
Inferring Arithmetic Expressions
from Data

Siamak Hajizadeh (s.hajizadeh@student.tudelft.nl)
MSc thesis under supervision of Dr. David M.J. Tax

Delft University of Technology
Departement of Electrical Engineering, Mathematics, and Computer
Sciences
July 6, 2012

2

Preface

This work presents a framework for learning arithmetic expressions from a
set of observations. Our intention is to introduce a Bayesian method for
what is known as equation discovery. Our method is based on measuring
a degree of belief (posterior probability) for a set of hypothesized expres-
sions to find those which best explain the observed data. This measure is
used as the basis for choosing one hypothesis over another. In our work we
distinguish two tasks in the process of equation discovery, namely: the task
of exploring the space of arithmetic expressions and that of evaluating the
degree that an expression describes the data. Separating these two, allows
us to investigate them independently.

For the first task, we use a context-free grammar to construct a large set
of expressions which we take as our hypothesis space. The set contains a
large number of hypotheses (each an arithmetic expression) that should be
tested against the data. We also evaluate complexity of for each expres-
sion using the grammar. The complexity is presented to the model in the
form of a prior probability. Our main focus here is the second task: the
posterior evaluation using a Bayes formulation. The method tests a hypoth-
esized expression against a set of provided samples that have quantitative
input features. It calculates a likelihood probability which expresses the
degree that a hypothesis describes the data. A final posterior probability
is calculated based on the prior and the likelihood, that is the measure of
qualification for each expression.

3

4

Contents

1 Introduction 7

1.1 General problem description 7

1.2 Related works . 10

2 Learning Arithmetic Expressions as Rules 13

2.1 Generation the hypothesis space 14

2.1.1 The construction process 15

2.1.2 Drawbacks of these algorithms 17

2.2 Estimation of the constant values 18

2.2.1 Dataset structure . 18

2.2.2 Simplex optimization 19

2.2.3 Constant evaluation with labeled samples 19

2.3 Evaluation best fitting hypothesized expressions 20

2.3.1 Bayesian posterior evaluation 21

2.3.2 Prior probability . 22

2.3.3 The likelihood function 23

2.3.4 Extending likelihood to the whole training set of samples 25

2.3.5 Likelihood of the labeled data 26

2.3.6 Estimation of constants with labeled data 29

2.4 Testing our model . 30

2.4.1 A measure of similarity between the ordered lists of
expressions . 31

3 Experiments and Results 35

3.1 General overview of experiments 35

3.1.1 Construction of the hypothesis space 35

3.1.2 Training and calculation of the posteriors 36

3.2 Results per detailed research questions 37

3.2.1 How richness of domain expression set affects their
refinement performance? 37

3.2.2 Does more training data usually mean more precision? 42

3.2.3 How is the performance when using label outputs in-
stead of quantitative output values? 44

5

CONTENTS

4 Discussion, Conclusion and Future Directions 49
4.1 Concluding remarks . 49

4.1.1 Our view toward this research work 49
4.1.2 Discussion of the theory 50
4.1.3 Experiments . 51
4.1.4 Strengths and weaknesses 52

4.2 Directions of future research and improvements 53
4.2.1 Exploration of the hypothesis space 53
4.2.2 Estimation of noise in data 54

6

Chapter 1

Introduction

1.1 General problem description

If one is provided with a set of data samples, each with one or more features
as input values and one output value, one may be interested in a model that
when provided with the inputs, can predict the output. This is a very gen-
eral idea behind many regression and classification tasks (see for example
[16, 10, 28]). What is common between many of methods in the field of
machine learning is that they learn weights, parameters, or adjustments for
a predefined structure. Take any learning algorithms: Gaussian processes
[21], Support Vector machines [5, 9], etc. for example; the learner has one
fixed structure that updates it (i.e. its parameters, etc) when it is exposed
to observations (Gaussian processes adjust their distributions, while SVM,
applying a kernel, searches for maximum margins). Many of prevalent ma-
chine learning approaches look for adjustments of the tool model that they
already have, in order to best predict the outputs.

However, there is another way to posit the prediction task under a different
type of learning: the learning of concepts. In a domain of data samples,
a concept defines a subset of these samples that share a common property
[2, 20, 23]. Concept thus by itself is a very general notation that can be
reduced to more concrete specifications. In the domain of folk biology for
example, given the set of all animals the subset including all birds defines the
concept bird, while animal is a more general concept that includes birds as
well as the rest of animal kinds. See [24, 13] for a wealth of similar instances.

A concept can also be a logical relation (i.e. one with logical variables and
operators) [27, 12, 8]. This relation is sometimes defined as a rule among
the Boolean (or Fuzzy [4]) elements of an input vector [23, 7]. For the do-
main of folk biology, “Has wings” and “Lays eggs” are two Boolean features
that have the value True, and “Breastfeeds” is an example of one with False

7

CHAPTER 1. INTRODUCTION

value, for the class of birds. A rule defining the concept of bird then can be
stated as:

“(Has wings) ∧ Lays eggs ∧ not(Breastfeeds)”.

Goodman et al. in [7] propose a method for learning such formulas (as rules)
1 that is based on Bayesian rule learning. We will discuss more details on
this as it is one of the main sources that this work is based upon.

Here, we look to apply a similar method to the domain of arithmetic expres-
sions (as compared to logical expressions). Our goal is to find an expression
such that it fits best to a set of observations. These observations include a
set of quantitative inputs and one quantitative or labeled output. A solu-
tion is an arithmetic expression that is a function from the input set to a
resulting output. The closer that result is to the actual output, the better
fit is that expression. In case of observations with labeled outputs, we do
not have the result as a numeric value. We will later explain the challenges
we face in this regard.

We define a grammar for the task of generation of arithmetic expression hy-
pothesis space. Our grammar is a standard arithmetical expression grammar
that parses simple expressions consisting of basic math operators. The gram-
mar is limited to addition, subtraction, multiplication, division, constant-
valued powers, and brackets. It is always possible to extend the grammar
to parse expressions that contain other, perhaps more complex operations.

There is a drawback to this way of using the grammar however, and that
is the more symbols the grammar contains the wider becomes the range of
producible expressions. As a result, it requires more time and space to pro-
duce all expressions up to certain depth of the parse tree. We will introduce
some possible improvements on exploration of the hypothesis space later in
chapter 4. These approaches are not implemented in our work. Here we
only confine ourselves to a time (or iteration count) criterion, to produce
a reasonable (but not exhaustive) number of expressions as our hypothesis
space. We then remove redundant expressions and we estimate constant
values inside generated expressions using a Simplex optimization module,
all as steps of generating the hypothesis space.

By the means of the grammar we also calculate a complexity for each ex-
pression and we use it as the prior probability to the Bayesian posterior
evaluation. Also a likelihood probability is calculated for each expression

1By formula we infer the same as rule, expression, and function. Throughout this
document, they are often used interchangeably.

8

1.1. GENERAL PROBLEM DESCRIPTION

that expresses its ability to explain the observed data. We finally calculate
a posterior probability for all expressions. We call this process Bayesian
posterior evaluation. Based on this evaluation, we judge a relative degree
they fit to the data. Figure 1.1 shows an overview of the steps taken for
achievement of the posterior values.

Posterior Calculaion

Figure 1.1: Figure shows general step taken for construction of the hypothe-
sis space and calculation of the posterior values per expression. A grammar
G and a set of observed samples A (the training set) are given to the model.

We have kept the two phases illustrated in Figure 1.1, as much independent
as possible. This allows the exploration of the hypothesis space to be studied
as a separate problem. The posterior calculation phase is an evaluator for
any generated hypothesis, no matter how these hypotheses are produced.
As we shall discuss, our method of exploring the hypothesis space is a naive
one. We suggest some other alternative ways for exploration of the hypoth-
esis space later. Our main target of interest during this work hass been the
second phase: the posterior calculation.

In real world, there are cases where a relation function is adjusted to explain
the behavior of a response variable with regard to a number of explanatory
variables. An instance of this is when a researcher has gathered a number
of observation from a physical phenomenon and is now trying to understand
what might be the mathematical relation that binds the input to the out-
put variables. Our method is a general framework that can be applied to
similar domains of same idea for what is known as Equation discovery. We
use hand-seeded data for both training and testing purposes in all of our
experiments. It should be mentioned that our data is noisy. This is an

9

CHAPTER 1. INTRODUCTION

important assumption that we make while looking for the expression which
best describes the data. In fact without this assumption, the problem re-
duces to simply looking for the expression that exactly predicts most of the
observations.

1.2 Related works

Our approach toward discovering arithmetic expressions is sometimes called
learning of rules. We see arithmetic expressions as rules (similar to Boolean
expression example) that binds the the input and output observations. There
has been a few other equation discovery techniques in the literature. The
field is introduced by pioneering Langley et. al. [14] who used heuristics to
extract the equations from data. Also, we mostly benefit from the work by
Todorovski et. al. [26] where they introduce a grammar to parse arithmetic
expressions. They argue that because their domain of expression is limited
to equations that are specific to a certain domain (i.e. equations of a cer-
tain structure applied to a certain type of data), a biased grammar helps
them search only a sub-domain of all expressions. That sub-domain can be
proportionally very small compared to the domain of all expressions parsed
by a non-specific grammar. They call this speacial grammar the declarative
bias. We however, allow all types of expressions using a general grammar.

In their work Todorovski et. al. also use simplex optimization for evaluation
of the constants in produced equations. This is again, what we do with all
arithmetic expressions in the hypothesis space. We evaluate the constants
with regard to a error function that is to be minimized. Unlike their ap-
proach though, our work is not limitted to a special type of equations. It
can be applied to any arithmetic expression only by adding the necessary
mathematical operators to the grammar.

The rule-based view point in our work is inspired by the work of Goodman
et. al. [7]. They use a set of features (or criteria) to specify the range of
sub-region in the problem space. For the birds example, these can be a pair
of “tapered wings” or a “cone-like beak” with a “short-sized neck”, which
limit to birds such as sparrows and warblers.

There are a number of other approaches that build rules of similar struc-
tures. The well-known Nosofsky et al. RULEX model [19] for instance, is
designed based on the idea that humans often learn rules and memorize
cases that are exceptions. They present a general scheme that searches for
a general rule describing a concept. It then adds exceptions (themselves as
rules) to the general rule, as it encounters with the exceptions over which a

10

1.2. RELATED WORKS

compliance failure occurs.

Because our framework takes many ideas from them, let us now describe
how Goodman et al. have proposed their own model of rule-based concept
learning. In general, they take the rules to be a disjunctive normal form
(DNF) logical expression with Boolean-valued features as binary variables.
If “the ith feature of a concept C has value equal to 1” then it can be noted
as: fi(C) = 1. A formulation such as (f1(C) = 0 ∧ f2(C) = 1) ∨ (f2(C) =
0 ∧ f3(C) = 1) is a basic definition of a concept. In order to generate the
logical expressions (each a hypothesized concept) that shape the hypothe-
sis space, Goodman suggests a context-insensitive grammar that can derive
DNF formulas. Starting from an initial symbol, each formula is resolved to
a number of predicates and then to terminal symbols.

The grammar represents the whole hypothesis space in a concise structure.
In fact, having such automaton is like having the whole set of hypotheses.
What remains up to the learner given the samples, is that it should try
to find the fittest hypothesis; here a Boolean expression. We use the same
idea in our domain using a grammar that parses arithmetic expressions. In
both cases, we search for a parse that most probably identifies the concept
containing all the samples.

