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Abstract

MapReduce is a parallel programming model used by Cloudcgeproviders for
data mining. To be able to enhance existing and to developht@pReduce sys-
tems, we need to evaluate the performance of these systentisisend we intro-
duce in this work the Cloud Workloads Archive Toolbox. Thislbox facilitates
the analysis of MapReduce workload traces, generatioratibtie synthetic work-
loads, and the evaluation of MapReduce systems in simnlatide present an
overview and analysis of real world MapReduce workloadesaave propose a
model for MapReduce workloads, we describe the developofehe toolbox, and
we present an experiment in which we use our toolbox to etelwao MapReduce
schedulers.



Vi



Preface

This thesis is the final result of a graduation project andmetas the master’s de-
gree programme Computer Science — with specializationrialleband Distributed
Systems — of the Faculty of Electrical Engineering, Mathéesaand Computer
Science at Delft University of Technology.

I would like to use this preface to thank the graduation cottaaifor their guid-
ance, advises, and critics — especially Alexandru, for yéa@eing optimistic, and
for spending huge amounts of red ink to enhance the qualitgyoivork. Leonie,
my parents, family, and friends, for their support, friemigs and their patience.
My fellow students, for the conversations and coffee-bseakhe owners of the
real-world workload traces used in this thesis, for makimg traces available to
science. The UC Berkeley AMP Lab people, for providing asdésir collection
of workload traces. And finally Boxun, for sharing his Matksiills with me.

Thomas de Ruiter

Delft, The Netherlands
1st May 2012

Vii



viii



Contents

1 Introduction 1
1.1 MapReduce . ... ... .. . ... 1
1.2 Real-World MapReduce Workloads . . . . ... ... ...... 3
1.3 Goals . . ... .. . 3
1.3.1 ResearchQuestions. . .. ... ... .. ......... 4
1.3.2 Technical Objectives . . . ... ... ... ... ..... 4
1.4 OurApproach . ... .. ... ... .. ... .. .. .. . .... 4
1.5 What Has Been Done Before? . .. ... ... ... ....... 5
1.6 ThesisOutline . . .. ... ... ... ... .. ... .. ..... 6
2 State of the Art 7
2.1 MapReduce Studies . . . . . . . ... 7
2.1.1 MapReduce Performance Evaluation. . . . ... .. ... 7
2.1.2 MapReduce Workload Models . . . . ... ... ..... 9
2.1.3 MapReduce Workload Generation . . . . .. .. .. ... 10
2.1.4 MapReduce Simulators . . . . . ... ... ... ..... 10
2.1.5 MapReduce Schedulers. . . . ... ... ......... 11
2.2 Other Workload Modeling Studies . . . . .. ... ........ 12
2.3 OtherTrace Archives . . . . . . . . . . ... ... .. ... ... 12
3 MapReduce Analysis Toolbox 15
3.1 Tracelmport . . . . .. .. ... 15
3.1.1 Data Format for the Cloud Workloads Archive . . . . .. 15
3.1.2 ImportScripts ... .... ... .. .. .. .. ..., 17
3.1.3 Executable Identification . . . . ... ... ... ..... 17
3.2 Trace Analysis . . . . . . . . . .. e 19
3.21 TheanalyzeTool . ................... 19
3.22 Utilitiles . . . . . .. 20
3.3 Workload Model Parameter Fitting . . . . . . . .. ... ... .. 21
3.4 Realistic Synthetic Workload Generation . . . ... ... ... 22
3.5 Simulation. . . . ... ... 22
3.6 ConcludingRemarks . . ... ... ................ 22



4 Workload Analysis

4.1 MetricsandBreakdowns . . ... ... ... ... .......
4,1.1 NotableMetrics. . . .. ... ... . ... .. ......
4.1.2 Notable Breakdowns . . ... ... ... ........

4.2 Real-World Workload Traces . . . . .. . ... . ... .....
421 SocialNetwork1 . .. ... ... ... ... .......
42.2 SocialNetwork?2 . . . ... ... ... ... . .....
4,23 Yahoo!M-Cluster . .. ... ... ... .. .......
424 Google ... ... ..
4.2.5 Comparison all Workload Traces . . . . . ... .. ...

5 MapReduce Workload Modeling
51 WhyModel? . .. ... ... . . ...

5.2 Statistical Modeling . . . . . .. ... ... ... . .

5.2.1 Distributions . . ... ... .. ... ...

5.2.2 Directand Indirect Modeling . . . . ... ... ......
5,23 GoodnessofFit. . . . ... ... ... ... ... ....
5.2.4 SelectionoftheBestFit . ... ..............

5.25 Correlation . . ... ... . o
5.3 Our Statistical MapReduce Workload Models . . . .. ... ..
5.3.1 TheSimpleModel ... ... ... ... .........

5.3.2 TheComplexModel . ... ................

5.3.3 The Relaxed ComplexModel . . . ... ........

5.3.4 The Safe ComplexModel . . ... ............
535 ModelingResults . . . .. ... ... ... ... .. ...
5.4 Synthetic MapReduce Workload Generator . . . . . ... ...

5.4.1 Procedure using the Simple Model . . . . ... ... ..
5.4.2 Procedure using the Family of Complex Models . . . . .
55 ConcludingRemarks . . .. ... ... ... ..........

6 Building Better Systems
6.1 Assessing MapReduce Systems in Simulation . . . . .. ...

6.2 ExperimentalSetup . .. .. ... ... ... .. .. .. ...,

6.2.1 Simulated Workloads . . . . ... ... ... .......

6.2.2 Topology of the Simulated Cluster . . . . .. ... ...
6.2.3 Configuration of the Simulated Scheduler . . . . . . ..
6.2.4 Evaluation Metrics . . . .. ... ... ... ...
6.3 ExperimentalResults . . ... ... ... ............
6.3.1 Simulator Validation Through Operational Profile . . .
6.3.2 Analysis of Job Response Times . . . .. .. .. .. ..
6.3.3 AnalysisofCost . . ... .................



6.4 ConcludingRemarks . . .. ... ... ... ... ..., 92

7 Conclusion 93
7.1 OVerVIEW . . . . o e 93
7.1.1 TheResearchQuestion . ... ... ............ 93
7.1.2 The Technical Objectives . . . . ... ... ... ..... 94
7.1.3 ExperimentalResults . . . ... .. ... ......... 95
7.2 Reflection . . ... .. ... .. .. .. 95
7.21 Selectonof Mumak . .. ... ... ........... 95
7.2.2 The Need fora ComplexModel . . ... ......... 95
7.3 Recommendations for Further Research . . . . ... ... ... 6 9
Bibliography 97
A Result Availability 103
A.1 Obtaining the Cloud Workloads Archive Toolbox . . . . .. .. 103
A.2 Dependencies . . . . .. . . .. ... 103
A.3 Installation . ... ... ... 104
A.4 Creatinga CWA “Project” . . . . ... .. .. . ... . ..... 104
A.4.1 Directory Structure . . . . .. .. ... . 104
A.4.2 ConfigurationFile . . . .. ... ... ... ....... 105
A43 ExampleUsage . .. ... ... ... ... ........ 105
A5 GeneralUsage . . . . . . . . . .. 105
A6 Contributing . . . . ... .. ... .. .. .. 106
B Data Format for the Cloud Workloads Archive 107
C Validation of the Pseudo-Random Number Generator 111
D Modeling Results 113
D.1 Directly-Modeled Properties . . . . ... ... ... ... ..., 311
D.2 Indirectly-Modeled Properties . . . . . ... ... ... ..... 241
D.21 ComplexModel ... ... .. .. ... ... ..., 124
D.2.2 Relaxed ComplexModel . . . . .. ... ... ...... 129
D.2.3 Safe ComplexModel . . .. .. ... ... ........ 135

Xi



Xii



Chapter 1

Introduction

Many Cloud service providers have a need to analyze largeiatsof data, for ex-
ample to evaluate advertisement campaigns. The MapRedogemming model
is widely used as a solution for these data mining problems.wuld like to be
able to evaluate and compare existing, enhanced, and neR&diajge systems. To
this end we introduce in this work a toolbox that facilitateese analyses.

1.1 MapReduce

MapReduce is a programming model for parallel computingeliged by Google
[1]. The need to perform analyses on large amounts of datat ispecific to Cloud
service providers, but the MapReduce programming modebtiegsloped with this
specific audience in mind, apart from Google it is known to beduby for exam-
ple Yahoo!, MySpace, Facebook, and Twitter. Facebook [ WdapReduce for,
among other, business intelligence, spam detection, avertesbment optimiza-
tion.

The name MapReduce originates from the higher-drdsap and reduce func-
tions originally, found in functional programming langesg A MapReduce pro-
gram is in fact the combination of a map and a reduce functlmmap function
is applied on the input data and the reduce function is appliethe output of the
map function. Figure 1.1 gives an overview of how MapReduogsa!

1. A MapReduce job consists of a map function, a reduce fonctind input
data (on a distributed file system).

2. First, the input data are partitioned into smaller churikdata.

3. Then, for each chunk of input data, a “map task” runs whigtlias the map
function to the chunk of input data. The resulting outputadlemap task is
a collection of key-value pairs.

'Higher-order functions are functions that have a functisamument.
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Figure 1.1: Overview of MapReduce.

4. The output of all map tasks is shuffled, that is, for eactindiskey in the
map output, a collection is created containing all corresipgy values from
the map output.

5. Then, for each key-collection resulting from the shuffteage, a “reduce
task” runs which applies the reduce function to the coltectf values. The
resulting output is a single key-value pair.

6. The collection of all key-value pairs resulting from theduce step is the
output of the MapReduce job. (In Hadoop the reduce outpwsraarged
after the the job has finished, when the user uses the “getfheagnmand
to get the output from the distributed file system.)

The main place where parallelization is exploited in Maphvedis during the run-
ning of the map and reduce tasks, depicted as respectivgyg three and five in
the above description. Although in the above overview tepstwo to six seem
to be distinct phases, the more advanced MapReduce implatioms run these
phases in parallel, a reduce task can for example start mgds soon as the first
key-value pair is emitted by a map task.
Map tasks and reduce tasks can be easily parallelized discadividual map

and reduce tasks run in isolation. Because of this isolaiapReduce is also fault
tolerant, as failed tasks can be rescheduled without arbjlearo
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Although in principle any problem can be formulated as a MeaghiRe job, it is
not suitable for every problem. Since every task runs iratsmh, the only usual
way to communicate is using the task input and output. Thike®iaa Poisson
solver, that can be implemented in a few lines of C code for &i &pplication on
a cluster, complex to implement in MapReduce. On the othed htéhe classical
MapReduce word count example, is easier to implement in MdpBe than by
using MPI.

There exist multiple implementations of MapReduce. Godgle developed
a private implementation, but there also exist various egmmce implementa-
tions, of which the probably best known implementation mvated by the Apache
Hadoop project. There are also tiny implementations of MapRedlike for ex-
ample mincemeat.py which can be useful for simple ad-hoc experiments, and
there exists even an implementation of MapReduce in bagbt,scalled bashre-
ducé.

MapReduce runs generally on dedicated clusters, but yoalsarrun MapRe-
duce on virtual “clusters” in a cloud. Amazon offers for exgenAmazon Elastic
MapReduce, a service which automatically configures a virtual MapRedcius-
ter on top of their cloud resources. Running MapReduce jolggid environments
is also being researched, see Section 2.1.5.

1.2 Real-World MapReduce Workloads

As basis for this research we look at the execution of MapBeghbs in real world
MapReduce clusters. Information about this executiore (jdb arrival, start, and
finish times, network usage, disk usage, etc.) is obtairad known cloud service
providers. The obtained workloads are collected in the €Mirkloads Archive;
we leave the publication of this archive for future work.

Because the workload information is received in the formaiddase dumps and
log files, all in different formats and with various levelsdsftail, the information is
converted into a standard format, the Data Format for thed\Wworkloads Archive
(see Appendix B). The data might already have been anongnhiy¢he source of
the data, otherwise it is anonymized during the conversibo the Data Format
for the Cloud Workloads Archive. All tools in our toolbox nmeakise of this data
format.

1.3 Goals

Workload modeling is instrumental in the evaluation of 8rig MapReduce sys-
tems, and to developing and comparing of new and enhance®é&tajre systems.

2ht t p: / / hadoop. apache. or g/

%http: //remenber saur us. conf mi nceneat py/

*http://bl og. | ast. fn 2009/ 04/ 06/ mapr educe- bash- scri pt
Shttp://aws. amazon. cont el asti crmapr educe/
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However, few comprehensive workload models exist for MaphRe systems.

Our goal is to develop a comprehensive and realistic wockinadel for MapRe-
duce systems. To this end we introduce the Cloud WorkloatiigecToolbox. This
toolbox is able to perform analyses on MapReduce workloddstracts models
from MapReduce workloads, it generates realistic syrethdtipReduce workloads
based on these workload models, and finally it is able to sitauhe execution of
these synthetic MapReduce workloads.

1.3.1 Research Questions

The main research question for this thesis is:
“Is the MapReduce scheduler X better than MapReduce schewal

This question leads to the following sub-questions:

Q1 What are the characteristics of MapReduce workloads?

Q2 How can we model MapReduce workloads?

Q3 How can we generate realistic synthetic MapReduce workidad

Q4 Which MapReduce scheduler performs best in scheduling taicer
workload?

1.3.2 Technical Objectives

The research questions lead to the following technicalaivies:

T1 Automate MapReduce workload trace analysis.

T2 Automate MapReduce workload model parameter fitting.
T3 Automate synthetic MapReduce workload generation.
T4 Automate synthetic MapReduce workload simulation.

1.4 Our Approach

Our approach to the problem stated in Section 1.3 is depint&igure 1.2. This
drawing shows the various steps that are being performedorklaad traces by
our toolbox:

1. As input we have a trace of a MapReduce workload from (paibfg) a real
production cluster.

2. This workload trace is converted into the Data Formatler €loud Work-
loads Archive.



3. We perform analyses on the workload trace.
4. We fit the parameters of our model to the workload trace.

5. From our model and the fitted model parameters, we gerneratdistic syn-
thetic MapReduce workload.

6. We simulate the execution of the generated workload onpRdduce clus-
ter.

7. We take the trace of the simulation, and use it again ag fopstep 2.

1. MapReduce
Workload Trace

2. Convert Trace 6. Simulation%
into CWA Format

5. Workload
3. Trace Analysis Generation i‘
\4. Model
Fitting
1

Figure 1.2: The circle of life for a workload trace.

We could of course stay in this circle infinitely, but thatwibt be very useful.
What we actually do depends on the goal. If we want to evalseitedulers, we
generate multiple workloads with increasing load levelstep 5 and we repeat the
simulation in step 6 for the different schedulers and théegght workloads. We
can then analyze and compare the results of the simulatipapgiying steps 2, 3,
and possible 4 on the simulation traces.

1.5 What Has Been Done Before?

In other research, MapReduce workloads have already besyzad, modeled,
generated, and simulated. Publications describing thes prt are surveyed in
Chapter 2. We have found that there already have been mam@t at creating
MapReduce simulators and schedulers, but that there exigtfew publications
of in-depth analyses of MapReduce workloads, and that nbtizeoMapReduce
workload modeling attempts in the surveyed literature wapas much features as
the model we present in Chapter 5.



1.6 Thesis Outline

The remainder of this thesis is organized as follows. In @rap we provide an
overview of the state of the art, i.e., we survey currentditiere on the subject. In
Chapter 3 we present the toolbox we developed, which futhilstechnical objec-
tives setin Section 1.3: automating MapReduce workloagttemalysis, modeling,
generation, and simulation. In Chapter 4 we take a look at MeyReduce work-
loads perform in real world cluster settings, by showingahalyses of these traces.
In Chapter 5 we present a model for MapReduce workloads. &pt@h 6 we show
how our tools can be used to build better systems. And finelgy,present our
conclusions in Chapter 7.



Chapter 2

State of the Art

In this chapter we present a survey of related literaturbetp the reader place this
work into context, and to help show what the contributionhi$ twork is.

First in Section 2.1 we survey MapReduce studies. Secon8eation 2.2 we
show other non-MapReduce workload modeling studies. Aradl§im Section 2.3
we survey other non-MapReduce trace archives.

2.1 MapReduce Studies

In this section we survey MapReduce studies. We survey ipedioce evaluation
in Section 2.1.1, which at the same time gives some insiglthénbehavior of
MapReduce workloads. We survey models in Section 2.1.2klead generation
in Section 2.1.3, simulators in Section 2.1.4, and finalhestulers in Section 2.1.5.

2.1.1 MapReduce Performance Evaluation

In order to get an idea of the properties of real productiopREduce workloads,
we take a look at workload analyses by [2, 3, 4, 5, 6, 7, 8]. Thetmomprehensive
study of a MapReduce workload we have found is the study bylawet al. [3],
who analyze a ten months workload trace from the Yahoo! M4®isaomputing
cluster. Kim et al. [7] study the workload of their own MapRed benchmark
instead of a real production workload. Ganapathi et al. ffe] Wang et al. [6] call
the sources of their traces respectively a “major web sejvand a “medium-scale
Hadoop cluster,” we have our reservations for the qualithe$e traces, especially
we doubt how “medium-scale” the second of the trace soueslyris.

Job and Task Run Times

The mean duration of a MapReduce job is around or below 20tesry [3, 4, 5,
6, 7], with a maximum observed job duration of seven dayss(jwére being killed
by a weekly maintenance script) by [3]. The mean duratiortdeks is around or
below 25 seconds by [4], when looking only at reduce taskseamduration of
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around five minutes is shown by [2], with a maximum observet#t @uration of
around one day by [4]. Kavulya et al. [3] show that 95% of jobmplete within
30 minutes, and that completion times follow a long-tailéstribution.

Map vs. Reduce Tasks

MapReduce jobs consist of map and reduce tasks, the rati@betmap and reduce
tasks is application specific.

The analysis of Yahoo! traces by Kavulya et al. [3] show anaye of 154 (std.
558) map and 19 (std. 145) reduce tasks per job, and that 93P ¢ébs consist
almost entirely out of map jobs. The analysis of Faceboatesdy Zaharia et al.
[2] show a distribution of job sizes with 39% of the jobs haymnly one map task,
with 30% of the jobs having 2-20 map tasks, with 29% of the jodging 21-1500
map tasks, and 3% of the jobs having more than 1500 map tdskdargest job
had over 25,000 map tasks. The only job in the simulation bpd\é&t al. [6] has
480 map and 16 reduce tasks. These three publications al ishall situations
less (or none at all) reduce tasks than map tasks.

CPU and Memory Demand

Ghodsi et al. [9] show that the bulk of tasks demand three sy &PUs and two
or less gigabytes of memory. The tasks with high memory denfahup to 9
gigabytes) are mostly reduce tasks.

I/O and Data Locality

Map tasks read input data from the distributed file systemr thutput data is “shuf-
fled” to reduce tasks, and reduce tasks write their outputealistributed file sys-
tem.

Chen et al. [8] show the cumulative distribution functiom foe input, shuffle,
and output sizes in a six months Facebook trace. The mearsidataare surpris-
ingly low in the ranges of hundreds of kilobytes, hundredbytés, and megabytes
for respectively input, shuffle and output. All these sizesygickly up into giga-
bytes in the top 20% jobs, and to terabytes for the top 10% jobs

Each node in a MapReduce cluster may serve as both compuéeamolddata
node, because of this, tasks could be scheduled on (or imthe gack as) the node
containing the task’s input data. We have “data localitythié task is executed
close to the data.

Wang et al. [6] show for their reference job 98% of the tasksinug on a node
containing the data, 1% of the tasks running in the same raekrde containing
the data, and 1% of the tasks running farther away than ttze daharia et al. [2]
plot data locality as a function of the number of maps per péme rack locality
reaches 90% at about 100 maps per job, and goes up to abouts9B#s rumber
of maps per jobs increases. Same node locality reaches 98&oat 7,500 maps

8



per job and goes up to about 92% as the number of maps per jaages. Zaharia
et al. [2] also show data locality as function of file replioatlevel and number of
task slots per node.

Cluster Utilization, Failures, and Energy Consumption

There are three more interesting subjects, cluster utdizafailures, and energy
consumption, which have each been studied in only one oétpeklications.

The utilization of a cluster is studied by Kavulya et al. [J]he studied cluster
seems to be underutilized even at peak moments, with a maxmmonthly-average
node and CPU utilization of respectively about 40% and 10%caBse of this low
utilization values, the authors see an opportunity to redamver consumption if
energy-aware scheduling would be applied.

Failures were studied byKavulya et al. [3], the highlightste failures study
are, that 90% of the jobs failed within 150 seconds after ts¢ diborted task, and
that most failures occur in map tasks.

Energy consumption is studied by Chen et al. [8], with thel gdareducing
power consumption by employing data compression. Basedweipconsumption
measurements of a single node in an experimental setuppthegnt an algorithm
to decide if compression of data would be beneficial.

2.1.2 MapReduce Workload Models

Models for MapReduce workloads are presented by [3, 5, 6,Udke the model
we present in Chapter 5, these works model only job comppigines.

Kavulya et al. [3] use fitting of probability distribution$kge in our model), for
goodness of fit test they only use the Kolmogorov-Smirnois tBsey suggest a run
time prediction algorithm which focuses more on jobs in teanpast.

Ganapathi et al. [5] use Kernel Canonical Correlation Asiglywhich maps
MapReduce job configuration onto job performance. Job-mteval times, in-
put sizes, and data ratios are captured in empirical digioib functions specified
by five percentiles. The work is primarily targeted at Hiverkoads, and could
in principle also be used for generic MapReduce workloalispagh in their ex-
periments the prediction performance for generic MapReduarkloads is not as
good as it is for Hive-only workloads.

The MapReduce workload models used by [6, 10] describe fgpgabs and
allow only for a “replay” of the workload, and not the gen&atof workloads.
The model by Wang et al. [6] uses a description of input datsaags and jobs are
modeled in a number of CPU cycles as function of the input size

In Rumen [10] the workload model is essentially just the mead values in the
trace, with as exception that for failing jobs, the chanc&iiire and the run time
are captured in empirical distribution functions.

Cardona et al. [11] present a model for the distributed fitesy in a grid envi-
ronment, which is not applicable for our work.

9



2.1.3 MapReduce Workload Generation

Procedures for generating MapReduce workloads are givgh,@0]. Ganapathi
et al. [5] sample values for job inter-arrival time, inputesi etc., from the distribu-
tions defined by five percentiles by applying linear extrapioh.

Rumen [10] does not really generate synthetic workloadsyeasvould like to
see it. They essentially replay a trace, with the exceptian ¢chances for failures
and in case of a failure the corresponding run time are sahipien a distribution
specified by percentiles using linear extrapolation.

2.1.4 MapReduce Simulators

For our work we need a MapReduce simulator, in order to sitaute execution
of our generated synthetic workloads. We have found thrééqgations [6, 11, 12]
that present a MapReduce simulator.

Wang et al. [6] present MRPérfa simulator build on ns-2. Features of this
simulator include simulation of network traffic at packetde CPU usage, and
disk 1/0O time. Limitations of this simulator are that it doest support multiple
replicas of chunk data, and that it sees disk I/O and comipatas distinct phases
that do not have any overlap.

Two publications [11, 12] describe simulators built on tdpGridSim, which
itself has been build on SimJava, a discrete event basedagiomupackage.

