
A Workload Model for MapReduce

Thomas A. de Ruiter

A Workload Model for MapReduce

Master’s Thesis in Computer Science

Parallel and Distributed Systems Group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Thomas A. de Ruiter

2nd June 2012

Author
Thomas A. de Ruiter <thomas@de-ruiter.cx>

Title
A Workload Model for MapReduce

MSc Presentation
11th June 2012

Graduation Committee
Dr. ir. D. H. J. Epema Delft University of Technology
Dr. ir. A. Iosup Delft University of Technology
Dr. ir. F. A. Kuipers Delft University of Technology

mailto:thomas@de-ruiter.cx

Abstract

MapReduce is a parallel programming model used by Cloud service providers for
data mining. To be able to enhance existing and to develop newMapReduce sys-
tems, we need to evaluate the performance of these systems. To this end we intro-
duce in this work the Cloud Workloads Archive Toolbox. This toolbox facilitates
the analysis of MapReduce workload traces, generation of realistic synthetic work-
loads, and the evaluation of MapReduce systems in simulation. We present an
overview and analysis of real world MapReduce workload traces, we propose a
model for MapReduce workloads, we describe the developmentof the toolbox, and
we present an experiment in which we use our toolbox to evaluate two MapReduce
schedulers.

vi

Preface

This thesis is the final result of a graduation project and completes the master’s de-
gree programme Computer Science – with specialization in Parallel and Distributed
Systems – of the Faculty of Electrical Engineering, Mathematics and Computer
Science at Delft University of Technology.

I would like to use this preface to thank the graduation committee for their guid-
ance, advises, and critics – especially Alexandru, for always being optimistic, and
for spending huge amounts of red ink to enhance the quality ofmy work. Leonie,
my parents, family, and friends, for their support, friendship, and their patience.
My fellow students, for the conversations and coffee-breaks. The owners of the
real-world workload traces used in this thesis, for making the traces available to
science. The UC Berkeley AMP Lab people, for providing access their collection
of workload traces. And finally Boxun, for sharing his Matlabskills with me.

Thomas de Ruiter

Delft, The Netherlands
1st May 2012

vii

viii

Contents

1 Introduction 1
1.1 MapReduce . 1
1.2 Real-World MapReduce Workloads 3
1.3 Goals . 3

1.3.1 Research Questions . 4
1.3.2 Technical Objectives . 4

1.4 Our Approach . 4
1.5 What Has Been Done Before? 5
1.6 Thesis Outline . 6

2 State of the Art 7
2.1 MapReduce Studies . 7

2.1.1 MapReduce Performance Evaluation 7
2.1.2 MapReduce Workload Models 9
2.1.3 MapReduce Workload Generation 10
2.1.4 MapReduce Simulators 10
2.1.5 MapReduce Schedulers 11

2.2 Other Workload Modeling Studies 12
2.3 Other Trace Archives . 12

3 MapReduce Analysis Toolbox 15
3.1 Trace Import . 15

3.1.1 Data Format for the Cloud Workloads Archive 15
3.1.2 Import Scripts . 17
3.1.3 Executable Identification 17

3.2 Trace Analysis . 19
3.2.1 Theanalyze Tool . 19
3.2.2 Utilities . 20

3.3 Workload Model Parameter Fitting 21
3.4 Realistic Synthetic Workload Generation 22
3.5 Simulation . 22
3.6 Concluding Remarks . 22

ix

4 Workload Analysis 23
4.1 Metrics and Breakdowns . 23

4.1.1 Notable Metrics . 23
4.1.2 Notable Breakdowns . 25

4.2 Real-World Workload Traces . 25
4.2.1 Social Network 1 . 26
4.2.2 Social Network 2 . 30
4.2.3 Yahoo! M-Cluster . 33
4.2.4 Google . 41
4.2.5 Comparison all Workload Traces 44

5 MapReduce Workload Modeling 53
5.1 Why Model? . 53
5.2 Statistical Modeling . 54

5.2.1 Distributions . 54
5.2.2 Direct and Indirect Modeling 55
5.2.3 Goodness of Fit . 55
5.2.4 Selection of the Best Fit 56
5.2.5 Correlation . 57

5.3 Our Statistical MapReduce Workload Models57
5.3.1 The Simple Model . 58
5.3.2 The Complex Model . 58
5.3.3 The Relaxed Complex Model 62
5.3.4 The Safe Complex Model 62
5.3.5 Modeling Results . 63

5.4 Synthetic MapReduce Workload Generator 69
5.4.1 Procedure using the Simple Model 69
5.4.2 Procedure using the Family of Complex Models 69

5.5 Concluding Remarks . 72

6 Building Better Systems 75
6.1 Assessing MapReduce Systems in Simulation75

6.1.1 Overview of MapReduce Simulators 76
6.1.2 Mumak, with the help of Rumen 76
6.1.3 Mumak Selected! . 78

6.2 Experimental Setup . 78
6.2.1 Simulated Workloads . 79
6.2.2 Topology of the Simulated Cluster 81
6.2.3 Configuration of the Simulated Scheduler 81
6.2.4 Evaluation Metrics . 82

6.3 Experimental Results . 82
6.3.1 Simulator Validation Through Operational Profile 82
6.3.2 Analysis of Job Response Times 85
6.3.3 Analysis of Cost . 88

x

6.4 Concluding Remarks . 92

7 Conclusion 93
7.1 Overview . 93

7.1.1 The Research Question 93
7.1.2 The Technical Objectives 94
7.1.3 Experimental Results . 95

7.2 Reflection . 95
7.2.1 Selection of Mumak . 95
7.2.2 The Need for a Complex Model 95

7.3 Recommendations for Further Research 96

Bibliography 97

A Result Availability 103
A.1 Obtaining the Cloud Workloads Archive Toolbox 103
A.2 Dependencies . 103
A.3 Installation . 104
A.4 Creating a CWA “Project” . 104

A.4.1 Directory Structure . 104
A.4.2 Configuration File . 105
A.4.3 Example Usage . 105

A.5 General Usage . 105
A.6 Contributing . 106

B Data Format for the Cloud Workloads Archive 107

C Validation of the Pseudo-Random Number Generator 111

D Modeling Results 113
D.1 Directly-Modeled Properties . 113
D.2 Indirectly-Modeled Properties 124

D.2.1 Complex Model . 124
D.2.2 Relaxed Complex Model 129
D.2.3 Safe Complex Model . 135

xi

xii

Chapter 1

Introduction

Many Cloud service providers have a need to analyze large amounts of data, for ex-
ample to evaluate advertisement campaigns. The MapReduce programming model
is widely used as a solution for these data mining problems. We would like to be
able to evaluate and compare existing, enhanced, and new MapReduce systems. To
this end we introduce in this work a toolbox that facilitatesthese analyses.

1.1 MapReduce

MapReduce is a programming model for parallel computing developed by Google
[1]. The need to perform analyses on large amounts of data is not specific to Cloud
service providers, but the MapReduce programming model wasdeveloped with this
specific audience in mind, apart from Google it is known to be used by for exam-
ple Yahoo!, MySpace, Facebook, and Twitter. Facebook [2] uses MapReduce for,
among other, business intelligence, spam detection, and advertisement optimiza-
tion.

The name MapReduce originates from the higher-order1 map and reduce func-
tions originally, found in functional programming languages. A MapReduce pro-
gram is in fact the combination of a map and a reduce function,the map function
is applied on the input data and the reduce function is applied on the output of the
map function. Figure 1.1 gives an overview of how MapReduce works:

1. A MapReduce job consists of a map function, a reduce function, and input
data (on a distributed file system).

2. First, the input data are partitioned into smaller chunksof data.

3. Then, for each chunk of input data, a “map task” runs which applies the map
function to the chunk of input data. The resulting output of each map task is
a collection of key-value pairs.

1Higher-order functions are functions that have a function as argument.

1

SDUWLWLRQ

$�&�%�&�%�'�&�$�%�'�'�&�%�$
LQSXW�GDWD

SDUWLWLRQHG�LQSXW�GDWD

PDS�IXQFWLRQ UHGXFH�IXQFWLRQ

PDS�RXWSXW�SDLUV

�$

VKXIIOH

UHGXFH�RXWSXW�GDWD

UHGXFH

PDS

VKXIIOHG�RXWSXW�GDWD

MRE

H[HFXWLRQ

RXWSXW

�

�

�

�

�

�

�%

�&

�$ �% �& �% �' �& �$ �% �' �& �% �$

�$ � � �% � � � �& � � �' �

�$ � � �$

�$ �% �& �'

$�&�%�& %�'�&�$ %�'�'�& %�$

$�&�%�&

Figure 1.1: Overview of MapReduce.

4. The output of all map tasks is shuffled, that is, for each distinct key in the
map output, a collection is created containing all corresponding values from
the map output.

5. Then, for each key-collection resulting from the shuffle phase, a “reduce
task” runs which applies the reduce function to the collection of values. The
resulting output is a single key-value pair.

6. The collection of all key-value pairs resulting from the reduce step is the
output of the MapReduce job. (In Hadoop the reduce outputs are merged
after the the job has finished, when the user uses the “getmerge” command
to get the output from the distributed file system.)

The main place where parallelization is exploited in MapReduce is during the run-
ning of the map and reduce tasks, depicted as respectively steps three and five in
the above description. Although in the above overview the steps two to six seem
to be distinct phases, the more advanced MapReduce implementations run these
phases in parallel, a reduce task can for example start working as soon as the first
key-value pair is emitted by a map task.

Map tasks and reduce tasks can be easily parallelized since the individual map
and reduce tasks run in isolation. Because of this isolation, MapReduce is also fault
tolerant, as failed tasks can be rescheduled without any problem.

2

Although in principle any problem can be formulated as a MapReduce job, it is
not suitable for every problem. Since every task runs in isolation, the only usual
way to communicate is using the task input and output. This makes a Poisson
solver, that can be implemented in a few lines of C code for an MPI application on
a cluster, complex to implement in MapReduce. On the other hand, the classical
MapReduce word count example, is easier to implement in MapReduce than by
using MPI.

There exist multiple implementations of MapReduce. Googlehas developed
a private implementation, but there also exist various open-source implementa-
tions, of which the probably best known implementation is provided by the Apache
Hadoop2 project. There are also tiny implementations of MapReduce,like for ex-
ample mincemeat.py3, which can be useful for simple ad-hoc experiments, and
there exists even an implementation of MapReduce in bash script, called bashre-
duce4.

MapReduce runs generally on dedicated clusters, but you canalso run MapRe-
duce on virtual “clusters” in a cloud. Amazon offers for example Amazon Elastic
MapReduce5, a service which automatically configures a virtual MapReduce clus-
ter on top of their cloud resources. Running MapReduce jobs in grid environments
is also being researched, see Section 2.1.5.

1.2 Real-World MapReduce Workloads

As basis for this research we look at the execution of MapReduce jobs in real world
MapReduce clusters. Information about this execution (like job arrival, start, and
finish times, network usage, disk usage, etc.) is obtained from known cloud service
providers. The obtained workloads are collected in the Cloud Workloads Archive;
we leave the publication of this archive for future work.

Because the workload information is received in the form of database dumps and
log files, all in different formats and with various levels ofdetail, the information is
converted into a standard format, the Data Format for the Cloud Workloads Archive
(see Appendix B). The data might already have been anonymized by the source of
the data, otherwise it is anonymized during the conversion into the Data Format
for the Cloud Workloads Archive. All tools in our toolbox make use of this data
format.

1.3 Goals

Workload modeling is instrumental in the evaluation of existing MapReduce sys-
tems, and to developing and comparing of new and enhanced MapReduce systems.

2http://hadoop.apache.org/
3http://remembersaurus.com/mincemeatpy/
4http://blog.last.fm/2009/04/06/mapreduce-bash-script
5http://aws.amazon.com/elasticmapreduce/

3

http://hadoop.apache.org/
http://remembersaurus.com/mincemeatpy/
http://blog.last.fm/2009/04/06/mapreduce-bash-script
http://aws.amazon.com/elasticmapreduce/

However, few comprehensive workload models exist for MapReduce systems.
Our goal is to develop a comprehensive and realistic workload model for MapRe-

duce systems. To this end we introduce the Cloud Workload Archive Toolbox. This
toolbox is able to perform analyses on MapReduce workloads,it extracts models
from MapReduce workloads, it generates realistic synthetic MapReduce workloads
based on these workload models, and finally it is able to simulate the execution of
these synthetic MapReduce workloads.

1.3.1 Research Questions

The main research question for this thesis is:

“Is the MapReduce scheduler X better than MapReduce scheduler Y?”

This question leads to the following sub-questions:

Q1 What are the characteristics of MapReduce workloads?

Q2 How can we model MapReduce workloads?

Q3 How can we generate realistic synthetic MapReduce workloads?

Q4 Which MapReduce scheduler performs best in scheduling a certain
workload?

1.3.2 Technical Objectives

The research questions lead to the following technical objectives:

T1 Automate MapReduce workload trace analysis.

T2 Automate MapReduce workload model parameter fitting.

T3 Automate synthetic MapReduce workload generation.

T4 Automate synthetic MapReduce workload simulation.

1.4 Our Approach

Our approach to the problem stated in Section 1.3 is depictedin Figure 1.2. This
drawing shows the various steps that are being performed on workload traces by
our toolbox:

1. As input we have a trace of a MapReduce workload from (preferably) a real
production cluster.

2. This workload trace is converted into the Data Format for the Cloud Work-
loads Archive.

4

3. We perform analyses on the workload trace.

4. We fit the parameters of our model to the workload trace.

5. From our model and the fitted model parameters, we generatea realistic syn-
thetic MapReduce workload.

6. We simulate the execution of the generated workload on a MapReduce clus-
ter.

7. We take the trace of the simulation, and use it again as input for step 2.

������_���_���_����������������������

���0DS5HGXFH�
:RUNORDG�7UDFH

���&RQYHUW�7UDFH�
LQWR�&:$�)RUPDW

���7UDFH�$QDO\VLV

���0RGHO�
)LWWLQJ

���:RUNORDG�
*HQHUDWLRQ

���6LPXODWLRQ

��������
��������
��������
��������
��������

���������������

Figure 1.2: The circle of life for a workload trace.

We could of course stay in this circle infinitely, but that will not be very useful.
What we actually do depends on the goal. If we want to evaluateschedulers, we
generate multiple workloads with increasing load levels instep 5 and we repeat the
simulation in step 6 for the different schedulers and the different workloads. We
can then analyze and compare the results of the simulations by applying steps 2, 3,
and possible 4 on the simulation traces.

1.5 What Has Been Done Before?

In other research, MapReduce workloads have already been analyzed, modeled,
generated, and simulated. Publications describing this prior art are surveyed in
Chapter 2. We have found that there already have been many attempts at creating
MapReduce simulators and schedulers, but that there exist very few publications
of in-depth analyses of MapReduce workloads, and that none of the MapReduce
workload modeling attempts in the surveyed literature capture as much features as
the model we present in Chapter 5.

5

1.6 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we provide an
overview of the state of the art, i.e., we survey current literature on the subject. In
Chapter 3 we present the toolbox we developed, which fulfillsthe technical objec-
tives set in Section 1.3: automating MapReduce workload trace analysis, modeling,
generation, and simulation. In Chapter 4 we take a look at howMapReduce work-
loads perform in real world cluster settings, by showing theanalyses of these traces.
In Chapter 5 we present a model for MapReduce workloads. In Chapter 6 we show
how our tools can be used to build better systems. And finally,we present our
conclusions in Chapter 7.

6

Chapter 2

State of the Art

In this chapter we present a survey of related literature, tohelp the reader place this
work into context, and to help show what the contribution of this work is.

First in Section 2.1 we survey MapReduce studies. Second, inSection 2.2 we
show other non-MapReduce workload modeling studies. And finally in Section 2.3
we survey other non-MapReduce trace archives.

2.1 MapReduce Studies

In this section we survey MapReduce studies. We survey performance evaluation
in Section 2.1.1, which at the same time gives some insight inthe behavior of
MapReduce workloads. We survey models in Section 2.1.2, workload generation
in Section 2.1.3, simulators in Section 2.1.4, and finally schedulers in Section 2.1.5.

2.1.1 MapReduce Performance Evaluation

In order to get an idea of the properties of real production MapReduce workloads,
we take a look at workload analyses by [2, 3, 4, 5, 6, 7, 8]. The most comprehensive
study of a MapReduce workload we have found is the study by Kavulya et al. [3],
who analyze a ten months workload trace from the Yahoo! M45 super computing
cluster. Kim et al. [7] study the workload of their own MapReduce benchmark
instead of a real production workload. Ganapathi et al. [5] and Wang et al. [6] call
the sources of their traces respectively a “major web service,” and a “medium-scale
Hadoop cluster,” we have our reservations for the quality ofthese traces, especially
we doubt how “medium-scale” the second of the trace sources really is.

Job and Task Run Times

The mean duration of a MapReduce job is around or below 20 minutes by [3, 4, 5,
6, 7], with a maximum observed job duration of seven days (jobs were being killed
by a weekly maintenance script) by [3]. The mean duration fortasks is around or
below 25 seconds by [4], when looking only at reduce tasks, a mean duration of

7

around five minutes is shown by [2], with a maximum observed task duration of
around one day by [4]. Kavulya et al. [3] show that 95% of jobs complete within
30 minutes, and that completion times follow a long-tailed distribution.

Map vs. Reduce Tasks

MapReduce jobs consist of map and reduce tasks, the ratio between map and reduce
tasks is application specific.

The analysis of Yahoo! traces by Kavulya et al. [3] show an average of 154 (std.
558) map and 19 (std. 145) reduce tasks per job, and that 93% ofthe jobs consist
almost entirely out of map jobs. The analysis of Facebook traces by Zaharia et al.
[2] show a distribution of job sizes with 39% of the jobs having only one map task,
with 30% of the jobs having 2-20 map tasks, with 29% of the jobshaving 21-1500
map tasks, and 3% of the jobs having more than 1500 map tasks; the largest job
had over 25,000 map tasks. The only job in the simulation by Wang et al. [6] has
480 map and 16 reduce tasks. These three publications all show in all situations
less (or none at all) reduce tasks than map tasks.

CPU and Memory Demand

Ghodsi et al. [9] show that the bulk of tasks demand three or less CPUs and two
or less gigabytes of memory. The tasks with high memory demand (of up to 9
gigabytes) are mostly reduce tasks.

I/O and Data Locality

Map tasks read input data from the distributed file system, their output data is “shuf-
fled” to reduce tasks, and reduce tasks write their output to the distributed file sys-
tem.

Chen et al. [8] show the cumulative distribution function for the input, shuffle,
and output sizes in a six months Facebook trace. The mean datasizes are surpris-
ingly low in the ranges of hundreds of kilobytes, hundreds ofbytes, and megabytes
for respectively input, shuffle and output. All these sizes go quickly up into giga-
bytes in the top 20% jobs, and to terabytes for the top 10% jobs.

Each node in a MapReduce cluster may serve as both compute node and data
node, because of this, tasks could be scheduled on (or in the same rack as) the node
containing the task’s input data. We have “data locality” ifthe task is executed
close to the data.

Wang et al. [6] show for their reference job 98% of the tasks running on a node
containing the data, 1% of the tasks running in the same rack as a node containing
the data, and 1% of the tasks running farther away than the data. Zaharia et al. [2]
plot data locality as a function of the number of maps per job.Same rack locality
reaches 90% at about 100 maps per job, and goes up to about 98% as the number
of maps per jobs increases. Same node locality reaches 90% atabout 7,500 maps

8

per job and goes up to about 92% as the number of maps per job increases. Zaharia
et al. [2] also show data locality as function of file replication level and number of
task slots per node.

Cluster Utilization, Failures, and Energy Consumption

There are three more interesting subjects, cluster utilization, failures, and energy
consumption, which have each been studied in only one of these publications.

The utilization of a cluster is studied by Kavulya et al. [3].The studied cluster
seems to be underutilized even at peak moments, with a maximum monthly-average
node and CPU utilization of respectively about 40% and 10%. Because of this low
utilization values, the authors see an opportunity to reduce power consumption if
energy-aware scheduling would be applied.

Failures were studied byKavulya et al. [3], the highlights of the failures study
are, that 90% of the jobs failed within 150 seconds after the first aborted task, and
that most failures occur in map tasks.

Energy consumption is studied by Chen et al. [8], with the goal of reducing
power consumption by employing data compression. Based on power consumption
measurements of a single node in an experimental setup, theypresent an algorithm
to decide if compression of data would be beneficial.

2.1.2 MapReduce Workload Models

Models for MapReduce workloads are presented by [3, 5, 6, 10]. Unlike the model
we present in Chapter 5, these works model only job completion times.

Kavulya et al. [3] use fitting of probability distributions (like in our model), for
goodness of fit test they only use the Kolmogorov-Smirnov test. They suggest a run
time prediction algorithm which focuses more on jobs in the near past.

Ganapathi et al. [5] use Kernel Canonical Correlation Analysis which maps
MapReduce job configuration onto job performance. Job inter-arrival times, in-
put sizes, and data ratios are captured in empirical distribution functions specified
by five percentiles. The work is primarily targeted at Hive workloads, and could
in principle also be used for generic MapReduce workloads, although in their ex-
periments the prediction performance for generic MapReduce workloads is not as
good as it is for Hive-only workloads.

The MapReduce workload models used by [6, 10] describe specific jobs and
allow only for a “replay” of the workload, and not the generation of workloads.
The model by Wang et al. [6] uses a description of input data asbasis and jobs are
modeled in a number of CPU cycles as function of the input size.

In Rumen [10] the workload model is essentially just the measured values in the
trace, with as exception that for failing jobs, the chance offailure and the run time
are captured in empirical distribution functions.

Cardona et al. [11] present a model for the distributed file system in a grid envi-
ronment, which is not applicable for our work.

9

2.1.3 MapReduce Workload Generation

Procedures for generating MapReduce workloads are given by[5, 10]. Ganapathi
et al. [5] sample values for job inter-arrival time, input size, etc., from the distribu-
tions defined by five percentiles by applying linear extrapolation.

Rumen [10] does not really generate synthetic workloads, aswe would like to
see it. They essentially replay a trace, with the exception that chances for failures
and in case of a failure the corresponding run time are sampled from a distribution
specified by percentiles using linear extrapolation.

2.1.4 MapReduce Simulators

For our work we need a MapReduce simulator, in order to simulate the execution
of our generated synthetic workloads. We have found three publications [6, 11, 12]
that present a MapReduce simulator.

Wang et al. [6] present MRPerf1 a simulator build on ns-2. Features of this
simulator include simulation of network traffic at packet level, CPU usage, and
disk I/O time. Limitations of this simulator are that it doesnot support multiple
replicas of chunk data, and that it sees disk I/O and computation as distinct phases
that do not have any overlap.

Two publications [11, 12] describe simulators built on top of GridSim, which
itself has been build on SimJava, a discrete event based simulation package.

Cardona et al. [11] has been developed to evaluate the influence of new schedul-
ing algorithms for the distributed file system on MapReduce in grid environments.
It is the only scheduler we found that explicitly takes node availability, and storage
space into account.

Hammoud et al. [12] present MRSim2. Hammoud et al. state as need for a new
simulator, that they were unable to get accurate results with MRPerf [6] and the
simulator of Cardona et al. [11], and that Mumak is not able toestimate completion
times. Their implementation does simulate multi-core CPUs, and other configura-
tion settings that have an important impact on the performance like merge, copy,
and sort parameters. A limitation of MRSim is that it can onlysimulate single rack
clusters.

Mumak [13] is a MapReduce simulator that comes bundled with Hadoop since
version 0.21. It does not perform simulation of low-level resources but just replays
tasks with the run times specified in the input trace. Its mainadvantage is that it
uses the native Hadoop schedulers.

Gridmix3 [14] is not a MapReduce simulator, it executes synthetic workloads
on a real Hadoop cluster. It comes bundled with Hadoop, and has the same input
(except for the cluster topology of course) and output formats as Mumak.

1http://research.cs.vt.edu/dssl/mrperf/
2http://code.google.com/p/mrsim/

10

http://research.cs.vt.edu/dssl/mrperf/
http://code.google.com/p/mrsim/

2.1.5 MapReduce Schedulers

Schedulers in Hadoop allocate tasks to slots on the worker nodes. Hadoop comes
by default with a FIFO scheduler, and since version 0.193 it has support for plug-
gable schedulers. In Hadoop version 0.21, there are three additional bundled sched-
ulers, namely the Fair scheduler [2] developed by Facebook,the Capacity scheduler
[15] developed by Yahoo!, and the Dynamic Priority Scheduler [16] developed by
Hewlett-Packard.

Hadoop Bundled Schedulers

The Fair scheduler and the capacity scheduler both have the same goal, which is to
share a cluster among users in such a way that production jobsmeet their deadlines,
and “interactive” jobs have short response times.

The idea in the Fair scheduler proposed by Zaharia et al. [2] is that instead of
allocating a tasks as soon as it is it first in line, it might be beneficial to postpone
the allocation of the task until a slot with good locality becomes available.

Although we have not found an official publication describing the Capacity Sched-
uler [15], as one of the bundled schedulers it can not be omitted here. Queues in the
system each have a guaranteed capacity, but they are allowedto consume capacity
not claimed by others. In addition to this, individual job limitations prevent single
jobs to hog a queue. Job-preemption is currently not supported.

Sandholm and Lai [16] propose the Dynamic Priority Scheduler, the idea of this
scheduler is that every user in the system has a budget and pays for the use of the
cluster. Per time unit each user is allocated a fraction of the cluster which is the
same as the fraction of his bid to the total sum of all bids in that time unit.

Other Schedulers

Zaharia et al. [17] propose the LATE, scheduler which attempts to minimize re-
sponse time for jobs. The scheduler looks at the run times of the tasks for a job,
and identifies stragglers, i.e., tasks that are running significantly longer than other
tasks for the job. The scheduler uses excess capacity of the cluster to launch dupli-
cates of these stragglers, in the hope that the duplicate would finish earlier than the
original straggling version of the task.

Ghodsi et al. [9] propose a scheduler which is based on the notion of Domi-
nant Resource Fairness, it “simply applies max-min fairness across user’s dominant
shares.” tries to fit tasks on worker nodes in such a way that the CPU or memory
demand on on each node maximize consumption of a specific resource instead of a
fixed number of slots.

