the periodicity of the data. As the step
width is unknown, several values must be attempted to monitor the effect on the fitting
capabilities. Table B.6 states the other parameters. The results are summarised in table
5.2. Several observations can be made from the table. The step width is very relevant for
obtaining a proper fit, especially regarding the error. A deviation of 5cm already results
in an difference of 13 per cent with the true spring constant. The rest length changes only
2 per cent when the step lengths changes 5cm. Note that the best found fit is not with the
true step width. If sw = 0.19m, then the error is 3 times lower than when sw = 0.20m.
sw = 0.19m has a larger deviation in the parameters with respect to the true parameters.
This phenomenon is due to the different time steps and numerical methods, resulting in a
different optimal step width.

Table 5.2: Fitting capabilities of the DFA to synthetic data for several step widths sw. All values
have been rounded to four significant digits. The actual values are k = 4kNm−1 and u = 1.100m
with a step width of 0.2000m.

sw [m] k [Nm−1] u [m] 10−2 e [-]
0.1000 4808 1.066 42.93
0.1500 4473 1.079 7.200
0.1900 4071 1.096 0.4113
0.2000 3960 1.101 1.165
0.2500 3418 1.130 15.73
0.4000 2464 1.229 111.8

The y- and z-trajectories of fits with several step widths are shown in figures 5.13
and 5.14. A change in the step with has a greater effect on the z-trajectory than on the
y-trajectory. The reason is that a change in step width changes the angle between the tra-
jectory and the connection points of the feet. This results in a rotation of the yz-projection
of the spring force.

38

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

0.0 0.1 0.2 0.3 0.4 0.5
t [s]

0.89

0.90

0.91

0.92

0.93

y
[m

]

Simulation, sw = 0.10m
Simulation, sw = 0.19m
Simulation, sw = 0.20m
Simulation, sw = 0.25m
Synthetic data

Figure 5.13: Various step widths sw fitted on a synthetic data set (sw = 0.20m). The vertical axis
plots the height y of the centre of mass and the horizontal axis the time t.

0.0 0.1 0.2 0.3 0.4 0.5
t [s]

0.10

0.05

0.00

0.05

0.10

0.15

z [
m

]

Simulation, sw = 0.10m
Simulation, sw = 0.19m
Simulation, sw = 0.20m
Simulation, sw = 0.25m
Synthetic data, sw = 0.20m

Figure 5.14: Various step widths sw fitted on a synthetic data set (sw = 0.20m). The vertical axis
plots the lateral position z of the centre of mass and the horizontal axis the time t.

39

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

The next step is to implement the model to the data provided in figures 4.2, 4.3, and
4.4. The step size is determined with the periodicity of the data as 0.66m. The other
parameters can be found in table B.7. As the step width is unknown, it has been varied
from 0m to 0.5m. Figure 5.15 shows the parameters for the range of step widths. The low
values for the step length show a deviation in the pattern. This occurs because the data
has a larger z-component than the maximal values that the z-trajectory of the simulation
can attain. That makes a fit with a reasonable error impossible for values for sw.

0.0 0.1 0.2 0.3 0.4 0.5
1.10

1.15

1.20

1.25

1.30

1.35

u
[m

]

0.0 0.1 0.2 0.3 0.4 0.5
sw [m]

2000

4000

6000

8000

10000

12000

14000

k
[N

m
1]

Figure 5.15: The spring constant k and rest length u plotted as a function of the step width sw.
The spring constant and the rest length are the fitted parameters for the DGA. When the step width
is lower than the lateral position of the data no proper fit can exist.

The error and termination time for different step widths are shown in figure 5.16.
There is a clear minimum for the error located at sw = 0.13m. Note that in this case the
termination time does not correspond with the error. A low error in the DGA algorithm
does not correlate to the periodicity of the trajectory. The error is big for large values
(sw > 0.18m) of the step width. Therefore no relation between the step width and the
fitting parameters k and u can be stated.

40

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
sw [m]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
t t

[s
]

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
sw [m]

1

2

3

4

5

6

7

8

e
[-]

Figure 5.16: The termination time tt and error e as a function of the step width sw. There is no
correlation between termination time and error. The error is minimal at sw = 0.13m.

There are several methods that will be used to fit the model to the data. First there will
be a fit where a range of step widths are considered (table B.8). A logical extension is to
translate the initial conditions relative to the feet. This will be implemented by adding a
vector (∆s, 0, 0)⊤ to the initial coordinates of the feet (r1 and r2). This is a verification
for the assumption that the extreme values of the y- and z-position coincide with the coor-
dinates of the feet. The parameter can be found in table B.9. A third option is to forgo the
assumption of equal legs. This can address the non-periodicity of the data (table B.10).

The DFA does not force the fit to be periodic. This could be a problem as the data
is not periodic. Then this can result in a non-periodic, unstable fit. Using the PPFA
in combination with DFA will force the solution to be periodic (table B.11). By dis-
regarding the y0- and z0- coordinates a periodic solution can be found for (reasonable)
combinations of k and u. This has the highest error of all methods (eDFA = 0.4884 and
ePPFA = 2.482·10−5). Only accounting for the step width results in an error of 0.4209. The
error is a bit lower when the feet are shifted relative to the initial conditions (e = 0.4023).
The shift is −0.02m, showing that the assumption of alignment of extreme values and
the feet is reasonable. The lowest error occurs when both legs are considered distinct
(e = 0.3535). The found parameters are stated in table 5.3.

The fits match the x-trajectory excellent as expected (figure A.5). On the contrary,
the x-momentum deviates the most from the data (figure 5.17), but the trend of maxima
and minima aligns. The y-position (figure 5.18) is a decent fit, as is the corresponding
momentum. Regarding the y-momentum (figure 5.19), initially there is a delay and the
intricacies at later times are not well modelled. The z-position (figure 5.20) and momen-
tum (figure A.6) align with the trajectory, showing only minor deviations.

41

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

75

80

85

90

95

100

105

p x
 [k

gm
s

1]
Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0m
Distinct legs, sw = 0.13m, s = 0m
Periodic, sw = 0.13m, s = 0.00m

Figure 5.17: Four different methods fitted to the data. The vertical axis is the x-momentum px
and the horizontal axis is time t.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0.97

0.98

0.99

1.00

1.01

1.02

1.03

y
[m

]

Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0.00m
Distinct legs, sw = 0.13m, s = 0.00m
Periodic, sw = 0.13m, s = 0.00m

Figure 5.18: Four different methods fitted to the data. The vertical axis is the y-position and the
horizontal axis is time t.

42

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

25

20

15

10

5

0

5

10

15
p y

 [k
gm

s
1]

Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0m
Distinct legs, sw = 0.13m, s = 0m
Periodic, sw = 0.13m, s = 0.00m

Figure 5.19: Four different methods fitted to the data. The vertical axis is the y-momentum py
and the horizontal axis is time t.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0.04

0.02

0.00

0.02

0.04

0.06

z [
m

]

Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0m
Distinct legs, sw = 0.13m, s = 0m
Periodic, sw = 0.13m, s = 0.00m

Figure 5.20: Four different methods fitted to the data. The vertical axis is the z-position and the
horizontal axis is time t.

