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Abstract
This manuscript investigates the problem of optimal placement of control valves in 
water supply networks, where the objective is to minimize average zone pressure. 
The problem formulation results in a nonconvex mixed integer nonlinear program 
(MINLP). Due to its complex mathematical structure, previous literature has solved 
this nonconvex MINLP using heuristics or local optimization methods, which do not 
provide guarantees on the global optimality of the computed valve configurations. In 
our approach, we implement a branch and bound method to obtain certified bounds 
on the optimality gap of the solutions. The algorithm relies on the solution of mixed 
integer linear programs, whose formulations include linear relaxations of the non-
convex hydraulic constraints. We investigate the implementation and performance 
of different linear relaxation schemes. In addition, a tailored domain reduction pro-
cedure is implemented to tighten the relaxations. The developed methods are evalu-
ated using two benchmark water supply networks and an operational water supply 
network from the UK. The proposed approaches are shown to outperform state-of-
the-art global optimization solvers for the considered benchmark water supply net-
works. The branch and bound algorithm converges to good quality feasible solutions 
in most instances, with bounds on the optimality gap that are comparable to the level 
of parameter uncertainty usually experienced in water supply network models.
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1 Introduction

The efficient management of hydraulic pressure in pipes results in reduction of 
leakage (Lambert 2000; Wright et  al. 2015) and risk of pipe failure (Lambert 
and Thornton 2011), and it is therefore one of the main operational challenges 
in water supply networks (WSNs). Here we consider pressure management using 
pressure control valves, which regulate pressure at their outlet. We investigate the 
problem of simultaneously optimizing the placement and operational settings of 
control valves in WSNs, where the objective is to minimize average zone pres-
sure (AZP). AZP is used as a surrogate measure for leakage. The problem for-
mulation includes flows across network links and hydraulic heads at nodes as 
continuous decision variables. In addition, binary variables are introduced to 
model the placement of valves. Mass and energy conservation laws are enforced 
as optimization constraints, resulting in a nonconvex mixed integer nonlinear 
program (MINLP). The solution of process network optimization problems fre-
quently relies on the solution of MINLPs. Some examples include synthesis of 
heat exchanger networks (Zamora and Grossmann 1998), multi-period blending 
(Kolodziej et  al. 2013), optimal design and operation of gas networks (Pfetsch 
et al. 2015; Humpola and Fügenschuh 2015), and water supply networks (DAm-
brosio et al. 2015). In the framework of WSNs, MINLP formulations are ubiq-
uitous and employed in a variety of applications, ranging from optimal network 
design (Bragalli et al. 2012; Sherali et al. 1999) to pump scheduling (Menke et al. 
2015; Gleixner et al. 2012).

Both heuristic and mathematical optimization methods were applied in pre-
vious work to solve the problem of optimal valve placement in water networks. 
Heuristic approaches based on genetic algorithms (GAs) have been widely used 
for solving the considered problem—see Reis et al. (1997), Araujo et al. (2006), 
Nicolini and Zovatto (2009), Liberatore and Sechi (2009), Ali (2015), De Paola 
et al. (2017). However, they present some limitations. Firstly, they can not guar-
antee optimality of the computed solutions, not even local optimality. Moreover, 
the number of objective function evaluations and hydraulic simulations required 
by these approaches grows rapidly with the size of the network, precluding the 
application of GAs when large operational water network are considered. Pre-
vious work has also investigated the application of mathematical optimization 
methods for the solution of the problem of optimal valve placement in WSNs—
see Hindi and Hamam (1991), Eck and Mevissen (2012), Dai and Li (2014), 
Pecci et al. (2017a, b). Since the considered problem is nonconvex, approaches 
implemented in previous literature do not provide theoretical guarantees on the 
global optimality of the computed valve configuration.

This paper investigates mathematical optimization methods to generate a certi-
fied bound on the optimality gap of the computed solutions for the problem of 
optimal valve placement in WSNs, guaranteeing !-sub-optimality. We formulate 
a branch and bound method, which is a common approach in global optimization. 
To the best of the authors knowledge, global optimization methods have not been 
previously applied to the problem of optimal valve placement in WSNs. Previous 
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literature has investigated global optimization techniques for optimal design of 
WSNs (Sherali et al. 1999; Raghunathan 2013). However, when pipe diameters 
are fixed, hydraulic heads and flow rates are uniquely determined and can be 
found by solving a strictly convex optimization problem (Raghunathan 2013). As 
a result, in the case of optimal WSN design, it is sufficient to focus the branch 
and bound on integer decision variables. On the contrary, when optimal opera-
tion of water supply networks is considered, spatial branch and bound is needed 
(Gleixner et  al. 2012). In the present manuscript, we consider the problem of 
optimal valve placement in WSNs, where locations and operational settings of 
the control valves need to be simultaneously optimized. Therefore, branching is 
required on both continuous and integer variables.

The implemented branch and bound algorithm relies on a sequence of lower and 
upper bounds to the optimal value of the nonconvex MINLP in study—for a general 
review see Tawarmalani and Sahinidis (2002). Since all convex constraints within 
the problem formulation for optimal valve placement are linear, it is particularly con-
venient to generate lower bounds using linear relaxations of the nonconvex constraints 
(Tawarmalani and Sahinidis 2002,  Chapter  4). The nonconvexity of MINLPs aris-
ing in the framework of water networks is due to the absolute power functions rep-
resenting friction energy losses within the system’s conservation laws—see Eq. (2a). 
Analogous nonconvex expressions have previously been studied in other engineering 
frameworks, where linear relaxations were formulated—see Humpola and Fügenschuh 
(2015), Gleixner et al. (2012), Liberti and Pantelides (2003), Tawarmalani and Sahin-
idis (2002), Udell and Boyd (2015), Vigerske (2012). We define linear relaxations of 
the nonconvex equality constraints considered here by extending the formulation pro-
posed in Liberti and Pantelides (2003) for monomials of odd degree. Such linear relax-
ations define an outer approximation of the convex envelopes of the nonconvex equality 
constraints. We investigate the use of different number of linearizations for the outer 
approximation. The strength of the linear relaxations depends on the diameter of the 
decision variables’ domain (Puranik and Sahinidis 2017). Therefore, we implement a 
domain reduction procedure, based on the solution of a series of linear programs (LPs). 
The proposed approach takes advantage of the underlying network structure to reduce 
the number of linear programming solves. Benefits and limitations of the developed 
methods are evaluated using two benchmark water networks, and a large-scale opera-
tional network from the UK. Moreover, the numerical results show that the proposed 
approach outperforms state-of-the-art global optimization solvers for the considered 
benchmark water networks. The branch and bound framework has enabled the con-
vergence to !-sub-optimal solutions for the problem of optimal valve placement, with 
bounds on the optimality gap comparable to the order of parameter and data uncertain-
ties inherent in operational network models.

2  Problem formulation

A water supply network with n0 water sources, nn demand nodes and np pipes, is 
modelled as a directed graph with nn + n0 nodes and np edges. The operation of a 
network is considered under nl different demand conditions during the diurnal cycle. 
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The nodal demands are denoted by dt ∈ ℝnn , while known hydraulic heads at water 
sources are indicated by ht

0
∈ ℝn0 , for each t = 1,… , nl . Furthermore, the vector of 

node elevations is represented by ! ∈ ℝnn . Given t ∈ {1,… , nl} , we consider 
hydraulic heads ht ∈ ℝnn and flow rates qt ∈ ℝ

np as continuous decision variables. 
Moreover, vector !t ∈ ℝ

np is included to model the unknown head loss introduced 
by the action of pressure control valves. We introduce auxiliary variables !t ∈ ℝ

np to 
isolate the nonconvex terms representing the friction head losses occurring within 
the pipes of a network. These can be expressed by either the Hazen-Williams (HW) 
or Darcy-Weisbach (DW) formulae. Since both friction head loss formulae involve 
non-smooth nonconvex terms, it is convenient to use smooth quadratic approxima-
tions, computed over a range of flow (Pecci et al. 2017c). When a suitable quadratic 
approximation has been determined, it can be written as !j(q

t
j
) = qt

j
(aj|qtj| + bj) , with 

aj ≥ 0 and bj ≥ 0 , for all j = 1,… , np and t = 1,… , nl—see also Eq.  (28) in 
Appendix 1.