Polo et al. [18] have developed a scheduler which predicts the run time of tasks
based on the run times of previous ran tasks, and then allocates only that many re-
sources as is needed to meet the jobs deadline. This applies to both map and reduce

3https://issues.apache.org/jira/browse/HADOOP-3412

11

https://issues.apache.org/jira/browse/HADOOP-3412

tasks. In absence of any information on the duration of map tasks, the maximum
allocation is initially set to the number of remaining map tasks. In absence of any
information on the duration of reduce tasks, the scaled meanduration of the map
tasks is used.

Distributed File system Schedulers

Two of the studied papers focus on the distributed file system.
Chen et al. [8] try to minimize energy consumption and improve performance

by compressing data. Blindly compressing all data requiresmore energy than just
storing all data, in all but the shuffle phases. As a solution to this problem, the
authors present an algorithm for deciding whether or not to compress data during
a phase. It is concluded that energy consumption savings of up to 60% can be
archived for jobs that are heavy on reads, or for jobs with highly compressible data.

Cardona et al. [11] envision a MapReduce implementation forgrids. The main
problem is the low availability of nodes. The default replica placement strategies
are targeted at a cluster environment, in a grid environmentreplicas of data chunks
must be carefully placed so that data is likely to be always available. The authors
propose a scheduling algorithm for the placement of data chunk replicas. The algo-
rithm sort nodes by availability and attempt to store replicas on the highest available
nodes with enough free space, optionally it checks if the nodes processing power is
above a required level.

2.2 Other Workload Modeling Studies

A more thorough overview of workload modeling studies are given by Iosup [19],
Sec . 4.5.2, p. 68, these include Leland and Ott [20], Calzarossa and Serazzi [21],
Balter and Downey [22], Feitelson [23] (Feitelson and Nitzberg [24]), Jann et al.
[25], Lublin and Feitelson [26], Li et al. [27], Medernach [28], Song et al. [29], Li
and Muskulus [30], Iosup et al. [31], and Iosup [19], Sec . 4.4.

Feitelson [32] is writing a textbook on the modeling of computer system work-
loads for performance evaluation, which is freely available4.

2.3 Other Trace Archives

We are not the only ones who are collecting workload traces. Other notable existing
archives of traces are the Parallel Workloads Archive by Feitelson [33], Failure
Trace Archive5 by Kondo et al. [34], the Grid Workloads Archive6 by Iosup et al.

4http://www.cs.huji.ac.il/~feit/wlmod/
5http://fta.inria.fr
6http://gwa.ewi.tudelft.nl

12

http://www.cs.huji.ac.il/~feit/wlmod/
http://fta.inria.fr
http://gwa.ewi.tudelft.nl

Analyzing Modeling Generating Simulating Scheduling

R
un

T
im

es

#
M

ap
s/

#R
ed

uc
es

C
P

U
/M

em
or

y
D

em
an

d

I/O D
at

a
Lo

ca
lit

y

C
lu

st
er

U
til

iz
at

io
n

F
ai

lu
re

s

E
ne

rg
y

Tr
ac

e
S

ou
rc

e

F
itt

in
g

K
S

Te
st

E
m

pi
ric

al
C

D
F

K
C

C
A

Jo
b

M
ak

es
pa

n

O
th

er

H
D

F
S

N
ot

ju
st

R
ep

la
y

M
ul

tip
le

C
la

ss
es

D
at

a
Lo

ca
lit

y

N
et

w
or

k
La

te
nc

ie
s

K
ey

D
is

tr
ib

ut
io

n

H
D

F
S

N
od

e
Av

ai
la

bi
lit

y

B
ui

ld
O

n

D
om

in
an

tR
es

ou
rc

e

B
ud

ge
tin

g

S
pe

cu
la

tiv
e

E
xe

cu
tio

n

P
re

em
pt

io
n

R
un

T
im

e
P

re
di

ct
io

n

D
el

ay
S

ch
ed

ul
in

g

P
re

fe
r

D
at

a
Lo

ca
lit

y

H
D

F
S

C
om

pr
es

si
on

Kavulya et al. [3] + + – – – + + – Yahoo! + + – – + – +
Ghodsi et al. [9] – – + – – – – – Facebook + – – – – – – – –
Hindman et al. [4] + – – – – – – – Facebook
Kim et al. [7] + – – – – – – – (Benchmark)
Ganapathi et al. [5] + – – – – – – – major web

service
– – + + + + + + +

Wang et al. [6] + + – + + – – – medium
cluster

– – – – + – + + + – + – ns-2

Cardona et al. [11] SETI@Home – – – – – – + – + – + + GridSim – – – – – – – + –
Hammoud et al. [12] + + + + – GridSim
Zaharia et al. [2] + ± – – + – – – Facebook – – – – – + + – –
Zaharia et al. [17] – – + – + – – – –
Polo et al. [18] – – – ± + – – – –
Chen et al. [8] – – – + – – – + Facebook – – – – – – – + +
Sandholm and Lai [16] – + – + – – – – –

RUMEN [10] ± – + – + + – – –
MUMAK [13] + ± – – – Hadoop
Gridmix3 [14] ± ± ± ± ± Hadoop
Hadoop Default Scheduler – – + – – – + – –
Capacity Scheduler [15] – – – – – – + – –

Table
2.1:

C
o

m
p

ariso
n

o
f

stu
d

ied
M

ap
R

ed
u

ce
P

u
b

licatio
n

s.
T

h
e

sym
b

o
ls

“
”,

“+
”,

“–
”,

an
d

“±”
d

en
o

te
resp

ectively
“n

o
t

covered
”,

“treated
”,

“n
o

t
treated

”,an
d

“p
artially

treated
”.

13

[35], and the Peer-to-Peer Trace Archive7 by Zhang et al. [36]. A more thorough
overview of archives is given by Iosup [19], Sec . 3.5, p. 33.

7http://p2pta.ewi.tudelft.nl/

14

http://p2pta.ewi.tudelft.nl/

Chapter 3

MapReduce Analysis Toolbox

We developed a toolbox for analyzing and modeling MapReduceworkloads, and
for generating and simulating the execution of synthetic MapReduce workloads.
This toolbox can be regarded as the fulfillment of the technical objectives T1, T2,
and T3 stated in Section 1.3. In Chapter 6 we introduce a separate toolbox for
MapReduce simulation using super-computers. We depict thework-flows of the
MapReduce Analysis and the Simulation toolboxes in Figure 3.1.

This chapter describes the abilities of this toolbox, including how it allows the
user to convert traces of MapReduce executions into a standardized format (see
Section 3.1), to perform analysis on workload traces (see Section 3.2), to model the
workload in these traces (see Section 3.3), to generate realistic synthetic workloads
(see Section 3.4), and to simulate the execution of these synthetic workloads (see
Section 3.5).

3.1 Trace Import

To enable our toolkit to work on workload traces from varioussources, we need a
default format to store this information. Even though many clusters use the same
MapReduce implementation, MapReduce trace data still comes in a large variety
of formats. This variety of formats is caused by the different ways cluster adminis-
trators have invented to extract data from the cluster, and by the need to anonymize
and censor the data in order to protect company secrets. In order to cope with this
large variety of trace file formats, we use the Data Format forthe Cloud Workloads
Archive throughout the toolbox.

3.1.1 Data Format for the Cloud Workloads Archive

The Data Format for the Cloud Workloads Archive [37] (CWA format), is a data
format which captures anonymized MapReduce workloads withas much detail as
possible, while also supporting non-MapReduce cloud workloads. Anonymization
is a side-effect of a recommendation in the CWA format, namely that strings iden-

15

5DZ�:RUNORDG�
7UDFH�,QSXW

FZD�LPSRUW

:RUNORDG�7UDFH�
LQ�&:$�)RUPDW

FZD�DQDO\]H FZD�PRGHO

FZD�SORW FZD�PRGHO�UHSRUW

*UDSKV

)LWWLQJ�5HVXOWV

*UDSKV�RI�)LWWLQJ�
5HVXOWV

)LWWLQJ�5HVXOWV)LWWLQJ�5HVXOWV

FZD�PRGHO�FRPSDUH

/D7H;�7DEOHV�
ZLWK�)LWWLQJ�
5HVXOWV

-621�(QFRGHG�
0RGHO�

3DUDPHWHUV

FZD�JHQHUDWH�ZRUNORDG

:RUNORDG�,QSXW�
IRU�

0XPDN�*ULGPL[�

0DS5HGXFH�$QDO\VLV�7RROER[

$QDO\VLV�5HVXOWV

6LPXODWLRQ�7RROER[
-621�(QFRGHG�

0RGHO�
3DUDPHWHUV

JHQHUDWH�ZRUNORDGV

:RUNORDG�,QSXWV�
IRU�

0XPDN�*ULGPL[�

JHQHUDWH�MREVVFDWWHU

PHWD�VFKHGXOHU

JDWKHU

5DZ�
0XPDN�*ULGPL[��
:RUNORDG�7UDFH�

2XWSXW

DQDO\]H

*UDSKV

SORW

Figure 3.1: The MapReduce Analysis and Simulation Toolboxes.

16

tifying users, applications, etc., should me mapped to integer values to reduce file
sizes. The CWA format is based on the proven Grid Workloads Archive[38] and
Parallel Workloads Archive[39] data formats. The definition of the CWA format
does specify the fields, it does not specify the how the data should be stored. The
toolbox assumes that all CWA format data will be stored in tabseparated files (see
Appendix B). With the exception of this single subsection, all references to the
CWA format in this document refer to these tab separated values files.

3.1.2 Import Scripts

In order for a trace to be used with the tools in the toolbox, wefirst need to convert
the trace into the CWA data format. The toolbox itself only includes an importer for
the Hadoop log. As most of the traces come in a custom format, we write a custom
conversion Python script for each of these traces. The toolbox provides some tools,
such as a writer for the CWA data format, to aid the development of the conversion
scripts.

Depending on the format and contents of the original trace data, writing a conver-
sion script can be non-trivial. An example of this non-triviality can be found in the
conversion of the SN1 traces (see Section 4.2.1), the SN1 traces contain a textual
description of the application which differs for each execution of the application.
The CWA data format requires an executable identifier which is unique for each
application but stays the same for the various executions ofthe same application.
In Section 3.1.3 we present our solution to this classification problem.

3.1.3 Executable Identification

Although the SN1 traces (see Section 4.2.1) did not contain an executable identifier,
these traces did contain a job description field which could be exploited to classify
jobs to distinct executable identifiers. In order to classify the executables based on
the job description field we wrote a few rules, in the form of regular expressions, to
match the job description to an executable identifier. Whilechoosing these rules,
we had in mind the trade-off between precision and the numberof rules. A smaller
number of rules gives a more concise picture of the behavior of the applications,
while more rules give a more precise result. The question remains if this perceived
precision is really justified by the quality of the rules, we have therefore chosen
the first of these two options. In the next three subsections we present the tools we
developed to enable us to write these rules:count_unique, applications,
andcdf.

The count_unique Tool

We wanted to write rules that each match an as large as possible number of job
descriptions that seem to be referring to the same application. To this end we first
looked at counting occurrences of distinct values of job descriptions, so that we

17

could match the descriptions with the highest occurrence count first. The main
problem we encountered in this process, was that many job descriptions include a
serial number or a date, which turns the job descriptions into distinct values.

In order to cope with the problem of having serial numbers anddates in the job
descriptions, we included a feature in the count_unique tool to replace all numbers
by the number sign (“#”), and to replace all day and month names into three at-
symbols (“@@@”). These options can be used to aggregate job descriptions only
differing in date or (serial) number into distinct values. On top of that we also
included an option to convert all characters to lower-case characters, so that the
matching will in effect be case-insensitive.

The tool takes as input a tab separated values file and the number of the column
containing the values of interest. The tool outputs a tab separated values file with in
two columns the value of the (altered) job description and the count of occurrences
in the trace. An example of this output file is shown in Listing3.2.

The applications Tool

To help produce a list of regular expressions for matching executables in the incon-
cise job descriptions in the workload trace, this tool counts the number of matches
for each of the rules in a list of regular expressions. Job descriptions are classified
by the first rule that matches.

This script takes as input a file containing the rules in the form of regular expres-
sions, and a tab separated values file containing job descriptions combined with
the count each of these description occurs in the to be studied workload trace.
Not entirely by coincidence, this input is exactly the same as the output of the
count_unique tool. The output is the list of rules, with for each of the rules the
total sum of the counts of the matching job descriptions.

Examples of files containing rules, input, and output for this tool are shown in
respectively Listings 3.1, 3.2, and 3.3.

Listing 3.1: Exampleapplications rules

1 ^.*o+.*$
2 ^.*a+.*$

Listing 3.2: Examplecount_unique output,applications input

1 aap 1
2 noot 2
3 mies 1
4 boom 1
5 roos 1
6 vis 1

Listing 3.3: Exampleapplications output

1 ^.*o+.*$ 4

18

2 ^.*a+.*$ 1
3 Other 2

The cdf Tool

We would like to plot the cumulative distribution function (CDF) of the matched
rules, so we can see how much of the jobs are matched by the rules. Thecdf tool
can be used to construct an input data file for plotting a CDF/PDF graph using Gnu-
plot. The tool expects a tab separated input file with in the first column an identifier
and in the second column a count (like the output files of thecount_unique and
applications tools). The script outputs a tab separated file with four columns:
rank, identifier, normalized count, and cumulative normalized count.

The normalized countni for the countci for all the countsc is calculated as
ni = ci/

∑|c|−1

j=0
cj . After all the normalized counts are calculated, the list issorted

in descending order. As an exception on the sorting process,the count identified
by the name “Other” is always outputted last. The resulting list is written to the
output file, while this is being done, the cumulative value iscalculated by summing
all previous values.

3.2 Trace Analysis

The toolbox provides theanalyze tool to analyze MapReduce workload traces.
From the traces this analysis tool extracts information on various metrics both over-
time, and all-time, optionally broken down by one or more properties, for example,
the run time of tasks over time broken down per executable. This process is ex-
plained more in-depth in Chapter 4. Using the data resultingfrom this analysis, the
toolbox can automatically plot graphs using Gnuplot.

3.2.1 Theanalyze Tool

The workload traceanalyze tool needs a few things to work. First, of course,
it needs an input workload trace in the CWA format. Second, weneed to specify
which metrics we want to analyze and which breakdowns we wantto be computed,
e.g., run time per executable. The metrics and breakdowns (see Section 4.1 and
Appendix B) can be specified in a configuration file (see Section A.4.2) on a per-
trace basis or otherwise default settings are used.

This tool relies heavily on the two utility classesTimeLine (see Section 3.2.2)
andCStats (see Section 3.2.2). The time line class is not quite unlike ahistogram,
it discretizes time based on a given interval length, anything stored on the time
line is being aggregated into the interval it belongs to. Thestats class aggregates
multiple numerical values, it is then able to compute statistics of these values, like
for example the mean, the standard deviation, and arbitrarypercentiles. The time

19

line class has the ability to either compute the sum of all values in an interval, or to
use this stats class to aggregated the values.

The analyze tool uses an instance of theTimeLine class to store all information
over time, and indeed, all values are aggregated by instances of theCStats class.
As the workload trace file is processed, the values of the metrics of interest are
stored on the time line, also for each breakdown-metric value combination separate
values are stored on the time line, see Figure 3.2 for pseudo code describing this.
Next to this, we count the number of running jobs and tasks over time, these counts
we also calculate by breakdown. The counting is done by adding the value “1” to
every time line interval, during which the job or task is actually running, see Figure
3.3 for pseudo code describing this.

1 for j in jobs:
2 for m in metrics:
3 timeline[m].add(j.start, j.get(m))
4 for b in breakdowns:
5 timeline[m,b,j.get(b)].add(j.start, j.get(m))

Figure 3.2: Pseudo-code for analyzing over time.

1 for j in jobs:
2 for moment in j.start to j.finish step interval:
3 timeline.add(moment, 1)

Figure 3.3: Pseudo-code for counting running jobs over time.

When the whole trace has been processed, the output is written to many files.
(For all job and task metrics we output the all-time CDF/PDF data, we output per
time interval the sums and percentiles. All this information is also outputted again
for each breakdown value.)

3.2.2 Utilities

In this section we introduce the utility classesTimeLine andCStats, which we
have used in, among other, theanalyze tool.

The TimeLineClass

We have created the classTimeLine for the computation of statistics over time.
Inside this class, time is discretized in intervals of a length specified by thebinwidth
parameter. Each interval is identified by an internal time index i which can be cal-
culated from the time valuet and the interval lengthw by performing a simple
division i = ⌊t/w⌋. The data are kept in a dictionary, using the indexi as the key,

20

the choice for a dictionary was made to efficiently handle sparse time lines. The
class can manage multiple variables of interest in the same instance, by using a key
value while adding data. In each interval a dictionary is used to store data identified
by these keys.

The main purpose of this class is to aggregate data per time interval. It has two
separate ways to aggregate the data. First, the class performs a simple summation
of all values in an interval. Second, it can use theCStats class to perform basic
statistical analyses on the data in the interval. As final feature, theTimeLine
class is able to provide these statistics for time intervalswhich are a multiple of
the initial time interval, this is done by simply summing thevalues at the index
positions covering the requested time interval.

The CStats Class

TheCStats class is able to calculate various statistical properties for a variable of
interest from a list of values. Every time a value is added to an instance, a couple of
values are updated: the value count, the sum of the values, the sum of the squared
values, the maximum and minimum value. These values are usedto calculate, next
to the minimum and the maximum value, also the mean, the standard deviation,
and the coefficient of variation.

Optionally, if thebKeepValues parameter is set, all values are kept in an in-
ternal listv. This list of values can then be used to calculate arbitrary percentiles,
including the median. Thep-th percentile is calculated by picking the⌊|v|·100/p⌋-
th element from the sorted list of values. The median, the 50th percentile, has a
special treatment: If the total number of values is even, then the average of the two
values in the middle of the list is calculated, e.g.,(v|v|/2 + v|v|/2−1)/2.

3.3 Workload Model Parameter Fitting

The MapReduce workload models we present in Chapter 5 make use of probability
distributions. In order to “model” a workload, we need to finddistribution functions
and their parameters that “fit” the data in the workload tracewell. To this end we
have developed a tool in Python, it uses maximum-likelihoodfunctions for various
probability distribution functions, and it selects the best fitting distribution for each
modeled property, based on the values resulting from the goodness of fit tests and
the D-statistic. This process is explained in-depth in Chapter 5. The result of this
tool can be used to construct a JSON encoded file, containing the fitted distributions
and their parameters.

In this tool we use the multiprocessing package for parallelization of the model-
ing work, and we use the pickle package to store the intermediate and final output.
Pickle – also used for inter-process communication by the multiprocessing pack-
age – uses the cStringIO package which has a 2 GiB size limit. To cope with this
size limit we have implemented a wrapper around pickle, which partitions a data

21

structures if needed. The modeling tool is the only tool in the toolbox that makes
use of the external Python libraries NumPy and SciPy.

3.4 Realistic Synthetic Workload Generation

The toolbox contains a tool to generate realistic syntheticMapReduce workloads.
This process is explained in-depth in Chapter 5. The tool takes as input the JSON
encoded model file resulting from the model parameter fittingtool. As output it
generates a workload file which can be used by Mumak and Gridmix3 as input.

The non-trivial part of this tool is that it is able to “brute-force” a specified load
level. It generates a workload and calculates its load level, if the load level is not
satisfying, the inter-arrival times will be multiplied by afactor. We perform a binary
search for a factor resulting in a satisfying load level. To speed-up this process we
reset the seed of the random number generator at the start of every iteration, unless
we are no longer able to improve the load level by adapting theinter-arrival time
multiplication factor.

3.5 Simulation

The CWA toolbox itself does not include a MapReduce simulator. We select an
existing MapReduce simulator in Chapter 6, and we use this simulator to perform
simulations of the execution of generated workloads. Our toolbox include tools to
generate workloads for this simulator, and to convert the output of the simulations
into the CWA data format for further analysis.

In Chapter 6 we perform a large number of simulations, and introduce to this end
a separate toolbox for MapReduce simulation using super-computers.

3.6 Concluding Remarks

In this chapter we have introduced the Cloud Workloads Archive Toolbox, and
explained its inner workings. This toolbox has been made available as open-source
software. In Appendix A we provide instructions on how to obtain this toolbox,
and we provide a short introduction to the usage of the toolbox.

22

Chapter 4

Workload Analysis

In this chapter we present the analysis of the real-world workload traces we ob-
tained, this provides an answer to research question Q1: “What are the characteris-
tics of MapReduce workloads?”

The remainder of this chapter is organized as follows. In Section 4.1 we present
an overview of the metrics and breakdowns we use. In Section 4.2 we present the
studied workload traces.

4.1 Metrics and Breakdowns

In the context of workload trace analysis we mean with metrics the properties we
wish to study, like run time, wait time, inter arrival time, CPU usage, memory us-
age, disk usage, and network usage. With breakdowns we mean properties, like
status, queue, user, and executable, for which we calculateseparate statistics. For
example an analysis of the run time broken down by user, givesthe same statis-
tics as the “global” statistics, for every single user in thesystem. The properties
available in the CWA data format are shown in Appendix B.

The metrics and breakdowns that we want to analyze may differfor jobs and
tasks. In tasks for example you may want to have a breakdown bytask type (map or
reduce), this specific property is not available for jobs. Using our toolbox it makes
only sense to use properties with a small amount of discrete values as breakdown,
as for every single value of the property the entire analysiswill be performed.

4.1.1 Notable Metrics

We depict job and task time metrics in Figure 4.1. We give a short description of
these and other notable metrics.

Inter-Arrival Time The inter-arrival time is, as depicted in Figure 4.1, the time
interval between the arrivals of jobs or tasks in the system.This information
is not as such available in the workload traces but can be extracted from the
traces. It is easy to calculate the inter-arrival time – we only need to calculate

23

7
D
V
N
��
�/
D
X
Q
F
K
�7
LP
H

-RE�:DLW�7LPH -RE�5XQ�7LPH

-RE�5HVSRQVH�7LPH

7DVN���5XQ�7LPH

-
R
E
��
�6
X
E
P
LW
�7
LP
H

-
R
E
�/
D
X
Q
F
K
�7
LP
H

-
R
E
��
�)
LQ
LV
K
�7
LP
H

-RE

7DVN����0DS�

7DVN����5HGXFH�

7DVN�Q��0DS�
7
D
V
N
��
�)
LQ
LV
K
�7
LP
H

/
D
V
W�
7
D
V
N
�)
LQ
LV
K
�7
LP
H

-RE�
7HDUGRZQ�
7LPH

7DVN����0DS� ���

-
R
E
��
�6
X
E
P
LW
�7
LP
H

-RE�,QWHU�DUULYDO�7LPH

Figure 4.1: Job and task time metrics.

the difference between two subsequent submit times. This requires a trace
sorted on submit times.

Wait Time The wait time is, as depicted in Figure 4.1, the time that a jobhas to
wait after being submitted until it is started, i.e., the first task is started. As
supported by Figure 4.22, in MapReduce systems the wait times are generally
very low.

Run Time The run time is, as depicted in Figure 4.1, the wall clock timeelapsed
since the job or task is started, until it is finished. For jobsthis means until
the last task has been finished.

Response TimeThe response time is, as depicted in Figure 4.1, the wall clock
time elapsed since the user submitted a job, until the job finished.

Slowdown The slowdown is a factor that indicates how much longer a job has run
than in the most ideal scenario. For example, the absolute minimum time
that a job needs to complete is the run time of its longest task; in this case the
slowdown is the quotient of the response time and the run timeof the longest
task.

Number of running Jobs As shown in for example Figure 4.2 we calculate the
number of running jobs over time; in this particular examplea breakdown by
application is made.

CPUs The property CPUs is the count of the number of CPU cores used in total
for a job or task.

24

Total Wall Clock Time The name “Total Wall Clock Time” may be somewhat
confusing; it means the sum of the wall clock times spent in every single
processor core. So if a job would only have had two tasks – running at the
same time – that each used four processor cores for one minute, the total wall
clock time would be eight minutes, while the run time is likely to be about
one minute.

4.1.2 Notable Breakdowns

Status The status of a job or tasks. Was the running of the job or task successful,
a failure, or canceled?

Task Type The type of the tasks. In MapReduce there are two main task types, the
Map tasks and the Reduce tasks. Depending on the MapReduce implemen-
tation there may be additional task types such as Setup and Cleanup.

Executable It may be hard (see Section 3.1.3) to identify executables ina work-
load trace, but if available, it could reveal interesting information, as different
applications are likely to have different behavior.

Queue Queues are most likely to indicate different groups of users. Scheduled
production jobs and ad-hoc interactive jobs could be in different queues, and
can be scheduled appropriately. The Fair scheduler by [2], for example, at-
tempts to provide an equal share of the cluster to each queue.

User Identifies users in the system, schedulers may use this instead of the queue
in their scheduling algorithm.

4.2 Real-World Workload Traces

We have obtained sets of traces from real world MapReduce clusters. The level
of detail in a trace differs per set of traces – a trace could have task information
aggregated per job, or may contain only the successful jobs.A list of these sets is
given in Table 4.1. In this section we describe each of these workload traces.

Task Information Failed MapReduce Number Of
Workload Trace Period Aggregated per Job For Each Task Jobs Only Jobs Tasks

SN1 (see §4.2.1) 6 months + – – + 1,129,193 ?
SN2 (see §4.2.2) 9 days + – + + 60,978 9,365,863
Yahoo! M (see §4.2.3) 2 weeks + + + + 28,248 27,317,243
Google (see §4.2.4) 29 days + + + – 667,992 44,920,671

Table 4.1: Overview of the obtained real-world Workload Traces, the sym-
bols “+”, “–”, and “?”, depict respectively “available”, “not available”, and
“unknown”.

25

4.2.1 Social Network 1

We have obtained traces from a production MapReduce clusterof a large unnamed
social network company. We refer to these traces as “Social Network 1” or SN1.
Basic statistics of these traces are shown in Table 4.3. These traces cover a period
of six months of a Hadoop cluster and a total of 1,129,193 jobs; we have no data to
calculate the number of tasks. Although no individual task information is available,
the traces do contain detailed task I/O information, aggregated per job. These traces
have more peculiarities: they contain only successful jobs, and they do not contain
application or user identifiers.

In order to identify the applications in the logs, we use the “JobName” field,
which contains a textual description of each job. The valuesin the “JobName”
field are matched against five regular expressions (see Table4.2) and assigned an
application identifier based on the matching regular expression. While choosing
these rules, we had in mind the trade-off between precision and the number of
rules, a smaller number of rules gives a more concise pictureof the behavior of the
applications, but more rules give a more precise result.

