
Towards increasing the reliability of

Maven’s dependency resolution

Master’s Thesis

Cathrine Paulsen

Towards increasing the reliability of

Maven’s dependency resolution

THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Cathrine Paulsen

born in Bodø, Norway

Software Engineering Research Group

Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands

www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2024 Cathrine Paulsen.

Towards increasing the reliability of

Maven’s dependency resolution

Author: Cathrine Paulsen

Student id: 4659732

Abstract

A reliable dependency resolution process should minimize dependency-related is-

sues. We identify transparency, stability, and flexibility as the three core properties that

define a reliable resolution process and discuss how different dependency declaration

strategies affect them. To increase the reliability of Maven’s dependency resolution

we identify two patterns of misuse, or smells, that commonly occur in Maven projects:

the presence of used undeclared dependencies and conflicting soft version constraints.

We introduce and evaluate a proof-of-concept method, MARCO, designed to address

these smells. MARCO increases transparency by injecting used undeclared depen-

dencies and balances stability and flexibility by replacing soft version constraints with

compatible version ranges. The version ranges are generated through a dependency-

specific approach to compatibility using bytecode differencing and cross-version test-

ing. The empirical evaluation of MARCO shows that while the ranges generated by

the dependency-specific approach may be stricter than necessary, they are unlikely to

contain breaking changes. Overall, we see that MARCO is able to make the resolution

process slightly more reliable, affecting 13% of dependencies in 71% of projects, in a

way that is more stable than a soft constraint-only approach, and more flexible than a

hard constraint-only approach.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft

University supervisor: Dr. S. Proksch, Faculty EEMCS, TU Delft

Committee Member: Prof. Dr. C. Lofi, Faculty EEMCS, TU Delft

Preface

This thesis marks the end of my Master’s journey, a period that has been both intellectually

challenging and personally rewarding. I am deeply grateful to my supervisor, Dr. Sebastian

Proksch, whose guidance, support, and encouragement to follow my curiosity has been

invaluable in shaping this thesis. I also extend my heartfelt thanks to my family and friends

for their continuous support throughout my degree and for believing in me when I did not.

Writing the last sentence of this thesis, I feel a great sense of pride over all that I have

achieved, learned, and grown during this period. Moving forward, I am excited to see what

opportunities the future may hold and plan to stay forever curious.

Cathrine Paulsen

Delft, the Netherlands

July 2, 2024

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1

2 Related Work 5

2.1 Dynamic Analysis . 5

2.2 Static Analysis . 6

2.3 Client- versus Dependency-specific Compatibility 7

3 Achieving a more reliable dependency resolution 9

3.1 Guiding the Resolution Process . 9

3.2 Modifying the Dependency Declarations 11

3.3 Generating Compatible Versions . 13

4 Empirical Prevalence Study 17

4.1 Dataset . 17

4.2 RQ1: Prevalence of Dependency Smells 19

4.3 RQ2: Prevalence of Manual Conflict Mediation 20

5 Empirical Evaluation 23

5.1 RQ3: Locating Dependency Tests . 23

5.2 RQ4: Detecting Breaking Changes . 26

5.3 RQ5: Impact on Maven’s Dependency Resolution 37

6 Discussion and Future Work 43

7 Summary 47

v

CONTENTS

Bibliography 49

A Glossary 55

vi

List of Figures

3.1 How MARCO is intended to be applied to achieve full replacement. 10

3.2 How MARCO is actually applied in the experiment requiring full replacement. 11

3.3 Overview of the MARCO REPLACER (top) and GENERATOR (bottom) 12

4.1 Overview of the methodology used for the Empirical Prevalence Study. 18

5.1 Distribution of GAs failing GitHub linking in the RANGER dataset 36

5.2 Size distribution of ranges computed by MaRCo 40

5.3 Distributions and averages for each evaluation metric 41

vii

Chapter 1

Introduction

There are several reasons a developer may want to update their dependencies: to receive

updates, new features, bug fixes, or security updates. However, doing so may inadvertently

introduce breaking changes or dependency conflicts, which can be time-consuming for de-

velopers to fix. As dependency trees grow, resolving dependency conflicts becomes increas-

ingly more complex; solving a conflict in one part of the tree may make another conflict

appear elsewhere. Due to the often time-consuming and frustrating nature of dependency-

related problems, they are sometimes collectively referred to as dependency hell [44, 32].

To prevent breaking their projects, many developers simply avoid updating their dependen-

cies altogether [30, 21]. This update aversion becomes particularly problematic in the case

of security updates due to the phenomenon of vulnerability propagation in software ecosys-

tems [43]. A project that relies on a vulnerable dependency does not only expose itself

to security risks but all of its dependents as well. Proper use of dependency management

systems can help reduce dependency-related problems and even improve the security of

the larger ecosystem by preventing vulnerability propagation; however, improper use may

also cause dependency-related problems [46]. One such dependency management system is

Maven, for which we look into how we can enforce proper use to avoid dependency-related

problems and define two common patterns of misuse as dependency smells.

Declaring dependencies with SemVer-compatible open version ranges is an important

prerequisite for the automatic propagation of security updates [43]. Open version ranges

ensure that the resolved dependency versions are as recent as possible, and the SemVer

standard ensures that no breaking changes are introduced by pinning the major version.

Although most Maven repositories follow SemVer conventions, breaking changes in non-

major versions is still common [33, 28]. This observation may explain why 99% of Maven

dependency declarations do not use open version ranges but pin a specific version as a soft

version constraint (SoftVer) instead [46]; developers simply cannot trust that non-major

releases are non-breaking.

The widespread use of SoftVer introduces two issues into the dependency resolution

process, namely instability and inflexibility. Although SoftVer pins a specific version, there

is no guarantee that the pinned version will be resolved. In the case where there are mul-

tiple SoftVer pins of the same dependency, Maven simply picks the first version it encoun-

ters while traversing the dependency tree in a breadth-first-search manner [1]. If two such

1

1. INTRODUCTION

conflicting SoftVer versions are incompatible, it may result in build errors, or unexpected

behavior and errors at runtime due to breaking changes. This causes instability since it

is unknown until runtime whether a completed dependency resolution succeeded without

issues. Hard constraints require the pinned version to be resolved, causing conflicting de-

pendency declarations to be detected during resolution [10]. While removing the instability

from the process, hard constraints are even more inflexible than soft constraints. Pinning

singular versions, whether they are soft or hard constraints, may unnecessarily tighten the

dependency resolution constraints and is more likely to result in resolution failure when old

dependencies are updated or new ones are added. Inflexible version constraints also pre-

vent automatic dependency updates [21] and their propagation downstream [46], which can

leave the library and its dependents vulnerable and buggy. Using open version ranges would

increase flexibility at the cost of introducing instability into the resolution process since the

sub-optimal SemVer compliance in Maven is likely to introduce breaking changes.

Besides SemVer, another aspect of Maven that becomes problematic when updating

dependencies is the possibility to directly use transitive dependencies [1]. This introduces

non-transparency into the dependency resolution process. All directly used dependencies

should be declared as direct dependencies; otherwise, if a transitive dependency that is used

directly is updated to an incompatible version or removed entirely, it may result in resolu-

tion, compilation, or runtime failure without a transparent cause. Increased transparency

may also indirectly increase a project’s security, as developers tend to upgrade vulnerable

direct dependencies more often than transitive ones [46].

To mitigate these issues, we define the concept of a reliable resolution process as one

that is stable, flexible, and transparent. Furthermore, we define the direct use of transi-

tive dependencies and conflicting SoftVer constraints as dependency smells that negatively

affect these properties. Different dependency declaration strategies also affect these proper-

ties differently. Hard constraints provide the strongest stability but can make upgrading or

adding dependencies difficult, making them inflexible. Open version ranges provide a high

degree of flexibility but may introduce breaking changes, making them unstable. Balancing

these two properties is therefore important and is something developers indicate that they

struggle with [16]. One method to achieve this balance is through the use of compatible

version ranges: version ranges that are as broad as possible without introducing breaking

changes. This thesis proposes an automated solution, MARCO, that injects declarations of

missing direct dependencies to increase transparency and converts SoftVer declarations to

compatible version ranges to balance stability and flexibility, providing developers with a

more reliable dependency resolution process to mitigate dependency-related issues without

having to modify the resolution process itself.

There are currently no solutions that address all three properties of reliable resolution

in this way. The closest existing tool is RANGER, which replaces SoftVer constraints with

compatible version ranges [46], but it does not address transparency and is not fully open-

source. Generating compatible version ranges boils down to compatibility checking, or

breaking change detection between two dependency version pairs, which is a well-studied

problem. COMPCHECK, DEBBI [13] and Mujahid et al. [27] all use a form of cross-client

regression testing to detect whether two dependency versions are behaviorally compatible.

2

The main problem with approaches relying on client tests is that it is not common practice

for clients to test their dependencies. Clients instead trust that the dependencies themselves

are well-tested [21], and client tests often fail to capture issues caused by dependency up-

dates [47]. If the test coverage of the dependency is low, the chance of breaking changes not

being caught by the tests increases. Motivated by the low coverage of client tests, UPPDAT-

ERA and SEMBID use static analysis techniques on ASTs and callgraphs to detect patterns

that match behavioral breaking changes.

Common for all existing solutions is that they take a client-specific approach to com-

patibility, meaning that the compatibility decision is based on analyzing the client using

the dependency rather than the dependency itself. A more direct but so far unexplored

approach to check behavioral compatibility between dependency versions is to use cross-

version regression testing using the tests of the dependency instead of the client, which is a

dependency-specific approach. Both client- and dependency-specific approaches have ad-

vantages and disadvantages. Client-specific approaches that rely on client tests may have

a low false positive rate but a high false negative rate when detecting breaking changes.

Dependency-specific approaches that rely on dependency tests will comparatively have a

higher false positive rate since clients may only use parts of the dependency but a lower

false negative rate assuming that dependencies test their own behavior better than clients. A

client-specific approach used to generate compatible version ranges may therefore result in a

resolution that is more flexible but less stable, whereas a dependency-specific approach may

be more stable but less flexible. Surveys by Mirhosseini and Parnin [24] and Pashchenko

et al. [30] suggest that developers themselves also favor stability over flexibility, which

encourages looking into the dependency-specific approach.

To assess the need for an automated solution like MARCO and its efficacy in improving

the reliability of Maven’s resolution process, the thesis investigates the following research

questions (RQs):

• RQ1: How prevalent are the dependency smells? To increase the reliability of Maven’s

resolution process, MARCO removes the dependency smells associated with used un-

declared dependencies and conflicting soft constraints. To motivate the need for such

a solution, we investigated the actual prevalence of these issues in real-life Maven

projects and found that both smells are common.

• RQ2: How often do developers manually mediate SoftVer conflicts? To assess whether

developers can benefit from an automated solution, we investigated how often devel-

opers use version-overriding techniques to manually override Maven’s conflict res-

olution of conflicting soft constraints and found that manual conflict mediation is

relatively common and that mediated conflicts seem to involve more conflicting dec-

larations than unmediated conflicts.

• RQ3: How successfully can we find test suites for dependencies using GitHub link-

ing? MARCO generates dependency-specific compatible ranges using bytecode dif-

ferencing to determine static compatibility and cross-version regression testing to

determine behavioral compatibility. To perform cross-version testing, we need access

3

1. INTRODUCTION

to the dependency’s tests. We therefore investigated whether we can accurately link

a Maven dependency to its GitHub repository to increase the likelihood of locating

tests, and found that GitHub linking can significantly increase the amount of tests we

can find compared to test jars published on Maven Central.

• RQ4: How effective is the dependency-specific approach in detecting breaking and

non-breaking changes? The purpose of this RQ is to measure whether the compatible

ranges generated by the dependency-specific approach combining bytecode differenc-

ing and cross-version testing are likely to contain breaking changes. We found that

the generated ranges are unlikely to contain breaking changes, but may be stricter

than necessary compared to other client-specific approaches.

• RQ5: How successful is the proposed solution in improving Maven’s dependency

resolution? The end goal of the evaluation is to investigate whether and to what

extent MARCO is able to influence Maven’s resolution process to be more reliable.

We applied MARCO to real-world Maven projects and compared the outcome of the

resolution process before and after to see how the resolution process changed. We

found that MARCO is likely to influence the resolution process towards being more

reliable in a way that is more stable than a soft constraint-only approach and more

flexible than a hard constraint-only approach.

The main contributions of this thesis are:

• Identified two commonly occurring dependency smells that negatively affect the reli-

ability of a project’s dependency resolution process, whose automatic removal could

improve reliability in 45% of projects and reduce developer effort spent manually

resolving conflicting soft constraints.

• A Maven-to-Github linking strategy which significantly increases the likelihood of

locating dependency tests compared to relying on test jars published along with the

dependency artifact.

• A proof-of-concept method that generates compatible version ranges using a dependency-

specific approach to compatibility based on bytecode differencing and cross-version

testing capable of influencing Maven’s resolution process to be more reliable without

modifying the resolution process itself.

• Identified and discussed several opportunities for future work on reliable dependency

resolution and compatible version range generation.

The data and code used to generate the results for this thesis are available on Zenodo [31].

The remainder of this thesis is structured as follows. Chapter 2 covers related works.

Chapter 3 describes MARCO, the proposed solution to remove the defined dependency

smells from any Maven project. Chapter 4 presents the empirical prevalence study, covering

RQ1 and RQ2. Chapter 5 provides an empirical evaluation of MARCO, covering RQ3,

RQ4, and RQ5. Chapter 6 discusses key findings and limitations and provides directions

for future work. Finally, Chapter 7 summarizes the thesis.

4

Chapter 2

Related Work

The idea of aiding developers in the dependency management process by automatically de-

tecting compatible version updates or compatible version ranges to avoid breaking changes

is not new. There are three types of compatibility in Java: binary, source, and behavioral

[15]. Binary and source compatibility are also referred to as static, syntactic, or API com-

patibility, while behavioral compatibility is also called dynamic or semantic compatibility

[21, 46]. Static incompatibilities can (in most cases) be detected at compile time by static

analysis tools such as JAPICMP [25] and REVAPI [35] which use bytecode differencing. Be-

havioral incompatibilities relate to incompatible runtime behavior which is more difficult to

detect accurately using static analysis methods [45]. Formal behavioral specifications are

also rarely available and difficult to verify [23]. Tests are therefore often used to approxi-

mate behavioral compatibility.