Cardona et al. [11] has been developed to evaluate the isBuafmew schedul-
ing algorithms for the distributed file system on MapRedurcgrid environments.
It is the only scheduler we found that explicitly takes nodailability, and storage
space into account.

Hammoud et al. [12] present MRSfmHammoud et al. state as need for a new
simulator, that they were unable to get accurate resulis MRPerf [6] and the
simulator of Cardona et al. [11], and that Mumak is not ablestimate completion
times. Their implementation does simulate multi-core CRitsl other configura-
tion settings that have an important impact on the perfoomdike merge, copy,
and sort parameters. A limitation of MRSim is that it can osilyulate single rack
clusters.

Mumak [13] is a MapReduce simulator that comes bundled wakd®p since
version 0.21. It does not perform simulation of low-levedaarces but just replays
tasks with the run times specified in the input trace. Its naaivantage is that it
uses the native Hadoop schedulers.

Gridmix3 [14] is not a MapReduce simulator, it executes lsgtic workloads
on a real Hadoop cluster. It comes bundled with Hadoop, asdhesame input
(except for the cluster topology of course) and output fasnag Mumak.

'http://research. cs. vt.edu/ dssl/nrperf/
2http:// code. googl e. conl p/ nTsi m
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2.1.5 MapReduce Schedulers

Schedulers in Hadoop allocate tasks to slots on the workdesioHadoop comes
by default with a FIFO scheduler, and since version diilias support for plug-

gable schedulers. In Hadoop version 0.21, there are thoiéaarhl bundled sched-
ulers, namely the Fair scheduler [2] developed by FacelibelCapacity scheduler
[15] developed by Yahoo!, and the Dynamic Priority Sched[16] developed by

Hewlett-Packard.

Hadoop Bundled Schedulers

The Fair scheduler and the capacity scheduler both havathe goal, which is to
share a cluster among users in such a way that productiomjebstheir deadlines,
and “interactive” jobs have short response times.

The idea in the Fair scheduler proposed by Zaharia et als[#jdt instead of
allocating a tasks as soon as it is it first in line, it might leadficial to postpone
the allocation of the task until a slot with good locality beges available.

Although we have not found an official publication descripthe Capacity Sched-
uler [15], as one of the bundled schedulers it can not be editere. Queues in the
system each have a guaranteed capacity, but they are altoweedsume capacity
not claimed by others. In addition to this, individual jolmltations prevent single
jobs to hog a queue. Job-preemption is currently not supgort

Sandholm and Lai [16] propose the Dynamic Priority Schetltihe idea of this
scheduler is that every user in the system has a budget asdqrahe use of the
cluster. Per time unit each user is allocated a fraction efdhster which is the
same as the fraction of his bid to the total sum of all bids at ttme unit.

Other Schedulers

Zaharia et al. [17] propose the LATE, scheduler which attsng minimize re-
sponse time for jobs. The scheduler looks at the run timekeofdsks for a job,
and identifies stragglers, i.e., tasks that are runningfsigntly longer than other
tasks for the job. The scheduler uses excess capacity oluseicto launch dupli-
cates of these stragglers, in the hope that the duplicaté&hfioish earlier than the
original straggling version of the task.

Ghodsi et al. [9] propose a scheduler which is based on themof Domi-
nant Resource Fairness, it “simply applies max-min fagrasoss user’'s dominant
shares.” tries to fit tasks on worker nodes in such a way tleaCU or memory
demand on on each node maximize consumption of a specifionasmstead of a
fixed number of slots.

Polo et al. [18] have developed a scheduler which predigtsuh time of tasks
based on the run times of previous ran tasks, and then a®caly that many re-
sources as is needed to meet the jobs deadline. This appbesit map and reduce

Shttps://issues. apache. org/jiral browse/ HADOOP- 3412

11


https://issues.apache.org/jira/browse/HADOOP-3412

tasks. In absence of any information on the duration of makstathe maximum
allocation is initially set to the number of remaining mapgki® In absence of any
information on the duration of reduce tasks, the scaled ndeaation of the map
tasks is used.

Distributed File system Schedulers

Two of the studied papers focus on the distributed file system

Chen et al. [8] try to minimize energy consumption and imprgerformance
by compressing data. Blindly compressing all data requitese energy than just
storing all data, in all but the shuffle phases. As a solutmthis problem, the
authors present an algorithm for deciding whether or nobtofress data during
a phase. It is concluded that energy consumption savingg @b 60% can be
archived for jobs that are heavy on reads, or for jobs withlgigompressible data.

Cardona et al. [11] envision a MapReduce implementatiorgfims. The main
problem is the low availability of nodes. The default repliglacement strategies
are targeted at a cluster environment, in a grid environmepiicas of data chunks
must be carefully placed so that data is likely to be alwayslable. The authors
propose a scheduling algorithm for the placement of datalcheplicas. The algo-
rithm sort nodes by availability and attempt to store regsion the highest available
nodes with enough free space, optionally it checks if theesgufocessing power is
above a required level.

2.2 Other Workload Modeling Studies

A more thorough overview of workload modeling studies aregiby losup [19],
Sec . 4.5.2, p. 68, these include Leland and Ott [20], Catsar@nd Serazzi [21],
Balter and Downey [22], Feitelson [23] (Feitelson and Nep[24]), Jann et al.
[25], Lublin and Feitelson [26], Li et al. [27], Medernach8[2 Song et al. [29], Li
and Muskulus [30], losup et al. [31], and losup [19], Sec . 4.4

Feitelson [32] is writing a textbook on the modeling of congrsystem work-
loads for performance evaluation, which is freely avaiébl

2.3 Other Trace Archives

We are not the only ones who are collecting workload tracéiseotable existing
archives of traces are the Parallel Workloads Archive byefsgin [33], Failure
Trace Archivé by Kondo et al. [34], the Grid Workloads Archi®éy losup et al.

*http://ww.cs. huji.ac.il/~feit/w mod/
Shttp://fta.inria.fr
Shttp://gwa. ewi . tudel ft.nl
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Sandholm and Lai [16]
Hadoop Default Schedulg
Capacity Scheduler [15]

Hammoud et al. [12]
RUMEN [10]

Kavulya et al. [3]
Ghodsi et al. [9]
Hindman et al. [4]
Kim et al. [7]
Ganapathi et al. [5]
Wang et al. [6]
Cardona et al. [11]
Zaharia et al. [2]
Zaharia et al. [17]
Polo et al. [18]
Chen et al. [8]
MUMAK [13]
Gridmix3 [14]

Table 2.1: Comparison of studied MapReduce Publications. The symbols
“om ot "= and “+” denote respectively “not covered”, “eated”, “not
treated”, and “partially treated”.
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[35], and the Peer-to-Peer Trace ArcHiley Zhang et al. [36]. A more thorough
overview of archives is given by losup [19], Sec . 3.5, p. 33.

"http://p2pta.ewi.tudel ft.nl/
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Chapter 3

MapReduce Analysis Toolbox

We developed a toolbox for analyzing and modeling MapReduméloads, and
for generating and simulating the execution of synthetiggReduce workloads.
This toolbox can be regarded as the fulfillment of the tecddribjectives T1, T2,
and T3 stated in Section 1.3. In Chapter 6 we introduce a ap#wolbox for
MapReduce simulation using super-computers. We depictvtrk-flows of the
MapReduce Analysis and the Simulation toolboxes in Figute 3

This chapter describes the abilities of this toolbox, idalg how it allows the
user to convert traces of MapReduce executions into a gtdirdd format (see
Section 3.1), to perform analysis on workload traces (se&@e3.2), to model the
workload in these traces (see Section 3.3), to generaistrealynthetic workloads
(see Section 3.4), and to simulate the execution of theshetyo workloads (see
Section 3.5).

3.1 Trace Import

To enable our toolkit to work on workload traces from varisoesirces, we need a
default format to store this information. Even though malugiers use the same
MapReduce implementation, MapReduce trace data still sama large variety
of formats. This variety of formats is caused by the diffénays cluster adminis-
trators have invented to extract data from the cluster, grttidoneed to anonymize
and censor the data in order to protect company secretsdém tw cope with this
large variety of trace file formats, we use the Data FormathfetCloud Workloads
Archive throughout the toolbox.

3.1.1 Data Format for the Cloud Workloads Archive

The Data Format for the Cloud Workloads Archive [37] (CWATrfat), is a data
format which captures anonymized MapReduce workloads agtmuch detail as
possible, while also supporting non-MapReduce cloud veadks. Anonymization
is a side-effect of a recommendation in the CWA format, ngrtiedt strings iden-
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tifying users, applications, etc., should me mapped t@anealues to reduce file
sizes. The CWA format is based on the proven Grid Workloadshi&e[38] and
Parallel Workloads Archive[39] data formats. The defimitiof the CWA format
does specify the fields, it does not specify the how the dataldhe stored. The
toolbox assumes that all CWA format data will be stored indaeparated files (see
Appendix B). With the exception of this single subsectiolh references to the
CWA format in this document refer to these tab separatectegdiles.

3.1.2 Import Scripts

In order for a trace to be used with the tools in the toolboxfivge need to convert
the trace into the CWA data format. The toolbox itself oniglirdes an importer for
the Hadoop log. As most of the traces come in a custom fornetysie a custom
conversion Python script for each of these traces. Thedagibovides some tools,
such as a writer for the CWA data format, to aid the develogro&the conversion
scripts.

Depending on the format and contents of the original trate, daiting a conver-
sion script can be non-trivial. An example of this non-tility can be found in the
conversion of the SN1 traces (see Section 4.2.1), the SNégreontain a textual
description of the application which differs for each exemu of the application.
The CWA data format requires an executable identifier whichriique for each
application but stays the same for the various executiortieosame application.
In Section 3.1.3 we present our solution to this classificegiroblem.

3.1.3 Executable Identification

Although the SN1 traces (see Section 4.2.1) did not contagxacutable identifier,
these traces did contain a job description field which coel@xploited to classify
jobs to distinct executable identifiers. In order to clasHile executables based on
the job description field we wrote a few rules, in the form @ulkar expressions, to
match the job description to an executable identifier. Whlleosing these rules,
we had in mind the trade-off between precision and the numbedes. A smaller
number of rules gives a more concise picture of the behavitimeoapplications,
while more rules give a more precise result. The questiorairesif this perceived
precision is really justified by the quality of the rules, wava therefore chosen
the first of these two options. In the next three subsectiompnesent the tools we
developed to enable us to write these rulesunt _uni que, appl i cati ons,
andcdf .

The count _uni que Tool

We wanted to write rules that each match an as large as pesuiphber of job
descriptions that seem to be referring to the same applicafio this end we first
looked at counting occurrences of distinct values of jobcdptons, so that we
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could match the descriptions with the highest occurrenestcérst. The main
problem we encountered in this process, was that many jalyigiens include a
serial number or a date, which turns the job descriptiorsdigtinct values.

In order to cope with the problem of having serial numbers datés in the job
descriptions, we included a feature in the count_uniqukttoeeplace all numbers
by the number sign (“#"), and to replace all day and month reint® three at-
symbols ("*@@@"). These options can be used to aggregategetrigtions only
differing in date or (serial) number into distinct valuesn @p of that we also
included an option to convert all characters to lower-cdsaracters, so that the
matching will in effect be case-insensitive.

The tool takes as input a tab separated values file and theerwhthe column
containing the values of interest. The tool outputs a tabrseed values file with in
two columns the value of the (altered) job description amdcunt of occurrences
in the trace. An example of this output file is shown in Listg.

Theappl i cati ons Tool

To help produce a list of regular expressions for matchiregetables in the incon-
cise job descriptions in the workload trace, this tool ceuhte number of matches
for each of the rules in a list of regular expressions. Jobri®fons are classified
by the first rule that matches.

This script takes as input a file containing the rules in tlienfof regular expres-
sions, and a tab separated values file containing job désaspcombined with
the count each of these description occurs in the to be studl@kload trace.
Not entirely by coincidence, this input is exactly the sarsettee output of the
count _uni que tool. The output is the list of rules, with for each of the sithe
total sum of the counts of the matching job descriptions.

Examples of files containing rules, input, and output fos timol are shown in
respectively Listings 3.1, 3.2, and 3.3.

Listing 3.1: Exampleappl i cat i ons rules
Noxo+. *x$
Noxat, *x$

Listing 3.2: Examplecount _uni que output,appl i cati ons input

aap 1
noot 2
m es 1
boom___1
r oos 1
Vi s 1
Listing 3.3: Exampleappl i cat i ons output
Naxo+ xS 4
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The cdf Tool

We would like to plot the cumulative distribution functio€DF) of the matched
rules, so we can see how much of the jobs are matched by the fithecdf tool
can be used to construct an input data file for plotting a CDIF/Braph using Gnu-
plot. The tool expects a tab separated input file with in trst iolumn an identifier
and in the second column a count (like the output files ottent _uni que and
appl i cati ons tools). The script outputs a tab separated file with four rowis:
rank, identifier, normalized count, and cumulative noraedi count.

The normalized count; for the counte; for all the countsc is calculated as
ni =c¢;/ Z‘jcz‘gl c;. After all the normalized counts are calculated, the listiged
in descending order. As an exception on the sorting pro¢ees;ount identified
by the name “Other” is always outputted last. The resultisgi$ written to the
output file, while this is being done, the cumulative valueakulated by summing
all previous values.

3.2 Trace Analysis

The toolbox provides thanal yze tool to analyze MapReduce workload traces.
From the traces this analysis tool extracts informationamous metrics both over-
time, and all-time, optionally broken down by one or moreganies, for example,
the run time of tasks over time broken down per executablas piocess is ex-
plained more in-depth in Chapter 4. Using the data resuftomg this analysis, the
toolbox can automatically plot graphs using Gnuplot.

3.2.1 Theanal yze Tool

The workload traceanal yze tool needs a few things to work. First, of course,
it needs an input workload trace in the CWA format. Secondneed to specify
which metrics we want to analyze and which breakdowns we veeloé computed,
e.g., run time per executable. The metrics and breakdovess $gction 4.1 and
Appendix B) can be specified in a configuration file (see Seod@l.2) on a per-
trace basis or otherwise default settings are used.

This tool relies heavily on the two utility class&s neLi ne (see Section 3.2.2)
andCSt at s (see Section 3.2.2). The time line class is not quite unlikistgram,
it discretizes time based on a given interval length, amgthétored on the time
line is being aggregated into the interval it belongs to. $tats class aggregates
multiple numerical values, it is then able to compute diaif these values, like
for example the mean, the standard deviation, and arbigrargentiles. The time
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line class has the ability to either compute the sum of alieslin an interval, or to
use this stats class to aggregated the values.

The analyze tool uses an instance of th@reLi ne class to store all information
over time, and indeed, all values are aggregated by insgtarfdbeCSt at s class.
As the workload trace file is processed, the values of theicsetf interest are
stored on the time line, also for each breakdown-metricevabmbination separate
values are stored on the time line, see Figure 3.2 for pseode describing this.
Next to this, we count the number of running jobs and tasks tive, these counts
we also calculate by breakdown. The counting is done by gdthe value “1” to
every time line interval, during which the job or task is adlyrunning, see Figure
3.3 for pseudo code describing this.

for j in jobs:
for min nmetrics:
tineline[m.add(j.start, j.get(m)
for b in breakdowns:
timelingfmb,j.get(b)].add(j.start, j.get(m)

Figure 3.2: Pseudo-code for analyzing over time.

for j in jobs:
for moment in j.start to j.finish step interval:
ti neline. add(nonent, 1)

Figure 3.3: Pseudo-code for counting running jobs over time.

When the whole trace has been processed, the output iswiitteany files.
(For all job and task metrics we output the all-time CDF/PRag we output per
time interval the sums and percentiles. All this informatis also outputted again
for each breakdown value.)

3.2.2 Utilities

In this section we introduce the utility classBsmeLi ne andCSt at s, which we
have used in, among other, taaal yze tool.

The Ti neLi ne Class

We have created the cla$s meLi ne for the computation of statistics over time.
Inside this class, time is discretized in intervals of a tergpecified by théi nwi dt h
parameter. Each interval is identified by an internal tinteky which can be cal-
culated from the time valué and the interval lengthw by performing a simple
divisioni = |t/w]. The data are kept in a dictionary, using the indes the key,

20



the choice for a dictionary was made to efficiently handlespame lines. The

class can manage multiple variables of interest in the sastarice, by using a key
value while adding data. In each interval a dictionary igiusestore data identified
by these keys.

The main purpose of this class is to aggregate data per tirevah. It has two
separate ways to aggregate the data. First, the classmpsréosimple summation
of all values in an interval. Second, it can use @& at s class to perform basic
statistical analyses on the data in the interval. As finaluiea theTi nmeLi ne
class is able to provide these statistics for time intervdigch are a multiple of
the initial time interval, this is done by simply summing thelues at the index
positions covering the requested time interval.

The CSt at s Class

TheCSt at s class is able to calculate various statistical properties frariable of
interest from a list of values. Every time a value is addeditmatance, a couple of
values are updated: the value count, the sum of the valuesuth of the squared
values, the maximum and minimum value. These values aretasedculate, next
to the minimum and the maximum value, also the mean, the atdrikviation,
and the coefficient of variation.

Optionally, if thebKeepVal ues parameter is set, all values are kept in an in-
ternal listv. This list of values can then be used to calculate arbitrarggntiles,
including the median. The-th percentile is calculated by picking the|-100/p|-
th element from the sorted list of values. The median, thé percentile, has a
special treatment: If the total number of values is evem the average of the two
values in the middle of the list is calculated, e (@:y(/2 + Viv|/2—1)/2.

3.3 Workload Model Parameter Fitting

The MapReduce workload models we present in Chapter 5 makefysobability
distributions. In order to “model” a workload, we need to faistribution functions
and their parameters that “fit” the data in the workload traedl. To this end we
have developed a tool in Python, it uses maximume-likelihboettions for various
probability distribution functions, and it selects the tféting distribution for each
modeled property, based on the values resulting from thergess of fit tests and
the D-statistic. This process is explained in-depth in @¥ap. The result of this
tool can be used to construct a JSON encoded file, containéniifted distributions
and their parameters.

In this tool we use the multiprocessing package for paradgbn of the model-
ing work, and we use the pickle package to store the interaeedind final output.
Pickle — also used for inter-process communication by th#ipnocessing pack-
age — uses the cStringlO package which has a 2 GiB size limitope with this
size limit we have implemented a wrapper around pickle, tvipiartitions a data
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structures if needed. The modeling tool is the only tool m tiholbox that makes
use of the external Python libraries NumPy and SciPy.

3.4 Realistic Synthetic Workload Generation

The toolbox contains a tool to generate realistic synthdtqpReduce workloads.
This process is explained in-depth in Chapter 5. The to@dals input the JSON
encoded model file resulting from the model parameter fittowy. As output it
generates a workload file which can be used by Mumak and Gr&las input.

The non-trivial part of this tool is that it is able to “bruterce” a specified load
level. It generates a workload and calculates its load Jef/#ie load level is not
satisfying, the inter-arrival times will be multiplied byi@ctor. We perform a binary
search for a factor resulting in a satisfying load level. peed-up this process we
reset the seed of the random number generator at the stagtrgfieeration, unless
we are no longer able to improve the load level by adaptingrites-arrival time
multiplication factor.

3.5 Simulation

The CWA toolbox itself does not include a MapReduce simulate select an
existing MapReduce simulator in Chapter 6, and we use thislator to perform
simulations of the execution of generated workloads. Oolbtux include tools to
generate workloads for this simulator, and to convert thpwwf the simulations
into the CWA data format for further analysis.

In Chapter 6 we perform a large number of simulations, arddiuice to this end
a separate toolbox for MapReduce simulation using supapaters.

3.6 Concluding Remarks

In this chapter we have introduced the Cloud Workloads Aechioolbox, and
explained its inner workings. This toolbox has been madéadla as open-source
software. In Appendix A we provide instructions on how toabtthis toolbox,
and we provide a short introduction to the usage of the toolbo
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Chapter 4

Workload Analysis

In this chapter we present the analysis of the real-worldklgad traces we ob-
tained, this provides an answer to research question Qlat\fle the characteris-
tics of MapReduce workloads?”

The remainder of this chapter is organized as follows. IrtiSed.1 we present
an overview of the metrics and breakdowns we use. In Sectwd present the
studied workload traces.

4.1 Metrics and Breakdowns

In the context of workload trace analysis we mean with metifie properties we
wish to study, like run time, wait time, inter arrival timePO usage, memory us-
age, disk usage, and network usage. With breakdowns we mieparpes, like
status, queue, user, and executable, for which we calcskgigrate statistics. For
example an analysis of the run time broken down by user, divesame statis-
tics as the “global” statistics, for every single user in fystem. The properties
available in the CWA data format are shown in Appendix B.

The metrics and breakdowns that we want to analyze may difejobs and
tasks. Intasks for example you may want to have a breakdowveskytype (map or
reduce), this specific property is not available for jobsing®ur toolbox it makes
only sense to use properties with a small amount of disciatees as breakdown,
as for every single value of the property the entire analydidoe performed.

4.1.1 Notable Metrics

We depict job and task time metrics in Figure 4.1. We give atsti@scription of
these and other notable metrics.

Inter-Arrival Time The inter-arrival time is, as depicted in Figure 4.1, theetim
interval between the arrivals of jobs or tasks in the systEhis information
is not as such available in the workload traces but can baatett from the
traces. It is easy to calculate the inter-arrival time — Wy oeed to calculate
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Job Inter-arrival Time
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Figure 4.1: Job and task time metrics.

the difference between two subsequent submit times. Thigines a trace
sorted on submit times.

Wait Time The wait time is, as depicted in Figure 4.1, the time that ahab to
wait after being submitted until it is started, i.e., thetfiesk is started. As
supported by Figure 4.22, in MapReduce systems the waistareegenerally
very low.

Run Time The run time is, as depicted in Figure 4.1, the wall clock tetepsed
since the job or task is started, until it is finished. For jtiis means until
the last task has been finished.

Response TimeThe response time is, as depicted in Figure 4.1, the walkcloc
time elapsed since the user submitted a job, until the jobled.

Slowdown The slowdown is a factor that indicates how much longer a pbrian
than in the most ideal scenario. For example, the absolutdénmaim time
that a job needs to complete is the run time of its longest iaghis case the
slowdown is the quotient of the response time and the run dintize longest
task.

Number of running Jobs As shown in for example Figure 4.2 we calculate the
number of running jobs over time; in this particular examglareakdown by
application is made.

CPUs The property CPUs is the count of the number of CPU cores uséatdl
for a job or task.
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Total Wall Clock Time The name “Total Wall Clock Time” may be somewhat
confusing; it means the sum of the wall clock times spent iengwsingle
processor core. So if a job would only have had two tasks —imgnat the
same time — that each used four processor cores for one nmihetetal wall
clock time would be eight minutes, while the run time is likéb be about

one minute.

4.1.2 Notable Breakdowns

Status The status of a job or tasks. Was the running of the job or taskessful,
a failure, or canceled?

Task Type The type of the tasks. In MapReduce there are two main tagstype
Map tasks and the Reduce tasks. Depending on the MapRedptarienm-
tation there may be additional task types such as Setup aah@b.

Executable It may be hard (see Section 3.1.3) to identify executableswork-
load trace, but if available, it could reveal interestinfipmmation, as different
applications are likely to have different behavior.