Rule Application Regular Expression Matches

0 Copier (?i)^(recovery mode)?\S+\scopier\s.*$ 680212
1 Insert (?i)^insert.*$ 142985
2 From (?i)^from(\s|\().*$ 90111
3 Select (?i)^select\s.*$ 48542
4 Columnset Loader (?i)^(hourly\s)?columnset\sloader.*$ 42283
– Others 125060

Table 4.2: Application identification rules.

Running Jobs

Figure 4.2 shows the cumulative counts of all running jobs per application type
over time. In this graph we observe that the number of unmatched “others” jobs is
quite small compared to the matched jobs; this shows that thefive chosen rules for
application classification cover a large part of the jobs.

We find a large amount of “copier” jobs in the first two months ofthe traces.
We hypothesize that during that time the system was being loaded with data. As
support for this hypothesis, we need to see a significant usage of I/O resources by
these jobs during this period.

Job I/O

We have calculated the total amount of I/O by the jobs over time. This has been
done by summation of all input and output for jobs for each time unit. Figure 4.3
shows the cumulative amounts of I/O for all jobs per application type over time.
In this graph we observe that the amount of I/O used by the unmatched “others”

26

jobs is small compared to the total I/O, but not as small as expected from the small
fraction of running unmatched jobs; the unmatched jobs seemto be relatively heavy
on I/O.

The jobs matching rules 2 and 1, the “from” and “insert” jobs,are the largest
I/O consumers. And contrary to what we hypothesized, the “copier” jobs do not
seem to generate a significant amount of I/O during the first two months, they are
actually the least I/O consuming of the classified jobs, therefore the hypothesis must
be false. However, after the second month, the I/O consumption of the majority of
the “copier” jobs is increased by about a factor 1000 as is visible in Figure 4.5a by
the steep increase of the 50th percentile, and the I/O ratio changes resulting in more
output per input as is visible in Figure 4.5b – it seems that a setting was changed to
have the work done with fewer job runs.

Job Run Time

For the SN1 traces, the cumulative runtime split per application is shown in Figure
4.4. The total runtime of the “copier” jobs seems to increaseafter the two month pe-
riod described above (also see Figure 4.5c), although a smaller number of “copier”
jobs run. The “copier” jobs need to have an increase of runtime after the first two
months, this is likely caused by the increase in I/O consumption.

The distribution of the jobs run times in Figure 4.23a shows that, although one
job ran for little over one day, most of the jobs in this workload have very short run
times: 50% of the jobs finish in under 35 seconds, 66% of the jobs finish in under
70 seconds, and 90% finishes in under 6 minutes.

27

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

R
un

ni
ng

 J
ob

s
C

ou
nt

Date

cumulative per one day ExecutableID 0
ExecutableID 1
ExecutableID 2
ExecutableID 3
ExecutableID 4

Others

Figure 4.2: SN1, cumulative running jobs by application.

0 B

50 TB

100 TB

150 TB

200 TB

250 TB

300 TB

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

D
is

k
(b

yt
es

)

Date

cumulative per one day, every first interval shown ExecutableID 2
ExecutableID 1
ExecutableID 4
ExecutableID 0

Others

Figure 4.3: SN1, cumulative job I/O by application.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

R
un

 T
im

e
(s

ec
on

ds
)

Date

cumulative per one day, every first interval shown ExecutableID 0
ExecutableID 2
ExecutableID 1
ExecutableID 4

Others

Figure 4.4: SN1, cumulative job runtime by application.

28

10 B

100 B

1 kB

10 kB

100 kB

1 MB

10 MB

100 MB

1 GB

10 GB

100 GB

1 TB

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

D
is

k
(b

yt
es

)
(lo

g.
 s

ca
le

)

Date

intervals of one day, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(a) I/O consumption.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

D
is

k
I/O

 R
at

io
 (

lo
g.

 s
ca

le
)

Date

intervals of one day, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(b) I/O ratio.

 1

 10

 100

 1000

 10000

 100000

01 Apr
09

01 May
09

01 Jun
09

01 Jul
09

01 Aug
09

01 Sep
09

01 Oct
09

01 Nov
09

R
un

 T
im

e
(s

ec
on

ds
)

(lo
g.

 s
ca

le
)

Date

intervals of one day, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(c) Run time.

Figure 4.5: SN1, “copier” jobs.

29

4.2.2 Social Network 2

We have obtained traces from a production MapReduce clusterof a large unnamed
social network company. We refer to these traces as “Social Network 2” or SN2.
Although, these traces do only contain information per job,they contain task in-
formation summarized per job – especially the number of tasks, failed tasks, and
killed tasks. These traces cover a period of ten days of a Hadoop cluster and in-
clude a total of 60,978 jobs and 9,365,863 tasks; for the lastthree days there is no
task-level information available. There is no informationavailable that can help to
identify applications in the traces.

Job and Task Status

The trace does contain status information. This status information is available in
two ways: for the jobs the status is available as a coded field,for the tasks the total
number of failed and killed tasks is available next to the total number of tasks. The
encoding of the status field in these traces is as follows: successful jobs have status
0, the “others”-jobs are the failed jobs.

The job counts in Figure 4.7a shows a very large amount of failing jobs. Most
of these failing jobs do not seem to spawn anytasks, as can be seen in Figure 4.7b
that shows that the large majority of the tasks comes from thesuccessful jobs, and
only a fraction from the failed jobs.

The amounts of failed and killed tasks, as shown in respectively Figures 4.7c and
4.7d, is very small compared to the total number of tasks, as shown in Figure 4.7b.
Interesting to note is that only the successful jobs have failed or killed tasks.

Job Run Times

The distribution of the jobs run times in Figure 4.23b shows that, although one job
ran for almost 4 days, most of the jobs in this workload have short run times: 50%
of the jobs finish in under 1.5 minute, 66% of the jobs finish in under 3 minutes,
and 90% finishes in under 12.5 minutes. Figure 4.6 shows that,although the failing
jobs run fairly long (as indicated by the job run time), they consume only little of
the cluster (as indicated by the total wall clock time).

30

 0
 50000

 100000
 150000
 200000
 250000
 300000
 350000
 400000
 450000

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

R
un

 T
im

e
(s

ec
on

ds
)

Date

cumulative per one hour, every first interval shown Status 0
Others

(a) Run time.

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 3.5e+07
 4e+07

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

T
ot

al
 W

al
lc

lo
ck

 T
im

e
(s

ec
on

ds
)

Date

cumulative per one hour, every first interval shown Status 0
Others

(b) Total wall clock time.

Figure 4.6: SN2, cumulative job times by status.

31

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

R
un

ni
ng

 J
ob

s
C

ou
nt

Date

cumulative per one hour Status 0
Others

(a) All jobs.

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

T
as

ks

Date

cumulative per one hour, every first interval shown Status 0
Others

(b) All tasks.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

F
ai

le
d

T
as

ks

Date

cumulative per one hour, every first interval shown Status 0
Others

(c) Failed tasks.

 0
 50

 100
 150
 200
 250
 300
 350
 400

02 Oct
09

03 Oct
09

04 Oct
09

05 Oct
09

06 Oct
09

07 Oct
09

08 Oct
09

09 Oct
09

10 Oct
09

11 Oct
09

12 Oct
09

13 Oct
09

K
ill

ed
 T

as
ks

Date

cumulative per one hour, every first interval shown Status 0
Others

(d) Killed tasks.

Figure 4.7: SN2, cumulative jobs and tasks by status.

32

4.2.3 Yahoo! M-Cluster

The Yahoo! M-Cluster traces we obtained cover a period of twoweeks of a Hadoop
cluster and include a total of 28,248 jobs and 27,317,243 tasks. These traces contain
information at job level as well as for individual jobs. The traces identify for jobs
both the executable and the user, in anonymized form. Basic statistics of these
traces are shown in Table 4.6. This is the only workload tracewhere we can actually
compare map and reduce tasks.

Jobs

We show the number of running jobs over time in Figures 4.8-4.10. These graphs
seem to show that most of the time the system is underutilized. The spike of over
2000 running jobs at 14 March, shows that the capacity of the cluster is larger than
the actual use, most of the time no more than 250 jobs are running during the 1
hour counts. This claim is however not very strong, as running many very short
jobs rapidly after each other could cause a similar spike on asmaller cluster. In
face, we see in Figure 4.11 that this spike did cause large cumulative run time, but
not as much as the bursts around 9-11 March.

By Application For the Yahoo! M-Cluster traces, the cumulative number of run-
ning jobs per application is shown in Figure 4.8. The application identified as Rule
0, is the only application that runs a significant amount of jobs, except for some
spikes of “other” jobs on 11 and 14 March.

By Status Figure 4.9 shows the number of running jobs by status. We see that
almost all jobs succeed and only a small fraction of the jobs fails. The logs do not
show any canceled jobs during this period.

By User Figure 4.10 shows that although the user with the largest consumption
(User 0) is a large consumer compared to the other users, the cumulative usage of
the less consuming users is not negligible.

Job Run Time

We have broken down the run time by application, by status andby user. We see
bursts of high cumulative run times around 9-11 March.

By Application Figure 4.11 shows clearly that application 0 has by far the largest
cumulative run time. A single application dominating the cluster looks like a sched-
uled production job, but the behavior is too irregular for a scheduled job.

By Status Figure 4.12 shows that although the number of failed jobs is negligible
low, the run time consumed by failed jobs can be less, although still, negligible.

33

By User Figure 4.13 shows that two users generate around 9-11 March jobs that
run significant long compared to the usual load – using the same application.

Tasks

We show the number of running tasks over time in Figure 4.14b.

Task Run Time We see in Figure 4.15 that the map tasks require cumulatively
more time than reduce tasks, so either map tasks run on average longer than reduce
tasks, or there are more map tasks than reduce tasks. In Figure 4.18 we see the run
time distribution for both task types. We see that 50% of the map tasks run in less
than 25 seconds, and that about 5% need more than 5 minutes to complete. We see
that only 34% of the reduce tasks finish in less than 25 second,50% finish in under
75 seconds, and 5% need more than 18 minutes to complete. Boththe map and
reduce tasks show a maximum value of about 44 hours. These observations show
that reduce tasks generally run longer than map tasks. We have counted a total of
22,004,024 map tasks and a total of 5,313,212 reduce tasks, so, indeed, there are
more than 4 times as much map tasks than reduce tasks in this trace.

Distributed File-system Usage We show in Figures 4.16 and 4.17 respectively
the amounts of data read from and written to the HDFS, Hadoop’s distributed file-
system. We observe a few things in these graphs. First, we seethat the tasks
generally read much more than that they write. Second, we seethat almost only
map tasks read data from the HDFS, and that reduce tasks writemore data to the
HDFS than map tasks. Third, in the CDF we observe that about 40% of the tasks
read almost exactly 128 MB data, this indicates a preferencefor data chunks of 128
MB.

34

 0

 500

 1000

 1500

 2000

 2500

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R

un
ni

ng
 J

ob
s

Date

1 hour counts, cumulative per time unit Rule 0
Rule 1
Rule 2
Rule 3
Rule 4
Other

Figure 4.8: Yahoo! M-Cluster, cumulative running jobs by application.

 0

 500

 1000

 1500

 2000

 2500

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R

un
ni

ng
 J

ob
s

Date

1 hour counts, cumulative per time unit Successful Jobs
Failed Jobs

Figure 4.9: Yahoo! M-Cluster, cumulative running jobs by status.

 0

 500

 1000

 1500

 2000

 2500

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R

un
ni

ng
 J

ob
s

Date

1 hour counts, cumulative per time unit User 0
User 1
User 2
User 3
User 4
Others

Figure 4.10:Yahoo! M-Cluster, cumulative running jobs by user.

0.0⋅100

1.0⋅105

2.0⋅105

3.0⋅105

4.0⋅105

5.0⋅105

6.0⋅105

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R
un

tim
e

[s
]

Date

1 hour counts, cumulative per time unit Rule 0
Rule 1
Rule 2
Rule 3
Rule 4
Other

Figure 4.11: Yahoo! M-Cluster, cumulative job runtime by application.

35

0.0⋅100

1.0⋅105

2.0⋅105

3.0⋅105

4.0⋅105

5.0⋅105

6.0⋅105

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R
un

tim
e

[s
]

Date

1 hour counts, cumulative per time unit Successful Jobs
Failed Jobs

Figure 4.12: Yahoo! M-Cluster, cumulative job runtime by status.

0.0⋅100

1.0⋅105

2.0⋅105

3.0⋅105

4.0⋅105

5.0⋅105

6.0⋅105

26 Feb
2009

28 Feb
2009

02 Mar
2009

04 Mar
2009

06 Mar
2009

08 Mar
2009

10 Mar
2009

12 Mar
2009

14 Mar
2009

16 Mar
2009

R
un

tim
e

[s
]

Date

1 hour counts, cumulative per time unit User 0
User 1
User 2
User 3
User 4
Others

Figure 4.13:Yahoo! M-Cluster, cumulative job runtime by user.

 0

 500

 1000

 1500

 2000

 2500

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
un

ni
ng

 J
ob

s
C

ou
nt

Date

cumulative per one hour Status 0
Status 1

(a) Jobs per status (0: failed, 1: successful).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
un

ni
ng

 T
as

ks
 C

ou
nt

Date

cumulative per one hour MR_task_type 0
MR_task_type 1

(b) Running tasks broken down by task type.

Figure 4.14: Yahoo! M-Cluster, Running jobs and tasks.

36

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
un

 T
im

e
(s

ec
on

ds
)

Date

cumulative per one hour, every first interval shown MR_task_type 0
MR_task_type 1

Others

(a) Per task type (0: map, 1: reduce).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(b) Distribution.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
un

 T
im

e
(s

ec
on

ds
)

(lo
g.

 s
ca

le
)

Date

intervals of one hour, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(c) Percentiles.

Figure 4.15: Yahoo! M-Cluster, Tasks run time.

37

-5 TB

0 B

5 TB

10 TB

15 TB

20 TB

25 TB

30 TB

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
ea

d
fr

om
 H

D
F

S
 (

by
te

s)

Date

cumulative per one hour, every first interval shown MR_task_type 0
MR_task_type 1

Others

(a) Per task type (0: map, 1: reduce). (Curves have different colors than for data written.)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 B 10 B 100 B 1 kB 10 kB 100 kB 1 MB 10 MB 100 MB 1 GB 10 GB

P
ro

ba
bi

lit
y

Read from HDFS (bytes) (log. scale)

CDF
PDF

(b) Distribution.

100 B

1 kB

10 kB

100 kB

1 MB

10 MB

100 MB

1 GB

10 GB

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

R
ea

d
fr

om
 H

D
F

S
 (

by
te

s)
 (

lo
g.

 s
ca

le
)

Date

intervals of one hour, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(c) Percentiles.

Figure 4.16: Yahoo! M-Cluster, HDFS data read.

38

-2 TB

0 B

2 TB

4 TB

6 TB

8 TB

10 TB

12 TB

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

W
rit

te
n

to
 H

D
F

S
 (

by
te

s)

Date

cumulative per one hour, every first interval shown MR_task_type 1
MR_task_type 0

Others

(a) Per task type (0: map, 1: reduce). (Curves have different colors than for data read.)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 B 100 B 10 kB 1 MB 100 MB 10 GB 1 TB

P
ro

ba
bi

lit
y

Written to HDFS (bytes) (log. scale)

CDF
PDF

(b) Distribution.

1 B

100 B

10 kB

1 MB

100 MB

10 GB

1 TB

24 Feb
09

26 Feb
09

28 Feb
09

02 Mar
09

04 Mar
09

06 Mar
09

08 Mar
09

10 Mar
09

12 Mar
09

14 Mar
09

16 Mar
09

W
rit

te
n

to
 H

D
F

S
 (

by
te

s)
 (

lo
g.

 s
ca

le
)

Date

intervals of one hour, every first interval shown 100.000000-Pct
99.990000-Pct
99.900000-Pct
99.000000-Pct
98.000000-Pct
95.000000-Pct
75.000000-Pct
50.000000-Pct
25.000000-Pct
5.000000-Pct
2.000000-Pct
1.000000-Pct
0.100000-Pct
0.010000-Pct
0.000000-Pct

(c) Percentiles.

Figure 4.17: Yahoo! M-Cluster, HDFS data written.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(a) Map tasks.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(b) Reduce tasks.

Figure 4.18: Yahoo! M-Cluster, Task run time distribution, per task type.

40

4.2.4 Google

In November 2011, Google has released1 traces of a cluster of about 11000 nodes
for 29 days in may 2011, covering 667,992 jobs and 44,920,671tasks. The trace
consist of 1.6 GiB worth of job/task/machine events and 37 GiB worth of task
usage information. Unfortunately for this work, these traces no not consist of only
MapReduce jobs, and no MapReduce specific information is included. Given that
Google introduced [1] MapReduce, there will be MapReduce jobs hidden in these
traces. Possibly the MapReduce jobs in this trace could be identified and analyzed,
we leave this for future work. The time-stamps in the trace have been re-based to 1
January 1970.

Job Wait Times

In Figure 4.19 we show the job wait times per status. In this graph we see that
the cumulative wait times for the successful jobs is generally low compared to the
canceled jobs. In fact, it is likely that jobs with long wait times are canceled just
because of the long wait times. Failed jobs are almost invisible in this graph, so
either there are only a few failed jobs, or they even fail to bescheduled. We find
overlaps of the wait time spikes at “2 and 10 January” with a similar spike in the
CPU consumption shown in Figure 4.21, likely the high CPU usage in these periods
caused the increase in wait times.

Job Run Times

In Figure 4.20 we show the job run times per status. In this graph we see that the
jobs causing large cumulative run times are the tasks that eventually get canceled.
We see two spikes for the cumulative run times of canceled jobs around “3 and 11
January”, this is a strange one day difference with the spikes in Figure 4.21.

CPU Usage

In Figure 4.21 we show the usage of the CPUs per status over time. In the Google
trace the amount of CPUs used by a single task is specified in a normalized way, we
have assumed that the lowest value corresponded to a single CPU and calculated
the “real” CPU count according to this assumption.

The Two Spikes

In most graphs we find two spikes, one on “2 or 3 January”, and one on “10 or 11
January”. As the dates of the start and end of the graphs are correct, we assume
that the one-day differences in the spikes in Figures 4.20 and 4.21 are caused by
two tries of the same set of jobs. First a set of jobs was tried and all failed, then a
day later a similar set of jobs was tried and all were canceled. On the other hand, if

1http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

41

http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

this would have been like this because of a mistake, we would not expect the same
thing to happen again one week later.

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

27 Dec
69

03 Jan
70

10 Jan
70

17 Jan
70

24 Jan
70

31 Jan
70

W
ai

t T
im

e
(s

ec
on

ds
)

Date

cumulative per one hour, every third interval shown Status 5
Status 1
Status 0

Others

Figure 4.19: Google, job wait time per status (0: failed, 1: successful, 5:
canceled).

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

27 Dec
69

03 Jan
70

10 Jan
70

17 Jan
70

24 Jan
70

31 Jan
70

R
un

 T
im

e
(s

ec
on

ds
)

Date

cumulative per one hour, every third interval shown Status 5
Status 1
Status 0

Others

Figure 4.20: Google, job run time per status (0: failed, 1: successful, 5:
canceled).

42

 0
 200000
 400000
 600000
 800000
 1e+06

 1.2e+06
 1.4e+06
 1.6e+06
 1.8e+06

 2e+06

27 Dec
69

03 Jan
70

10 Jan
70

17 Jan
70

24 Jan
70

31 Jan
70

C
P

U
s

Date

cumulative per one hour, every third interval shown Status 1
Status 0
Status 5

Others

Figure 4.21:Google, CPUs per status (0: failed, 1: successful, 5: canceled).

43

4.2.5 Comparison all Workload Traces

In this subsection we compare the job wait times, the job run times, the task run
times, the job I/O, and the number of tasks of the SN1, SN2, Yahoo! M-Cluster, and
Google workload traces; unfortunately not all traces contain all this information.

Job Wait Times

We compare the distributions of the job wait times of all the workload traces in
Figure 4.22. Unfortunately the SN2 trace does not contain wait time information. In
these graphs we observe that the wait times in all workloads are generally extremely
low, 80% of the jobs is started within a second. It looks like the cluster of the SN1
workload trace is over-provisioned, as almost 100% of the jobs is started within
a second. The Google cluster has compared to the SN1 and Yahoo! MapReduce
clusters a very long tail for the run times, of up to three daysversus 15 minutes –
this is also a sign that the Google cluster is not (just) a MapReduce cluster.

Job Run Times

We compare the distributions of the job run times of all the workload traces in Fig-
ure 4.23. In these graphs we observe that the shortest and longest jobs in the Google
trace run longer than those in the other traces; the centers of the distributions do
not differ significantly – 10-90% of the jobs run in 10-1000 seconds. It seems that
Google’s task provisioning method requires more time to start a task than Hadoop.

Task Run Times

We compare the task run times in Figure 4.24. Unfortunately only the Yahoo! trace
and the Google trace contain information on the task run times. We see a preference
for a runtime of about 30 minutes for about 10% of the tasks in the Google trace.
Tasks in the Google trace run longer than in the Yahoo! trace.In the Yahoo! trace
about 25% of the tasks finish in under 10 seconds, where in the Google trace almost
no task finishes in under 20 seconds; also the tail of the Google task run times is
much longer.

Job I/O

We compare the distributions of the job I/O of the workload traces in Figure 4.25.
Unfortunately the SN2 trace and the Google trace (although it contains detailed
information on the time spent on I/O) do have no information on the total amount
read from and written to the file-system. In these graphs we see that the I/O usage
of the SN1 and the Yahoo! M-Cluster workloads do not differ significantly.

44

Number of Tasks

We compare the number of tasks per job in Figure 4.26. Unfortunately there is no
information on the number of tasks available in the SN1 trace. In the SN2 workload
we find that 52% of the jobs have no tasks, and 18% have only 2 tasks, this accounts
already for 70% of all tasks. We assume that these numbers arecaused by the failing
jobs visible in Figure 4.7a, and by the fact that task information is missing for the
last three days of the trace (resulting in 0 tasks per job); but three missing days in a
ten day workload are not likely to contribute to 52% of all jobs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

P
ro

ba
bi

lit
y

Wait Time (seconds) (log. scale)

CDF
PDF

(a) SN1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
ro

ba
bi

lit
y

Wait Time (seconds) (log. scale)

CDF
PDF

(b) Yahoo! M-Cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

Wait Time (seconds) (log. scale)

CDF
PDF

(c) Google

Figure 4.22: Job wait times.

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(a) SN1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(b) SN2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(c) Yahoo! M-Cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(d) Google

Figure 4.23: Job run times.

46

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(a) Yahoo! M-Cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

P
ro

ba
bi

lit
y

Run Time (seconds) (log. scale)

CDF
PDF

(b) Google

Figure 4.24: Task run times.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 B 100 B 10 kB 1 MB 100 MB 10 GB 1 TB 100 TB

P
ro

ba
bi

lit
y

Disk (bytes) (log. scale)

CDF
PDF

(a) SN1

 0

 0.2

 0.4

 0.6

 0.8

 1

1 B 100 B 10 kB 1 MB 100 MB 10 GB 1 TB 100 TB

P
ro

ba
bi

lit
y

Disk (bytes) (log. scale)

CDF
PDF

(b) Yahoo! M-Cluster

Figure 4.25: Job I/O.

47

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Tasks (log. scale)

CDF
PDF

(a) SN2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

P
ro

ba
bi

lit
y

Tasks (log. scale)

CDF
PDF

(b) Yahoo! M-Cluster

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

P
ro

ba
bi

lit
y

Tasks (log. scale)

CDF
PDF

(c) Google

Figure 4.26: Number of tasks per job.

48

Min 1%-tile 10%-tile 25%-tile Mean Median 75%-tile 90%-tile 99%-tile Max Std CoV
Job Wait Time (seconds) 0.000 0.000 0.000 0.000 0.457 0.000 1.00 1.00 2.00 601 2.62 5.74

Job Inter-arrival Time (seconds) 0.000 0.000 1.00 3.00 14.0 7.00 15.0 32.0 105 250181 239 17.1
Job Executable ID 0.000 0.000 0.000 0.000 0.635 0.000 1.00 2.00 4.00 4.00 1.10 1.73

Job Run Time (seconds) 0.000 2.00 5.00 10.0 165 35.0 107 345 2179 92671 654 3.97
Job Forced-quit Time (seconds) -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Task Inter-arrival Time (seconds) – – – – – – – – – – – –
Task Run Time (seconds) – – – – – – – – – – – –

Task CPUs – – – – – – – – – – – –
Task Disk IO Ratio – – – – – – – – – – – –

Task Memory – – – – – – – – – – – –

Table
4.3:B

asic
statistics

fo
r

th
e

S
N

1
trace.

49

Min 1%-tile 10%-tile 25%-tile Mean Median 75%-tile 90%-tile 99%-tile Max Std CoV
Job Queue ID -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Job Partition ID -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000
Job Run Time (seconds) 0.000 4.00 13.0 29.0 434 86.0 274 750 4813 344461 3154 7.27

Job Fail fraction (fraction of total tasks) 0.000 0.000 0.000 0.000 0.013 0.000 0.000 0.005 0.333 1.00 0.078 5.87
Job Reduce ratio (fraction of total tasks) 0.000 0.000 0.000 0.000 0.108 0.000 0.111 0.500 0.969 1.00 0.208 1.92

Job User ID -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000
Job Wait Time (seconds) -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Job Inter-arrival Time (seconds) 0.000 0.000 1.00 2.00 14.2 8.00 19.0 34.0 83.0 8034 37.4 2.64
Job Forced-quit Time (seconds) -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Job Executable ID -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000
Job Group ID -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Job Total number of tasks (count) 0.000 0.000 0.000 0.000 154 1.00 9.00 258 3620 28687 982 6.40
Task Inter-arrival Time (seconds) – – – – – – – – – – – –

Task Run Time (seconds) – – – – – – – – – – – –
Task CPUs – – – – – – – – – – – –

Task Disk IO Ratio – – – – – – – – – – – –
Task Memory – – – – – – – – – – – –

Table
4.4:B

asic
statistics

fo
r

th
e

S
N

2
trace.