This chapter discusses literature relevant to compatibility checking, or breaking change

detection. The related works are split into two broad categories based on how they determine

compatibility: using static or dynamic analysis. The chapter concludes with a discussion on

client- versus dependency-specific compatibility approaches.

2.1 Dynamic Analysis

Zhu et al. [47] introduced the COMPCHECK tool for detecting breaking changes, and in-

troduced the concept of client-specific compatibility. If a breaking change is found using a

client-specific technique, it means that the client’s use of the dependency has been analyzed

and found that the breaking change is used by the client. This term is also used in this thesis,

and complimented by the term dependency-specific, meaning that the compatibility deci-

sion is only based on analyzing the dependency and is therefore client-agnostic. To detect

breaking changes, COMPCHECK maintains a knowledge base of known client-dependency

incompatibilities, which is obtained via client tests. The technique of detecting breaking

changes using multiple clients’ tests is called cross-client testing, and is commonly used

in related works. Control flow graphs of clients are used to determine dependency usage

and a lookup is performed in the knowledge base whether the usage is related to a known

incompatibility. The technique of using control flow graphs or call graphs to determine de-

5

2. RELATED WORK

pendency usage is useful to ensure that a breaking change is actually reached by a specific

client and is sometimes referred to as reachability analysis in related works.

Mujahid et al. [27] used cross-client testing to identify behavioral breaking changes in

dependency upgrades in the NPM ecosystem. Tests are crowd-sourced from the dependents

of the dependency. Because cross-client testing comes with a high computational cost, the

dependents with high-coverage test suites are prioritized to reduce it. The update is em-

ulated on the dependents, and if a previously passing test suite fails after the update then

the update is deemed incompatible. This is a form of cross-client testing and is motivated

by the fact that only using a single client’s tests is often unreliable due to lacking test cov-

erage. They found that crowd-sourcing tests like this could increase test coverage of the

dependency from 47% to 55%, but that finding enough dependents to increase test coverage

proved a limitation.

Chen et al. [13] introduced DEBBI, which uses a cross-client testing technique similar

to Mujahid et al. [27] to detect breaking changes. Instead of prioritizing client test suites by

coverage like Mujahid et al. [27] did, DEBBI prioritizes the test suites of clients that have a

high API usage of the dependency under test.

He et al. [20] conducted a qualitative survey of DEPENDABOT usage among developers.

DEPENDABOT provides developers with a compatibility score when opening pull requests

for dependency upgrades. The compatibility score indicates how likely the update is to

introduce breaking changes, and is calculated based on the fraction of other projects per-

forming the same dependency update that have passing CI pipelines. This is a form of

cross-client testing for compatibility checking. The authors found that developers express

concern over the effectiveness of the compatibility scores, and that they found high-quality

test suites more useful for assessing compatibility. Their conclusions suggest that if cross-

client testing is used, then the tests of the client under consideration should be included and

prioritized when determining compatibility. Basing compatibility for a single client based

on whether other clients have breaking CI pipelines may be misleading, since other clients

may not use the same parts of the library.

2.2 Static Analysis

Zhang et al. [46] presents the tool RANGER which is the closest existing solution to MARCO.

The goal of RANGER is to convert SoftVer constraints into safe, compatible ranges to tackle

the problem of vulnerability propagation in the Maven ecosystem. Static compatibility is

checked using REVAPI and JAPICMP on the dependency JARs. If the static compatibility

tools return API incompatibilities, RANGER uses reachability analysis using call graphs to

check whether the client uses the incompatible sections of the API. If no static incompatibil-

ities are reachable by the client, dynamic compatibility is checked using the static analysis

tool SEMBID. If no reachable dynamic incompatibilities are found, the tests of the client are

used as a final step to ensure that the client does not introduce behavioral breaking changes.

Zhang et al. [45] presents the SEMBID (Semantic Breaking Issue Detector) tool which

aims to detect semantic breaking changes statically, motivated by the lacking coverage of

client tests. Breaking changes are detected by semantic differencing of call graphs between

6

2.3. Client- versus Dependency-specific Compatibility

two dependency versions. For any semantic change detected between the call graphs, SEM-

BID checks whether it matches any of the non-breaking heuristic patterns to reduce false

positives. Despite this, the false positive rate of SEMBID is still relatively high at 22%.

While SEMBID was able to detect breaking changes that were not detected by single client

test suites, it also did not detect all breaking changes that were detected by the test suites,

since the static analysis is not able to cover dynamic language features such as reflection.

Hejderup and Gousios [21] introduces the static analysis tool UPPDATERA, which aims

to detect static and semantic breaking changes between Java library versions. Client tests

are not used on the reasoning that they are effective only if they have adequate test coverage,

which in practice is not common since clients do not tend to test their dependencies’ behav-

ior. ASTs are analyzed using AST differencing for possible semantic breaking changes

using SpoonLabs/GumTree [17], and call graphs are used for reachability analysis to check

whether the incompatibilities are reachable by the client to reduce false positives. They

found that UPPDATERA’s static approach could detect twice as many breaking changes as

client tests, but struggles similarly to SEMBID with false positives caused by refactorings

and over-approximated function calls.

Ochoa et al. [28] presents the MARACAS static analysis tool for detecting static breaking

changes between Java library versions. MARACAS extends the existing tool JAPICMP which

detects static breaking changes given two versions of a dependency. However, the static

breaking changes may or may not be exposed via the API used by the client. JAPICMP is

therefore extended to also factor in common annotations used in libraries to denote parts of

the library that are not intended for client use. MARACAS uses this information to detect

whether breaking API changes actually affect the client. If not, then they can be ignored

when determining whether a specific dependency upgrade introduces breaking changes to

the client to reduce false positives.

2.3 Client- versus Dependency-specific Compatibility

In addition to compatibility types, there are also two different perspectives to compatibil-

ity: the client-specific approach and the dependency-specific approach. The client-specific

approach looks at the question of whether two dependency versions are compatible from

the perspective of the client that uses the dependency by analyzing the client [47]. There

may be incompatibilities between two library versions that the client code never calls, in

which case the incompatibility is irrelevant to the client, and the versions are labeled as

compatible. Common for all existing solutions is that they use a client-specific approach to

compatibility. The only exception is MARACAS; however, it only consider static and not dy-

namic compatibility. To fully determine whether two dependency versions are compatible,

we need to verify both.

A more direct but so far unexplored approach to check dynamic compatibility between

dependency versions is to use cross-version regression testing using the tests of the depen-

dency instead of the client, which is a dependency-specific approach. Mostafa et al. [26]

used cross-version regression testing to collect a large number of backward behavioral in-

compatibilities, suggesting that this method may be effective at breaking change detection.

7

2. RELATED WORK

Venegas [42] also suggested that future work using cross-version regression testing could

address scalability issues encountered in client-specific approaches.

Whether static or dynamic analysis techniques are used to determine compatibility,

dependency-specific approaches are underexplored. This thesis therefore proposes an al-

ternative solution to related works that uses both static analysis (JAPICMP) for static com-

patibility and dynamic analysis (cross-version testing) for dynamic compatibility from a

dependency-specific compatibility perspective so that compatibility decisions can be pre-

computed and reused.

8

Chapter 3

Achieving a more reliable
dependency resolution

This chapter presents the proposed solution, called the Maven Compatible Range (MARCO)

toolkit, to achieve a more reliable dependency resolution. The toolkit consists of two main

components: the REPLACER and the GENERATOR. The ultimate goal behind the proposed

solution is to guide Maven’s resolution process to be more reliable without modifying the

process itself but instead modifying how dependencies are declared. Section 3.1 explains

at a high level how Maven’s resolution process works and how MARCO is used to guide

it towards being more reliable. The remaining sections explain in more detail how the RE-

PLACER and the GENERATOR work to achieve this goal. Section 3.2 describes how the

REPLACER modifies the dependency declarations to guide the resolution process, and Sec-

tion 3.3 describes how the GENERATOR computes compatible versions that the REPLACER

uses to replace soft version constraints with compatible ranges.

3.1 Guiding the Resolution Process

The standard Maven resolution process can be simplified as follows and is partially illus-

trated in Figure 3.1. A project declares its direct dependencies in its POM file. During

the project’s dependency resolution process, Maven downloads the artifacts of the depen-

dencies declared in the POM from the Maven Central Repository (MCR)1. The artifacts are

placed in a local folder on the project’s client machine called the m2 folder. The downloaded

artifacts include the packaged compiled source code (JARs) of the dependencies as well as

the dependencies’ POM files. The JARs are necessary so that the project can make calls

to the dependency APIs, and the POM files are necessary to retrieve the project’s transitive

dependency declarations. Because the project needs to download all dependencies, both

direct and transitive, Maven repeats the download process for each dependency’s POM file.

MARCO does not modify the resolution process itself, but only the POM file that con-

tains the dependency declarations for a given Maven project so that Maven performs its

resolution algorithm more reliably. This allows the proposed solution to remain simple

1unless an alternative repository is configured

9

3. ACHIEVING A MORE RELIABLE DEPENDENCY RESOLUTION

since we do not have to consider all the intricacies of POMs and how different configura-

tions, such as profiles, affect the resolution process. Figure 3.1 shows an overview of how

MARCO could be applied to modify the dependency declarations used by Maven’s reso-

lution process. Specifically, MARCO is used in two parts of the resolution process. First,

MARCO is applied to the project’s POM to create the modified POM file. This step will

modify the direct dependency declarations to use compatible version ranges. However, to

fully guide the resolution process we also need to modify the transitive dependency decla-

rations, which are stored in the project’s dependencies’ POMs which Maven fetches from

the local m2 folder after downloading them from MCR. To modify the transitive POMs we

therefore have two options: we can either apply MARCO to the m2 folder as shown in Fig-

ure 3.2, or we can apply MARCO to (parts of) MCR to create a modified MCR that contains

MARCO-replaced POMs as shown in Figure 3.1.

Figure 3.1: How MARCO is intended to be applied to achieve full replacement.

If MARCO is to be applied in a real-world setting then the most convenient solution

for developers is to use MARCO as described in Figure 3.1. This would require setting up

and maintaining an alternative mirror repository to MCR containing pre-replaced POMs of

as many commonly used dependencies as possible. Developers wanting to use MARCO in

their workflow could then simply add the mirror repository to their POM. The Maven reso-

lution process will then download the pre-replaced POMs hosted by the mirror repository,

and developers would only have to apply MARCO to their own POM. Setting up and main-

taining a proper mirror repository is out of scope for this thesis, but could be an interesting

direction for future work. To emulate the mirror repository for experiments requiring POM

replacement (RQ5), full dependency replacement is instead done by applying MARCO to

all the dependencies contained in the local m2 folder, as is shown in Figure 3.2. From the

perspective of the Maven resolver, there is no difference between the two solutions. Choos-

ing one over the other will therefore have no impact on evaluation.

The MARCO toolkit helps developers achieve a more reliable dependency resolution by

injecting declarations of missing direct dependencies to increase transparency, and by con-

verting SoftVer constraints to compatible version ranges to balance stability and flexibility.

Furthermore, incorporating MARCO into a developer’s workflow should provide minimal

10

3.2. Modifying the Dependency Declarations

Figure 3.2: How MARCO is actually applied in the experiment requiring full replacement.

overhead and require minimal effort. The toolkit therefore consists of two components: a

lightweight REPLACER which is used by the developer client-side, and a server-side GEN-

ERATOR, see Figure 3.3. The REPLACER is responsible for replacing a project’s POM with a

modified POM containing the injected and replaced dependency declarations. It is designed

with the idea in mind that developers using MARCO would not need to change how they

declare dependencies. They could pin a version they know works as a SoftVer, then apply

the REPLACER to their POM and be confident that the resolved versions will be compatible

with the one they pinned. To replace SoftVer constraints with compatible version ranges,

the REPLACER needs access to a mapping from dependency versions to their compatible

version ranges. The GENERATOR takes care of computing, storing, and serving these map-

pings. The compatible version ranges are generated using a dependency-specific approach

to compatibility checking, meaning that the compatible versions for a specific dependency

version are client-agnostic and can be pre-computed to reduce overhead.

3.2 Modifying the Dependency Declarations

The goal of the REPLACER is to modify the dependency declarations in the POM in such

a way that Maven’s dependency resolution process is more transparent, flexible, and stable.

As seen in Fig. 3.3, the REPLACER is the lightweight client-side tool used by developers.

It takes a Maven project as input and outputs a new, modified POM without the previ-

ously introduced dependency smells of missing direct dependencies and SoftVer version

constraints. The smell of missing direct dependencies is removed by declaring all depen-

dencies directly used as direct dependencies with the help of the Maven Dependency Plugin

11

3. ACHIEVING A MORE RELIABLE DEPENDENCY RESOLUTION

Figure 3.3: Overview of the MARCO REPLACER (top) and GENERATOR (bottom)

[4]. Removing the smell of SoftVer version constraints involves replacing the SoftVer ver-

sion constraints with compatible version ranges which are fetched from the compatibility

mapping pre-computed by the GENERATOR.

The compatibility mapping maps a dependency version to a list of compatible versions.

This list of compatible versions must be converted into a format that Maven recognizes as a

range, which is defined by the Maven Version Range Specification [8]. Simplified, a range

is defined by the string [lowerBound, upperBound], where the lower bound is the lowest

version and the upper bound is the highest version according to Maven’s version sorting

algorithm [40]. The range includes all available versions between the lower bound and

upper bound, and multiple ranges can be concatenated by commas to allow for gaps. The

compatible version list is therefore converted to a compatible version range by first sorting

the list using Maven’s sorting algorithm, then identifying the upper- and lower bounds.

To identify whether there are gaps in the compatible version range, we must also fetch the

available versions of the dependency from MCR and compare whether all available versions

between the identified lower and upper bounds are in our compatible version list. If there

are gaps, we identify the continuous compatible ranges and concatenate them as described

previously.

Compatibility checking using cross-version regression testing is computationally heavy.

12

3.3. Generating Compatible Versions

Because the compatibility checking does not need to be re-computed for each client, we

keep all the heavy computation steps associated with compatibility checking in the server-

side GENERATOR so that the client-side REPLACER remains lightweight and provides no

significant overhead to the developer’s workflow.

The algorithm behind the REPLACER is shown in Alg. 1. The Maven Dependency

Plugin’s analyze goal [2] is first run on the Maven project and returns the used undeclared

dependencies, i.e., the missing direct dependency declarations. These declarations are then

injected into the dependency section of the POM. The missing dependency declarations

returned by the analyze goal contain SoftVer version constraints. The injection step is there-

fore also necessary before replacing the SoftVer version constraints to ensure that all of them

are replaced. Important to note is that the Maven Dependency Plugin is only able to detect

static instances of used undeclared dependencies. If the project uses dynamic language

features, there may be instances of used undeclared dependencies that are not detected and

therefore not injected. This is discussed further in Chapter 6.

