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Abstract

Particle-driven gravity currents cause major geological problems. Turbidity currents are highly
erosive and can be damaging to structures on the sea bottom such as telecommunication cables.
Understanding the mechanisms of sediment transport and deposition is required to predict the
erosive powers of turbidity currents (and of the distribution of turbidite deposits) which are
fully dependent on the behavior of gravity currents. For this reason, the main question of this
thesis was formulated: Which physical parameters of the gravity current are of importance for
its behaviour?

The lock-exchange release experiment is a frequently used method to study gravity currents in a
laboratory and was also used in this thesis. In order to answer the main question, the following
parameters were investigated and their influence specifically on the 4 phases, the run-out length
and the PSD: particle size, bed roughness and temperature. The influence of particles size was
researched using mono-dispersed vs bi-dispersed experiments. In the bed roughness experiments,
sandpaper was attached to the bottom and compared to smooth bed experiments. Finally, to
investigate the influence of temperature on the gravity current, experiments with warm water
were compared to experiments with colder water.

From these experiments, the most notable results are summarized below.

PSD: For all experiments applies that at low concentration the particles segregate over the run-
out length of the gravity current. Smaller particles travelled further than the bigger particles
with a higher settling velocity. This does not occur at higher concentrations and the PSD over
the entire run-out length is similar.

Four Phases: In all experiments, the four phases could clearly be identified with one exception:
the first phase in the rough bed experiments was difficult to distinguish.

Run out length: Some interesting findings were made that were in line with literature: adding
fine particles to the mixture of the current cause the run-out length of the current to increase.
However, it was also found that if the initial concentration is increased, this effect decreases.
Furthermore experiments showed that an increase in temperature can cause the current to travel
less far when compared to experiments performed with water with lower temperature.

In the light of this research, the following recommendation are made: Temperature should be
taken into account for modelling gravity currents. Otherwise this can lead to an overestimation
regarding the run-out length and an underestimation of the deposit density. Furthermore, to get
more insight in the effect of the particle sizes in the currents, it would be highly recommended
to conduct more experiments with a greater difference between particle sizes. This would allow
for a better assessment of the magnitude of the effect of hindered settling

Obaid Abrahimi
Rotterdam, 2021






Table of contents

2

[1.1 Background| . . . .. ... ... ...
[[2 Experiments - lock exchange release] . . . . ... ... ... ............
1.3 roblem description| . . . . . . . ..
[1.4  Research questions| . . . . . . . .. ...

eor
T Navier-Stokes equations] . . . . . . v v v v i

[2.1.2 General Navier-Stokes equation| . . . . . . . ... .. ... .. ..
[2.1.3  Incompressible Newtonian fluids| . . . ... ... ... ... . ... ....
2.2 allow-Water Equations| . . . . . . . ... oo oo
2.2.1 ingle Layer|. . . . . . . . . .
2.2.2  Two-layer equations| . . . . . . . . ... L Lo
2.3 Settling velocity of particles| . . . . . . . .. oo L

[2.3.1 Forces acting on submerged particles| . . . . ... ... ... ... ... ..
|2.3.2 Settling of a single particle | . . . . . . v v v i
P33 Mindered Settling]. . . . . . . . . . .

12.3.4  Poly-dispersed mixture of particles| . . . . . ... ... ... 0.

10
10
11

13
13
13
14
14
15
15
17
19
19
20
20
21






List of Figures

[L.1 Structure of a gravity current.|. . . . . . .. ..o Lo Lo 9

2.1 Functional relation between particle Reynolds number and drag coefficient|. . . . 20







List of Symbols

~v  Light over heavy density ratio »1/p, [-]
4 Dynamic viscosity [kg/(m-s)]
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Chapter 1

Introduction

1.1 Background

A gravity current is a primarily horizontal flow driven by a density difference between two
fluids. This density difference can be caused by a temperature difference, chemical composition
or suspended materials in one of the two fluids [Simpson and Britter| (1979). When a density
difference is present, the lighter fluid is referred to as the ambient fluid. The structure of a
gravity current can be seen in figure The front region of the current is referred to as the
head and the fluid in the back that follows as the tail. A nose can often be distinguished in the
foremost point of the head [Simpson and Britter| (1979).

Figure 1.1: Structure of a gravity current.

There are different types of gravity currents; particle-driven currents and compositional gravity
currents. The suspension of particles is the driving force of particle driven gravity currents. For
compositional gravity currents, temperature differences or dissolved solutes such as salt are the
driving force. Examples of natural particle-driven gravity currents are deep-sea gravity currents
also called turbidity currents. These currents are responsible for the dispersion of sediment (from
coastal regions) to the deep sea. This type of current can also be found in artificial lakes and
can lead to reservoir sedimentation especially during flood season |Cesare et al.| (2001). Other
examples include pyroclastic flows from volcanic eruptions and avalanches. They can also be
found in more ordinary situations such as opening a door to a warmer space causing cold air to
flow into the less dense warmer air. Simpson and Mangal (1998)) provides numerous examples of
gravity currents both natural and artificial.