Having the hypothesis space expressed by the means of the grammar, next is
to calculate a prior probability and a likelihood function. Since the grammar
can run infinitely, the expressions while always well formed (and meaning-
ful), can grow too large and sophisticated to be expressive. Goodman et. al.
suggest that this process needs to be in control. They induce this control
(as we do) by the means of the prior probability calculation which favors
simpler expressions. This priori is a measure of complexity for each Boolean
expression and it is based on the derivation steps that leads to formation
of that expression. Each derivation in their grammar, has a certain prob-
ability of being selected. These probabilities are defined in a way to be
least informative [11]. That is, when there is no reason to believe that one
derivation is more probable that another, equal probabilities are assigned to
them. The final prior probability for an expression thus, is directly affected
by the number of derivation that has resulted in that expression. The more
the number of derivations and hence the complexity, the less is the the final
prior probability evaluation for that expression.

Another influential factor in Goodman’s work is the likelihood function. The
likelihood function measures the degree a hypothesized expression explains
the observed data. It is defined formally for a hypothesized expression,
as the probability of observing the data we have observed, given that the
expression is actually the true underlying function. We also use a similar

11

CHAPTER 1. INTRODUCTION

definition for evaluating our arithmetic expressions in our work.

For the rest of this report, we first start by describing how we construct our
hypothesis space using a defined context-free grammar and our approach
to calculation of a Bayesian posterior in Chapter 2. In Chapter 3 we will
perform some experiments on the framework and evaluate it from different
aspects. Finally we conclude in Chapter 4 and also suggest some future
directions of further improvements and extensions.

12

Chapter 2

Learning Arithmetic
Expressions as Rules

This chapter explains our approach of learning arithmetic expressions from
the provided training data. Our method involves generation of a hypothe-
sis space of expressions and calculating a measure of expressiveness for all
expressions while regarding the data.

Having observed a set of samples A = {si = (xi, yi); i = 1, · · ·n} of numeric
feature values we assume that the data follows an arithmetic relation that
holds between the input feature vector xi and the output yi. We search a
hypothesis space of arithmetic expressions for such relation. We hold the
assumption that the observations are meant to be sampled from one true
relation f according to which input vector xi relates to the output value
yi. To find the a best fitting expression, we introduce a Bayesian evaluation
model that identifies these expressions from a set of hypothesized arith-
metic expressions called the hypothesis space. Such space is characterized
by a grammar G that parses arithmetic expressions of some certain com-
plexity.

We start by construction of the hypothesis space using the grammar. Later
we calculate the prior probability and the likelihood given the training set.
Calculation of posterior value per expressions is an independent task of the
hypothesis space and hence, independent of the grammar. It is therefore
possible to use the idea over other similar rule-based domains. It should be
noted that our approach is mainly inspired by the work of Goodman et. al.
[7] which propose a similar framework for the domain of Boolean expressions.

By means of the grammar we construct the hypothesis space H of arithmetic
expressions. Each expression r ∈ H is regarded as a plausible hypothesis
that might explain the observed data. Using the model, we look to estimate

13

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

this plausibility as probability P (r | A) that expresses the degree of belief in
that the expression r is in fact that underlying true relation f . We assume
that all observed samples in training set comply with the true function f
(with an added noise) and therefore positively exemplify the concept rule
that is expressed by f . This is sometimes called strong sampling [25]. In
this chapter we first explain the generation of a hypothesis space which is
our approach to exploration of the domain of arithmetic expressions. We
then continue to the details of the training phase.

2.1 Generation the hypothesis space

We use a context-free grammar to generate a large set of expressions. Each
expression consists of variables, operators, and constant coefficients. The
number of variables in the grammar is the same as the number of variables
in data. Our grammar also locates constant coefficients in expressions. Fig-
ure 2.1 shows the CFG grammar that we use. Both constant value terminal
symbol (c) and non-terminal variable symbol V can be directly derived from
non-terminal T which is an indicator of a term. By replacing a term with a
constant coefficient c, the grammar determines that a constant value should
be inserted somewhere in the expression.

E→ F | −F | E+ F | E− F

F→ T | F ∗ T | F/T
T→ V | c | V∧c | (E) | (E)∧c
V→ x1 | x2 | · · · | xn

Figure 2.1: A transition function-based representation of the context-free
grammar to parse and generate arithmetic expressions is illustrated. The
left hand side of each transition arrow (→) is a non-terminal symbol in the
grammar. The right hand other side of the arrow list all possible productions
of that non-terminal, separated by a | sign. E is the so-called initial symbol
of the grammar.

Besides a constant, a non-terminal V can reduce to any of the variable that
each correspond to one of the sample features in the dataset. It can also re-
duce to a variable to the power of a constant (V∧c), an expression in brackets
and an expression to the power of a constant. The grammar starts parsing
by the initial symbol E which indicates an expression. An expression is the
divided to a number of factors that are added or subtracted. Factors in turn
are made from multiplication and division of terms.

14

2.1. GENERATION THE HYPOTHESIS SPACE

2.1.1 The construction process

As described, our hypothesis space consists of a set of arithmetic expressions.
We generate these expression using the grammar. The algorithm used for
the generation, traverses the grammar tree replacing each non-terminal by
all its possible derivations. Figure 2.2 represents this algorithm.

Begin
input Grammar G;
output Set of expressions as hypothesis space H∗;
define Queue Q;
Q← {< E >};
repeat

s← Q.retrieve-from-head();
if s has a non-terminal sybol then

n← first non-terminal symbol in s;
for all t ∈ Productions(n, G) do

s′ ← replace n in s with t;
Q.add-to-end(s′);

end for
else

Add s to H∗;
end if

until time criterion is met;
return H∗;

End

function Productions(non-Terminal n, Grammar G)
return a set of strings containing all right-hand-sides of productions

of n in G;
end function

Figure 2.2: Figure shows the algorithm which uses a queue to breadth-first
search (BFS) the domain of simple arithmetic expressions, by exploring the
grammar (Figure 2.1) tree. Until some time criterion, it repeatedly retrieves
a string s from the head of the queue, extracts a non-terminal symbol n of
that string and replaces it with all its immediate derivations.

Initially a symbol E (in the form of a string) is added to the container. Then
iteratively a string is picked out of the container and one of non-terminal
symbols in that string is chosen. Finally the non-terminal is replaced by
all its immediate products and all resulting strings are added back to the

15

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

container. At each iteration, if the string picked from the container does
not have a non-terminal symbol in it (which indicates that it consists of
only terminal) then it is a valid arithmetic expression and is added to the
final list. These steps continue until some time criterion is met. The con-
tainer used in the algorithm is a queue. It is used to retrieve a string from
the head and append derived expressions to its end. This implements the
breadth-first exploration in which as the algorithm runs further, more com-
plex expressions are generated. It is worth mentioning here that a depth-first
implementation is of no use here, simply because the grammar tree has an in-
finite depth and the algorithm will never get out of the first branch it enters.

There is a second method for exploring the grammar that assures all ex-
pressions with parse tree up until a certain depth are contained in the final
results. Instead of adding only results from derivation of one non-terminal,
in this method all non-terminals of the picked string are replaced by their
immediate products in all combinations. For instance if a selected string is
F ∗ T which has two non-terminals F and T (with 3 and 5 products), that set
of all combinations will have 15 strings in it, all ultimately added to the end
of the queue. Figure 2.3 shows this algorithm in more details.

Begin
input Grammar G, integer depth;
output Set of expressions as hypothesis space H∗;
define Queue Q;
i = 0;
Q← {< E >};
repeat

s← Q.retrieve-from-head();
if s has a non-terminal sybol then

N ← the set of all non-terminal symbols in s;
for all n ∈ N and t ∈ Productions(n, G) do

S′ ← all replacement combinaions of nonterminals;
Q.add-to-end(S′);

end for
else

Add s to H∗;
end if
i = i+ 1;

until i > depth+ 1;
return H∗;

End

function Productions(non-Terminal N , Grammar G)

16

2.1. GENERATION THE HYPOTHESIS SPACE

return a set of strings containing all right-hand-sides of productions
of N in G;
end function

Figure 2.3: Similar to 2.2 the algorithm here performs a BFS on the gram-
mar tree, with the exception that pushes all non-terminal symbols of a
retrieved string forward one step at a time. In this way, it guarantees that
all expressions up to a certain depth are produced and added to the final
list.

By applying both of these algorithms a primary list of arithmetic expres-
sions is created. Afterwards, a refinement procedure removes expressions
that are redundant (i.e. have an equivalent expression in the list in any of
the ways mentioned above). This procedure uses MATLAB Symbolic Math
toolbox for determination of equivalence between the two expressions. We
also use a hash table data structure to be able to quickly look for equivalent
expressions and remove the redundancies.

2.1.2 Drawbacks of these algorithms

Generally speaking, the idea to have a grammar to produce the hypothesis
space can be a practical way of exploring the hypotheses for many domains.
For example the domain of Boolean expressions is a fine target for such way
of solution generation. For the domain of arithmetical expressions though,
this may be inefficient. There are two main reasons for that. Firstly, un-
like Boolean expressions that can be converted to standard normal forms,
there is not any normal form for math expressions. This complicates the
generation process in that many redundancies can occur while generating
the expression. For example, x1 × (x2 + x3) is mathematically equivalent
to x1 × x2 + x1 × x3. However, the two expressions are not grammatically
equivalent. Another type of redundancy occurs when constant coefficients
are let inside the expressions. As described, the grammar locates coeffi-
cients into the expressions. These coefficients are fitted later using an error
minimization technique. As a result this, it can happen that two different
expressions become equivalent. To give a simple example, x1 × c and x1/c
are equal despite mathematical inequality. If c in the first expression is fitted
to a value v then the second c will be fitted to 1/v due to them both being
optimized for the same data. This is not an issue with Boolean expressions,
since a grammar can be used to only parse expressions in disjunctive normal
form (DNF).

There is a second problem that arises when using a grammar to produce the
the set of expressions that is our hypothesis space. The number of expres-

17

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

sions that can be generated is huge even when we want to limit ourselves to
a certain depth. For the grammar above this number gets to the order of
5.5 × 1021 when all expressions with parse tree of depth less than or equal
to 8 are retrieved [26]. This results a time consuming process for generation
of the hypothesis space and compels us to limit ourselves to expressions of
certain complexity (with parse tree up to certain depth). Although the tar-
get of this work is not to introduce an efficient method of arithmetic space
exploration, we will propose some improvements to this process later in fu-
ture directions section.

2.2 Estimation of the constant values

Having the list of expressions purified off the redundant ones, our method
then includes training and testing phases. The training phase consists of
estimation of constant values, calculation of the likelihood function, and cal-
culation of the posterior value per expression. The two latter steps alongside
the priori calculation, are parts of the Bayesian posterior evaluation for pro-
moting fittest hypotheses (expressions) given the training data. The testing
phase consists of exposing the trained module to the test data. We will
investigate some tests and experiments in Chapter 3. For now we continue
by describing the training phase.