43

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

Table 5.3: The fitted parameters for several methods. Each situation is fitted to the data set
of a walking person. The distinct legs method and the periodic method have sw = 0.13m and
∆s = 0m.

Type of fit Parameters Value Unit
No shift k 6667 [Nm−1]

u 1.119 [m]
sw 0.13 [m]

Shifted k 6375 [Nm−1]
u 1.125 [m]
sw 0.14 [m]
∆s −0.02 [m]

Distinct legs k1 6802 [Nm−1]
k2 6421 [Nm−1]
u1 1.116 [m]
u2 1.126 [m]

Periodic k 5670 [Nm−1]
u 1.127 [m]
y0 1.006 [m]
z0 −0.03015 [m]

All in all can the fit of the data be considered adequate. The trend of the fit aligns
with the data but some details are lost or less present. There are not a lot of differences
between the methods and the difference in error is small. This means that the assumption
of equal legs is also reasonable, even though the participant has a longer left leg, with a
difference of 0.007m.

The periodic fit is the most relevant fit for the prosthetic leg. It ensure periodic con-
tinued locomotion while also following the natural movement as much as possible. The
deviations from the data could be significant, but not necessarily so. The deviations in
the x-momentum, for example, smoothen the trajectory. That could be experienced as
pleasant by a person using a prosthetic leg with a spring constant designed. It is not trivial
to design a prosthetic leg with a spring constant as prescribed by the model. Because the
centre of mass is inside the body, the spring-like behaviour of a lower torso also has to
be taken into account. Future research could create a simple prosthetic and fit it with the
predicted spring by the model. Then a test person can judge whether or not the found
parameters result in a pleasant experience. The trajectory can then be compared with that
of an able-bodied person.

There is a distinction that should be made regarding the applicability of the model.
Namely that of people missing one or two legs. A person missing one leg will require
a prosthetic design that results in as much as possible a natural trajectory. For them the
deviation in the trajectory is more likely to be unpleasant. The requirement of natural
motion is less important for people missing both legs. For them a smoother trajectory and
especially momentum could be desirable. Future research should investigate these claims.

44

Chapter 5. Results and Discussion 5.2. Fitting the Model to the Data

The main limitation of the model is the processing requirement of the data. Because
the data has to be somewhat periodic, person 4 was excluded. This limits the general
applicability of the model. Moreover, the steps taken by the model have constant step
width and step size. This is not the case with the data, even though it was averaged and
smoothed. As shown by the fit that varies the step width, small changes in the step width
greatly affects the fit. The solution of only using half a gait cycle does not do justice to
the details of bipedal locomotion. The next suggestions for expansions of the model will
address these two issues, or improve the model in another way.

There are several ways this model can be expanded. The first decouples the extreme
values of the y- and z-trajectories in the PPFA. There is a small shift between these ex-
treme values visible in the data (figures 4.3 and 4.4). The DFA already accounts for such
a shift, but the PPFA does not. Hence the quality of the periodic fit can be increased by
adding another parameter accounting for this difference.

A second option no longer considers the springs as linear. Then the effect of different
springs can be studied. It could be that a higher power relation between the extension and
the force provides a better fit. The downside of this method is that it is no longer appli-
cable to simple prosthetic leg design. Non-linear springs are much more costly, defeating
the purpose of a simple prosthetic.

Another option is to increase the complexity of the model. This can be done in several
ways. The first makes the feet more realistic by increasing the number of contact points
with the ground. If the ground connections are connected to the centre of mass by springs
with different properties, then the model would become too computationally intensive.
However, even when all the springs are equivalent this could be a useful addition. Then
the effect of the shape of a foot can be studied. A second extension no longer considers
the legs merely as springs. Instead the knees are included too. For example, the knees
could be modelled as an angle dependent spring.

A fourth option is to extend the model by adding more forces to the system. Certain
friction forces can be included. Then the feet could slide if the sliding friction force is
too low. Air resistance can be added too, but for a runner this only accounts for 2 to 5
per cent of the total forces present [22]. The internal forces in the muscles that damp the
motion are by far the most present. In order to counteract these forces a driving force has
to be added. This driving force, which should be a periodic function, can be defined in
different ways to find the optimal fit. Attempting different functions could result in even
more methods of walking or running.

Finally the method of taking steps could be changed, making the fitting of unsmoothed
data possible. Currently the steps are not modelled. Instead of instantaneous steps, the
feet could move like a simple pendulum. Then the next ground contact point can be
determined by the place where the foot strikes. This results in a variable step length and
step width. This will not improve the fit to the smoothed data by much, but it could result
in a stable trajectory. The feet could also have mass, allowing for proper dynamics.

45

CHAPTER

SIX

Conclusion

The purpose of this report was twofold. The first was to implement a three dimensional
spring-mass model to model the gait cycle of humans. The second was to find the op-
timal parameters for a spring in a simple leg prosthetic. To do so, two algorithms were
designed. The Periodic Path Finding Algorithm (PPFA) finds the optimal initial height
and lateral displacement such that the trajectory is periodic. The Data Fitting Algorithm
(DFA) finds the optimal spring constant and rest length to best fit a data set.

The PPFA showed that the initial z-trajectory is independent of the spring constant if
the rest length is set such that the centre of mass is at 56% of the height of a person. The
algorithm also showed that there are two distinct trajectories for walking but there is only
type of trajectory for running. The additional trajectory present for walking has a more
consistent spring force profile.

The synthetic data fit of DFA showed that the step width is important for finding a
proper fit. The real data set has been fitted using several methods. The first method has
a variable step width and another method also has a variable initial x-coordinate. These
methods yielded very similar results (e = 0.4209 and e = 0.4023). The displacement
in the x-direction is only ∆s = 0.02m. This shows that the assumption of aligning the
extreme value of the z-trajectories with the position of the feet is valid. Considering the
legs as distinct gives a small improvement (e = 0.3535). The last fit to the real data
combined PPFA and DFA. This forces the fit to be periodic by relaxing the initial position
coordinates y0 and z0. Although this fit has the highest error (e = 0.4884), it is the most
applicable to the prosthetic leg design. It shows that periodic motion is possible with a
single spring that can mimic the general characteristics of the trajectory of a person walk-
ing. It is unknown how the deviations will impact the experience of a person missing a
leg.

Summarizing, the three dimensional spring-mass model describes the general traits
of the centre of mass well, but the details are missing. There are two distinct ways to
walk, but only one to run. The extreme y- and z-values align with the placement of
feet. Further research should investigate how deviations with the data are experienced by
people missing a leg.

46

Bibliography

[1] Robert McNeill Alexander. “Bipedal animals, and their differences from humans”.
In: Journal of Anatomy 204.5 (May 2004), pp. 321–330. DOI: 10.1111/j.
0021-8782.2004.00289.x.