Besides occurring frequently in natural situations, gravity currents play an important role in
many man-made projects in engineering environments, deliberately or unplanned. These include
outflows of wastewater treatment plants and oil spillage which often have a negative impact on
the environment. Tomkins et al.| (2005)).

Thus, they have been a subject of extensive research over the years in order to better understand
and predict the behaviour and dynamics of gravity currents and the influence on the environment.

However, some fields are still relatively unexplored; research on the effects of particle sizes, bed
roughness and temperature differences is limited in comparison to research into the effects of



Introduction

density differences. An increase in bed roughness seems to decrease the front velocity (Peters
and Venart| (2000)), La Rocca et al| (2008]), |[Adduce et al| (2012) ) but the effects of a rough
bottom are yet to be completely understood. When the water temperature rises, the viscosity
changes which inevitably has effects on the gravity current. Both density and viscosity have an
inverse relationship with temperature. This means that at higher temperatures, the viscosity
and density decrease. When the density of seawater increases, the salinity increases as well, as
these have a positive relationship.

1.2 Experiments - lock exchange release

A frequently used method to study gravity currents in a laboratory is the particle-driven lock-
exchange release experiment Huppert and Simpson| (1980) , Rottman and Simpson| (1983)) ,
Hallworth et al| (1996) , |Shin et al.| (2004)) . A horizontal rectangular-shaped tank is divided
in two compartments by placing a vertical barrier in such a way that one of the compartments
is smaller than the other. Each compartment is filled with a fluid of a different density. The
lock compartment, which is smaller, is filled with a denser fluid and is held back by the barrier.
The barrier is then removed as quickly and smoothly as possible releasing the lock fluid into
the ambient fluid. The denser fluid will flow on the bottom of the tank while the ambient fluid
will flow above it in the opposite direction because of the heterogeneous hydrostatic pressure.
Besides the laboratory experiments, numerical modelling is also widely used to study gravity
currents (Adduce et al. (2012) , [La Rocca et al| (2012) )

1.3 Problem description

Particle-driven gravity currents cause major geological problems. Turbidity currents are highly
erosive and can be damaging to structures on the sea bottom such as telecommunication cables.
Understanding the mechanisms of sediment transport and deposition is required to predict the
erosive powers of turbidity currents (and of the distribution of turbidite deposits) which are fully
dependent on the behavior of gravity currents.

They also play an important role in engineering. The dredging field is frequently involved with
activities that can cause slurry flows which can transport sediment over large distances. These
gravity currents can deposit a layer of particles over the ocean floor, burying sea life in the
process. The effects on the environment can be detrimental. A good understanding of particle-
driven gravity currents, their evolution and factors affecting them, is needed in order to reduce
the occurrence of such problems.

Bonnecaze et al.| (1993) /Bonnecaze et al.| (1995), [Hallworth et al.| (1998) and Hallworth and
Huppert/| (1998)) have contributed to the literature on particle-driven gravity currents. However,
the experiments were performed using a mono-dispersed suspension. Furthermore, the currents
that were investigated were either homogeneous gravity currents or particle-driven gravity cur-
rents that involved the use of silicon carbide.

A more recent study on particle-driven gravity currents by MPJ [Stovers| (2016) was published
in 2017. The influence of the initial volume concentration on the run out length and the flow
velocity was investigated by performing lock-exchange experiments. Sand was used to create a
suspension. Furthermore, they determined the particle size distribution (PSD) of settled sedi-
ment on the bottom of the tank.

They found that at a higher initial volume concentration, there was no separation of particles
sizes in the sediment on the bottom. The experiments with lower initial volume concentrations
showed the opposite: the smaller particles traveled further than the bigger particles. Finally,
it was shown that the run-out length was proportional to the initial mixture/water level of the
experiment. The advice that was given to dredging companies following the results was that
offloading should be done at the highest concentration possible as this could be beneficial for

10



Introduction

both the environment and the production but more research was needed.

This thesis is a continuation of the research done by MPJ [Stovers| (2016]). The same tank was
used to carry out the experiments and the method of performing the experiments was kept the
same as far as possible. The analysing techniques were also very similar. Varying concentrations
were used in both studies. However, the focus in this thesis is certainly not the same. As men-
tioned before, the literature on the influence of particle sizes, bed roughness and temperature
influence especially is limited which is the reason these subjects are studied in this thesis.