2.2.1 Dataset structure

We continue by describing the structure of our target datasets that are used
for both training and testing phases. For both tasks of training and testing
we use a number of samples. The training samples are a subset of dataset
samples that we use for training steps (e.g. evaluation of constant coeffi-
cients inside expressions and calculation of likelihood). The rest is used for
testing of the model. We already denoted this set by A. Each sample is
represented by a number of inputs (features) denoted as a vector xi and and
an output value yi. One such pair (xi, yi) locates a point in the quantitative
problem space. As mentioned, we assume that there exists a true function
f that relates xi to yi. The point since being a positive example of it, lies
somewhere near the target function that we are searching for and we refer
to as f(xi). Because the data has noise, the samples seldom comply fully
with the true function:

yi = f(xi) + εi

where

εi ∼ N (0, σnoise)

(2.1)

18

2.2. ESTIMATION OF THE CONSTANT VALUES

The noise ε has a Gaussian distribution with mean equal to zero and stan-
dard deviation equal to σnoise.

2.2.2 Simplex optimization

First step of the training phase in our framework is the estimation of the
constant coefficients that has been placed inside the formulas by the gram-
mar. Before the expressions can be used for Bayesian posterior evaluation
and testings, the constant values must be determined so that the expressions
become meaningful. Testings and likelihood evaluation (a part of Bayesian
posterior evaluation) need the expressions to only leave feature variables
unassigned, so that they would be assigned from the dataset.

For evaluation of the constants we use Nelder and Mead (down-hill) Simplex
algorithm [17] which is a widely used [26] nonlinear optimization technique.
For optimization of an expression r(x1, , xn, c1, , cm) (where xis are the input
variables and cjs are constant values that are to be estimated), the following
sum of errors is minimized.

min
c1...cm

∑
A
|yi − rxi(c1, ..., cm)| (2.2)

Here rxi(c1, ..., cn) is the expression r(xi1, , xin, c1, , cm) with xi assigned from
samples in A. The Nelder and Mead minimization module1 then starts from
an initial random assignment and iteratively adjusts the cj ’s until either a
maximum number of iterations is reached or the error measure has con-
verged. In both case the final results are substituted inside expressions in
place of the constant coefficients.

2.2.3 Constant evaluation with labeled samples

In addition to quantitative datasets, we use another type of datasets in our
study and that is when numeric output values yi’s are replaced with labels
li’s which merely indicates whether the output of f(xi) is positive or nega-
tive.

1We use Flanagan’s Java library [6] to compute down-hill Simplex algorithm for mini-
mization.

19

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

li = sign(f(xi) + εi), εi ∼ N (0, σnoise) (2.3)

We use Simplex for constant estimation, in case of labeled data as well.
Here, the function to be minimized is the number of samples that the pre-
dicted outcome sign(r(xi)) does not match the actual label li. Since the
sign function returns 1 and −1 for positive and negative respectively, the
summation in equation 2.2 does not change much for the case of labeled data:

min
c1...cm

∑
A
|li − rxi(c1, ..., cm)| (2.4)

If a predicted label matches the true label, then the absolute value in the
summation results a zero and otherwise results 2. Therefore, the summation
is minimized when highest number of matches occur which is what we need.
It is worth mentioning that although the Simplex module performs better on
some types of functions (e.g. smooth, continuous, and with fewer local op-
timums), it is independent of the type of function that it is minimizing [17].
In cases that the minimization function is a non-smooth and non-continuous
(as in equation 2.4) the module explores the parameter space by taking large
steps from a random initialization. Depending on the amount of variation in
the target function, the steps are adjusted as the solutions start to converge.

2.3 Evaluation best fitting hypothesized expres-
sions

After estimation of the constant values in the expressions, we can now apply
the Bayesian model to select bests among all expressions. The Bayesian pos-
terior probability calculation involves calculation of the prior and likelihood
probabilities, and, calculation of posterior based on Bayes rule. Our work
is mainly inspired by the Bayesian approach in [7]. We start by describing
the general Bayesian solution to the fittest hypothesis. We then discuss how
we evaluate the prior probability and why we do it in this way. Finally,
likelihood function and the difference in calculation of it, when dealing with
label or numeric output data are presented.

20

2.3. EVALUATION BEST FITTING HYPOTHESIZED EXPRESSIONS

2.3.1 Bayesian posterior evaluation

Given a set of samples (denoted by A) that positively exemplifies the true
arithmetic relation f underlying the samples, we are in search of an expres-
sion r that best fits the data. We described that having created a hypothesis
space of expressions (hypotheses) our goal is to find the fittest among them.
To achieve this, posterior probability for each expression in the hypothesis
space is evaluated. The main goal of this work is to have posterior evalua-
tion tuned in a way that it is actually a good measure of such compliance
to the training data. We use Bayes rule to evaluate the posterior values.
Equation 2.5 shows Bayes rule application in this context.

P (r | A) = P (A | r)P (r)

P (A)
P (r | A) ∝ P (A | r)P (r)

logP (r | A) ∝ logP (A | r) + logP (r)

(2.5)

The first equation is the Bayes rule that relates the priori P (r) and the like-
lihood function P (A | r) to the posterior P (r | A). Since the denominator
of the first equation is independent of the hypothesis that is being tested, it
plays no role in comparison of posterior values of expressions and thus can
be omitted. Calculation of prior and likelihood values often tends to result
very small values. By taking the sum of logarithms we avoid dealing with
such small numbers and subsequent data truncations in computations.

The posterior probability can be interpreted as an overall estimate of the
degree of belief that expression r is actually the underlying relation f of the
data. It is constituted of two factors. One is a priori knowledge about the
hypotheses and how plausible is their occurrence. We intuitively find a large
and complex expression less authentic compared to a rather simple one. It
is also true that if two expressions describe the data equally well we prefer
the simpler one over the more complex one.

The second factor is the likelihood function. Particularly, P (A | r) given
that the expression r is in fact the underlying true function, is the proba-
bility that we observe all the samples we have in A. That is, regardless of
specifications of an expression, the likelihood expresses the degree that the
expression explains the data. By combining these two factors the posterior
value of an expression is influenced by both its qualifications regarding only
the domain knowledge, and its expressiveness regarding the observations.

21

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

2.3.2 Prior probability

For each expression to be derived by the means of the grammar, a series
of productions (each with single non-terminal as its left-hand and a string
of terminals and non-terminals as its right-hand side) are applied (see Fig-
ure 2.1). Suppose that we want to generate an arithmetic expression. This
starts from a string containing only the initial symbol E and then continues
by randomly selecting a production rule for each non-terminal in the string.
The process runs until no non-terminal symbol remains in the string. Since
all productions of a non-terminal, have equal probabilities of being selected,
this probability will be one divided by the number of productions. Because
every string is uniquely parsed (i.e. it is result of a unique sequence of
derivations) for a string r to be generated, a certain set of production rules
(denoted as ∆r) are applied. Therefore, the probability of r to be the result
of our random walk, is equal to multiplication the probability of all produc-
tions δ in ∆r.

P (r) =
∏
δ∈∆r

P (δ) (2.6)

Replacement of a non-terminal by its production is called transition. Selec-
tion of equal probabilities for all productions of a non-terminal is set due
to the principle of indifference [11]. It states that in case there is no reason
to favor one output of an event over another, selecting the least informative
prior is the best choice. The transition probability distribution is a uniform
distribution over all possible outcomes of a non-terminal to favor all equally.

A consequence of such prior is that more complex expressions get less prob-
ability of being generated than simple ones. An expression (string) with
higher number of transitions, have more probabilities multiplied together
and thus its prior probability has shrunk more. In the set of expressions
that we generate, there are expressions that are arithmetically equal while
being syntactically different. We remove these expressions and we only let
the simplest expression to remain. We also calculate the probability only
based on the simplest expression, among all sets of arithmetically equal ex-
pressions. Figure 2.4 shows an example of prior probability calculation for
a simple expression c ∗ x1 + x2.

In Figure 2.4 all derivation steps for a simple expression are illustrated. The
final prior probability will be equal to 0.252×0.333×0.23×0.52 ≃ 4.49×10−6.
As observable in the figure the larger the parse tree grows the more smaller-
than-one numbers are multiplied into the prior probability.

22

2.3. EVALUATION BEST FITTING HYPOTHESIZED EXPRESSIONS

Figure 2.4: Figure shows probabilistic derivation of expression c ∗ x1 + x2.
Multiplying all single step transition probabilities will result prior probabil-
ity of the whole expression.

There are however some problems with this method of prior probability
calculation. We use prior probability as a measure of complexity of the
expressions. The idea is to favor simpler hypotheses opposed to the more
sophisticated ones. Using a grammar to determine such simplicity is not
an immediately clear way to determine the arithmetic behavior of function
though. For example prior probability for expression c ∗ x1 ∗ x2 with the
same method of calculation will be 0.25× 0.333 × 0.23 × 0.52 ≃ 1.8× 10−5.
Arithmetically though this expressions is not less complicated than the one
in Figure 2.4, if not more.

As a result this measure of prior calculation is not precise. However, it
fulfils our requirements to some extent. We want the two above-exampled
expressions to be equal in measure of simplicity and they are in a way, ap-
proximately. The difference between them becomes insignificant when we
use log calculations for final evaluation of posterior value. Compared to a
large expression with several terms and hence with a very small prior proba-
bility these simple expressions are still favored enough in terms of simplicity.
It is however, still not precise.

2.3.3 The likelihood function

We discussed that the likelihood is a measure of expressiveness of an ex-
pression regarding the set of observed samples. As the number of observed
samples (i.e. the size of the training set) grows the likelihood tends to de-

23

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

crease. We will first demonstrate how the likelihood is calculated based on
one observation (sometimes called a stimulus). For now lets focus on the
case that the output feature is a numeric value. If the observed sample
s : (x, y) lies exactly on the sub-space of expression r we expect the like-
lihood probability to be at its maximum. This occurs where r completely
complies with s. In contrast, the further s is located from the sub-space
corresponding to r, the less becomes the likelihood P (s | r). To model this
reverse relation with distance, we use a Gaussian distribution:

P (s | r) = P ((x, y) | r) = P (y | x, r)
= Nr(x),σ̂noise

(y)

=
1

σ̂noise
√
2π

exp

(
−(y − r(x))2

2σ̂2
noise

) (2.7)

where Nr(x),σ̂noise
is the Gaussian distribution function with mean and stan-

dard deviation equal to r(x) and σ̂noise respectively. Figure 2.5 illustrates
an example where x is assumed to be a vector of only one input.

Figure 2.5 shows an example case where only one feature is shown as x′.
Notice that the point (x′, y′) is not located exactly on the top of the true
function f . This is due to the noisiness of the outcome values in the dataset.
The shaded bell in the graph is the Gaussian probability density function
Nr(x′),σ̂noise

which is centered on r(x′) and has the standard deviation equal
to σ̂noise. As the distance between r(x′) and y′ grows the probability density
decreases. The highest density occurs when the distance between the two
point becomes zero.