[2] Sophie Penney. “Kipchoge wants athletics to embrace tech”. In: The West Aus-
tralian (Aug. 2021). URL: https://thewest.com.au/sport/athletics/
kipchoge-wants-athletics-to-embrace-tech-c-3783537.

[3] Freepik. Front view of a walking wild duck. URL: https://www.freepik.
com/free-photo/dancing-duck_10759315.htm.

[4] Bence Mate. Double-crested basilisk (Basiliscus plumifrons) running across water
surface. Nov. 2008. URL: https://powerspeedendurance.com/n1-
dont-run-scissors-go-run-lizards/.

[5] Karen E. Adolph et al. “How do you learn to walk? Thousands of steps and dozens
of falls per day”. In: Psychological Science 23.11 (Oct. 2012), pp. 1387–1394. DOI:
10.1177/0956797612446346.

[6] Michael D. Sockol, David A. Raichlen, and Herman Pontzer. “Chimpanzee lo-
comotor energetics and the origin of human bipedalism”. In: Proceedings of the
National Academy of Sciences 104.30 (July 2007), pp. 12265–12269. DOI: 10.
1073/pnas.0703267104.

[7] Louis Buckley. “This chimp is made for walking”. In: Nature (July 2007). DOI:
10.1038/news070716-2.

[8] Daniel E Lieberman and Dennis M Bramble. “The Evolution of Marathon Running,
capabilities in Humans”. In: Sports Medicine 4–5 (Apr. 2007), pp. 288–290. DOI:
10.2165/00007256-200737040-00004.

[9] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. “Compliant leg behaviour
explains basic dynamics of walking and running”. In: Proceedings of the Royal
Society B: Biological Sciences 273.1603 (Aug. 2006), pp. 2861–2867. DOI: 10.
1098/rspb.2006.3637.

[10] Céline Schreiber and Florent Moissenet. “A multimodal dataset of human gait at
different walking speeds established on injury-free adult participants”. In: Scientific
Data 6.1 (July 2019). DOI: 10.1038/s41597-019-0124-4.

47

https://doi.org/10.1111/j.0021-8782.2004.00289.x
https://doi.org/10.1111/j.0021-8782.2004.00289.x
https://thewest.com.au/sport/athletics/kipchoge-wants-athletics-to-embrace-tech-c-3783537
https://thewest.com.au/sport/athletics/kipchoge-wants-athletics-to-embrace-tech-c-3783537
https://www.freepik.com/free-photo/dancing-duck_10759315.htm
https://www.freepik.com/free-photo/dancing-duck_10759315.htm
https://powerspeedendurance.com/n1-dont-run-scissors-go-run-lizards/
https://powerspeedendurance.com/n1-dont-run-scissors-go-run-lizards/
https://doi.org/10.1177/0956797612446346
https://doi.org/10.1073/pnas.0703267104
https://doi.org/10.1073/pnas.0703267104
https://doi.org/10.1038/news070716-2
https://doi.org/10.2165/00007256-200737040-00004
https://doi.org/10.1098/rspb.2006.3637
https://doi.org/10.1098/rspb.2006.3637
https://doi.org/10.1038/s41597-019-0124-4

Bibliography

[11] Huiqi Liang et al. “A three-dimensional mass-spring walking model could describe
the ground reaction forces”. In: Mathematical Problems in Engineering 2021 (July
2021), pp. 1–20. DOI: 10.1155/2021/6651715.

[12] Enamul Hoque, Shifat Al Riham, and Abdul Shuvo. “A cost-effective prosthetic
leg: Design and development”. In: Hybrid Advances 2 (Apr. 2023). DOI: 10 .
1016/j.hybadv.2022.100017.

[13] Richard Wolfson. Essential University Physics. 3rd ed. Vol. 1. Pearson Education
Limited, 2015.

[14] Editors of Encyclopaedia Brittanica. Hooke’s law. Accessed on 05 04 2023. Dec.
2022. URL: https://www.britannica.com/science/Hookes-law.

[15] John Robert Taylor. Classical Mechanics. 1st ed. University Science Books, 2005.

[16] William David McComb. Dynamics and Relativity. 1st ed. Oxford University Press,
1999.

[17] C. Vuik et al. Numerical methods for Ordinary Differential Equations. 2nd ed. Delft
Academic Press, 2018.

[18] Bo Einarsson and Yurij Shokin. Fortran 90 for the Fortran 77 programmer. Siberian
Division of the Russian Academy of Science, 1995.

[19] Benjamin Michaud and Mickaël Begon. “Ezc3d: An easy C3D file I/o cross-platform
solution for C++, python and MATLAB”. In: Journal of Open Source Software 6.58
(Feb. 2021), p. 2911. DOI: 10.21105/joss.02911.

[20] Stephen Butterworth. “On the theory of filter amplifiers”. In: Experimental Wireless
and the Wireless Engineer 7 (Oct. 1930), pp. 536–541.

[21] Paul Davidovits. Physics in Biology and Medicine. 5th ed. Academic Press, an
imprint of Elsevier, 2019.

[22] A.V. Hill. “The air-resistance to a runner”. In: Proceedings of the Royal Society
of London. Series B, Containing Papers of a Biological Character 102.718 (Dec.
1927), pp. 380–385. DOI: 10.1098/rspb.1928.0012.

48

https://doi.org/10.1155/2021/6651715
https://doi.org/10.1016/j.hybadv.2022.100017
https://doi.org/10.1016/j.hybadv.2022.100017
https://www.britannica.com/science/Hookes-law
https://doi.org/10.21105/joss.02911
https://doi.org/10.1098/rspb.1928.0012

Appendix

A Additional Figures

0.0 0.5 1.0 1.5 2.0
t [s]

0

2

4

6

8

10

12

14

x
[m

]

Central difference, t = 0.0001
Runge-Kutta, t = 0.0001
Central difference, t = 0.001
Runge-Kutta, t = 0.001
Central difference, t = 0.01
Runge-Kutta, t = 0.01

Figure A.1: The x-values of the optimal trajectories for the marathon running case plotted against
the x-axis and the time axis t. The trajectories have been plotted using both central differences as
well as Runge-Kutta integration for different time steps.

49

A. Additional Figures

10 4 10 3 10 2 10 1

t [s]

100

101

102

103
t c

 [s
]

Central differences
Runge-Kutta

Figure A.2: Computation time of the simulation on a i7-9750H. The vertical axis displays the
computation time tc and the horizontal axis displays the time step ∆t. Both scales are logarithmic.

2500 5000 7500 10000 12500 15000 17500 20000
k [Nm 1]

0.5

1.0

1.5

2.0

2.5

t t
[s

]

Figure A.3: The termination time of the marathon simulation tt plotted against the spring constant
k. At higher values of k the model can not find a proper fit.