The objective is to firstly identify the influence of the bottom roughness. In the next set of
experiments, the influence of the particles on the gravity current by using mono- and bi-dispersed
suspensions is investigated. In the final set of experiments, the influence of water temperature
will be studied. The results will be used to provide more extensive/detailed advice to dredging
companies as well as to improve the numerical model used in this previous thesis.

1.4 Research questions

The topic of this thesis is related the study of physical parameters that influence the behaviour
of gravity currents.The following research question is answered in this work:

Which physical parameters of the gravity current are of importance for its behaviour and can
the numerical model simulate a gravity current correctly with varying physical parameters?

In order to answer this question, a general understanding of the physical parameters that affect
the behaviour of gravity currents is required. In all probability the particle size(s)of the mixture,
the bed roughness and temperature could influence the behaviour of a gravity current. Therefore,
the sub questions that need to be answered in this thesis are:

1. What is the influence of particle size(s) of the mixture for the behaviour of a gravity
current?

2. What is the influence of bed roughness on the behaviour of a gravity current?

3. What is the influence of temperature of the mixture for the behaviour of a gravity current?

11
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Chapter 2

Theory

The theoretical background is formed by Shallow Water equations, which have been derived from
depth integration of the Navier-Stokes equations and based on certain assumptions. One of those
assumptions is the typical gravity current, known to be typically long and thin such that is has
horizontal length scale far greater than its vertical length scale. This influences the dynamical
properties such that the vertical directions are small and that a hydrostatic momentum balance
is established when the current propagates horizontally.

As the name already implies the driving force behind the current is gravity. However, it must
be noted that while the current propagates in horizontal direction the gravitational acceleration
is in horizontal direction. The horizontal gravitational acceleration occurs when fluids, gasses or
a combination of these are oriented in a horizontal direction. This causes hydrostatic pressure
that is different in each medium which results in a pressure difference in horizontal direction.
Throughout this report the particle driven gravity currents at the bottom of the ocean are
considered. The density difference between the fluids is dealt with through the addition of
particles in one fluid. The ambient and interstitial fluid is assumed to be fresh water, whereas
sand is considered to be the particle creating the density difference. Between sand and water
there is density difference e.g. sands density is 2650 kg/m? and that of water 1000 kg/m?. The
concentration of particles in suspension depends on the settling of the particles. However, due
to the fact that this behavior is space and time dependent this results in a complicated problem.
Eventually, the current will vanish once all particles have settled.

2.1 Navier-Stokes equations

The Navier-Stokes equations, founded and named after Claude-Louis Navier and George Gabriel
Stokes. The equations provides a mathematical model of the motion of a fluid and are derived
from Newton’s second law. The Navier-Stokes equation can be viewed as an application of
Newton’s second law.

2.1.1 Newton’s second law

Newton’s second law is defined as:
F=md (2.1)

With F being the force on a body, m the mass of the body and a the acceleration of the body.
Taking into consideration an in compressible fluid and constant volume, the density for mass can
be substituted and using the time-derivative of velocity as accelerations results in the following.

F d U (2,y, 2, t) (2.2)
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Where v is the velocity and the density. Applying the chain rule to the derivative of the velocity
equation results in
?_p(aﬁ 0V 0z OV dy aﬁ%>

o T Ty ot T o an (2.3)

Which may also be writing as:

?zp(a;+7v-7) (2.4)

2.1.2 General Navier-Stokes equation

For the body force ? in equation it is assumed that it consist of two parts. One part is caused
is fluid stresses caused by viscosity (Newtonian fluids) and the other part is formed by external

forces defined as f, where f is composed of gravitational and friction forces.
F=V.ot [ (2.5)

The stress tensor o can be divided into two terms. The first term is the volumetric stress term
that represent the hydrostatic pressure forces. The second term is responsible for shape changes
of the body and is called the stress deviator term. In equation the breakdown of the ¢ in
two terms is presented. The stress deviator term is composed of shear stresses as it determines
the body deformation. The volumetric stress shows the pressure forces perpendicular on each
plane of the volume, whereas the volumetric stress shows the pressure forces perpendicular on
each plane of the volume.
J;vz TC/Ey Trz 0 0 Ozx Twy Trz

p O |+ | Ty 0Oy Tys (2.6)
0 p

Tzx  Tzy Ozz

vy
Tzx TZ?J Oz

|
I
coR3

o= Tyz O Tyz =
!

When defining the stress deviator term as T, the stress tensor ¢ in the equation above can be
reduced to:
o=-pl+T (2.7
The general form of the Navier-Stokes equation is obtained by substituting equations and
27 into equation 24} 5
0
p(S) + (T - V) - Vp+V-TH+ f (2.8)

2.1.3 Incompressible Newtonian fluids

For this thesis incompressible Newtonian fluids are considered. In a Newtonian fluid the stress
is proportional to the rate of deformation of the fluid. The rate of deformation in x-direction is
presented below in equation, with u representing the viscosity of the fluid.