What is important to note here, is that we choose σ̂noise a constant value,
regardless of the dataset on which we are conducting the experiments. As
a result, the likelihood probabilities are not accurate measurements of the
exact probabilities and are not to be referred to judge utility of a single
hypothesized expression. If one would need such information, one would
have to find a way to estimate σnoise by some method first and then use it
in calculation of the likelihood. Here the likelihood is only a basis for com-
paring hypothesized expressions. Since we take a training set and evaluate
likelihood for all expressions over that set with same σ̂noise, the resulting
likelihood values are a good metric for comparison. If we were to estimate
the noise variance σnoise from the data, one way would be to formulate it
using outcome values of samples with similar input features. When there are
a rather large number of samples provided for training, there are statistical
methods that can help choosing a better estimation for σnoise than merely
putting a constant value in its place. However since the current approach

24

2.3. EVALUATION BEST FITTING HYPOTHESIZED EXPRESSIONS

Figure 2.5: Figure shows the probability distribution of the likelihood
around the predicted output value r(x′) where r is the hypothesized ex-
pression. The vertical axis P represents the probability density. Note that
output value y′ does not lie on top of the true function f because of the
noise that we assume we have in our observation.

fulfills our goal for the case of multiple training samples as well, here we do
not investigate any such methods. We will suggest some improvement to
this process in our future directions.

2.3.4 Extending likelihood to the whole training set of sam-
ples

The likelihood is calculated with a similar logic when there are more than
one sample provided in the training set. In this case again it interprets to the
probability that we observe all the samples given that r is the true function.
We hold the assumption that observing each of the samples is independent
of observation of the other samples2. Because of this, we simply multiply all
probabilities to evaluate the overall probability of the observing all samples.

2This might not be true in general. Here a set of all observation are provided to the
learner at once. Since they are all supposed to be positively exemplifying the function
that we are looking for, we do not estimate any sort of joint probability for occurrence
of the specific samples. In many learning methods (e.g. prediction with time series, etc.)
these assumptions does not hold.

25

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

P (A | r) =
∏
si∈A

P (yi | xi, r) =
∏
si∈A
Nr(xi),σ̂noise

(yi) (2.8)

Again it should be noted that this multiplication is valid based on the simpli-
fying assumption that observing a sample s1 does not change the probability
of observing another sample s2, or in general: P (si | sj , r) = P (si | r) for
all i, j ∈ {1, , n}.

2.3.5 Likelihood of the labeled data

As we explained, this method of calculation of likelihood has the advantage
that it allows dealing will noise and possible outlying samples. We however,
use another type of datasets that do not contain a numeric output value and
this introduces a problem when using the same method for evaluation of the
likelihood. Here instead of numeric outputs, each samples si has an output
label li which comes from a binary set of possible labels {−1, 1} indicative
of negative and positive outputs. The predicted outputs are also labels −1
and 1. As a result the likelihood will be either equal to 1 when there is a
match between the predicted output label r(x) and the actual label l, and
0 when there is not a match. For the case of one sample we will have:

P (s | r) = P (l | x, r) = [l = r(x)] =

{
1 if l = r(x)
0 otherwise

(2.9)

and extending it to a set of samples (the training set):

P (A | r) =
∏
si∈A

P (li | xi, r) =
∏
si∈A

[li = r(xi)] (2.10)

where [Q] is the Iverson bracket defined as:

[Q] =

{
1 if Q is true;
0 otherwise.

(2.11)

The problem becomes apparent in the case that we extend the calculation
of the likelihood to whole number of samples in the training set. It will take

26

2.3. EVALUATION BEST FITTING HYPOTHESIZED EXPRESSIONS

only one mismatch (for a single sample) between the predicted and actual
labels for the whole calculation of the likelihood to produce a zero. Thus
it is either 1 when the expression r has predicted all the labels truly, or 0
otherwise. There is no way to compare the expressions with partially correct
predictions using this method. Also since the learner is not provided with
noise-free data, a full set of correct predictions is rare.

To solve this we use the approach by Goodman et. al. [7] in which they
allow a certain probability of outlying-ness for each sample. This is a way
that allows expressions to explain part of the training set and yet remain
plausible as a hypothesis. In the case of numeric output values the Gaussian
density function works as a similar mechanism that is based on the difference
of the predicted and actual outcomes. Here though, since no such difference
estimate is available, this method helps avoiding exclusion of possibly well-
fitting expressions.

To arrange this into the model, a probability of e−b is subsumed for sample
to be an outlier. Therefore, the likelihood probabilty for the case that there
is only one sample will be multiplied by a the probability 1−e−b which then
defines the probability of non-outlying-ness.

P (s | r) = P (l | x, r) = (1− e−b)[l = r(x)] (2.12)

This function now result 0 in case of a mismatch, and 1− e−b when the two
label are the same. Now for extending this over the whole training set, we
avoid resulting a zero by only multiplying the likelihood over the set of sam-
ples S which are non-outliers. First, let us demonstrate how the likelihood
probability evaluates while S is given. This is the case that we assume the
set of non-outlying samples is known. Equation 2.13 shows this.

P (A | S, r) =
∏
si∈S

P (si | r) =
∏
si∈S

P (li | xi, r) =
∏
si∈S

[li = r(xi)] (2.13)

Note that since we keep that assumption that all samples in S are non-
outliers (and that all samples in A − S are outliers) we do not involve the
probability of outlying-ness here anywhere. However, because we have no
prior knowledge on which samples to take as non-outliers3 we have to av-

3If we had such knowledge we would not need to assign a probability of outlying-ness
to each sample.

27

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

erage equation 2.13 over all subset S of A by marginalizing S out of the
equation 2.13.

P (A | r) ∝
∑
S⊆A

(e−b)|A−S|(1− e−b)|S|P (A | S, r)

=
∑
S⊆A

(e−b)|A−S|(1− e−b)|S|
∏
si∈S

[li = r(xi)]

=
∑

S∗⊆A[l=r]

(e−b)|A−S∗|(1− e−b)|S
∗|

= e−b|A−A[l=r]|

(2.14)

Here |S| indicates the cardinality of a set S, etc. We start by summing over
all subsets of A taking each as the set of non-outliers at a time. For pro-
portionality in the first line to become an equality, one can divide the right
hand side by total number of sum of all weights (e−b)|A−S|(1− e−b)|S| over
all subsets S ⊆ A. However, we do not need to normalize the summation
through dividing it by a total sum denominator, because such denominator
is not dependent to r. In the third line of equation 2.14 the subsets S∗ are
selected not from the whole training set A but only from the set of samples
si that the predicted label r(xi) match the actual label li. We denote this
set by A[l=r]. Because any other subset of A which is not a subset of A[l=r]

as well, will produce a mismatch between that predicted and actual labels
and result to zero in production and so add nothing to the summation. The
final step, which significantly reduces the computation load, follows from
the Binomial Theorem [7, 1]. It is worth noting that A −A[l=r] represents
the set of all samples of which the predicted and actual labels do not match.

To show how this method of likelihood calculation helps selecting an expres-
sion that better explains the data, we continue by an example. Assume that
the learner is provided with a set of 10 samples, we compare the likelihood
evaluation for three hypothesized expressions r1, r2 and r3. Table 2.1 shows
the actual versus the predicted labels of the three expressions.

The first expression r1 predicts the second, the sixth and the ninth sample
incorrectly, whereas the second expression r2 predicts all correctly except the
seventh one, and the third expression predicts only three of them correctly.
Therefore |A−A[l=r1]|, |A−A[l=r2]| and |A−A[l=r3]| will be equal to 3, 1 and
7 respectively, each representing the count of incorrect predictions. Thus the
final measure of likelihood for b = 5 will become 3.06 × 10−7, 6.73 × 10−3,
6.31 × 10−16. We mentioned earlier that to evaluate the final posterior we
take log of the likelihood and prior values (see equation 2.5). Having done

28

2.3. EVALUATION BEST FITTING HYPOTHESIZED EXPRESSIONS

Table 2.1: Actual labels vs. predicted ones of three hypothesized expres-
sions: r1, r2 and r3.

i 1 2 3 4 5 6 7 8 9 10

li 1 1 1 1 1 1 -1 -1 -1 -1

r1(x) 1 -1 1 1 1 -1 -1 -1 1 -1

r2(x) 1 1 1 1 1 1 1 -1 -1 -1

r3(x) -1 1 -1 -1 1 -1 1 1 1 -1

so, likelihood contribution to the postrior, in case of labeled samples reduces
to the linear term −b|A −A[l=r]|. In the experiments chapter, we will show
how we manage to choose a proper b. It is worth mentioning here though,
that since b is positive, the relation can be simply explained as: the higher
the number of mismatching samples grows, the less becomes the likelihood.

A question that comes to the mind at this point (for the case of labeled data)
is that if the likelihood is just a measure to compare the expressions regard-
ing the observed data, why bother going through these formulation steps
and not only take the number of matched samples as a metric of likelihood.
There are two reasons for this. Firstly, we want our approach for the case of
labeled data to be consistent with the case of samples with numeric outputs.
Assigning a probability of outlying-ness makes sense in terms of likelihood
probability whereas merely counting the number of correctly predicted sam-
ples does not make such sence at least immediately. Secondly, although
we do not practice it here, the notion of outlying-ness can be developed
from a fixed constant to a dynamically estimated variable as an improve-
ment for the future. In such case the integrity of the framework still persists.

2.3.6 Estimation of constants with labeled data

We discussed how calculation of the likelihood for the case of labeled data
differs from the case of data with numeric output values. We also discussed
earlier that how we evaluate constants of expressions when we are provided
with labeled data, using the Simplex optimization. This leads us to the ques-
tion that is it not necessary to apply the same rationale here (i.e. let some
samples to be outliers). If there exists an outlying sample in the training
set which we use for both tasks (constants and likelihood), it can influence
the estimation of constants as well. One might suggest applying weights to
samples from the training set in the function that we use for minimization
of error (equation 2.4) for constant estimation.

29

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

The answer to this question is that applying such weights introduces no im-
provements to the Simplex optimization, because the weights will inevitably
cancel from the formulation. Let us define the probability (weight) of a
sample being an outlier to be P0. Then the probability of a sample not to
be an outlier will be P1 = 1 − P0. Also from the equation 2.4 we denote
|li − rxi(c1, ..., cm)| as briefly di. The minimization target function of equa-
tion 2.4 will be:

∑
S⊆A

(P0)
|A−S|(P1)

|S|
∑
S

di = Pn−1
0 P1d1 + · · ·+ Pn−1

0 P1dn︸ ︷︷ ︸
(n1)

+

Pn−2
0 P 2

1 (d1 + d2) + · · ·+ Pn−2
0 P 2

1 (dn−1 + dn)︸ ︷︷ ︸
(n2)

+

· · ·+ Pn
1 (d1 + d2 + · · ·+ dn)︸ ︷︷ ︸

(nn)

= Pn−1
0 P1

(∑
A

di

)
+

(n− 1)Pn−2
0 P 2

1

(∑
A

di

)
+ · · ·+

Pn
1

(∑
A

di

)

=

(
n∑

i=1

i

n

(
n

i

)
Pn−i
0 P i

1

)∑
A

di

(2.15)

The first term in final line is a constant that is independent of the di and
thus plays no role in the minimization of the whole function. It is also sim-
ilarly justified that the same holds with numeric output values. Therefore,
no improvement can be made in estimation of the constants, by assigning
an outlying-ness probability to the training samples.

2.4 Testing our model

After completing the training step, all expressions are tested for their accu-
racy of prediction using 40 test samples. We use training sets of 20 samples
maximum. The calculation process usually takes hours long above that size.