50

Min 1%-tile 10%-tile 25%-tile Mean Median 75%-tile 90%-tile 99%-tile Max Std CoV
Job Queue ID 0.000 0.000 0.000 0.000 0.918 1.00 2.00 2.00 2.00 3.00 0.832 0.907

Job Run Time (seconds) 0.000 16.0 26.0 62.0 2856 176 440 1650 29767 2219070 35709 12.5
Job Fail fraction (fraction of total tasks) 0.000 0.000 0.000 0.000 0.242 0.000 0.000 1.00 1.00 1.00 0.428 1.77
Job Reduce ratio (fraction of total tasks) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 –

Job User ID 0.000 32.0 105 141 285 238 469 584 730 932 193 0.675
Job Wait Time (seconds) 0.000 0.000 1.00 1.00 8.18 2.00 3.00 4.00 33.0 253976 567 69.3

Job Inter-arrival Time (seconds) 0.000 0.000 0.000 0.000 3.76 1.00 4.00 13.0 31.0 764 6.92 1.84
Job Forced-quit Time (seconds) -1.00 -1.00 -1.00 -1.00 2353 -1.00 198 756 19351 2179584 34819 14.8

Job Executable ID 34.0 3438 3602 3761 10252 5004 11890 28670 37943 39729 9616 0.938
Job Total number of tasks (count) 1.00 1.00 1.00 1.00 67.3 1.00 2.00 31.0 1004 5442378 8486 126
Task Inter-arrival Time (seconds) 0.000 0.000 0.000 0.000 26.8 0.000 0.000 0.000 35.0 1966315 2436 90.8

Task Run Time (seconds) 0.000 22.0 48.0 96.0 2815 400 1828 3656 38796 2179528 21252 7.55
Task CPUs 1.00 2.00 2.00 2.00 2.14 2.00 2.00 2.00 4.00 4.00 0.523 0.245

Task Disk IO Ratio – – – – – – – – – – – –
Task Memory – – – – – – – – – – – –

Table
4.5:B

asic
statistics

fo
r

th
e

G
o

o
g

le
trace.

51

Min 1%-tile 10%-tile 25%-tile Mean Median 75%-tile 90%-tile 99%-tile Max Std CoV
Job Run Time (seconds) 0.000 8.00 21.0 31.0 513 80.0 294 1344 5534 58050 1503 2.93

Job Fail fraction (fraction of total tasks) 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 1.00 0.099 9.98
Job Reduce ratio (fraction of total tasks) 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 1.00 0.040 24.9

Job Wait Time (seconds) 0.000 0.000 0.000 0.000 6.53 0.000 1.00 10.0 124 1012 26.3 4.03
Job Inter-arrival Time (seconds) 0.000 0.000 1.00 2.00 55.3 8.00 36.0 93.0 397 189881 1410 25.5

Job TaskRunTimes 0.000 1.00 3.00 8.00 305 33.0 90.0 214 2577 1e+09 237518 779
Job Forced-quit Time (seconds) -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 -0.000

Job Disk parameter a -9e+09 -1e+09 -4e+07 5703 2e+08 5212436 1e+08 3e+08 2e+09 1e+12 6e+09 26.9
Job Disk parameter b -1e+08 -2e+07 -4607026 -807801 199881 -4612 153050 4656541 3e+07 5e+07 7036996 35.2

Job Executable ID 0.000 0.000 0.000 0.000 755 0.000 1487 2226 3150 3329 986 1.31
Job Total number of tasks (count) 1.00 1.00 4.00 12.0 980 177 628 1440 12537 162917 3855 3.93
Task Inter-arrival Time (seconds) 0.000 0.000 0.000 0.000 0.220 0.000 0.000 1.00 2.00 34901 14.7 67.1

Task Run Time (seconds) 0.000 1.00 3.00 8.00 305 33.0 90.0 214 2577 1e+09 237518 779
Task CPUs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.000 0.000

Task Disk IO Ratio 0.000 0.000 0.000 0.000 21580 1.00 2.22 27.4 10054 9e+08 1474602 68.3
Task Memory – – – – – – – – – – – –

Table
4.6:B

asic
statistics

fo
r

th
e

Y
ah

o
o

!
trace.

52

Chapter 5

MapReduce Workload Modeling

In this chapter we propose a model for MapReduce workloads and a procedure to
generate synthetic yet realistic MapReduce workloads. This provides respectively
answers to questions Q2: “How can we model MapReduce workloads?” and Q3:
“How can we generate realistic synthetic MapReduce workloads?”

First, we discuss why we model workloads in Section 5.1 and introduce the
statistical tools we use in Section 5.2. Second, we propose aMapReduce model
in Section 5.3. Third, we propose a procedure to generate synthetic MapReduce
workloads in Section 5.4. Finally, we conclude in Section 5.5.

5.1 Why Model?

A real trace of a MapReduce workload is the most realistic workload which can
be used for performance evaluation or other purposes, as it is, in fact, real. Still, it
can be advantageous to model workloads while we have traces of real workloads
available. From the model of a workload, we can generate synthetic workloads
which we can use to drive simulations. Advantages of using workloads generated
from a model, instead of using real workload traces, include:

Flexibility Generating synthetic workloads from a model gives the ability to change
model parameter values.

• Changing model parameter values can be used to fit the workload to
cluster configurations that are different – in particular, larger – for ex-
ample, from the configuration of the cluster from which the traces were
collected.

• Changing model parameter values can be used to fit the workload to
different levels of cluster load.

Insight The model parameters reveal information about the originalworkload, and
can help to get a better understanding of the workload. For example, it is

53

possible to calculate the average run time from the distribution and its pa-
rameters.

Size The size of a file containing model parameter values is very small compared
to a normal workload trace.

Privacy Workload trace owners might have less objections to distributing model
parameter values than to the distribution of a real workloadtrace.

Feitelson [32], Section 1.3.2, gives a more thorough explanation about why the use
of workload models, instead of workload traces, can be beneficial.

The MapReduce workload models we propose are statistical models, another ap-
proach would be modeling using neural networks. Modeling using neural networks
is undesirable for a number of reasons. First, the parameters of such models do
provide little usable information about the workload. Second, it is difficult to sam-
ple from a neural network. Third, the training of a neural network is complex, may
require large amounts of data, and may not converge or stabilize.

5.2 Statistical Modeling

We use a number of statistical tools for modeling MapReduce workloads. In the fol-
lowing subsections we give short introductions to these tools: Distributions, Good-
ness of Fit, Distribution Selection, and Correlation.

5.2.1 Distributions

We would like to capture the nature of workload properties using statistical prob-
abilities. For example, we could calculate the probabilityfor a task to be a re-
duce task. For properties with continuous value ranges, such as the task run time,
we could create a histogram and calculate the probability for each of its bins. In
this histogram-scenario we can adapt the granularity by changing the bin-widths;
smaller bins lead to a higher granularity, at the cost of moremodel-parameters (the
per-bin probabilities) and at the risk of over-fitting (fitting the empirical data so
precisely that it does not generalize).

We would like the number of parameters to be small, so insteadof taking the
above histogram approach, we use well-known probability density functions (PDFs)
with a small number of parameters; a PDF is similar to a histogram with infinitely
small bins. For the empirical data it is easier to determine the integral of the PDF,
that is, the cumulative distribution function (CDF). The CDF for empirical data can
be calculated by determining, for each distinct sample value, the probability that a
sample has a lower or equal value.

In our modeling process we use the Normal Distribution, the Log-Normal Dis-
tribution, the Weibull Distribution, the Generalized Pareto Distribution, and the
Exponential Distribution. We have chosen these distributions because they have a
small number of parameters, are available by default in Matlab, SciPy, and many

54

other statistical tools, and because they have been proven to be useful in practice
for modeling computer science systems and workloads [19]. We have chosen not
to use Hyper-distributions, because of the larger number ofparameters and the risk
of over-fitting.

We can use maximum-likelihood estimation to fit the parameters of a distribution
to empirical data. In this work we have used the maximum-likelihood estimation
functions that are built into SciPy. In Table 5.1 we present the chosen distributions.

Function Notation Parameters

Normal N (µ, σ2) µ location,σ2 squared scale
Log-Normal lnN (µ, σ2) µ log-scale,σ2 shape
Exponential Exp(λ) λ rate

Weibull Wei(λ, k) λ scale,k shape
Generalized Pareto Par(µ, σ, ξ) µ location,σ scale,ξ shape

Gamma Gam(κ, θ) k shape,θ scale

Table 5.1: Distribution functions we use for statistical modeling.

5.2.2 Direct and Indirect Modeling

We use two modeling approaches, a direct-modeling approachand an indirect-
modeling approach. In the direct-modeling approach, a property (the variable of
interest) is modeled by a single probability distribution and its parameters are con-
stants set through the MLE fitting process. In the case of the indirect-modeling
approach, a property is modeled by a single probability distribution, and each of its
parameters are also modeled bysecond-leveldistributions.

For example, we model all properties directly in Section 5.3.1, and we model the
task-specific properties indirectly in Section 5.3.2.

The indirect-modeling approach gives the promise of a better fit with real data,
albeit at the cost of additional parameters and the probability of over-fitting.

5.2.3 Goodness of Fit

Although we may have found maximum-likelihood estimates (see Section 5.2.1)
for the parameters of a distribution, the distribution may still be unfit to represent
the empirical data. Therefore, we use goodness of fit tests toreject those distribu-
tions that are not likely to fit the data.

A goodness of fit tests returns ap-value, thisp-value is the probability that, under
the assumption that the empirical data is sampled from a given distribution, we find
samples at least as unfitting as the empirical data. We apply several goodness of fit
tests, and we reject a distribution when thep-value returned byanyof the selected
goodness of fit tests is lower than the significance levelα of 0.05.

We have selected two different goodness of fit tests: the Kolmogorov-Smirnov

55

test and the Anderson-Darling test. These two goodness of fittests have been cho-
sen because they focus on the center and the tail of the distribution, respectively.

Kolmogorov-Smirnov The Kolmogorov-Smirnov (KS) uses the D-statistic (see
Section 5.2.4) as the basis for the test. Large values for theD-statistic are
likely to occur at the “center” of a distribution, thereforeis the KS test more
focused at the “center” of a distribution.

Anderson-Darling The Anderson-Darling (AD) test is, because of a weight func-
tion, more focused at the “tail” of a distribution.

As the Kolmogorov-Smirnov test works better for small sample sizes, we run these
tests each 1000 times with 30 samples each time. We return asp-value the average
of all thep-values obtained by these 1000 tests.

5.2.4 Selection of the Best Fit

The goodness of fit tests do not provide a way to select the bestfitting distribution,
they only reject those distributions that do not fit well. After we have tested the
goodness of the fit of the distributions, we might have no fitting distribution left; on
the other hand, we might have multiple fitting distributions, from which we need to
select one.

We use two different ways of selecting the best fit. If we have multiple fitting
distributions for a single set of directly-modeled data, weuse their computed D-
Statistic to select the best fitting distribution. If we attempt to fit multiple sets of
data by meta-distributions as in the indirect-modeling approach (see Section 5.2.2),
we use the number of fits to select a fitting distribution.

D-Statistic To decide which of the fitting distributions to use, we compare the
D-Statistics and select the distribution with thelowestD-Statistic. The D-
Statistic value is defined asD = sup

x
|Fn(x) − F0(x)|, whereFn andF0 are

respectively the empirical cumulative distribution function and the cumula-
tive distribution function of the tested distribution. So,we select the distri-
bution which has the lowest maximum-difference between thedistribution’s
CDF and the empirical CDF.

Number of Fits We use the number of fits when we want to fit a meta-distribution
– a set of distributions that model each of the parameters of another distri-
bution. In this case the data is partitioned into sets which correspond to a
process in thereal system, e.g., for each job a set of tasks. For each set of
data we calculate the maximum-likelihood estimates of the parameters for
each distribution. Then, we use the goodness of fit tests to reject those distri-
butions that do not fit well, and we use the D-Statistic to select the best of the
remaining distributions. Finally, we count for each distribution the number
of items in the set for which it was selected as the best fittingdistribution. We
select the distribution that matched the most items. For a fictitious example

56

see Table 5.2. In this example we show a three-job workload, the jobs consist
of 1, 128, and 128 tasks. For the task run time we see that the Log-Normal
distribution has the best fit for a total of 129 tasks and that the Weibull dis-
tribution has the best fit for 128 tasks; therefore we select the Log-Normal
distribution to model the task run time.
We have chosen to select based on the number of matched items and not on
the number of matched sets, to reduce the influence of small sets, as we have
observed that small sets tend to fit more often than larger sets.

Best-Fitting Distribution
Job Task Count Task Run Time Task CPU Task Memory

1 1 Log-Normal Weibull Exponential
2 128 Weibull Exponential Weibull
3 128 Log-Normal Weibull Weibull

Overall Best Fit Log-Normal (129) Weibull (129) Weibull (256)

Table 5.2: Fictitious three-job example finding the best distributionfunction.

5.2.5 Correlation

Some properties could influence each other; if this influenceis consistent, we call
this a correlation. For example, if a task that needs to read alarge amount of data
has a run time proportional to the amount of data, there exists a correlation between
the disk usage and run time values. We would like to be able to detect correlations
between various properties, so that these can be exploited in our model. The Matlab
corr1 function can be used to detect correlation between two properties; it takes
two sets of property values as input and returns a single correlation value in the
range 0 (no correlation) to 1 (strong correlation). We call properties modeled by a
probability distribution functionprimary properties, and properties modeled by a
correlationsecondaryor derivedproperties.

5.3 Our Statistical MapReduce Workload Models

We have explored four statistical models, shown in Figure 5.1 and Table 5.3. The
models are in this table ordered in decreasing level of complexity. In the first two of
these models we model the task-specific properties indirectly. The intuition behind
this process is that the tasks of a single job might have similar behavior, but that the
tasks of different jobs might have very different behavior.

The reason why we have explored multiple models is that we would like to build
a comprehensive workload modeling framework and to explorealternatives in the
large space of statistical models.

1http://www.mathworks.nl/help/toolbox/stats/corr.html

57

http://www.mathworks.nl/help/toolbox/stats/corr.html

:RUNORDG�0RGHO

6LPSOH�0RGHO &RPSOH[�0RGHO

6DIH�&RPSOH[�0RGHO

5HOD[HG�&RPSOH[�0RGHO

&RPSOH[�0RGHO

Figure 5.1: Taxonomy of our MapReduce workload models.

Properties Map/Reduce Significance Indirect Distr.
Model Sect. Job-specific Task-specific Secondary Distinction Level Selection

Complex Model 5.3.2 Direct Indirect Disk I/O Yes 0.05 Best Fit
Relaxed Complex Model 5.3.3 Direct Indirect Disk I/O Yes 0.02 All Fits

Safe Complex Model 5.3.4 Direct Direct Disk I/O Yes 0.05 –
Simple Model 5.3.1 Direct Direct – No 0.05 –

Table 5.3: Overview of the Models

5.3.1 The Simple Model

We define a MapReduce workload as a collection of jobs, with for each individual
job a collection of tasks. We propose a simple model. The simple model uses only
four distributions, which can be hand-picked based on the results in Section 5.3.5.

This model is oversimplified, it makes for example no distinction between map
and reduce tasks. On the other hand has it very few parameters, therefore it will not
easily be over-fitted.

Inter-arrival time Captures the inter-arrival times of both jobs and tasks. This
model does not make a distinction between the inter-arrivaltimes of jobs and
tasks.

Number of tasks Captures the number of tasks of a job.

Map/Reduce ratio Captures the ratio between the number of map and reduce
tasks of a job.

Task run time Captures the task run times. This model does not make a distinc-
tion between the run-times of map and reduce tasks.

5.3.2 The Complex Model

We define a MapReduce workload as a collection of jobs, with for each individual
job a collection of tasks. As explained in Section 1.1, a MapReduce job is written

58

in the form of a map function and a reduce function. When such ajob runs, a
partition function divides input data from a distributed file system, and a number
of map tasks is started with each a part of the divided data as input. A number of
reduce tasks is started, and a shuffle function assigns the output of the map tasks to
these reduce tasks. The output of the reduce tasks is writtento the distributed file
system, and the job finishes.

We model for the map and reduce phases the properties listed in Table 5.4. We
do not model the DFS usage and the partition and shuffle phases. We omit these
to reduce the number of model parameters – as this information is also captured
by the task’s disk and network usage – and also because some ofthe necessary
information is not yet available in the CWA data format (see Appendix B). As
possible directions for future work, the CWA data format andthe model could
support the DFS, partition and shuffle phases, and other tasktypes – for example,
setup and cleanup.

All job properties are modeled directly. The task-specific properties are modeled
indirectly, i.e., we use second-level models to model the model parameters (see
Section 5.2.2). Since the map and reduce tasks generally behave very differently
from each other, as shown in Chapter 4, we perform model fitting separately for the
map tasks and the reduce tasks.

The main two features of the Complex Model over the Simple Model are:

1. Modeling of map tasks and reduce tasks separately.

In Chapter 4 we have observed that map and reduce tasks behavevery differ-
ently from each other. By modeling the two task types separately we capture
the differences.

2. Indirect-modeling of task properties.

We assume that tasks (of the same type) within the same job behave more or
less similar, while tasks of different jobs might behave very differently. By
using the indirect-modeling approach, we capture this behavior. If we use a
direct-modeling approach for task properties, we get uniform values over the
tasks of all the jobs, which might significantly impact the results.

Directly Modeled Properties

For the jobs we have two kinds of properties, properties thatare directly used for the
job characteristics themselves, and properties that are used as distribution parame-
ters to sample the characteristics of the tasks of the job. For the directly-modeled
properties we perform three steps:

1. We determine the maximum-likelihood estimates for the parameters of each
distribution, based on (real) data in a workload trace (Section 5.2.1).

2. We calculate the goodness of fit of these distributions compared to the work-
load (Section 5.2.3).

59

Property Type Job Task Value

Inter-arrival time D + + Seconds
Executable ID D + ± Integer ID

Run time I ± + Seconds
Number of tasks D + − Count

Map/Reduce ratio D + − Fraction: Maps/Reduces
Forced-quit time D + − Seconds

CPU’s I ± + Count
Disk IO C ± + Bytes
I/O ratio I ± + Fraction: Input/Output
Memory I ± + Bytes

Job exit state D + − Integer Coded State
Task exit state I − + Integer Coded State

Table 5.4: Properties included in our model. The symbols “D”, “I”, and “C”,
indicate respectively “directly modeled”, “indirectly modeled”, and “mod-
eled based on correlation”. The symbols “+”, “±”, and “−” indicate respec-
tively “modeled”, “implicit”, and “not applicable”.

3. We choose which of the distributions we will use to model the property (Sec-
tion 5.2.4).

Using the steps above, we model directly the following properties:

Inter-arrival time The inter-arrival time is defined as the time elapsed between
two job arrivals in the system. This metric can be used to generate job arrival
times for synthetic workloads. From a trace, we calculate the inter-arrival
times as the difference between the submit times of subsequent jobs.

Executable identifier Shows which executable is running as the job. Although we
do not really use this property in this work, we include it because we expect it
to be correlated to the other properties and this should be exploited in future
work.

Run time The time that a job runs, i.e., the wall clock time elapsed since the job
was started until the job finishes. The job run time is influenced by the run
times of the individual tasks and how the individual tasks are scheduled.

Number of tasks The sum of the number of map tasks and the number of reduce
tasks for the job.

Map/reduce ratio The ratio between map and reduce tasks. Together with the
total number of tasks, this ratio can be used to determine thenumber of map
and reduce tasks.

Forced-quit time The number of seconds elapsed since the job submission until
the job is forced-quitted. A job might for example be forced-quitted by the
user, by an administrator, and by maintenance scripts. In our model we do
not cover the scenarios where individual tasks are preempted.

60

Job exit state The exit state of the job, shows whether the job finished success-
fully, failed, or was forced-quitted.

Indirectly-Modeled Properties

For different jobs, the properties of the tasks of a job mightfollow different distri-
butions. We would like to capture this behavior in our model,albeit at the cost of a
larger number of parameters. For the tasks of each job, we fit each task-properties
to a probability distribution, and then we fit the parametersfor these distributions
by a meta-distribution. Since the parameters of a distribution function are gener-
ally not compatible with those of other distribution functions, we have to settle on
a single probability distributions function per task-property.

For the indirectly-modeled properties, we first perform thesame three steps
used for the directly modeled properties, i.e., for each jobwe determine for each
indirectly-modeled property the best fitting distributionand its parameters. We
model task properties for map and reduce tasks separately. Next, we determine
the all-over best fitting distribution function and we modelits parameters. For the
indirectly-modeled properties we perform three steps:

1. For each job in a (real) workload trace, we perform same three steps used for
the directly modeled properties on the map and the reduce tasks of the job,
separately:

(a) For each property, we determine the maximum-likelihoodestimates for
the parameters of each distribution (see Section 5.2.1).

(b) We calculate the goodness of fit of these distributions compared to the
workload (see Section 5.2.3).

(c) We choose which of the distributions we will use to model the property
(see Section 5.2.4).

2. For each task-property:

(a) We select the distribution that fits the largest number oftasks. Table
D.13 summarizes the actual counting results for the task runtimes.

(b) We model each parameter of the selected distribution with a meta-
model, i.e., we apply again the same three steps on the parameter val-
ues: determining the maximum-likelihood estimates, calculating the
goodness of fit, and selecting the best distribution. In thisstep, we only
use the parameter values of fits that passed the goodness of fittests.

Using the steps above, we model indirectly the following properties:

Task CPU The CPU demand of a task. Hadoop does not measure the CPU usage.
Although it depends on the cluster configuration, it is reasonable to assume
that there will be one CPU available per task. The real CPU usage can be
measured by instrumenting the worker nodes.

61

Task disk I/O ratio The ratio between the amount of data read from and written
to the disk by a task.

Task memory The memory demand of a task.

Task network The sum of the network send and received traffic of a task.

Task run time The time that a task runs, i.e., the wall clock time elapsed since the
task was started until it finishes.

Task exit state The exit state of the task, shows whether the task finished success-
fully, or failed.

Correlated Properties

We have observed that the total amount of task disk IO is strongly correlated with
the task run time (See Table 5.6). We assume that the total amount of disk IOh can
be calculated from task run timer usingh = αr + β. For each job in a trace, we
estimateα andβ based on the values ofh andr using NumPy’spolyfit2 func-
tion. Finally, we model bothα andβ using the directly model approach explained
earlier in this section.

5.3.3 The Relaxed Complex Model

The complex modeling approach, described in Section 5.3.2,may be too restrictive
to find good fits for the studied real workloads. Therefore we have explored in this
section a less restrictive model, the Relaxed Complex Model. This model is derived
from the Complex Model, with the selection criteria relaxed:

1. For the indirect modeling part, we have lowered the significance level from
0.05 to 0.02, resulting in the acceptance of less-well fitting distributions.

2. We have adapted the process for the selection of the distribution in the indi-
rect modeling process. In the complex model we select a distribution based
on the number of tasks that each distribution fitsbest, that is for each job its
number of tasks is counted for (if any) the distribution thathas the lowest
D-statistic of all distributions that pass the goodness of fit tests. In this re-
laxed model, we select based on the number of tasks that each distribution
fits well, that is for each job its number of tasks is counted for all distributions
that pass the goodness of fit tests.

5.3.4 The Safe Complex Model

As an alternative to the Complex Model and the Relaxed Complex Model we have
explored in this section the Safe Complex Model. This model still models the

2http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

62

http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

same properties as the Complex Model, we still make the distinction between map
and reduce tasks, we still exploit the correlation between run time and the amount
of disk I/O, but we do no longer attempt to use indirect modeling for the task
properties.

For each task property we use direct modeling to fit the valuesof the property for
all the map tasks, and separately for all the values of the property for all the reduce
tasks.

5.3.5 Modeling Results

We have used the modeling tool in the toolbox to fit the distributions described
in Section 5.2.1 to model the properties in the SN1, SN2, Yahoo!, and Google
workload traces. We encounter a number of problems. First, the SN1 workload
trace does not contain any task-specific information. Second, not all properties are
present in all the workload traces. We summarize the qualityof the fits in Table
5.5. Task CPU and memory demands do not fit at all , since the traces contain for
these properties only a single or very few distinct values.

Model Inter-arrival Time Run Time I/O Ratio

Complex Model bad fit good fit bad fit
Relaxed Complex Model bad fit good fit bad fit

Safe Complex Model bad fit good fit very bad fit
Simple Model n/a good fit n/a

Table 5.5: Quality of the fits.

Correlations

In Table 5.6 we show for both the SN1 and the Yahoo workload traces the correla-
tions between the available job properties. Based on the observed high correlation
value for the total wall clock time and the disk usage, we havedecided to model
the task runtime from the amount of disk usage of the task.

If we look at the correlation values for the Yahoo! workload in Table 5.6b, we
see that the fail and cancel factions highly correlate with each other. This is caused
by the fact that the cancel fraction is 0 for all jobs, and the fail fraction is 0 for all
but one jobs.

Directly-Modeled Properties

We show the results of the directly-modeling attempts in Tables D.1 through D.10.
We note some strange things, for example, we would have expected the inter-arrival
times (see Figure 5.2 and Table D.1) to be modeled using an exponential distribu-
tion, as this distribution is suitable for modeling a Poisson process such as inter-
arrival times. However, in these specific modeled workload traces, it seems that

63

the Weibull distribution is the best at modeling the inter-arrival times. And surpris-
ingly, the executable identifiers are modeled fairly well for the Google trace (see
Figure 5.4 and Table D.6), likely this is caused by the large number of sequentially
numbered distinct executable identifiers – making it a continuous distribution.

The wait times are not modeled well by any distribution for any of the modeled
workloads, as can be seen in Table D.2. This is most probably caused by the fact
that the wait times are very short, but have some large outliers. The job run times
are fitted well for all the workload traces, see Table D.3 and Figure 5.3.

Indirectly-Modeled Properties

The indirectly-modeled properties are used in the family ofcomplex models. The
Complex Model, the Relaxed Complex Model, but not in the SafeComplex model.

The Complex Model In Tables D.12 through D.15, we show per distribution the
percentage of the tasks that it fitted best, these tables are used to select a distribution
for the model. The task run time is the only property that is being fitted well, the
other properties are fitted very poorly. Unfortunately, theproperties “disk I/O ratio”
and “memory” were not fitted at all. This is likely caused by the ranges of the values
for these properties, e.g., the amount of memory for a task inthe Google trace is
the total amount of memory of the node it runs on – resulting inonly a few distinct
values.

In Tables D.16 through D.19 we show the fitting results of the parameters for
the selected distributions. Unfortunately, distributionfunction parameters are not
fitted well. Goodness of fit values of more than the confidence level 0.05 are the
exceptions, because of this we adapt our selection policy toselect primary based on
the D-statistic, except when a goodness of fit value of 0.05 orhigher is available.