3ui an
T = 4 ) 2.9
I H ( 6£Ej 8{,62 ( )
Using the divergence of stress as shown in equation and the rate of deformation as presented in
equation the stress term can be calculated and results in the following.

ou ou v ou ow
One Tay Ta ) 2%@ 3y Jg o 0s + s
_ — ou ov ov ov Jw
Veio=uV-| Tyo 0Oy Ty =pu gy + gr , 28ya o Jar By (2.10)
u w v w w
Tzx Tzy Ozz 9 T oz 8z T By 25

By extending the divergence to the other directions applying the same method, the following is
obtained.
V-T=puVv (2.11)
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When equation |2.11]is substituted into the general formulation of the Navier-Stokes equation, the
Navier-Stokes eqution for an incompressibile Newtonanian fluid in conservative form is obtained.
This yields: =
0
(BE)+9- (7 7) = p VT 4 S (2.12)
Equation consists of four terms:

—_

) (‘9”7) +V- (p??), represent the inertial forces of the fluid.

2. —Vp, represents the pressure forces composed by normal stresses.

MV27, is the stress that causes motion due to horizontal friction and shear stresses.

@

4. 7 represent external forces on the fluid, which can include gravitional forces and wall-
friction forces.

It must be noted that the Navier-Stokes equation always is solved together with the continuity
equation:
Op
ot
In essence the contuinity equation represent the conservation of mass, whereas the Navier-Stokes
equation represents the conservation of momentum.

+V-(p7)=0 (2.13)

2.2 Shallow-Water Equations

These equations describe the evolution of an incompressible fluid in response to gravitational
and rotational accelerations. The solutions of shallow water equations represent many types of
motion. Due to the fact that these equations have been used for decades the complete derivation
of the equations from the Navier-Stokes Equations is often omitted in articles and publications.
This section is dedicated to present the physical assumptions and consequences of the shallow
water equations on the Navier-Stokes Equations (Vreugdenhil| (1994).

2.2.1 Single Layer

Figure presents a visual representation of a single layer. Since the density differences are mini-
mum, the Boussinesq approximation can be used. This approximation assumes that variations
in density only give rise to buoyancy forces and hence have no effect on the flow field. With the
Boussinesq approximation the system can be considered as a homogeneous incompressible fluid.
With the use of the expansion equation and partial differentiation in all direction, the following
is obtained:

Ou ou Ou ou Ip 9
=) = 2.14
<8t+ . +U8y+waz) % + uVou+ fy ( )
ov ov ov ov B Op 9
p(a +U%+Uafy +’U)$) 6 + uV ’U"‘fy (215)

(87w+u87w+v87w+w87w>_ Op
PUot "%z Ty T2 92

Some basic assumptions for this equations are as follows:

+ uViw + f, (2.16)

1. First of all it is assumed that the depth and the width of the current are very small
compared to the length of the current. In essence this means that the flow is essentially
one-dimensional and parallel to the walls and bottom of the channel. Resulting in the fact
that all terms in equation reduce to zero. The dynamics of the current is mainly driven by
the horizontal processes in x-direction, accelerations in the vertical direction are small and
a hydrostatic momentum balance is maintained when the current propagates horizontally.
All terms in equation including the vertical velocity can be neglected due to the fact that
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the depth of the current is assumed to be very small compared to the length. This reduces
the hydrostatic balance with gravitational force pg as the only vertical force acting on the
fluid:

dp

0= ~3, MY (2.17)

Since all the term in equation that involve the derivative in y or z-direction can be neglected
such that equation reduces to:

ou ou Op 9

— tu— ) =—= Vu 2.18

o(Gr +ugy) == gg THT U S (2.18)

2. It is also assumed that the variation of the water height is very small. Since no waves
are present and the bottom is flat, the total water height is equal to h. Integration of
equation over the height h results in a expression for the pressure p with py the constant
atmospheric pressure.