50

A. Additional Figures

0.7 0.8 0.9 1.0 1.1 1.2
u [m]

10 4

10 3

10 2

e
[-]

Regular mesh grid
Fine mesh grid

Figure A.4: The error e of the walking person simulation for various values of u. The fine mesh
grid has double the mesh discretisation (22) and convergence rate (4) than the regular mesh grid
(11 and 2).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x
[m

]

Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0m
Distinct legs, sw = 0.13m, s = 0m
Periodic, sw = 0.13m, s = 0.00m

Figure A.5: Four different methods fitted to the data. The vertical axis is the x-position and the
horizontal axis is time t.

51

A. Additional Figures

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t [s]

10

0

10

20

30

40
p z

 [k
gm

s
1]

Data
Shifted, sw = 0.14m, s = 0.02m
No shift, sw = 0.13m, s = 0m
Distinct legs, sw = 0.13m, s = 0m
Periodic, sw = 0.13m, s = 0.00m

Figure A.6: Four different methods fitted to the data. The vertical axis is the z-momentum pz and
the horizontal axis is time t.

52

B. Parameter Tables

B Parameter Tables

The gravitational constant g is set to 9.81ms−2 in all simulations.

Table B.1: The parameters of the PPFA for the marathon runner case with varying spring constant
and corresponding rest length.

Parameter Value Unit
Springs k [2000, 20000] [Nm−1]

u 0.56l + Mg
2k

[m]
System l 1.67 [m]

M 52 [kg]
ss 1.91 [m]
sw 0.1 [m]
∆s 0 [m]
p0 M(5.83, 0, 0)⊤ [kgms−1]

Numerical ∆t 0.001 [s]
N 5(∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range y0 [0.6, 1.0] [m]
z0 [−sw, 0] [m]

Table B.2: The parameters of the PPFA for the walking person for varying rest length u and fixed
spring constant k.

Parameter Value or range Unit
Springs k 4000 [Nm−1]

u [0.7, 1.2] [m]
System M 74 [kg]

ss 0.66 [m]
sw 0.2 [m]
∆s 0 [m]
p0 M(1.2, 0, 0)⊤ [kgms−1]

Numerical ∆t 0.003 [s]
N 5(∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range y0 [0.4, 1.2] [m]
z0 [−sw, 0] [m]

53

B. Parameter Tables

Table B.3: The parameters of the PPFA for the marathon runner for varying rest length u and
fixed spring constant k.

Parameter Value or range Unit
Springs k 10000 [Nm−1]

u [0.5, 1.5] [m]
System M 52 [kg]

ss 1.91 [m]
sw 0.1 [m]
p0 M(5.83, 0, 0)⊤ [kgms−1]

Numerical ∆t 0.003 [s]
N 5(∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range y0 [0.4, 1.2] [m]
z0 [−sw, 0] [m]

Table B.4: The parameters of the PPFA used to provide a positive trajectory on a reasonable
height..

Parameter Value or range Unit
Springs k 7000 [Nm−1]

u 1.1 [m]
System M 74 [kg]

ss 0.66 [m]
sw 0.2 [m]
p0 M(1.2, 0, 0)⊤ [kgms−1]

Numerical ∆t 0.001 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method Runge-Kutta integration [-]
minimum improvement 0.001 [-]

Search range y0 [0.4, 1.0] [m]
z0 [−sw, 0] [m]

54

B. Parameter Tables

Table B.5: The parameters of the PPFA for the person walking used for synthetic data generation.

Parameter Value or range Unit
Springs k 4000 [Nm−1]

u 1.1 [m]
System M 74 [kg]

ss 0.66 [m]
sw 0.2 [m]
p0 M(1.2, 0, 0)⊤ [kgms−1]

Numerical ∆t 0.01 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method Runge-Kutta integration [-]
minimum improvement 0.001 [-]

Search range y0 [0.4, 1.0] [m]
z0 [−sw, 0] [m]

Table B.6: The parameters of the DFA for the person walking used for fitting synthetic data. The
initial conditions are obtained from the data.

Parameter Value or range Unit
System M 74 [kg]

ss 0.657 [m]
sw [0.1, 0.4] [m]

Numerical ∆t 0.001 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k [2000, 12000] [Nm−1]
u [0.5, 1.4] [m]

55

B. Parameter Tables

Table B.7: The parameters of the DFA for the person walking used with real processed data. The
initial conditions are obtained from the data.

Parameter Value or range Unit
System M 74 [kg]

ss 0.66 [m]
sw [0.1, 0.5] [m]

Numerical ∆t 0.001 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k [2000, 12000] [Nm−1]
u [0.5, 1.5] [m]

Table B.8: The parameters of the DFA for the person walking used with real processed data. Both
the step width as well as the coordinates of the feet are discretised by a shift in the x direction of
value s.

Parameter Value or range Unit
System M 74 [kg]

ss 0.66 [m]
sw [0.1, 0.3] [m]
∆s [-0.1, 0.1] [m]

Numerical ∆t 0.003 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k [2000, 12000] [Nm−1]
u [0.5, 1.5] [m]

56

B. Parameter Tables

Table B.9: The parameters of the DFA for the person walking used with real processed data. Both
the step width as well as the coordinates of the feet are discretised by a shift in the x direction of
value s.

Parameter Value or range Unit
System M 74 [kg]

ss 0.66 [m]
sw [0.1, 0.3] [m]
∆s [-0.1, 0.1] [m]

Numerical ∆t 0.003 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k [2000, 12000] [Nm−1]
u [0.5, 1.5] [m]

Table B.10: The parameters of the DFA for the person walking used with real processed data.
This simulation models the springs in the legs as distinct.

Parameter Value or range Unit
System M 74 [kg]

ss 0.66 [m]
sw [0.1, 0.3] [m]
∆s 0 [m]

Numerical ∆t 0.003 [s]
N 5 (∆t)−1 [-]
mesh discretisation 11 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k1 [2000, 12000] [Nm−1]
k2 [2000, 12000] [Nm−1]
u1 [0.5, 1.5] [m]
u2 [0.5, 1.5] [m]

57

B. Parameter Tables

Table B.11: The parameters of the DFA used on PPFA for the person walking used with real
processed data. This simulation models the springs in the legs as distinct.

Parameter Value or range Unit
System M 74 [kg]

ss 0.66 [m]
sw 0.13 [m]
∆s 0 [m]

Numerical ∆t 0.003 [s]
N 5 (∆t)−1 [-]
mesh discretisation 7 [-]
convergence rate 2 [-]
integration method central differences [-]
minimum improvement 0.001 [-]

Search range k [4000, 8000] [Nm−1]
u [0.8, 1.2] [m]
y0 [0.8, 1.2] [m]
z0 [−sw, 0] [m]

58

C. Code

C Code
The following modules are the periodic path finding algorithm and the data fitting algo-
rithm.