The Relaxed Complex Model For the Relaxed Complex Model, we have almost
the same results as for the Complex Model. The percentages oftask fits are shown
in Tables D.20 through D.24, and the actual indirect-modeling fits are shown in
Tables D.25 through D.28.

The fits for the task run times in the Relaxed Complex Model seem slightly better
fits than those of the Complex Model, when we compare Tables D.17 and D.26.

The Safe Complex Model The fits for the Safe Complex Model are shown in
Tables D.29 through D.32. We expected much better fits for theSafe Complex
Model, hence the name, but here also the task run time is the only property that was
fitted good.

64

100 101 102 103 104
Inter-arrival Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Empirical
Normal
Exponential
Weibull
Pareto
Log-Normal
Gamma

Figure 5.2: Job inter-arrival time fits (SN2 workload).

65

102 103 104 105 106
Run Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Empirical
Normal
Exponential
Weibull
Pareto
Log-Normal
Gamma

Figure 5.3: Job run time fits (SN2 workload).

66

0 5000 10000 15000 20000 25000 30000 35000 40000
Executable ID

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Empirical
Normal
Exponential
Weibull
Pareto
Log-Normal
Gamma

Figure 5.4: Job executable ID fits (Google workload).

67

property In
te

rA
rr

iv
al

T
im

e

W
ai

tT
im

e

R
un

T
im

e

C
P

U
s

To
ta

lW
al

lC
lo

ck
T

im
e

M
em

or
y

N
et

w
or

k

D
is

k

S
ta

tu
s

Ta
sk

s

R
ed

uc
e

F
ra

ct
io

n

F
ai

lF
ra

ct
io

n

C
an

ce
lF

ra
ct

io
n

R
un

T
im

e
P

ar
am

et
er

1

WaitTime 0.00
RunTime 0.00 0.00

CPUs ? ? ?
TotalWallClockTime 0.00 0.01 0.28 ?

Memory ? ? ? ? ?
Network ? ? ? ? ? ?

Disk 0.00 0.00 0.29 ? 0.79 ? ?
Status ? ? ? ? ? ? ? ?
Tasks ? ? ? ? ? ? ? ? ?

Reduce Fraction ? ? ? ? ? ? ? ? ? ?
Fail Fraction ? ? ? ? ? ? ? ? ? ? ?

Cancel Fraction ? ? ? ? ? ? ? ? ? ? ? ?
Run Time Parameter 1 ? ? ? ? ? ? ? ? ? ? ? ? ?
Run Time Parameter 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

(a) SN1 trace.

property In
te

rA
rr

iv
al

T
im

e

W
ai

tT
im

e

R
un

T
im

e

C
P

U
s

To
ta

lW
al

lC
lo

ck
T

im
e

M
em

or
y

N
et

w
or

k

D
is

k

S
ta

tu
s

Ta
sk

s

R
ed

uc
e

F
ra

ct
io

n

F
ai

lF
ra

ct
io

n

C
an

ce
lF

ra
ct

io
n

R
un

T
im

e
P

ar
am

et
er

1

WaitTime ?
RunTime ? ?

CPUs ? ? ?
TotalWallClockTime -0.00 ? ? ?

Memory ? ? ? ? ?
Network ? ? ? ? ? ?

Disk 0.01 ? ? ? 0.52 ? ?
Status -0.05 ? ? ? -0.02 ? ? -0.04
Tasks 0.01 ? ? ? 0.28 ? ? 0.63 -0.02

Reduce Fraction -0.02 ? ? ? -0.01 ? ? -0.09 0.25 -0.21
Fail Fraction 0.00 ? ? ? 0.05 ? ? 0.02 -0.32 -0.01 -0.10

Cancel Fraction 0.00 ? ? ? 0.05 ? ? 0.02 -0.32 -0.01 -0.10 1.00
Run Time Parameter 1 ? ? ? ? ? ? ? ? ? ? ? ? ?
Run Time Parameter 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

(b) Yahoo! trace.

Table 5.6: Correlation between all the job properties. A question mark“?”
indicates that a correlation value could not be calculated.

68

5.4 Synthetic MapReduce Workload Generator

We present a procedure for generating synthetic MapReduce workloads using the
Simple Model in Section 5.4.1, and a procedure for generating synthetic MapRe-
duce workloads using the family of Complex Models in Section5.4.2.

5.4.1 Procedure using the Simple Model

We propose to generate synthetic workloads, from the SimpleModel, using the
procedure shown in pseudo-code in Algorithm 5.1. This procedure takes two kinds
of inputs: a durationδ in seconds, and probability distributionsD1−4. Duration
δ specifies the length of the period in seconds, during which job submissions are
generated. DistributionsD1−4 are used to sample values for various job- and task-
characteristics. We show input distributions, the model parameters, in Table 5.7.
Unfortunately, most of the MapReduce properties could be modeled for only a
single workload trace. For the model parameters we have selected the best fit-
ting distribution, regardless to which workload it belongs. Essentially we present
the model parameters for a hypothetical system which borrows properties from all
studied systems. Each of the properties corresponds to a real system.

The procedure generates a vectora and 2 two-dimensional vectorsy and r,
which are all described in Section 5.4.2.

Parameters
Input What Function Shape Location Scale Remarks

D1 Job Inter-Arrival Times Weibull 1.224 -0.430 6.90 Table D.1, SN1
D2 Number of Tasks Log-Normal 2.54 0.941 93.2 Table D.7, Yahoo!
D3 Reduce Task Ratio Normal n/a 0.108 0.208 Table D.8, SN2
D4 Task Run Time Weibull 0.531 0.000 82.0 Table D.11, Yahoo!

Table 5.7: Distributions as input for Algorithm 5.1.

5.4.2 Procedure using the Family of Complex Models

We propose to generate synthetic workloads, from the familyof Complex Models,
using the procedure shown in pseudo-code in Algorithm 5.2. This procedure takes
two kinds of inputs: a durationδ in seconds, and probability distributionsD1−19.
Durationδ specifies the length of the period in seconds, during which job submis-
sions are generated. DistributionsD1−19 are used to sample values for various job-
and task-characteristics. We show input distributions, the model parameters, in Ta-
ble 5.8. Unfortunately, most of the MapReduce properties could be modeled for
only a single workload trace. For the model parameters we have selected the best
fitting distribution, regardless to which workload it belongs. Essentially we present
the model parameters for a hypothetical system which borrows properties from all
studied systems. Each of the properties corresponds to a real system.

69

Algorithm 5.1 Algorithm for generating synthetic MapReduce workloads from the
simple model.
Note: In this algorithm the notation⊲⊳ (X) means “generate a random value from
probability distributionX”.
Input:

⊲ δ, the duration in seconds during which to generate Jobs.
⊲ D1−4, the distributions specified in Table 5.7.

Output:
⊲ {a, y, r}, a synthetic MapReduce workload.

1: loop
2: i←⊲⊳ (D1) {interarrival time}
3: if max(a) + i ≤ δ then
4: a|a|+1 ← max(a) + i {submit time for a new Job}
5: else
6: exit loop
7: for j = 1 to |a| do
8: nj ←⊲⊳ (D2) {number of tasks}
9: nr j ←⊲⊳ (D3) {map-/reducetasks ratio}

10: for t = 1 to nj do
11: yj,t ←⊲⊳ (nr j) {task type (map/reduce)}
12: r j,t ←⊲⊳ (D4) {task run time}

The procedure generates a set of 7 vectors and 5 two-dimensional vectors which
are specified below, each containing information about a characteristic, such as the
job arrival time. Thej-th element of each vector stores information about thej-th
job in the workload. For the task-specific characteristics,the t-th sub element of
the vector stores information about thet-th task of thej-th job. We discuss in the
following each output vector of this procedure in turn, starting with the job-specific
output vectors.

Job Arrival Times (vectora) The procedure generates vectora with the arrival
times for all jobs in the workload. The contents of this vector are generated
by repeatedly sampling job inter arrival times from distribution D1 and cal-
culating the arrival times from the inter arrival times. Jobsubmissions are
generated for a period of lengthδ, i.e.,max(a)−min(a) ≤ δ.

Executable Identifier (vectorx) The procedure generates an integer executable
identifierxj, for each jobj by sampling from distributionD2 and rounding to
an integer value. Althoughx is not used in our model, in the future we intend
to extend the use of distributionsD3−19 such that the correlation between
them and the executable is explicitly modeled.

Tasks Count (vectorn) The procedure generates the total number of tasksnj for
each jobj by sampling from distributionD3.

70

Map/Reduce tasks Ratio (vectornr) The procedure generates a map/reduce tasks
rationrj for each jobj by sampling from distributionD4.

Forced Quit Time (vector q) Although MapReduce runtime systems are fault-
tolerant (they support task restarts), jobs may still fail to complete (see Sec-
tion 5.3.2). We generate a vectorq with a forced quit time for each job by
sampling from distributionD5. This forced quit time is the number of sec-
onds elapsed since the submission of the job and until the user forced quits
the job. For jobs withqj ≤ 0, the job is not forced quitted.

Two three dimensional vectors are used internally, these vectors contain job-specific
values used to generate task-specific characteristics. Values for these two vectors
are sampled per job, for both map tasks and reduce tasks.

Job-specific Distributions (vectord1−5) Job-specific distributions are used to gen-
erate values for the properties of all the tasks of a job: tasktype, CPU de-
mand, disk i+o, disk i/o ratio, memory demand, and the task exit state. The
properties of the individual tasks of a job are generated from the job-specific
probability distributionsd1−5. For each task property we have chosen a fixed
type of distribution (see Section 5.3.2), with its parameters sampled from the
probability distributionsD6−15.

Task-specific Parameters(vectorp1−2) The procedure generate task-specific pa-
rametersp1−2 by sampling from distributionsD16−19. These task-specific
parameters are used to calculate the task disk IO (see line 20in Algorithm
5.2).

The procedure generates seven two-dimensional task-specific output vectors.

Task Type (vectory) The procedure generates for taskt of job j a task typeyj,t

by sampling from distributionnrj.

CPU Demand (vectorc) The procedure generates for taskt with typey of job j
the CPUcj,t by sampling from distributiond1,j,y.

Runtime (vectorr) The procedure generates for taskt with type y of job j the
runtimerj,t by sampling from the task-specific distributiond2,j,y.

Disk I+O (vectorh) The procedure generates for taskt with type y of job j the
sum of the task’s disk in- and outputhj,t as function ofrj,t and the two
parametersp1,j,y andp2,j,y. As can be seen in Tables 5.6a and 5.6b, there is
a strong correlation between the amount of disk I+O and the task runtime. In
the proposed function for calculatingh we exploit this correlation.

Disk I/O Ratio (vectorhr) The procedure generates for taskt with typey of job j
the disk I/O ratiohrj,t by sampling from the task-specific distributiond3,j,y.

71

Memory (vectorm) The procedure generates for taskt with type y of job j the
memory usagemj,t by sampling from the task-specific distributiond4,j,y.

Task Exit State (vectore) The procedure generates for taskt with typey of job j
the exit stateej,t by sampling from the task-specific distributiond7,j,y.

Parameters
Input What Function Shape Location Scale Remarks D

D1 Job Inter-Arrival Times Log-Normal 1.22 -0.430 6.90 Table D.1, SN1 0.05
D2 Executable Gamma 1.58 33.8 6460 Table D.6, Google 0.26
D3 Number of Tasks Log-Normal 2.54 0.941 93.2 Table D.7, Yahoo! 0.13
D4 Map/Reduce Ratio Normal n/a 0.108 0.208 Table D.8, SN2 0.35
D5 Forced-quit Time Normal n/a 2350 34800 Table D.9, Google 0.45

D6

Map Task CPU Demand Normal Table D.18, Google
loc Weibull 1.00 1.72 0.380 0.29

scale Normal n/a 0.098 0.227 0.48

D7

Map Task Run Time Normal Table D.17, Yahoo!
loc Log-Normal 1.25 -0.024 15.8 0.09

scale Weibull 0.503 0.00 6.69 0.14

D8

Map Task I/O Ratio Gamma Table D.19, Yahoo!
shape Log-Normal 3.09 0.093 38.0 0.11

loc Gamma 0.108 0.00 324 0.34
scale Weibull 0.266 0.00 0.061 0.07

D9 Map Task Memory no fits
D10 Map Task Exit State no fits
D11 Reduce Task CPU Demand no fits, UseD6

D12

Reduce Task Run Time Gamma Table D.17, Yahoo!
shape Pareto 0.303 -0.828 0.863 0.12

loc Weibull 0.338 0.00 44.6 0.22
scale Pareto 0.748 -0.718 0.718 0.06

D13 Reduce Task I/O Ratio no fits, UseD8

D14 Reduce Task Memory no fits
D15 Reduce Task Exit State no fits
D16 Map Task Disk Param. α Log-Normal 6.10 0.00 720000 Table D.4, Yahoo! 0.20
D17 Map Task Disk Param. β Normal n/a 200000 7040000 Table D.5, Yahoo! 0.29
D18 Reduce Task Disk Param.α UseD16

D19 Reduce Task Disk Param.β UseD17

Table 5.8: Distributions as input for Algorithm 5.2.

5.5 Concluding Remarks

In this chapter we have shown the advantages models and synthetic workloads.
We have proposed models for MapReduce workloads, as well as procedures to
generate realistic MapReduce workloads based on these models. Unfortunately,
the proposed indirect modeling approach does not work well.We find that not only
is it difficult to find a distribution that fits a task property well for a significant
amount of the total tasks, it also turns out to be difficult to fit the parameters of
such a distribution using meta-distributions.

72

Algorithm 5.2 Algorithm for generating synthetic MapReduce workloads.
Note: In this algorithm the notation⊲⊳ (X) means “generate a random value from
probability distributionX”.
Input:

⊲ δ, the duration in seconds during which to generate Jobs.
⊲ D1−19, the distributions specified in Table 5.8.

Output:
⊲ {a, x, q, y, c, h, hr , m, r , e}, a synthetic MapReduce workload.

1: loop
2: i←⊲⊳ (D1) {interarrival time}
3: if max(a) + i ≤ δ then
4: a|a|+1 ← max(a) + i {submit time for a new Job}
5: else
6: exit loop
7: for j = 1 to |a| do
8: xj ←⊲⊳ (D2) {executable id}
9: nj ←⊲⊳ (D3) {number of tasks}

10: nr j ←⊲⊳ (D4) {map-/reducetasks ratio}
11: qj ←⊲⊳ (D5) {forced-quit time}
12: d1−5,j,MAP ←⊲⊳ (D6−10) {task probability distributions}
13: d1−5,j,RED ←⊲⊳ (D11−15) {task probability distributions}
14: p1−2,j,MAP ←⊲⊳ (D16−17) {task probability distributions}
15: p1−2,j,RED ←⊲⊳ (D18−19) {task probability distributions}
16: for t = 1 to nj do
17: yj,t ←⊲⊳ (nr j) {task type (map/reduce)}
18: cj,t ←⊲⊳ (d1,j,yj,t

) {CPU}
19: r j,t ←⊲⊳ (d2,j,yj,t

) {run time}
20: hj,t ← r j,t × p1,j,yj,t

+ p2,j,yj,t
{disk io}

21: hr j,t ←⊲⊳ (d3,j,yj,t
) {disk i/o ratio}

22: mj,t ←⊲⊳ (d4,j,yj,t
) {memory}

23: ej,t ←⊲⊳ (d5,j,yj,t
) {exit state (succes/fail)}

73

74

Chapter 6

Building Better Systems

The key element in building better systems is being able to evaluate how well they
perform. Therefore, one of the main goals of our work is to evaluate and compare
existing, enhanced, and new MapReduce systems. In this chapter we present a
method to evaluate systems using synthetic workloads and simulations. We also
perform an experiment to validate our MapReduce system assessment approach.
With the work presented in this chapter we fulfill technical objective T4 and provide
an answer to research question Q4: “Which MapReduce scheduler performs best
in scheduling a certain workload?”

In Section 6.1 we survey the available MapReduce simulatorsand select one of
them. In Section 6.2 we present our experimental setup. In Section 6.3 we present
the results of our experiment. We conclude in Section 6.4.

6.1 Assessing MapReduce Systems in Simulation

We have chosen to simulate the execution of the workloads instead of actually
executing them on a real MapReduce cluster. Executing the workloads on a real
MapReduce cluster is undesirable for a number of reasons. Weidentify four such
reasons. First, running tests on a production cluster will interfere with production
workloads, so testing would require one or more separate test clusters. Second,
using a simulator, cluster configurations of arbitrary sizecan be evaluated. Third,
simulations might run faster than real time, and many simulations can run in paral-
lel, thus potentially saving huge amounts of time. Finally,specific simulators might
also allow you to investigate circumstances which are difficult to reproduce in a real
cluster, like for example hardware failures.

Using a simulator also has its flaws; none of the existing simulators captures all
aspects of a real MapReduce environment. However, we believe that the advantages
of using a simulator outweigh the drawbacks.

75

6.1.1 Overview of MapReduce Simulators

We have chosen to use an already existing MapReduce simulator. We present the
list of simulators we have considered in Table 6.1. Each of these MapReduce simu-
lators was developed with a specific use in mind, which leads to the distinct features
shown in the table.

Simulator Open Last Release Build On Language Scheduler Distinct Feature

MRPerf [6, 40] + 2009-7-14 ns 2.33 C++ Custom (in TCL) Low-level Network
Cardona et al. [11] – ? GridSim Java Custom (in Java) HDFS

MrSim [12] + 2010-10-27 GridSim Java Custom (in Java) Low-level I/O
Mumak [13] + 2011-06-12 Hadoop Java Hadoop (in Java) Hadoop Scheduler

Table 6.1: Comparison of MapReduce simulators.

MRPerf by [6, 40] is built on an old version of the ns1 network simulator, which
requires libraries that are no longer shipped with modern Linux distri-
butions, so it is difficult to get running.

Cardona et al.’s [11] simulator is not made available, so it can not be used by
other researchers. The simulator was developed to evaluateschedulers
for the distributed file system.

MrSim was developed, according to [12], because none the other simulators
mentioned in Table 6.1 were able to deliver accurate results. Although,
MrSim was shown to be superior in a constrained environment,we
have decided not to use it for one main reason: MrSim has no support
for pluggable schedulers.

Mumak is a MapReduce simulator included with Hadoop. It is fairly easy to get
running, makes use of the native Hadoop schedulers, and is input- and
output-compatible with Gridmix – a tool that is able to run synthetic
workloads on a real cluster.

6.1.2 Mumak, with the help of Rumen

Mumak [13] works together with Rumen [10] to simulate the execution of MapRe-
duce jobs on a single cluster. These tools were first introduced to the public in two
separate bug reports in July 2009, and committed into the Hadoop SVN in Septem-
ber 2009. They are included in the unstable Apache Hadoop versions 0.21 (August
2010) and 0.22.

1http://isi.edu/nsnam/ns/

76

http://isi.edu/nsnam/ns/

Mumak

Mumak is a MapReduce simulator. It simulates the JobTracker(the component in
Hadoop that accepts job submissions and schedules the execution of their tasks)
and all TaskTrackers (the Hadoop component that executes tasks on worker nodes),
and it submits jobs to the JobTracker. Mumak has three policies to submit jobs to
the JobTracker:

1. The REPLAY policy replays the input workload, adhering tothe submit times
in this workload.

2. The SEQUENTIAL policy does not adhere to the submit times,but submits
the next job as soon as the previous job has finished.

3. The STRESS policy does not adhere to the submit times, but keeps submit-
ting the next jobs until a specific load level is reached.

The configuration format for Mumak is almost the same as for Hadoop itself; there
are just some additional properties that can be configured, like for example the job
submission policy. When starting Mumak, paths to a cluster topology file and a
workload description file are specified as arguments. The cluster topology file is an
XML-encoded tree of nodes; the current version requires allthe leaves of this tree
to be at the same level. The workload file is a JSON-encoded file, describing all the
jobs and their tasks.

Rumen

Rumen is a tool that extracts job models and the cluster topology from Hadoop log
files, and produces a JSON-encoded workload file and an XML-encoded topology
file for Mumak. Using these input files, Mumak is able to perform the simulation.
Rumen is also used as a library by Mumak, to read the workload input file.

At first glance Rumen seems to have an overlap with our work in Chapter 5.
However, when inspecting Rumens inner workings, it becomesclear that Rumen
is only able to generate areplay of the original log files. This replay contains the
same jobs as the original Hadoop log files. Rumen only produces a very limited
distribution function for run times, it calculates discrete CDF’s, which Mumak uses
to sample run times at run time (via calls to Rumen). Rumen does not look for
correlations; it does however apply a configurable constantslowdown to tasks that
are not allocated to the preferred task-executing resourcespecified in the workload
description.

In our work, on the other hand, we model many properties with probability dis-
tribution functions, and we also exploit correlations between properties. We extract
parameters for this model from original log files, and we use our model and the
extracted parameters, to generates realistic synthetic workloads of arbitrary size.

In the remainder of this work, we use the term Mumak, collectively, for both
Rumen and Mumak.

77

6.1.3 Mumak Selected!

We have chosen to use Mumak as simulator for our experiments.The main reasons
for this choice are that:

• Mumak is bundled with Hadoop versions 0.21 and 0.22.

• Mumak uses unaltered versions of the Hadoop Schedulers, soall schedulers
bundled with Hadoop can be used. Also, if a researcher develops a scheduler
for Mumak, it can be used unaltered in a real Hadoop environment.

• Mumak is, input- and output-compatible with Gridmix3 [14], a tool that is
able to run synthetic workloads on a real Hadoop cluster, instead of simulat-
ing the execution.

Mumak also has some disadvantages, of which the most notableare:

• Mumak lets all reduce tasks run until the last map task has finished. This
leads to longer task run times in the simulation, than expected in real execu-
tion.

• Mumak does not take into account the bandwidth and latencies of the HDFS,
network, and disk I/O.

• Mumak does not simulate the partition and shuffle phases (see Section 1.1).

• Mumak is not able to simulate failures in the cluster.

6.2 Experimental Setup

We perform an experiment to validate our MapReduce system evaluation approach.
In this experiment we compare Hadoop’s default FIFO scheduler with the Fair
scheduler by [2]. In our experiment we run simulations for these 2 schedulers,
for 8 different load levels, and for 4 different workload lengths; each of these com-
binations is repeated 6 times, this adds up to a total of 384 simulations. Because
this amount of work is too demanding for a single computer, wehave run our sim-
ulations on the DAS-3 and DAS-4 super-computers.

We have created an simulation toolbox that automates the individual parts of the
evaluation process when using super-computers:

• Generation of all the synthetic workloads, and the distribution of the gener-
ated workloads to the cluster sites of the super-computers.

• Generation of all simulation jobs to run on the super-computers, a job con-
sists of the following steps:

– Configure the simulator to simulate the specified MapReduce cluster
and scheduler configurations.

78

– Let the simulator simulate the execution of the specified MapReduce
workload.

– Create an archive containing the results of the simulation.

– Clean up all temporary files.

• A simple meta-scheduler submits the generated simulationjobs to cluster
sites of the super-computers where a slot is available. The cluster sched-
uler will then execute the simulation job on one of the nodes of the super-
computer.

• Gathering of the simulation result archives from the super-computers, and
the analysis of these results.

• Plotting graphs in which the results of the various simulations are shown next
to each other, for easy comparison.

Although, in this process we use Mumak as the simulator, other users can easily
use any other simulator. There are only two components that need to be adapted:
First, the workload definitions and cluster configurations need to be converted in
a format that the simulator accepts. Second, the traces outputted by the simulator
need to be converted into the CWA data format.

6.2.1 Simulated Workloads

In our work we do not use Rumen to generate an input workload file for Mumak, but
instead we generate this file ourselves. We then let Mumak execute this workload
using the REPLAY submission policy.

We have chosen to generate synthetic workloads based on our MapReduce work-
load models. We want to accommodate the evaluation of systems that vary signif-
icantly in size, and we want to evaluate systems under various levels of load. For
this we need workloads that impose a specified load on a systemof specified size,
while containing jobs that are statistically the same across the workloads. Obtain-
ing workloads that meet these constraints from traces of real MapReduce clusters
is infeasible. As discussed in Chapter 5, the best way to obtain these workloads
is to generate synthetic workloads. We generate workloads based on our simple
model (see Section 5.3.1) and not based on one of the complex models (see Sec-
tions 5.3.2-5.3.4) because the modeling and generating using the complex models
is much more time consuming, we leave this for furture work.

We generate synthetic workloads for 8 load levels (1%, 30%, 40%, 50%, 60%,
70%, 80%, and 90%), and 4 different durations (1, 6, 24, and 96hours) based
on our procedure in Section 5.4.2. With a load level we mean the average task
slot occupation, which we denote as a percentage. We calculate the load level as
λ = 100

n·s·δ ·
∑

i ti, whereλ is the load level percentage,t is a vector of all task run
times,n is the number of nodes in the system,s is the number of task slots per
node, and, finally,δ is the duration for which we generate a workload.

79

To be able to simulate the workloads on Mumak we have added twoadditional
rules to the workload generator:

1. Each job has at least one map task, as reduce-only jobs always fail in Mumak.

2. The run time of each task is capped at seven days. This prevents the gen-
eration of extreme long running tasks (in the case we are sampling from a
long tailed distribution). This is a reasonable maximum runtime, as it is a
more relaxed constraint than in some existing production clusters, wherejobs
running longer than seven days are automatically killed.

In the workloads we generate jobs of two different application types: jobs of ap-
plication type 0 and jobs of application type 1. The jobs of application type 1
have shorter inter-arrival times, less tasks, and shorter task run times, than jobs of
application type 0.

The model parameters we used to generated these workloads are shown in Table
6.2. These model parameters have been selected before all the modeling was done,
so therefore they deviate from the parameters shown in Table5.7, still we have
chosen fairly good values. The most important of these parameters, the (task) run
time is on average 60 seconds for application 0 and on average15 seconds for
application 1, which is in the same range as in Table 5.7 wherethe all-over average
task run time is about 40 seconds, and we have chosen the same distribution. In this
table the Map/Reduce ratio shows the ratio of the maps, whiletable Table 5.7 shows
the reduce ratio, here we also have chosen the same distribution and the same range
of on average about 10% reduce tasks. For the number of tasks,we have selected
the Weibull distribution while for the Yahoo traces, the log-normal distribution is a
slightly better fit, as can be seen in Table D.7. The number of tasks per job are on
average 154, 67, and 980 for respectively the SN1, Google, and Yahoo workload
traces. So the average number of tasks in our chosen parameters of about 50 for
application 0 and 10 for application 1 are on the low side. Theinter-arrival time is
adapted by the workload generator to obtain the requested load-level, and the wait
time is indirectly a part of the inter-arrival time.

