
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Introducing
Privacy-Enhancing
Technologies to
Consortium
Blockchains
Bart van Schaick

Introducing
Privacy-Enhancing

Technologies to
Consortium
Blockchains

by

Bart van Schaick

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday February 20, 2023 at 10:00 AM.

Student number: 4489357
Project duration: January 31, 2022 – February 20, 2023
Thesis committee: Prof. Georgios Smaragdakis, TU Delft, advisor

Dr. Kaitai Liang, TU Delft, supervisor
Dr. Stefanie Roos, TU Delft
Dr. Roland Kromes, TU Delft, supervisor

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

This thesis was written as the final fulfillment of the requirements of the degree of Master of Science
in Computer Science at the Delft University of Technology. As such, it concludes my academic career
and marks the start of a career in research or industry.

During my side job as a software developer at a wholesale company, I stumbled upon a logistical
problem that required a level of trust and transparency lacking in centralized database solutions. It
sparked my interest in blockchain technology and specifically consortium blockchains. Furthermore, I
have always found cryptography to be deeply fascinating. I still remember the illuminating feeling the
moment the Diffie-Hellman key exchange protocol clicked in my head.

I would like to thank my supervisor Kaitai Liang for providing me with the chance to work on this project,
even though I did not follow the intended cybersecurity track. Furthermore, I want to thank George
Smaragdakis for his intermediate feedback on my work.

Most of all, I want to thank Roland Kromes. Roland, thank you for the wonderful way you supervised
me over the past year. The tips and insights you have given me throughout this research project have
shaped the thesis as it is. Especially during the last few months, when I struggled to articulate the
research, you pulled me through multiple times. I wish you all the best in your future academic career.

Finally, I would like to thank you, the reader, for your interest in my work. I hope you will find the
remainder of this thesis informative and engaging.

Bart van Schaick
Delft, February 2023

i

Summary

Blockchain technology has revolutionized the way data is stored, managed, and shared across various
industries. Its decentralized nature and immutability make it highly attractive in use cases that require
transparency, integrity, and accountability. However, some applications demand confidentiality, neces-
sitating the development of permissioned/consortium blockchains that try to strike a balance between
transparency and privacy. Hyperledger Fabric is a permissioned blockchain that has gained popularity
due to its modular architecture, performance, and scalability. Despite its strengths, the current set of
privacy-enhancing features leaves room for improvement.

Therefore, this master thesis aims to explore the potential of introducing various privacy-enhancing tech-
nologies to Hyperledger Fabric, including Dynamic Searchable Symmetric Encryption (DSSE), Multi
Authority Attribute-based Encryption (MA-ABE), and Trusted Execution Environments (TEE). Based
on the promising results of our study, we decided to implement DSSE and MA-ABE. The combination
of blockchain technology with TEE was ruled out after the thorough analysis of two research papers on
the subject.

Our main result is the first implementation of a provable secure DSSE scheme in the context of con-
sortium blockchains. Moreover, we developed a blockchain-enabled MA-ABE system that utilizes a
novel and generic approach to foreign function invocation. Finally, the thesis discusses unexplored
challenges in the field of logistics related to electronic consignment notes used in road transport. To
address these issues, we designed a blockchain architecture that incorporates our developed privacy-
enhanced technologies.

ii

Contents

Preface i

Summary ii

1 Introduction 1
1.1 Consortium Blockchains . 1
1.2 Introducing Privacy-enhancing Technologies . 2
1.3 Research Questions . 2
1.4 Contributions and Outline of Thesis . 3

2 Hyperledger Fabric 4
2.1 General Overview . 4
2.2 Network Structure . 4
2.3 Identity Management . 5
2.4 Ledger . 5
2.5 Transaction Flow . 5

3 Searchable Encryption 6
3.1 Introduction . 7
3.2 Related Work . 7
3.3 Definitions . 9
3.4 Blockchain-based DSSE . 11

3.4.1 Implementation . 11
3.4.2 An Illustrative Example . 11

3.5 Performance Analysis . 12
3.6 Discussion . 14

4 Attribute-Based Encryption 15
4.1 Introduction . 16
4.2 Related Work . 17
4.3 Definitions . 18

4.3.1 Access Structures and Linear Secret Sharing Schemes 18
4.3.2 Pairing-based Cryptography . 19
4.3.3 Multi-Authority Attribute-based Encryption . 21

4.4 Multi-Authority ABE and Blockchain . 22
4.4.1 Construction . 22
4.4.2 Authorities and Clients . 24
4.4.3 Foreign Function Interface . 25
4.4.4 An Illustrative Example . 26

4.5 Security . 28
4.6 Performance Analysis . 28
4.7 Discussion . 29

5 Trusted Execution Environment 31
5.1 Introduction . 32
5.2 Background . 32
5.3 Promosing Solutions . 33

5.3.1 HLF Private Chaincode . 33
5.3.2 Ekiden . 34

5.4 Discussion & Conclusion . 36

iii

Contents iv

6 Blockhain-based Consignment Notes 37
6.1 Introduction . 38
6.2 CMR: A Standard for International Road Transport . 39

6.2.1 Digital Equivalent . 39
6.3 Industry Challenges . 40

6.3.1 Intra-Community Transaction . 40
6.3.2 Neutralization . 40

6.4 Blockchain-Based E-CMR System . 40
6.4.1 Architecture . 41
6.4.2 Compliance with E-CMR protocol . 42
6.4.3 Solving Industry Challenges . 43

6.5 Conclusion . 43

7 Conclusion 45
7.1 Research Questions . 45

A Preliminaries 51
A.1 Notation . 51
A.2 Definitions . 52

1
Introduction

Blockchain is well-known as the technology behind cryptocurrencies such as bitcoin and Ethereum.
Unlike traditional databases, blockchain stores data across a network of distributed computing nodes.
Transactions on the network are grouped together and recorded in so-called blocks, which are crypto-
graphically linked together, creating an ever-growing chain of blocks. The cryptographic link and the
distributed nature of the blockchain ensure that records cannot be altered retroactively. The integrity
offered by this immutable ledger is considered one of the key benefits of blockchain technology. Addi-
tionally, the technology features a decentralized and distributed network, eliminating a single point of
failure or need for a governing authority.

Initially, blockchain was proposed as a solution to transfer funds directly between individuals, bypass-
ing the need for traditional financial institutions[1]. Nevertheless, due to the aforementioned properties,
the technology has the potential to be disruptive in other industry sectors, including healthcare, sup-
ply chain logistics, and more. Smart contracts facilitate the adoption in the industry. They are small
programs stored on the blockchain network that can verify and enforce the execution of business pro-
cesses in a transparent and secure manner. However, the transparent and open-access nature of
traditional blockchains also poses a threat to data confidentiality. All the information shared on the
network is publicly accessible by anyone, including bad actors. Moreover, for many enterprise applica-
tions, the performance of public blockchains is insufficient due to their high latency and low transaction
throughput.

1.1. Consortium Blockchains
Consortium blockchains address the privacy issues and performance deficits surrounding their public
counterparts [2]. In a consortium blockchain, access is limited to and controlled by a small group of
users or organizations (the consortium). The privacy concerns that existed with public blockchains are
addressed in this manner as sensitive information stored in the ledger is only disclosed to consortium
members. Furthermore, as the number of nodes in a permissioned network is generally much smaller
and malicious users can quickly be identified and excluded, the distributed decision-making process
is much more streamlined. Efficient coordination between nodes is especially important in the context
of blockchain for achieving consensus. Consensus refers to the process of reaching an agreement
among participants about the current state of the data on the blockchain. A more efficient consensus
mechanism means higher throughput and lower latency for transactions in the network.

Hyperledger Fabric (HLF) is a framework for developing enterprise-grade permissioned blockchains.
The HLF architecture features a modular design [3], allowing enterprises to tailor it to their specific
requirements through the use of pluggable components, such as consensus, privacy, and member-
ship services. Due to the smaller number of nodes and permissioned design, achieving consensus is
much simpler, resulting in better performance compared to public blockchain solutions. Data privacy is
achieved through the use of channels. Channels provide an additional layer of privacy within the main
network, designed to facilitate private and confidential transactions between participants. Chapter 2

1

1.2. Introducing Privacy-enhancing Technologies 2

contains more background information on Hyperledger Fabric.

The modular architecture of HLF makes it a perfect candidate for building consortium blockchains that
satisfy a broad range of industry use cases. However, while HLF offers private transactions out of the
box over channels, the access control offered by this approach is limited. Moreover, many use cases
require transactions to be (partially) transparent to other participants of the network or even outsiders,
such as in the case of an audit. In summary, the current set of privacy-enhancing technologies offered
by HLF is limited but its modular design encourages extending the system.

1.2. Introducing Privacy-enhancing Technologies
Privacy-enhancing technologies (PET) are a set of tools, systems, and methods used to prevent the
processing of confidential data without loss of functionality. The term PETs encompasses a wide
range of technologies, including anonymization, secure multi-party computation, trusted execution en-
vironments, zero-knowledge proofs, and various forms of encryptions such as homomorphic, attribute-
based, and searchable encryption. Given the privacy and functionalities offered, PETs seem like a
natural extension to consortium blockchains. Furthermore, we will show that merging these technolo-
gies benefits the privacy and functionality provided by PETs.

For this thesis, we have selected three privacy-enhancing technologies that we believe are well-suited
to combine with Hyperledger Fabric. A short description of the chosen technologies and rationale
behind our selection follows:

Searchable Encryption A form of symmetric encryption that allows a data owner to outsource en-
crypted documents to an untrusted cloud server while retaining the ability to search over the data.
We envision a searchable encryption scheme in which the cloud server is replaced by our consortium
blockchain and query functionality is implemented by smart contracts. This way, a data owner is certain
they receive the correct documents.
Attribute-based Encryption A type of public-key encryption where users can only decrypt a ciphertext
if their set of attributes matches the attributes of the ciphertext. Data owners can specify an access
policy during encryption that determines the set of users with decryption ability. In this way, attribute-
based encryption can provide fine-grained access control to confidential data shared on the ledger.
Trusted Execution Environment A secure environment for executing code that prevents unautho-
rized entities outside of the environment from tampering with the execution. Typically, solutions are
hardware-based and involve an isolated part of the processor to which program instruction can be
loaded. The confidentiality and integrity offered by these techniques could be beneficial to smart con-
tract execution as well.

1.3. Research Questions
The goal of the research presented in this thesis is to elevate the privacy and functionalities offered
by current consortium blockchain solutions, by integrating certain privacy-enhancing technologies. To
accomplish this goal we ask ourselves the following research question:

How to enhance the trust and functionality of consortium blockchain applications through the
deployment of privacy-enhancing technologies?

In order to answer the research question, we formulate 5 sub-questions.

1. How can smart contracts provide search functionality over dynamically encrypted data stored on
the blockchain?

2. How can we share encrypted data only with a subset of users in the blockchain consortium?
3. How can we employ trusted execution environments to enforce correct smart contract execution

and what are the limitations?
4. What are the benefits and limitations of a privacy-enhanced blockchain solution that incorporates

the technologies mentioned in the previous research questions?
5. What new use cases can be tackled by this privacy-enhanced blockchain-based system?

1.4. Contributions and Outline of Thesis 3

1.4. Contributions and Outline of Thesis
The research presented in this thesis brings several contributions to the fields of consortium blockchains
and privacy-enhanced technologies.

• Chapter 3 features our implementation of a secure and efficient dynamic searchable symmetric
encryption scheme in Hyperledger Fabric. To the best of our knowledge, this is the first time a
dynamic construction of a proven searchable symmetric encryption scheme is ported to a con-
sortium blockchain. We have submitted a paper containing this result to the ESORICS 2023
conference.

• In chapter 4, we present our blockchain-enabledmulti-authority attribute-based encryption scheme.
In contrast with many other attribute-based encryption implementations in blockchains, our solu-
tion requires no central authority. Moreover, we present a generic approach for creating a foreign
function interface with little overhead.

• Chapter 5 contains a literature review of the applications of trusted execution environments in
blockchain technology. Particularly, we will highlight an approach that allows Hyperledgder Fabric
peers/nodes to keep a secret.

• Finally, in chapter 6, we will show how the privacy-enhanced blockchain-based information sys-
tem we developed can tackle a highly-prevalent problem encountered in the domain of logistics.

Chapter 2 provides background information on Hyperledger Fabric, for readers unfamiliar with the tech-
nology. The chapters on searchable encryption, attribute-based encryption, and trusted execution
environments, respectively, chapter 3, chapter 4, and chapter 5 are self-contained and can be read
independently or in an alternative order. Chapter 6 assumes knowledge about the previous chapters.
Finally, chapter 7 provides a conclusion to our work.

2
Hyperledger Fabric

This chapter provides a brief background on Hyperledger Fabric. We will discuss its approach to im-
plementing a permissioned blockchain, consensus, identity management, and many more. The aim
of this chapter is to set the stage for the subsequent chapters that will present the main contributions
of our research. All the information presented in this chapter has been selected from the Hyperledger
Fabric whitepaper [3] and its latest documentation1.

2.1. General Overview
TheHyperledger2 project is an open-source collaborative effort hosted by the Linux Foundation, created
to advance cross-industry blockchain technology. Fabric is one of the projects within the Hyperledger
project. Like other blockchain technologies, it has a distributed network of nodes that maintain a ledger
and uses smart contracts to interact with the data. Unlike other blockchain solutions, Fabric is private
and permissioned. Authorization is required for users to participate in the network. As a result, con-
sensus can be reached more efficiently and transaction throughput is increased. Furthermore, Fabric’s
use of channels allows a group of participants to transact confidentially. The high performance and
privacy offered by Fabric combined with its modular and extensible design make it particularly suitable
for enterprise solutions.

2.2. Network Structure
At a conceptual level, a Hyperledger Fabric network is made up of multiple stakeholders that corre-
spond to real-world organizations. The network provides ledger and smart contract functionality to
users. Smart contracts contain the business logic in the consortium; they define assets and the set of
instructions to interact with them. When an asset is modified, the smart contract generates a transac-
tion that is subsequently distributed to all participants and immutably recorded on the ledger. A private
communication channel can be established between a selected group of organizations within the net-
work, enabling confidential transactions among its members. Each channel has a separate ledger and
smart contract definitions assigned to it.

Concretely, the blockchain network consists of several nodes with various responsibilities, hosted by
the participating organizations. Each organization can deploy one or multiple peer nodes. Peers are
fundamental in HLF as they manage the ledgers and smart contracts for the organizations. Fabric
uses the term chaincode to refer to an implementation of smart contracts on a peer. Each peer hosts
an instance of the ledgers and chaincodes defined for the channels it is affiliated with. Through a peer,
clients can query the ledger and perform transactions by invoking chaincode.

1Hyperledger Fabric documentation: https://hyperledger-fabric.readthedocs.io/en/latest/
2Official Hyperledger project website: https://www.hyperledger.org/

4

https://hyperledger-fabric.readthedocs.io/en/latest/
https://www.hyperledger.org/

2.3. Identity Management 5

2.3. Identity Management
All actors in an HLF blockchain require a digital identity to consume the services provided by the net-
work. The identity is encapsulated in an X.509 certificate and determines the exact permissions over
resources and access to information the actor has. For an actor to participate in the network, her iden-
tity must be issued by an authority trusted by the network. Certificate authorities (CAs) are commonly
used in internet security protocols and public key infrastructures to fulfill the role of the identity issuer.
The certificates dispensed by a CA are digitally signed using the CA’s private key.

Membership service providers (MSPs) are affiliated with an organization in the network and determine
which CAs are trusted by the organization. The certificate issued by a CA is merely a way by which the
identity of an actor can be proved. Instead, the MSP is a mechanism to turn this provable identity into
a network role. In chapter 4, we will show how HLF’s MSPs and CAs can prevent collusion between
users in our attribute-based encryption implementation.

2.4. Ledger
The ledger is compromised of the world state and the blockchain. The blockchain is a transaction log
that records all the changes made to the ledger. Transactions are collected in a block that is appended
to the blockchain by cryptographically linking it to the previous block. The world state is implemented
as a key-value database that holds the current value or state of assets. The current state of an asset
in the database is determined by the history of transactions involving this asset in the blockchain. The
addition of the world state database allows a peer to query the value of assets in an efficient manner
while the immutability of the ledger is maintained.

2.5. Transaction Flow
The first step in updating the ledger is initiated by a client. The client prepares a transaction proposal
which is submitted to one or more peers. The peers simulate the transaction on their local version of
the ledger and produce a transaction result including a response value, read set, and write set (more on
this later). If the transaction executes successfully, the peer endorses the transaction result by signing
it, no updates are made to the ledger at this point. The endorsed transaction result is then sent to the
ordering service, which groups transactions in blocks and distributes them to the peers in the network.
Peers validate the transactions received by the orderer and commit them to their local copy of the
ledger. In the end, the blockchain is updated and the transaction is finalized.

The read set and write set are sets of key/value pairs representing assets that were read or updated
during the endorsement. The write set contains a list of unique keys and their latest value set by the
transaction. The read set contains a list of unique keys and the version of the committed value read
during simulation. During transaction validation, a committing peer uses the read set and write set of
a transaction to check its validity. A transaction is considered valid if the version of each key present
in the read set matches the current version of the key in the committed ledger state. The read set and
write set ensure that transactions can happen concurrently in Fabric, but prevents an inconsistent state
from occurring.

3
Searchable Encryption

Transparency is one of the key features of blockchain technology. However, in the case of confidential
data, transparency is not necessarily considered a good trait. Encryption forms a simple means to
an end, however, by encrypting information a data owner losses the ability to search over the data.
Dynamic searchable symmetric encryption (DSSE) is a type of encryption that allows a data owner to
search and update encrypted data efficiently. DSSE schemes have been successfully implemented
in cloud service providers in the past. In this chapter, we propose the first implementation of a prov-
ably secure DSSE scheme in the context of blockchain. We not only add search functionality to the
blockchain through our implementation, but we also obtain verifiable search results with our approach.
We evaluate the performance of our implementation and discuss several points of improvement.

6

3.1. Introduction 7

3.1. Introduction
Following the Software-as-a-Service trend in enterprise computing, outsourcing data storage to cloud
service providers (CSP) has gained widespread adoption, due to its promise of high scalability and
performance at low operational costs. However, data owners are understandably hesitant with sharing
privacy-sensitive data with an untrusted third party. While conventional encryption addresses these
privacy concerns, it also results in the loss of critical data processing functionalities such as search.

Searchable symmetric encryption (SSE) is a form of encryption, first proposed by Song et al. in 2000,
which retains search functionality [4]. With Searchable Encryption, a data owner is able to share en-
crypted confidential documents with an untrusted CSP. Later on, the data owner can send the CSP
an encrypted search instruction. The CSP can both perform the instruction and obtain its results but
cannot learn any new information about the contents of either.

Searchable symmetric encryption has gained lots of interest in the research world, and many improve-
ments have been proposed over the initial scheme by Song et al. [4]. While much attention has been de-
voted to improving the privacy, efficiency, security, verifiability, and query expressiveness of schemes,
a particularly interesting research direction is that of dynamic searchable symmetric encryption (DSSE).
In contrary with static schemes like [4], DSSE introduced by Kamara et al. allows users to update their
set of documents efficiently [5].

Static SSE schemes have successfully been applied in a blockchain context before [6, 7]. Asmentioned
previously, the verifiability of search results is an important aspect of SSE schemes. These schemes
benefit from the verifiability that blockchain provides out-of-the-box in the form of smart contracts. Only
very recently have dynamic SSE implementations in blockchain been proposed, but they either did not
contain a security proof [8] or required a redactable blockchain for rewriting history [9].

In this chapter, we present the first known dynamic searchable symmetric encryption scheme imple-
mented in a blockchain context that is secure against adaptively chosen keyword attacks. In section 3.2,
related work is discussed. In section 3.3, a formal definition of DSSE and security are given. Section 3.4
explains our implemented scheme and system in detail. Finally, in section 3.5, a performance analysis
of the system is given.