C.1 Periodic Path Finding Algorithm

1 import numpy as np
2 from numpy.linalg import norm
3 import matplotlib.pyplot as plt
4 from itertools import product
5 from mpl_toolkits.mplot3d import axes3d
6 import copy
7 from matplotlib.animation import FuncAnimation
8 import pickle
9 import time

10 import ezc3d
11 def f(R, k1, k2, u1, u2, M, gc, r1, r2): # -dH/dR, helper

function to keep everything manageable.
12 part_spring1 = -k1 * (norm(R - r1) - u1) * (R - r1) /

norm(R-r1)
13 part_spring2 = -k2 * (norm(R - r2) - u2) * (R - r2) /

norm(R-r2)
14 gravity = np.array([0, -M*gc, 0])
15 return part_spring1 + part_spring2 + gravity
16

17

18 def energy(R, p, k1, k2, u1, u2, M, gc, r1, r2):
19 return [M*gc*R[1],\
20 sum(p**2) / (2*M),\
21 k1/2 * (norm(R - r1) - u1)**2,\
22 k2/2 * (norm(R - r2) - u2)**2] # all the energies
23

24

25 def simulate(R0, p0, parameters, make_steps = False,
stop_conditions = True):

26 spring_parameters, system_parameters, numerical_parameters =
parameters

27 k1, k2, u1, u2 = spring_parameters
28 gc, M, r1, r2, step_size, step_width, _ = system_parameters
29 dt, N, mesh_discr, integration_method, _ , _=

numerical_parameters
30

31 # Data arrays for position, momentum and energy, the latter
being 2d

32 step_array = np.array([2*step_size, 0, 0])
33

34 if norm(R0 - r1) >= u1: # only spring force if contracting

59

C. Code

35 virtual_k1 = 0
36 else:
37 virtual_k1 = k1
38

39 if norm(R0 - r2) >= u2:
40 virtual_k2 = 0
41 else:
42 virtual_k2 = k2
43

44 # First step for both position and momentum using Backwards
+ Central

45 if integration_method == "central":
46 R1 = R0 + dt/M * p0
47

48 p1 = p0 + dt * f(R0, virtual_k1, virtual_k2, u1, u2, M,
gc, r1, r2)

49

50

51 elif integration_method == "RK4":
52

53 a1 = dt * f(R0, virtual_k1, virtual_k2, u1, u2, M, gc, r1
,r2)

54 b1 = dt / M * p0
55

56 a2 = dt * f(R0 + b1/2, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

57 b2 = dt / M * (p0 + a1/2)
58

59 a3 = dt * f(R0 + b2/2, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

60 b3 = dt / M * (p0 + a2/2)
61

62 a4 = dt * f(R0 + b3, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

63 b4 = dt / M * (p0 + a3)
64

65 a = 1/6 * (a1 + 2*a2 + 2*a3 + a4)
66 b = 1/6 * (b1 + 2*b2 + 2*b3 + b4)
67

68 R1 = R0 + b
69 p1 = p0 + a
70

71

72

73 # Calculating the energies
74 E0 = energy(R0, p0, virtual_k1, virtual_k2, u1, u2, M, gc,

r1, r2)
75 E1 = energy(R1, p1, virtual_k1, virtual_k2, u1, u2, M, gc,

r1, r2)

60

C. Code

76

77 # Initiating the data-arrays with the first 2 values.
78 dataR = [R0, R1]
79 dataP = [p0, p1]
80 dataE = [E0, E1]
81 steps = []
82 prev_step = None
83

84 for i in range(1,N): # Running the simulation
85

86 # Conditions for termination
87 if stop_conditions == True:
88 if dataR[i][2] < r1[2] or dataR[i][2] > r2[2]: # Stop

if beyond feet
89 break
90

91 elif dataR[i][1] < 0: # Stop if y position goes
through the ground

92 break
93

94 elif dataR[i][0] > 2.1**step_size and make_steps ==
False: # Then a step has been completed

95 break # TODO this 2.1* is ugly and should be made
more precize, but it works...

96

97 # There is no spring force if extended:
98 if norm(dataR[i] - r1) >= u1:# extend == no spring force
99 virtual_k1 = 0

100 else:
101 virtual_k1 = k1
102

103 if norm(dataR[i] - r2) >= u2:
104 virtual_k2 = 0
105 else:
106 virtual_k2 = k2
107

108 # Do a step if the next position is closer, stop if there
are two same steps in a row!

109 if make_steps == True:
110 if norm(dataR[i] - r1) > norm(dataR[i] - (r1 +

step_array)):
111 if prev_step == "left":
112 print("Tried a double left step!")
113 break
114 steps.append(i)
115 print("Step left!", i)
116 r1 += step_array
117 prev_step = "left"
118

61

C. Code

119 if norm(dataR[i] - r2) > norm(dataR[i] - (r2 +
step_array)):

120 if prev_step == "right":
121 print("Tried a double right step!")
122 break
123

124 r2 += step_array
125 steps.append(i)
126 print("Step right!", i)
127 prev_step = "right"
128 if integration_method == "central":
129 dataR.append(dataR[i-1] + 2*dt/M * dataP[i])
130 dataP.append(dataP[i-1] + 2*dt*f(dataR[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
131 dataE.append(energy(dataR[i], dataP[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
132

133 elif integration_method == "RK4":
134 R0 = dataR[i]
135 p0 = dataP[i]
136

137 a1 = dt * f(R0, virtual_k1, virtual_k2, u1, u2, M, gc,
r1 ,r2)

138 b1 = dt / M * p0
139

140 a2 = dt * f(R0 + b1/2, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

141 b2 = dt / M * (p0 + a1/2)
142

143 a3 = dt * f(R0 + b2/2, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

144 b3 = dt / M * (p0 + a2/2)
145

146 a4 = dt * f(R0 + b3, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

147 b4 = dt / M * (p0 + a3)
148

149 a = 1/6 * (a1 + 2*a2 + 2*a3 + a4)
150 b = 1/6 * (b1 + 2*b2 + 2*b3 + b4)
151

152 R1 = R0 + b
153 p1 = p0 + a
154

155 dataR.append(R1)
156 dataP.append(p1)
157 dataE.append(energy(dataR[i], dataP[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
158

159 if make_steps:

62

C. Code

160 return dataP, dataR, dataE, steps
161 else:
162 return dataP, dataR, dataE
163

164

165 def iterative_simulation(parameters, y0_range, z0_range): #
Brute force grid search within given parameters

166 # Unpacking parameters:
167 spring_parameters, system_parameters, numerical_parameters =

parameters
168 k1, k2, u1, u2 = spring_parameters
169 gc, M, r1, r2, step_size, step_width, p0 = system_parameters
170 dt, N, mesh_discr, integration_method, _,

minimum_improvement = numerical_parameters
171

172 best_score = 1e100 # Initially a large number
173

174 all_good_scores = [[], [], []]
175

176 for y0, z0 in product(np.linspace(*y0_range, mesh_discr),
np.linspace(*z0_range, mesh_discr)):

177 # Initial conditions
178

179 R0 = np.array([0,y0, z0])
180 # p0 = M*np.array([5.83, 0, 0])
181 p_half_period = p0
182 R_half_period = np.array([R0[0] + step_size, R0[1],

-1*R0[2]])
183

184 R1 = R0 + dt/M * p0
185

186 if norm(R1 - r1) >= u1: # only spring force if contracting
187 virtual_k1 = 0
188 else:
189 virtual_k1 = k1
190

191 if norm(R1 - r2) >= u2:
192 virtual_k2 = 0
193 else:
194 virtual_k2 = k2
195

196

197 p1 = p0 + dt * f(R0, virtual_k1, virtual_k2, u1, u2, M,
gc, r1, r2)

198

199 R_half_period_plus1 = np.array([R1[0] + step_size, R1[1],
-1*R1[2]])

200 p_half_period_plus1 = p1
201

63

C. Code

202 dataP, dataR, dataE = simulate(R0, p0, parameters) # We
assume that x is monotone increasing, so only have to
check last to elements but this need not be the best
value of the simulation!!!