In this work, we investigate the optimal placement and operation of pressure con-
trol valves to minimize average zone pressure (AZP), defined as:

where wi ∶=
∑

j∈I(i)

Lj

2
 and I(i) is the set of indices for links incident at node i, Lj is 

the length of pipe j and W =
∑nn

i=1
wi is a normalisation factor.

The optimization of valve placement and operation to minimize AZP is primarily 
subject to conservation energy (2b) and mass (2c) laws: 

where matrices A12 ∈ ℝ
np×nn and A10 ∈ ℝ

np×n0 are edge-node incidence matrices for 
unknown and known head nodes, respectively. Moreover, we define the vector of 
friction head losses as !(qt) ∶= ["1(q

t
1
)…"np

(qt
np
)]T.

We consider vectors of binary variables z+, z− ∈ {0, 1}np with the following 
properties:

• z+
j
= 1 ⇔ there is a valve on link j in the assigned positive flow direction

• z−
j
= 1 ⇔ there is a valve on link j in the assigned negative flow direction

• z+
j
= z−

j
= 0 ⇔ there is no valve on link j

• z+
j
+ z−

j
≤ 1 prevents the placement of two valves on the same link.

The placement of control valves in a WSN is modelled by big-M constraints, ensur-
ing that additional head losses have the same direction as flows and friction head 

(1)1

nlW

nl∑
t=1

wT (ht − !)

(2a)!t = "(qt), t = 1,… nl,

(2b)A12 h
t + A10h

t
0
+ !t + "t = 0, t = 1,… , nl

(2c)AT
12
qt − dt = 0, t = 1,… , nl,
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losses across the valves. The following constant vectors and matrices are used to 
formulate the big-M constraints. Given a vector of maximum allowed velocities 
across network pipes vmax ∈ ℝ

np , let qt
L
= −Svmax , and qt

U
= Svmax , where 

S ∶= !"#$(!D2
1
∕4,… ,!D2

np
∕4) , with D ∈ ℝ

np vector of pipe diameters. Let 
Q t

L
∶= !"#$(qt

L
) , and Qt

U
∶= !"#$(qt

U
) . Moreover, set !t

L
∶= "(qt

L
) , !t

U
∶= "(qt

U
) , 

!t
L
∶= !"#$("t

L
) , and !t

U
∶= !"#$("t

U
) . Minimum and maximum allowed hydraulic 

heads at nodes are specified by ht
min

, ht
max

∈ ℝnn , respectively. Define !t
L
∈ ℝ

np ad 
!t
U
∈ ℝ

np as follows:

and set Nt
L
∶= !"#$(!t

L
) , Nt

U
∶= !"#$(!t

U
) . We formulate the following constraints: 

 Let nv be the number of valves to be installed. The desired properties of the binary 
variables are enforced by the linear constraints: 

 Finally, physical and operational bounds on all continuous variables are enforced by 
the following constraints: 

(3)
(!t

L
)k ∶= (ht

min
)i − (ht

max
)j, ∀i

k
←←←←←→ j

(!t
U
)k ∶= (ht

max
)i − (ht

min
)j, ∀i

k
←←←←←→ j

(4a)!t − Nt
U
z+ ≤ 0, t = 1,… , nl

(4b)−!t + Nt
L
z− ≤ 0, t = 1,… , nl

(4c)−qt − Q t
L
z+ ≤ −qt

L
, t = 1,… , nl

(4d)qt + Qt
U
z− ≤ qt

U
, t = 1,… , nl

(4e)−!t − "t
L
z+ ≤ −!t

L
, t = 1,… , nl

(4f)!t + "t
U
z− ≤ !t

U
, t = 1,… , nl.

(5a)z+ + z− ≤ !np×1

(5b)
np∑
j=1

(z+
j
+ z−

j
) = nv

(5c)z+, z− ∈ {0, 1 }np .

(6a)qt
L
≤ qt ≤ qt

U
, t = 1,… , nl

(6b)!t
L
≤ !t ≤ !t

U
, t = 1,… , nl

(6c)!t
L
≤ !t ≤ !t

U
, t = 1,… , nl

(6d)ht
min

≤ ht ≤ ht
max

, t = 1,… , nl.
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The valve placement optimization problem can be written in a compact form as:

where q ∶= (qt)t=1,…,nl
 , h ∶= (ht)t=1,…,nl

 , ! ∶= (!t)t=1,…,nl
 , ! ∶= (!t)t=1,…,nl

 . Further-
more, F(Q) ⊂ ℝ

nlnp ×ℝnlnn ×ℝ
nlnp ×ℝ

nlnp × {0, 1}np × {0, 1}np is the set defined by 
(2b)–(6d), which depends on Q ∶= {qt

L
, qt

U
}t=1,…,nl

 . Problem MINLP(Q) is a mixed 
integer nonlinear program (MINLP). Furthermore, the equality constraints (2a) are 
nonconvex, hence the problem formulation results in a nonconvex MINLP.

3  Solution method

The nonconvexity of MINLP(Q) is due to the presence of functions (!j(⋅))j=1,…,np
 

within equality constraints (2a). Since the other constraints (2b)–(6d) are linear, it is 
convenient to consider linear relaxations of constraints (2a). Polyhedral relaxations 
for similar nonconvex expressions have been previously studied by Humpola and 
Fügenschuh (2015), Gleixner et al. (2012), Liberti and Pantelides (2003), Tawarma-
lani and Sahinidis (2002), Udell and Boyd (2015), Vigerske (2012). In this paper, 
linear relaxations developed in Liberti and Pantelides (2003) for monomials of odd 
degree are extended to the nonconvex equality constraints within the problem for-
mulation for optimal valve placement in WSNs.

We implement a branch and bound method that relies on the generation of a 
sequence of lower and upper bounds to the optimal value. The present work takes 
a similar approach to Misener and Floudas (2013, 2014) and compute lower bounds 
solving Mixed Integer Linear Programming (MILP) relaxations of MINLP(Q) . As 
discussed in Smith and Pantelides (1999), MILP relaxations result in tighter lower 
bounds then relaxed linear programs (LPs) and the algorithm is expected to con-
verge in less iterations. However, they also require an higher computational effort 
for each branch and bound iteration. Nonetheless, as shown in the numerical results 
reported in Sect. 4, the implementation of state-of-the-art MILP solvers (e.g. Gurobi 
Optimization 2017) have enabled the application of the considered method to large 
problem instances.

3.1  Lower bounding MILP

Let Q ′ = {(qt
L
)′, (qt

U
)′}t=1,…,nl

 such that qt
L
≤ (qt

L
)′ ≤ (qt

U
)′ ≤ qt

U
 , for all 

t ∈ {1,… , nl} . We consider the following restriction of MINLP(Q):

minimize
1

nlW

nl∑
t=1

wT (ht − !)

subject to "t −#(qt) = 0, ∀t ∈ {1,… , nl} (2 a)

(q, h, $, ", z+, z−) ∈ F(Q), (MINLP(Q))
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where F(Q′) ⊂ ℝ
nlnp ×ℝnlnn ×ℝ

nlnp ×ℝ
nlnp × {0, 1}np × {0, 1}np is the set defined by 

(2b)–(6d) using the bounds in Q′ . Let y∗(Q′) be the optimal value of MINLP(Q′) . In 
the following, we formulate a MILP relaxation of MINLP(Q′) , which yields a lower 
bound L(Q′) ≤ y∗(Q′).

A detailed derivation of linear relaxations of (2a) is presented in Appendix  1, 
where the formulation for monomials of odd degree proposed by Liberti and Pan-
telides (2003) is extended to functions (!j(⋅))j∈{1,…,np}

 . Such linear relaxations can be 
written as

for suitable matrices Rt and Et , and vectors rt , which depend on (qt
L
)′ , (qt

U
)′ , and a 

parameter Nc ≥ 0 used to control the number of linearizations for the outer approxi-
mation of the convex envelopes of constraints (2a)—see Appendix 1. In Section 4, 
we investigate the effect of different number of linearizations on the convergence 
properties of the branch and bound algorithm. Using the above linear relaxations, it 
is possible to define the following MILP relaxation of MINLP(Q′):

Let L(Q′) be the optimal value of  MILP(Q′) . If  MILP(Q′) is infeasible, 
then MINLP(Q′) is infeasible and we have L(Q′) = y∗(Q′) = +∞ . Otherwise, the 
solution of MILP(Q′) yields a lower bound L(Q′) ≤ y∗(Q′) . Moreover, if the current 
best lower bound LB is available, set L(Q′) ← max(L(Q′), LB).