30

2.4. TESTING OUR MODEL

All expressions are evaluated by substituting their variables by input vector
from a sample in test set. For the case of quantitative values a tolerance
threshold is fixed that determines the range the outcome result of an expres-
sion can deviate from the one provided in the dataset. We set the threshold
equal to the lowest noise variance among our datasets, which is 2.5. Since
our aim here is only comparison we do not go into steps of finding optimal
tolerance for each dataset. We define accuracy of an expression to be the
percentage of correct prediction when tested over all samples of the test set.
For datasets with quantitative outputs, we use a constant threshold of 2.5
to determine correct prediction. In case of labeled output, this correctness is
simply defined as whether the predicted output label matches the one from
the dataset.

Having measured the accuracy of each expression over the test data, the next
step is to extract a list of top accurate expressions and finally compare it to
a list of expressions with highest posteriors. The first list is simply obtained
by testing all expressions and sorting them according to their accuracy. The
second is likewise, obtained by calculating the posterior for all expressions
and sorting them, this time according to their posterior probability. A num-
ber of top expressions are selected from both lists and are compared. The
degree to which the two lists match is what we define as measure of per-
formance. We do not compare the ordering of all expressions in the first
list with that of the second list. This is due to accuracy falling to zero for
the rest of expressions, after a number of top accurate expressions selected.
Therefore it makes no sence to compare all thousands of expressions, where
most of them have neither a significant accuracy nor a significant posterior.

2.4.1 A measure of similarity between the ordered lists of
expressions

To determine the degree to which the lists of actual top accurate expressions
and the list of expressions with highest posterior probability match we need
a measure. There are techniques in the literature for comparing two or-
dered lists. They do not however exactly do the sort of comparison that we
use. Yilmaz et. al. [29] for example, compare two orderings of a same list,
whereas in our case, the two lists have intersection that is only covers parts
of them both. Here thus, we propose a heuristic measure. At its ideal case,
the expressions are ranked by the method in exact order as they accurately
predict the data. That is, the list of expression sorted based on posterior
probability matches exactly to the list of expressions sorted by their accu-
racy of prediction. Having a measure for this is a way of estimating the
performance of our technique. It indicates to what degree those expressions
that are marked as good fits of the data are actually good in predicting them.

31

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

The measure is based on two factors. Firstly it accounts for the degree to
which the orderings of the expressions match each other across the two lists.
It keeps track of the fact that a match on the most accurate expression in
the lists (say top 5) is of higher importance than a match on less accurate
ones (say top 20). It is more important to order accurate hypotheses cor-
rectly that it is to order the non-accurate one. Secondly, it considers that
a match becomes more important if the difference between the accuracies
of the best and worst expressions in the list of top accurate expressions is
high. If such the difference is not significant, then the ordering of the pos-
terior list and the way it matches to the accuracy list is less important either.

We denote the top expressions in the list ordered by the accuracy percentage
with U and we call it the accuracy set. The cardinality of U is |U |. We de-
note the top |U | expressions in the list ordered by the posterior probability
with T and reffer to it as the posterior set. The two criteria described above
are contained in the following performance measure:

M =

|U |∑
i=1

mi
Dmax

Di
(2.16)

where U = {u1, , u|U |} and mi is the percentage to which a subset of the first
i elements in T = {t1, , t|U |} (the posterior set) covers the first i elements of
U . Therefore it is simply the size of the intersection of the top i elements
from the two sets. Dmax is equal to D|U | and, Di is the difference between
the accuracies of the largest and the smallest elements in the first i elements
of U . We define:

mi = |{u1, ..., ui} ∩ {t1, ..., ti}|/i
Di = max-accuracy({u1, ..., ui})−min-accuracy({u1, ..., ui})

(2.17)

In our formulation, mi represents the first factor that takes account of the
degree to which the orderings of the expressions match each other across
the two sets. Note that the summation assures that the higher ranked are
more important than the lower ranked. It does so by separately adding the
matching ratio mi for the first i expressions from the top, and to iteratively
increasing i. The second factor is Di which accounts for the difference be-
tween the accuracies of the first i elements in accuracy set. Consequently,

32

2.4. TESTING OUR MODEL

Dmax is the distance between the top and the bottom of the whole accu-
racy set. The ratio Dmax/Di then is the inverse of the normalized Di. This
ratio is high when top i expressions have a small difference among them-
selves, meaning that they differ much from the rest of expressions and so
have higher importance. The ratio is at its lowest (i.e. equal to 1) when
the distance of the top i expressions are roughly the same as the overall dis-
tance from best (most accurate) to worst of the accuracy set. Hence their
significance becoming small.

To avoid division by zero in Equation 2.16, a small value can be added
to both numerator and denominator of the fraction. Also to represent the
measure as a percentage that expresses the amount of match between the
two lists, and to make it independent of the number of expressions in the
lists, we divide the value M in equation 2.16 by the maximum value possible
when the lists are identical. The maximum for mi values in equation 3.1
is 1 and it corresponds to the case that the lists contain exactly the same
elements and same orders. Thus we have:

Mmax =

|U |∑
i=1

Dmax

Di
(2.18)

To clarify how the measure is calculated, we continue with an example. As-
sume we have 9 expressions: r1 to r9 with accuracies on a given dataset,
equal to r1 : 0.70, r2 : 0.65, r3 : 0.60, r4 : 0.55, r5 : 0.50, r6 : 0.45, r7 : 0.40
, r8 : 0.35, and r9 : 0.30. Also assume that where the accuracy set is equal
to U = {r1, r2, r3, r4, r5, r6} in descending order (|U | = 6), the posterior set
has been calculated as T = {r2, r7, r1, r8, r4, r9}, again in decreasing order
of posterior probability. Table 2.2 shows how the measure of similarity be-
tween the two sets is calculated.

Table 2.2: Example calculation of similarity measure between the accuracy
and posterior sets.

i 1 2 3 4 5 6

mi 0 0.5 0.666 0.5 0.6 0.5

Di 0.01 0.05 0.10 0.15 0.20 0.25

Dmax/Di 25 5 2.5 1.666 1.25 1

In the example, Dmax = 0.25. Finally we calculate M = 6.25 according to
equation 2.16 and we divide it by Mmax = 36.416 (from equation 2.18) to

33

CHAPTER 2. LEARNING ARITHMETIC EXPRESSIONS AS RULES

obtain the value M/Mmax = 0.17.

We test the performance of our framework in the next chapter. The measure
M/Mmax is used throughout chapter 3 to evaluate performance upon differ-
ent settings. We perform a set of experiments and analyse the results using
the measure. In all experiments the final results and numbers are average
values obtained from 3-fold cross valiadations.

34

Chapter 3

Experiments and Results

This chapter presents an evaluation of our method. The goal is to under-
stand to what extend our proposed solution is able to discover fit expressions
from a set of many generated expressions which shape our hypothesis space.
Also we are interested in how different parameter values and other setting
influence our performance. We investigate this trying to answer three main
questions about how the proposed method works. To answer each question
we have designed and run experiments of different settings and parameter-
izations. We first describe the way the experiments were implemented and
what steps we have taken to build the system and its compounding algo-
rithms which has enabled us to put the theory into test. Next we present
the outcomes and test results and try to interpret them.

3.1 General overview of experiments

All experiments and settings are implemented using Java and MATLAB.
They consist of hypothesis space generation, training, and testing. In this
section view describe details of each of these steps.

3.1.1 Construction of the hypothesis space

Our hypothesis space for all experiments described in following sections,
consists of a set of expressions that are generated using the context-free
grammar described in 2.1. Our algorithm uses a queue to traverse the space
of all parse trees. Starting from the initial non-terminal of the grammar, at
each step the string in the head of the queue is retrieved and one of its non-
terminal symbols is replaced by all immediate derivations of that symbol.
Then all the newly generated strings are put at the end of the queue. This
process continues until some space or time criteria are met. The algorithm

35

CHAPTER 3. EXPERIMENTS AND RESULTS

is implemented in way that it is possible to assure that all expressions of
some certain parse tree depth are added to the queue. The reason for this
is to make sure that the hypothesis space contains expressions of a certain
complexity. It is however not a practical approach for extracting more com-
plex expressions of higher parse tree depths because of the exponential space
and time growth. Our hypothesis space therefore is limited mostly to fairly
simple expressions.

After the generation step, there are many expressions that although are syn-
tactically different, are mathematically equal. It would be a difficult task to
adjust the grammar in way to generate only expressions that are not seman-
tically redundant and yet exhaustive. We choose to check for redundancies
and remove them after all expressions are generated by the algorithm. This
is what we do using the MATLAB symbolic math toolbox1. Using this
toolbox, generated expressions are simplified to their expanded form and
compared. After redundancies are omitted, prior probability values are cal-
culated by the means of the parse tree for all the rest of expressions. A
procedure traverses the parse tree of each expression in breath-first order
and acquires the final prior probability by multiplying all branching proba-
bilities together.

For our experiments we used two grammars of 3 and 4 variable terminal
symbols. Besides the variables which take their values from datasets during
training and testing phases, the grammar also locates constant values in
expressions. These constants are then evaluated in training phase.

3.1.2 Training and calculation of the posteriors

As described in the previous chapter training includes two steps. Firstly us-
ing a down-hill simplex algorithm [18] we evaluate the constant values given
the training samples from the dataset. To do this, variables in an expres-
sion are substituted by quantitative values from the training set. Then each
constant symbol in the expression string is treated as a target variable. The
Simplex minimizes the difference between the evaluation of the expression
with substituted values and the target output from the dataset. For calcu-
lation of the Simplex minimization we use M. T. Flanagan’s Java scientific
library. After best estimates of the constant values are retrieved, they are
replaced in the expressions and saved per dataset, number of training sam-
ples, and number of grammar variables.

The second step is calculation of likelihood and posterior values. Rather

1http://www.mathworks.com/products/symbolic/index.html

36

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

than a modification to the expressions or any parameters, the learning is a
shift from prior probabilities to posteriors. In our experiments we use both
datasets with quantitative and label output values. For either case we use
such output for both estimation of the constants and evaluation of the pos-
terior. In the case of label outputs however likelihoods and hence posteriors
are calculated in a different way than for the case of quantitative outputs.
To obtain posterior values we take logarithms of the prior and likelihood and
sum them. This is done because many of these probabilities shrunk as new
samples are processed and they are multiplied by small single probability
amounts to an order of some negative power of 10. Using log calculation
helps avoiding computational inaccuracies that occur due to truncation of
very small values. We use the calculated posterior values to predict and
select expressions that best describe the data. We described the detailed
theory of all calculations used in our experiments in Chapter 2. Here we
continue by experimenting the performance of our method.

3.2 Results per detailed research questions

3.2.1 How richness of domain expression set affects their re-
finement performance?

By richness we mean the number of expressions in the hypothesis space that
have a high accuracy in describing the data. As described, such performance
is measured by the degree to which the list of expressions with highest pos-
terior probability (the posterior set), matches the list of expressions that
have actually performed best on the test data (the accuracy set).

In Figure 3.1, we have plotted the accuracy set of expressions (the blue dots)
alongside a posterior set of expressions (the red dots) where |U | = 50. The
vertical axis is the accuracy of prediction on the test set. To visually com-
pare how they match, two power trendlines have been added to plot. The
reason we have chosen power sketch here is that the prior probability is of
such form. That is, the difference between two prior values is one or more
multiplications by the constant factor of branching probabilities introduced
in previous chapters. The trendline is added by Microsoft Excel which is
not precise and quite reliable according to [15]. This is to just give a visual
impression of the difference we are examining. We will apply the introduced
performance measure here later.