Queue Queues are most likely to indicate different groups of us&sheduled
production jobs and ad-hoc interactive jobs could be ired#ift queues, and
can be scheduled appropriately. The Fair scheduler by¢Rlxtample, at-
tempts to provide an equal share of the cluster to each queue.

User Identifies users in the system, schedulers may use thisathstethe queue

in their scheduling algorithm.

4.2 Real-World Workload Traces

We have obtained sets of traces from real world MapReducsetki The level
of detall in a trace differs per set of traces — a trace coule hiask information
aggregated per job, or may contain only the successful jabist of these sets is
given in Table 4.1. In this section we describe each of thes&load traces.

Task Information Failed | MapReduce Number Of
| Workload Trace | Period | Aggregated per Job For Each Task Jobs Only Jobs | Tasks
SN1 (see §4.2.1) 6 months + - — + 1,129,193 ?
SN2 (see 84.2.2) 9days + - + + 60,978 | 9,365,863
Yahoo! M (see 84.2.3) 2 weeks + + + + 28,248 | 27,317,243
Google (see 84.2.4) 29 days + + + - 667,992 | 44,920,671

Table 4.1: Overview of the obtained real-world Workload Traces, thesy
bols “+”, “=", and “?”, depict respectively “available”, ‘ot available”, and

“unknown”.
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4.2.1 Social Network 1

We have obtained traces from a production MapReduce cloktelarge unnamed
social network company. We refer to these traces as “So@alibdrk 1” or SN1.
Basic statistics of these traces are shown in Table 4.3.€Tinases cover a period
of six months of a Hadoop cluster and a total of 1,129,193; jeleshave no data to
calculate the number of tasks. Although no individual tag&rimation is available,
the traces do contain detailed task I/O information, agapestjper job. These traces
have more peculiarities: they contain only successful,jabd they do not contain
application or user identifiers.

In order to identify the applications in the logs, we use tebName” field,
which contains a textual description of each job. The valnethe “JobName”
field are matched against five regular expressions (see Fablend assigned an
application identifier based on the matching regular exgioes While choosing
these rules, we had in mind the trade-off between precisi@hthe number of
rules, a smaller number of rules gives a more concise pictuitee behavior of the
applications, but more rules give a more precise result.

| Rule | Application | Regular Expression | Matches |
0 Copier (?i)~(recovery node )?\ S+\scopier\s.*$ | 680212
1 Insert (?i)"insert.*$ 142985
2 From (?i)~Mrom(\s|\().*$ 90111
3 Select (?i)"select\s.*x$ 48542
4 Columnset Loader (?i ) ~(hourl y\'s) ?col utmset\ sl oader. *$ 42283
- Others 125060

Table 4.2: Application identification rules.

Running Jobs

Figure 4.2 shows the cumulative counts of all running jolbis gmplication type
over time. In this graph we observe that the number of unneattbthers” jobs is
quite small compared to the matched jobs; this shows thdivaehosen rules for
application classification cover a large part of the jobs.

We find a large amount of “copier” jobs in the first two monthstloé traces.
We hypothesize that during that time the system was beirgdebbavith data. As
support for this hypothesis, we need to see a significanteushO resources by
these jobs during this period.

Job I/O

We have calculated the total amount of /0O by the jobs oveetifhhis has been
done by summation of all input and output for jobs for eactetimit. Figure 4.3
shows the cumulative amounts of 1/O for all jobs per appiicatype over time.
In this graph we observe that the amount of I/O used by the teired “others”
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jobs is small compared to the total I/0, but not as small agebeal from the small
fraction of running unmatched jobs; the unmatched jobs dedra relatively heavy
on 1/0O.

The jobs matching rules 2 and 1, the “from” and “insert” jobsg the largest
I/O consumers. And contrary to what we hypothesized, th@itbd jobs do not
seem to generate a significant amount of 1/0 during the firstriwnths, they are
actually the least I/0O consuming of the classified jobs dftee the hypothesis must
be false. However, after the second month, the I/O consompti the majority of
the “copier” jobs is increased by about a factor 1000 as ibeisn Figure 4.5a by
the steep increase of the 50th percentile, and the 1/O ratioges resulting in more
output per input as is visible in Figure 4.5b — it seems tha&ittng was changed to
have the work done with fewer job runs.

Job Run Time

For the SN1 traces, the cumulative runtime split per apptinas shown in Figure
4.4. The total runtime of the “copier” jobs seems to incresfser the two month pe-
riod described above (also see Figure 4.5c¢), although desmmaimber of “copier”
jobs run. The “copier” jobs need to have an increase of rumtifter the first two
months, this is likely caused by the increase in I/O consionpt

The distribution of the jobs run times in Figure 4.23a showat,talthough one
job ran for little over one day, most of the jobs in this wowrdichave very short run
times: 50% of the jobs finish in under 35 seconds, 66% of the fiolish in under
70 seconds, and 90% finishes in under 6 minutes.
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Figure 4.2: SN1, cumulative running jobs by application.
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Figure 4.4: SN1, cumulative job runtime by application.
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Figure 4.5: SN1, “copier” jobs.
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4.2.2 Social Network 2

We have obtained traces from a production MapReduce cloktelarge unnamed
social network company. We refer to these traces as “So@albdrk 2” or SN2.
Although, these traces do only contain information per jbley contain task in-
formation summarized per job — especially the number ofsafled tasks, and
killed tasks. These traces cover a period of ten days of a éfaduster and in-
clude a total of 60,978 jobs and 9,365,863 tasks; for thelltmse days there is no
task-level information available. There is no informatemrailable that can help to
identify applications in the traces.

Job and Task Status

The trace does contain status information. This statugrimddon is available in
two ways: for the jobs the status is available as a coded f@idhe tasks the total
number of failed and killed tasks is available next to thaltoimber of tasks. The
encoding of the status field in these traces is as followsessful jobs have status
0, the “others™-jobs are the failed jobs.

The job counts in Figure 4.7a shows a very large amount ahfpjbbs. Most
of these failing jobs do not seem to spawn &agks as can be seen in Figure 4.7b
that shows that the large majority of the tasks comes fronstiseessful jobs, and
only a fraction from the failed jobs.

The amounts of failed and killed tasks, as shown in respalgtivigures 4.7c and
4.7d, is very small compared to the total number of taskshews in Figure 4.7b.
Interesting to note is that only the successful jobs havedair killed tasks.

Job Run Times

The distribution of the jobs run times in Figure 4.23b shoag,talthough one job
ran for almost 4 days, most of the jobs in this workload hawtstun times: 50%
of the jobs finish in under 1.5 minute, 66% of the jobs finish mier 3 minutes,
and 90% finishes in under 12.5 minutes. Figure 4.6 showsdlthgugh the failing
jobs run fairly long (as indicated by the job run time), thensume only little of
the cluster (as indicated by the total wall clock time).
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Figure 4.6: SN2, cumulative job times by status.
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Figure 4.7: SN2, cumulative jobs and tasks by status.
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4.2.3 Yahoo! M-Cluster

The Yahoo! M-Cluster traces we obtained cover a period ofseks of a Hadoop
cluster and include a total of 28,248 jobs and 27,317,24&tdhese traces contain
information at job level as well as for individual jobs. Thades identify for jobs
both the executable and the user, in anonymized form. Bé#aiistics of these
traces are shown in Table 4.6. This is the only workload tvéwere we can actually
compare map and reduce tasks.

Jobs

We show the number of running jobs over time in Figures 41®4These graphs
seem to show that most of the time the system is underutiliZée spike of over

2000 running jobs at 14 March, shows that the capacity of luner is larger than
the actual use, most of the time no more than 250 jobs arergrahiring the 1

hour counts. This claim is however not very strong, as rupmrany very short
jobs rapidly after each other could cause a similar spike emaller cluster. In

face, we see in Figure 4.11 that this spike did cause largailatine run time, but

not as much as the bursts around 9-11 March.

By Application For the Yahoo! M-Cluster traces, the cumulative number of ru
ning jobs per application is shown in Figure 4.8. The apglceidentified as Rule

0, is the only application that runs a significant amount tfsjoexcept for some
spikes of “other” jobs on 11 and 14 March.

By Status Figure 4.9 shows the number of running jobs by status. Welsse t
almost all jobs succeed and only a small fraction of the ja@lis.f The logs do not
show any canceled jobs during this period.

By User Figure 4.10 shows that although the user with the largesturaption
(User 0) is a large consumer compared to the other usersuthelative usage of
the less consuming users is not negligible.

Job Run Time
We have broken down the run time by application, by statusbgndser. We see
bursts of high cumulative run times around 9-11 March.

By Application Figure 4.11 shows clearly that application 0 has by far thgekst
cumulative run time. A single application dominating thestér looks like a sched-
uled production job, but the behavior is too irregular focheduled job.

By Status Figure 4.12 shows that although the number of failed jobsggigible
low, the run time consumed by failed jobs can be less, althatid, negligible.
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By User Figure 4.13 shows that two users generate around 9-11 Malpsttlat
run significant long compared to the usual load — using theesagpplication.

Tasks

We show the number of running tasks over time in Figure 4.14b.

Task Run Time We see in Figure 4.15 that the map tasks require cumulatively
more time than reduce tasks, so either map tasks run on avierager than reduce
tasks, or there are more map tasks than reduce tasks. IreEidis we see the run
time distribution for both task types. We see that 50% of tlag@ nasks run in less
than 25 seconds, and that about 5% need more than 5 minuteshpiete. We see
that only 34% of the reduce tasks finish in less than 25 sed&®?%,finish in under
75 seconds, and 5% need more than 18 minutes to complete. tigothap and
reduce tasks show a maximum value of about 44 hours. Thesevalisns show
that reduce tasks generally run longer than map tasks. Wedwmnted a total of
22,004,024 map tasks and a total of 5,313,212 reduce taskmdeed, there are
more than 4 times as much map tasks than reduce tasks inabés tr

Distributed File-system Usage We show in Figures 4.16 and 4.17 respectively
the amounts of data read from and written to the HDFS, Hadadiptributed file-
system. We observe a few things in these graphs. First, wehs¢ehe tasks
generally read much more than that they write. Second, wehseealmost only
map tasks read data from the HDFS, and that reduce tasksmwoite data to the
HDFS than map tasks. Third, in the CDF we observe that abdit dtthe tasks
read almost exactly 128 MB data, this indicates a prefertaragata chunks of 128
MB.
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Figure 4.11: Yahoo! M-Cluster, cumulative job runtime by application.
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Figure 4.14: Yahoo! M-Cluster, Running jobs and tasks.
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Figure 4.15: Yahoo! M-Cluster, Tasks run time.
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Figure 4.16: Yahoo! M-Cluster, HDFS data read.
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Figure 4.17: Yahoo! M-Cluster, HDFS data written.
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4.2.4 Google

In November 2011, Google has release@ces of a cluster of about 11000 nodes
for 29 days in may 2011, covering 667,992 jobs and 44,920t&34s. The trace
consist of 1.6 GiB worth of job/task/machine events and 3B @orth of task
usage information. Unfortunately for this work, these éa00 not consist of only
MapReduce jobs, and no MapReduce specific information laded. Given that
Google introduced [1] MapReduce, there will be MapRedubs jadden in these
traces. Possibly the MapReduce jobs in this trace couldéogifted and analyzed,
we leave this for future work. The time-stamps in the traceeh@een re-based to 1
January 1970.

Job Wait Times

In Figure 4.19 we show the job wait times per status. In thapbrwe see that
the cumulative wait times for the successful jobs is gehelalv compared to the
canceled jobs. In fact, it is likely that jobs with long wdihes are canceled just
because of the long wait times. Failed jobs are almost ineish this graph, so
either there are only a few failed jobs, or they even fail tcsbeeduled. We find
overlaps of the wait time spikes at “2 and 10 January” withnailar spike in the
CPU consumption shown in Figure 4.21, likely the high CPWesa these periods
caused the increase in wait times.

Job Run Times

In Figure 4.20 we show the job run times per status. In thiplgrse see that the
jobs causing large cumulative run times are the tasks tleatteslly get canceled.
We see two spikes for the cumulative run times of cancelesl gobund “3 and 11
January”, this is a strange one day difference with the spiké&igure 4.21.

CPU Usage

In Figure 4.21 we show the usage of the CPUs per status over timrthe Google
trace the amount of CPUs used by a single task is specifiedamaatized way, we
have assumed that the lowest value corresponded to a siRylea@d calculated
the “real” CPU count according to this assumption.

The Two Spikes

In most graphs we find two spikes, one on “2 or 3 January”, ardaon“10 or 11
January”. As the dates of the start and end of the graphs arectowe assume
that the one-day differences in the spikes in Figures 4.204a1 are caused by
two tries of the same set of jobs. First a set of jobs was tmetlal failed, then a
day later a similar set of jobs was tried and all were canceledthe other hand, if

'htt p: // code. googl e. cont p/ googl ecl ust er dat a/ wi ki / Cl ust er Dat a2011_1
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this would have been like this because of a mistake, we wantiéxpect the same
thing to happen again one week later.
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Figure 4.19: Google, job wait time per status (0: failed, 1: successful, 5
canceled).
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Figure 4.20: Google, job run time per status (0: failed, 1: successful, 5:
canceled).
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4.2.5 Comparison all Workload Traces

In this subsection we compare the job wait times, the job mmeg, the task run
times, the job I/O, and the number of tasks of the SN1, SN2o¥aM-Cluster, and
Google workload traces; unfortunately not all traces dordd this information.

Job Wait Times

We compare the distributions of the job wait times of all therkload traces in
Figure 4.22. Unfortunately the SN2 trace does not contaihtinze information. In
these graphs we observe that the wait times in all workloeglgenerally extremely
low, 80% of the jobs is started within a second. It looks like tluster of the SN1
workload trace is over-provisioned, as almost 100% of ths jig started within
a second. The Google cluster has compared to the SN1 and YakepmReduce
clusters a very long tail for the run times, of up to three datsus 15 minutes —
this is also a sign that the Google cluster is not (just) a MajRe cluster.

Job Run Times

We compare the distributions of the job run times of all theklaad traces in Fig-
ure 4.23. In these graphs we observe that the shortest agelligobs in the Google
trace run longer than those in the other traces; the centehe distributions do
not differ significantly — 10-90% of the jobs run in 10-100@ceds. It seems that
Google’s task provisioning method requires more time ta stéask than Hadoop.

Task Run Times

We compare the task run times in Figure 4.24. Unfortunately the Yahoo! trace
and the Google trace contain information on the task rundiriiée see a preference
for a runtime of about 30 minutes for about 10% of the taskfitnGoogle trace.
Tasks in the Google trace run longer than in the Yahoo! tracée Yahoo! trace
about 25% of the tasks finish in under 10 seconds, where intloglé trace almost
no task finishes in under 20 seconds; also the tail of the @adagk run times is
much longer.

Job 1/O

We compare the distributions of the job I/O of the workloaates in Figure 4.25.
Unfortunately the SN2 trace and the Google trace (althougloritains detailed
information on the time spent on 1/0) do have no informatiortie total amount
read from and written to the file-system. In these graphs wdlss the 1/0 usage
of the SN1 and the Yahoo! M-Cluster workloads do not diffgngficantly.
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Number of Tasks

We compare the number of tasks per job in Figure 4.26. Unfately there is no
information on the number of tasks available in the SN1 tracéhe SN2 workload
we find that 52% of the jobs have no tasks, and 18% have onlk&,tss accounts
already for 70% of all tasks. We assume that these numbecaased by the failing
jobs visible in Figure 4.7a, and by the fact that task infdiorais missing for the
last three days of the trace (resulting in 0 tasks per jold)tHree missing days in a

ten day workload are not likely to contribute to 52% of allgob
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Figure 4.22: Job wait times.
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Figure 4.23: Job run times.
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Figure 4.24: Task run times.
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Figure 4.26: Number of tasks per job.
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Min | 1%-tile | 10%-tile | 25%-tile | Mean | Median | 75%-tile | 90%-tile | 99%:-tile Max Std CoV

Job Wait Time (seconds) 0.000| 0.000 0.000 0.000 | 0.457 | 0.000 1.00 1.00 2.00 601 262 | 574

Job Inter-arrival Time (seconds) | 0.000| 0.000 1.00 3.00 14.0 7.00 15.0 32.0 105 250181| 239 | 17.1

Job Executable ID 0.000| 0.000 0.000 0.000 | 0.635| 0.000 1.00 2.00 4.00 4.00 | 1.10 | 1.73

Job Run Time (seconds) 0.000| 2.00 5.00 10.0 165 35.0 107 345 2179 92671 | 654 | 3.97
Job Forced-quit Time (seconds) | -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000| -0.000

Task Inter-arrival Time (seconds)

Task Run Time (seconds)

Task CPUs

Task Disk 10 Ratio

Task Memory
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Min | 1%-tile | 10%-tile | 25%-tile | Mean | Median | 75%-tile | 90%-tile | 99%-tile | Max Std CoV
Job Queue ID -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000] -0.000
Job Partition ID -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000| -0.000

Job Run Time (seconds) 0.000( 4.00 13.0 29.0 434 86.0 274 750 4813 | 344461| 3154 | 7.27

Job Fail fraction (fraction of total tasks) | 0.000| 0.000 0.000 0.000 | 0.013| 0.000 0.000 0.005 0.333 1.00 |0.078| 5.87

Job Reduce ratio (fraction of total tasks) | 0.000| 0.000 0.000 0.000 | 0.108 | 0.000 0.111 0.500 0.969 1.00 |0.208| 1.92
Job User ID -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000] -0.000
Job Wait Time (seconds) -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000] -0.000

Job Inter-arrival Time (seconds) 0.000( 0.000 1.00 2.00 14.2 8.00 19.0 34.0 83.0 8034 | 37.4 | 2.64
Job Forced-quit Time (seconds) -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000| -0.000
Job Executable ID -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000| -0.000
Job Group ID -1.00 | -1.00 -1.00 -1.00 -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 | 0.000| -0.000

Job Total number of tasks (count) 154 258 982

0.000

0.000

0.000

1.00

3620

28687

Task Inter-arrival Time (seconds)

Task Run Time (seconds)

Task CPUs

Task Disk 10 Ratio

Task Memory
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Min | 1%-tile | 10%-tile | 25%-tile | Mean | Median | 75%-tile | 90%-tile | 99%-tile Max Std CoV
Job Queue ID 0.000| 0.000 0.000 0.000 | 0.918| 1.00 2.00 2.00 2.00 3.00 0.832 | 0.907

Job Run Time (seconds) 0.000| 16.0 26.0 62.0 2856 176 440 1650 29767 | 2219070| 35709 | 12.5

Job Fail fraction (fraction of total tasks) | 0.000| 0.000 0.000 0.000 | 0.242 | 0.000 0.000 1.00 1.00 1.00 0.428 | 1.77

Job Reduce ratio (fraction of total tasks) [ 0.000| 0.000 0.000 0.000 | 0.000 | 0.000 0.000 0.000 0.000 0.000 | 0.000 -

Job User ID 0.000| 32.0 105 141 285 238 469 584 730 932 193 | 0.675

Job Wait Time (seconds) 0.000| 0.000 1.00 1.00 8.18 2.00 3.00 4.00 33.0 253976 | 567 | 69.3

Job Inter-arrival Time (seconds) 0.000| 0.000 0.000 0.000 3.76 1.00 4.00 13.0 31.0 764 6.92 | 1.84
Job Forced-quit Time (seconds) -1.00 | -1.00 -1.00 -1.00 2353 | -1.00 198 756 19351 | 2179584 34819 | 14.8
Job Executable ID 34.0 | 3438 3602 3761 | 10252| 5004 11890 28670 37943 39729 | 9616 | 0.938

Job Total number of tasks (count) 1.00 1.00 1.00 1.00 67.3 1.00 2.00 31.0 1004 | 5442378 8486 | 126
Task Inter-arrival Time (seconds) 0.000| 0.000 0.000 0.000 26.8 | 0.000 0.000 0.000 35.0 1966315 2436 | 90.8
Task Run Time (seconds) 0.000| 22.0 48.0 96.0 2815 400 1828 3656 38796 | 2179528| 21252 | 7.55
Task CPUs 1.00 2.00 2.00 2.00 2.14 2.00 2.00 2.00 4.00 4.00 0.523 | 0.245

Task Disk 10 Ratio

Task Memory
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Min 1%-tile | 10%-tile | 25%-tile | Mean | Median | 75%-tile | 90%-tile | 99%-tile Max Std CoV

Job Run Time (seconds) 0.000 8.00 21.0 31.0 513 80.0 294 1344 5534 58050 1503 2.93

Job Fail fraction (fraction of total tasks) | 0.000 | 0.000 0.000 0.000 0.010 0.000 0.000 0.000 0.000 1.00 0.099 9.98
Job Reduce ratio (fraction of total tasks) | 0.000 | 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 1.00 0.040 24.9
Job Wait Time (seconds) 0.000 | 0.000 0.000 0.000 6.53 0.000 1.00 10.0 124 1012 26.3 4.03

Job Inter-arrival Time (seconds) 0.000 | 0.000 1.00 2.00 55.3 8.00 36.0 93.0 397 189881| 1410 255
Job TaskRunTimes 0.000 1.00 3.00 8.00 305 33.0 90.0 214 2577 1le+09 | 237518 | 779

Job Forced-quit Time (seconds) -1.00 | -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.000 | -0.000
Job Disk parameter a -9e+09| -1e+09 | -4e+07 5703 2e+08 | 5212436| 1e+08 3e+08 2e+09 le+12 | 6e+09 26.9
Job Disk parameter b -1e+08| -2e+07 | -4607026| -807801 | 199881| -4612 | 153050 | 4656541| 3e+07 | 5e+07 | 7036996 35.2

Job Executable ID 0.000 | 0.000 0.000 0.000 755 0.000 1487 2226 3150 3329 986 1.31

Job Total number of tasks (count) 1.00 1.00 4.00 12.0 980 177 628 1440 12537 | 162917| 3855 3.93
Task Inter-arrival Time (seconds) 0.000 | 0.000 0.000 0.000 0.220 0.000 0.000 1.00 2.00 34901 14.7 67.1
Task Run Time (seconds) 0.000 1.00 3.00 8.00 305 33.0 90.0 214 2577 1le+09 | 237518 | 779

Task CPUs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.000 | 0.000

Task Disk 10 Ratio 0.000 | 0.000 0.000 0.000 | 21580 1.00 2.22 27.4 10054 | 9e+08 | 1474602| 68.3

Task Memory - - - - - - - - - - - -




Chapter 5

MapReduce Workload Modeling

In this chapter we propose a model for MapReduce workloadsagirocedure to
generate synthetic yet realistic MapReduce workloadss pravides respectively
answers to questions Q2: “How can we model MapReduce waikifaand Q3:
“How can we generate realistic synthetic MapReduce woddga

First, we discuss why we model workloads in Section 5.1 amcbdiuce the
statistical tools we use in Section 5.2. Second, we propddaEReduce model
in Section 5.3. Third, we propose a procedure to generatiheym MapReduce
workloads in Section 5.4. Finally, we conclude in Sectidh 5.

5.1 Why Model?

A real trace of a MapReduce workload is the most realistickiead which can

be used for performance evaluation or other purposes, sigiit fact, real. Still, it

can be advantageous to model workloads while we have trdageslovorkloads

available. From the model of a workload, we can generatehsyiotworkloads

which we can use to drive simulations. Advantages of usintklwads generated
from a model, instead of using real workload traces, include

Flexibility Generating synthetic workloads from a model gives thetgtidichange
model parameter values.