3.2. Related Work
Searchable symmetric encryption can be achieved in full generality using the pioneering work of Goldre-
ich and Ostrovsky on oblivious random access machines (ORAM) [10]. Their main result is an efficient
simulation of an arbitrary program on an oblivious machine, for which the sequence in which it accesses
memory locations is independent of the input given. A simple oblivious SSE scheme is then created
by ORAM simulation of a data structure that supports fast searches on document collections (e.g. an
inverted index). While ORAM schemes achieve strong privacy guarantees, their high computational
and storage costs make them only practical for small datasets.

Song et al. showed that a more efficient solution for searchable encryption exists for a weaker security
model with small leakage of the client’s access pattern [4]. In this first practical scheme, a ciphertext
of a document contains special two-layered encryption constructs for each word in the document. To
search for a keyword, the client generates a trapdoor that strips the outer layer of the construct and
asserts whether the inner layer is of the correct form. The server then has to sequentially scan all
ciphertexts, resulting in a search complexity linear in the number of words per document. Furthermore,
the construction of this scheme leaks the word distribution of underlying plaintexts and is therefore
vulnerable to statistical attacks. Nevertheless, the authors proved their scheme to be a secure pseudo-
random generator. Later on, Kamara et al. would even prove this initial scheme to be indistinguishable
against chosen plaintext attacks (IND-CPA) secure [5].

Goh recognized IND-CPA security was not sufficient to describe the security of searchable encryption
schemes, as it does not consider leakage coming from trapdoors or queries [11]. They proposed a new
notion of security specific to the context of SEE, which they named indistinguishable against chosen
keyword attacks (IND-CKA). An SSE scheme is considered IND-CKA secure if an adversary is unable
to distinguish indexes from two equally-sized documents. A secure index is a data structure that can
be queried with a trapdoor τw generated for a word w to test whether the index contains w without

3.2. Related Work 8

revealing w or the index’s contents. In the same paper, they propose their own SSE scheme that
assigns an index to each document during construction. Their index implementation relies on Bloom
filters (BF), a probabilistic data structure based on hashing, which can efficiently test set membership.
The search complexity of this scheme is therefore linear in the number of documents stored by the
server. Goh proved their scheme to be IND-CKA secure.

Chang and Mitzenmacher introduced a new simulation-based definition of security for SSE schemes,
with stronger properties compared to Goh’s IND-CKA game-based definition [12]. Their definition would
consider trapdoor leakage, and guarantee indistinguishability for two documents of unequal size. Goh
would later introduce IND2-CKA security, which does protect index size but still does prevent trapdoor
leakage. The scheme proposed by Chang and Mitzenmacher uses dictionaries instead of Bloom filters
for building the indexes, yielding the same linear search complexity as Goh’s implementation.

Curtmola et al. showed the security definitions as proposed by [11, 12] to be inadequate in capturing
the security of SSE schemes [13]. They pointed out two limitations in the previous definitions: (1)
leakage from the trapdoor construction was not explicitly captured; (2) the power of the adversary
was implicitly limited. Starting with the first issue, while previous definitions acknowledged leakage
caused by the search results being revealed to the server, this access pattern leakage was not treated
appropriately. Furthermore, search pattern leakage (i.e. whether a search query is being repeated)
was not incorporated. Curtmola et al. addressed this issue by incorporating explicitly allowed leakage
in their IND-CKA1 security definition. Later on, Chase and Kamara would revisit this approach and
generalize the definition for any kind of leakage [14].

To address the second issue, in addition to IND-CKA1 security, Curtmola et al. proposes a new adaptive
adversarial model IND-CKA2. Unlike in the non-adaptive setting, the adaptive definition allows an
adversary to choose their queries as a function of previously obtained trapdoors and search results.
This model is better suited to represent real-world scenarios in which the adversary is a server that can
learn new information during every new round of interaction with a client. Curtmola et al. also proposes
two new constructions and proves them to be secure under their new security definitions. The idea
is to have an inverted index per distinct word in the database instead of per document. A trapdoor
is generated by applying a pseudo-random function to the keyword being queried. This approach
achieves a search time linear in the number of documents containing the keyword, which is optimal.
The difference between the two proposed schemes is that the first one is only secure in the non-adaptive
setting, while the second scheme is also secure against an adaptive adversary, at the cost of higher
communication overhead and server storage requirements.

IND-CKA2 is considered a strong security definition for SSE schemes, as it adequately describes the
information leakage coming from index and trapdoor construction in the adaptive setting. The definition
protects user privacy against a passive adversary but is unable to detect a malicious server withholding
or forging search results. To provide security in the active adversary model, Kurosawa and Ohtaki
introduce a verifiable SSE scheme [15]. In this scheme, a client is able to link a query and server
response due to MAC tags being included in both encrypted indexes and trapdoors. Linear search
complexity is achieved due to the number of table lookups on the server, each resulting in a MAC that
requires verification on the client.

Kamara et al. propose the first practical dynamic SSE scheme with efficient updates of documents [5].
Their construction extends the inverted index approach of Curtmola et al. by issuing a deletion array,
an encrypted data structure that allows for the efficient deletion of a file by tracking all pointers in other
lookup tables and arrays corresponding to the file. Furthermore, homomorphic encryption is used to
modify pointers in the data structures without revealing their contents to the server. This combination
allows the efficient addition and deletion of files without having to re-index the entire data collection.
The construction preserves the optimal search time of its predecessors. As the IND-CKA2 security
definition only considers static schemes, an extension of the definition called dynamic CKA2-security
is given to account for the new set of operations. The scheme is proven to be dynamic CKA2 secure
in the random oracle model.

3.3. Definitions 9

3.3. Definitions
In this section, we formalize the dynamic searchable symmetric encryption scheme and present our
main security definition. Before doing so, however, we would like to clarify some of the notation used
in our definitions. Furthermore, appendix A serves as a quick reference guide to the notation and
terminology assumed throughout this section.

A searchable symmetric encryption scheme considers two participants: a client in the possession of
a set of documents or files; and an untrusted server with the ability to store this data. The goal of an
SSE scheme is to store the client’s files in an encrypted format on the server’s storage while retaining
the ability of the client to (efficiently) search over the files without revealing any information about their
contents. In contrast with previous definitions [5, 13] that implicitly create an association between files
and keywords by considering each file as a sequence of words, we make this association explicit. Let
D = {D1, . . . , Dn} be a set of private documents and let σw(Di) be the predicate that signifies an
association between keyword w ∈ W with the encrypted document Di, where W is the universe of
keywords. We define the set of files f = {f1, . . . , fn} complementary to D, with fi = {w ∈ W |
σw(Di)} ∈ P(W) to be the set of documents associated to Di by σ. Note that by our explicit definitions
of f and σ, the definition of document collection D is kept intentionally abstract, such that Di ∈D can
be of any data type (e.g. binary files, photos, health records, etc.). Let id(D) be the unique identifier of
document D ∈ D, where the identifier can be any string, such as a name, hash, or memory location.
Let fw = {fi ∈ f | σw(D), w ∈ W,D ∈ D} the set of files in f that contain w. Similarly, let Iw be the
set of file identifiers that contain w.

Definition 3.1 (Searchable Symmetric Encryption (SSE)) A searchable symmetric encryption scheme
is a tuple of four polynomial-time algorithms SSE = (Gen,Setup,Token,Search) such that:

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k ∈ N. It
outputs a secret key K.
I ← Setup(K,f): is a probabilistic algorithm that takes as input as secret key K and set of files
f . It outputs an encrypted index I.
τ ← Token(K,w): is a (possibly probabilistic) algorithm that takes as input a secret key K and a
keyword w. It outputs a search token τ .
Iw := Search(I, τ): is a deterministic algorithm that takes as input a secret key an encrypted
index I and a search token τ . It outputs a set of file identifiers Iw.

An SSE scheme is correct if for all k ∈ N, for all K generated by Gen(1k), for all f ⊆ P(W), for all I
output by Setup(K,f), and for all w ∈W ,

Search(I,Tokenk(w)) = Iw.

Contrary to the definition for SSE given by [13], we do not consider the encryption and decryption
algorithms, respectively Enc and Dec, as part of our definition. Our definition of SSE only considers
algorithms directly related to the encrypted index operations. In section 3.4 it will become clear why
this distinction was made. For practical use of this SSE scheme, we require a second non-searchable
symmetric encryption scheme SKE = (Gen,Enc,Dec). Intuitively, a private-key encryption scheme
SKE is indistinguishable against chosen plaintext attacks (IND-CPA) if a polynomial-size adversary
that can adaptively query an encryption oracle is unable to distinguish pairs of ciphertexts based on the
message they encrypt. Formal definitions of both symmetric encryption schemes and IND-CPA security
are provided in definition A.3 and A.4, respectively. We note that common symmetric key block ciphers
such as AES-CTR (Counter mode of operation) satisfy the IND-CPA security definition.

A searchable symmetric encryption scheme as defined in definition 3.1 is considered static, as it does
not allow for the addition and removal of files. For practical purposes, dynamic SSE schemes are of
more interest, because in addition to search, they support altering the encrypted index by insertion and
deletion of documents.

Definition 3.2 (Dynamic Searchable Symmetric Encryption (DSSE)) A dynamic symmetric search-
able encryption scheme is a tuple of eight polynomial-time algorithmsDSSE = (Gen,Setup,SearchToken,
AddToken,DeleteToken,Search,Add,Delete) such that:

3.3. Definitions 10

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k ∈ N. It
outputs a secret key K.
I ← Setup(K,f): is a probabilistic algorithm that takes as input as secret key K and set of files
f . It outputs an encrypted index I.
τs ← SearchToken(K,w): is a (possibly probabilistic) algorithm that takes as input a secret key
K and a keyword w. It outputs a search token τs.
τa ← AddToken(K, f): is a (possibly probabilistic) algorithm that takes as input a secret key K
and a file f . It outputs an add token τa.
τd ← DeleteToken(K, f): is a (possibly probabilistic) algorithm that takes as input a secret key
K and a file f . It outputs a delete token τd.
Iw := Search(I, τs): is a deterministic algorithm that takes as input a secret key, an encrypted
index I, and a search token τs. It outputs a set of file identifiers Iw.
I ′ := Add(I, τa): is a deterministic algorithm that takes as input a secret key, an encrypted index
I, and an add token τa. It outputs a new encrypted index I ′.
I ′ := Delete(I, τd): is a deterministic algorithm that takes as input a secret key, an encrypted
index I, and a delete token τd. It outputs a new encrypted index I ′.

A DSSE scheme is correct if for all k ∈ N, for all K generated by Gen(1k), for all f ∈ P(W), for all
I output by Setup(K,f), for all w ∈ W , and for all I ′ resulting from any sequence of Add or Delete
operations on I,

Search(I ′,SearchTokenk(w)) = Iw.

Note that in the research domain of searchable symmetric encryption, the terms TrapDoor and SearchToken
are used interchangeably to define an operation run by the data owner to generate a search trapdoor.
In this work, we opted for the latter term, to have consistent naming across all the token-generating
functions.

A security definition for a DSSE scheme should, in addition to the leakage of the access pattern consider
leakage caused by the dynamic algorithms. We adopt the definition by [5] for adaptive semantic security
against chosen-keyword attacks in the dynamic setting. They define a tuple (L1,L2,L3,L4) of four
stateful functions to capture the leakage of their scheme. These leakage functions correspond to the
leakage caused by the Setup, SearchToken, AddToken, and DeleteToken algorithms, respectively. The
parameters for the functions are dependent upon the construction of the scheme. Now follows the
definition for dynamic CKA2-security.

Definition 3.3 (Dynamic CKA2-security) LetDSSE = (Gen,Setup,SearchToken,AddToken,DeleteToken,
Search,Add,Delete) be a dynamic searchable symmetric encryption scheme. Consider the following
probablistic experiment, where A is a stateful adversary, S is a stateful simulator, and L1, L2, L3, and
L4 are stateful leakage functions:

RealA(k): The challenger runsGen(1k) to generate a keyK. A outputs f and receives I ← SetupK(f)
from the challenger. The adversary makes a polynomial number of adaptive queries {w, f1, f2}.
For each query q, it receives from the challenger a search token τs ← SearchTokenK(w), an add
token τa ← AddTokenK(f1), or a delete token τd ← DelTokenK(f2). Finally, A returns a bit b that
is output by the experiment.

IdealA,S(k): A outputs f . Given L1, S generates and sends I to A. The adversary makes a poly-
nomial number of adaptive queries {w, f1, f2}. For each query q, the simulator is given either
L2(f , w), L3(f , f1), or L4(f , f2) and receives τs, τa or τd respectively. Finally, A returns a bit b
that is output by the experiment.

DSSE is said to be (L1,L2,L3,L4)-secure against adaptive dynamic chosen-keyword attacks if for all
polynomial-size adversaries A, there exists a polynomial-size adversary S such that

|Pr [RealA(k) = 1]− Pr [RealA,S(k) = 1]| ≤ negl(k),

3.4. Blockchain-based DSSE 11

3.4. Blockchain-based DSSE
Our system is an implementation of the DSSE scheme presented by Kamara et al. in a blockchain
context [5]. Their construction relies on four encrypted data structures to efficiently make queries with
minimal leakage. We will adopt these four data structures in our design to achieve the same asymp-
totically optimal query performance and efficient updates (more on this in section 3.4.1). Furthermore,
they proved their scheme IND-CKA2 secure against adaptive adversaries.

While leakage of the access patterns is restricted, the scheme only considers passive adversaries who
will not deviate from the defined protocol. An active adversary can still supply the user with incorrect
results. A simple example would be a server that always returns an empty list as search output. To
tackle this issue, verifiable SSE was proposed by Kurosawa and Ohtaki, but their solution is neither
dynamic nor has it efficient search complexity [15]. A dynamic verifiable scheme proposed by Bost et
al. achieves optimal search time but requires a client to keep track of its search queries, resulting in a
space complexity linear in the number of keywords Bost et al.

In this work, we take an entirely different approach by introducing a blockchain, more specifically Hyper-
ledger Fabric (HLF), to tackle the issue of verifiability. Blockchain peers take over the role of the cloud
service provider in this setting. The search, add and delete functionality is implemented in chaincode.
In addition, the InitLedger smart contract is defined to set up all data structures on-chain, given an en-
crypted index. Correct execution of these operations is enforced by the blockchain through consensus.

3.4.1. Implementation
To showcase the feasibility of our blockchain-basedDSSE concept, we implementedDSSE from scratch
in the Go programming language1. As mentioned previously, our implementation relies heavily on the
construction given by [5]. To apply their ideas effectively in the context of HLF, some alterations to the
algorithms and data structures used were required to safeguard the security and performance of the
implementation. These modifications will be discussed in detail in this section.

The scheme of [5] has an optimal search time complexity ofO(|fw|). A search time linear in the number
of files that contain the queried keyword w was first achieved by [13], through a technique regarded
as the inverted index approach. Kamara et al. use the same approach, but instead of using a single
lookup table and array like [13], their dynamic scheme requires four data structures: a search table Ts,
deletion table Td, search array As, and deletion array Ad. The function(s) of these data structures will
become clear in the example given in section 3.4.2. To achieve said search complexity, access and
update operations on lookup tables and arrays should have expected constant time complexity.

The current status of assets stored in the HLF ledger is projected as the world state. This world state
is implemented by means of a highly efficient key-value store with constant time search, insert, and
delete operations. However, the key-value store is not an in-memory database on blockchain peers.
Accessing an element from an array stored as an asset on HLF requires O(n) time, with n the array’s
capacity, as the whole array needs to be loaded. We get around this problem by storing each element
contained within Ts, Td, As, and Ad as a separate key-value pair. For the lookup tables, this conversion
is self-evident, for key-value pair (k, v) and lookup table T with T [k] = v, we obtain key-value pair
(id(T)||k, v), where id(T) is a predefined string identifying T . For arrays, this conversion is less obvious,
but we opt for a similar method as we observe that the construction by [5] does not utilize the arrays’
in-order traversal or contiguous memory properties. Let A be an array, and let A[i] = v denote the
element stored in A at index i, then we obtain key-value pair (id(A)||i, v), where id(A) is a predefined
string identifying A.

3.4.2. An Illustrative Example
Figure 3.1 contains an overview of the different parties in our system and an example of the interac-
tions between them. We consider the toy example of an educational institution. A data owner can be
thought of as the institution’s content management system, while data users can be faculty members
or students. The files in this context can be considered the marks of a test or assignment. The role
of the blockchain is multi-functional, in addition to providing the users with verifiable results for their
queries, its immutability can also be used to prevent tampering with the marks.

1The official Go programming language website: https://go.dev/

https://go.dev/

3.5. Performance Analysis 12

Figure 3.1: Overview of our blockchain-based DSSE system including example interactions between parties.

Initialization To start working with the system an initialization step is required. This step needs to be
run only once by the data owner. The data owner starts by running the Gen algorithm and obtains
the secret key K. He then uses this K together with an initial (or empty) set of files f to run the
Setup algorithm and obtains the encrypted index I (1). At last, the data owner saves I on the
blockchain by invoking the InitLedger smart contract function (2).

Search Now consider a student who wants to obtain all their marks for the course of ”LinearAlgebra”.
The student starts by requesting a search token from the data owner (S3), specifying the course
name as the keyword w. The data owner receives the request, checks the student is authorized,
and uses its secret key K to generate a search token τs through the SearchToken function. The
data user receives τs and invokes the SearchWord function in the chaincode (S4). In the end, the
data owner receives a list of file identifiers Iw previously associated with w.

Addition A teacher might want to upload a newmark for the Calculus course obtained by student Alice.
A request containing the mark, identified by fid and the list of keywords [”Alice”, ”Calculus”], is
sent to the data owner (A3). With its secret key k, the data owner proceeds by running the
AddToken function and obtains an add token τa that is returned to the data user. The last step in
to making the file queryable is invoking the AddFile chaincode with τa (A4).

Deletion Suppose now a teacher has made a mistake and wants to remove a mark from the system.
To update the search index, they first request a deletion token τd from the data owner specifying
the mark to be deleted by identifier fid (D3). The data owner checks the authorization of the user
and creates the delete token τd by running the DeleteToken function with its security key K. The
data user receives τd and invokes the Delete chaincode to remove the mark identified by fid and
all its associations from the search index (D4).

3.5. Performance Analysis
To evaluate the performance of our blockchain-based DSSE system we made a distinction between
the operation performed by the client, and the chaincode run by the blockchain peer. In addition to
the execution time of operations, we will also measure latency, success rate, and transaction size
when applicable. For all experiments involving chaincode execution, a Hyperledger Fabric blockchain
network with a single channel containing four peers and one orderer was deployed. All the nodes were
hosted by the same machine to minimize the cost of network traffic. All experiments are run on an 11th
Gen Intel(R) Core(TM) i7-1185G7 @ 3.00GHz 8 CPU computer with 16 GB RAM. The implementation
of the DSSE chaincode is available in the accompanying code repository2.

For all our benchmarks we used the open source English words dataset3. During our experiments, we
selected the unit of measurement to be the number of associations. The set of all associations of a file

2DSSE repository: https://github.com/bartvsdev/thesis-sse
3English words dataset: https://github.com/dwyl/english-words

https://github.com/bartvsdev/thesis-sse
https://github.com/dwyl/english-words

3.5. Performance Analysis 13

f is the set compromised of all unique keywords w associated with f . Unlike [5] we did not consider
real-world datasets of emails, documents, and MP3 files, as we want to highlight the influence of the
number of associations on the performance, rather than the total document size. The represented
measurements are the mean result of 10 executions.

Size of keyword set (KB) 25 50 75 100
Index Size (MB) 7.94 15.76 25.43 33.83
Execution Time Client (ms) 115.66 204.68 300.31 398.82
Execution Time CC (s) 16.91 34.15 48.47 72.50

Table 3.1: Setup - Encrypted index size, generation, and chaincode initialization.