3.2  Generation of upper bounds

Let Q ′ = {(qt
L
)′, (qt

U
)′}t=1,…,nl

 a set of bounds on flow variables as in Sect. 3.1. Recall 
that y∗(Q′) denotes the optimal value of MINLP(Q′) . If MILP(Q′) is infeasible, then 
set U(Q′) ∶= +∞ . Otherwise, let ẑ+, ẑ− ∈ {0, 1}np be solution of  MILP(Q′) . We 
compute an upper bound to y∗(Q′) by fixing z+ = ẑ+ and z− = ẑ− in MINLP(Q′) . The 
resulting optimization problem is a nonconvex nonlinear program (NLP):

minimize
1

nlW

nl∑
t=1

wT (ht − !)

subject to "t −#(qt) = 0, ∀t ∈ {1,… , nl}

(q, h, $, ", z+, z−) ∈ F(Q′), (MINLP(Q′))

(7)Rtqt + Et!t ≤ rt, t = 1,… , nl

minimize
1

nlW

nl∑
t=1

wT (ht − !)

subject to Rtqt + Et"t ≤ rt, ∀t ∈ {1,… , nl}

(q, h, #, ", z+, z−) ∈ F(Q ′), (MILP(Q ′))
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If NLP(Q′) is infeasible, set U(Q′) ∶= +∞ . On the contrary, any (local) solution 
yields an upper bound U(Q′) ≥ y∗(Q′).

The generation of a valid upper bound via the (local) solution of a nonlinear pro-
gram is often computationally expensive, particularly when large problem instances 
are considered. However, NLP(Q′) presents a high level of sparsity, that is retained by 
constraints (2b) and (2c) from the sparse structure of water supply networks. As a con-
sequence, sparse NLP solvers offer scalable solution approaches for NLP(Q′)—see the 
interior point method introduced in Waechter and Biegler (2006).

3.3  Domain reduction

The strength of the MILP relaxations is expected to have a significant impact on the 
convergence properties of branch and bound schemes (Belotti et al. 2009). This is con-
firmed by the numerical results reported in Sect. 4. As discussed in Appendix 1, in the 
case considered here, smaller ranges of flows lead to tighter relaxations. Therefore, we 
investigate pre-processing strategies to reduce the domains of the flow variables, focus-
ing on Optimization Based Bound Tightening (OBBT), which relies on the solution of 
a series of optimization problems to tighten upper and lower bounds on selected vari-
ables—for a recent review on variable bound tightening approaches see Puranik and 
Sahinidis (2017).

In order to highlight the separable structure of the feasible set of MINLP(Q) with 
respect to the time indices, we introduce the time indexed sets {Gt(Q)}t=1,…,nl

 such that 
Gt(Q) ∈ ℝ

np ×ℝnn ×ℝ
np ×ℝ

np × {0, 1}np × {0, 1}np is defined by

where z+ = ut
1
 and z− = ut

2
 , for all t ∈ {1,… , nl} , and q = (qt)t=1,…,nl

 , h = (ht)t=1,…,nl
 , 

! = (!t)t=1,…,nl
 , ! = (!t)t=1,…,nl

 . By definition of {Gt(Q)}t=1,…,nl
 , the feasible set 

of MINLP(Q) is equivalent to the feasible set of the following problem:

minimize
1

nlW

nl∑
t=1

wT (ht − !)

subject to "t −#(qt) = 0, ∀t ∈ {1,… , nl}

(q, h, $, ", ẑ+, ẑ−) ∈ F(Q′). (NLP(Q′))

(8)(qt, ht, !t, "t, ut
1
, ut

2
) ∈ Gt(Q )∀t ∈ {1,… , nl} ⇔ (q, h, !, ", z+, z−) ∈ F(Q )

(9)

minimize
1

nlW

nl∑
t=1

wT (ht − !)

subject to "t −#(qt) = 0, ∀t ∈ {1,… , nl}(
qt, ht, $t, "t, ut

1
, ut

2

)
∈ Gt(Q), ∀t ∈ {1,… , nl}

ut
1
− z+ = !np×1, ∀t ∈ {1,… , nl}

ut
2
− z− = !np×1, ∀t ∈ {1,… , nl}.
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Let ! ∈ {−1, 1} , t ∈ {1,… , nl} , and j ∈ {1,… , np} . Consider the mixed integer lin-
ear program:

where Rl , El and rl represent the linear relaxations of (2a) computed using the flow 
bounds in Q as described in Appendix 1. The feasible set of Problem (10) is a relax-
ation of the set of feasible solutions of Problem (9). Tightening upper and lower 
bounds on the flow variables would require the solution of 2nlnP mixed integer lin-
ear programs analogous to (10). Mixed integer linear programs can be solved by 
state-of-the-art MILP solvers (Gurobi Optimization 2017). However, the dimension 
of Problem (10) and the number of problems to be solved can pose significant com-
putational challenges when considering large-scale water networks. Therefore, the 
remainder of this section investigates tailored strategies to reduce the computational 
effort required by the considered domain reduction procedure.

Firstly, Problem (10) is converted into a linear program (LP) by replacing 
Gt(Q) with a valid polyhedral relaxation Ĝt(Q) . Furthermore, the resulting LP can 
be decoupled with respect to the time indices l ∈ {1,… , nl} , omitting the consist-
ency constraints in Problem (10). For each t ∈ {1,… , nl} and j ∈ {1,… , np} , we 
consider the following relaxation of Problem (10):

The OBBT method solves LP1,t,j
Q

 to compute a new lower bound (qt
L
)
′

j
≥ qt

Lj
 , and 

LP
−1,t,j

Q
 to obtain (qt

U
)
′

j
≤ qt

Uj
 . If Q′ is the resulting set of bounds, then MINLP(Q′) 

and  MINLP(Q) have the same optimal solution. Further domain reductions are 
achieved by iteratively applying the described process. In order to reduce the number 
of flow variables whose bounds are tightened through the solution of linear programs, 
we exploit the underlying network (graph) structure of LP!,t,j

Q
 . In what follows, few 

graph-theoretical definitions for WSNs are reviewed. The degree of an unknown head 
node in a WSN graph is defined as the number of links connected to the node. We 
define a tree in a WSN graph as an acyclic connected subgraph such that at least one 
of its unknown head nodes has degree one, and only one of its nodes is connected to 
either a looped part of the network or to a fixed head node (Deuerlein 2008). Such a 
unique node of a given tree is called its root node. The forest of a water network is 

(10)

minimize !qt
j

subject to Rlql + El"l ≤ rl, ∀l ∈ {1,… , nl}(
ql, hl, #l, "l, ul

1
, ul

2

)
∈ Gl(Q ), ∀l ∈ {1,… , nl}

ul
1
− z+ = !np×1, ∀l ∈ {1,… , nl}

ul
2
− z− = !np×1, ∀l ∈ {1,… , nl}.

minimize !qt
j

subject to Rtqt + Et"t ≤ rt

(qt, ht, #t, "t, ut
1
, ut

2
) ∈ Ĝ t(Q ) (LP

!,t,j
Q

)
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defined as the disjoint union of all trees in the network (Deuerlein 2008). The part of 
the network which is not contained in the forest but includes the roots of all the trees 
is called core. If a link belongs to the forest of a network graph, its flow is uniquely 
determined by the demand assigned to the adjacent forest nodes (Elhay et al. 2014). 
As a consequence, flows across forest links do not depend from the optimization pro-
cess and their values are fixed. The forest-core decomposition of a WSN graph can be 
implemented using the algorithm presented in Elhay et al. (2014).

In the bound tightening approach proposed here, upper and lower bounds on 
flow variables corresponding to forest links are set a priori. Then, let core links j1 
and j2 be connected in series through a node i. For each t ∈ {1,… , nl} , flow vari-
ables in LP!,t,j

Q
 are subject to the following mass conservation laws:

Hence:

Given a sequence of core links connected in series, it is possible to select one link 
as representative and derive relations analogous to (12) for all other links in the 
sequence, proceeding by substitution. Let ! ⊂ {1,… , np} be a subset of indices cor-
responding to network’s links belonging to the core, where a unique representative 
for each sequence of links have been selected. An illustrative example of the defini-
tion of ! for a simple network model is included in Appendix 2.