« Changing model parameter values can be used to fit the vemtkio
cluster configurations that are different — in particularger — for ex-
ample, from the configuration of the cluster from which tlae&s were
collected.

» Changing model parameter values can be used to fit the vautkio
different levels of cluster load.

Insight The model parameters reveal information about the origuoakload, and
can help to get a better understanding of the workload. Famelke, it is
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possible to calculate the average run time from the digidbuand its pa-
rameters.

Size The size of a file containing model parameter values is vegllstompared
to a normal workload trace.

Privacy Workload trace owners might have less objections to digirilg model
parameter values than to the distribution of a real worklpace.

Feitelson [32], Section 1.3.2, gives a more thorough exgtian about why the use
of workload models, instead of workload traces, can be bernkfi

The MapReduce workload models we propose are statisticdélmcanother ap-
proach would be modeling using neural networks. Modelinggiseural networks
is undesirable for a number of reasons. First, the paramefesuch models do
provide little usable information about the workload. Satat is difficult to sam-
ple from a neural network. Third, the training of a neuralwak is complex, may
require large amounts of data, and may not converge origebil

5.2 Statistical Modeling

We use a number of statistical tools for modeling MapRedumdhads. In the fol-
lowing subsections we give short introductions to theséstdoistributions, Good-
ness of Fit, Distribution Selection, and Correlation.

5.2.1 Distributions

We would like to capture the nature of workload propertiesgistatistical prob-
abilities. For example, we could calculate the probabifday a task to be a re-
duce task. For properties with continuous value ranged) asa¢he task run time,
we could create a histogram and calculate the probabilitye&zh of its bins. In
this histogram-scenario we can adapt the granularity bygihg the bin-widths;
smaller bins lead to a higher granularity, at the cost of nmooelel-parameters (the
per-bin probabilities) and at the risk of over-fitting (fiij the empirical data so
precisely that it does not generalize).

We would like the number of parameters to be small, so instéadking the
above histogram approach, we use well-known probabilibsite functions (PDFs)
with a small number of parameters; a PDF is similar to a histmgwith infinitely
small bins. For the empirical data it is easier to determineeintegral of the PDF,
that is, the cumulative distribution function (CDF). The Efdr empirical data can
be calculated by determining, for each distinct sampleeyahe probability that a
sample has a lower or equal value.

In our modeling process we use the Normal Distribution, thg-Normal Dis-
tribution, the Weibull Distribution, the Generalized Rar®istribution, and the
Exponential Distribution. We have chosen these distrim#ibecause they have a
small number of parameters, are available by default in &hatsciPy, and many
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other statistical tools, and because they have been provea tseful in practice
for modeling computer science systems and workloads [19.h&ve chosen not
to use Hyper-distributions, because of the larger numbpacimeters and the risk
of over-fitting.

We can use maximume-likelihood estimation to fit the paransetéa distribution
to empirical data. In this work we have used the maximumiilik®d estimation
functions that are built into SciPy. In Table 5.1 we preshatdhosen distributions.

| Function | Notation | Parameters \
Normal N(p,0?) | plocation,s? squared scale
Log-Normal In N (i1, 02) w log-scaleo? shape
Exponential Exp(\) A rate
Weibull Wei (A, k) ) scalek shape
Generalized Pareto| Par(u,0,&) | p location,o scale& shape
Gamma Gam(k, 6) k shapep scale

Table 5.1: Distribution functions we use for statistical modeling.

5.2.2 Direct and Indirect Modeling

We use two modeling approaches, a direct-modeling appraadhan indirect-
modeling approach. In the direct-modeling approach, agitggthe variable of
interest) is modeled by a single probability distributiordats parameters are con-
stants set through the MLE fitting process. In the case ofidegdct-modeling
approach, a property is modeled by a single probabilityridigion, and each of its
parameters are also modeleddmscond-levedlistributions.

For example, we model all properties directly in Sectionk.8nd we model the
task-specific properties indirectly in Section 5.3.2.

The indirect-modeling approach gives the promise of a béttevith real data,
albeit at the cost of additional parameters and the prababil over-fitting.

5.2.3 Goodness of Fit

Although we may have found maximume-likelihood estimatese(Section 5.2.1)
for the parameters of a distribution, the distribution mal Ise unfit to represent
the empirical data. Therefore, we use goodness of fit testgaot those distribu-
tions that are not likely to fit the data.

A goodness of fit tests returngavalue, thisp-value is the probability that, under
the assumption that the empirical data is sampled from aglistribution, we find
samples at least as unfitting as the empirical data. We appbral goodness of fit
tests, and we reject a distribution when ghealue returned byny of the selected
goodness of fit tests is lower than the significance levef 0.05.

We have selected two different goodness of fit tests: the Kgbmov-Smirnov
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test and the Anderson-Darling test. These two goodnesstesti have been cho-
sen because they focus on the center and the tail of thebditstm, respectively.

Kolmogorov-Smirnov The Kolmogorov-Smirnov (KS) uses the D-statistic (see
Section 5.2.4) as the basis for the test. Large values foDtkttistic are
likely to occur at the “center” of a distribution, therefdssthe KS test more
focused at the “center” of a distribution.

Anderson-Darling The Anderson-Darling (AD) test is, because of a weight func-
tion, more focused at the “tail” of a distribution.

As the Kolmogorov-Smirnov test works better for small sagrgizes, we run these
tests each 1000 times with 30 samples each time. We retyrvalsie the average
of all thep-values obtained by these 1000 tests.

5.2.4 Selection of the Best Fit

The goodness of fit tests do not provide a way to select thefitiewj distribution,
they only reject those distributions that do not fit well. éftve have tested the
goodness of the fit of the distributions, we might have nanfittlistribution left; on
the other hand, we might have multiple fitting distributipfiem which we need to
select one.

We use two different ways of selecting the best fit. If we havdtiple fitting
distributions for a single set of directly-modeled data, wge their computed D-
Statistic to select the best fitting distribution. If we at to fit multiple sets of
data by meta-distributions as in the indirect-modelingrapph (see Section 5.2.2),
we use the number of fits to select a fitting distribution.

D-Statistic To decide which of the fitting distributions to use, we congptre
D-Statistics and select the distribution with tlssvestD-Statistic. The D-
Statistic value is defined d3 = sup|F,,(z) — Fy(z)|, whereF,, and Fy, are

respectively the empirical cumulative distribution fupatand the cumula-
tive distribution function of the tested distribution. Swe select the distri-
bution which has the lowest maximum-difference betweerdtbibution’s
CDF and the empirical CDF.

Number of Fits We use the number of fits when we want to fit a meta-distribution
— a set of distributions that model each of the parametersathar distri-
bution. In this case the data is partitioned into sets whmespond to a
process in theeal system, e.g., for each job a set of tasks. For each set of
data we calculate the maximum-likelihood estimates of theumeters for
each distribution. Then, we use the goodness of fit testgeotrénose distri-
butions that do not fit well, and we use the D-Statistic todlee best of the
remaining distributions. Finally, we count for each dimfition the number
of items in the set for which it was selected as the best fitfiaggibution. We
select the distribution that matched the most items. Fortiéidies example
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see Table 5.2. In this example we show a three-job workldedjobs consist
of 1, 128, and 128 tasks. For the task run time we see that theNloomal
distribution has the best fit for a total of 129 tasks and thatWeibull dis-
tribution has the best fit for 128 tasks; therefore we seleetliog-Normal
distribution to model the task run time.

We have chosen to select based on the number of matched itehmotion
the number of matched sets, to reduce the influence of snallasewe have
observed that small sets tend to fit more often than larger set

Best-Fitting Distribution
[ Job | Task Count | Task Run Time [ Task CPU [ Task Memory

1 1 Log-Normal Weibull Exponential
2 128 Weibull Exponential Weibull
3 128 Log-Normal Weibull Weibull

| Overall Best Fit | Log-Normal (129)] Weibull (129)] Weibull (256) |

Table 5.2: Fictitious three-job example finding the best distribufionction.

5.2.5 Correlation

Some properties could influence each other; if this influes@®nsistent, we call
this a correlation. For example, if a task that needs to rdadya amount of data
has a run time proportional to the amount of data, theresaisbrrelation between
the disk usage and run time values. We would like to be ablet®ot correlations
between various properties, so that these can be exploitad imodel. The Matlab
cor r ! function can be used to detect correlation between two piiegeit takes
two sets of property values as input and returns a singlesledion value in the
range O (no correlation) to 1 (strong correlation). We cetigerties modeled by a
probability distribution functiorprimary properties, and properties modeled by a
correlationsecondaryor derivedproperties.

5.3 Our Statistical MapReduce Workload Models

We have explored four statistical models, shown in Figuteafid Table 5.3. The
models are in this table ordered in decreasing level of cerityl In the first two of
these models we model the task-specific properties intdirédte intuition behind
this process is that the tasks of a single job might have airb&havior, but that the
tasks of different jobs might have very different behavior.

The reason why we have explored multiple models is that wddnie to build
a comprehensive workload modeling framework and to exphtternatives in the
large space of statistical models.

*htt p: // www. mat hwor ks. nl / hel p/ t ool box/ stats/ corr. htm
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| Workload Model |

Simple Model | | Complex Model |

Complex Model |

Relaxed Complex Model |

NN

Safe Complex Model |

Figure 5.1: Taxonomy of our MapReduce workload models.

Properties Map/Reduce | Significance | Indirect Distr.
Model | Sect.| Job-specific| Task-specific| Secondary| Distinction Level Selection
Complex Model 5.3.2 Direct Indirect Disk I/0 Yes 0.05 Best Fit
Relaxed Complex Model| 5.3.3 Direct Indirect Disk I/0 Yes 0.02 All Fits
Safe Complex Model | 5.3.4 Direct Direct Disk I/O Yes 0.05 -
Simple Model 5.3.1 Direct Direct - No 0.05 -

Table 5.3: Overview of the Models

5.3.1 The Simple Model

We define a MapReduce workload as a collection of jobs, witkeéeh individual
job a collection of tasks. We propose a simple model. The lsiimwdel uses only
four distributions, which can be hand-picked based on thelt®in Section 5.3.5.

This model is oversimplified, it makes for example no didimt between map
and reduce tasks. On the other hand has it very few paramttersfore it will not
easily be over-fitted.

Inter-arrival time Captures the inter-arrival times of both jobs and tasks.s Thi
model does not make a distinction between the inter-artiveds of jobs and
tasks.

Number of tasks Captures the number of tasks of a job.

Map/Reduce ratio Captures the ratio between the number of map and reduce
tasks of a job.

Task run time Captures the task run times. This model does not make adistin
tion between the run-times of map and reduce tasks.

5.3.2 The Complex Model

We define a MapReduce workload as a collection of jobs, witkeéeh individual
job a collection of tasks. As explained in Section 1.1, a Meghlte job is written
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in the form of a map function and a reduce function. When su@ibauns, a
partition function divides input data from a distributedefdystem, and a number
of map tasks is started with each a part of the divided datamg.i A number of
reduce tasks is started, and a shuffle function assigns thataf the map tasks to
these reduce tasks. The output of the reduce tasks is wiittre distributed file
system, and the job finishes.

We model for the map and reduce phases the properties listEabie 5.4. We
do not model the DFS usage and the partition and shuffle ph&gemit these
to reduce the number of model parameters — as this informa&ialso captured
by the task’s disk and network usage — and also because sothe okcessary
information is not yet available in the CWA data format (segp@ndix B). As
possible directions for future work, the CWA data format ahd model could
support the DFS, partition and shuffle phases, and othertypsk — for example,
setup and cleanup.

All job properties are modeled directly. The task-specifiaperties are modeled
indirectly, i.e., we use second-level models to model thelehparameters (see
Section 5.2.2). Since the map and reduce tasks generalgvéetery differently
from each other, as shown in Chapter 4, we perform modelditgeparately for the
map tasks and the reduce tasks.

The main two features of the Complex Model over the Simple dade:

1. Modeling of map tasks and reduce tasks separately.

In Chapter 4 we have observed that map and reduce tasks bedrgndiffer-
ently from each other. By modeling the two task types sepbrate capture
the differences.

2. Indirect-modeling of task properties.

We assume that tasks (of the same type) within the same javbehore or
less similar, while tasks of different jobs might behaveyweifferently. By
using the indirect-modeling approach, we capture this Wiehalf we use a
direct-modeling approach for task properties, we get umifealues over the
tasks of all the jobs, which might significantly impact theuks.

Directly Modeled Properties

For the jobs we have two kinds of properties, propertiesdtadirectly used for the
job characteristics themselves, and properties that & as distribution parame-
ters to sample the characteristics of the tasks of the jobtHeodirectly-modeled

properties we perform three steps:

1. We determine the maximume-likelihood estimates for theupeeters of each
distribution, based on (real) data in a workload trace (e&.2.1).

2. We calculate the goodness of fit of these distributionspayed to the work-
load (Section 5.2.3).
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Property | Type [ Job | Task | Value

Inter-arrival time D + + Seconds
Executable ID D + + Integer ID
Run time I + + Seconds
Number of tasks D + — Count
Map/Reduce ratio | D + — Fraction: Maps/Reducefs
Forced-quit time D + - Seconds
CPU’s I + + Count
Disk 10 C + + Bytes
1/0 ratio I + + Fraction: Input/Output
Memory I + + Bytes
Job exit state D + — Integer Coded State
Task exit state I — + Integer Coded State

Table 5.4: Propertiesincluded in our model. The symbols “D”, “I”, an@d™,
indicate respectively “directly modeled”, “indirectly mdeled”, and “mod-
eled based on correlation”. The symbols™ “ +”, and “—" indicate respec-
tively “modeled”, “implicit”, and “not applicable”.

3. We choose which of the distributions we will use to modelghoperty (Sec-
tion 5.2.4).

Using the steps above, we model directly the following proes:

Inter-arrival time The inter-arrival time is defined as the time elapsed between
two job arrivals in the system. This metric can be used to gegagob arrival
times for synthetic workloads. From a trace, we calculageitier-arrival
times as the difference between the submit times of subséjples.

Executable identifier Shows which executable is running as the job. Although we
do not really use this property in this work, we include it&ese we expect it
to be correlated to the other properties and this should pliged in future
work.

Runtime The time that a job runs, i.e., the wall clock time elapsedsesitine job
was started until the job finishes. The job run time is infleshby the run
times of the individual tasks and how the individual taskesszheduled.

Number of tasks The sum of the number of map tasks and the number of reduce
tasks for the job.

Map/reduce ratio The ratio between map and reduce tasks. Together with the
total number of tasks, this ratio can be used to determinauh&er of map
and reduce tasks.

Forced-quit time The number of seconds elapsed since the job submission until
the job is forced-quitted. A job might for example be forapdtted by the
user, by an administrator, and by maintenance scripts. inmmgdel we do
not cover the scenarios where individual tasks are preempte
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Job exit state The exit state of the job, shows whether the job finished ss:ce
fully, failed, or was forced-quitted.

Indirectly-Modeled Properties

For different jobs, the properties of the tasks of a job mighow different distri-
butions. We would like to capture this behavior in our modé#git at the cost of a
larger number of parameters. For the tasks of each job, wadit &ask-properties
to a probability distribution, and then we fit the parametershese distributions
by a meta-distribution. Since the parameters of a disiohufunction are gener-
ally not compatible with those of other distribution furmets, we have to settle on
a single probability distributions function per task-peoly.

For the indirectly-modeled properties, we first perform Hzme three steps
used for the directly modeled properties, i.e., for eachvy@bdetermine for each
indirectly-modeled property the best fitting distributiand its parameters. We
model task properties for map and reduce tasks separatayt, We determine
the all-over best fitting distribution function and we modslparameters. For the
indirectly-modeled properties we perform three steps:

1. For each job in a (real) workload trace, we perform sameetsteps used for
the directly modeled properties on the map and the redu&s tdshe job,
separately:

(a) For each property, we determine the maximum-likelihestimates for
the parameters of each distribution (see Section 5.2.1).

(b) We calculate the goodness of fit of these distributiomapared to the
workload (see Section 5.2.3).

(c) We choose which of the distributions we will use to motel property
(see Section 5.2.4).

2. For each task-property:

(&) We select the distribution that fits the largest numbetasks. Table
D.13 summarizes the actual counting results for the taskimues.

(b) We model each parameter of the selected distributioh witmeta-
model, i.e., we apply again the same three steps on the pinanad
ues: determining the maximume-likelihood estimates, datg the
goodness of fit, and selecting the best distribution. Ingtep, we only
use the parameter values of fits that passed the goodnessestdit

Using the steps above, we model indirectly the followingpemies:

Task CPU The CPU demand of a task. Hadoop does not measure the CPU usage
Although it depends on the cluster configuration, it is reasde to assume
that there will be one CPU available per task. The real CPlgaisan be
measured by instrumenting the worker nodes.
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Task disk I/O ratio The ratio between the amount of data read from and written
to the disk by a task.

Task memory The memory demand of a task.
Task network The sum of the network send and received traffic of a task.

Task run time The time that a task runs, i.e., the wall clock time elapsedesthe
task was started until it finishes.

Task exit state The exit state of the task, shows whether the task finisherksse
fully, or failed.

Correlated Properties

We have observed that the total amount of task disk 10 is glyarorrelated with
the task run time (See Table 5.6). We assume that the total@mbdisk 10/ can

be calculated from task run timeusingh = ar + (3. For each job in a trace, we
estimaten and 3 based on the values éfandr using NumPy'spol yfi t 2 func-
tion. Finally, we model botlax and 5 using the directly model approach explained
earlier in this section.

5.3.3 The Relaxed Complex Model

The complex modeling approach, described in Section 5n3a¥,be too restrictive
to find good fits for the studied real workloads. Therefore weehexplored in this
section a less restrictive model, the Relaxed Complex Mdd#s model is derived
from the Complex Model, with the selection criteria relaxed

1. For the indirect modeling part, we have lowered the sigaifce level from
0.05 to 0.02, resulting in the acceptance of less-well ittistributions.

2. We have adapted the process for the selection of theldigon in the indi-
rect modeling process. In the complex model we select alulisitvn based
on the number of tasks that each distribution figst that is for each job its
number of tasks is counted for (if any) the distribution that the lowest
D-statistic of all distributions that pass the goodnesstdgsts. In this re-
laxed model, we select based on the number of tasks that éstdhudion
fitswell, that is for each job its number of tasks is counted for atritistions
that pass the goodness of fit tests.

5.3.4 The Safe Complex Model

As an alternative to the Complex Model and the Relaxed Coxridiedel we have
explored in this section the Safe Complex Model. This modi#l models the

2htt p://docs. sci py. or g/ doc/ nunpy/ r ef er ence/ gener at ed/ nunpy. pol yfit. htm

62


http://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

same properties as the Complex Model, we still make thendisbin between map
and reduce tasks, we still exploit the correlation betwegntime and the amount
of disk I/O, but we do no longer attempt to use indirect mouglfor the task
properties.

For each task property we use direct modeling to fit the vadtidse property for
all the map tasks, and separately for all the values of thpeguty for all the reduce
tasks.

5.3.5 Modeling Results

We have used the modeling tool in the toolbox to fit the distidns described
in Section 5.2.1 to model the properties in the SN1, SN2, ¥ghand Google
workload traces. We encounter a number of problems. FhetSN1 workload
trace does not contain any task-specific information. Setcoot all properties are
present in all the workload traces. We summarize the quefitye fits in Table
5.5. Task CPU and memory demands do not fit at all , since thedreontain for
these properties only a single or very few distinct values.

| Model | Inter-arrival Time | Run Time | I/0 Ratio |
Complex Model bad fit good fit bad fit
Relaxed Complex Model bad fit good fit bad fit
Safe Complex Model bad fit good fit | very bad fit
Simple Model n/a good fit n/a

Table 5.5: Quality of the fits.

Correlations

In Table 5.6 we show for both the SN1 and the Yahoo workloacksdhe correla-
tions between the available job properties. Based on theredéd high correlation
value for the total wall clock time and the disk usage, we hdseided to model
the task runtime from the amount of disk usage of the task.

If we look at the correlation values for the Yahoo! workloadTiable 5.6b, we
see that the fail and cancel factions highly correlate wattheother. This is caused
by the fact that the cancel fraction is O for all jobs, and #ikffaction is O for all
but one jobs.

Directly-Modeled Properties

We show the results of the directly-modeling attempts indab.1 through D.10.
We note some strange things, for example, we would have eghde inter-arrival
times (see Figure 5.2 and Table D.1) to be modeled using amexyial distribu-
tion, as this distribution is suitable for modeling a Poisgwocess such as inter-
arrival times. However, in these specific modeled worklagadds, it seems that
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the Weibull distribution is the best at modeling the intemval times. And surpris-

ingly, the executable identifiers are modeled fairly wel fllee Google trace (see
Figure 5.4 and Table D.6), likely this is caused by the langeiper of sequentially
numbered distinct executable identifiers — making it a cmtus distribution.

The wait times are not modeled well by any distribution foy afithe modeled
workloads, as can be seen in Table D.2. This is most probahlged by the fact
that the wait times are very short, but have some large ositliehe job run times
are fitted well for all the workload traces, see Table D.3 aigtife 5.3.

Indirectly-Modeled Properties

The indirectly-modeled properties are used in the familgahplex models. The
Complex Model, the Relaxed Complex Model, but not in the &admplex model.

The Complex Model In Tables D.12 through D.15, we show per distribution the
percentage of the tasks that it fitted best, these tablesat:ta select a distribution
for the model. The task run time is the only property that imgditted well, the
other properties are fitted very poorly. Unfortunately, pheperties “disk 1/O ratio”
and “memory” were not fitted at all. This is likely caused bg thnges of the values
for these properties, e.g., the amount of memory for a taskdrGoogle trace is
the total amount of memory of the node it runs on — resultingrity a few distinct
values.

In Tables D.16 through D.19 we show the fitting results of taeameters for
the selected distributions. Unfortunately, distributfomction parameters are not
fitted well. Goodness of fit values of more than the confidepgell0.05 are the
exceptions, because of this we adapt our selection polisglert primary based on
the D-statistic, except when a goodness of fit value of O.0%girer is available.

The Relaxed Complex Model For the Relaxed Complex Model, we have almost
the same results as for the Complex Model. The percentagaslofits are shown
in Tables D.20 through D.24, and the actual indirect-madefits are shown in
Tables D.25 through D.28.

The fits for the task run times in the Relaxed Complex Modalsslghtly better
fits than those of the Complex Model, when we compare Tabl&g Bnd D.26.

The Safe Complex Model The fits for the Safe Complex Model are shown in
Tables D.29 through D.32. We expected much better fits forStile Complex
Model, hence the name, but here also the task run time is thgumperty that was
fitted good.
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Figure 5.2: Job inter-arrival time fits (SN2 workload).
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Tasks ? ? ?20 7 21?2 ? ?] 7
Reduce Fraction ? ? ?20 7 20?2?22 ?|?
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(a) SN1 trace.
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WaitTime ?
RunTime ? 7
CPUs 21?2 ?
TotalWallClockTime| -0.00| ?| ?| ?
Memory 20?0 ?? ?
Network 21?1 ?? ?2| ?
Disk | 0.01| ?| ?| ?| 052| 2| ?
Status| -0.05| ?| ?| ?|-0.02| ?| ?| -0.04
Tasks| 0.01| ?| ?| ?| 0.28| ?| ?| 0.63|-0.02
Reduce Fraction -0.02| ?| ?| ?|-0.01| ?| ?|-0.09| 0.25| -0.21
Fail Fraction| 0.00| ?| ?| ?| 0.05| ?| ?| 0.02|-0.32| -0.01| -0.10
Cancel Fraction 0.00| ?| ?| ?| 0.05| ?| ?| 0.02|-0.32| -0.01| -0.10| 1.00
Run Time Parameter 1 21?0 ?| ? ?21 ?? ? ? ? ? ?0?
Run Time Parameter 2 21?7 ?? 21 ?? ? ? ? ? 0?20 ?