App. Inter-arrival Time Wait Time Num. Tasks Map/Reduce Ratio Run Time

0 Weibull 50 0.5 Weibull 2 0.5 Weibull 100 0.5 Normal 0.85 0.05 Weibull 120 0.5
1 Weibull 20 0.5 Weibull 1 0.5 Weibull 20 0.5 Normal 0.9 0.05 Weibull 30 0.5

Table 6.2: Model parameters.

In Figure 6.1 we show the run time CDFs of the 6-hour workloadsgenerated by
our workload generator based on these model parameters. We observe that there is
no significant difference in the CDFs of the workloads generated for different load
levels. In Figure 6.2 we show the same CDFs, but now with the horizontal axis
truncated at 200 seconds, here we observe that the median is somewhere between
120 × 0.5 = 60 and 30 × 0.5 = 15 (the expected means for the run times of
the two applications based on the distribution). Based on these two observations

80

we conclude that the generated workload is valid, that is, itmatches the parameter
values selected for this experiment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000

P
ro

ba
bi

lit
y

Run Time (seconds)

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

Figure 6.1: Task run time CDFs for various load levels of the generated six
hour long workloads.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

P
ro

ba
bi

lit
y

Run Time (seconds)

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

Figure 6.2: Task run time CDFs, capped at 200 seconds, for various load
levels of the generated six hour long workloads.

6.2.2 Topology of the Simulated Cluster

In our experiment we used the example “19-job” topology thatis included in the
Mumak source code. This cluster topology consists of 1545 (TaskTracker) nodes
distributed over 41 racks. We have configured Mumak to have four map task slots
and four reduce task slots per simulated node.

6.2.3 Configuration of the Simulated Scheduler

In this experiment we compare two MapReduce schedulers, Hadoop’s default (FIFO)
scheduler and the Fair scheduler. We have used Hadoop’s default scheduler without
any modification.

The Fair scheduler work withpools that each get allocatedfair share of the
system. In our workloads we have two types of applications, aless frequent and
heavier application 0, and a more frequent and lighter application 1 (see Section

81

6.2.1). For the Fair scheduler we have defined, next to the default pool (which will
only be used by applications of type 0), an additional pool for applications of type
1. This pool has been configured with triple the weight of the default pool, and on
top of that a guaranteed capacity of 500 map slots and 100 reduce slots.

6.2.4 Evaluation Metrics

After we have simulated the execution of all the workloads onall the systems under
test, we analyze the results. When these analyses are finished, we need a way to
decide what system performed best, so, we need an answer to research question Q4:
“Which MapReduce scheduler performs best in scheduling a certain workload?”

We cannot give a generic answer to this question, as the this depends on the
specific needs of the user. Nonetheless, we propose two metrics that could be used
to find the best system. The two proposed metrics arejob response timeandcost.
For both these metrics it holds that: the lower, the better.

Job response timeis the wall clock time elapsed since a job has been submitted
up until the job has finished. For production jobs the job response time
should be low enough to make the job deadline, for interactive jobs the
job response time should be as low as possible.

Cost is the number of node-hours used to execute the entire workload. An
entire node hour is counted, if during an hour a distinct nodehas been
executing at least one task. This is like the pricing scheme of Amazon
EC2, and can thus be used to approximate the cost of “running the
workload in the cloud.”

6.3 Experimental Results

The actual simulations of the 6-hour workloads took from51

2
minutes for the 1%

load level workload, up to51

2
hours for the 90% load level workload. Now we have

performed the simulations, we make a decision on which of thetwo schedulers
performed best. We first show the operational profile, then weshow the analysis of
the two evaluation metrics we selected; the job response times and the cost.

6.3.1 Simulator Validation Through Operational Profile

We show the number of running jobs and tasks over time in respectively Figures
6.3 and 6.4. The figures show the count of tasks and jobs that ran during 10-minute
intervals, so in the likely case that short jobs ran in such aninterval, the count can
be larger than the total number of task slots.

These figures show that the simulator actually executed the workloads, and that
the entire workloads finished in a reasonable time. Apart from this validation of
the simulator there are already three things, concerning the evaluation of the two
systems, that we observe in these two figures.

82

 0

 1700

 3400

 5100

 6800

90
%

 L
oa

d

Jo
b

C
ou

nt

 0

 1700

 3400

 5100

 6800

80
%

 L
oa

d

Jo
b

C
ou

nt

 0

 1700

 3400

 5100

 6800

60
%

 L
oa

d

Jo
b

C
ou

nt

 0

 1700

 3400

 5100

 6800

40
%

 L
oa

d

Jo
b

C
ou

nt

 0

 1700

 3400

 5100

 6800

 0 2 4 6 8 10 12 14

30
%

 L
oa

d

Jo
b

C
ou

nt

Time since workload start (hours)

Hadoop Default Scheduler Fair Scheduler

Figure 6.3: Number of running jobs for both scheduling policies under var-
ious load levels.

83

 0

 8500

 17000

 25500

 34000

90
%

 L
oa

d

T
as

k
C

ou
nt

 0

 8500

 17000

 25500

 34000

80
%

 L
oa

d

T
as

k
C

ou
nt

 0

 8500

 17000

 25500

 34000

60
%

 L
oa

d

T
as

k
C

ou
nt

 0

 8500

 17000

 25500

 34000

40
%

 L
oa

d

T
as

k
C

ou
nt

 0

 8500

 17000

 25500

 34000

 0 2 4 6 8 10 12 14

30
%

 L
oa

d

T
as

k
C

ou
nt

Time since workload start (hours)

Hadoop Default Scheduler Fair Scheduler

Figure 6.4: Number of running tasks for both scheduling policies under
various load levels.

84

The first thing we observe is the large difference in the number of concurrent
running jobs between the two schedulers, which increases with the load. From this
difference we can already conclude that the Fair scheduler,which keeps the number
of concurrent running jobs significantly lower than Hadoop’s default scheduler, will
have lower job run times than the default scheduler. This difference is not visible
for the number of running tasks over time, but a large difference is not likely to
happen, as the number of task slots is finite.

The second thing we observe is, that there is no significant difference in the time
needed to execute the entire workload. So, on the whole, the utilization of the
cluster does not really differ between the two schedulers, the only difference will
be observed in the individual jobs.

The third observation is that although we observe a drop in jobs and tasks after
the six hour period, for which we generated the workload, it still takes some time
to finish all jobs. This additional tail is caused by three things. For one, jobs that
were submitted just before the end of the six hour period, cannot finish earlier than
the moment which is sum of their submit time and their longestrunning task, this
will be the main cause for the lower load levels. Also, it takes some time to “ramp
up the system”, while the desired load level is calculated over the entire duration,
including the ramp up time, during which there are not yet enough tasks in the
system to occupy all task slots. The third cause will be that the scheduler may not
be able to use the task slots optimal, this will be the main cause for the higher load
levels.

6.3.2 Analysis of Job Response Times

We now evaluate the run times of the jobs for the two scheduling policies under five
different load levels. For this evaluation we compare the cumulative distribution
functions of the job run times for Hadoop’s default scheduler in Figure 6.5a, with
those for the Fair scheduler in Figure 6.5b.

These graphs show a slow and erratic increase of the CDF valuefrom 0.0 to 0.9
for the Hadoop’s default scheduler, while the same increasefor the Fair scheduler
happens fast and steady. From this observation we conclude that, for the majority
of the jobs, the job response times are significantly shorterwhen scheduled by the
Fair scheduler. However, we also observe a difference in thelength of the curves.
For the default scheduler the curves stop before 30,000 seconds, while for the Fair
scheduler the curves continue to well over 40,000 seconds. This indicates that
a relatively small number of jobs has a significantly longer job run times, when
scheduled by the Fair scheduler.

This behavior is expected from the Fair scheduler. Looking back at both the
workload generation in Section 6.2.1 and the configuration of the Fair scheduler
in Section 6.2.3, we see that we have configured the Fair scheduler to use separate
pools for the heavier and the lighter, and that we have given the pool for the lighter
jobs triple the weight of the other pool. Although the Fair scheduler lets tasks from
both pools run in parallel, this configuration lets the scheduler allocate a larger

85

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

P
ro

ba
bi

lit
y

Run Time (seconds)

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

(a) Hadoop’s Default Scheduler

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000

P
ro

ba
bi

lit
y

Run Time (seconds)

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

(b) Fair Scheduler

Figure 6.5: Job run time CDFs for various load levels.

share of the cluster for running the tasks of lighter jobs. Aseffect of this, the run
times of lighter jobs are significantly shorter, at the expense of an increase in the
run times of the heavier jobs.

We show the CDFs for the run time of the tasks in Figure 6.6. To make the dif-
ferences between the curves better visible, we “zoom in” at the first 5,000 seconds
– larger values on the horizontal axis are shown in log scale.The maximum values
on the horizontal axis are about 23,500 seconds for the Hadoop’s default scheduler
and 41,400 seconds for the Fair scheduler.

In Figure 6.6, on the first 5,000 seconds there is no visible difference in task run
times between the two schedulers. However, we find a significant difference in the
lengths of the tails. The absence of a visible difference in the first 5,000 seconds
is due to both schedulers allocating map tasks to each run on atask slot, and not
further interfering with the execution.

The run times of the reduce tasks, unlike map tasks, depend onwhen other (map)
tasks finish; the last reduce task can only finish after the last map task has finished.
Mumak lets every reduce task run until the very last map task has finished, we
can use this fact to explain the large difference in tail length we observed: In long
running jobs (which occur most for the Fair scheduler) the last map task finishes
late, this increases the run times of all reduce tasks in these jobs.

We also observe a difference in the distribution of responsetimes per load level:
the higher the load level, the shorter the majority of the tasks require to complete.

86

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

Run Time (seconds)

 10000 100000

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

(a) Hadoop’s Default Scheduler

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

Run Time (seconds)

 10000 100000

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30% Average Load

(b) Fair Scheduler

Figure 6.6: Task run time CDFs, horizontal axis values over 5,000 in log
scale.

87

We hypothesize that this difference is also caused by Mumak’s way of letting re-
duce tasks run longer than specified. With decreasing load, the reduce tasks will
take significantly less time to complete. As an unexpected consequence, their
shorter run time may lead to a lower value for the 90th-percentile of the distribution
(they become shorter than some of the map tasks); we could incorrectly conclude
that “lower loads lead to higher [90th-percentile] run times.”

We have plotted the median run times as a function of the load level in Figure
6.7, and we have plotted box plots of run times as function of the load level in
Figure 6.8 (the box plots show, from the top down: the maximumvalue, the third
quartile, the median, the first quartile, and the minimum value). For the tasks, we
have plotted next to the results of the two schedulers also the input workload for
comparison.

In Figure 6.7a we clearly see that the almost linear increaseof the median job
run time with the increase of the load level for Hadoop’s default scheduler, while
for the same loads, the median job run time for the Fair scheduler remains around
the same low value. In Figure 6.8a we observe that although the maximum job run
times for the Fair scheduler are always larger than for Hadoop’s default scheduler,
the majority of jobs finish faster than jobs scheduled by the default scheduler. This
leaves us to conclude that the Fair scheduler has far better scaling behavior than
Hadoop’s default scheduler.

The median task run times in Figure 6.7b seem to confirm our hypothesis, that
the influence of the longer running reduce tasks interfere more with the normal
tasks for the lower load levels. There is also something strange we observe in this
graph, for some load levels the median task run times of Hadoop’s default scheduler
are lower than the median task run time is lower than in the generated workload. A
possible cause can be that in the same way that reduce run times can become larger
than specified, they can also become lower than specified, if for example a reduce
task is started just before the last map task finishes.

6.3.3 Analysis of Cost

We have calculated the cost, as described in Section 6.2.4, of running the 6-hour
workloads on a 1545-node cluster. We have both plotted the cost over time in
Figure 6.9 and we show the total cost for running the entire workloads in Table 6.3.

Load Level
Scheduler 1% 30% 40% 50% 60% 70% 80% 90%

Hadoop’s Default Scheduler 7385 12496 14091 14037 13416 15903 16716 18372
Fair Scheduler 3514 12553 13840 14076 13548 16827 16674 19774

Fraction of Fair/Default 0.475 1.004 0.982 1.002 1.009 1.058 0.997 1.076

Table 6.3: Total cost in node-hours for running the entire 6-hour workloads.

At first glance we observe in Figure 6.9 significant differences in cost during

88

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e
(s

ec
on

ds
)

Average Load (%)

default policy fair policy

(a) Jobs

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e
(s

ec
on

ds
)

Average Load (%)

default policy fair policy generated workload

(b) Tasks

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e p
er

M
R

ta
sk

ty
pe

[0
] (

se
co

nd
s)

Average Load (%)

default policy fair policy generated workload

(c) Map Tasks

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e p
er

M
R

ta
sk

ty
pe

[1
] (

se
co

nd
s)

Average Load (%)

default policy fair policy generated workload

(d) Reduce Tasks

Figure 6.7: Medians of the run times for different scheduling policies over
various load levels.

89

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e
(s

ec
on

ds
)

Average Load (%)

default policy fair policy

(a) Jobs

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70 80 90 100

R
un

T
im

e
(s

ec
on

ds
)

Average Load (%)

default policy fair policy generated workload

(b) Tasks

Figure 6.8: Box plots of the run times for different scheduling policiesover
various load levels.

90

 0

 300

 600

 900

 1200

 1500

90
%

 L
oa

d

H
ou

rs
 C

ou
nt

 0

 300

 600

 900

 1200

 1500

80
%

 L
oa

d

H
ou

rs
 C

ou
nt

 0

 300

 600

 900

 1200

 1500

60
%

 L
oa

d

H
ou

rs
 C

ou
nt

 0

 300

 600

 900

 1200

 1500

40
%

 L
oa

d

H
ou

rs
 C

ou
nt

 0

 300

 600

 900

 1200

 1500

 0 2 4 6 8 10 12 14

30
%

 L
oa

d

H
ou

rs
 C

ou
nt

Time since workload start (hours)

Hadoop Default Scheduler Fair Scheduler

Figure 6.9: Cost in nodes per hours for both scheduling policies under vari-
ous load levels.

91

the tail of the workload execution, however the scheduler that is the cheapest in
executing the workload, seems to be fairly arbitrary. Table6.3 makes it even more
clear that the differences in cost are very small, and that there is no clear winning
scheduler. Workloads with high load levels use all nodes most of the time and
only show differences in the tail of the execution. The differences in the tail of the
workload execution however, do not have a large impact on thetotal cost.

None of the used schedulers optimizes on cost in node-hours.A system that
can scale down well enough to allow a scheduler to optimize inthis way is non-
trivial to develop, as currently the distributed file systemin Hadoop can not easily
scale down. An implementation of a MapReduce system with an elastic distributed
file system would not only be beneficial in a cloud computing setting, it would
for example also enable power conservation techniques in MapReduce clusters.
It would be possible to investigate the behavior of the cost for different cluster
configurations, a smaller cluster might take a longer time toexecute the workload,
but at a lower total cost.

6.4 Concluding Remarks

In this chapter we have shown an approach of how MapReduce systems can be
evaluated with the help of out Cloud Workload Archive Toolbox. We have shown
that using a simulator can be beneficial in comparison to running experiments on a
real cluster, and we have shown that the use of generated synthetic workloads can
be beneficial compared to using real workloads.

We have verified our approach by performing an experiment, from this exper-
iment we are able to conclude that our approach actually allows us to evaluate
MapReduce systems. The experiment also shows a huge differences between the
two schedulers. The Fair scheduler does, compared to Hadoop’s default scheduler,
an excellent job in providing low response times for the lighter jobs. None of the
two schedulers optimize on cost in node-hours, and this results in no significant
difference in their performance in cost.

In this chapter we have also identified challenges for futurework, first the cost
as a function of the MapReduce cluster configuration can be investigated, an elastic
distributed file-system for MapReduce can be developed, anda MapReduce sched-
uler that optimizes on cost can be developed. We have only used workloads gen-
erated from the Simple Model (see Section 5.3.1), we leave the use of workloads
generated from the Complex Models (see Section 5.3.2) for future work.

92

Chapter 7

Conclusion

The goal of this research was to be able to evaluate MapReducesystems. To this end
we have analyzed real-world MapReduce workloads. We have presented models
for MapReduce workloads and procedures to generate synthetic workloads based
on these models. And finally, we have shown that our tools can be used to eval-
uate MapReduce systems, by performing an experiment in which we compare the
performance of two schedulers.

In this chapter we present our conclusion, reflect on the work, and propose pos-
sible directions for future work.

7.1 Overview

In Chapter 1 we introduced this thesis, we introduced MapReduce, and we pre-
sented our research questions and technical objectives. InChapter 2 we surveyed
the current state of literature related to this thesis. In Chapters 3-6 we presented
our toolbox for MapReduce workload analysis and modeling, the analyses of real-
world workload traces, models for MapReduce workloads, andhow to use our work
to evaluate MapReduce schedulers. These four chapters covered in fact the research
questions, technical objectives, and experimental results, which we discuss in the
following subsections.

7.1.1 The Research Question

The main research question for this thesis was:“Is the MapReduce scheduler X
better than MapReduce scheduler Y?”This main research question lead to four
sub-questions:

Q1 What are the characteristics of MapReduce workloads?

In Chapter 4 we have analyzed MapReduce workload traces. These traces show:

• close to zero job wait times for the majority of the jobs

93

• run times of less than about 1.5 minute for the majority the tasks

When comparing map tasks with reduce tasks, we find that:

• map tasks run generally shorter than reduce tasks

• map tasks read more data from disk than they write, reduce tasks write more
data to disk than they read

• there are in a job generally more map tasks than reduce tasks

Q2 How can we model MapReduce workloads?

In Chapter 5 we presented four statistical models for MapReduce workloads. One
simple model and three complex models. The simple model was used in our experi-
ments and uses a direct-modeling approach for both the job and task characteristics.
The complex models make a distinction between map and reducetasks, exploit the
correlation between run time and disk I/O, and use indirect-modeling for task char-
acteristics.

Q3 How can we generate realistic synthetic MapReduce workloads?

In Chapter 5 we presented two procedures to generate realistic synthetic MapRe-
duce workloads: one procedure to generate workloads based on the simple model,
and one procedure to generate workloads based on the family of complex models.
Both procedures work by sampling from distributions given by the model parame-
ters. A workload generator based on the simple model is included in the toolbox.

Q4 Which MapReduce scheduler performs best in scheduling a certain work-
load?

We answer a more concrete version of this question in Chapter6 by evaluating the
Hadoop’s default scheduler and the Fair Scheduler in an experiment. The answer
to this question needs a metric to decide which is best; whichmetric actually to use
differs per the requirements of the user. We have proposed two metrics: first, the
job run-times, and second, the cost of running the workload in node-hours.

7.1.2 The Technical Objectives

We have developed the MapReduce Analysis Toolbox to fulfill the technical objec-
tives T1-T3 – to automate the analyzing, modeling, and generation of MapReduce
workloads. We have developed the toolbox for simulation using super-computers to
fulfill technical objective T4 – automate the simulating of MapReduce workloads.
We describe these toolkits in Chapter 3. In Appendix A we showto obtain and use
the MapReduce Analysis Toolbox.

94

7.1.3 Experimental Results

In our experiment we have evaluated two MapReduce schedulers: Hadoop’s default
scheduler and the Fair Scheduler. We have successfully usedMumak to simulate
for both schedulers individually synthetic workloads, generated from our model.
We have used the DAS-4 super-computer to run the simulations.

We evaluate the schedulers based on the job run times and the total cost for
running the workload in node-hours. The experiment shows that the Fair Sched-
uler yields much lower job run-times for the far majority of the jobs compared to
Hadoop’s default scheduler, as can be seen in Figure 6.5. When looking at the cost
in node-hours, we can not observe a significant difference inthe performance of
the two schedulers with regard to this metric. This is not surprising, as none of the
two schedulers tries to optimize this value.

7.2 Reflection

During this research we have made many choices, some of whichmight in hindsight
not been the best choices. In this section we reflect on two of these choices.

7.2.1 Selection of Mumak

We have chosen Mumak as MapReduce simulator, and in the end itturned out that
it did not respect the reduce task run times.

The use of the native Hadoop JobTracker and the input compatibility with Grid-
mix3 are two features that make Mumak really attractive as a simulator for our
work. But, from the results of this experiment we have learned that Mumak does
not respect the reduce task run times specified in the input workload. Instead, Mu-
mak lets reduce tasks run until the last map task finishes. Given Mumak’s disrespect
for its input workload, we should have selected another simulator.

7.2.2 The Need for a Complex Model

Although, we have not used one of the complex models in our experiment, because
of the amount of time needed to model and generate workloads using the complex
model, the results of the experiment would not have been verydifferent because of
the current limitations of Mumak. We do, however, think thatthe complex model
is a better choice, as it more-closely models real workloads:

1. The complex model allows differences in the behavior of map and reduce
tasks, by modeling them separately.

2. The complex model allows similar behaving tasks within a single job, while
still allowing significant differences in the behavior of tasks of different jobs,
by using an indirectly-modeling approach.

95

7.3 Recommendations for Further Research

Throughout in this work we have mentioned possible directions for future work:

1. Use complex models.

In this thesis we have used the simple model for the experiments, we would
recommend future experiments with the use of the complex model.

2. Add AD goodness of fit test to the python model fitter.

In the Matlab code we tested fits using both the KS test and the AD test,
for reasons explained in Chapter 5. In the python version we have not yet
implemented the AD test, although it is designed with multiple goodness of
fitness tests in mind.

3. Publication of MapReduce workload traces in a Cloud Workloads Archive.

Publication of the workload traces requires permission from the trace owners.
We have not attempted to obtain these permissions, so we can not publish the
traces. Public available traces will allow a larger set of researchers to study
MapReduce systems.

4. Identification of MapReduce jobs in the Google traces.

We deem it likely that the Google traces contain MapReduce jobs. It may be
possible to identify the MapReduce jobs in these traces by observing the job
characteristics.

5. Adaption of the CWA Data Format.

The CWA Data Format should capture more aspects of MapReduce, such as
partition and shuffle phases.

6. Exploitation in a model of possible correlations with theexecutable identifier.

From our workload analyses in Chapter 4 it becomes clear thatMapReduce
jobs may have application/executable-specific behavior, for example a “se-
lect query job” will read a lot of data while a “append job” will only write
little data. A future MapReduce model could exploit this kind of correlations.

7. Development of a scheduler that optimizes on cost in an elastic MapReduce
cluster.

We observe the demand for MapReduce clusters in the cloud. A MapReduce
cluster of a fixed size will be under-provisioned at one moment and over-
provisioned at another moment. A scheduler that scales an elastic MapRe-
duce cluster up and down, while meeting deadlines and minimizing cost,
would make MapReduce in the cloud more affordable.

96

8. Development of an elastic distributed file-system, to enable an elastic MapRe-
duce cluster.

We assume that the in-elasticity of the current version of the Hadoop Dis-
tributed File-System would be the main obstacle for creating an elastic MapRe-
duce cluster. An elastic distributed file-system would alsobe beneficial for
using MapReduce in grid environments.

97

98

Bibliography

[1] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters”, Symposium on Operating System Design and Implementation
(OSDI), 137–150, 2004.

[2] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica,
“Delay scheduling: a simple technique for achieving locality and fairness in
cluster scheduling”,Proceedings of the 5th European conference on Com-
puter systems, EuroSys ’10, ACM, New York, NY, USA, ISBN 978-1-60558-
577-2, 265–278, 2010.

[3] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, “An Analysis of Traces from
a Production MapReduce Cluster”,Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CCGRID
’10, IEEE Computer Society, Washington, DC, USA, ISBN 978-0-7695-
4039-9, 94–103, 2010.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, I. Stoica, “Mesos: A Platform for Fine-Grained Resource Sharing
in the Data Center”,In Proceedings of the 8th Usenix Symposium on Net-
worked System Design and Implementation, 2011.

[5] A. Ganapathi, Y. Chen, A. Fox, R. Katz, D. Patterson, “Statistics-driven work-
load modeling for the Cloud” (2010) 87–92.

[6] G. Wang, A. R. Butt, P. Pandey, K. Gupta, “Using realisticsimulation for per-
formance analysis of mapreduce setups”,Proceedings of the 1st ACM work-
shop on Large-Scale system and application performance, LSAP ’09, ACM,
New York, NY, USA, ISBN 978-1-60558-592-5, 19–26, 2009.

[7] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, H. Y. Yeom, “MRBench: A
Benchmark for MapReduce Framework” (2008) 11–18ISSN 1521-9097.

[8] Y. Chen, A. Ganapathi, R. H. Katz, “To compress or not to compress - com-
pute vs. IO tradeoffs for mapreduce energy efficiency”,Proceedings of the
first ACM SIGCOMM workshop on Green networking, Green Networking
’10, ACM, New York, NY, USA, ISBN 978-1-4503-0196-1, 23–28,2010.

99

[9] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica,
“Dominant Resource Fairness: Fair Allocation of Multiple Resource Types” .

[10] “Rumen: A tool to extract Job Characteri-
zation Data from Job Tracker Logs”, URL
https://issues.apache.org/jira/browse/MAPREDUCE-751,
2009.

[11] K. Cardona, J. Secretan, M. Georgiopoulos, G. Anagnostopoulos, “A Grid
Based System for Data Mining UsingMapReduce” .

[12] S. Hammoud, M. Li, Y. Liu, N. K. Alham, Z. Liu, “MRSim: A discrete event
based MapReduce simulator” 6 (2010) 2993–2997.

[13] “Mumak: Map-Reduce Simulator”, URL
https://issues.apache.org/jira/browse/MAPREDUCE-728,
2009.

[14] D. Tankel, “Gridmix3 — Emulating Produc-
tion Workload for Apache Hadoop”, URL
http://developer.yahoo.com/blogs/hadoop/posts/2010/04/gridmix3_emulating
2010.

[15] A. C. Murthy, “The Hadoop Map-Reduce Capacity Scheduler”, URL
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/capacity-scheduler
2011.

[16] T. Sandholm, K. Lai, “Dynamic Proportional Share Scheduling in Hadoop Job
Scheduling Strategies for Parallel Processing”, vol. 6253of Lecture Notes in
Computer Science, chap. 7, Springer Berlin / Heidelberg, Berlin, Heidelberg,
ISBN 978-3-642-16504-7, 110–131, 2010.