Substitution of equation into equation results in

ou ou oh
e = —g— + f4 2.20
ot Yo~ Yon T (2.20)
The shallow water equation is obtained by integrating equation over the height of the water
column (0,h) and yields
Ouh Ou’h 1 Oh?
= 2.21
ot tu ox + 99 bx J ( )
3. Another assumption is based on the dominate forces which influence the behaviour of the
current. These forces can be either inertial or viscous forces, which can be distinguished
using the Reynolds number

UL
_V

Re (2.22)

In this equation U, L and v are the typical velocity, length and kinematic viscosity of the
current respectively. The height of the current is the typical length scale. In the case that
Re is larger than 1 than the current is condered inertial or in viscid, whereas the current
is considered viscous when Re is equal or smaller than 1. Typically a current consisting
of water is in the interial regime. In the experiments carried out the initial height is large
and increasing the height of the current increases the hydrostatic pressure difference which
in turn increases the velocity of the current resulting in a even higher Reynolds number.
Finally the current will spread and the height and speed will decay at the end of the
current and the viscous regime will dominate. Hence, it can be assumed that the current is
inviscid. Resulting in the fact that the viscous force term p can be neglected and reducing
equation to 5 5 5
U U
p(5 +uge) = s+ 1o (2.23)
4. Finally it is assumed that fluids are homogeneous. This mean that the particles in suspen-
sion are distributed evenly across height and length before the release of the suspension
into the ambient field. The problem can be schematized by the release of a well mixed
suspension behind a lock gate. The density difference between the suspension and the am-
bient fluid will create a current that propagates along the bottom of a rectangular tank of
constant volume. The current and ambient fluid are both of constant volume. The density
of the ambient fluid is considered constant and the density of the current may vary over
length and time as particles will be able to settle out from the current and is given by:

pc(¢) = (b(xvt)pp + (1 - (b(x’t))pa (2'24)

With p, is the density of the ambient fluid, p, is the density of the particle and ¢ is
the volumetric concentration of particles. Since the density difference between the fluids
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generates hydrostatic pressure difference, the gravitational force term takes form of the
reduced gravity ¢':
pe(9) — pa

g(d)=g- o (2.25)

Summary of single layer shallow water equations
Applying the reduced gravity results in the following shallow water equations:

Continuity equation
oh 0

— 4+ —(uh) =0 2.26
e G (2.26)
The continuity equation consists of the following two terms:
. . 6h
1. the change of height over time, %7
2. the advection of height, %(uh)
Conservation of momentum equation

duh  Ouh . 10h?
ST mela ACOb (2.27)

The Conservation of momentum equation consists of the three terms:

. . Ouh
1. the change of velocity over time, “5*

2. the advection of momentum, agih (uh)

3. the hydrostatic pressure gradient term, g’ (d))%%—}f

Particle conservation

The concentration will vary throughout the current due to the fact the gravity current is particle
driven and given that particles settle from the current. In this process the entrainment of water
as well as the detrainment of water from particles to the top layer are neglected. Since the
velocities just above the bed are insufficient the re-suspension of particles in the current is also
neglected.It is also assumed that current speeds are sufficient to keep the flow turbulent such that
a vertical uniform particle concentration is sustained through turbulent mixing.Furthermore it is
assumed that particles only leave the current at the bottom where viscous forces are greatest and
velocities are the smallest. The introduction of particles requires and additional conversation
equation, which is presented below.

0 (uph) = —vs (2.28)

0
§(¢h) + e

In which vy is the term that accounts for the settling velocity of the particles and represent the
settling velocity vs.

2.2.2 Two-layer equations

In this research the effects of the overlying fluid will be taken into account. The reason for this is
that the ambient layer is comparable to the height of the intruding gravity current. This implies
that the two layer shallow water equations will have to be used instead of the above explained
single layer shallow water equations. In the two layer shallow water equations the effects of
the upper and in the opposite direction flowing fluid are considered. In order to determine the
system of equation for the two-layer situation the approach of will be used.

Similar to the single layer shallow water equations the two-layer shallow water equations also

comprises of a conversation of mass equations and a conservation of momentum equations. In
the two-layer shallow water equations a conservation of mass and momentum of both layers is
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required.

Following the same process as earlier result in following shallow water equations for a two layer
fluid.

Continuity equation

Ohe | D
Oh, 0 (2.
6t + %(uaha) =0

Momentum equation

Ou, Ou, 1 Opo Oh,

ot " "or ~  p.ox Jox (2.30)
8ua+u dug _ 10py  Ohg '
ot “or  pe Ox e

In the equations above subscript ¢ represent the current and subscript a represent the ambient
fluid. Equations presents the conservation of mass of the two layers and equation the conserva-
tion of momentum of both layers in a hydrostratic pressure field.

The momentum equation consists of the following four terms for each layer:

. . )
1. the change of velocity over time, %

2. the advection of momentum, ug—;‘

3. the horizontal pressure difference, —%%

4. the hydrostatic pressure gradient term, —g%

The height of the layers are related to each other by a fixed total depth H due to the fact
the volume of the tank is fixed and the volume of both layers is constant. This results in the
following expression for the total depth H:

H = he(z,t) + ho(,1) (2.31)

Because of the constant volume properties and the no flow at the begin wall (u(0,t) = 0)
condition, the following equation can be deduced:

Ue(z, t)he(x,t) + ug(x, t)he(x,t) =0 (2.32)

By combining equation [2:30] with equations [2.31] and [2:32] a combined momentum equation can
be obtained as a function of the height and velocity of the current only. It is assumed that all
velocities and heights will be that of the dense current intruding the ambient fluid.