203 dataP, dataR, dataE = np.array(dataP), np.array(dataR),
np.array(dataE)

204

205 # Determine score and compare with current best score.
Only past 100 coordinates are taken into

206

207

208

209 # score = norm(score_R - R_half_period)**2 +
norm(score_P/M - p_half_period/M)**2 #/M to give less
preference to momentum, make them the same order of
magnitude

210 indx = np.argmin(abs(dataR[:, 0] - R_half_period[0]))
211 score = norm(dataR[indx] - R_half_period)**2 +

norm(dataP[indx]/M - p_half_period/M)**2 #/M to give
less preference to momentum, make them the same order
of magnitude

212

213 indx2 = np.argmin(abs(dataR[:, 0] -
R_half_period_plus1[0]))

214 score += norm(dataR[indx2] - R_half_period_plus1)**2 +
norm(dataP[indx2]/M - p_half_period_plus1/M)**2 #/M to
give less preference to momentum, make them the same
order of magnitude

215

216 if score < best_score:
217 best_score = score
218 best_R = dataR
219 best_p = dataP
220 best_E = dataE
221 best_R_half = R_half_period
222 best_P_half = p_half_period
223 all_good_scores = [y0, z0, score]
224 # print("New best score", score, indx, "(y0, z0) =

({}, {})".format(round(y0,5), round(z0,5)))
225

226 # if score < 10: # arbitrary bound on 'good'
227 # # print("Found good score:", score, "(y0, z0) = ({},

{})".format(round(y0, 3), round(z0, 3)))
228 # all_good_scores[0].append(y0)
229 # all_good_scores[1].append(z0)
230 # all_good_scores[2].append(score)
231

232 return best_R, best_p, best_E, best_R_half, best_P_half,
all_good_scores

64

C. Code

233

234

235 def pos_mom_energy_plots(dataR, dataP, dataE, parameters,
string = "None", save = False, pos = True, mom = True, E =
True):

236 dataR, dataP, dataE = np.array(dataR), np.array(dataP),
np.array(dataE)

237 spring_parameters, system_parameters, numerical_parameters =
parameters

238 k1, _, u1, _ = spring_parameters
239 _, _, _, _, step_size, step_width, _ = system_parameters
240 dt, _, _, _, _, _ = numerical_parameters
241 if pos:
242 plt.figure() # (x/y/z, t) plot
243 plt.plot(dataR[:, 0], label = "x position")
244 plt.plot(dataR[:, 1], label = "y position")
245 plt.plot(dataR[:, 2], label = "z position")
246 plt.legend()
247

248 plt.xlabel("Time index [-]")
249 plt.ylabel("r [m]")
250 plt.title("Position, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))
251 if save: plt.savefig("20230410 position {} gait k={},

dt={}.pdf".format(string, k1, dt))
252 plt.show()
253

254 Etot = [sum(elm) for elm in list(dataE)]
255

256 if mom:
257 plt.figure() # (x/y/z, t) plot
258 plt.plot(dataP[:, 0], label= "x momentum")
259 plt.plot(dataP[:, 1], label= "y momentum")
260 plt.plot(dataP[:, 2], label= "z momentum")
261 plt.legend()
262

263 plt.xlabel("Time index [-]")
264 plt.ylabel("p [kgms$ˆ{-1}$]")
265 plt.title("Momenta, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))
266 if save: plt.savefig("20230410 momenta {} gait k={},

dt={}.pdf".format(string, k1, dt))
267 plt.show()
268

269 if E:
270 plt.figure()
271 plt.plot(dataE[:, 0], label = "Gravitational energy")
272 plt.plot(dataE[:, 1], label = "Kinetic energy")
273 plt.plot(dataE[:, 2], label = "Spring energy 1")

65

C. Code

274 plt.plot(dataE[:, 3], label = "Spring energy 2")
275 plt.plot(Etot, label = "Total energy of system")
276 plt.legend()
277

278 plt.xlabel("Time index [-]")
279 plt.ylabel("E [J]")
280 plt.title("Energies, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))
281 if save: plt.savefig("20230410 Energies {} gait k={},

dt={}.pdf".format(string, k1, dt))
282 plt.show()
283

284 def iterative_mesh_grid(parameters, y0_range, z0_range,
verbose=True):

285 _, _, numerical_parameters = parameters
286 _, _, mesh_discr, _, convergence_rate, minimum_improvement =

numerical_parameters
287 virtual_parameters = copy.deepcopy(parameters)
288 step_y0 = abs(y0_range[1] - y0_range[0]) / (mesh_discr - 1)
289 step_z0 = abs(z0_range[1] - z0_range[0]) / (mesh_discr - 1)
290 old_best_score = 10
291

292 while step_y0 > 1e-12 and step_z0 > 1e-12: # A bit above
machine precision

293

294 if verbose: print("Reiterating, step y = {:#.3e} and step
z = {:#.3e}".format(step_y0, step_z0))

295 # Run the simulation:
296 dataR, dataP, dataE, best_R_half, best_P_half,

all_good_scores =
iterative_simulation(copy.deepcopy(virtual_parameters),
y0_range, z0_range)

297 try:
298 best_score = all_good_scores[2]
299 except ValueError:
300 best_score = 100
301

302 if True:#
303 # Update the mesh grid around the best found point
304 y0_range = [dataR[0][1] - convergence_rate * step_y0,

dataR[0][1] + convergence_rate*step_y0]
305 z0_range = [dataR[0][2] - convergence_rate*step_z0,

dataR[0][2] + convergence_rate*step_z0]
306

307 # Update the new step size:
308 step_y0 = abs(y0_range[1] - y0_range[0]) / (mesh_discr

- 1)
309 step_z0 = abs(z0_range[1] - z0_range[0]) / (mesh_discr

- 1)

66

C. Code

310 if best_score != old_best_score and abs(best_score -
old_best_score) / old_best_score <
minimum_improvement: # if new coordinate only
yields a very small (relative) improvement, stop.