(b) Yahoo! trace.

Table 5.6: Correlation between all the job properties. A question nfark
indicates that a correlation value could not be calculated.
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5.4 Synthetic MapReduce Workload Generator

We present a procedure for generating synthetic MapRedoddaads using the
Simple Model in Section 5.4.1, and a procedure for genayatymthetic MapRe-
duce workloads using the family of Complex Models in SecBoh?2.

5.4.1 Procedure using the Simple Model

We propose to generate synthetic workloads, from the Siwadel, using the
procedure shown in pseudo-code in Algorithm 5.1. This place takes two kinds
of inputs: a durationy in seconds, and probability distributiod3; 4. Duration
¢ specifies the length of the period in seconds, during whibhsjgomissions are
generated. Distribution®_, are used to sample values for various job- and task-
characteristics. We show input distributions, the modeapeeters, in Table 5.7.
Unfortunately, most of the MapReduce properties could belateal for only a
single workload trace. For the model parameters we havetedlghe best fit-
ting distribution, regardless to which workload it belongsssentially we present
the model parameters for a hypothetical system which bameperties from all
studied systems. Each of the properties corresponds td systam.

The procedure generates a vecioand 2 two-dimensional vectorg andr,
which are all described in Section 5.4.2.

Parameters
| Input | What | Function [ Shape] Location| Scale Remarks |
Dy | Job Inter-Arrival Times|  Weibull 1.224 | -0.430 | 6.90 Table D.1, SN1
Dy Number of Tasks Log-Normal | 2.54 0.941 93.2 | Table D.7, Yahoo!
Ds Reduce Task Ratio Normal n/a 0.108 | 0.208| Table D.8, SN2
Dy Task Run Time Weibull 0.531| 0.000 82.0 | Table D.11, Yahoo!

Table 5.7: Distributions as input for Algorithm 5.1.

5.4.2 Procedure using the Family of Complex Models

We propose to generate synthetic workloads, from the faafilomplex Models,
using the procedure shown in pseudo-code in Algorithm 5t2s fprocedure takes
two kinds of inputs: a duration in seconds, and probability distributiods; 9.
Duration¢ specifies the length of the period in seconds, during whibtsjdomis-
sions are generated. Distributiohs 19 are used to sample values for various job-
and task-characteristics. We show input distributions,nfodel parameters, in Ta-
ble 5.8. Unfortunately, most of the MapReduce propertiaddcbe modeled for
only a single workload trace. For the model parameters we Balected the best
fitting distribution, regardless to which workload it befn Essentially we present
the model parameters for a hypothetical system which bameperties from all
studied systems. Each of the properties corresponds to systam.
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Algorithm 5.1 Algorithm for generating synthetic MapReduce workloadsfithe
simple model.
Note: In this algorithm the notatiorx (X)) means “generate a random value from
probability distributionX”.
Input:

> ¢, the duration in seconds during which to generate Jobs.

> D14, the distributions specified in Table 5.7.

Output:
> {a,y,r}, a synthetic MapReduce workload.
1: loop
2: i« (Dy) {interarrival time}
3:  if max(a) +¢ < o then
4: 8ja+1 < max(a) + i {submit time for a new Job}
5. else
6: exit loop
7: for j = 1to |a| do
8:  nj << (D3) {number of tasks}
9:  nrj < (D3) {map-/reducetasks ratio}
10 fort=1ton,do
11: y; << (nr;) {task type (map/reduce)}
12: Mt << (Dy) {task run time}

The procedure generates a set of 7 vectors and 5 two-dinmahsiectors which
are specified below, each containing information about aaderistic, such as the
job arrival time. Thej-th element of each vector stores information aboutjthie
job in the workload. For the task-specific characteristibe,t-th sub element of
the vector stores information about th¢h task of thej-th job. We discuss in the
following each output vector of this procedure in turn, ttay with the job-specific
output vectors.

Job Arrival Times (vectora) The procedure generates vectowith the arrival
times for all jobs in the workload. The contents of this veete generated
by repeatedly sampling job inter arrival times from diattibn D; and cal-
culating the arrival times from the inter arrival times. Jalbmissions are
generated for a period of lengthi.e.,max(a) — min(a) < 6.

Executable Identifier (vectorx) The procedure generates an integer executable
identifierx;, for each joly by sampling from distributiorD, and rounding to
an integer value. Althougk is not used in our model, in the future we intend
to extend the use of distributionB3;_19 such that the correlation between
them and the executable is explicitly modeled.

Tasks Count (vectorn) The procedure generates the total number of tagker
each jobj by sampling from distributiorDs.
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Map/Reduce tasks Ratio (vectornr) The procedure generates a map/reduce tasks
rationr; for each jobj by sampling from distributiorD,.

Forced Quit Time (vector q) Although MapReduce runtime systems are fault-
tolerant (they support task restarts), jobs may still itdbmplete (see Sec-
tion 5.3.2). We generate a vectgrwith a forced quit time for each job by
sampling from distributionDs. This forced quit time is the number of sec-
onds elapsed since the submission of the job and until thefos®d quits
the job. For jobs withy; < 0, the job is not forced quitted.

Two three dimensional vectors are used internally, thesmkg&contain job-specific
values used to generate task-specific characteristicsie¥dbr these two vectors
are sampled per job, for both map tasks and reduce tasks.

Job-specific Distributions (vectord;_s5) Job-specific distributions are used to gen-
erate values for the properties of all the tasks of a job: tgsk, CPU de-
mand, disk i+o, disk i/o ratio, memory demand, and the tagkstate. The
properties of the individual tasks of a job are generatenhfiize job-specific
probability distributionsd; 5. For each task property we have chosen a fixed
type of distribution (see Section 5.3.2), with its paramretampled from the
probability distributionsDg_15.

Task-specific Parameters(vectorp; _») The procedure generate task-specific pa-
rametersp; o by sampling from distribution®5_19. These task-specific
parameters are used to calculate the task disk 10 (see lime &@orithm
5.2).

The procedure generates seven two-dimensional taskfispaaiput vectors.

Task Type (vectory) The procedure generates for tasif job j a task typey; ;
by sampling from distributiomr;.

CPU Demand (vectorc) The procedure generates for taskith type y of job j
the CPUc; ; by sampling from distributionl, ; .

Runtime (vectorr) The procedure generates for taswith type y of job j the
runtimer; ; by sampling from the task-specific distributiaa ;..

Disk 1+O (vectorh) The procedure generates for taswith type y of job j the
sum of the task’s disk in- and outpli;; as function ofr;; and the two
parameterp; ;, andps ;. As can be seen in Tables 5.6a and 5.6b, there is
a strong correlation between the amount of disk I+O and siertantime. In
the proposed function for calculatirgwe exploit this correlation.

Disk I/0 Ratio (vectorhr) The procedure generates for taskith typey of job j
the disk I/O ratiohr; ; by sampling from the task-specific distributidg ; ,,.
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Memory (vectorm) The procedure generates for taswith type y of job j the
memory usagen;; by sampling from the task-specific distributidn ; .

Task Exit State (vectore) The procedure generates for taskith typey of job j
the exit statee; ; by sampling from the task-specific distributids ; .

Parameters
[ Input | What | Function | Shape] Location | Scale | Remarks | D |
D, Job Inter-Arrival Times Log-Normal | 1.22 -0.430 6.90 | TableD.1,SN1 | 0.05
Dy Executable Gamma 1.58 33.8 6460 | Table D.6, Googlel 0.26
D3 Number of Tasks Log-Normal | 2.54 0.941 93.2 Table D.7, Yahoo!| 0.13
Dy Map/Reduce Ratio Normal n/a 0.108 0.208 | Table D.8, SN2 0.35
Ds Forced-quit Time Normal n/a 2350 34800 | Table D.9, Googlel 0.45
Map Task CPU Demand Normal Table D.18, Google
Dg loc Weibull 1.00 1.72 0.380 0.29
scale Normal n/a 0.098 0.227 0.48
Map Task Run Time Normal Table D.17, Yahoo!
D7 loc Log-Normal | 1.25 -0.024 15.8 0.09
scale Weibull 0.503 0.00 6.69 0.14
Map Task I/O Ratio Gamma Table D.19, Yahoo!
D shape Log-Normal | 3.09 0.093 38.0 0.11
8 loc Gamma | 0.108 | 0.00 324 0.34
scale Weibull 0.266 0.00 0.061 0.07
Dy Map Task Memory no fits
Dy Map Task Exit State no fits
Dy, | Reduce Task CPU Demand| no fits, UseDg
Reduce Task Run Time Gamma Table D.17, Yahoo!
Diy shape Pareto 0.303 -0.828 0.863 0.12
loc Weibull 0.338 0.00 44.6 0.22
scale Pareto 0.748 | -0.718 0.718 0.06
D3 Reduce Task I/0O Ratio no fits, UseDg
Dyy Reduce Task Memory no fits
D5 Reduce Task Exit State no fits
Dig | Map Task Disk Param. « | Log-Normal | 6.10 0.00 720000 | Table D.4, Yahoo!| 0.20
D17 | Map Task Disk Param. 3 Normal n/a 200000 | 7040000| Table D.5, Yahoo!| 0.29
D1g | Reduce Task Disk Param.ao | Use D4
D19 | Reduce Task Disk Param.3 | UseDq;

Table 5.8: Distributions as input for Algorithm 5.2.

5.5 Concluding Remarks

In this chapter we have shown the advantages models andesignitorkloads.

We have proposed models for MapReduce workloads, as welfa®gures to
generate realistic MapReduce workloads based on theselsnddafortunately,

the proposed indirect modeling approach does not work Wl find that not only

is it difficult to find a distribution that fits a task propertyeW for a significant

amount of the total tasks, it also turns out to be difficult talie parameters of
such a distribution using meta-distributions.
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Algorithm 5.2 Algorithm for generating synthetic MapReduce workloads.
Note: In this algorithm the notatiorx (X') means “generate a random value from
probability distributionX™.
Input:
> ¢, the duration in seconds during which to generate Jobs.
> D119, the distributions specified in Table 5.8.
Output:
>{a,Xx,q,y,c h hr,m r, e}, asynthetic MapReduce workload.
1: loop

2: i« (Dy) {interarrival time}
3 if max(a) +¢ < ¢ then
4: ja+1 < max(a) + i {submit time for a new Job}
5. else
6: exit loop
7: for j = 1to |a| do
8: X, < (Dy) {executable id}
9:  n; << (Ds3) {number of tasks}
10:  nr; << (Dyg) {map-/reducetasks ratio}
11: g, < (Ds) {forced-quit time}
12:  di_5map < (Ds—10) {task probability distributions}
13:  di_5jRrep <> (D11-15) {task probability distributions}
14 Py_gjmap <> (Dis-17) {task probability distributions}
15:  Py_gjrep <> (D1s-19) {task probability distributions}
16: fort=1ton,do
17: y; << (nr;) {task type (map/reduce)}
18: Cj.t < (dLj,y],’t) {CPU}
19: Fj¢ << (dajy, ) {run time}
20: hjt—rjex Pijy,. T P2y, {disk io}
21 hr ¢ << (d3,jy, ) {disk i/o ratio}
22: mj¢ <> (da,zy, ) {memory}
23: et < (ds ;. ) {exit state (succes/fail)}
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Chapter 6

Building Better Systems

The key element in building better systems is being able &uete how well they
perform. Therefore, one of the main goals of our work is tdwat® and compare
existing, enhanced, and new MapReduce systems. In thigechap present a
method to evaluate systems using synthetic workloads andlaiions. We also
perform an experiment to validate our MapReduce systenssisgmnt approach.
With the work presented in this chapter we fulfill technichjextive T4 and provide
an answer to research question Q4: “Which MapReduce satregeiforms best
in scheduling a certain workload?”

In Section 6.1 we survey the available MapReduce simulatogdsselect one of
them. In Section 6.2 we present our experimental setup. ¢tidde6.3 we present
the results of our experiment. We conclude in Section 6.4.

6.1 Assessing MapReduce Systems in Simulation

We have chosen to simulate the execution of the workloads&adsof actually
executing them on a real MapReduce cluster. Executing th&leams on a real
MapReduce cluster is undesirable for a number of reasonsd&fy four such
reasons. First, running tests on a production cluster wiérfere with production
workloads, so testing would require one or more separatechesters. Second,
using a simulator, cluster configurations of arbitrary siae be evaluated. Third,
simulations might run faster than real time, and many sitiarla can run in paral-
lel, thus potentially saving huge amounts of time. Finapecific simulators might
also allow you to investigate circumstances which are difffito reproduce in a real
cluster, like for example hardware failures.

Using a simulator also has its flaws; none of the existing kiots captures all
aspects of a real MapReduce environment. However, we ledliey the advantages
of using a simulator outweigh the drawbacks.
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6.1.1 Overview of MapReduce Simulators

We have chosen to use an already existing MapReduce simul&®present the
list of simulators we have considered in Table 6.1. Eached¢lMapReduce simu-
lators was developed with a specific use in mind, which leattsa distinct features
shown in the table.

| Simulator | Open [ Last Release| Build On [ Language|  Scheduler | Distinct Feature |
MRPerf [6, 40] + 2009-7-14 ns 2.33 C++ Custom (in TCL)| Low-level Network
Cardona et al. [11] - ? GridSim Java Custom (in Java) HDFS
MrSim [12] + 2010-10-27 | GridSim Java Custom (in Java)  Low-level I/O
Mumak [13] + 2011-06-12 | Hadoop Java Hadoop (in Java) Hadoop Schedule
Table 6.1: Comparison of MapReduce simulators.
MRPerf by [6, 40] is built on an old version of the heetwork simulator, which

requires libraries that are no longer shipped with moderuxidistri-
butions, so it is difficult to get running.

Cardona et al.’s[11] simulator is not made available, so it can not be used by

MrSim

Mumak

other researchers. The simulator was developed to evalohgelulers
for the distributed file system.

was developed, according to [12], because none the othedagons
mentioned in Table 6.1 were able to deliver accurate resaltsough,
MrSim was shown to be superior in a constrained environmeat,
have decided not to use it for one main reason: MrSim has noostp
for pluggable schedulers.

is a MapReduce simulator included with Hadoop. Itis faidggto get
running, makes use of the native Hadoop schedulers, andus iand
output-compatible with Gridmix — a tool that is able to rumgetic
workloads on a real cluster.

6.1.2 Mumak, with the help of Rumen

Mumak [13] works together with Rumen [10] to simulate theax®n of MapRe-
duce jobs on a single cluster. These tools were first intreduo the public in two
separate bug reports in July 2009, and committed into th@béfa&VN in Septem-
ber 2009. They are included in the unstable Apache Hadogover 0.21 (August
2010) and 0.22.

http://isi.edu/ nsnant ns/
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Mumak

Mumak is a MapReduce simulator. It simulates the JobTraftkercomponent in
Hadoop that accepts job submissions and schedules thetiexeoti their tasks)
and all TaskTrackers (the Hadoop component that execigks ¢ta worker nodes),
and it submits jobs to the JobTracker. Mumak has three palit submit jobs to
the JobTracker:

1. The REPLAY policy replays the input workload, adheringit® submit times
in this workload.

2. The SEQUENTIAL policy does not adhere to the submit tinfbess,submits
the next job as soon as the previous job has finished.

3. The STRESS policy does not adhere to the submit times,dmgsksubmit-
ting the next jobs until a specific load level is reached.

The configuration format for Mumak is almost the same as fatdea itself; there

are just some additional properties that can be configuilexlifdr example the job
submission policy. When starting Mumak, paths to a clusipolbgy file and a

workload description file are specified as arguments. Thete@ldwopology file is an
XML-encoded tree of nodes; the current version requirethalleaves of this tree
to be at the same level. The workload file is a JSON-encodedal&kribing all the

jobs and their tasks.

Rumen

Rumen is a tool that extracts job models and the cluster egydrom Hadoop log
files, and produces a JSON-encoded workload file and an XMibaed topology
file for Mumak. Using these input files, Mumak is able to peridhe simulation.
Rumen is also used as a library by Mumak, to read the worklopauwt ifile.

At first glance Rumen seems to have an overlap with our workhapter 5.
However, when inspecting Rumens inner workings, it becoohes that Rumen
is only able to generate raplay of the original log files. This replay contains the
same jobs as the original Hadoop log files. Rumen only pradaceery limited
distribution function for run times, it calculates dise@@DF’s, which Mumak uses
to sample run times at run time (via calls to Rumen). Rumers amé look for
correlations; it does however apply a configurable conslamidown to tasks that
are not allocated to the preferred task-executing resa@peeified in the workload
description.

In our work, on the other hand, we model many properties withhability dis-
tribution functions, and we also exploit correlations bedw properties. We extract
parameters for this model from original log files, and we usermodel and the
extracted parameters, to generates realistic synthetikloaals of arbitrary size.

In the remainder of this work, we use the term Mumak, coNetyi for both
Rumen and Mumak.
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6.1.3 Mumak Selected!

We have chosen to use Mumak as simulator for our experim&htsmain reasons
for this choice are that:

¢ Mumak is bundled with Hadoop versions 0.21 and 0.22.

* Mumak uses unaltered versions of the Hadoop Schedulesd| schedulers
bundled with Hadoop can be used. Also, if a researcher desvelecheduler
for Mumak, it can be used unaltered in a real Hadoop enviroihme

¢ Mumak is, input- and output-compatible with Gridmix3 [14] tool that is
able to run synthetic workloads on a real Hadoop clusteteausof simulat-
ing the execution.

Mumak also has some disadvantages, of which the most naedale

Mumak lets all reduce tasks run until the last map task hashia. This
leads to longer task run times in the simulation, than exqueit real execu-
tion.

Mumak does not take into account the bandwidth and laterfithe HDFS,
network, and disk I/O.

Mumak does not simulate the partition and shuffle phases$setion 1.1).

Mumak is not able to simulate failures in the cluster.

6.2 Experimental Setup

We perform an experiment to validate our MapReduce systetnation approach.
In this experiment we compare Hadoop’s default FIFO scledwith the Fair
scheduler by [2]. In our experiment we run simulations foesd 2 schedulers,
for 8 different load levels, and for 4 different workload ¢ghs; each of these com-
binations is repeated 6 times, this adds up to a total of 38lations. Because
this amount of work is too demanding for a single computerhaae run our sim-
ulations on the DAS-3 and DAS-4 super-computers.

We have created an simulation toolbox that automates tlxgdd! parts of the
evaluation process when using super-computers:

» Generation of all the synthetic workloads, and the distidn of the gener-
ated workloads to the cluster sites of the super-computers.

« Generation of all simulation jobs to run on the super-coragy a job con-
sists of the following steps:

— Configure the simulator to simulate the specified MapRedlcstey
and scheduler configurations.
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— Let the simulator simulate the execution of the specified Risghce
workload.

— Create an archive containing the results of the simulation.
— Clean up all temporary files.

» A simple meta-scheduler submits the generated simulgtibs to cluster
sites of the super-computers where a slot is available. Tister sched-
uler will then execute the simulation job on one of the nodiethe super-
computer.

» Gathering of the simulation result archives from the stqgmmputers, and
the analysis of these results.

« Plotting graphs in which the results of the various simatet are shown next
to each other, for easy comparison.

Although, in this process we use Mumak as the simulator,raikers can easily
use any other simulator. There are only two components &wd o be adapted:
First, the workload definitions and cluster configuratioegdto be converted in
a format that the simulator accepts. Second, the tracesitbedipby the simulator
need to be converted into the CWA data format.

6.2.1 Simulated Workloads

In our work we do not use Rumen to generate an input workloaddilMumak, but
instead we generate this file ourselves. We then let Mumagugsehis workload
using the REPLAY submission policy.

We have chosen to generate synthetic workloads based onapR&tluce work-
load models. We want to accommodate the evaluation of sgstieat vary signif-
icantly in size, and we want to evaluate systems under vautetels of load. For
this we need workloads that impose a specified load on a sydtepecified size,
while containing jobs that are statistically the same acthe workloads. Obtain-
ing workloads that meet these constraints from traces éMaaReduce clusters
is infeasible. As discussed in Chapter 5, the best way tarolit@se workloads
is to generate synthetic workloads. We generate workloadsdon our simple
model (see Section 5.3.1) and not based on one of the compdrlm(see Sec-
tions 5.3.2-5.3.4) because the modeling and generatimgy tise complex models
is much more time consuming, we leave this for furture work.

We generate synthetic workloads for 8 load levels (1%, 300%,450%, 60%,
70%, 80%, and 90%), and 4 different durations (1, 6, 24, anth@s) based
on our procedure in Section 5.4.2. With a load level we meanatrerage task
slot occupation, which we denote as a percentage. We ctddhla load level as
A= nl(;Oa - >, ti, where\ is the load level percentagejs a vector of all task run
times, n is the number of nodes in the systemis the number of task slots per
node, and, finally§ is the duration for which we generate a workload.
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To be able to simulate the workloads on Mumak we have addecdddional
rules to the workload generator:

1. Eachjob has at least one map task, as reduce-only jobgsalaibin Mumak.

2. The run time of each task is capped at seven days. Thisrgetiee gen-
eration of extreme long running tasks (in the case we are lgagnjpom a
long tailed distribution). This is a reasonable maximum tiame, as it is a
more relaxed constraint than in some existing productiostets, wherg@bs
running longer than seven days are automatically killed.

In the workloads we generate jobs of two different applaratiypes: jobs of ap-
plication type 0 and jobs of application type 1. The jobs opleation type 1
have shorter inter-arrival times, less tasks, and shaatde tun times, than jobs of
application type 0.

The model parameters we used to generated these worklaagsavn in Table
6.2. These model parameters have been selected before aibitfeling was done,
so therefore they deviate from the parameters shown in Taflestill we have
chosen fairly good values. The most important of these petens, the (task) run
time is on average 60 seconds for application 0 and on avelrageconds for
application 1, which is in the same range as in Table 5.7 witrerall-over average
task run time is about 40 seconds, and we have chosen the sritmiton. In this
table the Map/Reduce ratio shows the ratio of the maps, wdhle Table 5.7 shows
the reduce ratio, here we also have chosen the same digtnilautd the same range
of on average about 10% reduce tasks. For the number of taskisave selected
the Weibull distribution while for the Yahoo traces, thedogrmal distribution is a
slightly better fit, as can be seen in Table D.7. The numbeasis per job are on
average 154, 67, and 980 for respectively the SN1, Googte,Yahoo workload
traces. So the average number of tasks in our chosen paramétbout 50 for
application 0 and 10 for application 1 are on the low side. ifiter-arrival time is
adapted by the workload generator to obtain the requestetiével, and the wait
time is indirectly a part of the inter-arrival time.