Combined momentum equation

[1+& h ]‘?;: {1 p“h(HJrh)} Ou [ p“( i )3“2}8}1—0 (2.33)

oo H—h T oo (H—n21%x T p \H—n) Hlox ~

Initial and boundary conditions
In order to solve the equations initial conditions need to be defined at ¢t = 0 as well as boundary
conditions at * = 0 and z = L. It must be noted that the boundary conditions are reflective

boundaries. The initial conditions as presented below in equation are stated such that the height
of the suspension behind the lock-gate positioned at zq is equal to the total height H and that
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the height of suspension on the other side of the lock-gate is zero. Velocities are equal to zero
at the beginning and end of the tank as can be seen in equation below.

u(x =0,t) =0 (2.34)
u(z = L,t) =0 '
H, if0<zx<ux.
h(z,t = 0) = {0 s (2.35)

Combined momentum equation with friction

In the model no external forces are present that retard the current. It is necessary to include
a friction term to the momentum equations to represent all friction experienced by the current
such as friction from the bottom and walls. By using the classical Manning formulation which
incorporates n,,, the Manning roughness coefficient(Manning et al.| (1890)) a friction term can
be added to the momentum equation as presented in equation. However, it is very difficult to
determine a suitable value for the Manning friction coefficient.

ot

[1 pa h }Gu {1 pah(H+h)}u5‘u [/7pa( H )3u2}8hin$n
ox

Pa_N ECRAC )] Pa( B N0 M 2.
Y H—h pe (H —h)? e~ oo \@—n) mlax = pasvlul (2:36)

The number of equations that needs to be solved is 3, which are the continuity equation, the
equation of particle conservation and the combined momentum equation with friction.

2.3 Settling velocity of particles

2.3.1 Forces acting on submerged particles

The nature of forces exerted on solid bodies and small particles as they move through fluids will
be described in this subsection. Besides the gravitational force, the particles experience forces
that find their origin in either particle-fluid interaction or in particle-particle interaction. Buoy-
ancy, drag and lift force are the forces that originate from the particle-fluid interaction. Forces
that arise from the particle-particle interaction are transmitted through via physical contact of
the particles in the form of inter-particle stress.

Since the ratio between the channel diameter and the particle size D/dsg ~= 2000 the wall
friction experienced by a settling particle can be neglected (Di Felice| (1996))). In addition, the
flow is regarded to be uniform, which means the velocities are constant and the particles will
not experience lift force.

The total sum of forces acting on a single particle in steady state is equal to:
FD+FB—Fg=O (2.37)
The following three terms can be distinguished

1. The gravitational force, Fy, follows from applying Newton’s second law, ' = ma, and is

determined as: P
T
Fy = pp=¢-9, (2.38)

where p,md*/6 is equal to the mass of a spherical particle, in which rho, is defined as
the particle density and d as the particle diameter. The acceleration is defined as the
gravitational acceleration g.

2. The buoyancy force, Fg, is an upward force exerted by a fluid that opposes the weight of
an immersed object. The submerged weight of a particle is the sum of the gravitational
and the in opposite direction acting buoyancy force. The submerged weight of a spherical

can be determined with
wd®

Fg=(pp — Pa)?g (2.39)
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3. The drag force, Fp, depends on the viscosity of the fluid as well as the size and the
shape of the particle. Drag force is experienced when the surrounding fluid flows along
the particle and therefore is a function of the relative velocity that the fluid has to the

particle: v, = vy — v, , where vy is the fluid velocity and v, the particle velocity. The drag
is described by the following equation:

1
Fp = §CD7rd2vr\vr\pa (2.40)

The drag coefficient Cp in the above equations depends on the particle Reynolds numbers,
which is given by
_ palvrld

Re
P [

(2.41)

2.3.2 Settling of a single particle

Various studies and experiments have been carried out to find a correlation between the particle
Reynolds number and the drag coefficient. [Ferguson and Church| (2004) Ferguson and Church
have found an equation that can be used to determine the settling velocity of a single particle
over a wide range of particle Reynolds numbers Re, and yields:

Agd?

T O+ O AGE

where A denotes as the submerged specific gravity and is equal to A = (pp=pa) Furthermore, v
denotes viscosity of the water. The terminal settling velocity of a single particle vy is equal to
the relative settling velocity v, and the coefficients for natural sands are C; = 18 and Cs = 1.