Table 3.1 shows the size, client generation time, and chaincode initialization time for an encrypted
index generated for a variable number of associations. The execution for the client and chaincode
(CC) indicate the time required for generating the encrypted index on the client and initializing the
index on the ledger, respectively. For this synthetic experiment, a keyword set of size defined in the
first row is generated from the dataset. The keywords are evenly distributed and associated across
5 made-up files. Note that the total number of associations is equal to the number of keywords, and
the deciding factor for index size. As expected, the size, generation time, and chaincode initialization
time of the encrypted index grow linearly with the number of associated keywords. The chaincode
execution time is high, in the order of minutes in the case of a 100KB keyword set. Possible causes of
this unsatisfactory result are discussed in section 3.6.

In general, we expect our dynamic SSE scheme will be initialized with an empty set of files. In our
second experiment, we measured the maximum capacity of the number of keyword/file associations
that could be added in this case. The maximum number of associations the encrypted index can hold
is determined at 414K. The time execution time of the chaincode to initialize an empty encrypted index
of this size on the ledger is 3.2 minutes. This upper bound on index size is determined by the default
chaincode time-out period. The impact of adjusting this default time-out and alternatives for improving
initialization time and index size are discussed in section 3.6.

Input Load 1500 2000 3000 4000
Throughput 1483 1995 2678 3191
Response Time (ms) 7.96 19.33 57.39 -
Number of Rejects 0 0 0 658

Table 3.2: Search - Load testing search chaincode.

For our third experiment, the search performance is analyzed. The search procedure consists of two
consecutive operations, obtaining a token through the SearchToken operation, and querying the ledger
through the Search chaincode. As the DSSE construction by Kamara et al. indicates, the search token
generation is a constant time operation, irrespective of the provided keyword [5]. The mean time for
computing a search token on the client is 6.03 ms.

In table 3.2 the throughput, response times, and in some instances the number of rejects are displayed
for different query loads. The experiment was conducted as follows: 5 clients use a set of precomputed
search tokens to query multiple peers in parallel for a fixed total amount of 1500, 2000, 3000, and 4000
requests per second. The throughput shows the actual number of transactions per second. This load
test shows the chaincode is able to handle high demand concurrently, with fast response times and
high throughput. However, at some point, the chaincode starts rejecting requests.

Keywords / File 2 4 6 8 10
Execution Time Client (µs) 25.80 37.92 47.85 58.10 64.69
Execution Time CC (s) 2.108 2.115 2.120 2.128 2.133

Table 3.3: AddToken and Add - Generation of add token and chaincode for adding a file.

Table 3.3 shows the relationship between the number of keywords and execution time for adding a file.
Like the search procedure, file addition consists of two steps, first generating an add token on the client

3.6. Discussion 14

side, continued by executing a chaincode with this token. The add token generation seems to grow
linearly with the number of keywords associated with the file being added. The chaincode execution
time seems constant, but as we will discuss in section 3.6, this result is flawed due to a HLF property.

Deletion of a file from the HLF is again a two-step process of generating a token using the DeleteToken
operation and subsequently calling the Delete chaincode. Generating a delete token is a constant time
operation with mean of 25.1 µs. Execution of the delete chaincode experiences the same problem as
the chaincode for addition. The mean execution time of this chaincode averages around 2.1 s as well.

3.6. Discussion
Our blockchain-based DSSE system shows how smart contracts can provide secure and verifiable
query functionality over dynamic data stored in a decentralized ledger. The consensus property assures
the data owner’s encrypted data is updated according to specification. Our system is able to handle
high search throughput with fast response time and this performance should scale horizontally due to
the distributed nature of the network. No fair comparison can be drawn between the original scheme of
Kamara et al. and our implementation, due to the dissimilarities in datasets and environment (in-memory
vs client-server operations) [5]. Xu et al. very recently proposed a DSSE scheme in a blockchain context
and obtained similar search performance compared to our results [8]. However, they do not provide a
security proof for the construction of their system.

The experiments considering the initialization of the ledger pointed out two limitations of this operation:
the long execution time and an upper bound on the index size. The default time-out causing the bound
on the size of the encrypted index can be easily altered in the HLF settings. However, this modifica-
tion might not be desirable. Instead, we would like to drive research into the possibility of creating
a dynamically-sized index. Additionally, with a resizable index (or multiple indices) a data owner is
relieved of the inconvenient task of correctly predicting the final index size in advance.

In section 3.5 we already mentioned the results from the chaincode for adding and deleting were flawed
due to an HLF property. In HLF, transactions have to be approved by an endorsement peer before they
are committed to the ledger [3]. During endorsement, a proposal is simulated against the endorser’s
local blockchain. The fundamental problem of double spending is prevented by verifying a single key-
value pair is not altered in multiple transactions. The construction of [5] relies on free pointers, to
decide on the next location to place a new association. Our implementation of the add chaincode
works similarly but naturally, a free pointer corresponds to a key-value pair in our context. In chapter 2,
we saw that HLF prevents multiple transactions within the same block to read and alter the same key-
value pair. So while all the add operations are successfully executed and validated by peers, only a
single one can be committed in the next block. Block creation takes approximately 2 seconds in our
test network, which explains the chaincode execution time. The same logic applies to our chaincode
implementation of the delete operation.

A trivial solution for improving the performance of the add and delete chaincode seems to reduce the
block time. However, this approach seems infeasible, as our experiments were conducted in an ideal
environment with a small number of peers and little communication delay. A second option would be
to introduce a two-step process for the addition and/or deletion of files. During step 1, add and delete
tokens are collected on the ledger and committed into a new block. Step 2 is triggered right after a
collection of tokens is committed. In this step, the add and delete operations corresponding to the
tokens collected in (1) are executed as a single batch. Hyperledger Fabric offers built-in events for
such a scenario. While this second approach would allow for significantly higher throughput, the time
between the proposal of an update and its commitment doubles. Whether such a trade-off is justifiable,
likely depends on the number of update transactions in the network and the use case.

4
Attribute-Based Encryption

How do we efficiently share a secret on a consortium blockchain only with a specific set of participants?
In this chapter, we showcase how attribute-based encryption (ABE) can be used to restrict the ability
to decrypt a ciphertext to a subset of users in the network. Our system requires no central authority,
organizations can deploy their own authority and start issuing private keys to users that reflect their
attributes. Our system relies on the secure multi-authority ABE construction of Lewko and Waters [17]
and performant implementation of their scheme in Rust. We developed a foreign function invocation
(FFI) wrapper, based on protobuf, to make it accessible for clients. Finally, we evaluate the performance
of the wrapper and show its small overhead for general use cases.

15

4.1. Introduction 16

4.1. Introduction
The key exchange problem is a fundamental problem in cryptography and is defined as the challenge
of two or more parties agreeing on a shared secret key over an insecure communication channel. Tra-
ditional public key encryption (PKE) schemes solve this problem using two different but mathematically
related cryptographic keys. A public key is shared among multiple users and is used to encrypt mes-
sages, such that only the holder of the corresponding private key can decrypt resulting ciphertexts.
However, PKE introduces a new problem as users now have to verify the authenticity of received pub-
lic keys. The general solution involves deploying a public key infrastructure (PKI), in which all parties
should trust a third party called the certificate authority (CA). Users can apply to the CA for a digital
certificate by which they can be identified by others.

Having a PKI in place is costly and encrypting a message is a time-consuming process that includes
public key certificate retrieval, certificate verification, and message encryption by the receiver’s public
key. Moreover, broadcasting a secret within a group is highly inefficient as all steps have to be repeated
for each member of the group separately. In 1984 Shamir suggested identity-based encryption (IBE)
as a solution to this problem [18]. Instead of generating a random public key like in traditional PKE,
the idea of IBE is to let a publicly known string represent the user as its public key. However, [18]
was unable to come up with a concrete implementation of an IBE scheme, which was only much later
proposed by Boneh and Franklin in 2001 [19].

While in theory identity-based encryption solves the problem of public key distribution and authentica-
tion, it still feels cumbersome in practice. For example, when Alice wants to send a message to all
the members of the sales department in her company, then she needs to know the identities of all the
employees in the department and encrypt the message for each recipient separately. As the example
shows, individuals are often characterized by their attributes, rather than simply their identity. This led
to the introduction of the fuzzy IBE scheme by Sahai and Waters in 2005 which included attributes in
the design [20]. In their design, messages are encrypted using a set of attributes. A central authority
exists with whom users authenticate themselves to obtain a private key based on their attributes. The
decryption of a ciphertext is only feasible for users with private keys that match the attributes of the
ciphertext. Later on, this type of cryptographic primitive became known as attribute-based encryption
(ABE).

Lots of improved ABE schemes have been proposed that can be categorized into two groups. The fuzzy
IBE scheme proposed by Sahai and Waters is considered a key-policy ABE (KP-ABE) scheme [20]. In
KP-ABE, ciphertexts are associated with sets of attributes, while users’ secret keys are generated
based on an access policy that defines the privileges and rights of the concerned user. In ciphertext-
policy ABE (CP-ABE) schemes, first introduced by Bethencourt et al., the roles are reversed [21]. In
CP-ABE, ciphertexts are associated with access policies, while a user’s private key is generated based
on its attributes. The interest in CP-ABE seems to prevail over KP-ABE, as the data owner retains
access policy determination in the former case.

ABE-enabled access control systems have seen successful implementations in the context of cloud
computing and IoT applications [22, 23]. In theory, blockchain applications seem to be an even better
fit for ABE, as on top of the added expressiveness and scalability that ABE offers over PKE and IBE,
it provides anonymity between users. An encrypting data owner is not required to know the identity of
its decrypting counterpart (in advance), as users are merely identified by their attributes. In its recent
SoK on cryptography used in blockchain, Raikwar et al. identifies the construction of an ABE based
(or ABE related) permissioned blockchain network as a research challenge [24]. Zhang et al. provides
a comprehensive overview of blockchain technology and acknowledges that “an implementation of
attribute-based encryption utilizing a blockchain approach remains to be an open challenge” [25].

Like many of its successors, the initial ABE scheme proposed by Sahai and Waters relies on a central
authority for issuing private keys to users. For a decentralized network like blockchain, such a depen-
dency on a single entity is not desirable. Sahai and Waters recognized this and asked themselves
whether it was possible to create an ABE scheme “where the attributes come from multiple authori-
ties” [20]. Chase was the first to consider a multi-authority ABE scheme, but the author’s design still
relied on the presence of a trusted central authority [26]. Lewko and Waters were the first to come up
with a fully secured decentralized multi-authority design that is central authority free [17]. Like in single-

4.2. Related Work 17

authority schemes, the biggest obstacle in multi-authority schemes is preventing collusion between
users. In the design of Lewko and Waters this is achieved through linking private keys of different
authorities by assigning each user a unique global identifier (GID). To build a secure, decentralized,
collusion-resistant ABE system, this uniqueness constraint of the GID should be enforced.

In this chapter, we present our ABE-enabled consortium blockchain. In our system, any institution
part of the consortium can become an authority and issue private attribute keys to users. Secrets can
be securely shared with a subset of users defined by the access policy in the ciphertexts. Collusion
between users is prevented by linking private keys issued by different authorities together using the
blockchain identity. Our system is fully decentralized and does not require institutions and users to
trust a single designated entity. Finally, we provide a working example including implementations of
the authorities, chaincode, and foreign function interface that enables encryption and decryption on
clients.

In section 4.2, related work is discussed. Section 4.3 provides formal definitions of concepts and prob-
lems required for the construction and proof of our multi-authority ABE implementation. In section 4.4,
we present our ABE-enabled consortium blockchain implementation and discuss its security guaran-
tees. In section 4.6, we analyze the performance of our system. Finally, in section 4.7, our results are
discussed.

4.2. Related Work
In 2005, Sahai and Waters proposed their fuzzy identity-based encryption scheme, which would be-
come known as the first attribute-based encryption scheme [20]. Unlike previous IBE schemes, Sahai
and Waters identity is viewed as a collection of characteristics (attributes) instead of a unique string.
Consequently, multiple users can decrypt the same ciphertext, provided there exists conformity among
the attributes associated with the user’s private keys and those specified during cipher encryption. Their
scheme is proven secure by a reduction. In addition to data confidentiality, Sahai and Waters stress the
importance of collusion-resistance in ABE schemes, i.e. no group of users should be able to collectively
decrypt a ciphertext that none of the members alone could. Collusion is prevented by incorporating the
user’s identity in private keys generated by the authority through a user-specific random polynomial.
The scheme supports threshold access policies, i.e. a user is required to possess t out of n defined
attributes, and is proved selectively secure using the decisional BDH assumption (see definition 4.5).

While the authors of [20] were the first to coin the term “attribute-based encryption”, their fuzzy IBE
scheme was intended to provide error-tolerance to encryptions of biometric identities. The limited ex-
pressiveness of their threshold access policy in ABE reflects this original intent. Goyal et al. developed
an ABE scheme that allowed for more fine-grained sharing of encrypted data, which they called key-
policy attribute-based encryption (KP-ABE) [27]. In their scheme, ciphertexts are marked by a set of
attributes, and access structures are defined for private keys that control which ciphertexts the key
owner is able to decrypt. Like [20], the security of the scheme is proved through a reduction to the
hardness of the decision BDH assumption. The scheme is collusion resistant by design, as attributes
are associated with ciphertexts, rather than with users.

Bethencourt et al. proposed the first ciphertext-policy attribute-based encryption (CP-ABE) scheme [21].
In contrast to KP-ABE, in CP-ABE the user’s private key is associated with a set of attributes and an
access policy is defined for each ciphertext. The primary advantage of this design over KP-ABE lies
in the data owner’s power to determine the access policy. CP-ABE is therefore conceptually closer to
traditional access control methods. The scheme of [21] prevents collusion attacks by including in each
attribute secret key a random user-specific blinding value. Their scheme allows for tree-based access
policies but is only proven secure in the idealized generic group model.

A significant drawback of any ABE scheme discussed so far is its reliance on a single trusted server
(authority) to monitor all attributes. In reality, it is more likely that multiple entities are responsible
for maintaining this data. To solve this issue of disjoint attribute sets, Chase proposed the first multi-
authority attribute-based encryption scheme [26]. Her design allows specifying for each authority a set
of attributes. Ciphertexts contain for each authority a minimum number of attributes a decrypting user
should possess. In addition to the limited expressiveness that this threshold scheme achieves, it is
flawed in another way. It still requires a central authority, and this central authority has a master key

4.3. Definitions 18

that allows it to decrypt any ciphertext.

Lewko and Waters designed a fully decentralized multi-authority ABE scheme. Their construction does
not rely on any global coordination than the creation of an initial set of global parameters. Their system
associates access structures on ciphertexts (CP-ABE) through the use of linear secret-sharing schemes
(see definition 4.2), which is considered more efficient than the tree structure used by [21]. A hash
function on the user’s global identity is used to obtain collision resistance across attribute key generation
of autonomous authorities. Their construction is based on groups of composite order and is proven
secure in the random oracle model based on the subgroup decision problem (see definition 4.6). No
implementation of the scheme is provided.

In addition to multi-authority ABE, many enhancements have been proposed to the standard CP-ABE.
Rouselakis and Waters have enriched single and multi-authority schemes with large universe construc-
tions, which compared to small universe constructions, do not have a public key size of authorities
that grow linearly with the number of attributes [28, 29]. Attrapadung and Imai among others, proposed
revocable ABE, in which a user’s ability to decrypt a cipher can be revoked [30]. Policy-hiding schemes
allow for the sharing of the cipher without leakage of the access policy or its attributes [31]. Further-
more, a significant amount of research is aimed at improving the performance of ABE schemes, with
FAME being a well-known example [32].

ABE-enabled access control systems have seen successful implementations in the context of cloud
computing and IoT applications [22, 23, 33]. ABE implementations in the context of blockchain have
also been proposed. Rahulamathavan et al. proposed a blockchain-based IoT ecosystem with decen-
tralized authorities [34], but the expressiveness of access policies in their scheme is limited. Wang and
Song proposed a cloud-based electronic health record (EHR) system with blockchain to ensure the
integrity and traceability of medical data but has a single point of failure, as a central authority is used.

At last, the theoretical and practical security of ABE needs to be addressed. The work of [36] shows,
that there is no black-box construction of IBE (and therefore ABE) schemes. This entails an impossibil-
ity result for the creation of (very) efficient ABE schemes. In particular, some so-claimed “pairing-free”
schemes [37], cannot be secure. Moreover, many schemes are proven secure in theory but employ
certain shortcuts in their implementation to achieve reasonable performance. Venema and Alpár pro-
posed a linear approach to analyze the security of many ABE implementations [38]. They found eleven
schemes, most notably [33], for which they are able to decrypt any ciphertext. Their recommendation
is to only rely on ABE schemes that do not have integer exponents in the keys, such as [17, 29] in
multi-authority, and [32] in single-authority settings.

4.3. Definitions
In this section, we will formalize multi-authority attribute-based encryption and lay a foundation for the
construction of our system and its security proofs in section 4.4 and section 4.5 respectively. We start
by providing definitions for access structures and linear secret-sharing schemes that will be used to
specify the expressiveness of our scheme. We then turn to pairing-based cryptography and define
bilinear maps and the security assumptions that form the backbone of nearly all ABE schemes. At last,
we formally define multi-authority attribute-based encryption and the security model.

4.3.1. Access Structures and Linear Secret Sharing Schemes
Definition 4.1 (Access Structure) Let U be the universe of attributes. An access structure on U is a
collection A of non-empty sets of attributes, i.e. A ⊆ 2U \ {∅}. The sets in A are called the authorized
sets, while the sets not in A are called the unauthorized sets.

Additionally, an access structure is called monotone if ∀B,C ∈ 2U if B ∈ A and B ⊆ C then C ∈ A.

The access structure definition is adapted from [39], with attributes taking up the role of parties in our
context. In this work we only consider monotonic access structures, as a result, users cannot lose
decryption privileges by acquiring more attributes. As shown by Beimel et al., any monotone access
structure can be realized by a linear secret sharing scheme (LSSS) [39]. Following is the definition of
an LSSS adapted from [39].

Definition 4.2 (Linear Secret Sharing Scheme (LSSS)) Let p be prime andU the universe of attributes.

4.3. Definitions 19

A secret sharing scheme Π with domain of secrets over Zp realizing access structures on U is linear
over Zp if

1. The shares of a secret s ∈ Zp for each attribute form a vector over Zp.
2. For each access structure A on U , there exists a matrixA of sizem×n with elements in Zp, called

the share-generating matrix, and a function ρ, that assigns the rows of A attributes from U , i.e.
ρ : {1, . . . ,m} → U . Given a column vector v⃗ = (s, r2, . . . , rn), where s ∈ Zp is the secret share,
and r2, . . . , rn

$← Zp. Then Av⃗ is the vector ofm shares of the secret s according to Π. The share
λi = (Av⃗)i belongs to attribute ρ(i).

We will be referring to the pair (A, ρ) as the policy of the access structure A.

Each linear secret sharing scheme should satisfy the linear reconstruction property defined as follows:
SupposeΠ is an LSSS for access structureA. Let S ∈ A be an authorized set, and let I ⊆ {1, . . . ,m} be
defined as I = {i | ρ(i) ∈ S}. There exists constants {ωi ∈ Zp}i∈I satisfying

∑
i∈I ωiMi = (1, 0, . . . , 0),

such that for any valid shares {λi} of a secret s according to Π, we have
∑

i∈I ωiλi = s. Furthermore,
these constants {ωi} can be found in time polynomial in the size of share-generating matrix A [39].

Finally, we note that there are standard techniques to convert any monotonic boolean formula into
a corresponding LSSS matrix. A boolean formula over the universe of attributes can therefore be
represented as an access tree, with AND and OR gates as interior nodes, and attributes as leaf nodes.
Polynomial algorithms for this conversion from boolean formula to access structure are known [17, 39].