[ App. |

Inter-arrival Time | Wait Time | Num. Tasks | Map/Reduce Ratio | Run Time |

Weibull | 50 | 0.5 | Weibull | 2 | 0.5 | Weibull | 100 | 0.5 | Normal | 0.85| 0.05 | Weibull | 120 | 0.5

Weibull | 20| 0.5 | Weibull | 1 | 0.5 | Weibull | 20 | 0.5 | Normal | 0.9 | 0.05 | Weibull | 30 | 0.5

Table 6.2: Model parameters.

In Figure 6.1 we show the run time CDFs of the 6-hour worklogeiserated by
our workload generator based on these model parametersbd®eve that there is
no significant difference in the CDFs of the workloads getsgldor different load
levels. In Figure 6.2 we show the same CDFs, but now with thedatal axis
truncated at 200 seconds, here we observe that the mediamé&vhere between
120 x 0.5 = 60 and30 x 0.5 = 15 (the expected means for the run times of
the two applications based on the distribution). Based esdhwo observations
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we conclude that the generated workload is valid, that igitches the parameter
values selected for this experiment.
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Figure 6.1: Task run time CDFs for various load levels of the generated si
hour long workloads.
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Figure 6.2: Task run time CDFs, capped at 200 seconds, for various load
levels of the generated six hour long workloads.

6.2.2 Topology of the Simulated Cluster

In our experiment we used the example “19-job” topology thahcluded in the
Mumak source code. This cluster topology consists of 1548KTracker) nodes
distributed over 41 racks. We have configured Mumak to hauerftap task slots
and four reduce task slots per simulated node.

6.2.3 Configuration of the Simulated Scheduler

In this experiment we compare two MapReduce schedulerspétegidefault (FIFO)
scheduler and the Fair scheduler. We have used Hadoopididetheduler without
any modification.

The Fair scheduler work witlpools that each get allocatefdir share of the
system. In our workloads we have two types of applicationesa frequent and
heavier application 0, and a more frequent and lighter egptin 1 (see Section
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6.2.1). For the Fair scheduler we have defined, next to theuttgdool (which will
only be used by applications of type 0), an additional pookfaplications of type
1. This pool has been configured with triple the weight of th&adlt pool, and on
top of that a guaranteed capacity of 500 map slots and 10@eezlats.

6.2.4 Evaluation Metrics

After we have simulated the execution of all the workloadsibthe systems under
test, we analyze the results. When these analyses are @niskeneed a way to
decide what system performed best, so, we need an answsetyech question Q4:
“Which MapReduce scheduler performs best in schedulingtaioevorkload?”

We cannot give a generic answer to this question, as the émpsrals on the
specific needs of the user. Nonetheless, we propose twocsdtdt could be used
to find the best system. The two proposed metricg@regesponse timandcost
For both these metrics it holds that: the lower, the better.

Job response timeis the wall clock time elapsed since a job has been submitted
up until the job has finished. For production jobs the job oase time
should be low enough to make the job deadline, for interagtitss the
job response time should be as low as possible.

Cost is the number of node-hours used to execute the entire waatklén
entire node hour is counted, if during an hour a distinct nuakebeen
executing at least one task. This is like the pricing schefetazon
EC2, and can thus be used to approximate the cost of “runhiag t
workload in the cloud.”

6.3 Experimental Results

The actual simulations of the 6-hour workloads took fr@énminutes for the 1%
load level workload, up téé hours for the 90% load level workload. Now we have
performed the simulations, we make a decision on which oftweschedulers
performed best. We first show the operational profile, theshkasv the analysis of
the two evaluation metrics we selected; the job responsestand the cost.

6.3.1 Simulator Validation Through Operational Profile

We show the number of running jobs and tasks over time in otisedy Figures
6.3 and 6.4. The figures show the count of tasks and jobs thalnang 10-minute
intervals, so in the likely case that short jobs ran in sucimterval, the count can
be larger than the total number of task slots.

These figures show that the simulator actually executed trkleads, and that
the entire workloads finished in a reasonable time. Aparftbis validation of
the simulator there are already three things, concerniagetaluation of the two
systems, that we observe in these two figures.
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The first thing we observe is the large difference in the nunabeoncurrent
running jobs between the two schedulers, which increaststiag load. From this
difference we can already conclude that the Fair schedutech keeps the number
of concurrent running jobs significantly lower than Hadaogefault scheduler, will
have lower job run times than the default scheduler. Thigdihce is not visible
for the number of running tasks over time, but a large difieesis not likely to
happen, as the number of task slots is finite.

The second thing we observe is, that there is no significdfereince in the time
needed to execute the entire workload. So, on the whole, tiliation of the
cluster does not really differ between the two schedulées,only difference will
be observed in the individual jobs.

The third observation is that although we observe a dropha pind tasks after
the six hour period, for which we generated the workloadtilittakes some time
to finish all jobs. This additional tail is caused by threens. For one, jobs that
were submitted just before the end of the six hour period hcaifinish earlier than
the moment which is sum of their submit time and their longesnhing task, this
will be the main cause for the lower load levels. Also, it akeme time to “ramp
up the system”, while the desired load level is calculategr thre entire duration,
including the ramp up time, during which there are not yetugiotasks in the
system to occupy all task slots. The third cause will be thatscheduler may not
be able to use the task slots optimal, this will be the maisedar the higher load
levels.

6.3.2 Analysis of Job Response Times

We now evaluate the run times of the jobs for the two schedudwiicies under five
different load levels. For this evaluation we compare thexdative distribution
functions of the job run times for Hadoop’s default schedirg=igure 6.5a, with
those for the Fair scheduler in Figure 6.5b.

These graphs show a slow and erratic increase of the CDF fralue0.0 to 0.9
for the Hadoop’s default scheduler, while the same incréarsihe Fair scheduler
happens fast and steady. From this observation we condhadlefor the majority
of the jobs, the job response times are significantly shevtean scheduled by the
Fair scheduler. However, we also observe a difference itetingth of the curves.
For the default scheduler the curves stop before 30,000hdscavhile for the Fair
scheduler the curves continue to well over 40,000 secondss imdicates that
a relatively small number of jobs has a significantly longsy jun times, when
scheduled by the Fair scheduler.

This behavior is expected from the Fair scheduler. Lookiagkbat both the
workload generation in Section 6.2.1 and the configuratibthe Fair scheduler
in Section 6.2.3, we see that we have configured the Fair atdreid use separate
pools for the heavier and the lighter, and that we have givermpbol for the lighter
jobs triple the weight of the other pool. Although the Fainasduler lets tasks from
both pools run in parallel, this configuration lets the schedallocate a larger
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Figure 6.5: Job run time CDFs for various load levels.

share of the cluster for running the tasks of lighter jobs.efisct of this, the run
times of lighter jobs are significantly shorter, at the exggenf an increase in the
run times of the heavier jobs.

We show the CDFs for the run time of the tasks in Figure 6.6. a@erthe dif-
ferences between the curves better visible, we “zoom infiafitst 5,000 seconds
— larger values on the horizontal axis are shown in log s@die.maximum values
on the horizontal axis are about 23,500 seconds for the Hesldefault scheduler
and 41,400 seconds for the Fair scheduler.

In Figure 6.6, on the first 5,000 seconds there is no visilffereénce in task run
times between the two schedulers. However, we find a signifatifference in the
lengths of the tails. The absence of a visible differencéénfirst 5,000 seconds
is due to both schedulers allocating map tasks to each runtaskaslot, and not
further interfering with the execution.

The run times of the reduce tasks, unlike map tasks, depenthen other (map)
tasks finish; the last reduce task can only finish after thettap task has finished.
Mumak lets every reduce task run until the very last map task fmished, we
can use this fact to explain the large difference in tail tange observed: In long
running jobs (which occur most for the Fair scheduler) trs faap task finishes
late, this increases the run times of all reduce tasks iretjudss.

We also observe a difference in the distribution of respainses per load level:
the higher the load level, the shorter the majority of thé&sagquire to complete.

86



Probability

Probability

0.2

4 90% Average Load
80% Average Load
60% Average Load
40% Average Load
30|% Average Load

0 1000 2000 3000 4000
Run Time (seconds)

(a) Hadoop'’s Default Scheduler

5000 10000

100000

90% Average Load
80% Average Load
60% Average Load
40% Average Load
30.% Average Load

0 1000 2000 3000 4000
Run Time (seconds)

(b) Fair Scheduler

5000 10000

100000

Figure 6.6: Task run time CDFs, horizontal axis values over 5,000 in log

scale.

87



We hypothesize that this difference is also caused by Musnaky of letting re-

duce tasks run longer than specified. With decreasing |b&dreiduce tasks will
take significantly less time to complete. As an unexpectatseguence, their
shorter run time may lead to a lower value for the 90th-peiigeof the distribution

(they become shorter than some of the map tasks); we couddréatly conclude

that “lower loads lead to higher [90th-percentile] run tgrie

We have plotted the median run times as a function of the leael in Figure
6.7, and we have plotted box plots of run times as functiorheflbad level in
Figure 6.8 (the box plots show, from the top down: the maxinvane, the third
quartile, the median, the first quartile, and the minimunugal For the tasks, we
have plotted next to the results of the two schedulers aklsangbut workload for
comparison.

In Figure 6.7a we clearly see that the almost linear incre@iske median job
run time with the increase of the load level for Hadoop’s difacheduler, while
for the same loads, the median job run time for the Fair sdeedemains around
the same low value. In Figure 6.8a we observe that althougimtéximum job run
times for the Fair scheduler are always larger than for Hadadefault scheduler,
the majority of jobs finish faster than jobs scheduled by #fawdlt scheduler. This
leaves us to conclude that the Fair scheduler has far betiéing behavior than
Hadoop’s default scheduler.

The median task run times in Figure 6.7b seem to confirm ouothygsis, that
the influence of the longer running reduce tasks interfereemath the normal
tasks for the lower load levels. There is also somethinghgave observe in this
graph, for some load levels the median task run times of Haida@efault scheduler
are lower than the median task run time is lower than in theggad workload. A
possible cause can be that in the same way that reduce rusmdandoecome larger
than specified, they can also become lower than specifieol, &fample a reduce
task is started just before the last map task finishes.

6.3.3 Analysis of Cost

We have calculated the cost, as described in Section 6.2rdnning the 6-hour
workloads on a 1545-node cluster. We have both plotted tise aeer time in
Figure 6.9 and we show the total cost for running the entirkivads in Table 6.3.

Load Level
| Scheduler 1% \ 30% | 40% | 50% | 60% \ 70% | 80% \ 90%
Hadoop’s Default Scheduler| 7385 | 12496 | 14091 | 14037 | 13416 | 15903 | 16716 | 18372
Fair Scheduler 3514 | 12553 | 13840 | 14076 | 13548 | 16827 | 16674 | 19774

Fraction of Fair/Default [ 0.475 | 1.004 | 0.982 | 1.002 | 1.009 | 1.058 | 0.997 | 1.076 |

Table 6.3: Total cost in node-hours for running the entire 6-hour woekls.
At first glance we observe in Figure 6.9 significant differesién cost during
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the tail of the workload execution, however the schedulat th the cheapest in
executing the workload, seems to be fairly arbitrary. T&h8makes it even more
clear that the differences in cost are very small, and thexetis no clear winning
scheduler. Workloads with high load levels use all nhodestrabshe time and

only show differences in the tail of the execution. The d#feces in the tail of the
workload execution however, do not have a large impact omotiaé cost.

None of the used schedulers optimizes on cost in node-hoArsystem that
can scale down well enough to allow a scheduler to optimizéaisiway is non-
trivial to develop, as currently the distributed file systentHadoop can not easily
scale down. An implementation of a MapReduce system witHastie distributed
file system would not only be beneficial in a cloud computingirsg, it would
for example also enable power conservation techniques ipRdduce clusters.
It would be possible to investigate the behavior of the costdifferent cluster
configurations, a smaller cluster might take a longer timexicute the workload,
but at a lower total cost.

6.4 Concluding Remarks

In this chapter we have shown an approach of how MapRedud¢ensysan be
evaluated with the help of out Cloud Workload Archive ToolbdVe have shown
that using a simulator can be beneficial in comparison toingnexperiments on a
real cluster, and we have shown that the use of generateldesigmvorkloads can
be beneficial compared to using real workloads.

We have verified our approach by performing an experimean fthis exper-
iment we are able to conclude that our approach actuallyvallos to evaluate
MapReduce systems. The experiment also shows a huge ddesdetween the
two schedulers. The Fair scheduler does, compared to Haddefault scheduler,
an excellent job in providing low response times for the tighobs. None of the
two schedulers optimize on cost in node-hours, and thidteesuno significant
difference in their performance in cost.

In this chapter we have also identified challenges for futuoek, first the cost
as a function of the MapReduce cluster configuration canvestigated, an elastic
distributed file-system for MapReduce can be developedaavidpReduce sched-
uler that optimizes on cost can be developed. We have only weekloads gen-
erated from the Simple Model (see Section 5.3.1), we leazaitle of workloads
generated from the Complex Models (see Section 5.3.2) fardwork.
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Chapter 7

Conclusion

The goal of this research was to be able to evaluate MapReagateEms. To this end
we have analyzed real-world MapReduce workloads. We hassepted models
for MapReduce workloads and procedures to generate simthetkloads based
on these models. And finally, we have shown that our tools eansed to eval-
uate MapReduce systems, by performing an experiment inhwk@&compare the
performance of two schedulers.

In this chapter we present our conclusion, reflect on the wammkl propose pos-
sible directions for future work.

7.1 Overview

In Chapter 1 we introduced this thesis, we introduced MapRedand we pre-

sented our research questions and technical objectiveShdpter 2 we surveyed
the current state of literature related to this thesis. lagiérs 3-6 we presented
our toolbox for MapReduce workload analysis and modelihg,analyses of real-
world workload traces, models for MapReduce workloads,tavdto use our work

to evaluate MapReduce schedulers. These four chaptenseddndact the research
questions, technical objectives, and experimental reswihich we discuss in the
following subsections.

7.1.1 The Research Question

The main research question for this thesis wds:the MapReduce scheduler X
better than MapReduce scheduler YPhis main research question lead to four
sub-questions:

Q1 What are the characteristics of MapReduce workloads?

In Chapter 4 we have analyzed MapReduce workload traceseThaces show:

« close to zero job wait times for the majority of the jobs
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* run times of less than about 1.5 minute for the majority Heks
When comparing map tasks with reduce tasks, we find that:
* map tasks run generally shorter than reduce tasks

* map tasks read more data from disk than they write, redwses tarite more
data to disk than they read

* there are in a job generally more map tasks than reduce tasks

Q2 How can we model MapReduce workloads?

In Chapter 5 we presented four statistical models for MapiRedvorkloads. One
simple model and three complex models. The simple model & im our experi-
ments and uses a direct-modeling approach for both the ghkeak characteristics.
The complex models make a distinction between map and redsks, exploit the
correlation between run time and disk I/O, and use indineatieling for task char-
acteristics.

Q3 How can we generate realistic synthetic MapReduce workloads?

In Chapter 5 we presented two procedures to generate realsithetic MapRe-
duce workloads: one procedure to generate workloads bastt simple model,
and one procedure to generate workloads based on the fahubngplex models.
Both procedures work by sampling from distributions givgrtliie model parame-
ters. A workload generator based on the simple model isdeclun the toolbox.

Q4 Which MapReduce scheduler performs best in scheduling a certain work-
load?

We answer a more concrete version of this question in Chégtgrevaluating the
Hadoop’s default scheduler and the Fair Scheduler in anrempst. The answer
to this question needs a metric to decide which is best; whietric actually to use
differs per the requirements of the user. We have proposedrtetrics: first, the
job run-times, and second, the cost of running the workloawbde-hours.

7.1.2 The Technical Objectives

We have developed the MapReduce Analysis Toolbox to fuffdltechnical objec-
tives T1-T3 — to automate the analyzing, modeling, and geioer of MapReduce
workloads. We have developed the toolbox for simulationgisuper-computers to
fulfill technical objective T4 — automate the simulating odpReduce workloads.
We describe these toolkits in Chapter 3. In Appendix A we stmabtain and use
the MapReduce Analysis Toolbox.
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7.1.3 Experimental Results

In our experiment we have evaluated two MapReduce schediti@doop’s default
scheduler and the Fair Scheduler. We have successfullyMeethk to simulate
for both schedulers individually synthetic workloads, gexted from our model.
We have used the DAS-4 super-computer to run the simulations
We evaluate the schedulers based on the job run times andtdiectst for

running the workload in node-hours. The experiment showasttie Fair Sched-
uler yields much lower job run-times for the far majority bktjobs compared to
Hadoop's default scheduler, as can be seen in Figure 6.5n\Wbking at the cost
in node-hours, we can not observe a significant differenddenperformance of
the two schedulers with regard to this metric. This is nopgsing, as none of the
two schedulers tries to optimize this value.

7.2 Reflection

During this research we have made many choices, some of whgtit in hindsight
not been the best choices. In this section we reflect on twoeskt choices.

7.2.1 Selection of Mumak

We have chosen Mumak as MapReduce simulator, and in the &mdéid out that
it did not respect the reduce task run times.

The use of the native Hadoop JobTracker and the input cobiligtivith Grid-
mix3 are two features that make Mumak really attractive asralator for our
work. But, from the results of this experiment we have ledrtieat Mumak does
not respect the reduce task run times specified in the inptklead. Instead, Mu-
mak lets reduce tasks run until the last map task finisheerGumak’s disrespect
for its input workload, we should have selected another kitau

7.2.2 The Need for a Complex Model

Although, we have not used one of the complex models in ouer@xgnt, because
of the amount of time needed to model and generate worklosidg the complex
model, the results of the experiment would not have beendiffigrent because of
the current limitations of Mumak. We do, however, think tHa complex model
is a better choice, as it more-closely models real worklpads

1. The complex model allows differences in the behavior opraad reduce
tasks, by modeling them separately.

2. The complex model allows similar behaving tasks withimale job, while
still allowing significant differences in the behavior ofks of different jobs,
by using an indirectly-modeling approach.
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7.3 Recommendations for Further Research
Throughout in this work we have mentioned possible direstifor future work:

1. Use complex models.

In this thesis we have used the simple model for the expetsnare would
recommend future experiments with the use of the complexatnod

2. Add AD goodness of fit test to the python model fitter.

In the Matlab code we tested fits using both the KS test and heest,
for reasons explained in Chapter 5. In the python version awe mot yet
implemented the AD test, although it is designed with mtétipoodness of
fithess tests in mind.

3. Publication of MapReduce workload traces in a Cloud Wia#ls Archive.

Publication of the workload traces requires permissiomftioe trace owners.
We have not attempted to obtain these permissions, so weotaulnlish the
traces. Public available traces will allow a larger set geggchers to study
MapReduce systems.

4. Identification of MapReduce jobs in the Google traces.

We deem it likely that the Google traces contain MapReduos. jii may be
possible to identify the MapReduce jobs in these traces bgmeing the job
characteristics.

5. Adaption of the CWA Data Format.

The CWA Data Format should capture more aspects of MapReduck as
partition and shuffle phases.

6. Exploitation in a model of possible correlations with @xecutable identifier.

From our workload analyses in Chapter 4 it becomes cleaMaaReduce
jobs may have application/executable-specific behavawrekample a “se-
lect query job” will read a lot of data while a “append job” Winly write

little data. A future MapReduce model could exploit thiskif correlations.

7. Development of a scheduler that optimizes on cost in astielMapReduce
cluster.

We observe the demand for MapReduce clusters in the cloudapRéduce
cluster of a fixed size will be under-provisioned at one monser over-
provisioned at another moment. A scheduler that scalesamtieMapRe-
duce cluster up and down, while meeting deadlines and naimignicost,
would make MapReduce in the cloud more affordable.
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8. Development of an elastic distributed file-system, td&an elastic MapRe-
duce cluster.

We assume that the in-elasticity of the current version efladoop Dis-
tributed File-System would be the main obstacle for crggdimelastic MapRe-
duce cluster. An elastic distributed file-system would dsdoeneficial for
using MapReduce in grid environments.
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Appendix A

Result Availability

The technical result of our work is the Cloud Workloads AvehiToolbox. We have
made this software available as an open-source projecoutdahave been nice if
we could also make the workload traces available as opezsaatata. We leave
that task as future work, as it requires obtaining permisfiom the trace owners.

A.1 Obtaining the Cloud Workloads Archive Toolbox

We have published the source code of the CWA Toolbox as apisitory on At-
lassian Bitbucket. You can either download the source cama the code reposi-
tory website, or clone the entire git repository.

Code Repository Website

https://bitbucket. org/tader/cwa-tool box/

Clone the Gt Repository

$ git clone https://bitbucket.org/tader/cwa-tool box. git

A.2 Dependencies

The CWA Toolbox requires the following software to be avaliga (The version
numbers indicate the versions used to develop the toolliver ersions might
also work.)

* Python (v2.7)
Almost all components of the CWA Toolbox are written in Pyiho

» Gnuplot (v4.4)
Gnuplot is used to plot the graphs from the analysis data.
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e Matlab (v7.11.0 (R2010b))
Matlab is used for modeling of the workload trace.

* SciPy(v0.10.1)
SciPy is used for modeling of the workload trace.

* NumPy (v1.6.2)
NumPy is required for SciPy.

A.3 Installation

There is no real installation needed as such, you just needpy thecwa script
into a directory which is in you$PATH, e.g., in/ usr/ 1 ocal / bi n or ~/ bi n.
Then change the path inside this script so that it correditijcates the location
where you placed the toolbox& ¢ directory.

A.4 Creating a CWA “Project”

To work on a new CWA “project”, we need to create a directorycture with the
original input traces and a configuration file. With this irag#, we can use the
CWA Toolbox.

A.4.1 Directory Structure

The CWA Toolbox expects the following layout for a CWA worglbtrace project.
This layout is defined in the default configuration and eveng can be overridden
in the local configuration file if needed, except for the pattht local configuration
file itself of course.

etrace-name/ ..., Root path for the CWA project
— WA Toolbox Work Ditery
»config................. CWA configuration file (see example)
* traces/ ......... Traces in CWA format (aftewa i nport)
* datal ................ Analysis results (aftema anal yze)
*plots/ ... Gnuplot plots (aftema pl ot )
* model / ... Modeling results (aftema model)
—F AW e Originahte data
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A.4.2 Configuration File

An example configuration file is shown in Figure A.1. For alspible settings and
their default values, please see thediea- t ool box/ src/ default _confi g.
The root path of the CWA project is available as variable m¢bnfiguration files,
it can be used by writing?{ pat h) s”, as shown in the example configuration file.

The setting frodul e = cwa. i nport . hadoop” could have been omitted
as this is already set as default value in the default cordtgur file. The simplest
possible configuration file is an empty file.

[trace]

title = Hadoop Wor kl oad

[inmport]

i nput = Y{ pat h)s/raw | ogs/ hi st ory/ done
nodul e = cwa. i nmport. hadoop

Figure A.1: Example configuration file for a CWA project.

A.4.3 Example Usage

If you have created such a directory structure and configurdife, you are ready
to use the CWA Toolbox. First place the original trace datéheraw directory,
and create a suitable configuration file. The default proeesdd be entering the
following commands:

1. cwa i nport
Imports the raw trace data into the CWA format.

2. cwa anal yze
Analyzes the traces in CWA format.

3. cwa pl ot
Plots the results of the analyses.

4. cwa nodel
Fit the model parameters of the trace.

5. cwa nodel report
Plot the results of the model fitting.