Vo (2.42)
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Figure 2.1: Functional relation between particle Reynolds number and drag coefficient

2.3.3 Hindered Settling

The settling velocity decreases when a large concentration of particles is present. The particles
interact with the fluid as well as other particles, which is known as hindered settling. The
influence of the concentration on the particle settling velocity has been found by |[Richardson and
Zaki| (1954) and yields:

vs =vo(l — )" (2.43)
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In which the exponent n depends on the Reynolds particle number and is obtained as follow:

AT+ 0.41Re0.T5
"~ 1+0.175Re0.75

n (2.44)

See [Rowe| (1987 for a more detailed explanation about the exponent.

2.3.4 Poly-dispersed mixture of particles

A mixture in which particles of different sizes are present, is called a poly-dispersed mixture of
particles. These particles affect each other during settling. The method of (Ferguson and Church
(2004) ;Rowe| (1987))) is only valid for mono-dispersed mixtures. In order to determine the effect
of a poly-disperse mixture the approach of (Smith (1966])) is used. According to this theory,
when a particle settles, the surrounding water will have a velocity in the opposite direction of
the particle due to the in compressible nature of the fluid and particle. As a results the water
will have to flow in the opposite direction of the particle to fill the void left by the particle in
order to fill the volume that was previously occupied by the particle. The settling velocity of a
particle is determined as the sum of the water velocity v,, and the relative velocity of the particle
to the ambient water v,.:

Vs = Uy + Uy (2.45)

Since the fluid is in compressible and the densities are constant, mass conversation results in
the total volume displacement being equal to zero. Therefore the volume fraction of particles
leaving the domain with the settling velocity v, must be equal to the volume fraction of water
entering the domain at the water velocity:

Pvs = —(1 — D)oy — Uy = 7 i) ¢Us (2.46)
Substitution in equation (2.45)) results:
1—¢ ¢ 1
v “(17¢+1f¢) Y1 (2:47)

Substitution of equation([2.43)) in this expression results in the following expression for the relative
velocity of a single fraction:
oy = wo(1 — )" (2.48)

The method of Mirza and Richardson| (1979) showed that when dealing with a poly-disperse
mixture of particles the relative velocity of fraction ¢ can be determined using equation
with ¢ the total concentration.

Urg = U()’Z‘(l — qf))ni_l (249)

Using the relative velocity of each fraction as determined by equation (2.49)) and the total volume
displacement being zero as was found in equation ([2.46]), a formulation of the settling velocity
for each fraction ¢ is obtained and yields:

N

Vs, = Z ¢kvr,k + Ur,i (250)

k=1

In this equation ¢y is the concentration of fraction k, whereas v, is the relative velocity which
is determined per fraction using equation (2.49). Finally, this equation uses a summation of N
different fraction of particles sizes.
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Chapter 3

Numerical verification

In this chapter the verification of the numerical model, as developed and implemented by |Stovers
(2016)), is presented. Firstly the numerical method that describes a particle-driven gravity cur-
rent is discussed in paragraph[3.1} Also the derivation of the numerical model and the discretized
numerical model are presented in paragraph As the numerical model is usable for all cases
regarding particle-driven gravity currents, the verification of the numerical method should be
performed by verifying all variables of influence separately.

3.1 Numerical model

A two dimensional gravity current is induced in a tank by the release of a well mixed suspension
of density p. into an ambient fluid of a lesser density p,. Both ends on the left and right side of
the tank are restricted by vertical walls. Both fluids are of constant volume and it is assumed
that both fluids are inviscid and incompressible. The flow of both fluids is assumed to be gov-
erned by the balance between buoyancy and inertial forces. Viscous forces and forces due to
entrainment are therefore neglected. After removing the lock, the heavier fluid is released into
the ambient fluid and the gravity current propagates along the horizontal plane at the bottom of
the tank. Subsequently, the length of the current becomes much greater than its height, which
leads to very small vertical accelerations. On that basis, a hydrostatic pressure distribution is
assumed. Moreover, it is concluded that a gravity current is a very complex physical problem,
for which a numerical model is restricted to certain assumptions that only describe the main
driving forces behind the current.

In this research the height of the ambient layer is comparable to the height of the intruding
gravity current. As elaborated in paragraph the effects of the overlying fluid have to be
taken into account. This means that the two-layer shallow water equations should be employed
instead of the single-layer shallow water equations. The two-layer shallow water equations take
the effects of the upper and in the opposite direction flowing fluid into account.