The proposed strategy is to perform OBBT only for those flow variables whose 
indices are in ! and then propagate the bounds to the remaining core links using 
relations analogous to (12). Algorithm 1 is implemented for iterative domain reduc-
tion on the flow variables in MINLP(Q) . Such iterative method can fail to converge 
to a fixed point in finite time (Puranik and Sahinidis 2017). Therefore, Algorithm 1 
is terminated when the progress in the domain reduction is not significant or when 
the maximum number of iterations is reached. Given a possible choice of lower and 
upper bounds Q ′ = {(qt

L
)′, (qt

U
)′} , define:

The analytical study of the number of iterations required to generate tight variable 
bounds represents an open research problem (Puranik and Sahinidis 2017). There-
fore, the maximum number of iterations in Algorithm 1 is set to 10 based on empiri-
cal experience. The number of linear programming solves at each iteration of Algo-
rithm  1 is 2nl|!| , where |!| is expected to be significantly smaller than np when 
operational water networks with a relatively low number of loops are considered. 
Furthermore, the for-loops within Algorithm 1 can be executed in parallel, as each 
iteration does not depend from the others.

(11)A12 (j1, i)q
t
j1
+ A12 (j2 , i)q

t
j2
= dt

i
, ∀t ∈ {1,… , nl}.

(12)qt
j2
= A12 (j2 , i)d

t
i
− A12 (j2 , i)A12 (j1, i)q

t
j1
, ∀t ∈ {1,… , nl}.

(13)
!"#$(Q ′) ∶= max

t = 1,… , nl
j = 1,… , np

((qt
U
)′
j
− (qt

L
)′
j
).
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3.4  Branch and bound algorithm

Let Qinit be the set of initial lower and upper bounds on flow variables. It can either 
be Qinit = Q or Qinit = Qtight , where Qtight represents tightened lower and upper 
bounds on flow variables resulting from Algorithm 1. We denote by y∗ = y∗(Q) the 
optimal value of MINLP(Q) . Then, by definition, y∗ = y∗(Qinit) . The branch and 
bound method iteratively generates a hierarchy of optimization problems, starting 
from MINLP(Qinit) , represented by a binary tree named branch and bound tree. In 
particular, the algorithm creates a partition of F(Qinit) given by {F(Q′) | Q′ ∈ !} 
such that

As standard in branch and bound methods, the proposed algorithm starts by com-
puting lower and upper bounds to y∗—this is iteration 0. Then, the root problem 
MINLP(Qinit) is branched into two optimization problems—see Sect.  3.5. After 
branching, the algorithm computes lower and upper bounds on the two descend-
ant problems as outlined in Sects. 3.1 and 3.2, respectively. The best upper and 
lower bounds are updated as necessary. Finally, a new problem from the branch 
and bound tree is selected for branching and the iteration is repeated. The method 
stops when a termination criterion is met and its implementation is described 
in Algorithm  2. The output of the algorithm is either an !-sub-optimal solution 
to MINLP(Q) or a feasible solution with a certified bound on the optimality gap 
greater than !.

The computed optimality gaps should be considered within the range of uncer-
tainties that are inherent in modelling of operational water networks. As discussed in 

(14)min
Q′∈!

L(Q′) ≤ y∗ ≤ min
Q′∈!

U(Q′)
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Wright et al. (2015), pressure control in operational water networks is subject to mul-
tiple sources of data and modelling errors. These include the stochastic nature of cus-
tomer demand, uncertainty in the hydraulic model parameters, network connectivity, 
measurements accuracy, and factors affecting the physical operation of control and iso-
lation valves.

Remark 1 If Q′ ∈ ! is such that L(Q′) > UB , then the global optimum cannot 
belong to F(Q′) and MINLP(Q′) can be pruned from the branch and bound tree. 
However, the selection strategy implemented in Algorithm 2 implies that the branch 
and bound iterations will terminate before Q′ is selected for branching. Therefore, 
the method does not explicitly implement a pruning procedure.

3.5  Branching strategy

Let MINLP(Qb) be a problem in the branch and bound tree such that

Branching MINLP(Qb) into two descendant problems MINLP(Qleft) and 
MINLP(Qright) is equivalent to partitioning F(Qb) into two sets F(Qleft) and 
F(Qright) . A good branching strategy should aim to improve the lower bound (i.e. 
L(Qleft) ≥ L(Qb) and L(Qright) ≥ L(Qb) ), and maintain a balanced branch and bound 
tree  (Belotti 2013, Section 5.3.1). A branch and bound tree is said balanced if all 
problems in the tree are similarly difficult to solve. In this work, the following 
branching rule is implemented.

(15)L(Qb) = min
Q′∈!

L(Q′)
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Branching rule Let Q b ∶= {(qt
L
)b, (qt

U
)b}t=1,…,nl

 and (q̂, ĥ, "̂, #̂, ẑ+, ẑ−) ∈ F(Qb) be 
a solution of MILP(Qb) . Define indices (l, k) ∈ {1,… , nl} × {1,… , np} such that

Let Q left ∶= {(qt
L
)left, (qt

U
)left}t=1,…,nl

 and Q right ∶= {(qt
L
)right, (qt

U
)right}t=1,…,nl

 be as 
follows:

Then, define of F(Qleft) and F(Qright) using the bounds on flow variables contained in 
Qleft and Qright.

The above branching strategy improves the lower bound, by definition of the lin-
ear relaxations given in Appendix  1. In fact, the formulation of MILP(Qleft) and 
MILP(Qright) requires the inclusion of linear inequalities corresponding to the poly-
hedral relaxations computed with the new bounds on variable ql

k
 . Such refined linear 

relaxations are exact at q̂l
k
 resulting in tighter MILP relaxations. If q̂l

k
 is too close to 

either (ql
L
)b
k
 or (ql

U
)b
k
 , the implemented branching strategy can result in an unbalanced 

branch and bound tree. However, the relaxation error |"̂t
j
− #j(q̂

t
j
)| is larger the more 

distant q̂t
j
 is from (qt

L
)b
j
 and (qt

U
)b
j
 , see Fig.  11. As a result, in most cases, q̂l

k
 is 

expected to be closer to the middle point of the interval [(qt
L
)b
k
, (qt

U
)b
k
] than to its 

extremes.

(16)
"̂l
k
− #k

(
q̂l
k

)
= max

t = 1,… , nl
j = 1,… , np

|"̂t
j
− #j(q̂

t
j
)|.

(17)
(
qt
L

)left
j

∶= (qt
L
)b
j
, ∀(t, j) ∈ {1,… , nl} × {1,… , np}

(18)
(
qt
U

)left
j

∶= (qt
U
)b
j
, ∀(t, j) ∈ {1,… , nl} × {1,… , np} ⧵ (l, k)

(19)
(
qt
L

)right
j

∶= (qt
L
)b
j
, ∀(t, j) ∈ {1,… , nl} × {1,… , np} ⧵ (l, k)

(20)
(
qt
U

)right
j

∶= (qt
U
)b
j
, ∀(t, j) ∈ {1,… , nl} × {1,… , np}

(21)
(
ql
U

)left
k

∶= q̂l
k

(22)
(
ql
L

)right
k

∶= q̂l
k
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4  Results and discussion

In this section, the developed methods are evaluated using two benchmark network 
models, and a large operational water supply network from the UK. The correspond-
ing problem sizes are reported in Table  1. All experiments presented below were 
conducted within MATLAB 2016b-64 bit for Windows 7, installed on a 2.50 GHz 
Intel Xeon(R) CPU E5-2640 0 with 12 Cores and 12 GB of RAM. The MILPs and 
LPs involved in Algorithms 1 and 2 are solved using GUROBI (v7.5) (Gurobi Opti-
mization 2017), which is accessed via its MATLAB interface. In addition, all itera-
tions in Algorithm 1 were executed in series, and GUROBI was forced to operate 
on a single-thread; all other parameters in GUROBI are set to their default values. 
Local solutions to the upper bounding NLPs considered in Sect. 3.2 are computed 
using IPOPT (v.3.12.6) (Waechter and Biegler 2006), accessed in MATLAB via an 
interface of the OPTI Toolbox (Currie and Wilson 2012). In the implementation of 
IPOPT, sparse gradients and Jacobians are directly supplied to the solver, in order to 
take advantage of the very sparse structure of our problem. The global optimization 
solvers BARON (v18.8.23) (Klnç and Sahinidis 2018) and SCIP (v3.2.1) (Gamrath 
et al. 2016) were implemented for the direct solution of the considered nonconvex 
MINLPs. The solver SCIP is accessed in MATLAB via an interface provided by 
OPTI Toolbox and relies on SoPLEX (v221) as linear solver and IPOPT (v3.12.6) 

Table 1  Problem size of the 3 
case studies

The number of binary variables for BWFLnet reflects the restriction 
of candidate valve locations to those links with diameter greater or 
equal to 0.1 (m)

Name # Cont. var. # Bin. var. # Lin. Constr. # Non-
convex 
terms

PescaraNet 365 198 1591 99
Net25 3192 74 9762 888
BWFLnet 28,251 2620 96,599 7107

Fig. 1  Benchmark network models. a Layout of PescaraNet. b Layout of Net25
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as nonlinear solver. In our implementation, we accessed BARON via its MATLAB 
interface, and used IBM ILOG CPLEX (v12.8) as linear solver, while BARON was 
allowed to select the nonlinear solver according to its dynamic strategy (Sahinidis 
2018). Finally, we set ! = 10−6 , MaxIter = +∞ , and define !"# ∶= 100 ⋅ UB−LB

LB
.