The experiments are performed over sets of expressions of 3 and 4 variables
in grammar. For each number of variables two datasets were generated ar-
tificially and summed with a Gaussian noise with a fixed variance. For all
measurements here, only quantitative output values are used for the out-

37

CHAPTER 3. EXPERIMENTS AND RESULTS

come to be predicted in both training and test sets in both datasets2. For
the case of 3 grammar variables, Figures 3.1.a and 3.1.b show the result
of such comparison for the two datasets. The target expression of the first
hand-seeded dataset (Figure 3.1.a) is x21x2/x3 + c1x

c2
3 where c1 = π and

c2 = 0.5. The second dataset (Figure 3.1.b) was generated according to the
expression x1 − x22x3/c1 with constant value c1 set to 9.816, the standard
gravity acceleration3.

Figure 3.1: (a) The plots show a set of top 50 accurate expressions based
on their measure accuracy percentage on a test set (also here referred to
as accuracy set), sorted by the order of accuracy. Red dots are accuracy
percentages of a corresponding set of 50 expressions with highest posterior
probabilities (referred to as posterior set). The more the two trendlines
match, the better posterior probabilities are measured. The plot on the left
is the results with 10 training data samples of the first dataset in a 3-variable
domain. The right plot is the same measures with 20 training data samples.
(b) Similar to the upper row, here the second dataset in 3-variable domain
is tested. All results are cross-validated in 3 folds.

In both figures and also for all other experiments, a set 40 data samples are
used in testing procedure. Figures 3.2.a and 3.2.b show same juxtaposition
for the case of 4 variables. Here also we have generated two datasets one

2In later experiments, we will also use label outputs instead, to study further effects.
3The expression resembles the Newtonian law of gravity.

38

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

based arithmetic expressions x31c1 − x33/x
c2
4 (Figure 3.2.a) where c1 =

√
3/2

and c2 = 0.5, and one based on the expressions x1x4c1/x3 − c2x
2
2x

2
3 (Figure

3.2.b) where c1 =
√
5 and c2 = 2.

Figure 3.2: Description is similar to Figure 3.1 except for the number of
grammar variables which is 4 variables here. All results are cross-validated
in 3 folds.

Before continuing to our measures of similarity between the two sets depicted
in each plot, here are some observations from the scatter plots. Firstly note
that as the average accuracy of prediction goes higher for the accuracy set
(the blue dots in the graphs), the posterior set (the red dots) tend to be-
come more similar to the former set. First note that with increasing average
accuracy, the posterior set tends to converge to the accuracy set. This can
be observed by comparing the two rows (each a dataset) in both Figures
3.1 and 3.2 where accuracy measure over one data set is clearly higher than
the other one. For instance in Figure 3.1, the plots on the right column
show two different datasets for which the measurements are calculated iden-
tically. However, since more expressions in the lower dataset have captured
the behavior of the data as compared to the upper plot, the overall rate of
accuracy among the accuracy set is higher. This has led to a more accu-
rate (and matching) posterior set for the case of the second dataset. As the
number of accurate expressions falls down in the first dataset4 the posterior

4This can be a result of several things. For example it can be caused by the fact that

39

CHAPTER 3. EXPERIMENTS AND RESULTS

value calculations also falls off the preciseness. In all other pairs of upper
and lower scatter plots in Figures 3.1 and 3.2 the same dependency can be
detected.

We should mention here that we distinguish between tests that are per-
formed over datasets of different number of input variables. This is because
we generally expect lower measures of performance as the number of input
variables increase. The reason is that our only way of exploring the space
of possible mathematical expressions is by generating a space of expressions
using a context-free grammar, we are unable to efficiently look for all expres-
sions. The more the number of input variables, the larger (and exponentially
larger) is the number of possible expressions, and the poorer is our search.
Higher number of variables results a more complex grammar and thus more
time and space is required to traverse the parse tree of such grammar to
reach to a certain depth (i.e. complexity of expressions). Having a fixed
number of generated expressions therefore due to a time or space criteria,
causes the resulting set of all expressions to be less rich of potential expres-
sive expressions. Later in Chapter 4 we suggest some approaches to avoid
this problem. As a result, we may get a biased conclusion if we compare
results of experiments that have different number of input variables.

Table 3.1 shows the results of the performance measure introduced in the
previous section for all cases plotted in Figures 3.1 and 3.2.

The first column shows the 4 datasets: two for each number of variables
in the grammar. The second column is the size of training set over which
the coefficients in expressions and the posterior probability have been cal-
culated. Third and fourth columns show the scaled matching measurement
and the average value of the top accurate list.

By comparing the four datasets we can settle that in general, the more is
the number of expressions that accurately describe the data in a space of
expressions, the better the method performs assigning posterior probabil-
ity to that space. Let us emphasize again that we set the tolerance value
to a fixed amount, meaning that the accuracy values (as well as posterior)
may not be a true estimate of how successful each expression has been in
prediction of the data. In other words, we can choose one or a number of
expressions from the whole hypothesis space as those which describe the
data the best, however with limitations. We cannot assign a measure to an

the target expression is more complex. Also as mentioned earlier, the tolerance value that
have been used for both training and accuracy testing of the expressions, was selected to
be a fixed value regardless of the characteristics of the dataset. Note that actual value
of accuracy is not of interest here. Different accuracy for different datasets has helped us
here understand where the results of posterior calculations should be trusted.

40

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

Table 3.1: Measurement of degree to which the posterior set matches the
accuracy set. A fixed tolerance value has been used for evaluation for both
training and accuracy testing of the expressions regardless of the character-
istics of the dataset. The results in the table suggest that as the expressions
get more accurate on a dataset in average, the posterior calculation picks
finer expressions. All results are cross-validated in 3 folds.

Dataset Training M/Mmax Mean Acc.

3-variable dataset 1
10 0.0086 0.3505
20 0.2881 0.3706

3-variable dataset 2
10 0.1376 0.6215
20 0.4369 0.6566

4-variable dataset 1
10 0.4295 0.3001
20 0.3639 0.3446

4-variable dataset 2
10 0.0077 0.0850
20 0.0131 0.0963

individual expression that expresses with certainty how well the expressions
describes the data. The likelihood probability that we calculate for a hy-
pothesis is meaningful relative to the same probability measure of the other
hypotheses. Despite these limitation though, our approach serves our goal
well, that is to select the most fitting expression. The other task which is to
explore the arithmetic expression domain well enough to assure that such fit
expressions exist, has been defined as a separate task as domain exploration,
in our approach to equation discovery.

The dependency of the likelihood to noise threshold has helped us seeing
a wider range of outcomes in our experiments, without having to actually
search for datasets that the method performs poorly and other datasets that
it performs well on them. There is however an unjustified weakness in our
method. When the average accuracy of the examined expressions is low (e.g.
the case with the second 4-variable dataset, see Table 3.1) the performance
of the method drops severely. Now since those accuracies are relative (and
not definite), this means that the performance of the method is dependent
to the noise threshold. When the threshold is set in a way that accuracies
are spread in a low range, the posterior (which is still a relative measure) is
not a good measure of the actual accuracy of the expressions any more. The
reason to this is clear. We calculate the posterior using a fixed threshold of
noise over the training data as well. This has the same effect on the accu-
racy over the training set (expressed by the likelihood) as it has on the test
set accuracy measurements, resulting the posterior to be a poor measure
when calculating accuracies are poor on a certain dataset. We shall suggest

41

CHAPTER 3. EXPERIMENTS AND RESULTS

some possible approaches to overcome this problem as future direction of
improvement. Here we only continue with the same technique.

3.2.2 Does more training data usually mean more precision?

To answer this question, different training data sizes of various (Gaussian)
noise are tested. It is expected that the more training data used for evalua-
tion of the likelihoods (and the evaluation of constant values) per expression,
the higher goes the accuracy measures. However because of the noisy data
this maybe violated especially for noisier training sets. The goal is to track
the effect of number of training data as well as noise in the data together
and to see how they interact. As in the previous experiment we will use
the similarity measure between the posterior set and the accuracy set. Also,
we measure accuracy across a fixed Gaussian noise level. Since we take a
fixed tolerance value to test the accuracies, it would be worthless to measure
accuracy of the expression for different levels of noise for same number of
training data.

In our experiment we use training sizes of 2, 5, 10, and 20. Since we use
artificially generated data, we have then added Gaussian noise to each of
these sets with sigma values of 2, 5, and 10, generating a number of 12
(= 3 × 4) datasets. We have also repeated each experiment (all training
and testing steps) 3 times. The data sets are generated using the second
3-variable expression from the previous section: x1 − x22x3/c1. All expres-
sions were trained on each set, and tested on 40 data samples of the same
data and noise parameters. We have used the second dataset of the previ-
ous experiment because we wanted a rich set of expressions. This helps our
judgments to be not based only on few accurate expressions, which is the
case with other datasets of the first experiment. But rather, where having
several expressions that can (to some extent) describe the data, we are able
to see more consistent and input-insensitive outcomes and thus more valid
conclusions.

Figure 3.3 shows the performance measure M/Mmax for each of these test
settings. Recall that this measure is our only way to evaluate performance
of our method independent of any parameters. What it essentially presents,
is the degree that the algorithms are successful in elevating by the means
posterior value, those expressions that actually have high accuracy.

The chart on the left shows that in general, as the number of training sam-
ples grows, the performance also improves. Having more observations, it
should be easier to find the relation between the input and output variables.
This increase of performance is also noticeable in the right chart of Figure

42

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

Figure 3.3: Figure illustrates a comparison of performance, per 4 training
data sizes and 3 noise levels. Both charts are showing the same data. Left
has training set size and Right has noise levels as their horizontal axes. A
line connects measurements of each group together. All results are cross-
validated in 3 folds.

3.3 as the line segments connecting different noise levels for a fixed training
set size are lifted upwards as that size increases.

In the right chart another issue is evident and worth to note. All for con-
necting lines have an extremum point in the middle (at noise variance equal
to 5) and then lower or higher values for noise sigma 2 and 10. In processes
of training and posterior calculation, there are two phases that noisy data
can affect the performance. The first is when all-symbolic expressions are
processed and the coefficient symbols are determined and replaced by actual
numeric values. The second is the accuracy evaluation of the expressions
on the training set, of which the results are used in calculation of the likeli-
hood. For these two processes the noise parameter has a dual effect. If it is
too small compared to the actual (unknown) noise of the dataset, training
of the expressions can result in overfitting to the data, especially for large
training sets. Therefore a noise with a higher variance can inadvertently
avoid this. On the other hand a higher noise means less accuracy. So from
one side noisy data prevents overfitting of the coefficients5 inside the ex-
pressions causing the accuracy to increase, and from the other side, higher
noise induces a lower accuracy and thus a lower performance (see previous
section) in test outcomes. In the chart this dual effect is sensible in all the
4 lines. For the lower three noise levels this has caused the graphs to have
a minimum point, for the upper one it is the opposite.

5Note that there is no explicit procedure in the method that would work to prevent over-
fitting to the training data. The only prevention occurs when the priori filters expressions
with high complexity.