Algorithm 1 POM range-enhancement by replacing SoftVer versions via lookup of pre-

computed mappings of SoftVer version to compatible version ranges

Input: Maven project (p)

Output: Range-enhanced POM

⊲ Inject missing dependencies

1: missing deps← CALL mvn dependency:analyze

2: POM← inject POM with missing deps

⊲ Replace SoftVer

3: for each (dep,so f tver version) ∈ POM do

4: range← LOOKUPRANGE(dep, so f tver version)

5: POM← replace so f tver version with range in POM

6: end for

7: return POM

3.3 Generating Compatible Versions

To increase the reliability of the dependency resolution process, the REPLACER replaces

soft version constraints with compatible version ranges. To enable to REPLACER to remain

lightweight, the GENERATOR pre-computes a dependency’s compatible versions using a

dependency-specific compatibility approach. The GENERATOR has two responsibilities:

perform compatibility checking and store the results in the compatibility mapping storage;

and serve any lookup requests of specific compatibility mappings by the REPLACER. As

seen in Fig. 3.3, the MARCO GENERATOR runs server-side and is not intended to be

directly used by developers unless they want to compute and host their own compatibility

13

3. ACHIEVING A MORE RELIABLE DEPENDENCY RESOLUTION

mappings. The remainder of this section will describe how the GENERATOR computes

compatible versions.

Given a specific dependency version called the base version, the GENERATOR fetches

all candidate versions, which are the dependency’s currently available versions from Maven

Central, and computes whether they are compatible with the base. If the candidate is com-

patible, it is added to the base version’s compatibility mapping. The compatibility mapping

of a specific version v of a dependency with available versions av, can be expressed as

follows:

v 7→ {vi |vi ∈ av and is compatible with v} (3.1)

Checking whether a candidate version vi is compatible with the base version v involves

three main steps that are performed in order: the static compatibility check, the Maven-to-

GitHub linking, and the dynamic compatibility check. The compatibility check can fail at

any of the three steps, and a version is only added to the compatibility mapping if it passes

all three steps. The algorithm behind the GENERATOR is shown in Alg. 2.

Computing static and dynamic compatibility The compatibility checking component

implements a dependency-specific approach to compatibility. The compatibility check for

a version pair consists of a static and a dynamic compatibility check. To determine whether

two versions are compatible, there are three types of compatibility to check: source, binary,

and behavioral compatibility [15]. The static check checks for source and binary compati-

bility using JAPICMP [25], a commonly used static compatibility checker for Java, used by

for example RANGER [46] and MARACAS [28].

The dynamic check checks for behavioral compatibility, which is approximated using

regression testing of the candidate version’s source code on the base version’s test code.

This is a dependency-specific approach to behavioral compatibility using cross-version re-

gression testing. To run the candidate version’s code on the base version’s tests, we create

a new Maven project which contains the following: the compiled source code of the candi-

date, the compiled test code of the base, and a combined POM. The combined POM uses

the candidate’s POM as a base since we are preparing to run the candidate’s source code.

Because the base version’s tests may involve test dependencies and test suites can change

between versions, we need to make sure that we only include the test dependencies of the

base version in the combined POM. To determine the behavioral compatibility between a

base version and a candidate version, the base version’s tests are run in two stages, first

with the base version’s code, then with the candidate version’s code. The passing tests on

the base code establish the baseline that the test results of the candidate are compared to.

If running the tests on the candidate code results in more failures than the base code, we

consider the candidate incompatible with the base and otherwise compatible.

The static check is run before the dynamic check because bytecode differencing is com-

putationally cheap compared to cross-version regression testing and only requires access

to the base and candidate JARs which are provided by MCR. A candidate version must be

both statically and dynamically compatible with its base to be compatible. Therefore, if

the candidate is statically incompatible we can skip the expensive dynamic check since the

candidate will be incompatible regardless of the dynamic outcome.

14

3.3. Generating Compatible Versions

Locating tests using Maven-to-GitHub linking The dynamic check requires the com-

piled source code of the candidate, the compiled test code of the base, and a combined POM

to run. While the compiled source code can be extracted from the JARs used for the static

check, and the POMs are available on MCR, finding the test code poses a challenge since

test jars are not commonly available on MCR [19]. If we cannot find the dependency’s

test code, we cannot run the dynamic check, and as a result we cannot determine the can-

didate’s compatibility. Limiting the dependencies we can evaluate compatibility to only

those that publish test jars on MCR may significantly reduce the applicability of MARCO.

The GitHub linking component between the static and dynamic checks aims to address this

problem, based on the assumption that we are likely to find the test code of a dependency in

the same repository that contains its source code. Given a specific version of a dependency

(GAV), the GitHub linking algorithm finds the GitHub repository and tag via information

stored in the GAV’s POM. The algorithm is split into the following steps:

1. Finding the GitHub repository. Maven provides a Source Code Management (scm)

tag which can be included in POMs to link to the dependency’s source code repository

[6]. If a GitHub link is found in the scm section, the GitHub repository is extracted

from the link. If no GitHub repository or scm section is found, but the POM links a

parent POM, the process is repeated for the parent POM.

2. Finding the version string. If we managed to extract a GitHub repository, we need

to find the GitHub tag that most likely corresponds to the dependency version. The

scm section may contain a tag sub-tag, which indicates which tag in the source code

repository the GAV corresponds to [5]. If the tag is present, this is used as the version

string. If tag is not present or does not lead to finding a matching tag in the next step,

the process is repeated using the version contained in the GAV as the version string.

3. Matching the version string to a GitHub tag. To match the version string (<version>)

obtained from the POM with a GitHub tag, the linking algorithm constructs possible

candidate tag names combining the version string with the following commonly used

GitHub tagging patterns: <artifactId>-<version>, v<version>, r<version>,

and <version>. To find the GitHub tag, the algorithm first tries to look up the candi-

date tag names via the GitHub API. If no tag is found via the lookup (exact match),

the algorithm then performs an inexact match over all tags in the repository. The in-

exact match checks whether any of the candidate tag names occur as a substring in

any of the GitHub tags. If there are multiple matches, the inexact match selects the

shortest overall string to avoid picking extensions not present in the original version

string, such as -beta.

15

3. ACHIEVING A MORE RELIABLE DEPENDENCY RESOLUTION

Algorithm 2 Given a SoftVer version v0 and dependency dep, generate a compatible version

range.

1: function GENERATERANGE(dep, v0)

2: Find (dep,v0) on the Maven Central Repository (MCR)

3: Fetch available versions by looking up dep on MCR

4: range← /0

5: for each v ∈ available versions do

6: incompatibilities← STATICCHECK(jarv0
, jarv)

7: if incompatibilities 6= /0 then

8: continue (reject v)

9: end if

10: incompatibilities← DEPENDENCYDYNAMICCHECK(v0, v)

11: if incompatibilities 6= /0 then

12: continue (reject v)

13: end if

14: range← range∪ v

15: end for

16: return range

17: end function

18: function DEPENDENCYDYNAMICCHECK(v0, v)

19: Get v0 test suite and v source code via GitHub.

20: Run the tests of v0 with the source code of v

21: incompatibilities← list of test failures

22: return incompatibilities

23: end function

16

Chapter 4

Empirical Prevalence Study

In Chapter 1, we introduced two dependency smells that negatively affect the reliability

of a project’s dependency resolution process: the direct use of transitive dependencies and

conflicting soft version declarations. This chapter investigates how widespread these two

dependency smells are, and how often developers use version-overriding techniques to man-

ually override Maven’s conflict resolution process by analyzing the POM files of Maven

projects collected from GitHub. To this end, we define the following research questions:

• RQ1: How prevalent are the dependency smells?

– RQ1.1: How prevalent is the direct usage of transitive dependencies?

– RQ1.2: How prevalent are SoftVer conflicts?

• RQ2: How often do developers manually mediate SoftVer conflicts?

The answers to these questions motivate whether developers can benefit from an au-

tomated solution that removes these dependency smells to increase resolution reliability.

If the smells frequently occur and developers are often manually mediating conflicts, an

automated solution that removes these smells for them to increase reliability could allevi-

ate dependency effort spent manually resolving dependency-related issues associated with

these dependency smells.

4.1 Dataset

To answer RQ1 and RQ2 we need data on the declared, resolved, and mediated depen-

dencies of real-life Maven projects. To this end, we created a dataset using the Maven

Dependency Plugin to analyze the dependencies of a collection of Maven projects found

on GitHub. This section describes the methodology used for collecting and analyzing the

projects to create the dataset used to answer the research questions. An overview of the

methodology is visualized in Figure 4.1.

17

4. EMPIRICAL PREVALENCE STUDY

Figure 4.1: Overview of the methodology used for the Empirical Prevalence Study.

Methodology Maven projects were collected on June 2, 2024, using the GitHub API with

the following filters: created since January 1, 2023, Java as language, and at least 20 stars.

The projects were received from the API in ascending order of their creation date, and

the collection was stopped after 800 projects due to time and space constraints. From this

initial selection, projects that did not have a POM file were removed to filter out non-Maven

projects. 362 projects with POM files remained after filtering, of which we were able to

successfully run the Maven Dependency Plugin on 226 projects.

The Maven Dependency Plugin was run on the collected projects using two goals:

dependency:analyze [2] and dependency:tree [3]. The analyze goal gives information

about whether the project has dependencies that are used undeclared or unused declared,

which is used to answer RQ1.1 and RQ2, respectively. The tree goal with the -Dverbose

flag shows the full dependency tree of the project, including conflicting or overridden de-

pendency declarations. If there are conflicting SoftVer version declarations of the same

dependency, these are marked by the Maven Dependency Plugin as omitted by conflict. The

Maven Dependency Plugin also marks dependencies as managed from if a dependency’s

version has been overridden by the dependencyManagement section. The omitted by con-

flict and managed from information from the tree goal is used to answer RQ1.2 and RQ2,

respectively. The dependencies and the information obtained from the Maven Dependency

Plugin are then stored in a data store for further analysis to answer each research question.

Results The final dataset consists of 226 projects with an average of 60.8 dependency dec-

larations and 57.3 resolved dependencies per project. The averages of resolved and declared

dependencies are not equal because Maven will only resolve one version for each declared

dependency, but the dependency tree may contain more than one conflicting SoftVer version

declaration for the same dependency.

18

4.2. RQ1: Prevalence of Dependency Smells

4.2 RQ1: Prevalence of Dependency Smells

This section answers the question How prevalent are the dependency smells? (RQ1), which

consists of answering the following two subquestions:

• RQ1.1: How prevalent is the direct usage of transitive dependencies?

• RQ1.2: How prevalent are SoftVer conflicts?

The presence of the smell in RQ1.1 negatively affects the reliability of the resolution process

by decreasing transparency, while the smell in RQ1.2 decreases flexibility compared to

open-version ranges and decreases stability compared to hard constraints. The removal of

these smells could therefore help increase the reliability of a Maven project’s resolution

process, and we investigate their prevalence to determine how many Maven projects have

potentially compromised reliability due to the presence of these smells. This section will

first explain why the methodology shown in Figure 4.1 is sound, followed by the results for

RQ1.1 and RQ1.2.

Methodology To answer RQ1.1 we investigate the prevalence of the direct usage of tran-

sitive dependencies which are the same dependencies that the plugin marks as used unde-

clared: A used undeclared dependency is a dependency that is used directly but not de-

clared as a direct dependency, which is possible if it exists as a transitive dependency in the

project’s dependency tree. It should be noted that the Maven Dependency Plugin is a static

analysis tool and will only detect static instances of used undeclared dependencies. There

may be other dynamic instances of used undeclared dependencies that are not detected by

the analyze goal due to the use of dynamic language features, such as the Java Reflection

API. This is discussed further in Chapter 6.

To answer RQ1.2, we look into how prevalent conflicting SoftVer declarations1 are,

which are the dependency declarations that the plugin marks as omitted by conflict. The

only other declaration method in Maven besides SoftVer is version ranges, which result in

resolution failure when there are conflicting declarations rather than omitted by conflict. A

hard constraint is a special case of a range containing only one version, so these will also not

be marked as omitted by conflict. We can therefore be confident that SoftVer declarations

are the only dependency declarations that are marked as omitted by conflict.

Results Based on our sample of 226 projects, we find that both dependency smells de-

scribed by RQ1.1 and RQ1.2 are common. 45% of projects had at least one instance of

direct usage of a transitive dependency (RQ1.1), with 7.8 instances of this smell on average.

Because the Maven Dependency Plugin only detects the static instances of RQ1.1, these

numbers should be interpreted as lower bounds. This means that the actual prevalence may

be even higher. How to determine a more accurate estimation of the actual prevalence of the

direct usage of transitive dependencies is discussed further in Chapter 6 as a possible direc-

tion for future work. Regardless, the high lower bound of the prevalence of used undeclared

1A SoftVer declaration is a dependency declaration that contains a soft version constraint

19

4. EMPIRICAL PREVALENCE STUDY

dependencies means that any method that relies on modifying dependency declarations, like

MARCO, should consider injecting the missing direct dependencies first.

45% of projects also had at least one instance of conflicting SoftVer declarations (RQ1.2),

with 16.8 instances of conflicting version declarations on average over 5.3 unique depen-

dencies. For projects with conflicts, 28% of the total dependency declarations on average

are conflicting SoftVer constraints. From these results, we also see that projects tend to have

many instances of conflicting SoftVer constraints (16.8 conflicting declarations per project),

but each conflict is rather small in scope (3.2 conflicting declarations per conflict).

4.3 RQ2: Prevalence of Manual Conflict Mediation

Now that we have found that conflicting SoftVer constraints are common, we investigate

how often developers manually mediate SoftVer conflicts using version-overriding tech-

niques. Specifically, this section answers the question How often do developers manually

mediate SoftVer version conflicts? (RQ2). Frequent manual mediation could suggest that

Maven’s nearest-first conflict resolution strategy is not sufficient and can cause dependency-

related issues that developers need to address via manual conflict resolution. As in the pre-

vious section, this section will first explain why the methodology shown in Figure 4.1 is

sound, followed by the results for RQ2.

Methodology A SoftVer conflict occurs when there are at least two SoftVer constraints for

the same dependency that declare different versions in a project’s dependency tree. In other

words, a SoftVer conflict involves at least one instance of conflicting SoftVer declarations.