4.3.2. Pairing-based Cryptography
Since the pioneering work of Boneh and Franklin on identity-based encryption, pairing-based cryptogra-
phy has formed the backbone of IBE and ABE schemes. The general idea is to use a pairing (mapping
function) between elements of two groups to an element in a third group is used to reduce a hard
problem in one group to a different, easier problem in another group. Bilinear maps form the basis of
pairing-based cryptography.

Definition 4.3 (Bilinear Map) Let G1, G2, and GT be cyclic groups of the same order. A function
e : G1 ×G2 → GT is called bilinear if the following property holds:

1. (Bilinearity) for all g ∈ G1, h ∈ G2, and a, b ∈ Z

e(ga, hb) = e(g, h)ab

Additionally, the bilinear maps we consider will have the following properties:

2. (Non-degeneracy) There exists a generator g ∈ G1 and h ∈ G2 such that e(g, h) ̸= 1

3. (Computability) The group operation inG1,G2, andGT as well as the bilinear map e are efficiently
computable.

4. (Symmetricity) When G = G1 = G2, then by (1) for all g ∈ G, and a, b ∈ Z

e(ga, gb) = e(g, g)ab = e(gb, ga)

When in addition to property (1) a bilinear map also has properties (2) and (3) then we call the map
admissible. For our purpose, we are only interested in admissible bilinear maps. The fourth property
is not necessarily desirable, but rather a consequence of the limited number of bilinear groups known
with the other properties. Note that because G1 and G2 are cyclic groups, we can define the product
rule that will be useful in the construction of the system in section 4.4.1.

5. (Product Rule) For all g, g1, g2 ∈ G1, h ∈ G2, and exponents a, b, x1, x2 ∈ Z, such that g1 = gx1

4.3. Definitions 20

and g2 = gx2 , by (1) we obtain:

e(ga1 · gb2, h) = e(gax1+bx2 , h)

= e(g, h)ax1+bx2

= e(g, h)ax1 · e(g, h)bx2

= e(gax1 , h) · e(gbx2 , h)

= e(ga1 , h) · e(gb2, h)

The existence of a bilinear map with the properties defined in definition 4.3 has a direct implication on
the hardness assumption of the decisional Diffie-Hellman (DDH) problem.

Definition 4.4 (Decisional Diffie-Hellman (DDH) Problem) Let G be a cyclic group of order q and a
generator g. The decisional Diffie-Hellman problem is, given (g, ga, gb, gz) for a, b, z $← Zq, to decide
whether z ≡ ab(mod q). In other words, the advantage of an adversary A in distinguishing between
tuples (g, ga, gb, gab) and (g, ga, gb, gz), where a, b, z

$← Zq is defined as

AdvDDHA =
∣∣Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, gz) = 1

]∣∣
In general, DDH is assumed to be hard for any polynomial-size adversary, but Joux and Nguyen pointed
out that DDH in G is easy when a bilinear map e : G×G→ GT is known [40]. To see this, observe that
by the bilinear property of e, for g, ga, gb, gz ∈ G, the problem reduces to checking whether e(ga, gb) =
e(g, gz), e(ga, gb) = e(g, g)ab = e(g, gab)). Notice that the computational Diffie-Hellman (CDH) problem
(determining z exactly) is still hard [40].

This observation was used by Boneh and Franklin to develop the first IBE scheme [19]. Since DDH is
easy in a group G when a bilinear map e : G×G→ GT is known, the DDH assumption cannot be used
to build a cryptosystem in G. Instead, they used a variant of CDH called the Bilinear Diffie-Hellman
(BDH) assumption for their security proof. The first ABE scheme proposed by Sahai and Waters relied
on the decisional variant of this problem for their security proofs [20].

Definition 4.5 (Decisional Bilinear Diffie-Hellman (BDH) Problem) Let G be a bilinear group of or-
der q, generator g ∈ G, and map e : G × G → GT . The decisional bilinear Diffie-Hellman problem is,
given (g, ga, gb, gc, e(g, g)z) for a, b, c, z $← Zq to decide whether e(g, g)z ≡ e(g, g)abc(mod q). In other
words, the advantage of an adversary A in distinguishing between tuples (g, ga, gb, gc, e(g, g)abc) and
(g, ga, gb, gc, e(g, g)z), where a, b, c, z

$← Zq is defined as

AdvBDHA =
∣∣Pr

[
A(g, ga, gb, gc, e(g, g)abc) = 1

]
− Pr

[
A(g, ga, gb, gc, e(g, g)z) = 1

]∣∣
Sahai and Waters show that their ABE scheme can be reduced to BDH, which is assumed to be in-
feasible for any polynomial-size adversary [20]. Many ABE schemes would use the decisional BDH
assumption as a basis for their security proofs [21, 26].

At last, we need to introduce the subgroup decision problem.

Definition 4.6 (General Subgroup Decision Problem) Let G be a bilinear group of composite order
N = p1 · p2 · · · · · pn, where p1, p2, . . . , pn are distinct primes, with bilinear map e : G×G→ GT . There
is a subgroup of order Πi∈Spi for each subset S ⊆ {1, . . . , n}. The subgroup decision (SD) problem is,
given two distinct subsets S0, S1 and random generator g $← GSj for j ∈ {0, 1}, to decide the order of g.
In other words, the advantage of an adversary A in distinguishing between tuples (N,G,GT , e, g0) and
(N,G,GT , e, g1), where g0 ∈ GS0

and g1 ∈ GS1
are randomly chosen generators, is defined as

AdvSDA = |Pr [A(N,G,GT , e, g0) = 1]− Pr [A(N,G,GT , e, g1) = 1]|

4.3. Definitions 21

The subgroup decision problem is assumed to be infeasible for any polynomial-time adversary for
sufficient big N .

The decentralized ABE scheme by [17] defines for its security proof 4 instances of the subgroup decision
problem. Set for example S0 = {1, . . . , n}, in that case, g0 becomes a random generator for G and the
subgroup decision problem becomes to decide whether g0 is also in a proper subgroup of G.

As our ABE implementation is based on the construction by [17], we will rely on their proof using the
subgroup decision problem for our security analysis. Their scheme is based on a bilinear group of
which the order is the product of 3 primes. In general, security proofs in composite order groups are
easier to formulate than those in the prime order setting, especially against adaptive adversaries. Let
G and GT be groups of composite order N = pq. G has two subgroups, a subgroup Gp of order p with
generator gq, and a subgroup Gq of order q with generator gp. For some α1, α2, consider members
h1 = (gq)α1 ∈ Gp and h2 = (gp)α2 ∈ Gq, we have:

e(h1, h2) = e(gqα1 , gpα2) = e(gα1 , gα2)pq = 1.

The bilinear property causes the generators of both subgroups to cancel each other out, {gq, gp} can be
thought of as an orthogonal basis for the 2-dimensional vector space. The bilinear functionality can be
exercised in one of the dimensions, while the second dimension is used to introduce a blinding factor.
Orthogonality ensures that after applying the bilinear map the blinding factors disappear.

In practice, prime order groups are preferred over composite order groups, as pairings on the latter
are roughly 50 times slower to an equivalent secure pairing on the former [41]. The root cause of
this significant difference is that the security proofs in composite order groups rely on the group order
factorization remaining unknown to potential adversaries. Freeman shows a series of general trans-
formations to construct prime order bilinear groups from groups of composite order, preserving their
properties [41]. In section 4.4 the pairings and groups of our implementation will be discussed in detail.

4.3.3. Multi-Authority Attribute-based Encryption
In the multi-authority setting, each attribute a ∈ U is controlled by a specific authority θ ∈ UΘ, where U
and UΘ are the universes of attributes and authorities respectively. While in practice, multiple authorities
might internally use the same attributes for access control, e.g. “Admin”. In the implementation of the
scheme this is solved by enforcing a unique identifier id(θ) for each authority θ ∈ UΘ. We can then
think of attributes as a string attribute concatenated by id(θ), e.g. “Admin@corp1”. Now follows the
definition of multi-authority attribute-based encryption.

Definition 4.7 (Multi-Authority Attribute-based Encryption (MA-ABE)) Amulti-authority attribute-based
encryption scheme is a tuple of five polynomial-time algorithmsMA-ABE = (Setup,AuthSetup,KeyGen,
Encrypt,Decrypt) such that:

GP ← Setup(1k): is a probabilistic algorithm that takes as input a security parameter k ∈ N. It
outputs the global parameters GP for the system.
SK,PK ← AuthSetup(GP, {a}): is a probabilistic algorithm run by each authority with global
parameters GP and a set of attributes {a} as input. It outputs the authority’s secret key SK and
public key PK.
c← Encrypt(GP, {PK},A,m): is a (possibly probabilistic) algorithm that takes as input the global
parameters GP , an access structure A, a set of public keys {PK} of authorities corresponding
to the attributes in A, and a message m to be encrypted. It outputs a cipher c.
Ka,GID ← KeyGen(GP, SK, a,GID): is a (possibly probabilistic) algorithm that takes as input
the global parameters GP , an attribute authority’s secret key SK, an attribute a, and a general
identifier GID. It outputs a key Ka,GID for the given attribute and identifier.
m := Decrypt(GP, {Ka,GID}, c): is a deterministic algorithm that takes as input the global pa-
rameters GP , a set of keys corresponding to attributes with fixed identifier GID, and cipher c. It
outputs either the message m when the set of keys satisfies the access structure defined during
encryption of c, or decryption fails.

4.4. Multi-Authority ABE and Blockchain 22

An MA-ABE scheme is correct if for all k ∈ N, attributes a ∈ U , access structures A ∈ and GID,m ∈
{0, 1}∗, we have for allGP generated bySetup(1k), for all key pairs SK,PK generated byAuthSetup(GP),
and for all keys Ka,GID generated by KeyGen(GP, SK, a,GID), then for a set of keys {Ka,GID}a∈A

where A ∈ A and GID equal for all elements,

Decrypt(GP, {Ka,GID},Encrypt(GP, {PK},A,m)) = m.

4.4. Multi-Authority ABE and Blockchain
We developed a system of authorities, clients, and blockchain peers that provides a fine-grained solu-
tion to access control. We use an efficient implementation of the multi-authority attribute-based encryp-
tion scheme by [17] that is proven secure against adaptive adversaries. Furthermore, the decentralized
nature of the blockchain is maintained as this scheme does not require a central authority. The Hyper-
ledger Fabric (HLF) platform was used to create a modular blockchain network that users can extend
to fit their specific use cases [3].

The MA-ABE construction proposed by [17] is highly regarded, but their work does not contain an
actual implementation of the proposed scheme. In this work, we identified and resolved the two main
challenges that would hinder such an implementation. The first obstacle is related to the reliance
on the global identity, GID to achieve collusion resistance. A hash function is used to map GID to a
group element and is blinded by an exponent. Collusion between users with different global identifiers
GID, GID’ is prevented as they are unable to “unblind” this exponent. However, the uniqueness of
a GID should be verified to prevent an exploit where multiple users issue private keys from different
authorities using the same GID. As described in section 2.1, identity on the blockchain is managed
through a combination of certificate authorities (CA) and membership service providers (MSP) in HLF.
CAs do not have to be company-specific and their certificates can be accepted by multiple MSPs in the
consortium. We will use the unique identity contained within those certificates for the global identifier
in our implementation. This solution might not be satisfactory, as it introduces centralization into the
network, therefore, in section 4.7 we will discuss some potential solutions.

The second problem with an implementation of the MA-ABE system proposed by [17], is the construc-
tion of the scheme in composite order groups. Cryptosystems using composite order groups are known
to perform poorly. The authors provide a construction in prime order groups but their dual system
encryption proof technique does not work in this setting. The construction in prime order groups is
therefore only proven secure against static adversaries. Different techniques for converting proofs in
composite order groups to prime order have been proposed [41, 42]. However, we are unaware of any
successful attempt in the case of [17]. Moreover, to the best of our knowledge, no decentralized ABE
scheme with construction with proven adaptive security in prime order groups is known to exist [43].
Note that the absence of such a proof does not imply a construction in prime order groups is not se-
cure against adaptive adversaries. Our work will be based on the prime order construction of [17], in
section 4.5 we discuss the implications of this choice.

In section 4.4.1, we discuss the construction of [17] in prime order groups. In section 4.4.2, we describe
the implementation of authorities, client applications, and the interactions between them. Section 4.4.3
gives insight into the generic wrapper we developed to interface with our MA-ABE implementation from
diverse contexts. At last, in section 4.4.4, a use case will be discussed that highlights the entities and
interactions in the system.

4.4.1. Construction
Our multi-authority attribute-based encryption system is based on the MA-ABE construction in prime
order groups presented in [17] appendix D. The main difference between the construction presented
here, and that of Lewko and Waters, is that instead of a symmetric group G, we use an asymmetric
pairing e : G1×G2 → GT of prime order p. We used the generic conversion discussed in [29] to convert
the symmetric construction into an asymmetric one.

Collusion is prevented by embedding the user’s identity into the attribute keys generated by authorities.
To be more precise, a function H mapping identities to elements in G1 is combined with the authority’s
secret key to generate user-bounded keys. During encryption the message m is blinded by e(g1, g2)

s,

4.4. Multi-Authority ABE and Blockchain 23

where g1 G1, g2 ∈ G2, and random s ∈ Zp. According to the access matrix, the value s is split into
shares λx, while the value 0 is split into shares wx. During decryption, the attribute keys of a user
with identity GID will introduce terms of the form e(g1,H(GID))wx into the equation. If the user has a
satisfying set of attribute keys, these terms will cancel each other out, and the user will be left with
e(g1, g2)

s. Colluding with a user with identity GID′ would introduce the term e(g1,H(GID’))wx′ that
would not cancel out en thereby prevent recovery of e(g1, g2)s.

The construction consists of the following five algorithms:

GP← Setup(1k): Choose bilinear groups G1 and G2 of order p = Θ(k) and select generators g1 ∈ G1

and g2 ∈ G2. Also, pick a function H mapping global identifiers GID to elements of G1. Output:

GP = (p,G1, G2, g1, g2,H).

SK,PK ← AuthSetup(GP, {a}): Choose two random exponents αa, ya ∈ Zp for every attribute a
belonging to the authority. Output:

SK = {αa, ya∀a}, PK = {e(g1, g2)αi , gya

2 ∀a}.

c ← Encrypt(GP, {PK},A,m): Let the access structure A = (A, ρ) define an n × l share-generating
matrix A with function ρ mapping the rows of A to attributes. Choose random s, w ∈ Z and random
vectors v⃗, w⃗ ∈ Zl

p with s and 1 as their first entry, respectively. We define λx = Ax · v and wx = Ax · w⃗,
where Ax is row x of A. At last, for each row Ax of A, choose a random rx ∈ Zp. Output ciphertext
c = (C0, {C1,x, C2,x, C3,x∀x}), where:

C0 = m · e(g1, g2)s, C1,x = e(g1, g2)
λx · e(g1, g2)αρ(x)rx , C2,x = grx2 , C3,x = g

yρ(x)rx
2 gwx

2 .

Ka,GID ← KeyGen(GP,SK, a,GID): Output:

Ka,GID = gαa
1 H(GID)ya .

m := Decrypt(GP, {Ka,GID}, c): Let (A, ρ) be the access policy of the ciphertext c. For each x in the
subset of secret keys Kρ(x),GID such that (1, 0, . . . , 0) is in the span of the rows Ax of A, compute C4,x:

C4,x =
C1,x · e(H(GID), C3,x)

e(Kρ(x),GID, C2,x)

=
e(g1, g2)

λxe(g1, g2)
αρ(x)rx · e(H(GID), gyρ(x)rx

2 gwx
2)

e(g
αρ(x)

1 H(GID)yρ(x) , grx2)
Substition

=
e(g1, g2)

λx · e(g1, g2)αρ(x)rx · e(H(GID), gyρ(x)rx+wx

2)

e(g
αρ(x)

1 , grx2) · e(H(GID)yρ(x) , grx2)
Product rule, 4.3 (5)

=
e(g1, g2)

λx · e(g1, g2)αρ(x)rx · e(H(GID), g2)yρ(x)rx+wx

e(g1, g2)
αρ(x)rx · e(H(GID), g2)yρ(x)rx

Bilinearity, 4.3 (1)

= e(g1, g2)
λx · e(H(GID), g2)wx Divide

Then choose constants cx ∈ Zp such that
∑

x cxAx = (1, 0, . . . , 0) and compute:∏
x

Ccx
4,x =

∏
x

(
e(g1, g2)

λx · e(H(GID), g2)wx
)cx

= e(g1, g2)
s

Recall that λx = Ax · v⃗ and wx = Ax · w⃗, where v · (1, 0, · · · , 0) = s and w⃗ · (1, 0, . . . , 0) = 0. Output:

m = C0/e(g1, g2)
s.

4.4. Multi-Authority ABE and Blockchain 24

Figure 4.1: Interactions between client, authority, and database for acquiring set of attribute keys.

4.4.2. Authorities and Clients
To verify our imagined MA-ABE scheme works as intended in the blockchain context, we developed au-
thorities, as well as client applications. We did not implement the cryptographic algorithms described
in section 4.4.1 from scratch, instead, we used the Rabe1 library that contains several ABE imple-
mentation, including the scheme of [17]. The library makes use of an efficient bilinear pairing on the
Barreto-Naehrig curve [44]. Unlike the group G used in the proof of [17], this curve generates two
asymmetric groups G1, G2. The work of [28] shows assumption and security proofs in the symmetric
setting can be translated to the asymmetric setting in a generic way.

The authorities are created in the Rust programming language2. This seemed like an obvious choice,
as the implementation of MA-ABE is in Rust as well. An authority is implemented as a simple service
with an accompanying SQL database. Interaction with clients happens through a RESTful application
programming interface (API). The authority is able to communicate with databases of different vendors
(PostgreSQL, MySQL, SQLite), depending on the scale of the system. A seed can be provided during
authority setup to initialize the set of attributes, users, and assignments of the former to the latter.

A client communicates with an authority by sending HTTP requests to the API of the authority. A client
library was created to make this process easy. The authority offers several endpoints for clients to
request public or private keys from the authority. For the private attribute keys, the client needs to
provide an access token that can be obtained through the authorization endpoint. Our implementation
of the client library, attribute authority, and foreign function interface, including working examples, can
be found in our code repository3.

Figure 4.1 showcases an interaction between clients, an authority API, and its database, the public end-
points of the API are deliberately left out in order to keep the example small. Consider an employee of
an organization hosting the authority displayed in figure 4.1. Whenever this employee wants to decrypt
an ABE encrypted ciphertext obtained from the blockchain, they need to get a set of attribute keys that
match the access policy defined for the ciphertext. The attribute keys can be obtained from a secured
endpoint, for which the client has to first authorize itself to gain access. This two-step process was im-
plemented to mimic real-world scenarios more closely, and simplify adoption in content management
systems (CMS) with an authentication layer already in place. A description of the interaction displayed
in figure 4.1 between client and authority follows:

Authorization Through a client application, the user sends a POST request containing their creden-
tials to the ’api/authorize’ endpoint of the authority API (1). The server checks that the supplied
username and password combination matches an entry in the database. If this check is success-
ful, the server generates an access token. This token is valid for a limited amount of time and
specifies the claims the user has. In our MA-ABE context, the only important claim is the general
identifier (GID) of the user. In the end, the access token is signed by the attribute authority and
supplied to the user.

Key Generation After authorization, the follow-up step is to request the private keys associated with
the attributes the user is entitled to. The client sends a GET request to the secured ’api/secret’
endpoint with the previously obtained access token in the header. The server checks whether

1Rabe, library of ABE implementations in Rust: https://github.com/Fraunhofer-AISEC/rabe
2The official Rust programming language website: https://www.rust-lang.org/
3MA-ABE repository: https://github.com/bartvsdev/thesis-abe

https://github.com/Fraunhofer-AISEC/rabe
https://www.rust-lang.org/
https://github.com/bartvsdev/thesis-abe

4.4. Multi-Authority ABE and Blockchain 25

the received access token is (still) valid. When validity is confirmed, the identity of the user is
extracted from the access token. The database is queried for all attributes this identity is qualified
for. The attribute performs the KeyGen algorithm discussed in section 4.4.1 using its master key,
the obtained set of attributes, and the user’s identity. The resulting set of private keys is returned
to the client sending the request.