The numerical model that will be used, is presented in The method that will be used in
order to discretize the equations that describe the gravity current are presented in section [3.1.2]
Finally, the discretized model is presented in section [3.1.3}

3.1.1 Numerical method

In order to choose a numerical method that is able to simulate the motion of both the mixed
suspension and the ambient fluid, the numerical method of choice should satisfy certain require-
ments. Particularly, the numerical method should be able to handle discontinuities in this system
of hyperbolic differential equations and initial conditions, such as shocks and jumps. Further-
more, the accuracy of the numerical representation should be sufficient.
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Naturally, there are multiple numerical methods can be chosen to model a system of the hy-
perbolic differential equations of a two-layer shallow water problem. However in this paragraph
only two numerical methods, namely the Lax-Friedrich’s and the Lax-Wendroff schemes, will be
discussed, as these are traditionally used for modelling gravity currents.

e Lax-Friedrich’s scheme:
The Lax-Friedrich’s scheme is a first order method, which is a transformation of the uncon-
ditionally unstable forward-time central-space scheme (FTCS) that uses spatial averaging
to obtain a conditionally stable scheme.

Advantages:
— The spatial averaging serves as a numerical dissipation that represents viscosity.
Disadvantages:

— The numerical dissipation causes the solution to be very smeared and lose amplitude.
Additionally, the loss of amplitude is reinforced by the discontinuous nature of the
initial conditions.

— With a refined grid the accuracy of the scheme is proved to be more than sufficient.

See Wu et al.| (2011) for more information about the generalised Lax-Friedrichs method.

e Lax-Wendroff scheme:
The Lax-Wendroff scheme is an explicit second order method, wherefore the spatial and
temporal discretization is combined in order to globally achieve second order. This results
in a method that is stable and classically used for problems that require shock-capturing.

Advantages:
— Increased accuracy. More efficient
Disadvantages:

— Due to the discontinuous character of the problem under consideration oscillations
are bound to occur in the solution. Predominantly, the oscillations will arise around
the discontinuity. Due to the oscillations the concentration and height of the mixed
suspension become negative which is physically impossible.

See [LeVeque et al.| (2002]) for more information about the Lax-Wendroff scheme.

The advantages and disadvantages of both the Lax-Friedrich’s and Lax-Wendroff schemes are
considered in the choice of the numerical method that will be used for the numerical model.
Due to the physical impossibility of a negative concentration and height, it is chosen to use the
generalised Lax-Friedrich’s scheme rather than Lax-Wendroff scheme.

3.1.2 Discretization method

As stated in section [3.1.1] the Lax-Friedrich’s method is a modification of the unconditionally
unstable forward-time central-space scheme. The forward-time central-space scheme has a second
order accuracy in space and a first order accuracy in time. The scheme uses cells for which the
cell center’s are located at x = ¢ and the cell boundaries are located at x =i — % and x =1+ %
Furthermore, the forward-time central-space scheme is an explicit method, which means that
the solution at time step ¢ = n + 1 is only dependent on the solution at the current time step
t=n.

3.1.3 Discretized model

The two-layer shallow water equations are derived in paragraph In this subsection the
discretized model is presented. The discretized model consists out of the discretized two-layer
shallow water equations, the boundary conditions and the initial conditions. Since this thesis
is a continuation of the thesis of |Stovers| (2016]), the same discretization model is used. The
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elaboration of the discretization model can be found in the thesis of [Stovers (2016).

Differential equations:
The following three constants are used in the differential equations describing the continuity and
momentum of the fluid and the particle conservation.

A=0.1
B=0.1 (3.1)
C=1

Continuity equation:

. Ah;_1+ Bh;+ Chiyy At
hptl = A+B+C - 2Ax (hig1tivr — hio1ui,) (3:2)

Momentum equation:

Pa hi
D; = |1
|: - pei H — hi]
a hi (H + h;
E; = 1_L(7+2)
Pecyi (H—hi)
2
Fi z%ui\uﬂ (33)
Au;_1 + Bu; + Cu; At E;
n+l _ i—1 7 i+1 o ) .
Yi TTTA+B+O) 2Az D, " (i1 = wiz1)
At G; At
L Ty Y
2A2 Di( " ) D,

Particle conservation equation:

w1 _ A[®h]; 4 + B[®h], + C[@A],, At
(oA} = (A+B+C) = o

u®hl; | — [uPh],_|) — Atv,;®;  (3.4)

Boundary conditions:

ho =hi (3.5)
2-1-1 =hZ
, 1,
iy =5 (uig +uf)
: . (3.6)
uly =g (uf + )
P =07
o _gn (3.7)
L+1 —*L

Initial conditions:

The height and concentration is dependent on the experiment on hand. The particles are assumed
to be homogeneously mixed in the water. Furthermore, the velocity of the particles is assumed
to be zero at t = 0.

ud =0 (3.8)
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