Firstly, we consider PescaraNet, a reduced model of the water supply network 
for the city of Pescara (Bragalli et al. 2012). The network’s layout is presented in 
Fig. 1a. This network model has 68 demand nodes, 99 pipes and 3 water sources. 
Moreover, friction head losses are modelled using the HW formula. In this case, the 
formulation of MINLP(Q) includes a single demand condition and results in a rela-
tively small size nonconvex MINLP whose characteristics are reported in Table 1. 
This water network has been already considered in Eck and Mevissen (2013) where 
a local optimization method was applied for computing optimal valve locations in 
PescaraNet. However, Eck and Mevissen (2013) did not include details on upper 
and lower bounds of flow variables, which precludes a direct comparison with the 
solutions obtained here. In the present implementation, maximum allowed velocity 
in each pipe is set to 2 (m/s) and minimum required pressure at each node to 19 (m). 
For every link j ∈ {1… , np} , a quadratic head loss approximation !j(⋅) is defined as 
in Pecci et al. (2017c).

The second case study is named Net25. This benchmark network model has been 
used to evaluate solution approaches for optimal valve placement problems in previ-
ous literature using heuristics (Reis et al. 1997; Araujo et al. 2006; Liberatore and 
Sechi 2009; Nicolini and Zovatto 2009; Ali 2015; De Paola et al. 2017) and math-
ematical optimization methods (Eck and Mevissen 2012; Dai and Li 2014; Pecci 
et al. 2017a, b). The results presented in this section allow the quantification of the 
level of sub-optimality of valve configurations for Net25 previously computed using 
heuristics and local optimization methods. The network has 22 nodes, 37 pipes and 
3 reservoirs—see Fig. 1b. Details on pipes’ characteristics, nodal demands and res-
ervoirs’ levels are presented in Jowitt and Xu (1990) and Dai and Li (2014). The 
hydraulic model of Net25 uses the HW formula to model friction head losses. We 
observe that Net25 has a smaller dimension with respect to PescaraNet; nonethe-
less, it results in a larger nonconvex MINLP as the problem formulation considers 
24 demand conditions, one for each hour of the day—see Table 1. Moreover, we set 
the maximum allowed velocity in each pipe to 1 (m/s) and the minimum pressure 
at each node to 30 (m). Analogously to what done for PescaraNet, for each link j, a 
quadratic approximation of the friction losses !j(⋅) is computed as proposed in Pecci 
et al. (2017c).

The developed methods are tested for optimizing the placement of 1 to 5 control 
valves in both PescaraNet and Net25, where the objective to be minimized is AZP. 
In these experiments, we set a time limit of 7200 (s). Given ! > 0 , let !(") be the 
percentage of problems with remaining !"# smaller or equal than ! , defined as

(23)!(") ∶= 100

{
# instances with !"# ≤ " at termination

}

# test problems
.
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For the purpose of this numerical study, we consider a uniform distribution of val-
ues of ! between 0 and 100, spaced by 10−4 . Let Nc ≥ 0 be the parameter controlling 
the number of linearizations for the outer approximation of the convex envelopes of 
constraints (2a) - see Appendix 1. In the following, the symbol BBNc

 indicates the 
implementation of Algorithm 2 where the polyhedral relaxations (7) are computed 
as detailed in Appendix 1. When Algorithm 1 is implemented as pre-processing rou-
tine to reduce the domain of the flow variables, the combination of Algorithms 1 
and 2 is denoted by dBBNc

 . Moreover, in order to ensure a total maximum compu-
tational time of 7200 (s), the value of Tmax in Algorithm 2 is adjusted to account for 
the time spent in Algorithm 1.

Initially, we evaluate the performance of BBNc
 with Nc ∈ {0, 1, 3, 5} . The com-

plete numerical results are reported in Tables 2, 3, 4, 5, 6, 7, 8, and 9 of Appendix 3. 
When no domain reduction is applied, the solutions computed after 7200 (s) by BBNc

 
are within 10% of optimality, for all Nc ∈ {0, 1, 3, 5} . However, in the case of Net25, 
the obtained valve placements for nv ∈ {3, 4, 5} differ from the best-known solutions 
for the case study, with respect to those reported in Eck and Mevissen (2012), Dai 
and Li (2014), Pecci et al. (2017a), Pecci et al. (2017b). As shown in Fig. 2a, the 
inclusion of more linearizations for the outer approximation of the convex envelope 
of (2a) improves the convergence properties of the branch and bound algorithm with 
respect to BB0 . In addition, we observe that algorithms BB1 , BB3 , and BB5 had simi-
lar performances. However, only BB1 terminated in all instances with a Gap smaller 
than 7%.

We investigate the implementation of algorithms dBBNc
 , with Nc ∈ {0, 1, 3, 5} , 

for solving the considered optimal valve placement problems in PescaraNet and 
Net25. Firstly, Algorithm 1 was applied to tighten the flow variable bounds, for each 
Nc ∈ {0, 1, 3, 5} . When considering PescaraNet, the implementation of Algorithm 1 
required the solution of 656 LPs in the case of nv = 1 and Nc = 0 . In comparison, 
the domain reduction procedure required the solution of 492 LPs in all the other 
cases. The average computational time required to run Algorithm 1 in PescaraNet is 
18 (s)—see Tables 10, 12, 14, 16 for more details. The application of Algorithm 1 

(a) (b)

Fig. 2  Comparison of different number of linearizations for the outer approximation of the convex enve-
lopes of (2a), with and without the application of domain reduction. a Performance of the branch and 
bound algorithm for different values of Nc ∈ {0, 1, 3, 5} . b Performance of the branch and bound algo-
rithm with the application of domain reduction for different values of Nc ∈ {0, 1, 3, 5}
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as domain reduction procedure for Net25 required the solution of 5568 LPs for each 
nv ∈ {1,… , 5} and Nc ∈ {0, 1, 3, 5} , and an average computational time of 58 (s)—
see Tables 11, 13, 15, 17. Algorithm 2 was then applied to the problem formula-
tions with tightened bounds on the flow variables. The results are summarised in 
Tables 10, 11, 12, 13, 14, 15,   16, 17. As shown in Fig. 2b, in most instances, the 
solutions computed by dBBNc

 are within 5% of optimality, for all Nc ∈ {0, 1, 3, 5} . 
Moreover, all the computed feasible solutions for Net25 equal the best-known valve 
locations obtained for the considered case study with respect to those reported in 
Eck and Mevissen (2012), Dai and Li (2014), Pecci et al. (2017a, b). According to 
these numerical results, the implementations of dBBNc

 with Nc > 0 have better com-
putational performance than dBB0.
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Fig. 3  Comparisons between implementations of the branch and bound algorithm with and without the 
application domain reduction as pre-solving routine

Fig. 4  Comparison between the 
combination of Algorithms 1 
and 2 with Nc = 0 , and the 
direct implementation of Algo-
rithm 2 with Nc ∈ {1, 3, 5}
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In order to further investigate the effect of the domain reduction procedure 
on the convergence properties of Algorithm 2, we compare the implementation 
of the branch and bound algorithm with and without tightening the bounds on 
flow variables. As shown in Figs. 3, the domain reduction procedure significantly 
improved the performance of the branch and bound method for the considered 
problems of optimal valve placement in PescaraNet and Net25, irrespectively of 
the number of linearizations used. Furthermore, as shown in Fig. 4, the implemen-
tation of dBB0 achieves better performance than the direct applications of branch 
and bound algorithm with Nc ∈ {1, 3, 5} . These results suggest that, for these 
benchmark water networks, increasing the number of linearizations improves the 
branch and bound ability to reduce the optimality gap, but not as much as the 
implementation of the developed domain reduction procedure. Furthermore, all 
the numerical experiments show rapid convergence of the algorithms to the final 
feasible solution and the associated optimality gap. As examples, Fig. 5 reports 
the progress of dBB0 and dBB1 when solving the problems of optimal placement 
of 3 valves on PescaraNet and Net25, respectively. In particular, it shows that 
good quality (if not optimal) solutions are computed early in the algorithm, while 
the remaining iterations are mostly used to improve the lower bounds.