311 if verbose: print("Insufficient improvement")
312 break
313 old_best_score = best_score
314 if verbose:
315 print("Best score: {:#.3e}".format(best_score))
316 print("where y0={} and z0={}".format(dataR[0][1],

dataR[0][2]))
317 print("y dist = [{:#.3e},

{:#.3e}]".format(y0_range[0] - dataR[0][1],
y0_range[1] - dataR[0][1]))

318 print("z dist = [{:#.3e},
{:#.3e}]".format(z0_range[0] - dataR[0][2],
z0_range[1] - dataR[0][2]))

319 print()
320 return dataR, dataP, dataE, best_R_half, best_P_half,

all_good_scores

C.2 Data Fitting Algorithm

1 import numpy as np
2 from numpy.linalg import norm
3 import matplotlib.pyplot as plt
4 from itertools import product
5 import copy
6 import pickle
7 import ezc3d
8 def f(R, k1, k2, u1, u2, M, gc, r1, r2): # -dH/dR, helper

function to keep everything manageable.
9 part_spring1 = -k1 * (norm(R - r1) - u1) * (R - r1) /

norm(R-r1)
10 part_spring2 = -k2 * (norm(R - r2) - u2) * (R - r2) /

norm(R-r2)
11 gravity = np.array([0, -M*gc, 0])
12 return part_spring1 + part_spring2 + gravity
13

14

15 def energy(R, p, k1, k2, u1, u2, M, gc, r1, r2):
16 return [M*gc*R[1],\
17 sum(p**2) / (2*M),\
18 k1/2 * (norm(R - r1) - u1)**2,\
19 k2/2 * (norm(R - r2) - u2)**2] # all the energies
20

21

67

C. Code

22 def simulate(R0, p0, parameters, make_steps = False,
stop_conditions = True):

23 spring_parameters, system_parameters, numerical_parameters =
parameters

24 k1, k2, u1, u2 = spring_parameters
25 gc, M, r1, r2, step_size, step_width = system_parameters
26 dt, N, _, integration_method, _, _= numerical_parameters
27 # Data arrays for position, momentum and energy, the latter

being 2d
28 step_array = np.array([2*step_size, 0, 0])
29

30 if norm(R0 - r1) >= u1: # only spring force if contracting
31 virtual_k1 = 0
32 else:
33 virtual_k1 = k1
34

35 if norm(R0 - r2) >= u2:
36 virtual_k2 = 0
37 else:
38 virtual_k2 = k2
39

40 # First step for both position and momentum using Backwards
+ Central

41 if integration_method == "central":
42 R1 = R0 + dt/M * p0
43 p1 = p0 + dt * f(R0, virtual_k1, virtual_k2, u1, u2, M,

gc, r1, r2)
44

45

46 elif integration_method == "RK4":
47

48 a1 = dt * f(R0, virtual_k1, virtual_k2, u1, u2, M, gc, r1
,r2)

49 b1 = dt / M * p0
50

51 a2 = dt * f(R0 + b1/2, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

52 b2 = dt / M * (p0 + a1/2)
53

54 a3 = dt * f(R0 + b2/2, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

55 b3 = dt / M * (p0 + a2/2)
56

57 a4 = dt * f(R0 + b3, virtual_k1, virtual_k2, u1, u2, M,
gc, r1 ,r2)

58 b4 = dt / M * (p0 + a3)
59

60 a = 1/6 * (a1 + 2*a2 + 2*a3 + a4)
61 b = 1/6 * (b1 + 2*b2 + 2*b3 + b4)

68

C. Code

62

63 R1 = R0 + b
64 p1 = p0 + a
65

66

67 # Calculating the energies
68 E0 = energy(R0, p0, virtual_k1, virtual_k2, u1, u2, M, gc,

r1, r2)
69 E1 = energy(R1, p1, virtual_k1, virtual_k2, u1, u2, M, gc,

r1, r2)
70

71 # Initiating the data-arrays with the first 2 values.
72 dataR = [R0, R1]
73 dataP = [p0, p1]
74 dataE = [E0, E1]
75 steps = []
76 prev_step = None
77

78 for i in range(1,N): # Running the simulation
79

80 # Conditions for termination
81 if stop_conditions == True:
82 if dataR[i][2] < r1[2] or dataR[i][2] > r2[2]: # Stop

if beyond feet
83 break
84

85 elif dataR[i][1] < 0: # Stop if y position goes
through the ground

86 break
87

88 elif dataR[i][0] > 1.1*step_size and make_steps ==
False: # Then a half a step has been completed

89 break
90

91 # There is no spring force if extended:
92 if norm(dataR[i] - r1) >= u1:# extend == no spring force
93 virtual_k1 = 0
94 else:
95 virtual_k1 = k1
96

97 if norm(dataR[i] - r2) >= u2:
98 virtual_k2 = 0
99 else:

100 virtual_k2 = k2
101

102 # Do a step if the next position is closer, stop if there
are two same steps in a row!

103 if make_steps == True:

69

C. Code

104 if norm(dataR[i] - r1) > norm(dataR[i] - (r1 +
step_array)):

105 if prev_step == "left":
106 print("Tried a double left step!")
107 break
108 steps.append(i)
109 print("Step left!", i)
110 r1 += step_array
111 prev_step = "left"
112

113 if norm(dataR[i] - r2) > norm(dataR[i] - (r2 +
step_array)):

114 if prev_step == "right":
115 print("Tried a double right step!")
116 break
117

118 r2 += step_array
119 steps.append(i)
120 print("Step right!", i)
121 prev_step = "right"
122 if integration_method == "central":
123 dataR.append(dataR[i-1] + 2*dt/M * dataP[i])
124 dataP.append(dataP[i-1] + 2*dt*f(dataR[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
125 dataE.append(energy(dataR[i], dataP[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
126

127 elif integration_method == "RK4":
128 R0 = dataR[i]
129 p0 = dataP[i]
130

131 a1 = dt * f(R0, virtual_k1, virtual_k2, u1, u2, M, gc,
r1 ,r2)

132 b1 = dt / M * p0
133

134 a2 = dt * f(R0 + b1/2, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

135 b2 = dt / M * (p0 + a1/2)
136

137 a3 = dt * f(R0 + b2/2, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

138 b3 = dt / M * (p0 + a2/2)
139

140 a4 = dt * f(R0 + b3, virtual_k1, virtual_k2, u1, u2,
M, gc, r1 ,r2)

141 b4 = dt / M * (p0 + a3)
142

143 a = 1/6 * (a1 + 2*a2 + 2*a3 + a4)
144 b = 1/6 * (b1 + 2*b2 + 2*b3 + b4)

70

C. Code

145

146 R1 = R0 + b
147 p1 = p0 + a
148

149 dataR.append(R1)
150 dataP.append(p1)
151 dataE.append(energy(dataR[i], dataP[i], virtual_k1,

virtual_k2, u1, u2, M, gc, r1, r2))
152

153 if make_steps:
154 return dataP, dataR, dataE, steps
155 else:
156 return dataP, dataR, dataE
157

158

159 def iterative_simulation(parameters, k_range, u_range): # Brute
force grid search within given parameters

160 # Unpacking parameters:
161 dt_exp_arr, exp_data_R, exp_data_P, system_parameters,

numerical_parameters = parameters
162 data_x, data_y, data_z = np.array(exp_data_R).T
163 data_px, data_py, data_pz = np.array(exp_data_P).T
164 dt, _, _, _, _, _ = numerical_parameters
165