43

CHAPTER 3. EXPERIMENTS AND RESULTS

3.2.3 How is the performance when using label outputs in-
stead of quantitative output values?

As discussed before, one of our main goals is to have this method to work
when outcome values are labels rather than quantities. In this case expres-
sions that qualify are similar to classifiers of the target datasets rather than
regressors. At first we focus on realizing how good the method performs
when trained and tested on labeled data6. For all experiments with labeled
datasets, we assume that there are two possible labels -1 and 1 which indicate
whether or not the outcome value is negative or positive respectively. These
negative and positive labels correspond to the actual quantitative outcomes
that are in the data; so wherever the quantitative output value for a data
sample is positive its label is 1, etc. Recall that the calculation of the like-
lihood in this case is based on exact match between the predicted and true
labels. Same label values are regarded as likelihood probability equal to 1,
and non-identical labels are treated as likelihood 0 [7]. We have mentioned
in the previous chapter that because the overall likelihood is calculated as
multiplication of these single likelihood probabilities, only one non-matching
label would result 0 for the whole calculation and thus make the posterior
value to go infinitely small. For noise-free data, such likelihood calculation
can lead to selection of few (if any) expressions that are the same as the
actual mathematical relation underlying the data. Such synchrony occurs
rarely with noisy data and therefore the system performs very poorly on
labeled datasets (See chapter 2.3.5). Table 3.2 shows the results for mean
accuracy values as well as our performance measure for the labeled data
with 3 input variables. We have used the same dataset as in the second
experiment, only with labeled outputs.

Despite high average accuracy (Table 3.2), performance measures are almost
in all the cases close or equal to zero. We explained earlier in pervious chap-
ter how to overcome this problem by the means of assigning an outlying-ness
probability e−b to each of the observations. Using the formulation described
in the previous chapter for calculation of likelihood for labeled data (2.3.5),
we calculate the likelihood and posterior values for the same setting as the
Table 3.2. Let us note here that the value for parameter b can be found em-
pirically for a given dataset by doing repeated experiments and comparing
performance measures. We present a related experiment later in this sec-
tion. For now however, as tolerance parameter for the case of quantitative
outcomes, for labels outcomes also, we take a fixed value for parameter b.
Figure 3.4 depicts our performance measure M/Mmax for three noise vari-
ances: 2, 5 and 10 and three training-set sizes 2, 10, and 20 when these

6There are also similar studies in the literature that deal with labels rather than quan-
tities. Especially in the field of computational cognitive sciences, there are several example
of such domains [22].

44

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

Table 3.2: Table compares mean accuracy of the top accurate expressions
and the measure of performance for the case where simple likelihood calcula-
tions are used on labeled data. Despite high average accuracy performance
measures are generally very low. All results are cross-validated in 3 folds.

σnoise Training Mean Acc. M/Mmax

2

2 0.7932 0.0212
5 0.7858 0
10 0.7910 0
20 0.7780 0

5

2 0.7557 0.0442
5 0.7670 0.004
10 0.7462 0
20 0.7227 0

10

2 0.6288 0.0384
5 0.6335 0.0116
10 0.6352 0
20 0.6333 0.0074

probabilities are applied.

Figure 3.4 (a) and (b) show the result of measurement for two different
values for parameter b. As with the case of quantitative outputs where we
had to fix the tolerance regardless of the level of noisy-ness of the dataset,
here also we have to fix b. In practice, b must be found by running several
experiments on a specific domain and adjusting e−b to match the actual
probability of observing an outlier.

As seen in both cases, this new way of calculation of the posterior has
helped avoiding the problem of getting zero posteriors because of few outly-
ing samples. Finding the proper b for a domain is a vital issue for ensuring
performance of the system though. Figure 3.4 (b) shows measurement with
outlying-ness probability less than half of the same probability for 3.4 (a) and
has improved the performance twice as much. In both charts the method has
performed worse in case of noise variance equal to 2, compared to the case
that the noise variance is equal to 5. This suggests that the outlying-ness
probability has compensated for the higher noise level from 2 to 5 and has
led to better outcome. This holds also in case when noise level is increased
from 5 to 10 as long as the training dataset size is not to large. Note that
when 20 samples are used for training, a large noise variance (here 10) re-
sults a low performance compared to case the same data with smaller noise

45

CHAPTER 3. EXPERIMENTS AND RESULTS

Figure 3.4: Figure shows a comparison of performance measure for two
different values of parameter b: (a) 2 and (b) 3. Left charts show the three
levels of noise in colors, while the horizontal axis is the size of the training
set. The charts on the right show same measure replacing the horizontal
axis to be the noise level and the colored lines to be connecting same noise
variances. All results are cross-validated in 3 folds.

is used7. The left and right charts represent the same data over different
noise levels and different training sizes, respectively.

Choosing the right value for b is hard in the same way that a proper noise
threshold is problematic to be choosen. There is however another impor-
tant effect that b has on the performance of the system. In section 2.3.5
we discussed how the outlying-ness probability acts as a filter that allows
some expressions to pass and disposes the rest. The correct value for b thus,
has a very major role in performance of the system when dealing with the
non-quantitative labeled datasets. A small b (i.e. large outlying probability)
lets many expressions to pass the filter simply because it makes it easy to
score a rather high posterior while not describing most of data. On the other
hand a large value can filter out many fine expressions8. Figure 3.5 shows

7Since our datasets are generated artificially and we are therefore able to adjust the
noise on the same data. Also recall that we cross-validate all results in 3 folds.

8The extreme case happens when b is set to a very large value (+∞). This causes the
probability e−b fall to zero. The effect is the same as when simple calculation of likelihood

46

3.2. RESULTS PER DETAILED RESEARCH QUESTIONS

how an optimal value for b varies as a function of the size of the training-set
and the variance of the noise of the dataset.

Figure 3.5: The three charts display a comparison of performance measure-
ments for several values of parameter b. A line connects measurements of
same training size. The measurement are done for 3 levels of dataset noise
variance 2 (a), 5 (b), and 10 (c). All results are cross-validated in 3 folds.

Figure 3.5 suggests that in most cases the maximizing b value is somewhere
in the range of 50 to 150 and it does not have sharp changes in that in-
terval. The performance measure usually stand the same in areas around
the maximum point. When b is as high as for example 100, the probabil-
ity e−b is as low as 3.7 × 10−44. While this not being always the case, a
question that arises here is that why such small probability even matters.
This is where the filtering function we discussed comes in. Those expres-
sions that predict a significant percentage of the training data are able to

is used.

47

CHAPTER 3. EXPERIMENTS AND RESULTS

pass the filter while the rest are filtered away simply because their posteri-
ors become very close to zero. This happens due to those expression that
have too many small values multiplied in their calculation of the likelihood
(as the result of many mispredictions) and therefore resulting a zero the log
of which, constitutes the posterior. Note in Figure 3.5 that for the case of
training with 20 data samples, a sudden drop of performance occurs after
the optimal point. That is where the filter gets too strict and filters out
most of accurate expressions. The more is the number of training-set the
faster one should expect this sudden drop to happen, because more infinites-
imal likelihood values are multiplied together in the final likelihood product.

One thing to mention here is that as notable from the graphs in Figure 3.5
the performance does not reach to high percentages. This is the result of
the comparison of 50 top posterior with top 50 accuracy lists. Since we have
taken 50 as a fixed number of expressions that we compare from the head of
both lists and since there are not always that much matching expressions,
it is normal to have such difference. From all expressions in our hypothesis
space that are trained and tested, only few may be a fine explainer of a given
dataset. The goal is not to achieve a high value for the introduced measure
of performance, but rather, to discover under what setting it is maximized.

48

Chapter 4

Discussion, Conclusion and
Future Directions

4.1 Concluding remarks

We presented a framework for learning arithmetic expressions from a set
of observations. Our intention has been to introduce a method for rule-
based equation discovery. This method is based on evaluating a degree of
belief (posterior probability) for a set of hypotheses to find those which best
explain the observed data. The hypotheses are expressions that each may
explain some of the observations to some degree. Together they shape the
hypothesis space of the problem, which we search in for the fittests. We dis-
cussed that our method takes the hypothesis space of expressions as granted.
We distinguish two tasks in the process of equation discovery, namely: the
task of exploring the space of arithmetic expressions and that of evaluating
the degree that an expression describes the data. Separating these two, al-
lows them to be applied independently.

4.1.1 Our view toward this research work

The idea of equation discovery has one inherent assumption in itself that
is, there is an actual true function that describes the behavior of the na-
ture that we are observing fully and flawlessly. In many fields of empiri-
cal sciences though, scientists have learned only through gradual growth of
scientific thinking, that the actual true might not be what we should be
after. In fact, many models of the mathematical nature of our surrounding
events that had been powerful and much explaining every observation, were
overthrown by new models of new eras. The Newtonian model of force and
gravity was an excellent description of the motion of bodies at normal speeds
and predicted every interaction between them accurately. Einstein’s theory

49

CHAPTER 4. DISCUSSION, CONCLUSION AND FUTURE
DIRECTIONS

of general relativity however, could introduce and explain cases for which
the Newtonian model failed. Yet new development in quantum mechanics
tend to disprove Einstein’s theories, for more expressive theories that may
unify the forces and motion in a broader perspective.

Our initial view of our work was to look for a certain expression which we
know we have generated that data from and to measure our performance by
how successful we are in finding that certain expression. As we developed
the work though, this view changed. We altered our goal from finding a cer-
tain model that we know is the correct one, toward finding a model that best
describes our observations so far, having in mind that in an actual setting
of a real-world experiment, we would never know what certain rule guides
our universe.

4.1.2 Discussion of the theory

As described in details in chapter 2, we generate the hypothesis space by us-
ing a context-free grammar . This hypothesis space contains a large number
of hypotheses (each an arithmetic expression) that should be tested against
the data. We also evaluate complexity of the expressions using this grammar
in the form of prior probability. We explained that this is done by multiply-
ing the probabilities of all derivations that form an arithmetic expressions.
As we have mentioned earlier, our algorithm for exploration of the hypoth-
esis space is trivial and naive and it lacks efficiency. It is not however, our
primary focus in this work.

Here we have mainly focused on the posterior evaluation using Bayes for-
mula. Our Method tests a hypothesized expression against a set of provided
samples that have quantitative features. We look for an expression that
best describes this training set. We calculate a likelihood probability and
multiply it by the prior acquired from the parsing of expressions using the
grammar to achieve a posterior value per expression. This posterior proba-
bility is a measure of qualification for each expression and it is the one by
which we choose the final fit expression.

Finally we test the performance of our method over a number of hand-seeded
datasets. We use a part of each dataset for the training and a part for test-
ing. The training consists of both evaluation of constant and calculation
of the posterior probability. For testing we predict results for all test data
using each expression in the hypothesis space. Then we compare the rate of
correct predictions per expression with posterior probabilities.

50

4.1. CONCLUDING REMARKS

4.1.3 Experiments

Our tests (as presented in detail chapter 3) are mainly on the performance of
Bayesian posterior evaluation over several situations and parameterizations.
We introduce a measure for comparing the two above-mentioned factors and
we use it to understand outcomes of all expressions.

We define a measure of performance and we use it to explain the results.
The measure expresses the degree to which our method has been able to
assign highest posterior values to those expressions that are in fact the most
accurate. In our experiments we have tried to answer three main questions.
Initially we test dependency of the method on the overall accuracy of the
expressions in the hypothesis space. We assert that unsurprisingly, per-
formance is high where there are expressions in the hypothesis space that
accurately predict the test data. The average accuracy measure of the ex-
pressions, directly relates to the performance. Thus for a dataset that the
average prediction accuracy is relatively low, the algorithm fails to distin-
guish much between a fine expression and a loose one. On the other hand,
when there are expressions in the hypothesis space that accurately predict
the data, they are signified with a high posterior probability and hence the
performance is high.