In conclusion, we compare the performance of dBB5 with state-of-the-art 
global optimization solvers SCIP and BARON for the solution of the consid-
ered nonconvex MINLPs. A time limit of 7200  (s) was set for all solvers. All 
other options in BARON and SCIP are set to their default values. As reported in 
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Fig. 5  Progress of dBB0 and dBB1 when applied to the problems of optimal placement of 3 valves in Pes-
caraNet and Net25. a Progress of dBB0 on PescaraNet for nv = 3 . b Progress of dBB1 on PescaraNet for 
nv = 3 . c Progress of dBB0 on Net25 for nv = 3 . d Progress of dBB1 on Net25 for nv = 3
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Tables 18 and 19, BARON failed to produce a feasible solution in all instances 
except one. These results are in line with the numerical experiments reported 
in Misener and Floudas (2014), where both SCIP (v3.0) and BARON (v12.7.2) 
failed to generate feasible solutions for the majority of test problems related to 
optimal design of WSNs—see Tables 40 and 41 in the supplementary material to 
Misener and Floudas (2014). Tables 20 and 21 show that SCIP has failed to find a 
feasible solution only for the problem of optimal placement of 5 valves in Net25. 
However, in most instances, SCIP resulted in a !"# larger than 5% . Furthermore, 
the majority of the feasible solutions computed by SCIP differ from the best-
known solutions for Net25, which are reported in Pecci et al. (2017a) and were 
computed by the convex MINLP solver BONMIN (Bonami et al. 2008). Results 
reported in Tables 16, 17, 18, 19, 20, 21 show that the lower bounds computed by 
dBB5 are tighter than those obtained by BARON and SCIP, in all instances. As 
illustrated in Fig. 6, after two hours of computations, the developed branch and 
bound method consistently results in smaller optimality gaps than the two state-
of-the-art solvers.

4.1  Case study 3: BWFLnet

Finally, the proposed global optimization method for optimal valve placement has been 
applied to BWFLnet, the network model of the Smart Water Network Demonstrator 
(Field Lab) operated by Bristol Water, InfraSense Labs at Imperial College London and 
Cla-Val (Wright et al. 2014). This water supply network consists of 2310 nodes, 2369 

Fig. 6  Comparison between the 
combination of Algorithms 1, 
and 2 with Nc = 5 and two state-
of-the-art global optimization 
solvers
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Fig. 7  Layout of BWFLnet
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pipes and 2 inlets (with fixed known hydraulic heads); its graph is presented in Fig. 7. 
The HW formula is used to model friction losses within BWFLnet.

The size of BWFLnet is two orders of magnitude larger than the other considered 
benchmark WSNs. In BWFLnet, the network’s operator has already installed three 
automatic pressure control valves and two boundary control valves, which are optimally 
controlled in order to minimize AZP (Wright et al. 2015). In the problem formulation 
for optimal valve placement in BWFLnet, we model the three pressure control valves as 
open smooth pipes. Moreover, details on the operation of the two boundary valves have 
been provided by the valves’ manufacturer. The daily demand profiles in BWFLnet 
include 96 different demand conditions, one every 15 minutes. However, the problem 
of optimal valve placement and operation in BWFLnet under 96 different demand con-
ditions would result in a large MINLP with 227, 424 nonconvex constraints. In order 
to limit the problem size, MINLP(Q) is formulated on BWFLnet using only three most 
relevant demand conditions, which were selected to capture network’s typical daily 
operational conditions at low night time demand, morning peak demand, and afternoon 
dip—see Fig. 8a. The AZP values computed using a problem formulation restricted to 
these 3 demand conditions are expected to be close to those obtained for a full set of 96 
different demand conditions—this is confirmed to be the case for BWFLnet, as shown 
in Tables 24 and 26.

Note that the highest impact in terms of AZP reduction will be achieved by control-
ling pressure through pipes carrying large quantity of water, hence links with small 
diameters are not likely to be good candidates for control valve placement. As a con-
sequence, links in BWFLnet whose diameter is smaller than 100 (mm) are discarded 
from the set of candidate valve locations. The minimum allowed pressure at all demand 
nodes is set to 18 (m), while this value is relaxed to zero for nodes with no demand. 
A quadratic approximation of friction losses is computed as discussed in Pecci et al. 
(2017c). The size of the resulting MINLP is shown in Table 1.

Multiple simulations of BWFLnet, with no installed valves, under different demand 
conditions, show that the maximum velocities achieved across network pipes do not 
exceed 3 (m/s)—see Fig. 8b. In view of Fig. 8b, for most pipes, feasible velocities are 

(a) (b)

Fig. 8  Total network demand pattern and maximum velocities achieved in simulation in BWFLnet. a 
Total demand profile for BWFLnet. The circles correspond to the three time steps selected in this study. 
b Maximum velocity achieved in simulation across each link
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expected to be significantly smaller than 3 (m/s). As a consequence, when upper and 
lower bounds on the flow variables are based on a maximum allowed velocity of 
3 (m/s) for all pipes, the polyhedral relaxations (7) are not expected to be tight, leading 
to loose MILP relaxations—see also the discussion in Appendix 1. In order to tighten 
the polyhedral relaxations (7) and avoid unnecessarily large flow bounds, we define a 
tailored maximum allowed velocity for each link. It is known that the placement of 
control valves can result in velocity changes across network links (Abraham et  al. 
2018). In order to limit the possibility of discarding optimal solutions from the feasible 
set, we implement the following heuristic. Given a link j ∈ {1,… , np} , let !sim

j
 be the 

maximum velocity achieved in simulation under multiple demand conditions. If 
!sim
j

≤ 1 ( m
s
) , then the optimized velocities across link j are allowed to exceed !sim

j
 by at 

least a factor of two. In comparison, for links where the simulated velocities achieved 
higher rates, the allowed increment is more limited. The implemented strategy is 
detailed in the following:

Then,  MINLP(Q) was formulated on BWFLnet using tailored maximum veloci-
ties to define upper and lower bounds on flow variables Q. We consider the opti-
mal placement of 1 to 5 control valves in BWFLnet. In the numerical experiments 
reported in this section, we set a time limit Tmax = 86,400 (s) (1 day). We investigate 
the direct application of Algorithm  2 with Nc ∈ {0, 3} , without implementing the 
domain reduction procedure. The results are summarised in Tables 22 and 23. In the 
case of Nc = 0 , the relative optimality gap obtained for nv ∈ {1, 2, 3} are larger than 
30% . No feasible solution was found after a day of computations for nv ∈ {4, 5} . 
Including more linearizations for the outer approximation of the convex envelopes 
of (2a) results in small improvements for the cases of nv ∈ {1, 2} , while no feasible 
solution was obtained when nv ∈ {3, 4, 5}—see Table 23.