Maven can only resolve one of the declared versions and will ignore the others. Maven’s

nearest-first conflict resolution strategy is to pick the version declaration that is the closest

to the root. Maven provides two manual mediation techniques in case a developer would

want to override the dependency version resolved by Maven’s conflict resolution:

1. Use the dependencyManagement section to directly override the resolved version.

2. Declare transitive dependencies as direct dependencies to take advantage of Maven’s

nearest-first resolution strategy to control which version Maven resolves.

The first manual mediation technique using dependencyManagement can be detected by

inspecting the dependencies that the Maven Dependency Plugin marks as managed from.

The second manual mediation technique using direct declarations of transitive dependen-

cies can be detected by looking at the dependencies the Maven Dependency Plugin marked

as unused declared that also have declarations marked as omitted by conflict in the verbose

dependency tree. If the unused declared dependency also occurs in a conflict, we can be

more certain that the developer intentionally declared the dependency to control the media-

tion of the conflict, as opposed to the developer simply forgetting to remove a dependency

that is no longer used.

It should be noted that both version-overriding techniques are not robust as they are

not automatically inherited by the dependents [46]: dependencyManagement in transitive

20

4.3. RQ2: Prevalence of Manual Conflict Mediation

dependencies is ignored, and version-overriding by declaring an unused direct dependency

will also be ignored by dependents if there is another version for the same dependency

declared closer to the root. This means that manual version-overriding is not a sustainable

way to deal with dependency-related issues caused by conflicting SoftVer declarations and

requires continuous developer effort to maintain.

Results From the initial 226 projects in the dataset, RQ1 found that 103 contained at least

one SoftVer conflict. Out of these 103 projects, we see that manual mediation of SoftVer

conflicts is relatively common with 21% of the projects performing manual mediation of

at least one conflict. The vast majority (98%) of the projects have at least one conflict that

is not manually mediated. Another observation is that projects that use manual mediation

techniques seem to have more conflicting declarations (12.55) on average than projects with

unmanaged conflicts (7.2). This may indicate that Maven’s nearest-first conflict resolution

strategy may be causing issues for projects that have many conflicting declarations that

developers feel the need to manually resolve themselves. It would be interesting to see

if this observation still holds over a larger project sample, as it suggests that the risk of

introducing dependency-related issues like breaking changes that require manual effort to

resolve may increase with the increased presence of conflicting SoftVer constraints.

21

Chapter 5

Empirical Evaluation

This chapter evaluates the proposed solution (MARCO) described in Chapter 3 on empirical

data by answering RQ3, RQ4, and RQ5, which are defined as follows:

• RQ3: How successfully can we find test suites for dependencies using GitHub link-

ing?

• RQ4: How effective is the dependency-specific approach at detecting breaking and

non-breaking changes?

• RQ5: How successful is the proposed solution at improving Maven’s dependency

resolution?

Each RQ has its own section, where its methodology and results are described. RQ3

and RQ4 evaluate the two core components of the MARCO GENERATOR in isolation:

the GitHub linking algorithm (RQ3), and the dependency-specific approach for breaking

change detection (RQ4). RQ5 evaluates MARCO as a whole by applying it to real Maven

projects and investigating MARCO’s applicability and effect on Maven’s dependency reso-

lution process with respect to flexibility and stability.

All computations were performed on a system with amd64 CPU architecture running

Ubuntu 22.04.4, Maven version 3.9.6, and Java version 17.0.10. Running the same experi-

ments on a different system will likely produce different results.

5.1 RQ3: Locating Dependency Tests

This section answers RQ3: How successfully can we find test suites for dependencies us-

ing GitHub linking? To generate the compatible version range for a specific dependency

version (GAV), the GENERATOR relies on cross-version testing using the test suite of the

dependency. This is part of the dependency-specific approach to breaking change detection

and requires access to the dependency’s test suite. However, it is not common practice to

publish test jars on Maven Central [19]. If the dependency has its source code publicly avail-

able, we assume we are likely to find its tests where the source code is located. To locate

23

5. EMPIRICAL EVALUATION

the source code of a dependency, and therefore also hopefully its test suite, the GENERA-

TOR implements a GitHub linking algorithm that links the dependency’s GAV to the likely

GitHub repository and commit SHA that produced the JAR published on Maven Central.

Answering this RQ consists of looking into the following subquestions:

• RQ3.1: How likely are we to find a GitHub link for a given GAV?

• RQ3.2: Are we more likely to find test source code on GitHub than test jars on Maven

Central?

• RQ3.3: How certain can we be that the source code on GitHub corresponds to the

source code that was used to produce the JAR on Maven Central?

5.1.1 Methodology

Reproducible Central [34] is used as the ground truth dataset to evaluate the GitHub link-

ing algorithm. The dataset was cloned on January 24, 2024, from https://github.com/

jvm-repo-rebuild/reproducible-central. At this time, Reproducible Central con-

tained reproducible build specifications for 3119 GAVs over 611 Maven projects (GAs).

Each build specification includes the GitHub repository and tag (or commit SHA) that

was used to reproduce the GAV’s published Maven artifact. Build specifications where

the repository or tag field is empty or unclear due to missing variable replacements were

removed. 3094 valid data points were extracted from the initial 3119 build specifications.

To evaluate the GitHub linking algorithm (RQ3.1, RQ3.3), we provide it the GAV of

each ground truth data point and check whether the matched repository and tag match the

ground truth repository and tag. The evaluation was run on May 13, 2024. Because GitHub

repositories and tags may be removed at any time, later runs may yield different results.

To find whether tests are more likely to be found as test jars on Maven Central or as

test suites on GitHub (RQ3.2), we look up whether the artifact has a test jar on Maven

Central and whether the matched GitHub repository at the matched tag has a test suite

that is detectable by the Maven Surefire Plugin [7] which Maven uses to run tests. The

test jar is found by checking if the artifact’s repository on Maven Central has a file end-

ing in -tests.jar. The test suite is found by checking if the GitHub repository has any

files following the same default naming patterns used by the Surefire Plugin to detect tests:

Test*.java, *Test.java, *Tests.java, and *TestCase.java [9].

5.1.2 Results

The results of applying the GitHub linking algorithm to the ground truth dataset are shown

in Table 5.1. If the linking algorithm managed to produce a GitHub repository and tag

for a GAV, the result is labeled as a match success and otherwise as match failure. Match

successes are further categorized as correct match if the matched repository and tag matched

the ground truth, and incorrect match otherwise. Match failures are similarly categorized

into repo failure if no repository was found or tag failure if no tag was found.

The algorithm successfully produced a GitHub repository and tag combination for 1944

out of 3094 (63%) of the GAVs. 94% of the 1944 matches were matched using exact match

24

https://github.com/jvm-repo-rebuild/reproducible-central
https://github.com/jvm-repo-rebuild/reproducible-central

5.1. RQ3: Locating Dependency Tests

Table 5.1: Results of the Maven-GitHub linking test.

Match success Match failure

Total GAVs Correct match Incorrect match Repo failure Tag failure

3094 1874 70 1101 49

Table 5.2: How many of the Reproducible Maven GAVs have test jars available on Maven

Central, and test suites available on GitHub.

Total GAVs Maven test jar GitHub test suite

3094 62 1644

lookup, showing that the chosen common practice patterns are effective. For the GAVs

where a GitHub combination was found, 1874 (96%) matched the ground truth and 70 (4%)

did not. Out of the 1944 GAVs for which the algorithm found a match, Table 5.2 shows

that 1644 (85%) had test suites, while only 62 (2%) out of all GAVs had test jars on Maven

Central. This indicates that using GitHub linking is useful to increase the applicability of

MARCO by increasing the chance of finding tests for a given GAV.

The algorithm failed to produce a GitHub repository and tag combination for 1150

(37%) of the GAVs. The majority (96%) of match failures are repo failures, which occur

when there is no scm section in a POM or no GitHub link in the scm section. The linking

algorithm would therefore greatly benefit from more Maven projects actively using and

maintaining their scm tags. The algorithm could also be extended with support for other scm

vendors than GitHub, such as GitLab, or by utilizing dependency databases like deps.dev

[29] which stores information about GAVs such as source code repository links.

Incorrect matches and tag failures were manually inspected and categorized into failure

categories to determine the cause of failure. These results are shown in Table 5.3. The

categories are defined as follows:

Inconclusive The evaluation of the data point is inconclusive. The algorithm finds the tag

that according to naming conventions logically corresponds to the GAV, however,

Reproducible Central reports a different commit SHA not connected to any tag. For

these failures, tag linking may not return the exact source code the artifact was built

from.

Disagreement The algorithm gives a repository and/or tag that does not equal the ground

truth. These are actual incorrect matches that are correctly labeled as incorrect.

Agreement The algorithm and ground truth give different tags, but both tags point to the

same commit. These are actually correct matches that are falsely labeled as incorrect.

Invalid The ground truth repository or tag no longer exists so the data point cannot be

evaluated.

25

5. EMPIRICAL EVALUATION

Table 5.3: Breakdown of failure categories from the Reproducible Central test.

Total Inconclusive Disagreement Agreement Invalid

Incorrect match 70 61 1 8 -

Tag failure 49 - 33 - 16

Out of the 70 incorrect matches, 8 are actually correct, resulting in 62 (3%) incorrect

matches. If the algorithm finds a matching repo-tag combination, the source code is there-

fore highly likely to be what the Maven artifact was built from and is therefore suitable to

use to determine breaking changes.

It should be noted that the 611 GAs included in Reproducible Central do not necessarily

form a representative sample of the more than 500,000 GAs contained on Maven Central

[38]1. Furthermore, Reproducible Central only covers GAs that have public GitHub repos-

itories, and not every GA on Maven Central does. In practice, the match success rate on

Maven Central is therefore likely to be lower than on the Reproducible Central dataset.

To conclude, we find that GitHub linking is effective at increasing the number of GAVs

for which we can find tests. A GitHub match was successfully found for 63% of GAVs

(RQ3.1). The GitHub linking strategy found test suites for 53% of GAVs (83% of success-

fully linked GAVs), which is substantially higher than the 2% of GAVs we found test jars

for on Maven Central (RQ3.2). Although the overall match failure is relatively high (and

likely higher on Maven Central), it still results in a significantly larger number of test suites

found than test jars. Furthermore, we can be confident that the source code for the given

repository-tag combination corresponds to the source code that was used to produce the

GAV’s JAR on Maven Central: out of 1944 matches, Reproducible Central only reported a

different commit for 3% of the GAVs (RQ3.3).

5.2 RQ4: Detecting Breaking Changes

This section answers RQ4: How effective is the dependency-specific approach at detect-

ing breaking and non-breaking changes? The motivation behind this RQ is to see how the

dependency-specific approach implemented by the MARCO GENERATOR
2 measures up to

client-specific approaches in practice, and how well the dependency-specific approach can

detect breaking (and non-breaking) changes detected by client-specific approaches. Be-

cause the dependency-specific approach is independent of the client code, it will overes-

timate breaking changes since a dependency may contain breaking changes that are not

reached by a specific client’s code. On the other hand, client-specific approaches that base

behavioral compatibility decisions on client tests may underestimate breaking changes since

it is not common practice to test your dependencies [21, 47].

To answer the RQ, we evaluate the MARCO on the following five datasets:

1as of January 26, 2024
2the terms MARCO and MARCO GENERATOR are used interchangeably in this section

26

5.2. RQ4: Detecting Breaking Changes

The BUMP benchmark (n=372) [36] contains dependency version pairs that contain re-

producible client-specific breaking changes obtained from the rejected Dependabot

pull requests of GitHub projects that have failing builds or tests. Because the BUMP

benchmark only contains breaking changes, any method that simply labels all ver-

sion pairs as breaking would perform well on it. Because a dependency-specific ap-

proach will overestimate breaking changes, we expect the recall to be high on the

BUMP benchmark. To get a better indication of how well MARCO detects breaking

changes, we therefore collected a complementary dataset using a similar methodol-

ogy to BUMP but for non-breaking changes, the Dependabot dataset.

The Dependabot dataset (n=1087) contains dependency version pairs that contain non-

breaking changes collected from Dependabot pull requests of GitHub projects that

were merged with no changes based on the assumption that developers are not likely

to merge Dependabot pull requests if they break their projects. Because a dependency-

specific approach overestimates breaking changes, we expect the false positive rate

of MARCO to be relatively high on this dataset. A high false positive rate means the

resolution process will be less flexible, but as long as the false negative rate is low

developers can at least be confident that it is stable.

The UPPDATERA dataset (n=19) [21] is a qualitative dataset containing both breaking

and non-breaking client-specific dependency updates. The dataset contains three

evaluations per data point: a manual ground truth evaluation, the project test suite

evaluation, and the UPPDATERA evaluation which is based on AST differencing and

call graph analysis.

The COMPCHECK dataset (n=634) [47] is a quantitative dataset of version pairs that con-

tain client-specific breaking changes according to the evaluation by COMPCHECK

which uses cross-client tests and client call graphs.

The RANGER dataset (n=480) [46] differs from the other datasets which contain compat-

ibility decisions for version pairs. This dataset instead contains client-specific com-

patible version ranges for specific dependency versions (GAVs) that avoid vulnerable

versions of the log4j-core dependency in their direct and transitive dependencies,

which allows us to compare the dependency-specific ranges generated by MARCO

and the client-specific ranges generated by RANGER. Breaking changes are detected

using a combination of client tests and call graphs.

Evaluating MARCO on these five datasets should give us a thorough understanding of

how the dependency-specific performs at detecting breaking (and non-breaking) changes.

The BUMP and Dependabot datasets will give an overall evaluation of how well MARCO

can detect breaking and non-breaking changes at the client level, whereas the remaining

three datasets of UPPDATERA, COMPCHECK, and RANGER also serve as comparisons with

existing client-specific solutions. While it would be interesting to compare the performance

of MARCO, UPPDATERA, COMPCHECK, and RANGER on the BUMP and Dependabot

datasets, not all tools are available or easily re-run. We therefore instead run MARCO on

the evaluation datasets provided by their papers.