A.5 General Usage
Typecwa - h to find out all the available options and commands, the owipiltis

command is shown in Figure A.2. For even more usage infoomasiee the source
code.
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$ cwa -h
usage: cwa [OPTIONS ... <conmand>

Cl oud Wor kl oads Archi ve Tool box

OPTI ONS:
-h, --help print command hel p
--doc print conmand nodul es pydoc
-V i ncrease verbosity | evel

COVMANDS:
anal yze
dunp
generate
i mport
nmodel
pl ot
t est
trace

Figure A.2: Help information for theewa command.

A.6 Contributing

You are invited to contribute to the CWA Toolbox. | look formdzo receiving your
“pull requests,” which you can send me either by using thé negjuest feature of
Bitbucket, or just by sending me an emaitdtomas @le-r ui t er . cx.
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Appendix B

Data Format for the Cloud
Workloads Archive

The Data Format for the Cloud Workloads Archive is defineddsup et al. [37].
The data format specifies two levels of fields for job and tad&rmation. This
data can in principle be stored in any database or file. Anviswrof all fields in
the draft version 3 of this data format is given in the follagitable.

In addition to the data format specification, we present tiewing rules of
thumb for reading/writing the trace data in a tab separateddimat:

The workload trace consists of four separate files comtgijab data (*.cwj),
task data (*.cwt), detailed job information (*.cwjd), andtdiled task infor-
mation (*.cwtd).

Records must be separated by a newline character, fields/atust be sep-
arated by a tab character.

Empty lines and lines starting with the number symbol “#’shie ignored.

The first not ignored line of each file should contain tab safedl list of field
names as column headers.

The fields in the records and headers should be ordered thglkthédentifier.
Field values must not contain tabs and should not be quoted.

The values (ignoring case) “none”,
handled as unknown data.

null”, and the emptsing, must be

Negative values in fields where this is obviously not logitike the number
of CPUs, should be handled as unknown data.

The files may optionally be compressed using gzip compmessi that case
the file names must be extended with thez” extension.
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[1D [ Name [ Type | CWJ [ CWT | CWJD | CWTD |

1 | JobID Int + + + +
2 | TaskiD Int - + - +
3 | SubmitTime Float + + + +
4 | WaitTime Float + + + +
5 | RunTime Float + + + +
6 | CPUs Float + + + +
7 | TotalWallClockTime Int + + + +
8 | Memory Float + + + +
9 | Network Float + + + +
10 | Disk Float + + + +
11 | Status Int! + + + +
12 | UserIlD String + - + -
13 | GroupID String + - + -
14 | ExecutablelD String + + + +
15 | QueuelD Int + + + +
16 | PartitionID Int + + + +
17 | JobProperties Int? + + — —
18 | StructuralChanges String® |+ + + +
19 | StructuralChangeParams String* + + + +
20 | DisklORatio Float + + + +
21 | MR_total_launched Int - - + -
22 | MR_total_from_job Int - - + -
23 | MR_total_failed Int - - + -
24 | MR_total_killed Int - - + -
25 | MR_total_splits Int - - + -
26 | MR_total_hdfs_read Int - - + +
27 | MR_total_hdfs_written Int - - + +
28 | MR_total_local_read Int - - + +
29 | MR _total_local_written Int - - + +
30 | MR_total_spilled_records Int - - + +
31 | MR_map_launched Int® - - + -
32 | MR_map_total Int® - - + -
33 | MR_map_finished Int® - - + -
34 | MR_map_failed Int® - - + -
35 | MR_map_killed Int° — — + —
36 | MR_map_hdfs_read Int® - - + -
37 | MR_map_hdfs_written Int® - - + -
38 | MR_map_local_read Int® - - + -
39 | MR_map_local_written Int® - - + -
40 | MR_map_input Int® - - + +
41 | MR_map_output Int® - - + +
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ID | Name [ Type | CWJ [ CWT | CWJD | CWTD |

42 | MR_map_input_records Int® - - + +
43 | MR_map_output_records Int® - - + +
44 | MR_data_local Int - - + +
45 | MR_data_rack Int - - + +
46 | MR_combine_input_records Int - - + +
47 | MR_combine_output_records Int - - + +
48 | MR_reduce_input_records Int - - + +
49 | MR_reduce_input_groups Int - - + +
50 | MR_reduce_output_records Int - - + +
51 | MR_reduce_finished Int - - + -
52 | MR_task_attempt_host String - - - +
53 | MR_task_attempt_shuffle_finishgdFloat - - - +
54 | MR_task_attempt_sort_finished | Float - - - +
55 | MR_task_attempt_counters Float - - - +
56 | MR_task_attempt_id String - - - +
57 | MR_task_type Int® - - - +
58 | MR_total_map_time Int - - + -
59 | MR_total_reduce_time Int - - + -
60 | MR_spilled_records Int - - - +

1 Status codes:
0: Failed
: Success
: Continued partial execution
. Last partial execution, success
: Last partial execution, failed
. Canceled job
: Retry of an earlier failed job

DO WNPEP

2 Job property codes:
0: Interactive
1. User-facing
2: Batch

3 Comma-separated values: MR/Opaque, MR[/Detailed], MRf@ed

4 Semicolon-separated values: PrevTasks=String(,. . ey;fRofile=Int

ot

Type unspecified in specification [37], but Int is certairiig bnly sane option.

6 Task type codes:
0: Map
1: Reduce
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Appendix C

Validation of the Pseudo-Random
Number Generator

We have sampled 50 MiB of data and attempted to compress &.cbmpression
results in Table C.1 show only increased file sizes. We hage@btted a histogram
of sampled values in Figure C.1a, and a scatter-plot of ssanpbints in Figure
C.1b — as a visual validation of the random number generatspection of these
two figures does not reveal any significant deviation fromamelistribution over
the space. Based on the compression results and the vididaltizan, we conclude
that this pseudo-random number generator is suitable tadein our work.

| Description \ Size | Normalized |
Sampled Random Bytes | 52,428,800 B/  1.0000
Compressed:bzi p2 -9 | 52,662,999 B| 1.0045
Compressed:gz -9 52,436,827 B| 1.0002
Compressed:zi p 52,436,956 B  1.0002

Table C.1: Compression of sampled bytes.

=02 0.0 0.2 0.4 0.6 0.8 1.0 12 <0.2 0.0 0.2 0.4 0.6 0.8 1.0 12

(a) Histogram. (b) Scatter-plot.

Figure C.1: Plots of 100,000 sampled values/points.
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Appendix D

Modeling Results

D.1 Directly-Modeled Properties

SN1 SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000 | 0.000 | 0.000
loc 14.0 14.2 3.76 55.3
scale 239 37.4 6.92 1410
KS 0.000 | 0.001 | 0.005 | 0.000
D-stat. | 0.426 | 0.298 | 0.261 | 0.426
Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000
loc -0.000 | -0.000| -0.000 | -0.000
scale 15.1 14.2 3.76 55.3
KS 0.179 | 0.327 | 0.000 | 0.002
D-stat. | 0.179 | 0.110 | 0.443 | 0.382
Weibull shape | 0.727 | 0.666 | 0.756 | 0.304
loc -0.000 | -0.000| -0.000 | -0.000
scale 11.5 215 1.42 461
KS 0.344 | 0.129 | 0.000 | 0.000
D-stat. | 0.059 | 0.165| 0.452 | 0.435
Pareto shape | 1.00 1.00 1.00 1.00
loc 0.000 | 0.000 | 0.000 | 0.000
scale | 0.000 | 0.000 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000 | 0.000
D-stat. - - - -
Log-Normal | shape | 1.22 1.25 5.96 0.140
loc -0.430 | -0.471| -0.000 | -805
scale 6.90 7.47 1.15 856
KS 0.419 | 0.382 | 0.001 | 0.001
D-stat. | 0.053 | 0.074 | 0.439 | 0.309
Gamma shape | 0.000 | 0.000 | 0.132 | 0.000
loc 135 13.7 1.24 28.8
scale | 121217| 3030 19.0 | 75157
KS 0.000 | 0.000 | 0.000 | 0.000
D-stat. | 0.727 | 0.632| 0.575 | 0.705

Table D.1: Job inter-arrival time.
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SN1 | SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000| 0.000 | 0.000
loc 0.457 | -1.00 | 8.18 6.53
scale | 2.62 | 0.000| 567 26.3
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. | 0.405 | 0.500| 0.485 | 0.376
Exponential | shape | 0.000 | 0.000| 0.000 | 0.000
loc -0.000| 0.000| -0.000 | -0.000
scale | 0.457 | 0.000| 8.18 6.53
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. | 0.573 - 0.558 | 0.602
Weibull shape | 0.517 | 1.00 | 0.723 | 0.176
loc -0.000| 0.000| -0.000 | -0.000
scale | 0.073 | 0.000| 4.12 34.7
KS 0.000 | 0.000| 0.004 | 0.000
D-stat. | 0.597 - 0.314 | 0.530
Pareto shape | 1.00 | 1.00 1.00 1.00
loc 0.000 | 0.000| 0.000 | 0.000
scale | 0.000 | 0.000| 0.000 | 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - - -
Log-Normal | shape | 9.61 | 1.00 | 0.245 9.27
loc -0.000| 0.000| -18.0 | -0.000
scale | 2.36 | 0.000| 21.3 7.54
KS 0.000 | 0.000| 0.001 | 0.000
D-stat. | 0.603 - 0.400 | 0.487
Gamma shape | 0.000 - 0.000 | 0.032
loc 0.428 - 5.25 1.85
scale 242 - 109585 148
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. | 0.597 - 0.948 | 0.769

Table D.2: Job wait time.
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SN1 | SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000 | 0.000 | 0.000
loc 165 434 2856 513
scale 654 | 3154 | 35709 | 1503
KS 0.000 | 0.000 | 0.000 | 0.000
D-stat. | 0.398 | 0.443 | 0.465 | 0.363
Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000
loc -0.000| -0.000| -0.000 | -0.000
scale | 165 434 2877 513
KS 0.012 | 0.005 | 0.000 | 0.003
D-stat. | 0.343 | 0.344 | 0.619 | 0.376
Weibull shape | 0.593 | 0.583 | 0.467 | 0.567
loc -0.000| -0.000| -0.000 | -0.000
scale | 83.0 173 454 240
KS 0.371| 0.377 | 0.105 | 0.160
D-stat. | 0.092 | 0.104 | 0.180 | 0.153
Pareto shape | 1.00 | 1.00 1.00 1.00
loc 0.000 | 0.000 | 0.000 | 0.000
scale | 0.000 | 0.000 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000 | 0.000
D-stat. - - - -
Log-Normal | shape | 1.61 1.59 1.65 1.63
loc -0.206 | -0.429| -0.424 | -0.481
scale | 38.2 | 93.8 197 112
KS 0.479 | 0.503 | 0.451 | 0.296
D-stat. | 0.047 | 0.032 | 0.070 | 0.105
Gamma shape | 0.006 | 0.002 | 0.005 | 0.023
loc 113 311 215 287
scale | 8325 | 80939 | 482742| 10020
KS 0.000 | 0.000 | 0.000 | 0.000
D-stat. | 0.762 | 0.803 | 0.552 | 0.734

Table D.3: Job run time.
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Yahoo!

Normal shape | 0.000
loc 2e+08

scale | 6e+09

KS 0.000

D-stat. | 0.441

Exponential | shape | 0.000
loc -0.000

scale | 3e+08

KS 0.000

D-stat. | 0.496

Weibull shape | 0.267
loc -0.000

scale | 4e+08

KS 0.004

D-stat. | 0.309

Pareto shape | 1.00

loc 0.000

scale | 0.000

KS 0.000

D-stat. -
Log-Normal | shape | 6.10

loc -0.000
scale | 720312

KS 0.093

D-stat. | 0.203

Gamma shape | 0.000
loc 2e+08

scale | 5e+11

KS 0.000

D-stat. | 0.786

Table D.4: Job disk IO parameter.
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Yahoo!
Normal shape | 0.000
loc 199881
scale | 7036869
KS 0.006
D-stat. 0.291
Exponential | shape | 0.000
loc -0.000
scale | 1704688
KS 0.000
D-stat. 0.691
Weibull shape | 0.203
loc -0.000
scale | 2701572
KS 0.000
D-stat. 0.645
Pareto shape 1.00
loc 0.000
scale 0.000
KS 0.000
D-stat. -
Log-Normal | shape 9.98
loc -0.000
scale 3472
KS 0.000
D-stat. 0.655
Gamma shape | 0.482
loc -0.000
scale 1le+07
KS 0.000
D-stat. 0.685

Table D.5: Job disk IO paramete?.
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SN1 | SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000| 0.000 | 0.000
loc 0.635 | -1.00 | 10252 755
scale | 1.10 | 0.000| 9616 986
KS 0.003 | 0.000| 0.022 | 0.014
D-stat. | 0.391 | 0.500| 0.241 | 0.333
Exponential | shape | 0.000 | 0.000| 0.000 | 0.000
loc -0.000| 0.000| 636 -0.000
scale | 0.635| 0.000| 9616 755
KS 0.000 | 0.000| 0.027 | 0.000
D-stat. | 0.690 - 0.245 | 0.551
Weibull shape | 0.092 | 1.00 | 1.00 0.547
loc -0.000| 0.000| 636 -0.000
scale | 1.36 | 0.000| 9616 1333
KS 0.000 | 0.000| 0.031 | 0.000
D-stat. | 0.667 - 0.238 | 0.540
Pareto shape | 1.00 | 1.00 | 1.93 1.00
loc 0.000 | 0.000| -14898 | 0.000
scale | 0.000 | 0.000| 14126 | 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - 0.385 -
Log-Normal | shape | 7.64 | 1.00 1.00 1.00
loc -0.000| 0.000| 2916 2.78
scale | 0.008 | 0.000| 4449 456
KS 0.000 | 0.000| 0.013 | 0.000
D-stat. | 0.672 - 0.332 | 0.566
Gamma shape | 0.258 - 1.58 0.451
loc -0.000| - 33.8 | -0.000
scale | 1.61 - 6460 487
KS 0.000 | 0.000| 0.076 | 0.000
D-stat. | 0.702 - 0.234 | 0.520

Table D.6: Executable ID.
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SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000 0.000
loc 154 67.3 980
scale 982 8486 3855
KS 0.000 | 0.000 0.000
D-stat. | 0.385 | 0.468 0.390
Exponential | shape | 0.000 | 0.000 0.000
loc -0.000| 1.000 1.000
scale 154 66.3 996
KS 0.000 | 0.000 0.001
D-stat. | 0.697 | 0.764 0.352
Weibull shape | 0.223 | 0.942 0.432
loc -0.000| 1.000 1.000
scale | 42.1 29.7 555
KS 0.024 | 0.000 0.218
D-stat. | 0.310 | 0.755 0.136
Pareto shape | 1.00 0.817 0.227
loc 0.000 | 1.000 | -0.359
scale | 0.000 | 0.000 1.36
KS 0.000 | 0.000 0.083
D-stat. - 0.697 0.205
Log-Normal | shape | 8.07 0.186 2.54
loc -0.000| -4140 0.941
scale | 5.79 4313 93.2
KS 0.007 | 0.000 0.218
D-stat. | 0.279 | 0.494 0.124
Gamma shape | 0.020 | 0.000 0.016
loc 14.8 34.7 499
scale | 6955 | 2210235| 30866
KS 0.000 | 0.000 0.000
D-stat. | 0.783 | 0.906 0.723

Table D.7: Number of tasks.
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SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000 | 0.000
loc 0.108 | 0.000 | 0.002
scale | 0.208 | 0.000 | 0.040
KS 0.002 | 0.000 | 0.000
D-stat. | 0.349 | 0.581 | 0.514
Exponential | shape | 0.000 | 0.000 | 0.000
loc -0.000| 0.000 | -0.000
scale | 0.108 | 0.000 | 0.002
KS 0.000 | 0.000 | 0.000
D-stat. | 0.598 - 0.998
Weibull shape | 0.377 | 1.00 0.501
loc -0.000| 0.000 | -0.000
scale | 0.129 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000
D-stat. | 0.586 - 1.000
Pareto shape | 1.00 1.00 1.00
loc 0.000 | 0.000 | 0.000
scale | 0.000 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000
D-stat. - - -
Log-Normal | shape | 13.9 1.00 0.252
loc -0.000| 0.000 | -0.000
scale | 0.006 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000
D-stat. | 0.567 - 0.609
Gamma shape | 0.113 - 0.010
loc -0.000 - -0.000
scale | 0.353 - 0.612
KS 0.000 | 0.000 | 0.000
D-stat. | 0.581 - 0.493

Table D.8: Reduce-task ratio.
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SN1 | SN2 | Google | Yahoo!
Normal shape | 0.000| 0.000| 0.000 | 0.000
loc -1.00 | -1.00 | 2353 -1.00
scale | 0.000| 0.000| 34819 | 0.000
KS 0.000| 0.000| 0.000 | 0.000
D-stat. | 0.500| 0.500| 0.450 | 0.500
Exponential | shape | 0.000| 0.000| 0.000 | 0.000
loc 0.000 | 0.000| -0.000 | 0.000
scale | 0.000| 0.000| 2354 | 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - 0.700 -
Weibull shape | 1.00 | 1.00 | 0.698 1.00
loc 0.000 | 0.000| -0.000 | 0.000
scale | 0.000| 0.000| 980 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - 0.592 -
Pareto shape | 1.00 | 1.00 1.00 1.00
loc 0.000 | 0.000| 0.000 | 0.000
scale | 0.000| 0.000| 0.000 | 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - - -
Log-Normal | shape | 1.00 | 1.00 16.2 1.00
loc 0.000 | 0.000| -0.000 | 0.000
scale | 0.000| 0.000| 733 0.000
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - 0.610 -
Gamma shape - - 0.008 -
loc - - -0.000 -
scale - - 597539 -
KS 0.000 | 0.000| 0.000 | 0.000
D-stat. - - 0.607 -

Table D.9: Job forced-quit time.
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SN2 | Google | Yahoo!
Normal shape | 0.000 | 0.000 | 0.000
loc 0.013 | 0.242 | 0.010
scale | 0.078 | 0.428 | 0.099
KS 0.000 | 0.000 | 0.000
D-stat. | 0.450 | 0.498 | 0.529
Exponential | shape | 0.000 | 0.000 | 0.000
loc | -0.000| -0.000 | -0.000
scale | 0.013 | 0.242 | 0.010
KS 0.000 | 0.000 | 0.000
D-stat. | 0.851 | 0.757 | 0.987
Weibull shape | 0.071 | 0.390 | 0.683
loc -0.000| -0.000 | -0.000
scale | 0.109 | 0.036 | 0.051
KS 0.000 | 0.000 | 0.000
D-stat. | 0.823 | 0.762 | 0.991
Pareto shape | 1.00 1.00 1.00
loc 0.000 | 0.000 | 0.000
scale | 0.000 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000
D-stat. - - -
Log-Normal | shape | 7.07 7.67 0.494
loc | -0.000| -0.000 | -0.000
scale | 0.001 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000
D-stat. | 0.827 | 0.752 | 0.679
Gamma shape | 0.070 | 0.202 | 0.063
loc -0.000| -0.000 | -0.000
scale | 0.455 | 0.388 | 0.605
KS 0.000 | 0.000 | 0.000
D-stat. | 0.808 | 0.786 | 0.980

Table D.10: Job fail fraction.

122




Google | Yahoo!
Normal shape | 0.000 0.000
loc 2815 301
scale | 21252 236555
KS 0.000 0.000
D-stat. | 0.446 0.492
Exponential | shape | 0.000 0.000
loc 0.000 0.000

scale 2828 303
KS 0.001 0.000

D-stat. 0.38 0.49
Weibull shape | 0.525 0.531
loc 0.000 0.000

scale 1127 82.0

KS 0.302 0.314
D-stat. | 0.110 0.10
Pareto shape 1.00 1.00

loc 0.000 0.000
scale | 0.000 0.000
KS 0.000 0.000

D-stat. - -
Log-Normal | shape 1.77 0.303
loc -0.161 -10315
scale 432 11454

KS 0.39 0.000
D-stat. | 0.0890 0.548
Gamma shape | 0.00331 0.000

loc 1592 212

scale | 369374 | 618102864

KS 0.000 0.000

D-stat. | 0.697 0.886

Table D.11: Directly-Modeled overall task run time.
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D.2

D.2.1 Complex Model

Indirectly-Modeled Properties

Google Yahoo!
map | reduce| map | reduce
Normal 0.22% | 0.00% | 0.07 % | 0.28 %
Exponential | 0.19 % | 0.00 % | 0.07 % | 0.00 %
Weibull 0.22% | 0.00 % | 0.04 % | 0.00 %
Pareto 0.03% | 0.00% | 0.00 % | 0.00 %
Log-Normal | 0.21% | 0.00 % | 0.10 % | 0.00 %
Gamma 0.05% | 0.00% | 0.01% | 0.00 %

Table D.12: Task inter-arrival time matches.

Google Yahoo!
map reduce map reduce
Normal 6.49% | 0.00% | 20.54 % | 11.12 %
Exponential | 3.85% | 0.00% | 2.69 % | 10.30 %
Weibull 3.70% | 0.00% | 3.84% | 3.58%
Pareto 4.09% | 0.00%| 6.93% | 7.27%
Log-Normal | 21.95% | 0.00 % | 8.03% | 13.25%
Gamma 10.87% | 0.00% | 17.19% | 31.74 %

Table D.13: Task run time matches.

Google Yahoo!
map | reduce| map | reduce
Normal 1.33% | 0.00% | 0.11% | 0.37 %
Exponential | 0.00 % | 0.00 % | 0.00 % | 0.00 %
Weibull 0.00 % | 0.00 % | 0.00 % | 0.00 %
Pareto 0.01% | 0.00% | 0.00 % | 0.00 %
Log-Normal | 0.00 % | 0.00 % | 0.00 % | 0.00 %
Gamma 0.00% | 0.00 % | 0.00 % | 0.00 %

Table D.14: Task CPUs matches.
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Yahoo!
map | reduce
Normal 0.04 % | 0.00 %
Exponential | 0.05 % | 0.00 %
Weibull 0.00 % | 0.00 %
Pareto 0.01% | 0.00 %
Log-Normal | 0.02% | 0.00 %
Gamma 0.21% | 0.00 %

Table D.15: Task disk I/O matches.