We also test the effect of data noise and the training size on the performance.
The main trend in the result suggests that with higher number of training
samples and lower noise, performance improves. There are however some
other effects between the two parameters. For example on a dataset with
relatively high noise variance, bigger training sets does not always help. In
such case, a large number of training data results selections of those expres-
sions that are over-fitted to the training set and thus will not predict the
test set accurately. A method that can provide us with an estimation of
noise, can help us avoid this problem. A suggestion on such method is given
in the next section.

There is another side to interaction of noise and training size. Because we use
the training set for both tasks of constants estimation and likelihood calcu-
lation, a dual effect appears in the performance. When fitting the constant
values using the Simplex optimization, higher noise keeps the expressions
from being too fit to the training data, because the optimization function
simply does not converge. As a result, for expressions that match to actual
target expression only partially, this lack of convergence avoids over-fitting
to data. On the other hand, when the noise is higher the likelihood measures
less and the selection of fine expressions based on their posteriors, becomes
less precise. This dual effect of noise variance causes the performance to be
non-monotonic over different values of noise parameter.

51

CHAPTER 4. DISCUSSION, CONCLUSION AND FUTURE
DIRECTIONS

Since we test datasets with both quantitative and labeled outputs, we also
test the performance of our method on labeled data. Similar to the case
of quantitative outputs, performance with labeled outputs also increases as
a function of average accuracy of the expressions. The tradeoff between
the noise level and the training size, as well as the dual effect mentioned
above appear also in case of the labeled data. Since posterior evaluation
of the labeled data involves a parameter b that adjusts what we call the
probability of a sample to be an outlier, we also investigate the behavior of
or model to and examine the relation between the value for this parameter
and the performance measure. The experiment suggests that as the noise
increases, a higher value of outlying-ness probability result to better perfor-
mance. Clearly higher noise variance increase that probability of outliers in
a dataset. It also demonstrates how this parameter can act as a filter that
selects best-fitting expressions.

4.1.4 Strengths and weaknesses

Our proposed Method has several weak and strong points that are worth
to mention and to consider as possible areas of improvements. Its weak
points include firstly the fact that it uses an inefficient algorithm to explore
the hypothesis space of arithmetic expressions. Without such exploration,
the practicality of our approach to equation discovery is very much compro-
mised. The reason is that size of the domain of all arithmetic expressions,
even with strong simplicity limitations, is exponentially large. Searching this
domain by merely considering every hypothesis would either need too much
time or lose precision. In our experiments we have hand-seeded the testing
data with selected simple target expressions. However, in a real world ap-
plication, this can clearly not be the case. Therefore our naive exploration
method can very possibly miss the target.

Another problem is that the posterior value that we calculate for an ex-
pression is only interpretable relative to the posterior value of another one.
That is it can only be used to choose one expression over others and it does
not express much on how fit is an individual hypothesized expression. As
we mentioned earlier, this is caused by the fact that we take a constant as
the variance of noise and we do not adapt it to actually match the noise
variance of the dataset. It is not however easy to estimate this noise from
the set of observed samples. We will discuss a suggestion to overcome this
problem in the next section.

Despite its shortcomings, our approach has a number of advantages. In gen-
eral, it integrates the Bayesian-based work by Goodman et. al. [7] (on the

52

4.2. DIRECTIONS OF FUTURE RESEARCH AND IMPROVEMENTS

domain of logical expressions) to the domain of arithmetic expressions and
equation discovery and it is novel in that regard. The flexibility of approach
allows using easily on limited or totally different domains. Because or pos-
terior evaluation is independent of the type of hypothesis space, it is easy to
apply it on any grammar based approaches (e.g. [26]) to equation discovery.

Bayesian posterior evaluation has also the advantage of being adjustable.
For example, one can favor the likelihood more than the prior probability if
one does not want to avoid complex expressions where precision is of more
importance. Besides, it might be helpful to adjust the calculation of priori
and likelihood for some specific domains where certain types of arithmetic
expressions are targeted. Our method has the advantage that it is flexible
and easy to integrate with other techniques for domain exploration, gram-
mar definition, and the way the probabilities are calculated. The better
and the more efficient these subproblems are solved then, the more reliable
outcomes are obtained.

4.2 Directions of future research and improvements

4.2.1 Exploration of the hypothesis space

We mentioned already that the way we explore the problem space is neither
efficient nor comprehensive. What we do here is merely producing a num-
ber of hypotheses and testing them. Therefore a room for improvement is
immediately clear in this regard. The nature of the domain of the arith-
metic expressions can be of a great help for example. The expressions are
produced using a grammar that not only parses each expression to a tree
structure (i.e. parse tree) but also is a compact representation of the whole
problem space. Thus the whole problem space can be represented as an
infinitely large tree structure that contains every derivation possible from
the starting symbol of the grammar. Every path from the root (the initial
symbol) to any leaf (an expression) would represent a number of derivations
that have led to the expression. A middle node will represent a subset of
expressions that are similar, dependending on the depth of that node.

As a result, there are imaginable ways to exploit the tree structure of the
domain and take advantages over the naive approach of simply producing
expressions at first place. For example the training data can be used to
apply a branch and bound technique and to guide the learner through most
likely paths from root to the leaves and to cut off the unlikely ones. Explor-
ing the tree, one can bound the search at a certain node based on a measure
that expresses the probability of finding a solution under that node. This
probability measure should account for all possible derivations that is possi-

53

CHAPTER 4. DISCUSSION, CONCLUSION AND FUTURE
DIRECTIONS

ble to reach while moving downwards from the node. But because the tree
can be infinitely expanded, it is not possible to sum over all possibilities. A
solution to this problem might be integrating over all (infinite) possibilities
using a Monte Carlo sampling technique. Such method for exploration of
the hypothesis space not only would result a save in posterior evaluation
process time but also would search the space more thoroughly and reliably.

4.2.2 Estimation of noise in data

In our framework we measure the posterior probability of an expressions
relative to the other expressions in the hypothesis space. This is due to
assuming a constant noise across all datasets that the learner is exposed
to them. This, although fulfils our purpose to compare expressions, has a
disadvantage. The problem is that it is not possible to know how fit an
individual expressions is regarding the observed data by calculating its pos-
terior probability. Therefore when the set of all hypothesized expressions is
not exhaustive enough, the judgment on fitness of expressions regarding the
data is compromised.

Unfortunately though, there is no straightforward way for calculating this
noise. There are statistical methods (e.g. regression) that can be applied
to estimate the noise. The learner can first preprocess the training data in
order to find an approximation of this noise per dataset and then continue
with an approximated noise variance parameter. Due to possible complexity
of datasets however, it might not be easy to have a good estimation. This
seems to make comparison-based posterior evaluation a necessity. Never-
theless, it is worth investigating that how does a pre-estimation of the noise
help a better evaluation of the posterior probability.

Another approach is to use a Bayesian model comparison technique [3] by
defining a prior to represent the distribution of noise variance and a likeli-
hood function that signifies the probability of observing the data samples
given a certain parameter value. By integrating the probability of observing
the dataset over all values of the noise parameter, one will attain a posterior
probability distribution of data over all parameter values. It is then possible
to evaluate the maximizing value (MAP) for the noise variance parameter.

54

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. Dover,
New York, ninth dover printing, tenth gpo printing edition, 1964.

[2] Dana Angluin. Queries and concept learning. Machine Learning, 2:319–
342, 1988. 10.1007/BF00116828.

[3] C.M. Bishop. Pattern Recognition And Machine Learning. Information
Science and Statistics. Springer, 2006.

[4] M. Botta, A. Giordana, and L. Saitta. Learning fuzzy concept defini-
tions. In Fuzzy Systems, 1993., Second IEEE International Conference
on, pages 18 –22 vol.1, 1993.

[5] Christopher J. C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge Discovery, 2:121–167,
1998.

[6] Michael T. Flanagan. Michael thomas flanagan’s java scientific and
numerical library.

[7] Noah D. Goodman, Joshua B. Tenenbaum, Jacob Feldman, and
Thomas L. Griffiths. A rational analysis of rule-based concept learning.
Cognitive Science, 32(1):108–154, 2008.

[8] T. L. Griffiths and J. B. Tenenbaum. Theory-based causal induction.
Psychological Review, 116(4):661–716, 2009.

[9] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola. Ker-
nel methods in machine learning. July 2008.

[10] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical pattern
recognition: A review. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22:4–37, 2000.

[11] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge
University Press, April 2003.

55

BIBLIOGRAPHY

[12] Charles Kemp and Joshua B. Tenenbaum. Theory-based induction. In
CogSci 2003, 2003.

[13] Charles Kemp and Joshua B. Tenenbaum. The discovery of structural
form. Proceedings of the National Academy of Sciences, 105(31):10687–
10692, August 2008.

[14] P. Langley, H. A. Simon, and G. L. Bradshaw. Computational models
of learning. chapter Heuristics for empirical discovery, pages 21–54.
Springer-Verlag, London, UK, UK, 1987.

[15] B.D. McCullough and David A. Heiser. On the accuracy of statistical
procedures in microsoft excel 2007. Computational Statistics and Data
Analysis, 52(10):4570 – 4578, 2008.

[16] S Ryszard Michalski, G Jaime Carbonell, and M Tom Mitchell, editors.
Machine learning an artificial intelligence approach volume II. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1986.

[17] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[18] J. A. Nelder and R. Mead. A simplex method for function minimization.
The Computer Journal, 7(4):308–313, 1965.

[19] Robert M. Nosofsky, Thomas J. Palmeri, and Stephen C. McKinley.
Rule-Plus-Exception Model of Classification Learning. Psychological
Review, 101(1):53–79, 1994.

[20] Luc De Raedt. Logical settings for concept-learning. Artificial Intelli-
gence, 95(1):187 – 201, 1997.

[21] Carl E. Rasmussen and Christopher Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[22] Thomas R. Shultz, Denis Mareschal, and William C. Schmidt. Model-
ing cognitive development on balance scale phenomena. Mach. Learn.,
16(1-2):57–86, July 1994.

[23] E. Smith and D. Medin. Categories and Concepts. Harvard University
Press, Cambridge, MA, 1981.

[24] J. Tenenbaum, T. Griffiths, and C. Kemp. Theory-based Bayesian mod-
els of inductive learning and reasoning. Trends in Cognitive Sciences,
10(7):309–318, July 2006.

[25] Joshua B Tenenbaum and Thomas L Griffiths. Generalization, similar-
ity, and bayesian inference. Behavioral and Brain Sciences, 24(4):629–
40; discussion 652–791, 2001.

56

BIBLIOGRAPHY

[26] Ljupco Todorovski and Saso Dzeroski. Declarative bias in equation
discovery. In Proceedings of the Fourteenth International Conference
on Machine Learning, pages 376–384. Morgan Kaufmann, 1997.

[27] L. G. Valiant. A theory of the learnable. Commun. ACM, 27:1134–1142,
November 1984.

[28] A.R. Webb. Statistical pattern recognition. Wiley, 2002.

[29] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. A new rank
correlation coefficient for information retrieval. In Proceedings of the
31st annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’08, pages 587–594, New
York, NY, USA, 2008. ACM.

57