Then, the domain reduction procedure described in Algorithm 1 was applied as 
pre-processing reoutine to tighten the flow variable bounds within the formulation 
of MINLP(Q) on BWFLnet. In this case, the fraction of links involved in LP solves 
corresponds to less than the 10% of the whole set of network links. Such reduction 
is due to the structure of BWFLnet, a typical water network from the United King-
dom, where a considerable portion of links belongs to the forest. Moreover, hydrau-
lic models of operational networks often present sequences of links connected in 
series, used to model the existence of different customer connections along network 
pipes. As a result, the proposed graph-theory based decomposition has significantly 
reduced the computational cost associated with Algorithm  1, which required the 
solution of 2532 LPs for each case of nv = 1,… , 5 . In the numerical experiments 
reported here, such LPs were solved sequentially. As a result, Algorithm 1 required 

(24)vmax
j

∶=

⎧
⎪
⎪
⎨
⎪
⎪⎩

1 if 0 ≤ !sim
j

< 0.5

2 if 0.5 ≤ !sim
j

< 1.0

2.5 if 1.0 ≤ !sim
j

< 2.0

3 if 2.0 ≤ !sim
j

< 3.0,
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roughly one hour of CPU time, in all instance—see Tables 24 and 25. However, as 
previously observed, the LPs solved at each iteration of Algorithm 1 do not depend 
on each other. Therefore, in a practical implementation, they can be solved in paral-
lel, exploiting the existence of multiple computational cores.

Algorithm 1 was then applied to MINLP(Qtight) , with Nc ∈ {0, 3}—see Tables 24 
and  25. When Nc = 0 , the bounds on the absolute optimality gaps obtained for 
nv ∈ {1, 2, 3} are between 3 and 5 (m)—see also Fig. 9. Optimality bounds of such 
magnitude are comparable to the order of uncertainty affecting pressure control in 
BWFLnet (Wright et al. 2015). Hence, the quality of the computed feasible solu-
tions is considered to be acceptable. Again, in the cases of nv ∈ {4, 5} , no feasi-
ble solution was found before reaching the time limit. Similar optimality gaps were 
obtained when Nc = 3 , but the algorithm failed to compute a feasible solution for 
nv ∈ {3, 4, 5} . These results suggest that the inclusion of different number of lineari-
zations for the outer approximation of the convex envelopes of (2a) did not improve 
the performance of the branch and bound algorithm for solving the problem of opti-
mal valve placement in BWFLnet.

We observe that the feasible solutions computed with and without domain reduc-
tion are the same. However, as shown in Fig. 9, the application of Algorithm 1 has 
significantly improved the quality of the lower bounds computed by the branch and 
bound algorithm. Nonetheless, the optimality gaps reported in Table 24 are too wide 
to be reduced within the prescribed time limit, even if the domain reduction routine 
is applied. The numerical results show that, in all problem instances, most pipes in 
BWFLnet experience low velocities, which are significantly smaller than their expected 
maximum velocities, despite the implemented heuristic to tailor maximum allowed 
velocities. As a consequence, the polyhedral relaxations of Eq. (2a) corresponding to 
these pipes are not sufficiently tight—see also the discussion in Appendix 1.

Next, given optimal valve locations for nv ∈ {1, 2, 3} , computed with Algorithm 2, 
we have formulated a nonconvex nonlinear program to optimize valve operation 
under the complete set of 96 demand conditions. Such NLP is obtained from the for-
mulation of MINLP(Q) by fixing the values of the binary variables corresponding to 
optimized valve locations, and it is equivalent to the problem of optimizing the actua-
tors operation. Algorithm 1 is applied to tighten the bounds on flow variables, and 
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50
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(a) (b)

Fig. 9  Upper and lower bounds for the solution of MINLP(Q) on BWFLnet. a Upper and lower bounds 
computed by Algorithm  2, with Nc = 0 . b Upper and lower bounds computed by the combination of 
Algorithm 1 and 2, with Nc = 0
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Algorithm 2 is subsequently implemented to solve the nonconvex NLP with tightened 
variable bounds. Lower and upper bounds computed at the root of the branch and 
bound tree are reported in Table 26, for nv ∈ {1, 2, 3} . As expected, the upper bounds 
to the AZP values computed considering the full set of multiple demand conditions 
are close to those obtained for the restriction to three demand conditions. Moreo-
ver, in this case, the domain reduction procedure has resulted in considerably tighter 
lower bounds, without performing any branching operation. In contrast, the results 
reported in Table 24 indicate that that inclusion of valve locations as unknowns sig-
nificantly reduces the ability of Algorithm 1 to compute tight estimates of flow vari-
able domains. This situation has an interpretation from the hydraulic application per-
spective. In fact, appropriate changes in network topology induced by valves closures 
can result in increased flow velocities across some pipes (Abraham et al. 2018).

In conclusion, we observe that the average computational cost associated with the 
solution of a single MILP relaxation for BWFLnet is considerably higher than for 
Net25 and PescaraNet. In fact, solving the MILP relaxation at the root of the branch 
and bound tree for BWFLnet required 2–6 orders of magnitude more computational 
time than what experienced for Net25 and PescaraNet. This behaviour is predictable, as 
the problem of optimal valve placement and operation in BWFLnet results in a MINLP 
whose size is one to two orders of magnitude larger than the size of the problem for-
mulation on Net25 and PescaraNet—see Table 1. It is known that computational effort 
required to solve a mixed-integer program grows combinatorially with the size of the 
problem. These numerical experiments were conducted on a single computational 
thread of a desktop machine, using a standard implementation of GUROBI for the solu-
tion of the MILP relaxations. The availability of additional computational capability 
and the use of a tailored MILP solver could speed-up the optimization process.

All three case studies show that good quality solutions are often computed at the root 
node of the branch and bound tree (i.e. iteration 0). This is in accordance with the work 
by Diamond et al. (2018), presenting a number of examples where good quality solu-
tions to nonconvex optimization problems are recovered from the solution of suitable 
convex relaxations. The results suggest that Algorithm 2 can be early terminated to gen-
erate good quality solutions of MINLP(Q) , by opportunely setting time limit or maxi-
mum number of iterations. Moreover, observe that Algorithm 2 provides more informa-
tion than local optimization methods for optimal valve placement in WSNs studied in 
previous work. In fact, the algorithm always generates a certified bound on the opti-
mality gap of the computed solution. Local optimization methods can be implemented 
before starting Algorithm 2, in order to rapidly generate good quality feasible solutions.

5  Conclusions and future work

In this manuscript, we have investigated the application of branch and bound strate-
gies to compute !-sub-optimal solutions for the problem of optimal valve placement 
and operation in water supply networks. The implemented algorithm relies on the 
solution of MILP relaxations of the original nonconvex MINLP. Furthermore, a tai-
lored domain reduction procedure was implemented to tighten the MILP relaxations. 
In contrast to previously published solution methods for optimal valve placement in 
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water networks, the presented algorithm terminates with a certified bound on the 
optimality gap of the computed solution, thus providing additional information to 
support the design and operation of water supply networks.

The proposed branch and bound method has successfully generated good qual-
ity feasible solutions in two benchmark water networks and a large water supply 
network, after few iterations, with bounds on the optimality gap comparable to the 
order of uncertainty usually experienced in pressure control of water supply net-
works. Furthermore, the results suggest that the proposed domain reduction strat-
egy is more effective in improving the convergence properties of the algorithm, than 
simply increasing the number of linearizations used to define the polyhedral relaxa-
tions. Moreover, the results reported in this manuscript show that, for the considered 
benchmark water networks, the proposed branch and bound algorithms outperform 
state-of-the-art global optimization solvers SCIP and BARON. These results high-
light the challenges of applying off-the-shelf global solvers to the problem in study.

However, the lower bounds generated by the algorithm experience slow progress, as 
shown in Fig. 5. They can be improved by performing Algorithm 1 on Qleft and Qright , 
so that the new bounds on the branching variable can be propagated to the remaining 
flow variables. Recall that, at each iteration of Algorithm 1, the required solutions of 
the 2nl|!| linear programs can be computed in parallel. As a consequence, if enough 
computational cores are available, the outlined bound propagation strategy can be 
applied at each branch and bound iteration, without dramatically increasing the over-
all computational time. Furthermore, future work should investigate the inclusion of 
additional valid linear inequalities in the formulation of MILP(Q′) . A possible strategy 
is to use the locally optimal solutions generated at each stage of the branch and bound 
method, following an approach similar to Humpola et  al. (2016). In addition, when 
large operational water networks are considered, tailored solvers for the relaxed MILPs 
can be designed using suitable decomposition strategies, following ideas discussed in 
Vigerske (2012, Chapters 3 and 4).