4.4.3. Foreign Function Interface
In the previous section, we mentioned how Rust was the obvious programming language of choice for
authorities. The reasoning behind this decision was that the ABE functionalities were implemented in
this language. The same logic holds true for the implementation of the client. However, the client needs
to interact with HLF far more often than authorities do. In the case of the latter, the only interaction is
sharing of the public key after setup, which can be performed by a third party. HLF’s official APIs and
software development kits (SDKs) are written in the Go programming language4 but Javascript, Java,
and Python are also supported. Rust is not, therefore, Go was used to implement our client library.

However, the use of Go for the implementation of the client library presents a new challenge. Data own-
ers and data users are unable to perform the encryption and decryption operations locally, respectively.
Providing this functionality in a second Rust library to clients would be inconvenient while implementing
the algorithms in Go would be time-consuming and error-prone. We opted for a third option, namely,
creating a foreign function interface (FFI) for the ABE Rust implementation.

An FFI is a layer of software by which functions in one programming language can be invoked by
programs in a different language. The main goal of this wrapper is to integrate the semantics and
calling conventions of the host language with those of the guest language. Other language differences
to take into consideration when developing such an interface are: runtime environments, mapping of
complicated data types, and memory management i.e. manual versus garbage collection. In general,
solutions involve wrapping the guest-language functions with glue code, which performs a translation
from a mutually understood input data type (e.g. string) to the function’s parameter types. Serialization
of variables is common practice, but passing references or pointers can be an efficient alternative in
certain niche cases.

In our case, we are not too concerned with the serialization overhead between our host language,
Go, and guest language, Rust. These languages are both known for achieving high performance,
and we expect the notorious expensive ABE operations to diminish this burden. Characteristics of
an FFI implementation we do keep in high regard are consistent mapping between languages, good
developer experience, and a generic approach. The first two are especially important in the context
of cryptosystems, for instance, different string representations between languages can be a source of
bugs. The last point is important in case when we want to provide ABE client support in languages
other than Rust and Go in the future.

Grishkov et al. provide an appealing take on an FFI implementation [45]. They propose to compile the
guest-language code into WebAssembly5, a portable binary format, primarily intended for web appli-
cations. Execution of a WebAssembly binary by the host language requires a WebAssembly runtime.
This adds some overhead, but more importantly, string support is limited as they are not part of the We-
bAssembly specification. Functions in the guest language require non-intuitive glue code to transform
input parameters and output values to byte arrays.

Inspired by the work of [45] we came up with our own solution, based on protocol buffers (protobuf).
Protobuf is a language-neutral mechanism for efficient serialization of structured data, mainly used in
gRPC6. Protobufs are a more efficient alternative compared to other structured serialization techniques
such as JSON or XML. A .proto file describes the structure of data types, which are neatly compiled
into programming language-specific structures or classes. In our solution, a single protobuf file defines
the structure of all data types that cross the language boundary. During the project’s build stage, the
language-specific structures for Rust and Go are generated. Nowadays, all modern programming
languages have protocol buffer compilers to accomplish this step.

4The official Go programming language website: https://go.dev/
5The official WebAssembly website https://webassembly.org/
6gRPC: Remote Procedure Call framework initially created by Google, https://grpc.io/

https://go.dev/
https://webassembly.org/
https://grpc.io/

4.4. Multi-Authority ABE and Blockchain 26

Figure 4.2: Example of an Encrypt foreign function invocation, enabled by our language-neutral approach.

An example foreign function invocation using our generic approach is shown in figure 4.2. A definition
of the FFI is provided through the ffi.proto file. In this file, we describe the structure of the expected
function parameters and return values. Protobuf compilers are used to generate two files, the ffi.go
for our host language and the ffi.rs for our guest language, which contain language-specific data for
each. Apart from the data type description shown in figure 4.2, functionality for object (de)serialization
is generated as well. In the host language, a new record is created specifying all the parameters to
perform the encryption request. The foreign encrypt function is invoked using the serialized record
parameters. In the guest language, a little glue code is required to deserialize the received request
and extract the input parameters. The rabe.encrypt function performs the actual encryption of the
plaintext, after which the resulting ciphertext is returned to the host language. Note that this last step
is simplified for the purpose of keeping the example concise. In reality, the resulting ciphertext would
need to be serialized before being returned.

In section 4.6, we analyze the overhead of our FFI implementation. Furthermore, in section 4.7, we
discuss several strategies to reduce the amount of glue code users have to write.

4.4.4. An Illustrative Example
Figure 4.3 contains an overview of the different parties in our system and an example of their interac-
tions. We will refer to the toy example we considered in chapter 3. This time, consider the educational
institution, a university, that wishes to collaborate with the local library and potentially other organiza-
tions. In particular, students of the university who are members of the library as well should be able
to access certain information. Additionally, this information should be accessible to teachers as well.
As it’s cumbersome to identify all individuals that comply with these conditions, these properties are
modeled as attributes in our ABE system. The order of operations to securely share the information
with the specified subset of users is as follows:

Setup For the system to become operational, a trusted setup needs to be performed. During this step,
the Setup algorithm is used to generate the global parameters GP of the system. The identity of
the admin performing this operation is not important, just that the chosen random parameters are
truly random. GP is then shared with other users by saving it on the ledger (1). The entity that
performed the trusted setup is free to leave the system at this point.

Authority Setup Every entity in the system that wishes to become an authority needs to perform an in-
dividual setup as well. To start, the global parametersGP of the system are obtained (2). Then the
AuthoritySetup algorithm is run, with inputs GP , and set of attributes A provided by the authority.
For instance, our example university has attribute set A = Au = {Student, Teacher,MSc, . . . }.
The algorithm outputs a public/private key pair. The university’s private key SKu is locally stored,
while the public key PKu is shared with other users through the blockchain (3).

4.4. Multi-Authority ABE and Blockchain 27

Figure 4.3: Overview of the ABE interactions in our system.

Encryption Now consider a data owner who decides to share a piece of information contained by
messagem. At first, the data owner determines an access structure for the data to be encrypted.
Asmentioned previously, this policy should only grant teachers or students who are also members
of the library the ability to decrypt. In the example in figure 4.3, the access structure is depicted as
an access tree with corresponding boolean formula A = Teacher∨Student∧Member. The data
owner then collects the general parametersGP and the public keys of all authorities with attributes
in A, PKA={PKu,PKl}, from the ledger (4). At last, the cipher c is computed by performing the
Encrypt algorithm on inputs GP,GKA,A, andm, and shared on the ledger (5).

Key Generation To decrypt a cipher, data users first need to obtain the private key(s) corresponding
to their attributes. For Alice in the example of figure 4.3, this means she will need to send a
request to both the authorities of the university and the library (6). The key generation algorithm
requires 4 inputs: general parameters GP , authority’s secret key SK, set of attributes A, and
general identifier GID. During its setup, the authority already obtained GP and generated SK.
A and GID can be supplied by the user or are known by the authority. The attribute set A =
{a | a ∈ Aauthority, a ∈ Auser} contains a subset of all attributes belonging to the authority for
which the user is authorized. The general identifier GID is a string that uniquely identifies the
user across all institutions, e.g. an email address, name, or SSN. The authority performs the
KeyGen algorithm for all attributes a ∈ A and returns for every attribute a a key {Ka,GID} under
her identity GID. Alice repeats this process for all other authorities and obtains private key set
{Ka,GID} for all attributes a ∈ Aa.

Decryption Finally, Alice would like to read the message m encrypted for her (and others). To start,
she obtains the cipher c and general parameters GP from the blockchain (7). Furthermore, she
collects a set of private keys that satisfies the access structure defined for c, i.e. {KStudent,GID,
KMember,GID}, as described in the previous step. She then locally performs the Decrypt algorithm
and obtainsmessagem. In the samemanner, Bob can decrypt c, but he will only have to authorize
himself to the university’s attribute authority. Eve cannot decrypt c as her set of attributes does
not satisfy the access structure.

4.5. Security 28

4.5. Security
Given the implementation of our system relies on the construction in prime order groups of [17], we will
not rehearse their full proof here. Instead, we would like to redirect any interested reader to appendix
E of said work. In the remainder of this section we will discuss the implications of the achieved level of
security.

The authors of [17] proof their prime order group construction in the generic group model [46]. The
generic group model is an idealised cryptographic model, where the adversary is only given black-box
access to the group operations. Oracles are used to model group operations, pairings and the identity
mapping function H. Security proofs in the generic group model provide a weaker notion of security
compared to proofs in the standard or random oracle model. Dent showed a number of cryptographic
schemes that are provably hard in the generic group model, but easy to break in practice [47]. Particu-
larly, in the real-world, problems arise when the random encoding functions of the oracles is replaced
by a specific encoding function.

When applied to cryptographic schemes that rely on the hardness of the discrete logarithm (DLP),
like ABE, the generic group model is more limited than the random oracle model [48]. In the random
oracle model, the idealization of the real-world is generally limited to hash functions. This assumption
is realistic in the sense that for a good hash functionH, the output ofH will be almost indistinguishable
from a random function. On the other hand, the generic groupmodel assumes the group in question has
no special structure or property aiding in solving DLP. This assumption might not hold when considering
the groups actually used in real-world cryptography.

4.6. Performance Analysis
As discussed in the previous sections, our system relies on the Barreto-Naehrig curve for pairings.
The curve is defined over a finite field Fq with prime q ≈ 2256, providing a 128-bit security level [44].
To determine the overhead of our FFI implementation, we compared its performance with the native
implementation. Specifically, we measured the execution time and memory consumption of the ABE
encrypt and decrypt operations. All measurements presented below are the averages taken over 100
iterations. All experiments are run on an AMD Ryzen 5 4600H @ 3.00GHz 6 CPU computer with 16
GB RAM. The benchmark implementations can be viewed in our code repository as well7.

The most expensive cryptographic operation in any ABE scheme is the bilinear pairing, followed by
exponentiation and point multiplication. Judging from the construction in section 4.4.1, the number
of iterations of the encryption and decryption algorithms depends on the number of distinct attributes
in the access structure. Therefore, we deploy access policies of the form a1 ∧ a2 ∧ · · · ∧ an, as all
n attributes are then required for decryption. We measure the performance for attribute sets of size
n ∈ {2, 4, 6, 8, 10}. We expect only a limited number of use cases would require access policies with
conjunctions of more than 10 attributes.

Compared with the cost of a bilinear pairing operation, the cost of multiplicating this pairing with a
plaintext is negligible. However, the size of the plaintext cannot be ignored considering the mem-
ory consumption of the system, especially towards the (de)serialization overhead introduced by our
FFI approach. For our experiments, the plaintext m is randomly generated with size |m| ∈ {1 KB,
10 KB, 100 KB, 1 MB, 10 MB}. As we consider the ABE implementation in the context of blockchain,
and blockchains are inefficient for storing large files, we will not consider plaintext sizes larger than 10
MB.

Figure 4.4 shows the time required for encryption (a) and decryption (b) for a range of plaintext sizes
|m| and the number of attributes n. As expected, the experiments show a linear relationship between
the running time of both operations and the access policy’s complexity n. The influence of |m| on the
execution time is minimal in both cases. Only for |m| ≥ 1 MB we notice a significant increase due to the
(de)serialization overhead introduced by FFI. At last, we would like to shift the attention of the reader to
the relatively high constant cost of the scheme. Encryption and decryption using a 10-attribute policy
take approximately 190 ms and 125 ms on our machine. In comparison, at the same 128-bit security
level, the equivalent 3072-bit RSA operations take 0.42 ms and 4.9 ms.

7MA-ABE repository: https://github.com/bartvsdev/thesis-abe

https://github.com/bartvsdev/thesis-abe

4.7. Discussion 29

2 4 6 8 10
Number of Attributes (n)

0

50

100

150

200

250

Ti
m

e
(m

s)
Plaintext Size (|m|)

1KB
10KB
100KB
1MB
10MB
Overhead

(a) Encryption

2 4 6 8 10
Number of Attributes (n)

0

50

100

150

200

250

Ti
m

e
(m

s)

Plaintext Size (|m|)
1KB
10KB
100KB
1MB
10MB
Overhead

(b) Decryption

Figure 4.4: Execution time of ABE operations through native and FFI invocation. The number of attributes n corresponds to
the complexity of the access policy a1 ∧ a2 ∧ · · · ∧ an. The timings represent the average of 100 iterations.

In figure 4.5, we measured the overhead in memory consumption of our FFI implementation for the
encrypt (a) and decrypt (b) operations. The experiment was conducted by measuring the maximum
amount of heap-allocated during a single invocation of the operation. As expected, the memory us-
age grows linearly with the size of the plaintext. To display the results in a clear and space-efficient
manner, the y-axis in figure 4.5 is normalized. The bottom and top labels on the bars represent the
average memory usage (across all attribute sizes) for the operation invoked natively and through the
FFI, respectively. The overhead of the FFI wrapper is obtained by subtracting the former from the latter.

In percentage terms, the memory overhead induced by the FFI wrapper seems to approach a limit for
bigger plaintexts of 166% and 61% over the native approach for the encrypt and decrypt operation,
respectively. In absolute terms, in the case of |m| = 10 MB, decryption uses an additional 34 MB −
25 MB = 9 MB. This absolute difference is caused by an extra serialization step used in the glue code
of the encrypt operation of the Rust FFI wrapper.

4.7. Discussion
Our proposed multi-authority attribute-based encryption system shows how fine-grained sharing of en-
crypted data on a blockchain can be achieved. The decentralized nature of the network is preserved
as our approach does not require a central authority, unlike similar proposals [35]. To securely use ac-

4.7. Discussion 30

1KB 10KB 100KB 1MB 10MB
Plaintext Size (|m|)

0

20

40

60

80

100

M
em

or
y

Us
ag

e
(%

)

114.6KB 123.8KB 298.8KB 2.1MB 20.6MB

122.2KB 155.3KB 629.2KB 5.5MB 54.3MB

#Attributes (n)
2
4
6
8
10
Overhead

(a) Encryption

1KB 10KB 100KB 1MB 10MB
Plaintext Size (|m|)

0

20

40

60

80

100

M
em
or
y

Us
ag

e
(%

)

117.0KB 136.4KB 505.0KB 4.2MB 41.1MB

128.3KB 183.1KB 776.9KB 6.7MB 66.1MB

#Attributes (n)
2
4
6
8
10
Overhead

(b) Decryption

Figure 4.5: Normalized memory usage of ABE operations through native and FFI invocation, the dashed parts indicate the
overhead induced by the FFI approach. The absolute memory usage displayed by the labels is: bottom: native, top: FFI. The
overhead of the FFI approach is computed as FFI - native. Memory usage is measured as the average maximum amount of
heap allocations over 100 iterations.

cess policies containing attributes of multiple authorities we use the identities provided by Hyperledger
Fabric. We discussed how this required trust in a single certificate authority from these attribute author-
ities and why this could be undesirable. Decentralized identity systems and decentralized identifiers
(DID) are popular research topics, without a clear generally applicable solution [49]. An interesting
HLF-specific solution is proposed by [50] that involves the linking of several permissioned networks to
create a secure distributed identity management infrastructure.

In our experiments, we showed that the computational overhead introduced by our FFI implementation
was minimal for small up to medium-sized plaintexts. For large plaintexts the additional execution
time and memory consumption were substantial. However, we deem this overhead a fair trade-off
considering the improved developer experience our approach utilizing protocol buffers offers. Moreover,
like other forms of public-key encryption, we expect our ABE implementation to be mostly used to
transmit keys used in symmetric-key cryptography. It would be interesting to see how this approach
performs when other programming languages and use cases are considered.

5
Trusted Execution Environment

A key feature of blockchain is the transparency of transactions, but sometimes a client requires confiden-
tiality, even from the network node handling its request. For example, in e-voting or sealed-bid-auctions,
it is essential that votes and bids, respectively, are kept private. Trusted execution environments (TEEs)
have been proposed to facilitate confidential transactions in blockchain. A TEE is a tamper-resistant
processing environment that guarantees confidentiality and integrity to programs running inside it. Not
even the peer hosting the TEE is able to observe its contents. In this chapter, we analyze two research
projects: Fabric Private Chaincode[51] and Ekiden[52]. They aim to achieve the same goal: confiden-
tial transactions through TEEs on blockchain networks. Both projects take opposing approaches to
solve the same challenge. After having analyzed both works, we must conclude that the benefits of
integrating TEE in blockchain do generally not outweigh the disadvantages of the additional overhead
and centralization of the network.

31

5.1. Introduction 32

5.1. Introduction
As modern systems continue to increase in complexity, the task of analyzing and securing them be-
comes more difficult. This has led to the rise of the trusted computing trend that aims to create a
foundation of trust for software processes in hardware [53]. The idea is to establish a trust relationship
under the assumption that the system is potentially running compromised software. The original imple-
mentation of this idea was the Trusted Platform Module (TPM). TPMs provide a range of security and
trust-related functionalities such as a random number generator, remote attestation, and cryptographic
key storage among others. The primary scope of TPMs is to provide evidence of platform integrity by
creating a hardware root of trust.

A major drawback of TPMs is that they do not provide an isolated execution environment for third-party
applications, severely limiting their use cases. To address this limitation, Trusted Execution Environ-
ments (TEEs) have emerged. TEEs are fully isolated and secure processing environments that protect
the integrity of programs. It enables part of the code of the program to operate in private hardware-
encrypted areas of the memory, so-called enclaves. This prevents other software applications, the OS,
or the host owner from tampering with or observing the state of a program running inside the enclave.
Major CPU vendors have their own TEE implementations, such as Intel Software Guard eXtensions
(SGX) [54] and ARM TrustZone [55].

The use of trusted execution environments within a blockchain context sounds promising due to the
complementary properties of both technologies. Blockchain can guarantee strong availability and has
persistent storage capabilities, whereas a TEE’s availability and reliable storage access depend on
its untrusted host. On the flip side, a blockchain is unable to guarantee confidentiality as its state is
shared, whereas TEEs offer verifiable computation with a confidential state through remote attestation.
By combining the strengths of both technologies, new and exciting use cases can be enabled.

Research on combining TEE with blockchain has focused on various areas, including TEE-based con-
sensus mechanisms, TEE-based wallets, and confidential smart-contract execution using TEE. How-
ever, the development of hybrid implementations is challenging due to a set of subtle but difficult-to-
solve pitfalls that arise from the fundamental limitations of TEEs. For example, malicious hosts can
terminate TEE execution at any point, posing a risk of a lost or conflicting state. Additionally, software
running inside an enclave does not have reliable means of determining time, which makes it difficult
to validate the recentness of the provided blockchain state. Finally, a TEE must always be able to
recognize a forged blockchain state provided by a malicious host.

In this chapter, we will provide an overview of recent and interesting research into combining trusted
execution environments with blockchain technology. Section 5.2 will describe TEE and Intel’s SGX
platform in more detail. Section 5.3 highlights two research projects on combining TEE and blockchain
technology in section 5.3 we find particularly interesting. Finally, in section 5.4, we assess both frame-
works in terms of the amount of additional privacy and trust they achieve.

5.2. Background
A trusted execution environment is a tamper-resistant processing environment that runs on a separation
kernel [56]. A separation kernel is a concept first introduced by Rushby in 1981 as a way to simplify
the development and verification of large complex security kernels [57]. By this technique, the system
is divided into a number of partitions between which information flow cannot occur unless explicitly
permitted. Typically, the separation kernel isolates trusted applications running inside the TEE from the
client application running in the untrusted rich execution environment (REE). Rich in REE refers to the
feature richness one would expect from modern-day operating environments. TEEs on the other hand
provide a limited set of features intended only to address the security-critical part of an application.