27

5. EMPIRICAL EVALUATION

The methodology for how each dataset is prepared before MARCO can be applied is

covered in Section 5.2.1. The evaluation of MARCO is then split into two categories de-

pending on the nature of the dataset: whether the dataset contains data points that represent

a classification or retrieval problem. Section 5.2.2 evaluates MARCO on the BUMP, De-

pendabot, UPPDATERA, and COMPCHECK datasets, which covers how effective MARCO

is at classifying a dependency update as breaking or non-breaking. Section 5.2.3 evaluates

MARCO on the RANGER dataset, which covers how effective MARCO is at retrieving all

compatible versions for a given dependency version. Finally, Section 5.2.4 concludes the

overall results and answers the research question.

5.2.1 Preparing the Datasets

Before MARCO can be applied, each dataset is cleaned and prepared into a format that

MARCO understands. MARCO can either take a version pair as input and outputs the

compatibility decision (classification), or it can take a single version as input and outputs

a list of compatible versions (retrieval). Common for all existing datasets is that they are

client-specific, meaning that they may contain duplicate data points that represent the same

dependency version or dependency version pair, just on different client projects. Because

MARCO is dependency-specific and therefore client-agnostic, the duplicate dependency

updates are filtered out. The specific details on how each dataset was obtained, cleaned, and

prepared are presented below.

The BUMP benchmark The benchmark was cloned from https://github.com/chains-project/

bump on March 22, 2024, and contained 571 data points. Before we can evaluate

MaRCo on BUMP, we need to clean it since not all data points are relevant for the

evaluation. For each data point, BUMP contains a json metadata file with the nec-

essary information we need under the key updatedDependency. From this key we

extract the name of the dependency which consists of its groupId and its artifactId,

and the ‘old’ and ‘new’ versions that define the update. This information will be used

to find the GAVs of the base (old) and candidate (new) versions used to run MARCO’s

compatibility check. 65 duplicate data points were filtered out so that the remaining

506 data points each represent a unique dependency update.

Dependency updates that are not relevant for the evaluation of MARCO were then

filtered out. First, data points with the plugin and POM update types were removed.

Plugin updates are removed since MARCO only replaces dependency declarations

and not plugin declarations. A POM-type dependency imports a set of one or more

dependencies from an external POM. An update to this POM may therefore result

in multiple GAV updates, and we do not know which specific GAV update caused

the breaking change the data point represents. Finally, Each data point has a fail-

ure category describing the cause of the breaking change which includes compilation

failures, test failures, dependency resolution failures, dependency version lock fail-

ures, and enforcer rule failures. Dependency version locks and enforcer rules are

configurations defined in a specific project’s POM and are therefore not relevant for a

dependency-specific breaking change approach, these are therefore filtered out. After

28

https://github.com/chains-project/bump
https://github.com/chains-project/bump

5.2. RQ4: Detecting Breaking Changes

all filtering steps, we were left with a cleaned dataset of 372 data points, or 65% of

the original dataset.

The Dependabot dataset Because the BUMP benchmark only contains data points repre-

senting breaking changes, we create the Dependabot dataset to serve as a complimen-

tary dataset that represents non-breaking changes using a similar but less extensive

approach than BUMP. We collect Dependabot PRs that perform a single dependency

update to a POM, and that were approved with no changes. Assuming that develop-

ers do not approve Dependabot updates that break their projects often, this should be

a relatively safe and simple heuristic as to whether an update is compatible. First,

GitHub projects were collected using the GitHub API with the following filters: cre-

ated between January 1, 2023, and March 5, 2024, Java as programming language, at

least 20 stars, and at least 50 commits. Projects that did not have a dependabot.yml

file with Dependabot enabled for Maven were then filtered out. For each remaining

project, we collected the pull requests opened by Dependabot that updated a POM file

and were merged without any changes. From the collected pull requests, we create the

update data points by extracting the GAV information from the title using the follow-

ing title pattern: ‘bump groupId:artifactId from oldVersion to newVersion’.

In the end, 1087 data points representing single dependency updates were collected

from 1748 pull requests over 85 projects.

The UPPDATERA dataset The original dataset was taken from Table 3 in Hejderup and

Gousios [21] and contained 22 client-dependency update pairs taken from Depend-

abot pull requests. 19 of the data points contained a ground truth class label cor-

responding to a compatibility decision (S/compatible or U/incompatible), the others

were filtered out. No further processing or filtering steps were necessary before ap-

plying MARCO.

The COMPCHECK dataset The original dataset contained 758 client-dependency update

pairs. Two data points were removed: one specified a range for its ‘old’ version, for

which we do not know what resolved version COMPCHECK based the compatibility

evaluation on; the other had no ‘old’ or ‘new’ version given. 18 other data points had

malformed version numbers and had to be manually corrected. For example, the GAV

com.google.guage:guava:20 was given while the version 20 does not exist, although

20.0 does. All 18 corrected data points followed this pattern of only providing the

major version as the version string. If the version string is not exact MARCO will

not be able to evaluate the data point. From the remaining 756 data points, 634

unique dependency upgrades over 430 unique GAs were extracted and evaluated by

MARCO.

The RANGER dataset The original dataset was collected by Zhang et al. [46] to evaluate

RANGER. The original dataset consisted of multiple CSV files containing a total of

4107 data points. The data points contained compatible version ranges for specific

GAVs for specific GitHub projects. Because MARCO only cares about the GAV and

not the project it is used in, 480 data points were extracted which corresponds to the

29

5. EMPIRICAL EVALUATION

number of unique GAVs found in the original dataset. Each data point then maps a

GAV to a compatible range generated by RANGER.

5.2.2 Compatibility Classification of Version Pairs

The BUMP, Dependabot, UPPDATERA and COMPCHECK datasets contain data points that

are version pairs (vold ,vnew) that represent a single dependency version update, and a com-

patibility decision whether the update is breaking (incompatible) or non-breaking (com-

patible). This information can be modeled as a binary classification problem: given a de-

pendency update, classify it as breaking or non-breaking. As the first step in generating

compatible version ranges, MARCO also performs this classification of a given version

pair. If the version pair is classified as non-breaking, then vnew is added to the compatible

versions of vold . Applying the classification step of MARCO on these datasets will therefore

evaluate how effective MARCO is at classifying breaking and non-breaking changes.

Methodology We evaluate the performance of MARCO using accuracy, recall3, and pre-

cision4, which are common metrics used for the evaluation of binary classification models

[11] and are defined as follows:

accuracy =
T P+T N

P+N
, recall =

T P

T P+FN
, precision =

T P

T P+FP
(5.1)

The BUMP, Dependabot, and COMPCHECK datasets only contain one compatibility

class, which is chosen as the positive label P. The P for BUMP and COMPCHECK therefore

refers to the breaking compatibility class, whereas P for Dependabot is the non-breaking

compatibility class. Since UPPDATERA contains both compatibility classes, we choose the

breaking compatibility class as P since it is the minority class label. Precision is only

meaningful for the UPPDATERA dataset which has two class labels, and is therefore not

reported for the BUMP, Dependabot and COMPCHECK datasets for which it is trivially 1.0.

Results The outcome of determining whether a version pair is compatible using MARCO

can be one of three options. The pair is compatible if it passes both the static and dynamic

compatibility checks. The pair is incompatible if it fails both checks. If MARCO fails to

evaluate the data point, the compatibility outcome is inconclusive. The outcome of apply-

ing MARCO to each of the classification datasets is shown in Table 5.4. Inconclusive data

points for which MARCO was unable to determine the compatibility class were manually

inspected, and Table 5.5 shows the causes of inconclusive data points. The evaluation met-

rics for each dataset are shown in Table 5.6. The remainder of this section explains the

result for each dataset in more detail.

The BUMP benchmark Out of the 371 data points, MARCO was able to successfully

evaluate 349 of them, resulting in a success rate of 0.94. Out of the 349 successfully

3also called Positive Predictive Value
4also called Sensitivity

30

5.2. RQ4: Detecting Breaking Changes

Table 5.4: MARCO results on the compatibility classification datasets.

BUMP Dependabot Uppdatera CompCheck

Total 371 1087 19 634

Statically incompatible 346 390 7 511

Statically compatible 25 576 11 123

Linked 16 374 9 67

Runnable 3 78 1 1

Dynamically incompatible 1 11 0 1

Dynamically compatible 2 67 1 0

Total conclusive 349 468 9 512

Total inconclusive 22 629 10 122

Table 5.5: Breakdown of the reasons why MARCO could not dynamically evaluate incon-

clusive datapoints in each classification dataset.

BUMP Dependabot Uppdatera CompCheck

Reason for error Link error Run error Link error Run error Link error Run error Link error Run error

No GitHub repo found 4 168 2 50

No GitHub tag found 5 34 0 6

Not a Maven project 12 139 3 13

Did not compile 0 76 5 40

Has no runnable tests 1 81 0 7

Total 9 13 202 296 2 8 56 55

Table 5.6: Summary of classification datasets and performance evaluations.

Dataset Samples Break No break Method Success Rate Accuracy Recall Precision

BUMP 372 ! MARCO 0.94 0.93 0.99

Dependabot 1087 ! MARCO 0.43 0.06 0.17

Uppdatera 19 MARCO 0.47 0.56 1.0 0.50

! ! UPPDATERA 0.33 1.0 0.43

Project tests 0.56 0.25 0.50

CompCheck 634 ! MARCO 0.81 0.81 1.0

31

5. EMPIRICAL EVALUATION

evaluated data points, MARCO labeled 347 points correctly as incompatible and la-

beled 2 points incorrectly as compatible, resulting in a recall of 0.99.

The two points incorrectly labeled as compatible were the update of org.codehaus.plexus:plexus-

io from 3.2.0 to 3.3.0 and the update of net.minidev:json-smart from 2.4.8 to 2.4.9.

Upon manual inspection, these two data points are examples of the same edge case

that the dependency-specific approach is sensitive to wrongly classify: i.e. the test

suite of the base version is lacking in coverage and the candidate version introduces

a bug (or intentional change) that is not caught by the base test suite.

plexus-io:3.3.0 introduced a breaking bug [41], which was not caught by the test

suite of 3.2.0. This bug was later fixed in 3.3.1 and a test was added to catch the bug

in later releases [14]. This means that versions containing this bug (3.3.0) could be

compatible with versions prior to the test being added in 3.3.1, but not after. However,

running MARCO on 3.2.0 with candidates 3.3.1 shows that 3.3.1 is compatible with

3.2.0, so that a project using MARCO with 3.2.0 pinned would resolve the bug-free

3.3.1 (if possible) since it is the later version in the generated range. The assumption

for this edge case not being a problem is that bugs are eventually detected and fixed

in new patch releases. And since Maven will resolve the latest version it can from a

range, the ranges essentially enable automatic bug updates.

The update of json-smart showcases a similar problem: 2.4.9 intentionally introduced

a depth limit as a security measure [12]. While not a bug, it is an example of how

client projects may rely on behavior that is not tested by the dependency. If the

dependency developers change this behavior, it may cause breaking changes in the

client as was the case here where the specific project that performs this update in the

BUMP benchmark contained a test that exceeded the newly introduced depth limit.

The Dependabot dataset Out of 1087 collected data points, MARCO was able to suc-

cessfully evaluate 468 of them, resulting in a success rate of 0.43. Out of the 468

successfully evaluated data points, MARCO labeled 67 points correctly as compati-

ble and 401 points incorrectly as incompatible, resulting in a recall of 0.06. Although

MARCO assigns the majority of data points the correct label in the static and dynamic

stage, the recall is low because 86% of data points are lost between static and dynamic

evaluation. This causes the number of data points that are determined statically in-

compatible to be disproportionately high compared to the number of data points for

which we could get a conclusive dynamic compatibility result. If we calculate recall

separately for the static and dynamic evaluation stages, we get a static recall of 0.60

and a dynamic recall of 0.86.

The UPPDATERA dataset Because this dataset only contains 19 data points, we provide

the entire dataset in Table 5.7. All data provided in the table, except from the MARCO

column, is taken from the original paper [21]. Because we do not use all of the

original class labels, we have slightly changed the definitions of the true/false posi-

tive/negative labels compared to the ones given in the original dataset: true positives

(TP) are pairs correctly identified as incompatible, false positives (FP) are pairs in-

correctly identified as incompatible, true negative (TN) are pairs correctly identified

32

5.2. RQ4: Detecting Breaking Changes

as compatible, and false negatives (FN) are pairs was incorrectly identified as com-

patible. Rows are marked green when MARCO agrees with the manual ground truth

evaluation. Yellow, orange, and red rows are updates for which MARCO disagrees

with the ground truth but agrees with two, one, or none of the other evaluation meth-

ods, respectively. Rows are marked white if MARCO did not manage to determine

compatibility.

The MARCO GENERATOR was able to successfully evaluate 9 out of the 19 data

points, resulting in a success rate of 0.47. Based on the subset of data points that were

successfully evaluated, MARCO achieves a recall of 1.0 and a precision of 0.50. On

the same subset UPPDATERA achieved a recall of 1.0 and precision of 0.43, while

project tests achieved a recall of 0.25 and a precision of 0.50.

Out of the 9 successfully evaluated data points, MARCO agreed with the ground truth

evaluation in 5 (56%) of the cases. The incorrectly evaluated 4 cases were all false

positives due to MARCO reporting static incompatibilities that were not relevant (i.e.

not reachable) by the specific project performing the dependency upgrade. In these

cases, a client-specific approach would be beneficial. Despite the high false positive

rate (4/9), the false negative rate is 0. This shows that MARCO is better suited when

favoring stability over flexibility.

For the data points where MARCO disagreed with ground truth, MARCO performs

similarly to UPPDATERA and better than project tests. Compared to UPPDATERA,

MARCO did not catch more correct decisions but that was also not expected since we

expect a dependency-specific approach to overestimate breaking changes. Indeed, for

the update of com.google.code.gson:gson from version 2.2.4 to 2.8.6, MARCO did

overestimate it as breaking while both client-specific approaches did not.

The two data points that were inconclusive due to the GitHub linking failing were

manually inspected, and the two dependencies indeed did not have GitHub reposito-

ries. The remaining 8 inconclusive data points were caused by MARCO not being

able to run the dynamic compatibility check because the linked GitHub repositories

either used non-Maven build systems, or MARCO was unable to compile the reposi-

tory.

The COMPCHECK dataset The MARCO GENERATOR was able to successfully evaluate

512 data points, resulting in a success rate of 0.81. All of the successfully evalu-

ated data points were labeled correctly as incompatible, resulting in a recall of 1.0.

Since the success rate is fairly high, we did not perform manual restoration of GitHub

repository links. Although most of the data points (81%) were correctly labeled as in-

compatible by the static compatibility check, a large part (55%) of the remaining 123

points becomes inconclusive before reaching the dynamic compatibility check. Table

5.5 shows that the majority of data points become inconclusive because they could

not be linked to a GitHub repository (50), or because MARCO could not compile it

(40).