[17] M. Zaharia, A. Konwinski, A. D. Joseph, Y. Katz, I. Stoica, “Improving
MapReduce Performance in Heterogeneous Environments” .

[18] J. Polo, D. Carrera, Y. Becerra, M. Steinder, I. Whalley, “Performance-driven
task co-scheduling for MapReduce environments”, 373–380,2010.

[19] A. Iosup, A Framework for the Study of Grid Inter-Operation Mechanisms,
Ph.D. thesis, 2008.

[20] W. Leland, T. J. Ott, “Load-balancing heuristics and process behavior”,SIG-
METRICS Perform. Eval. Rev.14 (1986) 54–69, ISSN 0163-5999.

[21] M. Calzarossa, G. Serazzi, “Construction and use of multiclass workload
models”,Perform. Eval.19 (1994) 341–352, ISSN 0166-5316.

100

https://issues.apache.org/jira/browse/MAPREDUCE-751
https://issues.apache.org/jira/browse/MAPREDUCE-728
http://developer.yahoo.com/blogs/hadoop/posts/2010/04/gridmix3_emulating_production/
http://developer.yahoo.com/blogs/hadoop/posts/2011/02/capacity-scheduler/

[22] M. H. Balter, A. B. Downey, “Exploiting process lifetime distributions for
dynamic load balancing”,ACM Trans. Comput. Syst.15 (3) (1997) 253–285,
ISSN 0734-2071.

[23] D. G. Feitelson, “Packing Schemes for Gang Scheduling”, IPPS ’96: Pro-
ceedings of the Workshop on Job Scheduling Strategies for Parallel Process-
ing, Springer-Verlag, London, UK, ISBN 3540618643, 89–110, 1996.

[24] D. G. Feitelson, B. Nitzberg, “Job Characteristics of aProduction Parallel Sci-
entivic Workload on the NASA Ames iPSC/860”,Proceedings of the Work-
shop on Job Scheduling Strategies for Parallel Processing, Springer-Verlag,
London, UK, ISBN 3-540-60153-8, 337–360, 1995.

[25] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, J. Riordan, “Modeling
of Workload in MPPs”,In Job Scheduling Strategies for Parallel Processing,
95–116, 1997.

[26] U. Lublin, D. G. Feitelson, “The Workload on Parallel Supercomputers: Mod-
eling the Characteristics of Rigid Jobs”,Journal of Parallel and Distributed
Computing63.

[27] H. Li, D. Groep, L. Wolters, “Workload Characteristicsof a Multi-cluster
Supercomputer”,D. G. Feitelson, L. Rudolph, U. Schwiegelshohn (Eds.), Job
Scheduling Strategies for Parallel Processing, vol. 3277 ofLecture Notes in
Computer Science, chap. 10, Springer Berlin / Heidelberg, Berlin, Heidelberg,
ISBN 978-3-540-25330-3, 33–53, 2005.

[28] E. Medernach, “Workload Analysis of a Cluster in a Grid Environment”,
D. Feitelson, E. Frachtenberg, L. Rudolph, U. Schwiegelshohn (Eds.), Job
Scheduling Strategies for Parallel Processing, vol. 3834 ofLecture Notes in
Computer Science, chap. 2, Springer Berlin / Heidelberg, Berlin, Heidelberg,
ISBN 978-3-540-31024-2, 36–61, 2005.

[29] B. Song, C. Ernemann, R. Yahyapour, “User group-based workload analysis
and modelling” 2 (2005) 953–961 Vol. 2.

[30] H. Li, M. Muskulus, “Analysis and modeling of job arrivals in a production
grid”, SIGMETRICS Perform. Eval. Rev.34 (2007) 59–70, ISSN 0163-5999.

[31] A. Iosup, O. Sonmez, S. Anoep, D. Epema, “The performance of bags-of-
tasks in large-scale distributed systems”,Proceedings of the 17th interna-
tional symposium on High performance distributed computing, HPDC ’08,
ACM, New York, NY, USA, ISBN 978-1-59593-997-5, 97–108, 2008.

[32] D. G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation, 0.34 edn., 2011.

101

[33] D. G. Feitelson, “Parallel Workloads Archive”, URL
http://www.cs.huji.ac.il/labs/parallel/workload/,
2005.

[34] D. Kondo, B. Javadi, A. Iosup, D. Epema, “The Failure Trace Archive: En-
abling Comparative Analysis of Failures in Diverse Distributed Systems”,
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM Inter-
national Conference on, IEEE, ISBN 978-1-4244-6987-1, 398–407, 2010.

[35] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, D. H. J. Epema,
“The Grid Workloads Archive”,Future Generation Computer Systems24 (7)
(2008) 672–686, ISSN 0167739X.

[36] B. Zhang, A. Iosup, D. Epema, “The Peer-to-Peer Trace Archive: Design and
Comparative Trace Analysis”, Tech. Rep. PDS-2010-003, Delft University of
Technology, 2010.

[37] A. Iosup, R. Griffith, A. Konwinski, M. Zaharia, A. Ghodsi, I. Stoica, “Data
Fromat for the Cloud Workloads Archive”,DRAFT, v.3.

[38] A. Iosup, H. Li, C. Dumitrescu, L. Wolters, D. H. J. Epema, “The Grid Work-
loads Archive Format” .

[39] D. Talby, D. G. Feitelson, J. P. Jones, “The Standard Workload Format” .

[40] G. Wang, A. R. Butt, P. Pandey, K. Gupta, “A simulation approach to evalu-
ating design decisions in MapReduce setups”,2009 IEEE International Sym-
posium on Modeling, Analysis & Simulation of Computer and Telecommu-
nication Systems, IEEE, ISBN 978-1-4244-4927-9, ISSN 1526-7539, 1–11,
2009.

102

http://www.cs.huji.ac.il/labs/parallel/workload/

Appendix A

Result Availability

The technical result of our work is the Cloud Workloads Archive Toolbox. We have
made this software available as an open-source project. It would have been nice if
we could also make the workload traces available as open-access data. We leave
that task as future work, as it requires obtaining permission from the trace owners.

A.1 Obtaining the Cloud Workloads Archive Toolbox

We have published the source code of the CWA Toolbox as a git repository on At-
lassian Bitbucket. You can either download the source code from the code reposi-
tory website, or clone the entire git repository.

Code Repository Website

https://bitbucket.org/tader/cwa-toolbox/

Clone the Git Repository

$ git clone https://bitbucket.org/tader/cwa-toolbox.git

A.2 Dependencies

The CWA Toolbox requires the following software to be available. (The version
numbers indicate the versions used to develop the toolbox, other versions might
also work.)

• Python (v2.7)
Almost all components of the CWA Toolbox are written in Python.

• Gnuplot (v4.4)
Gnuplot is used to plot the graphs from the analysis data.

103

https://bitbucket.org/tader/cwa-toolbox/
https://bitbucket.org/tader/cwa-toolbox.git

• Matlab (v7.11.0 (R2010b))
Matlab is used for modeling of the workload trace.

• SciPy(v0.10.1)
SciPy is used for modeling of the workload trace.

• NumPy (v1.6.2)
NumPy is required for SciPy.

A.3 Installation

There is no real installation needed as such, you just need tocopy thecwa script
into a directory which is in your$PATH, e.g., in/usr/local/bin or ~/bin.
Then change the path inside this script so that it correctly indicates the location
where you placed the toolbox’ssrc directory.

A.4 Creating a CWA “Project”

To work on a new CWA “project”, we need to create a directory structure with the
original input traces and a configuration file. With this in place, we can use the
CWA Toolbox.

A.4.1 Directory Structure

The CWA Toolbox expects the following layout for a CWA workload trace project.
This layout is defined in the default configuration and everything can be overridden
in the local configuration file if needed, except for the path to the local configuration
file itself of course.

• trace-name/ . Root path for the CWA project

– cwa/ . Toolbox Work Directory

* config CWA configuration file (see example)

* traces/ Traces in CWA format (aftercwa import)

* data/ Analysis results (aftercwa analyze)

* plots/ . Gnuplot plots (aftercwa plot)

* model/ Modeling results (aftercwa model)

– raw/ . Original trace data

104

A.4.2 Configuration File

An example configuration file is shown in Figure A.1. For all possible settings and
their default values, please see the filecwa-toolbox/src/default_config.
The root path of the CWA project is available as variable in the configuration files,
it can be used by writing “%(path)s”, as shown in the example configuration file.

The setting “module = cwa.import.hadoop” could have been omitted
as this is already set as default value in the default configuration file. The simplest
possible configuration file is an empty file.

1 [trace]
2 title = Hadoop Workload
3

4 [import]
5 input = %(path)s/raw/logs/history/done
6 module = cwa.import.hadoop

Figure A.1: Example configuration file for a CWA project.

A.4.3 Example Usage

If you have created such a directory structure and configuration file, you are ready
to use the CWA Toolbox. First place the original trace data inthe raw directory,
and create a suitable configuration file. The default processwould be entering the
following commands:

1. cwa import
Imports the raw trace data into the CWA format.

2. cwa analyze
Analyzes the traces in CWA format.

3. cwa plot
Plots the results of the analyses.

4. cwa model
Fit the model parameters of the trace.

5. cwa model report
Plot the results of the model fitting.

A.5 General Usage

Typecwa -h to find out all the available options and commands, the outputof this
command is shown in Figure A.2. For even more usage information, see the source
code.

105

1 $ cwa -h
2 usage: cwa [OPTIONS]... <command>
3

4 Cloud Workloads Archive Toolbox
5

6 OPTIONS:
7 -h, --help print command help
8 --doc print command modules pydoc
9 -v increase verbosity level

10

11 COMMANDS:
12 analyze
13 dump
14 generate
15 import
16 model
17 plot
18 test
19 trace

Figure A.2: Help information for thecwa command.

A.6 Contributing

You are invited to contribute to the CWA Toolbox. I look forward to receiving your
“pull requests,” which you can send me either by using the pull request feature of
Bitbucket, or just by sending me an email atthomas@de-ruiter.cx.

106

mailto:thomas@de-ruiter.cx?subject=CWA Toolbox Pull Request

Appendix B

Data Format for the Cloud
Workloads Archive

The Data Format for the Cloud Workloads Archive is defined by Iosup et al. [37].
The data format specifies two levels of fields for job and task information. This
data can in principle be stored in any database or file. An overview of all fields in
the draft version 3 of this data format is given in the following table.

In addition to the data format specification, we present the following rules of
thumb for reading/writing the trace data in a tab separated file format:

• The workload trace consists of four separate files containing job data (*.cwj),
task data (*.cwt), detailed job information (*.cwjd), and detailed task infor-
mation (*.cwtd).

• Records must be separated by a newline character, field values must be sep-
arated by a tab character.

• Empty lines and lines starting with the number symbol “#” must be ignored.

• The first not ignored line of each file should contain tab separated list of field
names as column headers.

• The fields in the records and headers should be ordered by thefield identifier.

• Field values must not contain tabs and should not be quoted.

• The values (ignoring case) “none”, “null”, and the empty string, must be
handled as unknown data.

• Negative values in fields where this is obviously not logical, like the number
of CPUs, should be handled as unknown data.

• The files may optionally be compressed using gzip compression, in that case
the file names must be extended with the “.gz” extension.

107

ID Name Type CWJ CWT CWJD CWTD

1 JobID Int + + + +
2 TaskID Int – + – +
3 SubmitTime Float + + + +
4 WaitTime Float + + + +
5 RunTime Float + + + +
6 CPUs Float + + + +
7 TotalWallClockTime Int + + + +
8 Memory Float + + + +
9 Network Float + + + +
10 Disk Float + + + +
11 Status Int1 + + + +
12 UserID String + – + –
13 GroupID String + – + –
14 ExecutableID String + + + +
15 QueueID Int + + + +
16 PartitionID Int + + + +
17 JobProperties Int2 + + – –
18 StructuralChanges String3 + + + +
19 StructuralChangeParams String4 + + + +
20 DiskIORatio Float + + + +
21 MR_total_launched Int – – + –
22 MR_total_from_job Int – – + –
23 MR_total_failed Int – – + –
24 MR_total_killed Int – – + –
25 MR_total_splits Int – – + –
26 MR_total_hdfs_read Int – – + +
27 MR_total_hdfs_written Int – – + +
28 MR_total_local_read Int – – + +
29 MR_total_local_written Int – – + +
30 MR_total_spilled_records Int – – + +
31 MR_map_launched Int5 – – + –
32 MR_map_total Int5 – – + –
33 MR_map_finished Int5 – – + –
34 MR_map_failed Int5 – – + –
35 MR_map_killed Int5 – – + –
36 MR_map_hdfs_read Int5 – – + –
37 MR_map_hdfs_written Int5 – – + –
38 MR_map_local_read Int5 – – + –
39 MR_map_local_written Int5 – – + –
40 MR_map_input Int5 – – + +
41 MR_map_output Int5 – – + +

108

ID Name Type CWJ CWT CWJD CWTD

42 MR_map_input_records Int5 – – + +
43 MR_map_output_records Int5 – – + +
44 MR_data_local Int – – + +
45 MR_data_rack Int – – + +
46 MR_combine_input_records Int – – + +
47 MR_combine_output_records Int – – + +
48 MR_reduce_input_records Int – – + +
49 MR_reduce_input_groups Int – – + +
50 MR_reduce_output_records Int – – + +
51 MR_reduce_finished Int – – + –
52 MR_task_attempt_host String – – – +
53 MR_task_attempt_shuffle_finishedFloat – – – +
54 MR_task_attempt_sort_finished Float – – – +
55 MR_task_attempt_counters Float – – – +
56 MR_task_attempt_id String – – – +
57 MR_task_type Int6 – – – +
58 MR_total_map_time Int – – + –
59 MR_total_reduce_time Int – – + –
60 MR_spilled_records Int – – – +

1 Status codes:
0: Failed
1: Success
2: Continued partial execution
3: Last partial execution, success
4: Last partial execution, failed
5: Canceled job
6: Retry of an earlier failed job

2 Job property codes:
0: Interactive
1: User-facing
2: Batch

3 Comma-separated values: MR/Opaque, MR[/Detailed], MR/Changed

4 Semicolon-separated values: PrevTasks=String(,. . .); PrevProfile=Int

5 Type unspecified in specification [37], but Int is certainly the only sane option.

6 Task type codes:
0: Map
1: Reduce

109

110

Appendix C

Validation of the Pseudo-Random
Number Generator

We have sampled 50 MiB of data and attempted to compress it. The compression
results in Table C.1 show only increased file sizes. We have also plotted a histogram
of sampled values in Figure C.1a, and a scatter-plot of sampled points in Figure
C.1b – as a visual validation of the random number generator.Inspection of these
two figures does not reveal any significant deviation from an even distribution over
the space. Based on the compression results and the visual validation, we conclude
that this pseudo-random number generator is suitable to be used in our work.

Description Size Normalized

Sampled Random Bytes 52,428,800 B 1.0000
Compressed:bzip2 -9 52,662,999 B 1.0045
Compressed:gz -9 52,436,827 B 1.0002
Compressed:zip 52,436,956 B 1.0002

Table C.1: Compression of sampled bytes.

(a) Histogram. (b) Scatter-plot.

Figure C.1: Plots of 100,000 sampled values/points.

111

112

Appendix D

Modeling Results

D.1 Directly-Modeled Properties

SN1 SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000 0.000

loc 14.0 14.2 3.76 55.3
scale 239 37.4 6.92 1410
KS 0.000 0.001 0.005 0.000

D-stat. 0.426 0.298 0.261 0.426
Exponential shape 0.000 0.000 0.000 0.000

loc -0.000 -0.000 -0.000 -0.000
scale 15.1 14.2 3.76 55.3
KS 0.179 0.327 0.000 0.002

D-stat. 0.179 0.110 0.443 0.382
Weibull shape 0.727 0.666 0.756 0.304

loc -0.000 -0.000 -0.000 -0.000
scale 11.5 21.5 1.42 461
KS 0.344 0.129 0.000 0.000

D-stat. 0.059 0.165 0.452 0.435
Pareto shape 1.00 1.00 1.00 1.00

loc 0.000 0.000 0.000 0.000
scale 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – – –
Log-Normal shape 1.22 1.25 5.96 0.140

loc -0.430 -0.471 -0.000 -805
scale 6.90 7.47 1.15 856
KS 0.419 0.382 0.001 0.001

D-stat. 0.053 0.074 0.439 0.309
Gamma shape 0.000 0.000 0.132 0.000

loc 13.5 13.7 1.24 28.8
scale 121217 3030 19.0 75157
KS 0.000 0.000 0.000 0.000

D-stat. 0.727 0.632 0.575 0.705

Table D.1: Job inter-arrival time.

113

SN1 SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000 0.000

loc 0.457 -1.00 8.18 6.53
scale 2.62 0.000 567 26.3
KS 0.000 0.000 0.000 0.000

D-stat. 0.405 0.500 0.485 0.376
Exponential shape 0.000 0.000 0.000 0.000

loc -0.000 0.000 -0.000 -0.000
scale 0.457 0.000 8.18 6.53
KS 0.000 0.000 0.000 0.000

D-stat. 0.573 – 0.558 0.602
Weibull shape 0.517 1.00 0.723 0.176

loc -0.000 0.000 -0.000 -0.000
scale 0.073 0.000 4.12 34.7
KS 0.000 0.000 0.004 0.000

D-stat. 0.597 – 0.314 0.530
Pareto shape 1.00 1.00 1.00 1.00

loc 0.000 0.000 0.000 0.000
scale 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – – –
Log-Normal shape 9.61 1.00 0.245 9.27

loc -0.000 0.000 -18.0 -0.000
scale 2.36 0.000 21.3 7.54
KS 0.000 0.000 0.001 0.000

D-stat. 0.603 – 0.400 0.487
Gamma shape 0.000 – 0.000 0.032

loc 0.428 – 5.25 1.85
scale 242 – 109585 148
KS 0.000 0.000 0.000 0.000

D-stat. 0.597 – 0.948 0.769

Table D.2: Job wait time.

114

SN1 SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000 0.000

loc 165 434 2856 513
scale 654 3154 35709 1503
KS 0.000 0.000 0.000 0.000

D-stat. 0.398 0.443 0.465 0.363
Exponential shape 0.000 0.000 0.000 0.000

loc -0.000 -0.000 -0.000 -0.000
scale 165 434 2877 513
KS 0.012 0.005 0.000 0.003

D-stat. 0.343 0.344 0.619 0.376
Weibull shape 0.593 0.583 0.467 0.567

loc -0.000 -0.000 -0.000 -0.000
scale 83.0 173 454 240
KS 0.371 0.377 0.105 0.160

D-stat. 0.092 0.104 0.180 0.153
Pareto shape 1.00 1.00 1.00 1.00

loc 0.000 0.000 0.000 0.000
scale 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – – –
Log-Normal shape 1.61 1.59 1.65 1.63

loc -0.206 -0.429 -0.424 -0.481
scale 38.2 93.8 197 112
KS 0.479 0.503 0.451 0.296

D-stat. 0.047 0.032 0.070 0.105
Gamma shape 0.006 0.002 0.005 0.023

loc 113 311 215 287
scale 8325 80939 482742 10020
KS 0.000 0.000 0.000 0.000

D-stat. 0.762 0.803 0.552 0.734

Table D.3: Job run time.

115

Yahoo!
Normal shape 0.000

loc 2e+08
scale 6e+09
KS 0.000

D-stat. 0.441
Exponential shape 0.000

loc -0.000
scale 3e+08
KS 0.000

D-stat. 0.496
Weibull shape 0.267

loc -0.000
scale 4e+08
KS 0.004

D-stat. 0.309
Pareto shape 1.00

loc 0.000
scale 0.000
KS 0.000

D-stat. –
Log-Normal shape 6.10

loc -0.000
scale 720312
KS 0.093

D-stat. 0.203
Gamma shape 0.000

loc 2e+08
scale 5e+11
KS 0.000

D-stat. 0.786

Table D.4: Job disk IO parameterα.

116

Yahoo!
Normal shape 0.000

loc 199881
scale 7036869
KS 0.006

D-stat. 0.291
Exponential shape 0.000

loc -0.000
scale 1704688
KS 0.000

D-stat. 0.691
Weibull shape 0.203

loc -0.000
scale 2701572
KS 0.000

D-stat. 0.645
Pareto shape 1.00

loc 0.000
scale 0.000
KS 0.000

D-stat. –
Log-Normal shape 9.98

loc -0.000
scale 3472
KS 0.000

D-stat. 0.655
Gamma shape 0.482

loc -0.000
scale 1e+07
KS 0.000

D-stat. 0.685

Table D.5: Job disk IO parameterβ.

117

SN1 SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000 0.000

loc 0.635 -1.00 10252 755
scale 1.10 0.000 9616 986
KS 0.003 0.000 0.022 0.014

D-stat. 0.391 0.500 0.241 0.333
Exponential shape 0.000 0.000 0.000 0.000

loc -0.000 0.000 636 -0.000
scale 0.635 0.000 9616 755
KS 0.000 0.000 0.027 0.000

D-stat. 0.690 – 0.245 0.551
Weibull shape 0.092 1.00 1.00 0.547

loc -0.000 0.000 636 -0.000
scale 1.36 0.000 9616 1333
KS 0.000 0.000 0.031 0.000

D-stat. 0.667 – 0.238 0.540
Pareto shape 1.00 1.00 1.93 1.00

loc 0.000 0.000 -14898 0.000
scale 0.000 0.000 14126 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – 0.385 –
Log-Normal shape 7.64 1.00 1.00 1.00

loc -0.000 0.000 2916 2.78
scale 0.008 0.000 4449 456
KS 0.000 0.000 0.013 0.000

D-stat. 0.672 – 0.332 0.566
Gamma shape 0.258 – 1.58 0.451

loc -0.000 – 33.8 -0.000
scale 1.61 – 6460 487
KS 0.000 0.000 0.076 0.000

D-stat. 0.702 – 0.234 0.520

Table D.6: Executable ID.

118

SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000

loc 154 67.3 980
scale 982 8486 3855
KS 0.000 0.000 0.000

D-stat. 0.385 0.468 0.390
Exponential shape 0.000 0.000 0.000

loc -0.000 1.000 1.000
scale 154 66.3 996
KS 0.000 0.000 0.001

D-stat. 0.697 0.764 0.352
Weibull shape 0.223 0.942 0.432

loc -0.000 1.000 1.000
scale 42.1 29.7 555
KS 0.024 0.000 0.218

D-stat. 0.310 0.755 0.136
Pareto shape 1.00 0.817 0.227

loc 0.000 1.000 -0.359
scale 0.000 0.000 1.36
KS 0.000 0.000 0.083

D-stat. – 0.697 0.205
Log-Normal shape 8.07 0.186 2.54

loc -0.000 -4140 0.941
scale 5.79 4313 93.2
KS 0.007 0.000 0.218

D-stat. 0.279 0.494 0.124
Gamma shape 0.020 0.000 0.016

loc 14.8 34.7 499
scale 6955 2210235 30866
KS 0.000 0.000 0.000

D-stat. 0.783 0.906 0.723

Table D.7: Number of tasks.

119

SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000

loc 0.108 0.000 0.002
scale 0.208 0.000 0.040
KS 0.002 0.000 0.000

D-stat. 0.349 0.581 0.514
Exponential shape 0.000 0.000 0.000

loc -0.000 0.000 -0.000
scale 0.108 0.000 0.002
KS 0.000 0.000 0.000

D-stat. 0.598 – 0.998
Weibull shape 0.377 1.00 0.501

loc -0.000 0.000 -0.000
scale 0.129 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.586 – 1.000
Pareto shape 1.00 1.00 1.00

loc 0.000 0.000 0.000
scale 0.000 0.000 0.000
KS 0.000 0.000 0.000

D-stat. – – –
Log-Normal shape 13.9 1.00 0.252

loc -0.000 0.000 -0.000
scale 0.006 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.567 – 0.609
Gamma shape 0.113 – 0.010

loc -0.000 – -0.000
scale 0.353 – 0.612
KS 0.000 0.000 0.000

D-stat. 0.581 – 0.493

Table D.8: Reduce-task ratio.

120

SN1 SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000 0.000

loc -1.00 -1.00 2353 -1.00
scale 0.000 0.000 34819 0.000
KS 0.000 0.000 0.000 0.000

D-stat. 0.500 0.500 0.450 0.500
Exponential shape 0.000 0.000 0.000 0.000

loc 0.000 0.000 -0.000 0.000
scale 0.000 0.000 2354 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – 0.700 –
Weibull shape 1.00 1.00 0.698 1.00

loc 0.000 0.000 -0.000 0.000
scale 0.000 0.000 980 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – 0.592 –
Pareto shape 1.00 1.00 1.00 1.00

loc 0.000 0.000 0.000 0.000
scale 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – – –
Log-Normal shape 1.00 1.00 16.2 1.00

loc 0.000 0.000 -0.000 0.000
scale 0.000 0.000 733 0.000
KS 0.000 0.000 0.000 0.000

D-stat. – – 0.610 –
Gamma shape – – 0.008 –

loc – – -0.000 –
scale – – 597539 –
KS 0.000 0.000 0.000 0.000

D-stat. – – 0.607 –

Table D.9: Job forced-quit time.

121

SN2 Google Yahoo!
Normal shape 0.000 0.000 0.000

loc 0.013 0.242 0.010
scale 0.078 0.428 0.099
KS 0.000 0.000 0.000

D-stat. 0.450 0.498 0.529
Exponential shape 0.000 0.000 0.000

loc -0.000 -0.000 -0.000
scale 0.013 0.242 0.010
KS 0.000 0.000 0.000

D-stat. 0.851 0.757 0.987
Weibull shape 0.071 0.390 0.683

loc -0.000 -0.000 -0.000
scale 0.109 0.036 0.051
KS 0.000 0.000 0.000

D-stat. 0.823 0.762 0.991
Pareto shape 1.00 1.00 1.00

loc 0.000 0.000 0.000
scale 0.000 0.000 0.000
KS 0.000 0.000 0.000

D-stat. – – –
Log-Normal shape 7.07 7.67 0.494

loc -0.000 -0.000 -0.000
scale 0.001 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.827 0.752 0.679
Gamma shape 0.070 0.202 0.063

loc -0.000 -0.000 -0.000
scale 0.455 0.388 0.605
KS 0.000 0.000 0.000

D-stat. 0.808 0.786 0.980

Table D.10: Job fail fraction.