The isolation mechanism of TEEs is typically hardware-enforced but software-based solutions do ex-
ist [58]. The more common option prevents the simulation of the TEE by a malicious entity through a
so-called hardware root of trust. This root of trust consists of a set of private keys directly embedded
into the TEE during the manufacturing process. A third party with knowledge about the corresponding
public keys can therefore verify the integrity of the TEE. This process is called remote attestation and
is what TEEs rely on to build trust in a system.

5.3. Promosing Solutions 33

Intel Software Guard Extensions (SGX) is one such trusted execution environment that allows for se-
cure computation on untrusted platforms [54]. SGX enables secure computation by allowing application
developers to partition their code and data into isolated regions called enclaves. These enclaves are
hardware-protected and can only be accessed by the application itself. This ensures that the applica-
tion’s secrets, such as cryptographic keys or passwords, cannot be leaked or tampered with by the
underlying operating system, hypervisor, or any other application running on the same machine. In-
tel SGX also supports remote attestation, allowing users to verify the identity and integrity of an SGX
enclave even if they do not have direct access to the hardware it is running on.

5.3. Promosing Solutions
In this section, we will consider two research projects that have integrated trusted execution environ-
ments with blockchain. Both frameworks aim to achieve confidential transactions in smart contracts,
are reasonably successful in doing so, work with Hyperledger Fabric (HLF), and are open-source. How-
ever, their approach differs greatly. The work of [51] achieves confidentiality in layer 1 of the blockchain,
by performing smart contract execution directly in the TEE of peers. Meanwhile, [52] achieves confi-
dentiality in layer 2 by decoupling smart contract execution from the underlying blockchain system and
executing them in an independent trusted network outside the blockchain.

5.3.1. HLF Private Chaincode
Brandenburger et al. introduces an architecture and implements a prototype1 to perform secure smart
contract execution using Intel SGX for Hyperledger Fabric [51]. Recall from chapter 2 that in HLF after
a peer receives a transaction proposal, the transaction gets simulated, and an endorsement containing
the proposed state changes is produced on the ledger. For some use cases, the proposal, the en-
dorsement, the ledger, and the intermediate simulation results may contain sensitive information that
is confidential. In addition to the leakage of confidential information to other network participants, we
must also consider the threat peers themselves pose. Peers could become malicious, but a bigger
concern is that by compromising sensitive information a peer could potentially maximize its own profits.
It is important to acknowledge peers have complete control over the OS and applications (including
chaincode) and can view all data residing in memory. Sealed-bid auctions and e-voting are examples
of use cases that need to consider untrusted peers.

Approach The authors propose to equip every peer with an SGX-enabled CPU and perform all chain-
code executions inside the enclave. This approach keeps the sensitive information private as a peer
cannot observe code execution or data inside the enclave. As a result, the chaincode running in an en-
clave will perform according to its specification and reveal no information apart from the resulting state
change. However, a malicious peer still fully manages the inputs received by the chaincode running in
the enclave. Furthermore, when the chaincode accesses assets on the ledger the peer may feed it a
stale or incorrect blockchain state.

An ordering service that produces a signed sequence of transactions should mitigate this attack vector.
In [51] the ordering service is assumed to be trusted in the sense that it cannot be rolled back. Subse-
quently, an enclave is able to verify transactions originate from the orderer, have not been tampered
with, and are in proper order. The enclave should also track transaction history to prevent transaction
ordering violations or replaying. A malicious peer might still provide a stale blockchain state, but the
resulting state change will be discarded by the ordering service like other outdated transactions.

Implementation Figure 5.1 presents the peer architecture proposed by [51], four components are
added to enable confidential transactions on Hyperledger Fabric using SGX enclaves. The chaincode
enclave enables the isolated execution of a single chaincode and has access to HLF functionalities
through an integrated chaincode library. The ledger enclave enables all chaincode enclaves to verify
the integrity of the blockchain state. The enclave registry maintains a list of all chaincode enclaves in
the network and is responsible for attesting the chaincode actually runs inside of an enclave. Finally,
the Enclave Transaction Validator ensures the validity of transactions created by the chaincode enclave
by checking that the result has a valid signature of a registered chaincode.

1Fabric Private Chaincode: https://github.com/hyperledger/fabric-private-chaincode

https://github.com/hyperledger/fabric-private-chaincode

5.3. Promosing Solutions 34

Figure 5.1: Peer architecture of HLF Private Chaincode. The dashed box contains all the new components required for this
approach. Green components are expected to operate inside SGX enclaves. The figure is derived from [51].

When a peer joins a channel, its ledger enclave is initialized by the admin. During initialization, the
blockchain configuration containing the identities of peers, clients, and ordering services is embedded
in the ledger enclave. The ledger enclave then generates a public/private key pair by which it can be
uniquely identified. The peer initialization is completed by instantiating the enclave registry.

The admin is also responsible for installing the chaincode enclave. Like the ledger enclave, the chain-
code enclave generates a public/private key pair by which it can later be identified. The chaincode
enclave will then register itself with the enclave registry and produce an attestation report to prove it
was properly installed. If the enclave registry is able to verify the authenticity of the report it will sign
the attestation result and together with the chaincode enclave’s public key share it on the ledger. At
this point, the admin has the option to inject other secrets, for example, an encryption key, into the
chaincode enclave for later use. The last step of the chaincode enclave initialization process is binding
the enclave to the ledger enclave through another round of attestation.

Before a client provides sensitive information to this chaincode, they will query the chaincode’s public
key and signed attestation result. The client verifies the authenticity of the report, encrypts a transaction
proposal using the obtained public key, and sends this encrypted proposal to the peer. Only the chain-
code enclave with the corresponding private key is able to decrypt the proposal and generate a signed
response. The response is sent back to the client and submitted to the ordering service. To finalize
the transaction, the ordering service broadcasts the newly proposed operations to all endorsing peers.
The endorsing peers’ enclave transaction validator checks the transactions are signed by a registered
chaincode enclave and commits the transaction to the ledger.

5.3.2. Ekiden
Cheng et al. present Ekiden, a system that combines blockchains with trusted execution environ-
ments [52]. Ekiden takes a different approach to enabling efficient confidentiality-preserving smart
contracts. It adopts an architecture where smart contract execution is separated from the consensus
mechanism. An off-chain network consisting of SGX-enabled computing nodes is employed to perform
smart contract computations over private data. The correct execution of these computing nodes is at-
tested on-chain by the regular consensus nodes which do not need to use trusted hardware. Through
this design, Ekiden is blockchain-agnostic and can be deployed along Ethereum smart contracts as
well as Hyperledger Fabric chaincode. HLF peers become consensus nodes in this system and are
tasked with validating attestation reports generated by compute nodes.

Approach By decoupling smart contract execution from the blockchain consensus mechanism, Eki-
den avoids the computational burden and latency of on-chain execution. Compared to public blockchains
like Ethereum, the prototype of [52] achieves 600 timesmore throughput. For permissioned blockchains
like Hyperledger Fabric, this applies to a lesser extent, as their consensus mechanisms are more effi-
cient. However, they could also benefit from performing costly cryptographic computations once in an
off-chain network instead of multiple times during endorsement.

5.3. Promosing Solutions 35

Figure 5.2: System architecture and trusted smart contract execution of Ekiden [52]. The client is connected to a single
compute node, while a subset of compute nodes forms a key management committee.

Harmonizing TEEs and blockchain in a hybrid system through a separate network also poses new
technical challenges. For instance, TEEs cannot ensure availability and should therefore be treated as
expendable and interchangeable. Ekiden solves this bymaking the blockchain responsible for resolving
issues resulting from concurrency. As discussed by [51], another problem of TEEs is the lack of a
trusted source of time. The approach taken by [52] is to not rely on the TEE to distinguish a stale or
incorrect blockchain state. Instead, Ekiden relies on the blockchain to reject updates based on incorrect
states. This is accomplished by letting consensus nodes verify that the transaction result coming from
a compute node was computed using a valid and recent ledger state. The last challenge is persisting
the symmetric key used for encrypting the private blockchain state. The approach taken by Ekiden is to
replicate the keys across multiple TEEs. Key multiplication increases the risk of a data breach posed by
side-channel attacks. To mitigate this risk, Ekiden uses short-lived keys for encryption and decryption
of the blockchain state. The encryption keys are derived from a less-exposed long-term master key
that is distributed using a secret sharing scheme.

Implementation Figure 5.2 contains an overview of the system proposed by [52]. Ekiden distin-
guishes three types of entities: clients, consensus nodes, and compute nodes. Clients are end users
of smart contracts. Consensus nodes maintain the distributed ledger in the case of Hyperledger Fabric
these are the peers. Compute nodes are the TEE-enabled nodes for processing requests from clients.
Each compute node contains one or multiple contract TEEs, SGX enclaves, for the trusted execution of
a smart contract. A quorum of compute nodes forms a key management committee that can manage
and generate keys for the contract TEEs to use.

We define a smart contract to be a function f that expects a blockchain state s and an input parameter
i and generates a new state s′ and output o, i.e. (s′, o) := f(s, i). To create a smart contract f in the
Ekiden system, a client connects with a compute node and provides f . The compute node creates
a contract TEE by loading c into an SGX enclave. During initialization, the contract TEE obtains a
public/private key pair (PK,SK) and symmetric key k from the key management committee. The
TEE creates an initial blockchain state sk encrypted under k and an attestation ϕ proving a correct
initialization. The compute node verifies ϕ by forwarding it to the Intel Attestation Service (IAS) and
generates attestation result π. The compute node then sends f , PK, sk, and π to the consensus
nodes. Consensus nodes verify π before committing f , PK, and sk to the ledger.

Figure 5.2 shows the steps involved in the execution of a previously registered smart contract. First, the
client obtains the public key PK associated with the smart contract (1). The client computes inputPK by
encrypting its input i under PK and sends a request containing inputPK to the compute node (2). The
compute receives the request and loads the smart contract code f into the contract TEE. It then loads
the current state statek from the blockchain (3). From the key management committee the contract TEE

5.4. Discussion & Conclusion 36

receives the short-lived symmetric key k, and private key SK (4). Using PK and k, the TEE decrypts
inputPK and statek, respectively, it obtains input i and state s. It then executes the smart contract,
i.e. (s′, o) := f(s, i), it obtains new state s′ and outputs o. The TEE optionally encrypts o and signs it
using SK, and the result outputSK is returned to the client (5a). The consensus nodes receive a state
update requesting containing state′k,SK , the encryption of s′ under k and signed using SK. When the
signature is verified by these nodes the ledger is updated.

5.4. Discussion & Conclusion
HLF Private Chaincode puts much emphasizes on ordering service and requires it to be fully trusted.
However, the potential security implications in scenarios where this requirement is not satisfied are not
well defined. An additional concern with [51] is the system administrator. The admin is responsible for
the initialization of the ledger and chaincode enclaves running on all the peers in the network. This
centralization introduces a single point of failure into the system. Furthermore, it will be challenging to
find a mutually trusted administrator for a consortium consisting of multiple organizations with different
interests.

The solution provided by [52], seems to bemore suitable for public blockchains. Permissioned blockchains
like Hyperledger Fabric have a more efficient mechanism for consensus that benefits less from the pro-
posed off-chain smart contract execution. Furthermore, a lot is unclear about the blockchain state that
is required for smart contract execution in compute nodes. Up until the compute node starts execu-
tion this state remains unknown. To ensure proper operation, a consensus node must either provide
the complete blockchain state to the TEE before execution or, alternatively, the TEE must be able to
request the necessary state during execution. The former option appears to be infeasible due to the
substantial size of the ledger and the associated network overhead. The latter option seems more log-
ical, but in scenarios with a high number of sequential reads this approach, may result in inadequate
performance due to the latency of network requests.

While the results and benefits presented by both solutions look promising, their solutions introduce new
problems. Integrating TEEs directly in peers as proposed by [51] requires a system administrator to
initialize peers and chaincode. Instead, letting the confidential transactions be processed by a TEE-
enabled trusted third party can result in an unacceptable performance overhead. It will be interesting
to see if future research is able to solve these challenges.

6
Blockhain-based Consignment Notes

The Contract for the International Carriage of Goods by Road (CMR) facilitates safe, efficient, and
compliant cross-border transportation of goods within the European Union. Currently, the paper-based
consignment note is being replaced by an electronic version. Organizations are however reluctant to
switch, as current proprietary implementations of the digital protocol lack transparency and trust. Fur-
thermore, these platforms are unable to provide conclusive evidence about the deliverance of goods,
leaving the door open for illegal activities. Through blockchain technology, we propose a design that
offers a transparent, and traceable alternative. Our solution employs Hyperledger Fabric to facilitate
performant and confidential transactions for all parties involved in the consignment. Furthermore, we
fit our previously implemented privacy-enhancing technologies into the design to offer additional func-
tionality.

37

6.1. Introduction 38

6.1. Introduction
Advancements in human civilization have been closely related to the exchange of goods and thus to the
development of transportation. Efficient transportation is a prerequisite for our increasingly globalized
economies and the operation of international trade. Within the EU, the vast majority of goods are trans-
ported by road. The dominant position of road transport can be explained by the high quality and density
of the road network in the EU and the absence of a reliable rail network. Additionally, road transport
provides flexibility, speed, convenience, and adaptability among other advantages compared to other
forms of transportation [59]. To facilitate safe, efficient, and compliant cross-border transportation a
transport contract is required to accompany the goods. The contract outlines the terms and conditions
under which the goods will be transported, including the responsibilities of all parties involved. Differing
laws and regulations between countries in Europe regarding such a contract would make compliance
with regulations complicated and could harm the development of international trade. Fortunately, in
Geneva in 1956 the United Nations (UN) proposed the convention on the contract for the international
carriage of goods by road (CMR) [60].

The purpose of the CMR convention is to standardize the conditions for the contract of cross-border
transport of goods. Currently, the convention is signed by 58 countries, including virtually all European
nations and a number of countries in northern Africa, the Middle East, and Central Asia [61]. The Inter-
national Road Transport Union (IRU) has developed a CMR consignment note in compliance with the
CMR convention. The consignment note consists of three color-coded carbon copies and represents
an acknowledgment of receipt and delivery of the goods [62]. Although the convention does not specify
that the transport contract has to be in paper form, based on the language used in its provisions and
from the date of adoption, it can be safely assumed the regulation refers to a physical document. In an
increasingly digitalized world, the administrative burden of documents in paper format was prevalent.
On top of that, a digital variant of the contract significantly reduces costs, improves the visibility and ef-
ficiency of the supply chain, and lowers the environmental footprint of the process [63]. These insights
caused the UN to propose an additional protocol to the CMR concerning the electronic consignment
note (e-CMR) [64].

The first cross-border usage of e-CMR took place on 19 January 2017, between Spain and France.
Currently, 33 countries have ratified the electronic addition out of the 58 states that signed the original
convention [65]. It seems like the perfect time for organizations to make the switch to digital, now
that many EU countries, including major economies and critical transit nations such as Germany and
France, have started down this path. But a switch to what? In contrast to the paper consignment
note developed for the original convention, the e-CMR convention lacks a standard implementation.
Several solutions have been proposed by companies in the Netherlands, Denmark, Spain, France, and
the United Kingdom among others. The IRU has partnered up with TransFollow, a platform developed
by a Dutch company, and recommends this e-CMR implementation. However, like other proprietary
software implementations, the solution proposed by TransFollow lacks transparency and trust. All CMR-
related requests to their application programming interface (API) are performed in a non-transparent
way on their private servers. Understandably, companies will be reluctant to switch to such a platform.
Furthermore, tax authorities and other government agencies will demand access to these platforms to
monitor the transactions. This is understandable as the current paper consignment note has become
an important part of corporate accounting, see section 6.3.1 for more details. Lastly, proprietary e-CMR
platforms have inadequate traceability to detect a recent phenomenon called CMR “Neutralization” [66].
Neutralization of transport documents is in most cases associated with illegal logistics activity called
“parallel trade”, see section 6.3.2 for more details.

Blockchain technology has shown great potential in easing transparency and traceability-related prob-
lems in supply chain management and logistics [67, 68]. But while today we can trace the origin of every
cocoa bean in a bar of chocolate in a completely transparent way using distributed ledger technology,
transparency and traceability of delivery of goods within the EU are provided by means of 3 sheets
of paper. Blockchain seems to be the ideal foundation to build a secure, transparent, and traceable
e-CMR system. However, it seems like the scientific community is simply unaware of existing problems
in the industry concerning the CMR convention. We were only able to find a single literature survey
that deemed the digitization of the CMR consignment note as interesting [69].

In agreement with our previous observations, we propose the first design of a blockchain-based e-CMR

6.2. CMR: A Standard for International Road Transport 39

system. Our design offers a decentralized, transparent, and open alternative to the current proprietary
implementations of the e-CMR convention. Through the use of the permissioned Hyperledger Fabric
framework, our system can offer real-time transactions at a low cost to all consortium members. Fur-
thermore, we will employ our previously developed dynamic searchable symmetric encryption (DSSE)
and multi-authority attribute-based encryption (MA-ABE) schemes to provide secure search functional-
ity and fine-grained access control, respectively.

In section 6.2, we will analyze the original CMR convention, as well as, its later electronic addition. In
section 6.3, we discuss two CMR-related challenges in industry. Section 6.4 describes our system and
provides an architectural overview. Finally, in section 6.5, we conclude our work.

6.2. CMR: A Standard for International Road Transport
CMR stands for “Convention relative au contrat de transport international de marchandises par route”
which is a United Nations convention that governs the international carriage of goods by road [60].
The CMR convention lays down the rights and obligations of the parties involved in the carriage of
consignments by a road vehicle. It outlines the principles of liability of the carrier, as well as the process
for filing damages claims. The convention applies when the place of acceptance of the consignment
and the intended place of delivery are in two different states, of at least one is a contracting country
of the Convention (Article 1) [60]. The CMR convention demands a consignment note with specific
properties accompanying the carriage of goods.

The CMR consignment note is an official document in a standardized format, written in two languages to
ease inspection by an authority. It is made up of at least three color-coded copies. The first red copy of
the consignment note is intended for the consignor and serves as proof that the consignor has handed
over the goods to the carrier. The second blue form is meant for the consignee as proof of receipt of
the goods. The third green form is kept by the carrier of the goods and confirms that the carrier has
handed over the goods to the consignee. All three copies should be signed by all three participants
with exception of the first red form that only contains the signatures or stamps of the consignor and
carrier (Article 5) [60].

Article 6 of the CMR convention describes the details the consignment note should contain such as
a description of the goods, packaging, and quantities [60]. Furthermore, the consignment note to
contain the names and addresses of all participants, as well as the place and date of departure and
intended delivery of the goods. The subsequent articles describe the responsibilities and privileges of
all participants involved in determining liability.

6.2.1. Digital Equivalent
In 2008, the United Nations signed the “Additional Protocol to the CMR concerning the electronic con-
signment note” [64]. This addition to the convention explicitly confirms an electronic consignment note
is allowed and shall be considered equal to the original paper variant (Article 2). To be considered
equal, the electronic consignment note should include the same details (Article 6 of [60]) as its physical
version (Article 4). Furthermore, the procedure to issue the electronic consignment note should ensure
the integrity of the consignment note’s details and verify these remain complete and unaltered (Arti-
cle 4). The convention also specifies that implementation of the electronic consignment note should
provide all involved parties with a method to obtain the consignment note, as well as the capability to
observe changes regarding the delivery of the consignment (Article 5 & 6).

For the electronic consignment note to be legally valid, all the involved parties should authenticate the
contract of carriage by means of a reliable electronic signature (Article 3). This electronic signature
must:

(a) be uniquely linked to the signatory;
(b) be capable of identifying the signatory;
(c) be created using means that the signatory can maintain under his sole control; and
(d) is linked to the data to which it relates in such a manner that any subsequent change in the data

is detectable.

6.3. Industry Challenges 40

6.3. Industry Challenges
This section will describe two CMR-related challenges encountered in the industry. The proprietary and
centralized software systems proposed by competitors are unable to tackle these issues.