33

5. EMPIRICAL EVALUATION

Table 5.7: Comparison of the compatibility evaluations based on manual evaluation, project

test suite, the Uppdatera tool, and MaRCo. The reason for a decision is given between

brackets for MaRCo.

PR GA Old version New version Manual Project tests Uppdatera MaRCo

spotify/dbeam#189 org.apache.avro:avro 1.9.1 1.9.2 N FP FP FP (stat. incompat.)

airsonic/airsonic#1622 org.apache.commons:commons-lang3 3.9 3.10 N TN FP FP (stat. incompat.)

bitrich-info/xchange-stream#570 com.pubnub:pubnub-gson 4.31.0 4.31.1 N TN FP - (no Maven)

CROSSINGTUD/CryptoAnalysis#245 org.eclipse.emf:org.eclipse.emf.common 2.15.0 2.18.0 N TN FP FP (stat. incompat.)

dbmdz/imageio-jnr#84 com.github.jnr:jnr-ffi 2.1.12 2.1.13 N TN FP - (no compile)

dnsimple/dnsimple-java#23 com.google.code.gson:gson 2.2.4 2.8.6 N TN TN FP (stat. incompat.)

smallrye/smallrye-config#289 io.smallrye.common:smallrye-common-expression 1.0.0 1.0.1 N TN TN - (no compile)

dropwizard/metrics#1567 org.jdbi:jdbi3-core 3.12.2 3.13.0 N TN TN - (no compile)

s4u/pgverify-maven-plugin#96 io.github.resilience4j:resilience4j-retry 1.3.1 1.4.0 N TN TN - (no Maven)

UniversalMediaServer/UniversalMediaServer#1987 org.apache.commons:commons-text 1.3 1.8 P FN TP TP (dyn. incompat.)

CSUC/wos-times-cited-service#36 org.apache.httpcomponents:httpclient 4.5.11 4.5.12 N TN FP - (no GitHub)

Grundlefleck/ASM-NonClassloadingExtensions#25 org.ow2.asm:asm-analysis 7.0 8.0.1 N TN FP - (no GitHub)

RohanNagar/lightning#211 io.dropwizard:dropwizard-auth 1.3.17 2.0.8 P TP FP TP (stat. incompat.)

zalando/riptide#932 io.micrometer:micrometer-core 1.3.6 1.4.1 P FN TP TP (stat. incompat.)

pinterest/secor#1273 com.amazonaws:aws-java-sdk-s3 1.11.763 1.11.764 N TN TN - (no compile)

michael-simons/neo4j-migrations#60 io.github.classgraph:classgraph 4.8.68 4.8.71 N TN TN TN (compatible)

zaproxy/crawljax#115 org.apache.commons:commons-lang3 3.3.2 3.10 P FN TP TP (stat. incompat.)

hub4j/github-api#793 com.squareup.okio:okio 2.5.0 2.6.0 N TN TN - (no Maven)

http://zalando/logbook#750 io.netty:netty-codec-http 4.1.48.Final 4.1.49.Final N TN TN - (no compile)

5.2.3 Retrieval of Compatible Versions

Instead of mapping version pairs to a compatibility decision, the RANGER dataset maps

a specific dependency version (GAV) to its compatible range. The compatible range can

be expanded to a list of compatible versions by retrieving the available versions within the

range, and evaluation on this dataset can be modeled as a retrieval problem: given a GAV,

retrieve all compatible versions. Applying MARCO on the RANGER dataset will evaluate

how effective it is at retrieving all compatible versions for a given GAV.

Methodology Similarly to the evaluation of MARCO’s performance on the classification

task, we evaluate the performance of MARCO on the retrieval task using recall and preci-

sion, which are also common metrics used for the evaluation of retrieval models [37, 11].

Let Vmarco and Vranger be the set of compatible versions retrieved by MaRCo and RANGER,

respectively. We define recall and precision as follows:

recall =
|Vmarco ∩ Vranger|

|Vranger|
, precision =

|Vmarco ∩ Vranger|

|Vmarco|
(5.2)

Each data point in the RANGER dataset maps a GAV to a range. We provide the GAV

as input to MARCO and record the range it outputs. Because a range only includes the

lower- and upper bounds of compatible versions, we need to unroll the range into a list

of compatible versions to be able to calculate recall and precision. The RANGER and

MARCO-generated ranges are converted to lists by looking up the available versions on

Maven Central between the lower- and upper bounds of the range. Because the RANGER

dataset was created April 1, 2023, only available versions published on Maven Central be-

fore this date were considered by MARCO to prevent it from including versions in its ranges

that RANGER did not evaluate.

Results The MARCO GENERATOR was applied to 480 data points in this dataset, but

only managed to successfully evaluate 8 of them, resulting in a very low success rate of

34

5.2. RQ4: Detecting Breaking Changes

Table 5.8: Comparison of the ranges produced by Ranger and MaRCo on the Ranger

dataset. The number after the range indicates how many versions are contained in the range.

GAV Ranger Range (#) MaRCo Range (#) Recall Precision

com.indoqa:indoqa-boot:0.12.0 [0.12.0, 0.16.0] (5) [0.10.0, 0.16.0] (7) 1.0 0.71

eu.unicore.security:securityLibrary:5.3.1 [5.3.1, 5.3.2] (2) [5.3.0, 5.3.6] (6) 1.0 0.33

org.dhatim:dropwizard-sentry:2.0.25-2 [2.0.25-2, 2.0.26-1] (2) [2.0.25, 2.1.2-4] (33) 1.0 0.06

org.robotframework:jrobotremoteserver:4.0.1 [4.0.1, 4.1.0] (2) [4.0.0, 4.1.0] (3) 1.0 0.67

org.spdx:spdx-tools:2.2.5 [2.2.5, 2.2.6] (2) [2.2.5, 2.2.5] (1) 0.5 1.0

com.helger.photon:ph-oton-bootstrap4-stub:8.3.2 [8.3.2, 8.3.3] (2) [8.2.5, 8.3.2] (8) 0.5 0.13

com.hotels:waggle-dance-api:3.9.8 [3.9.8, 3.10.12] (16) [3.9.0, 3.9.9] (8) 0.13 0.25

org.biojava:biojava-core:4.2.0 [4.2.0, 6.0.2] (47) [4.2.0, 4.2.7] (8) 0.17 1.0

Macro average 0.66 0.52

Table 5.9: Breakdown of the reasons why a datapoint could not be dynamically evaluated

in the Ranger dataset. The percentages are calculated based on the whole dataset of 480

GAVs.

Before link restoration After link restoration

Reason Link error Run error Link error Run error

No GitHub repo found 264 (55%) 172 (36%)

No GitHub tag found 23 (5%) 24 (5%)

Not a Maven project 78 (16%) 143 (30%)

Did not compile 64 (13%) 88 (18%)

Has no runnable tests 43 (9%) 45 (9%)

Total 287 (60%) 185 (38%) 196 (40%) 276 (58%)

0.02. Because only 8 data points were evaluated, we show the full evaluations for these data

points in Table 5.8. Table 5.9 lists the causes of inconclusive data points.

Because the amount of inconclusive data points caused by the GitHub repository not

being found is so high (55%), deps.dev [29] was used to manually restore the missing

GitHub repositories. In total there were 264 GitHub repository failures from 62 unique

GAs. However, five GAs were responsible for >50% of the failures, with one GA being

responsible for 23% of failures, as can be seen in Figure 5.1. The latter’s repository was

found on deps.dev, but no longer exists on GitHub. Out of the top five GAs causing failures,

only one GA had its GitHub repository link restored. In total, 92 data points with GitHub

repository failures were manually restored and MARCO re-evaluated these data points with

the manually provided repository link. However, the manual restoration did not result in

more data points being successfully evaluated. Instead, the reasons for inconclusive data

points mainly shifted from link to run errors. Noticeably, 30% of data points could not be

run because they did not use Maven as build system (e.g., Gradle, SBT). MARCO cannot

determine compatibility unless it is able to compile the GAV and run tests on it using Maven.

For the data points MARCO did manage to evaluate, we see that the recall is in general

higher than the precision. For the retrieval of compatible versions, this means that MARCO

35

5. EMPIRICAL EVALUATION

Figure 5.1: Distribution of GAs failing GitHub linking in the RANGER dataset

was in general able to retrieve most versions deemed compatible by RANGER, but the lower

precision is caused by MARCO also including versions that RANGER did not. In other

words, it seems the MARCO-generated ranges are more flexible than those provided by

RANGER even though we would expect RANGER’s ranges to be wider due to its client-

specific approach. This could be explained by the fact that RANGER’s ranges also avoid

versions of the log4j-core dependency that contain the Log4Shell vulnerability. Another

reason for the wider MARCO ranges is that downgrades are also included which RANGER

does not include. This adds to flexibility since MARCO can in some cases provide stable

downgrades in case upgrades are not possible.

5.2.4 Conclusions

To conclude, we observe that MARCO has a high recall (≥0.99) on all classification datasets

for breaking changes, as expected. The success rate is also higher on these datasets because

a lot of data points are deemed incompatible at the static check which does not require

compiling or running tests. MARCO has a low false negative rate and a high false positive

rate for detecting breaking changes. This is also confirmed by the high recall and lower

precision on the UPPDATERA dataset, showing that while false positives (breaking) are

likely, false negatives (non-breaking) are unlikely. This suggests MARCO will affect the

resolution process in a way that favors stability over flexibility. In a broader context, a high

false positive rate is favorable over a high false negative rate when stability is favored over

flexibility. The high false positive rate reduces the size of the ranges, resulting in lowered

flexibility, but compensates with a low false negative rate which gives confidence in stability

since the ranges are not likely to contain breaking changes.

When it comes to retrieving all compatible versions for a given dependency version,

MARCO achieved a higher recall than precision in general. This shows that although

MARCO in general retrieved most of the compatible versions, it also included versions

that were not included by RANGER. This indicates that the MARCO-generated ranges are

more flexible than those provided by RANGER even though we would expect RANGER’s

ranges to be wider due to its client-specific approach. The reason for this could be because

36

5.3. RQ5: Impact on Maven’s Dependency Resolution

RANGER avoids vulnerabilities, but also because MARCO includes downgrades in the com-

patible versions for added flexibility, which RANGER does not. More flexible ranges could

also mean that MARCO includes breaking versions, but the evaluation on the classification

task shows that this is unlikely.

Furthermore, MARCO produced two false negative breaking changes on the BUMP

benchmark which shows that the dependency-specific approach is affected by the quality

of the dependency’s test suite just like the client-specific test-based approaches depend on

the quality of the client’s test suite. If a dependency lacks test coverage, bugs may not be

caught by the dependency’s test suite which will cause MARCO to produce false negatives.

Finally, the Dependabot, RANGER and UPPDATERA results indicate that the low suc-

cess rate is the main threat to MaRCo’s effectiveness rather than the dependency-specific

approach for static and dynamic compatibility. The low success rate is particularly problem-

atic for detecting non-breaking changes because non-breaking changes need to pass both the

static and dynamic compatibility checks. Most data points that pass the static check become

inconclusive due to not being able to run the dynamic check due to the complications re-

lated to building and running the dynamic check. This problem is further exacerbated by

dependencies that are released on Maven Central that do not use Maven as the build system.

5.3 RQ5: Impact on Maven’s Dependency Resolution

This section answers RQ5: How successful is the proposed solution at improving Maven’s

dependency resolution? The purpose of this RQ is to evaluate MARCO as a whole, by

applying both the MARCO REPLACER to GitHub projects and the MARCO GENERATOR

to their dependencies. We compare the dependency trees of the GitHub projects before and

after applying MARCO to assess how it affected the dependency resolution processes of the

projects. Based on the results of RQ4, which found that MARCO generates ranges that have

a high false positive but a low false negative rate for breaking changes, we expect MARCO

to influence the resolution process to favor stability over flexibility.

5.3.1 Methodology

The methodology used to evaluate this RQ is separated into three steps. First, we select the

GitHub projects we will apply MARCO to. Second, before we can apply the REPLACER

to the GitHub projects, we first need to use the GENERATOR to compute the compatibility

mappings for all dependencies, and then we need to apply the REPLACER to the depen-

dencies’ POMs. Only after the compatibility mappings have been computed and the de-

pendency POMs have been replaced can we apply the REPLACER to the GitHub projects.

Finally, to determine how the resolution process has changed we calculate different metrics

using the dependency trees before and after applying the REPLACER to the GitHub projects.

Each step is explained in further detail in the following paragraphs.

Project selection GitHub projects were collected using the GitHub API using the fol-

lowing filters: created between January 1, 2023, and May 5, 2024, Java as programming

language, at least 20 stars, and at least 50 commits. For the sake of feasibility to make POM

37

5. EMPIRICAL EVALUATION

replacement easier, projects without a POM file in its root directory and multi-modular

projects were discarded so that the POM we want to replace is easy to locate. Projects that

we could not compile or did not have at least one runnable test were also discarded, since we

want to check whether applying MARCO introduced breaking changes to the project or not.

Compilation failures would indicate static breaking changes, while failing previously pass-

ing tests would indicate behavioral breaking changes. After all filtering steps, 102 projects

remained.

Applying MARCO Applying MARCO to the previously collected projects involves the

following steps:

1. Generate the verbose dependency tree for each selected project. The act of building

the projects and generating their dependency trees will download all required depen-

dencies into the local m2 folder.

2. For each declared dependency (GAV) found in the dependency trees, use the GEN-

ERATOR to compute their compatibility mappings.

3. Apply the REPLACER to the selected projects to replace their POMs.

4. Apply the REPLACER to the POMs in the m2 folder to replace the POMs of all depen-

dencies.

5. Re-build the selected project using the mvn test-compile phase, re-run the tests,

and re-generate the new verbose dependency tree. The dependency trees, compilation

and test results are then used to compute the various metrics used for evaluation.

6. If new dependencies are downloaded during the building in the previous step, redo all

previous steps until no new dependencies are downloaded. In this particular experi-

ment, no new dependencies were encountered after repeating the steps twice.

Evaluation metrics To measure how the dependency resolution process has changed,

we define 9 metrics which are described below. In addition to these metrics, which are

calculated for each project, we also look into the size distribution of the ranges generated

by MARCO to get a further indication of flexibility. The larger the ranges are in general,

the more flexible the resolution process will be.