Google Yahoo!
map reduce map reduce
weibull lognormal normal

shape loc scale shape| loc scale | shape| loc scale

Normal shape | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.900 519 502 153 | 0.660 | 1.79 | 0.000| 0.388 | 0.503

scale | 0.235 | 15528 | 9265 151 | 525 | 143 | 0.000| 139 | 20.1

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.366 | 0.486 | 0.480 0.402 | 0.420 | 0.448 | 0.581 | 0.464 | 0.488
Exponential | shape | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.665 | -0.000 | -0.000 0.956 | -0.000 | 0.000 | 0.000 | -0.000 | -0.000

scale | 0.235 519 502 0.572| 0.667 | 1.79 | 0.000| 0.387 | 0.503

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.518 | 0.914 | 0.907 0.690 | 0.565 | 0.579 - 0.853 | 0.891

Weibull shape | 1.00 | 0.443 | 0.242 0.472| 0.450 | 0.380 | 1.00 | 0.872 | 0.396
loc 0.665 | -0.000 | -0.000 0.956 | -0.000 | 0.000 | 0.000 | 0.000 | -0.000

scale | 0.235 923 319 0.651 | 0.833 | 0.297 | 0.000 | 0.134 | 0.004

KS 0.000 | 0.000 | 0.000 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000

D-stat. | 0.514 | 0.911 | 0.809 0.520 | 0.388 | 0.379 - 0.875 | 0.885

Pareto shape | 4e+07 | 1.00 1.00 144 | 1.00 | 0.272| 1.00 | 1.00 | 1.00
loc -3e+07| 0.000 | 0.000 0.812 | 0.000 | -0.005| 0.000 | 0.000 | -0.000

scale | 3e+07 | 0.000 | 0.000 0.144 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.600 - - 0.444 - 0.447 - 0.566 | 0.453
Log-Normal | shape | 1.00 1.96 3.49 161 | 124 | 501 | 1.00 | 0.152 | 0.130
loc 0.720 | -0.000 | -0.000 0.955 | -0.000 | 0.000 | 0.000| -2.76 | -9.51

scale | 0.109 | 0.000 | 0.000 0.103 | 0.245| 0.337 | 0.000| 2.88 | 9.74

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000

D-stat. | 0.618 | 0.866 | 0.663 0.464 | 0.413 | 0.330 - 0.471 | 0.470

Gamma shape | 0.785 | 0.001 | 0.002 0.142 | 0.032 | 0.043 - 0.001 | 0.002
loc 0.691 | 16.5 60.0 0.959 | -0.000 | 0.000 - 0.000 | 0.000

scale | 0.265 | 479381| 194255 4.01 | 35.6 106 - 585 798

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.516 | 0.916 | 0.946 0.209 | 0.584 | 0.596 - 0.116 | 0.914

Table D.16: Task inter-arrival time.
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Google Yahoo!
map reduce map reduce
lognormal normal gamma

shape loc scale shape| loc scale | shape loc scale

Normal shape | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

loc 1.03 1873 175 0.000| 51.7 13.8 | 1162321 71.1 12.8

scale | 0.457 | 24117 | 4338 0.000 | 353 162 le+08 | 6245 | 106

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.511 | 0.468 | 0.477 0.581 | 0.441 | 0.464 | 0.500 0.448 | 0.451

Exponential | shape | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.575 | -0.000 | -0.000 0.000 | -0.000| -0.000| 0.035 | -0.000| 0.000

scale | 0.457 | 1873 173 0.000 | 51.7 | 13.8 | 1162319| 215 12.8

KS 0.000 | 0.000 | 0.000 0.000 | 0.012 | 0.020 0.000 0.000 | 0.000

D-stat. | 0.582 | 0.594 | 0.850 - 0.344 | 0.318| 0.975 | 0.453 | 0.481

Weibull shape | 1.00 | 0.325 | 0.482 1.00 | 0.665| 0.503 | 0.168 | 0.338 | 0.469
loc 0.575| -0.000 | -0.000 0.000 | 0.000 | -0.000| 0.035 | -0.000| 0.000

scale | 0.457 | 7935 57.3 0.000 | 34.1 6.69 48229 44.6 3.23

KS 0.000 | 0.000 | 0.000 0.000 | 0.149 | 0.242 | 0.000 | 0.062 | 0.368

D-stat. | 0.533 | 0.478 | 0.775 - 0.167 | 0.139 | 0.517 | 0.223| 0.102

Pareto shape | 1.59 1.00 1.00 1.00 | 1.00 1.00 0.303 1.00 | 0.748
loc -0.321| 0.000 | 0.000 0.000 | -14.8 | -0.000| -0.828 | 0.000 | -0.718

scale | 0.435| 0.000 | 0.000 0.000| 12.8 | 0.000 | 0.863 | 0.000 | 0.718

KS 0.000 | 0.000 | 0.000 0.000 | 0.030 | 0.000 | 0.357 | 0.000 | 0.400

D-stat. | 0.820 - - - 0.241 | 0.865| 0.122 - 0.063

Log-Normal | shape | 1.00 1.56 6.42 1.00 1.25 4.90 0.183 6.46 1.99
loc 0.683 | -0.248 | -0.000 0.000 | -0.024| -0.000| -1e+07 | -0.000 | -0.000

scale | 0.211 173 0.073 0.000 | 15.8 | 0.407 | 1e+07 | 224 | 1.20

KS 0.000 | 0.501 | 0.000 0.000 | 0.381 | 0.002 | 0.000 | 0.017 | 0.457

D-stat. | 0.473 | 0.062 | 0.762 - 0.086 | 0.389 0.570 0.243 | 0.074

Gamma shape | 0.011 | 0.004 | 0.003 - 0.001 | 0.001| 0.001 | 0.008 | 0.008

loc 0.983| 439 -0.000 - 412 | 9.83 0.035 104 3.56

scale | 4.29 | 405685| 129392 - 11849 | 6600 | 8e+09 | 14159 | 1225

KS 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000 0.000 0.000 | 0.000

D-stat. | 0.044 | 0.758 | 0.171 - 0.849 | 0.742 0.985 0.770 | 0.728

Table D.17: Task run time.
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Google Yahoo!

map reduce map reduce

normal normal normal
shape| loc scale shape loc scale | shape loc scale
Normal shape | 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
loc 0.000 | 2.10 | 0.098 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000 | 0.380| 0.227 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. | 0.581 | 0.400| 0.475 0.581 0.500 0.441| 0.581 0.500 0.441
Exponential | shape | 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
loc 0.000 | 1.72 | -0.000 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000 | 0.380| 0.098 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000 | 0.000| 0.000 0.000 0.000 0.000| 0.000 0.000 0.000
D-stat. - 0.428| 0.839 - - - - - -
Weibull shape | 1.00 | 1.00 | 0.112 1.00 1.00 1.00 | 1.00 1.00 1.00
loc 0.000 | 1.72 | 0.000 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000 | 0.380| 0.156 0.000 0.000 0.000| 0.000 0.000 0.000
KS 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - 0.291| 0.840 - - - - - -
Pareto shape | 1.00 | 1.29 | 1.00 1.00 2e+08 1.00 | 1.00 2e+08 1.00
loc 0.000 | 0.075| 0.000 0.000 | -1177010| 0.000| 0.000 | -1177010| 0.000
scale | 0.000 | 0.925| 0.000 0.000 | 1177011| 0.000| 0.000 | 1177011 | 0.000
KS 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - 0.599| 0.499 - 1.000 | 0.930| - 1.000 | 0.930
Log-Normal | shape | 1.00 | 1.00 | 2.27 1.00 1.00 1.00 | 1.00 1.00 1.00
loc 0.000 | 1.81 | -0.000 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000 | 0.176| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000 | 0.000| 0.000 0.000 | 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - 0.373| 0.816 — - - - — -
Gamma shape - 0.214| 0.186 - - - - - -
loc - 1.93 | 0.000 - - - - - -
scale - 0.823| 0.364 - - - - - -
KS 0.000 | 0.000| 0.000 0.000 0.000 0.000| 0.000 0.000 0.000
D-stat. - 0.529| 0.833 - - - - - -

Table D.18: Task CPUs.
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Yahoo!

map reduce
gamma normal
shape| loc scale | shape| loc | scale
Normal shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
loc 1481 | 9.58 | 0.837 | 0.000 | 0.000 | 0.000
scale | 9520 | 71.3 | 4.66 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
D-stat. | 0.430 | 0.452 | 0.421 | 0.581 | 0.158| 0.500
Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
loc 0.094 | -0.000| 0.000 | 0.000 | 0.000| 0.000
scale | 1481 | 13.1 | 0.837 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
D-stat. | 0.536 | 0.616 | 0.588 - 1.00 | 1.00
Weibull shape | 0.379 | 0.522 | 0.266 | 1.00 | 1.00 | 1.00
loc 0.094 | -0.000| 0.000 | 0.000 | 0.000| 0.000
scale | 242 8.07 | 0.061 | 0.000 | 0.000| 0.000
KS 0.385 | 0.000 | 0.498 | 0.000 | 0.000| 0.000
D-stat. | 0.149 | 0.390 | 0.073 - 0.867| 1.00
Pareto shape | 0.176 | 1.00 | 0.140 | 1.00 | 1.00 | 1.00
loc -0.045| 0.000 | -0.000| 0.000 | 0.000| 0.000
scale | 0.139 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
KS 0.098 | 0.000 | 0.048 | 0.000 | 0.000| 0.000
D-stat. | 0.175 - 0.231 - 0.979| 0.674
Log-Normal | shape | 3.09 | 4.49 542 | 1.00 | 1.00 | 1.00
loc 0.093 | -0.000| 0.000 | 0.000 | 0.000| 0.000
scale | 38.0 | 0.027 | 0.006 | 0.000 | 0.000| 0.000
KS 0.333 | 0.000 | 0.266 | 0.000 | 0.000| 0.000
D-stat. | 0.107 | 0.558 | 0.134 - 1.00 | 1.00
Gamma shape | 0.059 | 0.108 | 0.078 - 937 | 2.33
loc 0.094 | -0.000| 0.000 - 0.000 | 0.000
scale | 60063 | 324 25.7 - 0.000 | 0.000
KS 0.000 | 0.003 | 0.041 | 0.000 | 0.000| 0.000
D-stat. | 0.477 | 0.337 | 0.230 - 0.447| 0.709

Table D.19: Task disk I/O ratio.
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D.2.2 Relaxed Complex Model

Yahoo!
map | reduce
Normal 0.42% | 0.33%
Exponential | 0.27 % | 0.03 %
Weibull 0.19% | 0.03 %
Pareto 0.00 % | 0.00 %
Log-Normal | 0.14% | 0.03 %
Gamma 0.03% | 0.02%

Table D.20: Task inter-arrival time matches.

Yahoo!

map reduce
Normal 56.71 % | 68.10 %
Exponential | 30.90 % | 60.47 %
Weibull 39.21 % | 62.79 %
Pareto 14.85% | 28.26 %
Log-Normal | 18.83 % | 45.06 %
Gamma 45.23% | 59.14 %

Table D.21: Task run time matches.

Yahoo!
map | reduce
Normal 0.13% | 0.40 %
Exponential | 0.00 % | 0.00 %
Weibull 0.00 % | 0.00 %
Pareto 0.00 % | 0.00 %
Log-Normal | 0.00 % | 0.00 %
Gamma 0.00 % | 0.00 %

Table D.22: Task CPUs matches.
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Yahoo!
map | reduce
Normal 0.04 % | 0.00 %
Exponential | 0.05 % | 0.00 %
Weibull 0.00 % | 0.00 %
Pareto 0.01% | 0.00 %
Log-Normal | 0.02 % | 0.00 %
Gamma 0.21 % | 0.00 %

Table D.23: Task disk I/O ratio matches.

Yahoo!
map | reduce
Normal 0.00 % | 0.00 %
Exponential | 0.00 % | 0.00 %
Weibull 0.00 % | 0.00 %
Pareto 0.00 % | 0.00 %
Log-Normal | 0.00 % | 0.00 %
Gamma 0.00 % | 0.00 %

Table D.24: Task memory matches.
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Yahoo!

map reduce
normal normal

shape| loc scale | shape| loc scale
Normal shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.000 | 0.751| 1.27 | 0.000| 0.392 | 0.510

scale | 0.000 | 27.8 | 53.5 | 0.000| 13.8 | 20.1
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
D-stat. | 0.581 | 0.479 | 0.490 | 0.581 | 0.455 | 0.489
Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.000 | -0.000| -0.000| 0.000 | -0.000 | -0.000
scale | 0.000| 0.751| 1.27 | 0.000 | 0.392 | 0.505
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
D-stat. - 0.867 | 0.883 - 0.870 | 0.883
Weibull shape | 1.00 | 0.899 | 0.494 | 1.00 | 0.494 | 0.705
loc 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | -0.000
scale | 0.000 | 0.477 | 0.392 | 0.000 | 0.016 | 0.647
KS 0.000 | 0.000 | 0.000 | 0.000| 0.000 | 0.000
D-stat. - 0.859 | 0.883 - 0.852 | 0.880

Pareto shape | 1.00 | 1.00 1.00 | 1.00 | 1.00 1.00
loc 0.000 | 0.000 | -0.000| 0.000 | 0.000 | -0.000
scale | 0.000| 0.000 | 0.000 | 0.000 | 0.000 | 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
D-stat. - 0.540 | 0.431 - 0.716 | 0.422
Log-Normal | shape | 1.00 | 0.119 | 0.120 | 1.00 | 0.120 | 0.119
loc 0.000 | -19.9 | -38.3 | 0.000 | -9.82 | -14.3

scale | 0.000| 20.1 | 38.7 | 0.000| 9.98 | 145
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
D-stat. - 0.400 | 0.472 - 0.396 | 0.461
Gamma shape - 0.002 | 0.002 - 0.001 | 0.001
loc - 0.000 | 0.000 - 0.000 | 0.000

scale - 940 1939 - 585 798
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
D-stat. - 0.113 | 0.893 - 0.135 | 0.913

Table D.25: Task inter-arrival time.
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Yahoo!

map reduce
normal normal

shape| loc scale | shape| loc scale

Normal shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

loc 0.000 | 49.9 | 13.6 | 0.000| 194 13.4

scale | 0.000| 331 151 | 0.000| 1111 | 102

KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. | 0.581 | 0.440 | 0.459 | 0.581 | 0.431 | 0.446

Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
loc 0.000 | -0.000| -0.000| 0.000 | 1.000 | -0.000

scale | 0.000| 49.9 | 13.6 | 0.000| 193 13.4

KS 0.000 | 0.022 | 0.009 | 0.000 | 0.001 | 0.002

D-stat. - 0.326 | 0.313 - 0.420 | 0.412

Weibull shape | 1.00 | 0.654 | 0.564 | 1.00 | 0.591 | 0.553
loc 0.000 | 0.000 | -0.000| 0.000 | 1.000 | -0.000

scale | 0.000| 30.0 | 6.80 | 0.000| 92.7 | 11.6

KS 0.000 | 0.169 | 0.265 | 0.000 | 0.112 | 0.041

D-stat. - 0.157 | 0.129 - 0.176 | 0.265

Pareto shape | 1.00 | 1.00 1.00 | 1.00 | 0.280 | 1.00
loc 0.000 | -14.0 | -0.000| 0.000 | -0.309 | -0.000

scale | 0.000| 12.2 | 0.000 | 0.000 | 1.31 | 0.000

KS 0.000 | 0.029 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. - 0.242 | 0.869 - 0.373 | 0.887

Log-Normal | shape | 1.00 | 1.28 | 4.46 | 1.00 | 1.38 1.59
loc 0.000 | -0.019| -0.000| 0.000 | 0.991 | -0.126

scale | 0.000| 15.0 | 0.080 | 0.000 | 44.0 | 3.08

KS 0.000 | 0.377 | 0.000 | 0.000 | 0.299 | 0.165

D-stat. - 0.072 | 0.534 - 0.110 | 0.137

Gamma shape - 0.001 | 0.001 - 0.005 | 0.001

loc - 405 | 10.1 - 113 10.2

scale - 11704 | 6549 - 15150 | 3163

KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

D-stat. - 0.830 | 0.714 - 0.795 | 0.841
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Yahoo!

map reduce
normal normal
shape loc scale | shape loc scale
Normal shape | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
loc 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. | 0.581 | 0.500 | 0.441| 0.581| 0.500 | 0.441
Exponential | shape | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
loc 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - - - - - -
Weibull shape | 1.00 1.00 1.00 | 1.00 1.00 1.00
loc 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - - - - - -
Pareto shape | 1.00 2e+08 1.00 | 1.00 2e+08 1.00
loc 0.000 | -1177010| 0.000| 0.000 | -1177010| 0.000
scale | 0.000 | 1177011 | 0.000| 0.000 | 1177011 | 0.000
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - 1.000 | 0.930| - 1.000 | 0.930
Log-Normal | shape | 1.00 1.00 1.00 | 1.00 1.00 1.00
loc 0.000 1.00 0.000| 0.000 1.00 0.000
scale | 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - - - - - -
Gamma shape - - - - - -
loc - - - - - -
scale - - - - - -
KS 0.000| 0.000 | 0.000| 0.000| 0.000 | 0.000
D-stat. - - - - - -

Table D.27: Task CPUs.
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Yahoo!

map reduce
weibull normal
shape| loc scale | shape| loc | scale
Normal shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
loc 0.982 | 12.3 | 1.29 | 0.000 | 0.000| 0.000
scale | 0.097 | 84.4 | 9.11 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
D-stat. | 0.421 | 0.458 | 0.439 | 0.581 | 0.159| 0.500
Exponential | shape | 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
loc 0.884 | -0.000| 0.000 | 0.000 | 0.000| 0.000
scale | 0.097 | 12.3 | 1.29 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
D-stat. | 0.459 | 0.596 | 0.590 - 1.00 | 1.00
Weibull shape | 1.00 | 0.591 | 0.312 | 1.00 | 1.00 | 1.00
loc 0.884 | -0.000| 0.000 | 0.000 | 0.000| 0.000
scale | 0.097 | 12.6 | 0.306 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.137 | 0.000 | 0.000| 0.000
D-stat. | 0.459 | 0.480 | 0.168 - 0.867| 1.00
Pareto shape | 1.86 1.00 | 0.483| 1.00 | 1.00 | 1.00
loc -0.451| 0.000 | -0.014 | 0.000 | 0.000| 0.000
scale | 0.836 | 0.000 | 0.014 | 0.000 | 0.000| 0.000
KS 0.000 | 0.000 | 0.145 | 0.000 | 0.000| 0.000
D-stat. | 0.574 - 0.164 - 0.979| 0.674
Log-Normal | shape | 1.00 | 1.04 | 3.04 | 1.00 | 1.00 | 1.00
loc 0.907 | -0.088| -0.000 | 0.000 | 0.000| 0.000
scale | 0.045| 2.46 | 0.044 | 0.000 | 0.000| 0.000
KS 0.000 | 0.056 | 0.118 | 0.000 | 0.000| 0.000
D-stat. | 0.457 | 0.197 | 0.198 - 1.00 | 1.00
Gamma shape | 0.163 | 0.122 | 0.035 - 937 | 2.33
loc 0.942 | -0.000| 0.000 - 0.000 | 0.000
scale | 0.241 | 64.1 | 743 - 0.000 | 0.000
KS 0.000 | 0.000 | 0.000 | 0.000 | 0.000| 0.000
D-stat. | 0.595 | 0.592 | 0.595 - 0.447| 0.709

Table D.28: Task disk I/O ratio.
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D.2.3 Safe Complex Model

Google Yahoo!

map | reduce | map | reduce

Normal shape | 0.000 0.000 | 0.000
loc 26.9 0.187 | 0.356

scale | 2437 11.0 24.8

KS 0.000 0.000 | 0.000

D-stat. | 0.494 0.460 | 0.483

Exponential | shape | 0.000 0.000 | 0.000
loc -0.000 -0.000| -0.000

scale 26.8 0.187 | 0.356

KS 0.000 0.000 | 0.000

D-stat. | 0.940 0.888 | 0.921

Weibull shape | 0.256 0.956 | 0.624
loc -0.000 -0.000| -0.000

scale 41.8 0.116 | 0.036

KS 0.000 0.000 | 0.000

D-stat. | 0.949 0.892 | 0.912

Pareto shape | 1.00 1.00 1.00
loc 0.000 0.000 | 0.000

scale | 0.000 0.000 | 0.000

KS 0.000 0.000 | 0.000

D-stat. - - -

Log-Normal | shape | 0.198 0.212 | 0.201
loc -927 -7.53 | -14.8

scale 966 7.90 15.5

KS 0.000 0.000 | 0.000

D-stat. | 0.554 0.498 | 0.515

Gamma shape | 0.000 0.000 | 0.000
loc 8.78 0.166 | 0.280

scale | 328728 5874 | 8149

KS 0.000 0.000 | 0.000

D-stat. | 0.977 0.881 | 0.922

Table D.29: Task inter-arrival time.
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Google Yahoo!
map | reduce| map reduce
Normal shape | 0.000 0.000 | 0.000
loc 2815 310 292
scale | 21252 264884 | 1396
KS 0.000 0.000 | 0.000
D-stat. | 0.446 0.495 0.416
Exponential | shape | 0.000 0.000 | 0.000
loc -0.000 -0.000 | -0.000
scale | 2828 308 291
KS 0.002 0.000 | 0.017
D-stat. | 0.360 0.550 0.292
Weibull shape | 0.525 0.497 | 0.608
loc -0.000 -0.000 | -0.000
scale 1127 55.4 163
KS 0.293 0.241 0.395
D-stat. | 0.116 0.113 | 0.087
Pareto shape | 1.00 1.00 1.00
loc 0.000 0.000 | 0.000
scale | 0.000 0.000 0.000
KS 0.000 0.000 | 0.000
D-stat. - - -
Log-Normal | shape | 1.77 0.231 1.56
loc -0.161 -162746| -0.056
scale 432 174276 | 74.1
KS 0.411 0.000 | 0.343
D-stat. | 0.066 0.590 | 0.089
Gamma shape | 0.003 0.000 0.007
loc 1592 195 177
scale | 369374 6e+08 | 17009
KS 0.000 0.000 | 0.000
D-stat. | 0.713 0.937 0.683

Table D.30: Task run time.
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Google Yahoo!
map | reduce map reduce
Normal shape | 0.000 0.000 0.000
loc 2.14 1.00 1.00
scale | 0.523 0.000 0.000
KS 0.000 0.000 0.000
D-stat. | 0.535 0.500 0.500
Exponential | shape | 0.000 0.000 0.000
loc 1.61 1.00 1.00
scale | 0.523 0.000 0.000
KS 0.000 0.000 0.000
D-stat. | 0.405 - -
Weibull shape | 1.00 1.00 1.00
loc 161 1.00 1.00
scale | 0.523 0.000 0.000
KS 0.000 0.000 0.000
D-stat. | 0.410 - -
Pareto shape | 1.28 7e+08 2e+08
loc 0.075 -5148406| -1538968
scale | 0.925 5148407 | 1538969
KS 0.000 0.000 0.000
D-stat. | 0.327 1.000 1.000
Log-Normal | shape | 1.00 1.00 1.00
loc 1.74 1.00 1.00
scale | 0.242 0.000 0.000
KS 0.000 0.000 0.000
D-stat. | 0.401 - -
Gamma shape | 0.407 - -
loc 1.80 - -
scale | 0.820 - -
KS 0.000 0.000 0.000
D-stat. | 0.330 - -

Table D.31: Task CPUs.
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Google Yahoo!
map | reduce | map reduce
Normal shape 0.000 0.000
loc 26792 | 0.000
scale 1642977| 0.000
KS 0.000 | 0.000
D-stat. 0.495 0.581
Exponential | shape 0.000 0.000
loc -0.000 | 0.000
scale 26791 | 0.000
KS 0.000 | 0.000
D-stat. 0.943 —
Weibull shape 0.272 1.00
loc -0.000 | 0.000
scale 272 0.000
KS 0.000 0.000
D-stat. 0.519 -
Pareto shape 1.00 1.00
loc 0.000 | 0.000
scale 0.000 0.000
KS 0.000 | 0.000
D-stat. - -
Log-Normal | shape 0.182 1.00
loc -816681 | 0.000
scale 854997 | 0.000
KS 0.000 | 0.000
D-stat. 0.574 -
Gamma shape 0.000 -
loc 6588 -
scale 1le+08 -
KS 0.000 | 0.000
D-stat. 0.988 —

Table D.32: Task disk I/O ratio.
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