166 # Now try to refind the k & u
167

168 gc, M, r1, r2, step_size, step_width = system_parameters
169 dt, N, mesh_discr, integration_method, _, _ =

numerical_parameters
170

171 best_score = 1e100 # Initially a large number
172

173

174 for k, u in product(np.linspace(*k_range, mesh_discr),
np.linspace(*u_range, mesh_discr)):

175 # Initial conditions
176 u1 = u2 = u
177 k1 = k2 = k
178

179

180 simulate_parameters = [[k1, k2, u1, u2],
system_parameters, numerical_parameters]

181 dataP, dataR, dataE = simulate(exp_data_R[0],
exp_data_P[0], simulate_parameters)

182 dataP, dataR, dataE = np.array(dataP), np.array(dataR),
np.array(dataE)

183

184 # Determine score and compare with current best score.
185

71

C. Code

186 score = 0
187 dataR = np.array(dataR)
188 dataP = np.array(dataP)
189 exp_data_R = np.array(exp_data_R)
190 exp_data_P = np.array(exp_data_P)
191 dt_arr = np.arange(0, dt*len(dataR), dt)
192

193 for i in range(0, len(exp_data_R)):
194 dt_exp_i = dt_exp_arr[i]
195 j = np.argmin(abs(dt_arr - dt_exp_i))
196

197 # print(exp_data_R[indx], indx)
198 score += norm(exp_data_R[i] - dataR[j])**2 +

norm(exp_data_P[i]/M - dataP[j]/M)**2 #/M to give
less preference to momentum, make them the same
order of magnitude

199

200 if score < best_score:
201 best_score = score
202 best_R = dataR
203 best_p = dataP
204 best_E = dataE
205 best_param = [k, u, score]
206

207 return best_R, best_p, best_E, best_param
208

209

210 def pos_mom_energy_plots(dataR, dataP, dataE, parameters,
string = "None", save = False, pos = True, mom = True, E =
True):

211 dataR, dataP, dataE = np.array(dataR), np.array(dataP),
np.array(dataE)

212 spring_parameters, system_parameters, numerical_parameters =
parameters

213 k1, _, u1, _ = spring_parameters
214 _, _, _, _, step_size, step_width = system_parameters
215 dt, _, _, _ = numerical_parameters
216 if pos:
217 plt.figure() # (x/y/z, t) plot
218 plt.plot(dataR[:, 0], label = "x position")
219 plt.plot(dataR[:, 1], label = "y position")
220 plt.plot(dataR[:, 2], label = "z position")
221 plt.legend()
222

223 plt.xlabel("Time index [-]")
224 plt.ylabel("r [m]")
225 plt.title("Position, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))

72

C. Code

226 if save: plt.savefig("20230410 position {} gait k={},
dt={}.pdf".format(string, k1, dt))

227 plt.show()
228

229 Etot = [sum(elm) for elm in list(dataE)]
230

231 if mom:
232 plt.figure() # (x/y/z, t) plot
233 plt.plot(dataP[:, 0], label= "x momentum")
234 plt.plot(dataP[:, 1], label= "y momentum")
235 plt.plot(dataP[:, 2], label= "z momentum")
236 plt.legend()
237

238 plt.xlabel("Time index [-]")
239 plt.ylabel("p [kgms$ˆ{-1}$]")
240 plt.title("Momenta, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))
241 if save: plt.savefig("20230410 momenta {} gait k={},

dt={}.pdf".format(string, k1, dt))
242 plt.show()
243

244 if E:
245 plt.figure()
246 plt.plot(dataE[:, 0], label = "Gravitational energy")
247 plt.plot(dataE[:, 1], label = "Kinetic energy")
248 plt.plot(dataE[:, 2], label = "Spring energy 1")
249 plt.plot(dataE[:, 3], label = "Spring energy 2")
250 plt.plot(Etot, label = "Total energy of system")
251 plt.legend()
252

253 plt.xlabel("Time index [-]")
254 plt.ylabel("E [J]")
255 plt.title("Energies, dt={}, k={}, u={}, sz={}, sw={}

".format(dt, k1, u1, step_size, step_width))
256 if save: plt.savefig("20230410 Energies {} gait k={},

dt={}.pdf".format(string, k1, dt))
257 plt.show()
258

259 def iterative_mesh_grid(parameters, k_range, u_range):
260 _, _, _, _, numerical_parameters = parameters
261 _, _, mesh_discr, _, convergence_rate, minimum_improvement =

numerical_parameters
262 virtual_parameters = copy.deepcopy(parameters)
263 step_k = abs(k_range[1] - k_range[0]) / (mesh_discr - 1)
264 step_u = abs(u_range[1] - u_range[0]) / (mesh_discr - 1)
265 old_best_score = 1000
266

267 counter = 0

73

C. Code

268 while step_k > 1e-8 and step_u > 1e-8: # A bit above machine
precision

269 counter += 1
270 print("Reiterating, step y = {:#.3e} and step z =

{:#.3e}".format(step_k, step_u))
271 # Run the simulation:
272 dataR, dataP, dataE, best_param =

iterative_simulation(copy.deepcopy(virtual_parameters),
k_range, u_range)

273 best_score = best_param[2]
274

275 # Update the mesh grid around the best found point
276 k_range = [best_param[0] - convergence_rate * step_k,

best_param[0] + convergence_rate*step_k]
277 u_range = [best_param[1] - convergence_rate*step_u,

best_param[1] + convergence_rate*step_u]
278

279 # Update the new step size:
280 step_k = abs(k_range[1] - k_range[0]) / (mesh_discr - 1)
281 step_u = abs(u_range[1] - u_range[0]) / (mesh_discr - 1)
282 if best_score != old_best_score and abs(best_score -

old_best_score) / old_best_score < minimum_improvement
and counter > 10: # if new coordinate only yields a
very small (relative) improvement, stop.

283 print("Insufficient improvement")
284 break
285 old_best_score = best_score
286

287 print("Best score: {:#.4e}".format(best_score))
288 print("where k={} and u={}".format(best_param[0],

best_param[1]))
289 print()
290 return dataR, dataP, dataE, best_param

74

	Introduction
	Theory
	Setup of a Three Dimensional Spring-Mass Model
	Equations of Motion of a Spring-Mass System
	Virtual Spring Constant
	Incorporating Movement by Taking Steps
	Periodic Properties of the Solution

	Implementation
	Numerical Methods
	Setup of Periodic Path Finding
	Scoring Method of PPFA
	Setup of Data Fitting
	Termination Criteria
	Parameter Estimation

	Data
	A Data set of 100 Self-set Gait Cycles
	Processing of the Data

	Results and Discussion
	Characteristics of the Model
	Fitting the Model to the Data

	Conclusion
	Bibliography
	Appendix
	Additional Figures
	Parameter Tables
	Code
	Periodic Path Finding Algorithm
	Data Fitting Algorithm