Success rate The fraction of projects that still resolve, compile, and pass their test suites af-

ter having at least one of their dependency declarations (direct or transitive) replaced

by MARCO. A very low success rate indicates that MARCO has made the resolution

process less flexible if there is increased resolution failure, or less stable if there is

increased compilation or test failure.

Resolution failure means that there are conflicting dependency declarations that de-

clare versions that are not compatible with each other (according to MARCO). As-

suming that the project’s main branch is not in a broken state to begin with, this

indicates that there may possibly be latent breaking changes in the project that it does

38

5.3. RQ5: Impact on Maven’s Dependency Resolution

not currently reach. If the resolution process has become less flexible due to the

version ranges being too strict, adding a client-specific approach to widen the com-

patible version ranges may be necessary to reach an acceptable success rate. Because

the static compatibility check should ensure compilation, no compilation failures are

expected. Failing project test suites indicate that there are breaking changes in the

MARCO-provided version range that were not caught in the dependency’s test suite.

Replacements and Replacement rate Replacements are the total number of resolved de-

pendencies that originate from a dependency declaration that was replaced by a MARCO-

generated range. To keep track of replacements, the REPLACER adds the attribute

replaced to the version tags it replaces. The replacement rate is then the fraction

of resolved dependencies that are replacements. MARCO’s impact on the resolution

process depends on how many dependencies it is able to replace. If these metrics are

low, it suggests the impact is limited.

Downgrades and Upgrades The number of GAs for which a lower or higher version has

been resolved after applying MARCO, respectively.

Downgrade steps and Upgrade steps The sum of how many versions each downgrade or

upgrade is behind or ahead of the previously resolved version, respectively.

Change rate and Change magnitude The change rate refers to the fraction of dependency

GAs that resolve different versions after applying MARCO. The change magnitude

of a project describes the total magnitude of version changes, and is defined as the

sum of total upgrade and downgrade steps. Change rate and change magnitude give

an indication of how flexible the resolution process is, since it measures how much

the newly resolved versions deviate from the previously resolved versions.

5.3.2 Results

The results of computing the metrics are shown in Figure 5.3. Out of the 102 projects

that passed the selection process, MARCO was able to replace at least one dependency

declaration (direct or transitive) for 73 of them (71%), with 13% of a project’s dependencies

replaced on average. Out of the 73 projects with at least one replacement, all of them

still resolved and compiled while 71 (97%) passed their test suites after replacement. The

high success rate (97%) after replacement means that breaking changes are not likely to be

introduced and that the ranges are flexible enough to not cause resolution failures. However,

this number may be artificially high due to the relatively low average replacement rate of

13% and should therefore be regarded as an upper-bound.

5% of dependencies resolve a different version than before with an average version

change magnitude of 2.57, showing added flexibility in the resolution process. On average,

downgrades were more common than upgrades, and downgrades were more likely to be

larger in magnitude as well. While upgrading may be viewed as more desirable from the

perspective of bug fixes and security updates, downgrades may have been necessary to

avoid breaking changes. Because the average change magnitude is non-zero, that means

that the generated ranges must contain more than one version on average. To get a better

39

5. EMPIRICAL EVALUATION

understanding of how the ranges contribute to the change magnitude, we calculated the

range size distribution in Figure 5.2. We see that there is a large variation in the number of

versions included in the MARCO-generated ranges, with sizes from 1 to 104 versions. The

majority of the ranges only contained one version, which is the equivalent of hard version

constraints. However, many also contained up to five versions with an average of 3.82

versions.

1 2 3 4 5 6 7 8 9 10 11 12 15 20 36 10
4

Number of versions in the compatible range

0

20

40

60

80

100

120

Nu
m
be
r o

f G
AV

s

Mean: 3.82

Range size distribution over GAVs

Figure 5.2: Size distribution of ranges computed by MaRCo

The collection, computation, and evaluation steps for this RQ exceeded 20 hours. The

majority of the time (16 hours) was spent by the GENERATOR computing the compatibil-

ity mappings, which included cross-version testing of over 3500 dependencies. Replacing

102 project POMs using the REPLACER only took 10 minutes, confirming that MARCO is

lightweight on the client side, and the computationally expensive compatibility mappings

can be pre-computed and reused by multiple clients.

To conclude, MARCO was able to replace 13% of resolved dependencies on average for

71% of selected projects. The majority of ranges resulted in hard version constraints, which

lowers flexibility compared to SoftVer constraints, but increases stability. 97% of projects

with replacements did not suffer breaking changes, so the replaced ranges provide a high

degree of stability. All in all, as seen by the previous RQs as well, MARCO favors stability

over flexibility. MARCO is therefore likely to make a Maven project’s resolution process

more stable than a SoftVer-only approach, but also more flexible than a hard-constraint-only

approach.

40

5.3. RQ5: Impact on Maven’s Dependency Resolution

0.0 0.1 0.2 0.3 0.4 0.5
Change rate

0

5

10

15

20

25

30

35

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 0.05

Distribution of Change rate

0 10 20 30 40
Change magnitude

0

10

20

30

40

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 2.57

Distribution of Change magnitude

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Upgrades

0

10

20

30

40

50

60

70

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 0.15

Distribution of Upgrades

0 20 40 60 80 100 120
Upgrade steps

0

10

20

30

40

50

60

70

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 3.38

Distribution of Upgrade steps

0 2 4 6 8 10 12 14
Downgrades

0

5

10

15

20

25

30

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 1.99

Distribution of Downgrades

0 20 40 60 80 100 120 140
Downgrade steps

0

10

20

30

40

50

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 8.45

Distribution of Downgrade steps

2 4 6 8 10 12 14 16
Replacements

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 3.36

Distribution of Replacements

0.0 0.1 0.2 0.3 0.4 0.5
Replacement rate

0

2

4

6

8

10

12

14

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 0.13

Distribution of Replacement rate

0 100 200 300 400 500
Resolved dependencies

0

5

10

15

20

25

Nu
m
be

r o
f p

ro
je
ct
s

Mean: 58.92

Distribution of Resolved dependencies

Figure 5.3: Distributions and averages for each evaluation metric

41

Chapter 6

Discussion and Future Work

This thesis provides the design and evaluation of MARCO, a toolkit that influences Maven’s

dependency resolution process towards being more reliable to decrease dependency-related

problems and improve developer efficiency. We defined transparency, flexibility, and sta-

bility as core properties of a reliable dependency resolution process, and found that used

undeclared dependencies and conflicting soft version constraints are common dependency

smells that negatively affect these properties. MARCO therefore increases transparency by

injecting the missing dependencies and balances stability and flexibility by replacing soft

version constraints with dependency-specific compatible version ranges. This chapter sum-

marizes and reflects on the key findings and limitations of the work presented in this thesis,

and provides several potential directions for future work that address these findings and

limitations.

Applicability issues due to inconclusive dynamic check The main limitations of MARCO

relate to its applicability. The fewer dependencies MARCO can fully evaluate for compati-

bility, the fewer dependency declarations it can replace, and the less impact it will have on

the overall dependency resolution process. While the dependency-specific approach shows

promise in its ability to balance flexibility and stability in a way that is more scalable and

lightweight on the client-side than client-specific approaches, future work should address

its applicability issues. The applicability issues originate from the dynamic compatibil-

ity check, which requires locating, compiling and running dependency tests. Firstly, RQ3

found that the majority (95%) of link failures were caused by the POM file not contain-

ing any GitHub link. Future work relying on Maven-to-Github linking should therefore

consider using other methods in addition to the POM file, such as looking up repository

information using dependency databases like deps.dev [29], or implement search heuristics

related to the dependency’s groupId and artifactId. Secondly, RQ4 found that many com-

patibility evaluations become inconclusive due to failing to compile or run tests. Compiling

any given Maven project found on GitHub is not trivial, as the projects may require specific

or complex build instructions. Projects may also have external or environmental dependen-

cies that are missing when MARCO attempts to compile and run the tests. Future work

using cross-version testing to determine behavioral compatibility should therefore consider

how to improve compilation success, for example by investigating whether static analy-

43

6. DISCUSSION AND FUTURE WORK

sis methods like UPPDATERA [21] can be adjusted to be dependency-specific and used to

approximate behavioral compatibility when dependency tests cannot be run.

Dependency-specific compatibility is client-agnostic RQ4 and RQ5 showed that MARCO

is likely to provide stable ranges that are stricter than necessary, reducing the potential flex-

ibility of the dependency resolution process. This is logical, as the dependency-specific ap-

proach to compatibility checking is client-agnostic and clients may or may not be affected

by breaking changes in a dependency. By extending the dependency-specific approach

with a client-specific approach, the ranges could be expanded to allow for more flexibility

without compromising stability. To achieve this, future work could consider using hybrid

approaches that combine the scalability and stability provided by the dependency-specific

approach and the flexibility provided by client-specific approaches. For example, a hybrid

approach could use MARCO’s dependency-specific approach to build a knowledge base

of incompatibilities. Client-specific techniques such as reachability analysis could then be

employed to see whether the client reaches any parts of the dependency’s API that contain

breaking changes, as used by RANGER [46] and UPPDATERA [21]. The method used by

MARACAS [28] which allows ignoring breaking changes in internal parts of the API not

intended for client use could also be considered. The pre-computed dependency-specific

compatible ranges can then be expanded with previously incompatible versions where the

breaking changes are not reachable by the client. This overall approach is similar to that

of COMPCHECK [47], except the knowledge base would be built by a dependency-specific

instead of a client-specific approach.

Dynamic language features causing missed injections MARCO increases the trans-

parency of a project’s dependency resolution process by injecting used undeclared, or miss-

ing, dependencies. However, the increase in transparency is limited by the Maven Depen-

dency Plugin which is used to detect and inject the dependencies. The plugin cannot detect

undeclared dependencies that are used via dynamic language features such as Java’s Reflec-

tion API. Landman et al. [22] found that 78% of Java programs had at least one usage of

the Reflection API that is problematic for static analysis tools, such as the Maven Depen-

dency Plugin. RQ1 found that 45% of projects have at least one missing dependency but

since reflection usage in Java programs is common, the actual prevalence is likely higher

and MARCO is likely not injecting all missing dependencies. Used undeclared dependen-

cies may cause resolution, compilation, or test failure when updating a project’s depen-

dencies if the undeclared dependency’s transitive declaration disappears or changes to a

non-compatible version. Because we do not observe a high rate of resolution, compilation,

or test failures in RQ5, we do not believe missing injections pose a significant threat to the

evaluation of MARCO; however, future work could consider how we can improve the de-

tection of used undeclared dependencies that the Maven Dependency Plugin cannot detect

due to dynamic language features. Song et al. [39] developed SLIMMING, which debloats

dependencies while taking into account dependency usage through reflection. If SLIMMING

can detect unused declared dependencies, their method can perhaps also be used to detect

used undeclared dependencies due to reflection.

44

Compatibility result is subject to test coverage Whether the computed compatible ranges

are actually compatible and do not contain undetected breaking changes will depend on the

quality of the dependency’s test suite. A dependency with a low-quality test suite will likely

catch fewer breaking changes than a dependency with an extensive test suite, as seen by

the two breaking changes in the BUMP benchmark that MARCO wrongly labeled as non-

breaking in RQ4. If a test suite has high coverage, we are more confident that the test suite

adequately describes the expected behavior of the dependency. To increase the confidence

in the compatibility decisions obtained via cross-version testing, future work could inves-

tigate how test generation techniques such as EVOSUITE [18] could be used to increase

test coverage to an acceptable threshold. Test generation could not only reduce the num-

ber of false positives produced by cross-version testing when test coverage is lacking, but

also the number of inconclusive compatibility decisions caused by failure to locate or run

dependency tests.

Scaling to ecosystem-level deployment The current evaluation of MARCO performs full

dependency replacement by replacing the dependency POMs on the client’s m2 folder. A

more practical solution was presented in Chapter 3, where a mirror repository of Maven

Central is created containing pre-replaced POMs. How to efficiently set up and maintain this

mirror repository for a large ecosystem with frequent dependency releases such as Maven is

another direction for future work. Besides the mirror repository, the compatibility mappings

also need to be maintained as new dependency versions are released. The mappings are

generated using regression testing which is computationally expensive [19]. Future work

could consider looking into regression test selection techniques to optimize catching as

many breaking changes as possible with the least computation overhead.

Threats to validity Finally, we discuss potential threats to validity that may impact the

correctness, reproducibility, or generalizability of our findings, along with the measures we

have taken to mitigate these threats.

Like most software, the MARCO toolkit may contain bugs that may affect the correct-

ness of its output and, consequently, its evaluation. We have therefore performed unit testing

of MARCO’s core functionalities. While these unit tests help verify expected behavior, they

are not exhaustive and may not cover all possible inputs. Another threat to correctness is the

usage of dependency test suites to determine compatibility since the compatibility decision

relies on the quality of the test suite. Low test coverage could cause incompatible versions

to be falsely labeled as compatible. MARCO mitigates this threat to some extent by not

relying solely on test suites for compatibility, but also on bytecode differencing to catch

static incompatibilities.

The reproducibility of our results may be affected by software, hardware, and temporal

dependencies. Certain Maven projects may only resolve, compile, or run on specific plat-

forms, software, or hardware configurations. Furthermore, GitHub linking is affected by

the mutable nature of GitHub, where repositories and tags may no longer be accessible in

the future. To address this we have provided the most relevant details on the hardware and

software used, as well as when a particular experiment was performed.

45

6. DISCUSSION AND FUTURE WORK

The representativeness of the datasets used in this thesis impacts the generalizability of

our findings. First, RQ1, RQ2, and RQ5 use datasets with a relatively small sample size of

Maven projects on GitHub created since 2023. This sample may not be representative of the

larger, and older, population of Maven projects and the findings may therefore not be fully

generalizable. For example, RQ2 found over a sample of 226 projects that projects with

manual conflict declarations have on average more conflicting soft constraints than projects

that do not. It would be interesting to see if this observation still holds over a larger sample,

as it suggests that the risk of introducting dependency-related issues that require manual

effort to resolve may increase with the increased presence of conflicting SoftVer constraints.

Second, RQ3 used the Reproducible Central dataset to evaluate the GitHub linking, which

is a sample of 611 GAs with public GitHub repositories and may not be representative of

Maven Central. The linking success rate should therefore be regarded as an upper bound.

However, the primary goal of using Reproducible Central was to assess the accuracy of the

linking rather than the ability to produce links. Additionally, our finding of the low test jar

availability is also supported by a previous study using a more representative sample [19].