6.3.1. Intra-Community Transaction
An intra-community transaction occurs whenever a business sells goods or provides services to a
business located in another European Union member state. From the perspective of the seller, the
transaction is referred to as an Intra-Community Supply (ICS), and from the buyer’s perspective, it is
called an Intra-Community Acquisition (ICA). A supplier of goods or services may apply the zero rate
of value-added tax (VAT) if the following conditions are met [70]:

1. The customer must be an entrepreneur and have a valid VAT registration number in the other EU
member state.

2. The goods must actually be dispatched and transported to the other EU member state and the
supplier’s administration must provide proof of this.

fulfilling the first requirement is simple by using the VAT number validation tool provided by the European
Union1. Satisfying the second criterion is harder. The administration of the supplier will generally only
contain some customer details, an order confirmation, and an invoice. As of January 1, 2020, the
requirements for applying the zero VAT rate have become even stricter [71]. The proof required for the
second criterion must consist out of 2 non-contradictory pieces of evidence, issued by two independent
parties. The new regulation does mention a signed CMR consignment note can serve as one item of
evidence. However, the consignment note obtained by the supplier or consignor only contains proof of
departure of the goods. Moreover, the consignor’s copy of the consignment note does not contain the
signature of the consignee.

6.3.2. Neutralization
The term “neutralization” was first coined by Cheu et al. in 2019 to describe a business practice used
in the transport sector for some years now [66]. Neutralization of a consignment note means canceling
the effect and therefore the validity of a consignment note by replacing it with a second consignment
note. In the context of neutralization, in addition to the seller/consignor and buyer/consignee of goods,
we consider a middle-man we call the trader. By neutralization, the trader aims to keep either the
source or the destination of the goods secret from the buyer or seller, respectively. Generally, the
trader commissions the carrier to perform the actual neutralization of the CMR consignment note. In
a survey conducted by [66] across several transport companies, 66% of the correspondents confirm
they perform neutralization of documents at the request of their clients.

The neutralization of CMR consignment notes is fraudulent and all parties involved are at risk of criminal
charges [72]. Moreover, the underlying reason for neutralizing transport documents is in most cases
associated with an illegal activity in logistics called “parallel trade” [66]. Parallel trade is the cross-
border sale of goods within the EU by traders outside of the manufacturer’s distribution system without
the manufacturer’s consent [73]. The product is still authentic but is imported without the permission
of the intellectual property owner. For instance, a manufacturer thinks they are shipping their product
to a low-wage country with a minimal profit margin, while in reality the product is sold by a trader with
high margins outside of the official channels of the manufacturer.

6.4. Blockchain-Based E-CMR System
We propose our concept design for the first blockchain-based e-CMR system. Through distributed
ledger technology we can issue, observe, and process electronic consignment notes in a decentral-
ized manner, without the need for a trusted third party that introduces a single point of control and
failure. All transactions concerning consignments are immutably recorded on the blockchain, thus pre-
venting parties from altering terms in retrospect. Furthermore, the network offers transparency of all the
operations and assets to all the parties involved in a consignment. The Hyperledger Fabric framework
forms the foundation of the blockchain network. Its permissioned design and ability to interact with other

1VIES VAT number validation: https://ec.europa.eu/taxation_customs/vies/#/vat-validation

https://ec.europa.eu/taxation_customs/vies/#/vat-validation

6.4. Blockchain-Based E-CMR System 41

Legend

Channel

Ledger

Smart

Contract

Peer

Orderer

Certificate

Authority

Attribute

Authority

CMS

C

O

C

Figure 6.1: Overview of the privacy-enhanced blockchain system.

network members through confidential channels should provide the required level of trust and privacy
for this corporate use case. Lastly, we will integrate our previously developed searchable encryption
and attribute-based encryption schemes to provide search capabilities over and fine-grained sharing
of encrypted consignment notes.

6.4.1. Architecture
In figure 6.1, an overview of the components in our privacy-enhanced blockchain system is provided.
Notice that this system is not specifically tailored to solve the challenges concerning electronic consign-
ments notes. Instead, figure 6.1 depicts a general blockchain-based system that could be applied to
other use cases in supply chain and logistics or even in different fields such as healthcare or finance.
In the remainder of this chapter, however, we will consider the system only in the context of the e-CMR
convention.

In figure 6.1, four different environments can be distinguished, i.e. the organizations, blockchain net-
work, certificate authorities, and storage environments. In the context of the electronic consignment
use case, the organizations to consider are the consignor, carrier, and consignee. An organization is
represented consisting of three entities. The content management system (CMS) represents the yet
existing software stack of the organization. In the case of a logistics company, this stack generally
consists of an enterprise resource planning (ERP) software system. Clients are managed by members
of the organization and run the applications that interact with all the other entities in the system. At last,
within the context of an organization we consider the attribute authority. The organization’s members
require private keys served by the attribute authority to decrypt assets related to electronic consign-
ment notes on-chain and in the storage system(s). Clients can locally perform the MA-ABE decryption
algorithm using the foreign function interface described in chapter 4.

The blockchain infrastructure consists of the standard Hyperledger Fabric components already dis-
cussed in chapter 2, to keep the diagram concise, membership service providers were left out. Each
organization in the systemmanages a peer in the HLF network. All the peers are connected to the same
channel. An ordering service ensures all peers receive the transactions on the channel in consistent
order. Each peer maintains a local copy of the assets in the network in its local ledger. We consider
electronic consignment notes by assets in this context. The business logic to interact with assets is
contained in smart contracts and installed on the peers in the form of a chaincode. The chaincode con-
tains the logic to issue and sign consignment notes, but also the DSSE-related algorithms for querying
consignments. Relevant keywords concerning consignment notes could include the date of departure,
the names and addresses of parties involved, and the type of goods.

Certificate authorities (CAs) are depicted as a separate category since they are not 1-to-1 related to

6.4. Blockchain-Based E-CMR System 42

organizations. Peers need to authenticate themselves through a trusted CA to perform actions in the
blockchain network. Similarly, clients need to acquire a certificate generated by a CA that verifies their
identity. The identity provided through the certificate issued by a CA is especially important to clients
considering the MA-ABE scheme. As described in chapter 4, this identity serves as a linchpin for tying
users’ keys together and preventing collusion.

The last environment in figure 6.1 is the data storage environment. A concrete implementation of
the proposed system would have the option to utilize the InterPlanetary File System (IPFS), a cloud
storage provider, or any other type of data storage system. Consignment nodes may contain a lot of
information and be accompanied by additional documents e.g. invoices, photos, etc. The blockchain
is already constantly growing as its an immutable and append-only data structure. It is therefore ill-
advised to use the blockchain to store big chunks of data such as a consignment note and its associated
files. Therefore, we will use a distributed file storage system like IPFS or a cloud storage provider like
Amazon Web Services (AWS) to store the consignment note. A hash of the consignment note that
uniquely identifies the note is stored on the blockchain. By using a secure hashing algorithm we are
assured that any attempt to alter the details of the consignment will result in a different hash value of
the consignment note and will therefore be detected [74].

6.4.2. Compliance with E-CMR protocol
In section 6.2, we mentioned several requirements of an e-CMR protocol implementation. In this sec-
tion, we track back and highlight how our proposed design implements these requirements.

In our proposed system, an electronic consignment note f is considered a structured data string or
JSON. The e-CMR convention demands an electronic consignment note should contain the same de-
tails as its carbon equivalent (Article 4) [64]. To meet this requirement, we define the fields of f in
accordance with the particulars defined by Article 6 of the original convention [60]. Furthermore, we
define dedicated fields in f for arranging liability concerns in accordance with the other articles [60].

Encryption As per the convention (Article 5 & 6) we should provide all parties with a means to obtain
f . We already discussed why saving f directly on-chain is not a good idea due to storage concerns of
the ledger. However, f contains confidential information and can therefore not be shared in plaintext
with an untrusted storage provider. We develop the following method to overcome this problem. First
we pick a secure symmetric encryption scheme SE = (Gen,Enc,Dec) such as AES and generate
random key k ← Gen() and compute the encryption of f , cf := Enck(f). Then we pick a secure hash
algorithm H such as SHA-3 and obtain the hash of the obtained cipher hf := H(cf). We send hf and
cf to the storage provider, who can later provide us cf when receiving a request with hf .

To allow fine-grained sharing of the encrypted consignment note, we will employ our MA-ABE scheme
discussed in chapter 4. We assume the system setup and attribute authority setup have been per-
formed and the public keys resulting from these operations are generally known by all clients. We de-
fine an access policy A = S ∨C ∨B, where S, C, B are boolean formulas made up of attribute literals
corresponding to the seller (consignor), carrier, and buyer (consignee) of f , respectively. For example,
a trivial access policy could look like A = merchant@seller ∨ driver@carrier ∨ purchaser@buyer. We
define the tuple df = (hf , k) and using the system parameters, the public keys of the authorities of the
involved parties, and A we compute Cf = EncABE(df). Through a smart contract invocation, Cf gets
saved on-chain.

Decryption All clients within organizations connected to the channel can now obtain Cf . A client
obtains proof of their identity GID from a certificate authority. Using this identifier they can request
private keys from their organization’s attribute authority. When the set of attributes satisfies the access
policy defined for Cf , the client can perform the MA-ABE decryption algorithm locally, they obtain df =
(hf , k). A request to the storage provider, specifying hf , yields cf . Using the decryption algorithm of the
SE scheme defined in the previous paragraph, the client obtains f = Deck(cf). The client can verify
the contents of the electronic consignment note by examining the fields of f , and determine whether
they wish to sign off on the consignment.

6.5. Conclusion 43

Signing Article 3 of the e-CMR convention demands the electronic signature has several proper-
ties [64], which are enlisted in section 6.2.1. A secure electronic signature can be achieved in multi-
ple ways. For this design, we propose to use the Elliptic Curve Digital Signature Algorithm (ECDSA).
ECDSA is a type of secure public-key cryptosystem for generating digital signatures. We define a
public-key digital signature scheme DSS = (Gen,Sign,Verify) consisting of a generation, signing, and
verification algorithm. A client that wants to sign off a consignment first generates public/private key
pair (PK,SK)← Gen(). For each organization, the blockchain maintains a distinct set of public keys.
Through a smart contract invocation, the client adds PK to the set of their organization, and the con-
tract verifies the client’s membership in the organization. The client recovers Cf from the ledger and
signs it using its private key and obtains the tag tf := SignSK(Cf) (we assume any hashing of Cf to
be part of the signing algorithm). The client then saves its signature on the blockchain using another
smart contract. This smart contract obtains Cf and PK, and checks acceptance of VerifyPK(Cf , tf)
before finalizing the transaction.

Search Through encryption and decryption of the consignment notes, we can provide private access
to notes for all the parties involved in the consignment. However, the current system is unworkable
for clients that are looking for a specific consignment f of which the ciphertext Cf is unknown to them.
Therefore, we propose to use our DSSE scheme described in chapter 3 to obtain searchable consign-
ment notes.

We start implementing search by running the DSSE key generation algorithm to obtain symmetric key
k. We then initialize an empty index structure on the ledger by running the setup algorithm with an
empty set of files. Whenever a CMR consignment note f is issued, we go through the procedure of
encryption to obtain Cf . The consignment issuer can now select a number of keywords from f , for
instance, the consignment number, names of the involved parties, type of goods, and the date. This
keyword set Wf is then used to generate an add token τa. By calling our implementation of the add
function in chaincode, we associate these keywords with the cipher Cf .

Later, for example, if a client wants to retrieve all files from a certain. The client requests a search token
from the consignment note issuer and provides a keyword, the date, w. The client obtains search token
τs. Through the search chaincode, the client obtains all consignment notes from the datew by providing
τs.

6.4.3. Solving Industry Challenges
In our proposed blockchain-based e-CMR system, we use unforgeable signatures that are saved on
an immutable ledger to track the progress of the consignment. Therefore, in our system, the proof
of delivery of a consignment is conclusive. Through the implemented MA-ABE scheme, all parties
involved in the consignment can observe this proof. A consignor can therefore safely apply the zero
VAT rate to all its intra-Community supplies. Tax authorities could even be added to the blockchain
network to observe the process.

Tomicová et al. has previously examined the impact the e-CMR protocol could have on the neutral-
ization of consignment notes [75]. they concluded the adoption of the electronic consignment note
could reduce neutralization. However, this conclusion is based on the assumption fraud is prevented
because the signer’s device registers the GPS location during document signing in the TransFollow
application. A simple GPS spoofer bypasses this protection with ease, however. Our system prevents
the neutralization of consignment notes altogether by just not supporting this type of transaction. A
consignment may be canceled only according to a specific policy defined during the issuance of the
consignment and agreed upon by all parties.

6.5. Conclusion
Blockchain technology may play a critical role in the future of the electronic CMR consignment note.
Distinctive features of blockchain such as immutability and transparency align seamlessly with the re-
quirements of the e-CMR convention. Our proposed design for a privacy-enhanced blockchain system
additionally provides performant and confidential transactions to all participants of the network. Current
challenges encountered in the industry concerning the CMR protocol are also solved in our design. It
would be interesting to see how a concrete implementation of our design performs for this use case

6.5. Conclusion 44

compared to existing proprietary solutions. Additionally, it would be interesting to conduct a case study
to gauge how companies view an open alternative. Lastly, we would like future work to consider other
use cases and problems that could be tackled by the designed system.

7
Conclusion

In this thesis, we proposed several tools to increase the set of privacy-focused features at the disposal
of members of a consortium blockchain. While combining blockchain technology with trusted execution
environments sounded interesting, we deem the technology to be unfit for use in a decentralized net-
work. On the other hand, we successfully implemented both searchable encryption and attribute-based
encryption in Hyperledger Fabric without introducing a central authority. Our attribute-based encryption
implementation uses a novel and generic approach to foreign function invocation by the means of pro-
tocol buffer serialization. Furthermore, we implemented the algorithms of a provably adaptive secure
dynamic searchable symmetric encryption scheme in smart contracts. To our knowledge, this is the first
implementation that achieves this. We submitted a paper containing this result to the ESORICS 2023
conference. Lastly, we proposed a blockchain-based system to solve the transparency and traceability
issues concerning proprietary software implementations of the electronic consignment CMR protocol.

7.1. Research Questions
After conducting the research, we are ready to present the answer to the research question.

How to enhance the trust and functionality of consortium blockchain applications through the
deployment of privacy-enhancing technologies?

We showed that both searchable encryption, as well as attribute-based encryption, provides consor-
tium blockchains with extra functionality while maintaining the confidentiality of the data to which these
functionalities apply. Searchable encryption provides a client with the ability to outsource a data set
to an untrusted third party while maintaining search capability. In a blockchain context, a data owner
additionally achieves verifiability of its search results. Attribute-based encryption (ABE) provides a data
owner with fine-grained sharing of confidential information. A multi-authority ABE keeps the consortium
network decentralized while also allowing data owners to define sophisticated access policies for their
private data.

1. How can smart contracts provide search functionality over dynamically encrypted data
stored on the blockchain? Through the implementation of a dynamic searchable symmetric
encryption scheme in smart contracts, we can achieve search functionality over encrypted data
on the blockchain. The smart contracts require a token issued by the owner of the data to perform
their search or update functionality.

2. How can we share encrypted data only with a subset of users in the blockchain consor-
tium? We can assign this subset of users in the consortium a specific set of attributes. Using a
multi-authority attribute-based encryption scheme, consortium members can transform these at-
tributes in access policy on encrypted data and private keys without introducing a central authority
to the network.

3. How can we employ trusted execution environments to enforce correct smart contract
execution and what are the limitations? Correct smart contract execution can be enforced by

45

7.1. Research Questions 46

trusted execution environments (TEEs) in two distinct ways. Either the TEE is contained by the
peers that also perform consensus, or, a separate network of TEE-enabled nodes is used. Both
approaches are limited due to the trusted admin setup.

4. What are the benefits and limitations of a privacy-enhanced blockchain solution that in-
corporates the technologies mentioned in the previous research questions? A privacy-
enhanced blockchain provides extra functionalities to its users. These functionalities are opt-in,
so there is no real disadvantage compared to a non-enhanced blockchain.

5. What new use cases can be tackled by this privacy-enhanced blockchain-based system?
We discussed in detail how a privacy-enhanced blockchain-based system tackles challenges
concerning the implementation of an electronic consignment note in logistics. We expect other
privacy-sensitive use cases in the fields of healthcare or finance could be tackled as well.

Bibliography

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review,
p. 21 260, 2008.

[2] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, and E. B. Hamida, “Consortium blockchains:
Overview, applications and challenges,” Int. J. Adv. Telecommun, vol. 11, no. 1, pp. 51–64, 2018.

[3] E. Androulaki et al., “Hyperledger fabric: A distributed operating system for permissioned blockchains,”
in Proceedings of the thirteenth EuroSys conference, 2018, pp. 1–15.

[4] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in
Proceeding 2000 IEEE symposium on security and privacy. S&P 2000, IEEE, 2000, pp. 44–55.

[5] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in
Proceedings of the 2012 ACM conference on Computer and communications security, 2012,
pp. 965–976.

[6] L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang, “Blockchain based searchable
encryption for electronic health record sharing,” Future generation computer systems, vol. 95,
pp. 420–429, 2019.

[7] B. B. Gupta, K.-C. Li, V. C. Leung, K. E. Psannis, S. Yamaguchi, et al., “Blockchain-assisted
secure fine-grained searchable encryption for a cloud-based healthcare cyber-physical system,”
IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 12, pp. 1877–1890, 2021.

[8] C. Xu, L. Yu, L. Zhu, and C. Zhang, “A blockchain-based dynamic searchable symmetric encryp-
tion scheme under multiple clouds,” Peer-to-Peer Networking and Applications, vol. 14, pp. 3647–
3659, 2021.

[9] M. Li, C. Jia, R. Du, W. Shao, and G. Ha, “Dse-rb: A privacy-preserving dynamic searchable
encryption framework on redactable blockchain,” IEEE Transactions on Cloud Computing, 2022.

[10] O. Goldreich and R. Ostrovsky, “Software protection and simulation on oblivious rams,” Journal
of the ACM (JACM), vol. 43, no. 3, pp. 431–473, 1996.

[11] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, 2003.
[12] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on remote encrypted

data,” in International conference on applied cryptography and network security, Springer, 2005,
pp. 442–455.

[13] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: Im-
proved definitions and efficient constructions,” in Proceedings of the 13th ACM conference on
Computer and communications security, 2006, pp. 79–88.

[14] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in International con-
ference on the theory and application of cryptology and information security, Springer, 2010,
pp. 577–594.

[15] K. Kurosawa and Y. Ohtaki, “Uc-secure searchable symmetric encryption,” in International con-
ference on financial cryptography and data security, Springer, 2012, pp. 285–298.

[16] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic symmetric searchable encryption:
Optimality and forward security,” Cryptology ePrint Archive, 2016.

[17] A. Lewko and B. Waters, “Decentralizing attribute-based encryption,” in Annual international con-
ference on the theory and applications of cryptographic techniques, Springer, 2011, pp. 568–
588.

[18] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Workshop on the theory
and application of cryptographic techniques, Springer, 1984, pp. 47–53.

47

Bibliography 48

[19] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Annual interna-
tional cryptology conference, Springer, 2001, pp. 213–229.

[20] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Annual international conference on
the theory and applications of cryptographic techniques, Springer, 2005, pp. 457–473.

[21] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in 2007
IEEE symposium on security and privacy (SP’07), IEEE, 2007, pp. 321–334.

[22] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption,” IEEE transactions on parallel and
distributed systems, vol. 24, no. 1, pp. 131–143, 2012.

[23] X. Yao, Z. Chen, and Y. Tian, “A lightweight attribute-based encryption scheme for the internet of
things,” Future Generation Computer Systems, vol. 49, pp. 104–112, 2015.

[24] M. Raikwar, D. Gligoroski, and K. Kralevska, “Sok of used cryptography in blockchain,” IEEE
Access, vol. 7, pp. 148 550–148 575, 2019.