122

Google Yahoo!
Normal shape 0.000 0.000

loc 2815 301
scale 21252 236555
KS 0.000 0.000

D-stat. 0.446 0.492
Exponential shape 0.000 0.000

loc 0.000 0.000
scale 2828 303
KS 0.001 0.000

D-stat. 0.38 0.49
Weibull shape 0.525 0.531

loc 0.000 0.000
scale 1127 82.0
KS 0.302 0.314

D-stat. 0.110 0.10
Pareto shape 1.00 1.00

loc 0.000 0.000
scale 0.000 0.000
KS 0.000 0.000

D-stat. – –
Log-Normal shape 1.77 0.303

loc -0.161 -10315
scale 432 11454
KS 0.39 0.000

D-stat. 0.0890 0.548
Gamma shape 0.00331 0.000

loc 1592 212
scale 369374 618102864
KS 0.000 0.000

D-stat. 0.697 0.886

Table D.11: Directly-Modeled overall task run time.

123

D.2 Indirectly-Modeled Properties

D.2.1 Complex Model

Google Yahoo!
map reduce map reduce

Normal 0.22 % 0.00 % 0.07 % 0.28 %
Exponential 0.19 % 0.00 % 0.07 % 0.00 %

Weibull 0.22 % 0.00 % 0.04 % 0.00 %
Pareto 0.03 % 0.00 % 0.00 % 0.00 %

Log-Normal 0.21 % 0.00 % 0.10 % 0.00 %
Gamma 0.05 % 0.00 % 0.01 % 0.00 %

Table D.12: Task inter-arrival time matches.

Google Yahoo!
map reduce map reduce

Normal 6.49 % 0.00 % 20.54 % 11.12 %
Exponential 3.85 % 0.00 % 2.69 % 10.30 %

Weibull 3.70 % 0.00 % 3.84 % 3.58 %
Pareto 4.09 % 0.00 % 6.93 % 7.27 %

Log-Normal 21.95 % 0.00 % 8.03 % 13.25 %
Gamma 10.87 % 0.00 % 17.19 % 31.74 %

Table D.13: Task run time matches.

Google Yahoo!
map reduce map reduce

Normal 1.33 % 0.00 % 0.11 % 0.37 %
Exponential 0.00 % 0.00 % 0.00 % 0.00 %

Weibull 0.00 % 0.00 % 0.00 % 0.00 %
Pareto 0.01 % 0.00 % 0.00 % 0.00 %

Log-Normal 0.00 % 0.00 % 0.00 % 0.00 %
Gamma 0.00 % 0.00 % 0.00 % 0.00 %

Table D.14: Task CPUs matches.

124

Yahoo!
map reduce

Normal 0.04 % 0.00 %
Exponential 0.05 % 0.00 %

Weibull 0.00 % 0.00 %
Pareto 0.01 % 0.00 %

Log-Normal 0.02 % 0.00 %
Gamma 0.21 % 0.00 %

Table D.15: Task disk I/O matches.

Google Yahoo!
map reduce map reduce

weibull lognormal normal
shape loc scale shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.900 519 502 1.53 0.660 1.79 0.000 0.388 0.503

scale 0.235 15528 9265 1.51 5.25 14.3 0.000 13.9 20.1
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.366 0.486 0.480 0.402 0.420 0.448 0.581 0.464 0.488
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.665 -0.000 -0.000 0.956 -0.000 0.000 0.000 -0.000 -0.000
scale 0.235 519 502 0.572 0.667 1.79 0.000 0.387 0.503
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.518 0.914 0.907 0.690 0.565 0.579 – 0.853 0.891
Weibull shape 1.00 0.443 0.242 0.472 0.450 0.380 1.00 0.872 0.396

loc 0.665 -0.000 -0.000 0.956 -0.000 0.000 0.000 0.000 -0.000
scale 0.235 923 319 0.651 0.833 0.297 0.000 0.134 0.004
KS 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000

D-stat. 0.514 0.911 0.809 0.520 0.388 0.379 – 0.875 0.885
Pareto shape 4e+07 1.00 1.00 1.44 1.00 0.272 1.00 1.00 1.00

loc -3e+07 0.000 0.000 0.812 0.000 -0.005 0.000 0.000 -0.000
scale 3e+07 0.000 0.000 0.144 0.000 0.005 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.600 – – 0.444 – 0.447 – 0.566 0.453
Log-Normal shape 1.00 1.96 3.49 1.61 12.4 5.01 1.00 0.152 0.130

loc 0.720 -0.000 -0.000 0.955 -0.000 0.000 0.000 -2.76 -9.51
scale 0.109 0.000 0.000 0.103 0.245 0.337 0.000 2.88 9.74
KS 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000

D-stat. 0.618 0.866 0.663 0.464 0.413 0.330 – 0.471 0.470
Gamma shape 0.785 0.001 0.002 0.142 0.032 0.043 – 0.001 0.002

loc 0.691 16.5 60.0 0.959 -0.000 0.000 – 0.000 0.000
scale 0.265 479381 194255 4.01 35.6 106 – 585 798
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.516 0.916 0.946 0.209 0.584 0.596 – 0.116 0.914

Table D.16: Task inter-arrival time.

125

Google Yahoo!
map reduce map reduce

lognormal normal gamma
shape loc scale shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
loc 1.03 1873 175 0.000 51.7 13.8 1162321 71.1 12.8

scale 0.457 24117 4338 0.000 353 162 1e+08 6245 106
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.511 0.468 0.477 0.581 0.441 0.464 0.500 0.448 0.451
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.575 -0.000 -0.000 0.000 -0.000 -0.000 0.035 -0.000 0.000
scale 0.457 1873 173 0.000 51.7 13.8 1162319 215 12.8
KS 0.000 0.000 0.000 0.000 0.012 0.020 0.000 0.000 0.000

D-stat. 0.582 0.594 0.850 – 0.344 0.318 0.975 0.453 0.481
Weibull shape 1.00 0.325 0.482 1.00 0.665 0.503 0.168 0.338 0.469

loc 0.575 -0.000 -0.000 0.000 0.000 -0.000 0.035 -0.000 0.000
scale 0.457 7935 57.3 0.000 34.1 6.69 48229 44.6 3.23
KS 0.000 0.000 0.000 0.000 0.149 0.242 0.000 0.062 0.368

D-stat. 0.533 0.478 0.775 – 0.167 0.139 0.517 0.223 0.102
Pareto shape 1.59 1.00 1.00 1.00 1.00 1.00 0.303 1.00 0.748

loc -0.321 0.000 0.000 0.000 -14.8 -0.000 -0.828 0.000 -0.718
scale 0.435 0.000 0.000 0.000 12.8 0.000 0.863 0.000 0.718
KS 0.000 0.000 0.000 0.000 0.030 0.000 0.357 0.000 0.400

D-stat. 0.820 – – – 0.241 0.865 0.122 – 0.063
Log-Normal shape 1.00 1.56 6.42 1.00 1.25 4.90 0.183 6.46 1.99

loc 0.683 -0.248 -0.000 0.000 -0.024 -0.000 -1e+07 -0.000 -0.000
scale 0.211 173 0.073 0.000 15.8 0.407 1e+07 22.4 1.20
KS 0.000 0.501 0.000 0.000 0.381 0.002 0.000 0.017 0.457

D-stat. 0.473 0.062 0.762 – 0.086 0.389 0.570 0.243 0.074
Gamma shape 0.011 0.004 0.003 – 0.001 0.001 0.001 0.008 0.008

loc 0.983 439 -0.000 – 41.2 9.83 0.035 104 3.56
scale 4.29 405685 129392 – 11849 6600 8e+09 14159 1225
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.044 0.758 0.171 – 0.849 0.742 0.985 0.770 0.728

Table D.17: Task run time.

126

Google Yahoo!
map reduce map reduce

normal normal normal
shape loc scale shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.000 2.10 0.098 0.000 1.00 0.000 0.000 1.00 0.000

scale 0.000 0.380 0.227 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.581 0.400 0.475 0.581 0.500 0.441 0.581 0.500 0.441
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.000 1.72 -0.000 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.380 0.098 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.428 0.839 – – – – – –
Weibull shape 1.00 1.00 0.112 1.00 1.00 1.00 1.00 1.00 1.00

loc 0.000 1.72 0.000 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.380 0.156 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.291 0.840 – – – – – –
Pareto shape 1.00 1.29 1.00 1.00 2e+08 1.00 1.00 2e+08 1.00

loc 0.000 0.075 0.000 0.000 -1177010 0.000 0.000 -1177010 0.000
scale 0.000 0.925 0.000 0.000 1177011 0.000 0.000 1177011 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.599 0.499 – 1.000 0.930 – 1.000 0.930
Log-Normal shape 1.00 1.00 2.27 1.00 1.00 1.00 1.00 1.00 1.00

loc 0.000 1.81 -0.000 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.176 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.373 0.816 – – – – – –
Gamma shape – 0.214 0.186 – – – – – –

loc – 1.93 0.000 – – – – – –
scale – 0.823 0.364 – – – – – –
KS 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.529 0.833 – – – – – –

Table D.18: Task CPUs.

127

Yahoo!
map reduce

gamma normal
shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000
loc 1481 9.58 0.837 0.000 0.000 0.000

scale 9520 71.3 4.66 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.430 0.452 0.421 0.581 0.158 0.500
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.094 -0.000 0.000 0.000 0.000 0.000
scale 1481 13.1 0.837 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.536 0.616 0.588 – 1.00 1.00
Weibull shape 0.379 0.522 0.266 1.00 1.00 1.00

loc 0.094 -0.000 0.000 0.000 0.000 0.000
scale 242 8.07 0.061 0.000 0.000 0.000
KS 0.385 0.000 0.498 0.000 0.000 0.000

D-stat. 0.149 0.390 0.073 – 0.867 1.00
Pareto shape 0.176 1.00 0.140 1.00 1.00 1.00

loc -0.045 0.000 -0.000 0.000 0.000 0.000
scale 0.139 0.000 0.000 0.000 0.000 0.000
KS 0.098 0.000 0.048 0.000 0.000 0.000

D-stat. 0.175 – 0.231 – 0.979 0.674
Log-Normal shape 3.09 4.49 5.42 1.00 1.00 1.00

loc 0.093 -0.000 0.000 0.000 0.000 0.000
scale 38.0 0.027 0.006 0.000 0.000 0.000
KS 0.333 0.000 0.266 0.000 0.000 0.000

D-stat. 0.107 0.558 0.134 – 1.00 1.00
Gamma shape 0.059 0.108 0.078 – 937 2.33

loc 0.094 -0.000 0.000 – 0.000 0.000
scale 60063 324 25.7 – 0.000 0.000
KS 0.000 0.003 0.041 0.000 0.000 0.000

D-stat. 0.477 0.337 0.230 – 0.447 0.709

Table D.19: Task disk I/O ratio.

128

D.2.2 Relaxed Complex Model

Yahoo!
map reduce

Normal 0.42 % 0.33 %
Exponential 0.27 % 0.03 %

Weibull 0.19 % 0.03 %
Pareto 0.00 % 0.00 %

Log-Normal 0.14 % 0.03 %
Gamma 0.03 % 0.02 %

Table D.20: Task inter-arrival time matches.

Yahoo!
map reduce

Normal 56.71 % 68.10 %
Exponential 30.90 % 60.47 %

Weibull 39.21 % 62.79 %
Pareto 14.85 % 28.26 %

Log-Normal 18.83 % 45.06 %
Gamma 45.23 % 59.14 %

Table D.21: Task run time matches.

Yahoo!
map reduce

Normal 0.13 % 0.40 %
Exponential 0.00 % 0.00 %

Weibull 0.00 % 0.00 %
Pareto 0.00 % 0.00 %

Log-Normal 0.00 % 0.00 %
Gamma 0.00 % 0.00 %

Table D.22: Task CPUs matches.

129

Yahoo!
map reduce

Normal 0.04 % 0.00 %
Exponential 0.05 % 0.00 %

Weibull 0.00 % 0.00 %
Pareto 0.01 % 0.00 %

Log-Normal 0.02 % 0.00 %
Gamma 0.21 % 0.00 %

Table D.23: Task disk I/O ratio matches.

Yahoo!
map reduce

Normal 0.00 % 0.00 %
Exponential 0.00 % 0.00 %

Weibull 0.00 % 0.00 %
Pareto 0.00 % 0.00 %

Log-Normal 0.00 % 0.00 %
Gamma 0.00 % 0.00 %

Table D.24: Task memory matches.

130

Yahoo!
map reduce

normal normal
shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.000 0.751 1.27 0.000 0.392 0.510

scale 0.000 27.8 53.5 0.000 13.8 20.1
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.581 0.479 0.490 0.581 0.455 0.489
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.000 -0.000 -0.000 0.000 -0.000 -0.000
scale 0.000 0.751 1.27 0.000 0.392 0.505
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.867 0.883 – 0.870 0.883
Weibull shape 1.00 0.899 0.494 1.00 0.494 0.705

loc 0.000 0.000 0.000 0.000 0.000 -0.000
scale 0.000 0.477 0.392 0.000 0.016 0.647
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.859 0.883 – 0.852 0.880
Pareto shape 1.00 1.00 1.00 1.00 1.00 1.00

loc 0.000 0.000 -0.000 0.000 0.000 -0.000
scale 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.540 0.431 – 0.716 0.422
Log-Normal shape 1.00 0.119 0.120 1.00 0.120 0.119

loc 0.000 -19.9 -38.3 0.000 -9.82 -14.3
scale 0.000 20.1 38.7 0.000 9.98 14.5
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.400 0.472 – 0.396 0.461
Gamma shape – 0.002 0.002 – 0.001 0.001

loc – 0.000 0.000 – 0.000 0.000
scale – 940 1939 – 585 798
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.113 0.893 – 0.135 0.913

Table D.25: Task inter-arrival time.

131

Yahoo!
map reduce

normal normal
shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.000 49.9 13.6 0.000 194 13.4

scale 0.000 331 151 0.000 1111 102
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.581 0.440 0.459 0.581 0.431 0.446
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.000 -0.000 -0.000 0.000 1.000 -0.000
scale 0.000 49.9 13.6 0.000 193 13.4
KS 0.000 0.022 0.009 0.000 0.001 0.002

D-stat. – 0.326 0.313 – 0.420 0.412
Weibull shape 1.00 0.654 0.564 1.00 0.591 0.553

loc 0.000 0.000 -0.000 0.000 1.000 -0.000
scale 0.000 30.0 6.80 0.000 92.7 11.6
KS 0.000 0.169 0.265 0.000 0.112 0.041

D-stat. – 0.157 0.129 – 0.176 0.265
Pareto shape 1.00 1.00 1.00 1.00 0.280 1.00

loc 0.000 -14.0 -0.000 0.000 -0.309 -0.000
scale 0.000 12.2 0.000 0.000 1.31 0.000
KS 0.000 0.029 0.000 0.000 0.000 0.000

D-stat. – 0.242 0.869 – 0.373 0.887
Log-Normal shape 1.00 1.28 4.46 1.00 1.38 1.59

loc 0.000 -0.019 -0.000 0.000 0.991 -0.126
scale 0.000 15.0 0.080 0.000 44.0 3.08
KS 0.000 0.377 0.000 0.000 0.299 0.165

D-stat. – 0.072 0.534 – 0.110 0.137
Gamma shape – 0.001 0.001 – 0.005 0.001

loc – 40.5 10.1 – 113 10.2
scale – 11704 6549 – 15150 3163
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 0.830 0.714 – 0.795 0.841

Table D.26: Task run time.

132

Yahoo!
map reduce

normal normal
shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.000 1.00 0.000 0.000 1.00 0.000

scale 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.581 0.500 0.441 0.581 0.500 0.441
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – – – – – –
Weibull shape 1.00 1.00 1.00 1.00 1.00 1.00

loc 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – – – – – –
Pareto shape 1.00 2e+08 1.00 1.00 2e+08 1.00

loc 0.000 -1177010 0.000 0.000 -1177010 0.000
scale 0.000 1177011 0.000 0.000 1177011 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – 1.000 0.930 – 1.000 0.930
Log-Normal shape 1.00 1.00 1.00 1.00 1.00 1.00

loc 0.000 1.00 0.000 0.000 1.00 0.000
scale 0.000 0.000 0.000 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – – – – – –
Gamma shape – – – – – –

loc – – – – – –
scale – – – – – –
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. – – – – – –

Table D.27: Task CPUs.

133

Yahoo!
map reduce

weibull normal
shape loc scale shape loc scale

Normal shape 0.000 0.000 0.000 0.000 0.000 0.000
loc 0.982 12.3 1.29 0.000 0.000 0.000

scale 0.097 84.4 9.11 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.421 0.458 0.439 0.581 0.159 0.500
Exponential shape 0.000 0.000 0.000 0.000 0.000 0.000

loc 0.884 -0.000 0.000 0.000 0.000 0.000
scale 0.097 12.3 1.29 0.000 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.459 0.596 0.590 – 1.00 1.00
Weibull shape 1.00 0.591 0.312 1.00 1.00 1.00

loc 0.884 -0.000 0.000 0.000 0.000 0.000
scale 0.097 12.6 0.306 0.000 0.000 0.000
KS 0.000 0.000 0.137 0.000 0.000 0.000

D-stat. 0.459 0.480 0.168 – 0.867 1.00
Pareto shape 1.86 1.00 0.483 1.00 1.00 1.00

loc -0.451 0.000 -0.014 0.000 0.000 0.000
scale 0.836 0.000 0.014 0.000 0.000 0.000
KS 0.000 0.000 0.145 0.000 0.000 0.000

D-stat. 0.574 – 0.164 – 0.979 0.674
Log-Normal shape 1.00 1.04 3.04 1.00 1.00 1.00

loc 0.907 -0.088 -0.000 0.000 0.000 0.000
scale 0.045 2.46 0.044 0.000 0.000 0.000
KS 0.000 0.056 0.118 0.000 0.000 0.000

D-stat. 0.457 0.197 0.198 – 1.00 1.00
Gamma shape 0.163 0.122 0.035 – 937 2.33

loc 0.942 -0.000 0.000 – 0.000 0.000
scale 0.241 64.1 74.3 – 0.000 0.000
KS 0.000 0.000 0.000 0.000 0.000 0.000

D-stat. 0.595 0.592 0.595 – 0.447 0.709

Table D.28: Task disk I/O ratio.

134

D.2.3 Safe Complex Model

Google Yahoo!
map reduce map reduce

Normal shape 0.000 0.000 0.000
loc 26.9 0.187 0.356

scale 2437 11.0 24.8
KS 0.000 0.000 0.000

D-stat. 0.494 0.460 0.483
Exponential shape 0.000 0.000 0.000

loc -0.000 -0.000 -0.000
scale 26.8 0.187 0.356
KS 0.000 0.000 0.000

D-stat. 0.940 0.888 0.921
Weibull shape 0.256 0.956 0.624

loc -0.000 -0.000 -0.000
scale 41.8 0.116 0.036
KS 0.000 0.000 0.000

D-stat. 0.949 0.892 0.912
Pareto shape 1.00 1.00 1.00

loc 0.000 0.000 0.000
scale 0.000 0.000 0.000
KS 0.000 0.000 0.000

D-stat. – – –
Log-Normal shape 0.198 0.212 0.201

loc -927 -7.53 -14.8
scale 966 7.90 15.5
KS 0.000 0.000 0.000

D-stat. 0.554 0.498 0.515
Gamma shape 0.000 0.000 0.000

loc 8.78 0.166 0.280
scale 328728 5874 8149
KS 0.000 0.000 0.000

D-stat. 0.977 0.881 0.922

Table D.29: Task inter-arrival time.

135

Google Yahoo!
map reduce map reduce

Normal shape 0.000 0.000 0.000
loc 2815 310 292

scale 21252 264884 1396
KS 0.000 0.000 0.000

D-stat. 0.446 0.495 0.416
Exponential shape 0.000 0.000 0.000

loc -0.000 -0.000 -0.000
scale 2828 308 291
KS 0.002 0.000 0.017

D-stat. 0.360 0.550 0.292
Weibull shape 0.525 0.497 0.608

loc -0.000 -0.000 -0.000
scale 1127 55.4 163
KS 0.293 0.241 0.395

D-stat. 0.116 0.113 0.087
Pareto shape 1.00 1.00 1.00

loc 0.000 0.000 0.000
scale 0.000 0.000 0.000
KS 0.000 0.000 0.000

D-stat. – – –
Log-Normal shape 1.77 0.231 1.56

loc -0.161 -162746 -0.056
scale 432 174276 74.1
KS 0.411 0.000 0.343

D-stat. 0.066 0.590 0.089
Gamma shape 0.003 0.000 0.007

loc 1592 195 177
scale 369374 6e+08 17009
KS 0.000 0.000 0.000

D-stat. 0.713 0.937 0.683

Table D.30: Task run time.

136

Google Yahoo!
map reduce map reduce

Normal shape 0.000 0.000 0.000
loc 2.14 1.00 1.00

scale 0.523 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.535 0.500 0.500
Exponential shape 0.000 0.000 0.000

loc 1.61 1.00 1.00
scale 0.523 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.405 – –
Weibull shape 1.00 1.00 1.00

loc 1.61 1.00 1.00
scale 0.523 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.410 – –
Pareto shape 1.28 7e+08 2e+08

loc 0.075 -5148406 -1538968
scale 0.925 5148407 1538969
KS 0.000 0.000 0.000

D-stat. 0.327 1.000 1.000
Log-Normal shape 1.00 1.00 1.00

loc 1.74 1.00 1.00
scale 0.242 0.000 0.000
KS 0.000 0.000 0.000

D-stat. 0.401 – –
Gamma shape 0.407 – –

loc 1.80 – –
scale 0.820 – –
KS 0.000 0.000 0.000

D-stat. 0.330 – –

Table D.31: Task CPUs.

137

Google Yahoo!
map reduce map reduce

Normal shape 0.000 0.000
loc 26792 0.000

scale 1642977 0.000
KS 0.000 0.000

D-stat. 0.495 0.581
Exponential shape 0.000 0.000

loc -0.000 0.000
scale 26791 0.000
KS 0.000 0.000

D-stat. 0.943 –
Weibull shape 0.272 1.00

loc -0.000 0.000
scale 272 0.000
KS 0.000 0.000

D-stat. 0.519 –
Pareto shape 1.00 1.00

loc 0.000 0.000
scale 0.000 0.000
KS 0.000 0.000

D-stat. – –
Log-Normal shape 0.182 1.00

loc -816681 0.000
scale 854997 0.000
KS 0.000 0.000

D-stat. 0.574 –
Gamma shape 0.000 –

loc 6588 –
scale 1e+08 –
KS 0.000 0.000

D-stat. 0.988 –

Table D.32: Task disk I/O ratio.

138

	1 Introduction
	1.1 MapReduce
	1.2 Real-World MapReduce Workloads
	1.3 Goals
	1.3.1 Research Questions
	1.3.2 Technical Objectives

	1.4 Our Approach
	1.5 What Has Been Done Before?
	1.6 Thesis Outline

	2 State of the Art
	2.1 MapReduce Studies
	2.1.1 MapReduce Performance Evaluation
	2.1.2 MapReduce Workload Models
	2.1.3 MapReduce Workload Generation
	2.1.4 MapReduce Simulators
	2.1.5 MapReduce Schedulers

	2.2 Other Workload Modeling Studies
	2.3 Other Trace Archives

	3 MapReduce Analysis Toolbox
	3.1 Trace Import
	3.1.1 Data Format for the Cloud Workloads Archive
	3.1.2 Import Scripts
	3.1.3 Executable Identification

	3.2 Trace Analysis
	3.2.1 The analyze Tool
	3.2.2 Utilities

	3.3 Workload Model Parameter Fitting
	3.4 Realistic Synthetic Workload Generation
	3.5 Simulation
	3.6 Concluding Remarks

	4 Workload Analysis
	4.1 Metrics and Breakdowns
	4.1.1 Notable Metrics
	4.1.2 Notable Breakdowns

	4.2 Real-World Workload Traces
	4.2.1 Social Network 1
	4.2.2 Social Network 2
	4.2.3 Yahoo! M-Cluster
	4.2.4 Google
	4.2.5 Comparison all Workload Traces

	5 MapReduce Workload Modeling
	5.1 Why Model?
	5.2 Statistical Modeling
	5.2.1 Distributions
	5.2.2 Direct and Indirect Modeling
	5.2.3 Goodness of Fit
	5.2.4 Selection of the Best Fit
	5.2.5 Correlation

	5.3 Our Statistical MapReduce Workload Models
	5.3.1 The Simple Model
	5.3.2 The Complex Model
	5.3.3 The Relaxed Complex Model
	5.3.4 The Safe Complex Model
	5.3.5 Modeling Results

	5.4 Synthetic MapReduce Workload Generator
	5.4.1 Procedure using the Simple Model
	5.4.2 Procedure using the Family of Complex Models

	5.5 Concluding Remarks

	6 Building Better Systems
	6.1 Assessing MapReduce Systems in Simulation
	6.1.1 Overview of MapReduce Simulators
	6.1.2 Mumak, with the help of Rumen
	6.1.3 Mumak Selected!

	6.2 Experimental Setup
	6.2.1 Simulated Workloads
	6.2.2 Topology of the Simulated Cluster
	6.2.3 Configuration of the Simulated Scheduler
	6.2.4 Evaluation Metrics

	6.3 Experimental Results
	6.3.1 Simulator Validation Through Operational Profile
	6.3.2 Analysis of Job Response Times
	6.3.3 Analysis of Cost

	6.4 Concluding Remarks

	7 Conclusion
	7.1 Overview
	7.1.1 The Research Question
	7.1.2 The Technical Objectives
	7.1.3 Experimental Results

	7.2 Reflection
	7.2.1 Selection of Mumak
	7.2.2 The Need for a Complex Model

	7.3 Recommendations for Further Research

	Bibliography
	A Result Availability
	A.1 Obtaining the Cloud Workloads Archive Toolbox
	A.2 Dependencies
	A.3 Installation
	A.4 Creating a CWA ``Project''
	A.4.1 Directory Structure
	A.4.2 Configuration File
	A.4.3 Example Usage

	A.5 General Usage
	A.6 Contributing

	B Data Format for the Cloud Workloads Archive
	C Validation of the Pseudo-Random Number Generator
	D Modeling Results
	D.1 Directly-Modeled Properties
	D.2 Indirectly-Modeled Properties
	D.2.1 Complex Model
	D.2.2 Relaxed Complex Model
	D.2.3 Safe Complex Model