Finally, RQ4 uses five different datasets to evaluate MARCO’s effectiveness in detecting

breaking changes and shows consistent results so that we can be relatively confident in our

findings.

46

Chapter 7

Summary

Dependency-related issues not automatically resolved by dependency managers can be

time-consuming for developers to resolve manually. We define transparency, stability, and

flexibility as the core properties of a reliable resolution process that aims to mitigate these

issues. We identify used undeclared dependencies and conflicting soft version constraints

as two common smells that negatively affect these properties. We found that developers

often manually resolve conflicting soft version constraints, and manual resolution is more

common in projects that have many conflicting constraints. This implies that having con-

flicting soft version constraints risks introducing dependency-related problems that require

developer effort to manually resolve. We developed an automated toolkit, MARCO, which

serves as a proof-of-concept that the reliability of Maven’s dependency resolution can be

improved by changing how dependencies are declared without modifying the underlying

resolution mechanism itself. MARCO increases transparency by injecting missing depen-

dencies and balances stability and flexibility by replacing soft constraints with compatible

version ranges. Modifying the dependency declarations in this manner could simplify the

dependency management process for developers by only requiring them to specify one ver-

sion, while the resolution considers all compatible versions. The evaluation of MARCO

shows that the pre-computation of dependency-specific compatibility using bytecode dif-

ferencing and cross-version testing is a promising method that can lower the client-side

overhead of generating compatible version ranges. Clients can trust that the compatibility

result is unlikely to contain breaking changes, and can be used as a solid basis for client-

specific approaches to expand the pre-computed compatible ranges in a scalable manner

and further increase reliability through increased flexibility. We hope these results can con-

tribute to further discussions and future work towards more reliable dependency resolution.

47

Bibliography

[1] Apache Maven Project. Introduction to the Dependency Mechanism,

2002-2023. URL https://maven.apache.org/guides/introduction/

introduction-to-dependency-mechanism.html. Accessed 2023-11-13.

[2] Apache Maven Project. dependency:analyze, October 2023. URL https://maven.

apache.org/plugins/maven-dependency-plugin/analyze-mojo.html. Ac-

cessed 2024-05-20.

[3] Apache Maven Project. dependency:tree, October 2023. URL https://maven.

apache.org/plugins/maven-dependency-plugin/analyze-mojo.html. Ac-

cessed 2024-05-20.

[4] Apache Maven Project. Apache Maven Dependency Plugin, October 2023. URL

https://maven.apache.org/plugins/maven-dependency-plugin/. Accessed

2024-06-04.

[5] Apache Maven Project. Maven SCM Plugin - scm:tag, March 2023. URL https://

maven.apache.org/scm/maven-scm-plugin/tag-mojo.html. Accessed 2024-

01-20.

[6] Apache Maven Project. Maven SCM Plugin - Usage, April 2024. URL https://

maven.apache.org/scm/maven-scm-plugin/usage.html. Accessed 2024-05-20.

[7] Apache Maven Project. Maven Surefire Plugin, January 2024. URL https://maven.

apache.org/surefire/maven-surefire-plugin/index.html. Accessed 2024-

06-07.

[8] Apache Maven Project. Version Range Specification, May 2024. URL https://

maven.apache.org/enforcer/enforcer-rules/versionRanges.html. Ac-

cessed 2024-06-26.

[9] Apache Maven Project. Inclusions and Exclusions of Tests, January 2024. URL

https://maven.apache.org/surefire/maven-surefire-plugin/examples/

inclusion-exclusion.html. Accessed 2024-06-07.

49

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html
https://maven.apache.org/plugins/maven-dependency-plugin/
https://maven.apache.org/scm/maven-scm-plugin/tag-mojo.html
https://maven.apache.org/scm/maven-scm-plugin/tag-mojo.html
https://maven.apache.org/scm/maven-scm-plugin/usage.html
https://maven.apache.org/scm/maven-scm-plugin/usage.html
https://maven.apache.org/surefire/maven-surefire-plugin/index.html
https://maven.apache.org/surefire/maven-surefire-plugin/index.html
https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/inclusion-exclusion.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/inclusion-exclusion.html

BIBLIOGRAPHY

[10] Apache Software Foundation. Maven 2.0 Design Documents: Dependency Mediation

and Conflict Resolution, 2006. URL https://cwiki.apache.org/confluence/

display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution. Ac-

cessed 2023-11-13.

[11] Gürol Canbek, Tugba Taskaya Temizel, and Seref Sagiroglu. Ptopi: A comprehensive

review, analysis, and knowledge representation of binary classification performance

measures/metrics. SN Computer Science, 4(1):13, 2022.

[12] Uriel Chemouni. Release V 2.4.9, March 2023. URL https://github.com/

netplex/json-smart-v2/releases/tag/2.4.9. Accessed 2024-06-02.

[13] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. Taming be-

havioral backward incompatibilities via cross-project testing and analysis. In Pro-

ceedings of the ACM/IEEE 42nd International Conference on Software Engineering,

pages 112–124, 2020.

[14] codehaus-plexus. Release Plexus IO 3.3.1, May 2022. URL https://github.

com/codehaus-plexus/plexus-io/releases/tag/plexus-io-3.3.1. Accessed

2024-06-02.

[15] Joe Darcy. Kinds of Compatibility, 2021. URL https://wiki.openjdk.org/

display/csr/Kinds+of+Compatibility. Accessed 2023-11-13.

[16] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe. Depen-

dency versioning in the wild. In 2019 IEEE/ACM 16th International Conference on

Mining Software Repositories (MSR), pages 349–359. IEEE, 2019.

[17] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin

Monperrus. Fine-grained and accurate source code differencing. In Proceedings of the

29th ACM/IEEE international conference on Automated software engineering, pages

313–324, 2014.

[18] Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite generation for object-

oriented software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, pages 416–419, 2011.

[19] Alex Gyori, Owolabi Legunsen, Farah Hariri, and Darko Marinov. Evaluating regres-

sion test selection opportunities in a very large open-source ecosystem. In 2018 IEEE

29th International Symposium on Software Reliability Engineering (ISSRE), pages

112–122. IEEE, 2018.

[20] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. Automating dependency up-

dates in practice: An exploratory study on github dependabot. IEEE Transactions on

Software Engineering, 2023.

50

https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution
https://cwiki.apache.org/confluence/display/MAVENOLD/Dependency+Mediation+and+Conflict+Resolution
https://github.com/netplex/json-smart-v2/releases/tag/2.4.9
https://github.com/netplex/json-smart-v2/releases/tag/2.4.9
https://github.com/codehaus-plexus/plexus-io/releases/tag/plexus-io-3.3.1
https://github.com/codehaus-plexus/plexus-io/releases/tag/plexus-io-3.3.1
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility
https://wiki.openjdk.org/display/csr/Kinds+of+Compatibility

Bibliography

[21] Joseph Hejderup and Georgios Gousios. Can we trust tests to automate dependency

updates? a case study of java projects. Journal of Systems and Software, 183:111097,

2022.

[22] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. Challenges for static anal-

ysis of java reflection-literature review and empirical study. In 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE), pages 507–518. IEEE,

2017.

[23] Stephen McCamant and Michael D Ernst. Early identification of incompatibilities in

multi-component upgrades. In European Conference on Object-Oriented Program-

ming, pages 440–464. Springer, 2004.

[24] Samim Mirhosseini and Chris Parnin. Can automated pull requests encourage soft-

ware developers to upgrade out-of-date dependencies? In 2017 32nd IEEE/ACM in-

ternational conference on automated software engineering (ASE), pages 84–94. IEEE,

2017.

[25] Martin Mois. japicmp, March 2024. URL https://siom79.github.io/japicmp/.

Accessed 2024-06-02.

[26] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. Experience paper: a study

on behavioral backward incompatibilities of java software libraries. In Proceedings

of the 26th ACM SIGSOFT international symposium on software testing and analysis,

pages 215–225, 2017.

[27] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. Using oth-

ers’ tests to identify breaking updates. In Proceedings of the 17th International Con-

ference on Mining Software Repositories, pages 466–476, 2020.

[28] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. Breaking bad?

semantic versioning and impact of breaking changes in maven central: An external

and differentiated replication study. Empirical Software Engineering, 27(3):61, 2022.

[29] Open Source Insights. Understand your dependencies. URL https://deps.dev/.

Accessed 2024-06-02.

[30] Ivan Pashchenko, Duc-Ly Vu, and Fabio Massacci. A qualitative study of dependency

management and its security implications. In Proceedings of the 2020 ACM SIGSAC

conference on computer and communications security, pages 1513–1531, 2020.

[31] Cathrine Paulsen. MaRCo reproduction package. Zenodo, June 2024. URL https://

doi.org/10.5281/zenodo.12625158.

[32] Tom Preston-Werner. Semantic Versioning 2.0.0. URL https://semver.org/. Ac-

cessed 2024-06-03.

51

https://siom79.github.io/japicmp/
https://deps.dev/
https://doi.org/10.5281/zenodo.12625158
https://doi.org/10.5281/zenodo.12625158
https://semver.org/

BIBLIOGRAPHY

[33] Steven Raemaekers, Arie van Deursen, and Joost Visser. Semantic versioning and

impact of breaking changes in the maven repository. Journal of Systems and Software,

129:140–158, 2017.

[34] Reproducible Builds. Reproducible Builds for Maven Central Repository. URL

https://github.com/jvm-repo-rebuild/reproducible-central. Accessed

2024-06-03.

[35] revapi.org. Revapi, 2023. URL https://revapi.org/. Accessed 2024-06-02.

[36] Frank Reyes, Yogya Gamage, Gabriel Skoglund, Benoit Baudry, and Martin Mon-

perrus. Bump: A benchmark of reproducible breaking dependency updates. arXiv

preprint arXiv:2401.09906, 2024.

[37] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng.

Bull., 24(4):35–43, 2001.

[38] Sonatype, Inc. Statistics for the Central Repository. URL https://search.maven.

org/stats. Accessed 2024-01-20.

[39] Xiaohu Song, Ying Wang, Xiao Cheng, Guangtai Liang, Qianxiang Wang, and Zhil-

iang Zhu. Efficiently trimming the fat: Streamlining software dependencies with java

reflection and dependency analysis. In Proceedings of the IEEE/ACM 46th Interna-

tional Conference on Software Engineering, pages 1–12, 2024.

[40] The Apache Software Foundation. Class ComparableVersion (documentation).

URL https://maven.apache.org/ref/3.5.2/maven-artifact/apidocs/org/

apache/maven/artifact/versioning/ComparableVersion.html. Accessed

2024-06-26.

[41] Plamen Totev. Symbolic links to directories are not recognized as directories,

April 2022. URL https://github.com/codehaus-plexus/plexus-io/issues/

71. Accessed 2024-06-02.

[42] Lina Maria Ochoa Venegas. Break the code?: Breaking changes and their impact on

software evolution. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics

and Computer Science]. Eindhoven University of Technology., 2023.

[43] Ying Wang, Peng Sun, Lin Pei, Yue Yu, Chang Xu, Shing-Chi Cheung, Hai Yu, and

Zhiliang Zhu. Plumber: Boosting the propagation of vulnerability fixes in the npm

ecosystem. IEEE Transactions on Software Engineering, 2023.

[44] Wikipedia. Dependency hell, March 2024. URL https://en.wikipedia.org/

wiki/Dependency_hell. Accessed 2024-06-03.

[45] Lyuye Zhang, Chengwei Liu, Zhengzi Xu, Sen Chen, Lingling Fan, Bihuan Chen, and

Yang Liu. Has my release disobeyed semantic versioning? static detection based on

semantic differencing. In Proceedings of the 37th IEEE/ACM International Confer-

ence on Automated Software Engineering, pages 1–12, 2022.

52

https://github.com/jvm-repo-rebuild/reproducible-central
https://revapi.org/
https://search.maven.org/stats
https://search.maven.org/stats
https://maven.apache.org/ref/3.5.2/maven-artifact/apidocs/org/apache/maven/artifact/versioning/ComparableVersion.html
https://maven.apache.org/ref/3.5.2/maven-artifact/apidocs/org/apache/maven/artifact/versioning/ComparableVersion.html
https://github.com/codehaus-plexus/plexus-io/issues/71
https://github.com/codehaus-plexus/plexus-io/issues/71
https://en.wikipedia.org/wiki/Dependency_hell
https://en.wikipedia.org/wiki/Dependency_hell

Bibliography

[46] Lyuye Zhang, Chengwei Liu, Sen Chen, Zhengzi Xu, Lingling Fan, Lida Zhao, Yiran

Zhang, and Yang Liu. Mitigating persistence of open-source vulnerabilities in maven

ecosystem. arXiv preprint arXiv:2308.03419, 2023.

[47] Chenguang Zhu, Mengshi Zhang, Xiuheng Wu, Xiufeng Xu, and Yi Li. Client-specific

upgrade compatibility checking via knowledge-guided discovery. ACM Transactions

on Software Engineering and Methodology, 32(4):1–31, 2023.

53

Appendix A

Glossary

This appendix gives an overview of frequently used terms and abbreviations.

GA: A dependency is identified in the Maven ecosystem by the combination of its groupId

and artifactId, often abbreviated to GA.

GAV: A specific version of a dependency in the Maven ecosystem is identified by its unique

artifact coordinate, or GAV, which is the combination of its groupId, artifactId,

and version string 1.

MCR: The Maven Central Repository, the official public repository where Maven artifacts

are published for public use 2.

POM: A Project Object Model, which is an XML file that contains a Maven project’s

dependency declarations and other information required by Maven to build it3.

1https://maven.apache.org/repositories/artifacts.html
2https://central.sonatype.com/
3https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

55

https://maven.apache.org/repositories/artifacts.html
https://central.sonatype.com/
https://maven.apache.org/guides/introduction/introduction-to-the-pom.html

	Preface
	Contents
	List of Figures
	Introduction
	Related Work
	Dynamic Analysis
	Static Analysis
	Client- versus Dependency-specific Compatibility

	Achieving a more reliable dependency resolution
	Guiding the Resolution Process
	Modifying the Dependency Declarations
	Generating Compatible Versions

	Empirical Prevalence Study
	Dataset
	RQ1: Prevalence of Dependency Smells
	RQ2: Prevalence of Manual Conflict Mediation

	Empirical Evaluation
	RQ3: Locating Dependency Tests
	RQ4: Detecting Breaking Changes
	RQ5: Impact on Maven's Dependency Resolution

	Discussion and Future Work
	Summary
	Bibliography
	Glossary