[25] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,” ACM Computing Surveys
(CSUR), vol. 52, no. 3, pp. 1–34, 2019.

[26] M. Chase, “Multi-authority attribute based encryption,” in Theory of cryptography conference,
Springer, 2007, pp. 515–534.

[27] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained ac-
cess control of encrypted data,” in Proceedings of the 13th ACM conference on Computer and
communications security, 2006, pp. 89–98.

[28] Y. Rouselakis and B. Waters, “Practical constructions and new proof methods for large universe
attribute-based encryption,” in Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, 2013, pp. 463–474.

[29] Y. Rouselakis and B. Waters, “Efficient statically-secure large-universe multi-authority attribute-
based encryption,” in Financial Cryptography and Data Security: 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, Springer, 2015,
pp. 315–332.

[30] N. Attrapadung and H. Imai, “Conjunctive broadcast and attribute-based encryption,” in Pairing-
Based Cryptography–Pairing 2009: Third International Conference Palo Alto, CA, USA, August
12-14, 2009 Proceedings 3, Springer, 2009, pp. 248–265.

[31] T. Nishide, K. Yoneyama, and K. Ohta, “Attribute-based encryption with partially hidden encryptor-
specified access structures,” in Applied Cryptography and Network Security: 6th International
Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings 6, Springer, 2008,
pp. 111–129.

[32] S. Agrawal and M. Chase, “Fame: Fast attribute-based message encryption,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp. 665–
682.

[33] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “Dac-macs: Effective data access control for
multiauthority cloud storage systems,” IEEE Transactions on Information Forensics and Security,
vol. 8, no. 11, pp. 1790–1801, 2013.

[34] Y. Rahulamathavan, R. C.-W. Phan, M. Rajarajan, S. Misra, and A. Kondoz, “Privacy-preserving
blockchain based iot ecosystem using attribute-based encryption,” in 2017 IEEE International
Conference on AdvancedNetworks and Telecommunications Systems (ANTS), IEEE, 2017, pp. 1–
6.

[35] H. Wang and Y. Song, “Secure cloud-based ehr system using attribute-based cryptosystem and
blockchain,” Journal of medical systems, vol. 42, no. 8, p. 152, 2018.

[36] D. Boneh, P. Papakonstantinou, C. Rackoff, Y. Vahlis, and B. Waters, “On the impossibility of bas-
ing identity based encryption on trapdoor permutations,” in 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, IEEE, 2008, pp. 283–292.

Bibliography 49

[37] V. Odelu, A. K. Das, M. K. Khan, K.-K. R. Choo, and M. Jo, “Expressive cp-abe scheme for mobile
devices in iot satisfying constant-size keys and ciphertexts,” IEEE Access, vol. 5, pp. 3273–3283,
2017.

[38] M. Venema and G. Alpár, “A bunch of broken schemes: A simple yet powerful linear approach
to analyzing security of attribute-based encryption,” in Topics in Cryptology–CT-RSA 2021: Cryp-
tographers’ Track at the RSA Conference 2021, Virtual Event, May 17–20, 2021, Proceedings,
Springer, 2021, pp. 100–125.

[39] A. Beimel et al., “Secure schemes for secret sharing and key distribution,” PhD thesis, 1996.
[40] A. Joux and K. Nguyen, “Separating decision diffie–hellman from computational diffie–hellman

in cryptographic groups,” Journal of cryptology, vol. 16, no. 4, pp. 239–247, 2003.
[41] D. M. Freeman, “Converting pairing-based cryptosystems from composite-order groups to prime-

order groups,” in Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 2010, pp. 44–61.

[42] A. B. Lewko, “Tools for simulating features of composite order bilinear groups in the prime order
setting.,” in Eurocrypt, Springer, vol. 7237, 2012, pp. 318–335.

[43] P. Liang, L. Zhang, L. Kang, and J. Ren, “Privacy-preserving decentralized abe for secure sharing
of personal health records in cloud storage,” Journal of Information Security and Applications,
vol. 47, pp. 258–266, 2019.

[44] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct non-interactive zero knowledge
for a von neumann architecture,” in 23rd {USENIX} Security Symposium ({USENIX} Security
14), 2014, pp. 781–796.

[45] I. Grishkov, R. Kromes, T. Giannetsos, and K. Liang, “Id-based self-encryption via hyperledger
fabric based smart contract,” arXiv preprint arXiv:2207.01605, 2022.

[46] V. Shoup, “Lower bounds for discrete logarithms and related problems,” inAdvances in Cryptology—
EUROCRYPT’97: International Conference on the Theory and Application of Cryptographic Tech-
niques Konstanz, Germany, May 11–15, 1997 Proceedings 16, Springer, 1997, pp. 256–266.

[47] A. W. Dent, “Adapting the weaknesses of the random oracle model to the generic group model,”
in Advances in Cryptology—ASIACRYPT 2002: 8th International Conference on the Theory and
Application of Cryptology and Information Security Queenstown, New Zealand, December 1–5,
2002 Proceedings 8, Springer, 2002, pp. 100–109.

[48] N. Koblitz and A. Menezes, “Another look at generic groups,” Cryptology ePrint Archive, 2006.
[49] O. Dib and K. Toumi, “Decentralized identity systems: Architecture, challenges, solutions and

future directions,” Annals of Emerging Technologies in Computing (AETiC), Print ISSN, pp. 2516–
0281, 2020.

[50] B. C. Ghosh et al., “Decentralized cross-network identity management for blockchain interoper-
ation,” in 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), IEEE,
2021, pp. 1–9.

[51] M. Brandenburger, C. Cachin, R. Kapitza, and A. Sorniotti, “Blockchain and trusted computing:
Problems, pitfalls, and a solution for hyperledger fabric,” arXiv preprint arXiv:1805.08541, 2018.

[52] R. Cheng et al., “Ekiden: A platform for confidentiality-preserving, trustworthy, and performant
smart contracts,” in 2019 IEEE European Symposium on Security and Privacy (EuroS&P), IEEE,
2019, pp. 185–200.

[53] S. Pearson and B. Balacheff, Trusted computing platforms: TCPA technology in context. Prentice
Hall Professional, 2003.

[54] F. McKeen et al., “Innovative instructions and software model for isolated execution.,” Hasp@
isca, vol. 10, no. 1, 2013.

[55] T. Alves, “Trustzone: Integrated hardware and software security,” Information Quarterly, vol. 3,
pp. 18–24, 2004.

[56] M. Sabt, M. Achemlal, and A. Bouabdallah, “Trusted execution environment: What it is, and what
it is not,” in 2015 IEEE Trustcom/BigDataSE/Ispa, IEEE, vol. 1, 2015, pp. 57–64.

Bibliography 50

[57] J. M. Rushby, “Design and verification of secure systems,” ACM SIGOPS Operating Systems
Review, vol. 15, no. 5, pp. 12–21, 1981.

[58] U. Lee and C. Park, “Softee: Software-based trusted execution environment for user applica-
tions,” IEEE Access, vol. 8, pp. 121 874–121888, 2020.

[59] J. Nowakowska-Grunt and M. Strzelczyk, “The current situation and the directions of changes in
road freight transport in the european union,” Transportation Research Procedia, vol. 39, pp. 350–
359, 2019.

[60] United Nations, Convention on the contract for the international carriage of goods by road (cmr),
Geneva, May 19, 1956.

[61] United Nations. “Convention on the contract for the international carriage of goods by road (cmr),
of 19 may 1956,” United Nations Treaty Collection. (2023), [Online]. Available: https://unece.
org/list-agreements (visited on 02/12/2023).

[62] J. C. Ferrer, The cmr convention-a pillar of international carriage of goods by road, 2006.
[63] Vrio Europe. “Digital transformation: Ecmr – a digital future for the cmr document,” Vrio Europe.

(2020), [Online]. Available: https://vrioeurope.com/en/digital-transformation-ecmr-a-
digital-future-for-the-cmr-document (visited on 02/12/2023).

[64] United Nations, Additional protocol to the convention on the contract for the international carriage
of goods by road (cmr) concerning the electronic consignment note, Geneva, May 27, 2008.

[65] United Nations. “Additional protocol to the cmr concerning the electronic consignment note (e-
cmr),” United Nations Treaty Collection. (2023), [Online]. Available: https://unece.org/list-
agreements (visited on 02/12/2023).

[66] K. Cheu, M. Poliak, J. Tomicová, and J. Gnap, “Neutralization of cmr documents,” Archiwum
Motoryzacji, vol. 83, no. 1, pp. 175–184, 2019.

[67] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain technology and its relationships
to sustainable supply chain management,” International Journal of Production Research, vol. 57,
no. 7, pp. 2117–2135, 2019.

[68] E. Tijan, S. Aksentijević, K. Ivanić, and M. Jardas, “Blockchain technology implementation in
logistics,” Sustainability, vol. 11, no. 4, p. 1185, 2019.

[69] M. G. Belu et al., “Application of blockchain in international trade: An overview,” The Romanian
Economic Journal, vol. 22, no. 71, pp. 2–15, 2019.

[70] Tax and Customs Administration. “Intra community supply.” (), [Online]. Available: https://www.
belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/
vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_
the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_
netherlands_to_other_eu_countries_intra-community_supply (visited on 02/12/2023).

[71] Council of the European Union,Council implementing regulation (eu) 2018/1912, Brussel, Dec. 4,
2018.

[72] M. Poliak, J. Tomicová, and M. Jaśkiewicz, “Identification the risks associated with the neutraliza-
tion of the cmr consignment note,” Transportation Research Procedia, vol. 44, pp. 23–29, 2020.

[73] R. Ahmadi and B. R. Yang, “Parallel imports: Challenges from unauthorized distribution channels,”
Marketing Science, vol. 19, no. 3, pp. 279–294, 2000.

[74] R. Kumar and R. Tripathi, “Implementation of distributed file storage and access framework using
ipfs and blockchain,” in 2019 Fifth International Conference on Image Information Processing
(ICIIP), IEEE, 2019, pp. 246–251.

[75] J. Tomicová, M. Poliak, and N. A. Zhuravleva, “Impact of using e-cmr on neutralization of con-
signment note,” Transportation Research Procedia, vol. 55, pp. 110–117, 2021.

https://unece.org/list-agreements
https://unece.org/list-agreements
https://vrioeurope.com/en/digital-transformation-ecmr-a-digital-future-for-the-cmr-document
https://vrioeurope.com/en/digital-transformation-ecmr-a-digital-future-for-the-cmr-document
https://unece.org/list-agreements
https://unece.org/list-agreements
https://www.belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_netherlands_to_other_eu_countries_intra-community_supply
https://www.belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_netherlands_to_other_eu_countries_intra-community_supply
https://www.belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_netherlands_to_other_eu_countries_intra-community_supply
https://www.belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_netherlands_to_other_eu_countries_intra-community_supply
https://www.belastingdienst.nl/wps/wcm/connect/bldcontenten/belastingdienst/business/vat/vat_in_the_netherlands/vat_relating_to_purchase_and_sale_of_goods/export_from_the_netherlands_to_other_eu_countries_intra-community_supply/export_from_the_netherlands_to_other_eu_countries_intra-community_supply

A
Preliminaries

In this appendix, we cover some of the basic concepts, notations, and definitions used throughout this
thesis. Appendix A.1 covers mathematical notation semantics and data structures used in definitions,
constructions, and proofs of our schemes. Appendix A.2 contains a collection of definitions serving as
the backbone of this work.

A.1. Notation
Sets A set is a finite or infinite collection of elements. Examples of sets are the natural numbers
N = {0, 1, 2, 3, . . . } or the set of all binary strings of length n denoted as {0, 1}n. We write x ∈ X to
indicate x is an element of the set X. The number of elements a set X contains is referred to as its
cardinality and is denoted by |X|. The power set P(X) of a set X is the set whose elements are the
subsets of X, P(X) = {S ⊆ X | S}. Alternatively, we can write 2X to denote the power set of X.

Operations Wewrite x← χ to represent an element x being sampled from a distribution χ, and x
$← X

to represent an element being sampled uniformly at random from a setX. The output x of a probabilistic
algorithm A is denoted x← A and that of a deterministic algorithm B by x := B
Data structures A list or sequence is an abstract data type that represents a finite number of ordered
objects. The ith element of a list v is written as vi or v[i] and its total number of elements is written as #v.
In the context of this thesis, a string is considered a binary sequence. If s is a string then |s| denotes
its bit length. A concatenation of n strings s1, . . . , sn is written as ⟨s1, . . . , sn⟩, or s1||s2 for n = 2. An
array represents a collection of objects, where each element is accessible through its index. If A is an
array then #A is its total number of cells, A[i] is the value stored at index i ∈ {1, . . . , #A} and A[i] := v
stores the value v at index i in A. A dictionary (also known as map, lookup table or associative array)
is a data structure that stores a collection of key-value pairs. If T is a dictionary, then #T denotes the
number of pairs in T . If (s, v) ∈ T is a pair, then the value v associated with search key s in T is written
T [s]. T [s] := v is the operation that stores v under search key s in T .
Functions Given two sets X and Y , a function f : X → Y assigns to each element x ∈ X a unique
element f(x) ∈ Y . Multivariate functions depend on several arguments, more formally, a function of
n variables is a function f : U → Y where the domain U ⊆ X1 × · · · × Xn is a set of n-tuples. While
studying a multivariate function we might fix certain variables called parameters to highlight the “true
variables”. For example, to analyze a keyed hash function h : X × K → Y , we might fix k ∈ K by
defining the function hk(x) = h(x, k) for all x ∈ X. Furthermore, we can distinguish a function f from
its value f(x) by writing f(·). We define Func[n,m] to be the set of all functions from {0, 1}n to {0, 1}m.
A function v : N → N is called negligible in k ∈ N if for every positive polynomial p(·) and sufficiently
large k, v(k) < 1/p(k). We write f(k) = poly(k) to specify the existence of a polynomial p(·) such
that f(k) ≤ p(k) for sufficiently large k. Similarly, we write f(k) = negl(k) to signify the existence of a
negligible function v(·) such that f(k) ≤ v(k) for sufficiently large k.
Groups A group is a 2-tuple (G, ·), where G is a set, · is a binary operation, and they satisfy the
following four properties:

51

A.2. Definitions 52

1. (Closure) For all x, y ∈ G, x · y ∈ G.
2. (Identity) There exists an element in G, often denoted by 1 (or e), such that for all x ∈ G,

1 · x = x · 1 = x

3. (Inverse) For all x ∈ G, there exists an element in G called the inverse of x, often denoted by x−1,
such that,

x · x−1 = x−1 · x = 1

4. (Associativity) For all x, y, z ∈ G,
(x · y) · z = x · (y · z)

A group is called an abelian group if it also is commutative; for all x, y ∈ G, x · y = y · x. A group is
called multiplicative, with notation (G, ·), if we tend to write its group operation in the same way as one
does for multiplication, i.e.

x = y · z and x5 = x · x · x · x · x.

A group is called additive, with notation (G,+), if we tend to write its group operation in the same way
as one does for addition.

x = y + z and 5 · x = x+ x+ x+ x+ x.

An abelian group is called cyclic if there exists an element g ∈ G where for all x ∈ G and i ∈ N, x = gi

or x = i · g for multiplicative or additive G respectively. If g is a generator of the cyclic group G we often
write G = ⟨g⟩.

A subset H of G that satisfies the four group properties is called a subgroup of G, often denoted by
H ⊆ G. Every group G contains two trivial subgroups, G itself and the group {1} consisting of the
identity element. A subgroup H of a group G that does not include the entire group G itself is called
proper, denoted by H ⊂ G.

A.2. Definitions
Throughout the following definitions, k ∈ N will denote the security parameter and we will assume all
algorithms to take it as input.

Definition A.1 (Pseudo-random Function (PRF)) A function f : {0, 1}k×{0, 1}n → {0, 1}m is pseudo-
random if fK is computable in polynomial time for any K ∈ {0, 1}k, and if for all polynomial size adver-
saries A, ∣∣∣Pr

[
AfK(·) = 1: K

$← {0, 1}k
]
− Pr

[
Ag(·) = 1: g

$← Func[n,m]
]∣∣∣ ≤ negl(k)

where the probabilities are taken over the choice of K and g.

Definition A.2 (Pseudo-random Permutation (PRP)) A function f : {0, 1}k × {0, 1}n → {0, 1}n is a
pseudo-random permutation if

• For any K ∈ {0, 1}k, fK is one-to-one on {0, 1}n to {0, 1}n.
• For any K ∈ {0, 1}k, fK(x) is computable in polynomial time for any x ∈ {0, 1}n.
• For all polynomial-size adversaries A,∣∣∣Pr

[
AfK(·) = 1: K

$← {0, 1}k
]
− Pr

[
Ag(·) = 1: g

$← Func[n, n]
]∣∣∣ ≤ negl(k)

where the probabilities are taken over the choice of K and g.

Definition A.3 (Symmetric Key Encryption (SKE)) A symmetric encryption scheme is a tuple of three
polynomial time algorithms SKE = (Gen,Enc,Dec) such that:

A.2. Definitions 53

K ← Gen(1k): is a probabilistic algorithm that takes as input a security parameter k ∈ N and
outputs a secret key K.
c← Enc(K,m): is a probabilistic algorithm that takes as input a secret key K and a messagem
and returns a ciphertext c.
m := Dec(K, c): is a deterministic algorithm that takes as input a secret key K and a ciphertext
c and returns a message m.

A symmetric encryption scheme is correct if for all k ∈ N, for all keys K generated by Gen(1k), and for
all messages m ∈ {0, 1}∗,

DecK(EncK(m)) = m

Definition A.4 (IND-CPA Security) Let SKE = (Gen,Enc,Dec) be a symmetric encryption scheme
and A be an adversary and consider the following indistinguishability experiment CPASKE,A(k):

1. a key K ← Gen(1k) is generated.
2. A is given access to oracle EncK(·).
3. A outputs two plaintexts m0 and m1, where |m0| = |m1|.

4. a bit b $← {0, 1} is chosen at random, and challenge ciphertext c← Enck(mb) is given to A.
5. A outputs a bit b′ after a polinomially bounded number of queries to EncK(·).
6. if b = b′, the experiment returns 1 otherwise it returns 0.

We say that SKE is IND-CPA secure if for all polynomial-size adversaries A,∣∣∣∣Pr [CPASKE,A(k) = 1]− 1

2

∣∣∣∣ ≤ negl(k),

where the probabilities are taken over the random coins of Gen, Enc, and b.

	Preface
	Summary
	Introduction
	Consortium Blockchains
	Introducing Privacy-enhancing Technologies
	Research Questions
	Contributions and Outline of Thesis

	Hyperledger Fabric
	General Overview
	Network Structure
	Identity Management
	Ledger
	Transaction Flow

	Searchable Encryption
	Introduction
	Related Work
	Definitions
	Blockchain-based DSSE
	Implementation
	An Illustrative Example

	Performance Analysis
	Discussion

	Attribute-Based Encryption
	Introduction
	Related Work
	Definitions
	Access Structures and Linear Secret Sharing Schemes
	Pairing-based Cryptography
	Multi-Authority Attribute-based Encryption

	Multi-Authority ABE and Blockchain
	Construction
	Authorities and Clients
	Foreign Function Interface
	An Illustrative Example

	Security
	Performance Analysis
	Discussion

	Trusted Execution Environment
	Introduction
	Background
	Promosing Solutions
	HLF Private Chaincode
	Ekiden

	Discussion & Conclusion

	Blockhain-based Consignment Notes
	Introduction
	CMR: A Standard for International Road Transport
	Digital Equivalent

	Industry Challenges
	Intra-Community Transaction
	Neutralization

	Blockchain-Based E-CMR System
	Architecture
	Compliance with E-CMR protocol
	Solving Industry Challenges

	Conclusion

	Conclusion
	Research Questions

	Preliminaries
	Notation
	Definitions