Although the present work has focused on the minimization of AZP, other convex 
objective functions can be minimized within the same framework, with little modifica-
tions to the discussed formulation. In particular, if the objective function is nonlinear, the 
generation of lower bounds requires the solution convex MINLPs. Furthermore, optimal 
design (Bragalli et al. 2012), optimal valve control (Wright et al. 2015), and optimal pump 
scheduling (Menke et al. 2015) problems result in optimization problems involving non-
convex constraints like (2a). As a consequence, using suitable linear relaxations and NLP 
sub-problems, Algorithms 1 and 2 can be applied to guarantee the optimality of the solu-
tion found, or a bound on the optimality gap, for such nonconvex optimization problems.
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Appendix 1: Polyhedral relaxations of nonconvex head loss 
constraints

We look for polyhedral relaxations of constraints

These will be written as

for suitable matrices Rt and Et and constant vectors rt that depend on qt
L
 and qt

U
 . 

Moreover, the present appendix demonstrates that the strength of the relaxations 
depends on the tightness of the bounds on the flow variables.

In the following, the indices t and j are omitted as the mathematical derivation does 
not depend on them. Consider the set

A convex relaxation is given by

where !(⋅) and "̄(⋅) are suitable convex and concave functions, respectively. Analyti-
cal expressions for !(⋅) and "̄(⋅) can be derived following a similar procedure to the 
one illustrated in Liberti and Pantelides (2003) for monomials of odd degree. Recall 
that !(⋅) is defined as

We can assume that a > 0 , otherwise !(⋅) is a linear function and relaxations are 
not needed. Let qL ≤ 0 ≤ qU  be upper and lower bounds on flow q . We look for 
q̄ ≤ 0 such that the line from (q̄,"(q̄)) to (qU ,!(qU)) is tangent to the curve !(⋅) at 
(q̄,"(q̄)) . This is represented by the equation:

Multiplying by (q̄ − qU) on both sides of the previous equation yields:

Since a > 0 , q̄ ≤ 0 and qU ≥ 0 , we finally obtain

Thus q̄ ∶= (1 −
√
2)qU . Analogously, the unique point q ≥ 0 such that the line from 

(q,!(q)) to (qL,!(qL)) is tangent to !(⋅) in (q,!(q)) is defined as q ∶= (1 −
√
2)qL.

If qL < q̄ < 0 < q < qU  , we have the following convex over and under estimators 
(see Fig. 10a):

!t
j
− "j(q

t
j
) = 0, t = 1,… , nl, j = 1,… np

(25)Rtqt + Et!t ≤ rt, t = 1,… , nl

(26)
{
(q, !) ||| ! = "(q), ∀q ∈ [qL, qU]

}

(27)
{
(q, !) ||| "(q) ≤ ! ≤ "̄(q), ∀q ∈ [qL, qU ]

}

(28)!(q) ∶= q(a|q| + b) q ∈ [qL, qU], a ≥ 0, b ≥ 0.

(29)
!(q̄) − !(qU)

q̄ − qU
= !′(q̄).

(30)q̄(a|q̄| + b) − qU(a|qU| + b) − (2 a|q̄| + b)(q̄ − qU) = 0.

(31)−q̄2 + q2
U
+ 2 q̄qU = 0.
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When q̄ ≤ qL , it is necessary to modify the definition of !(⋅) as follows (see 
Fig. 10b):

Analogously, if q ≥ qU set (see Fig. 10c)

Now, assume that 0 ≤ qL < qU  . In this case, the convex envelope (see Fig. 10d) is 
given by

(32)!(q) =

{
!(q), qL ≤ q ≤ q̄

!(qU ) +
!(q̄)−!(qU )

q̄−qU
(q − qU ), q̄ ≤ q ≤ qU

(33)!(q) =

⎧
⎪
⎨
⎪⎩

!(qL) +
!(q)−!(qL)

q−qL
(q − qL) qL ≤ q ≤ q

!(q) q ≤ q ≤ qU

(34)!(q) = !(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL),∀q ∈ [qL, qU].

(35)!(q) = !(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL),∀q ∈ [qL, qU].

(36)!(q) = !(q)

(37)!(q) = !(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL)

(a) (b) (c)

(d) (e)

Fig. 10  Convex envelopes of nonconvex constraints ! = "(q) . a qL < q̄ < 0 < q < qU  . b 
q̄ ≤ qL < 0 < q < qU  . c qL < q̄ < 0 < qU ≤ q . d 0 ≤ qL < qU  . e qL < qU ≤ 0.
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Analogously, if qL < qU ≤ 0 , set (see Fig. 10e)

In this manuscript, our aim is to apply a branch and bound method to the non-
convex problem MINLP(Q) . At each step of the algorithm, a solution of a convex 
MINLP relaxation of MINLP(Q) will yield a lower bound on the optimal objective 
function value. Observe that, with the exception of (2a), all the other constraints 
in MINLP(Q) are linear. Therefore, it is convenient to study polyhedral relaxations 
of the nonconvex set in (26), which will result in a Mixed Integer Linear Program-
ming (MILP) relaxation of MINLP(Q)—for a general review, see Tawarmalani and 
Sahinidis (2002, Chapter 4). Let Nc ≥ 0 be a parameter used to control the number 
of linearizations for the outer approximation of the convex envelopes in Fig. 10.

Assume qL < q̄ < 0 < q < qU  . Let Nc > 0 , and qL < qM
1
< ⋯ < qM

Nc
< q̄ and 

q < qS
1
< ⋯ < qS

Nc
< qU  be sequences of equidistant points, where q̄ and q are the 

tangential points defined above. A polyhedral relaxation is given by the following 
linear inequalities (see Figs. 11a, 12a) :

(38)!(q) = !(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL)

(39)!(q) = !(q)

(40)!(qL) +
!(q) − !(qL)

q − qL
(q − qL) ≤ "

(a) (b) (c)

(d) (e)

Fig. 11  Polyhedral relaxations of nonconvex constraints ! = "(q) , with Nc = 0 . a qL < q̄ < 0 < q < qU  . 
b q̄ ≤ qL < 0 < q < qU  . c qL < q̄ < 0 < qU ≤ q . d 0 ≤ qL < qU  . e qL < qU ≤ 0
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If Nc = 0 , the polyhedral relaxation is defined only by constraints (40)–(43).
Now, let q̄ ≤ qL < 0 < q < qU  . Assume that Nc > 0 , and let 

q < qS
1
< ⋯ < qS

Nc
< qU  be sequence of equidistant points. In this case, we consider 

the linear relaxation given by (see Figs. 11b, 12b):

(41)!(qU) +
!(q̄) − !(qU)

q̄ − qU
(q − qU) ≥ #

(42)!(qU) + !′(qU)(q − qU) ≤ "

(43)!(qL) + !′(qL)(q − qL) ≥ "

(44)!(qS
i
) + !′(qS

i
)(q − qS

i
) ≤ ", ∀i ∈ {1,…Nc}

(45)!(qM
i
) + !′(qM

i
)(q − qM

i
) ≥ ", ∀i ∈ {1,…Nc}

(46)!(qL) +
!(q) − !(qL)

q − qL
(q − qL) ≤ "

(47)!(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL) ≥ "

(48)!(qU) + !′(qU)(q − qU) ≤ "

Fig. 12  Polyhedral relaxations of nonconvex constraints ! = "(q) , with Nc = 3 . a qL < q̄ < 0 < q < qU  . 
b q̄ ≤ qL < 0 < q < qU  . c qL < q̄ < 0 < qU ≤ q . d 0 ≤ qL < qU  . e qL < qU ≤ 0.
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If Nc = 0 , the corresponding polyhedral relaxation is defined only by constraints 
(46)–(48).

Analogously, if qL < q̄ < 0 < qU ≤ q and Nc > 0 , let qL < qM
1
< ⋯ < qM

Nc
< q̄ be a 

sequence of equidistant points. We have (see Figs. 11c, 12c):

When Nc = 0 , the polyhedral relaxation is defined by constraints (50)–(52).
Assume 0 ≤ qL < qU  . Let Nc > 0 and consider a sequence of equidistant points 

qL < qS
1
< qS

Nc
< qU  . We define (see Fig. 11d, 12d):

If Nc = 0 , the polyhedral relaxation is defined only by constraints (54)–(56).
Finally, if qL < qU ≤ 0 and Nc > 0 , let qL < qM

1
< ⋯ < qM

Nc
< qU be a sequence of 

equidistant points. A linear relaxation is given by (see Figs. 11e, 12e):

When Nc = 0 , the polyhedral relaxation is defined only by constraints (58)–(60).
The polyhedral relaxations of (26) defined above are illustrated in Figs. 11 and 12. 

Observe that their strength depends on qL and qU . Smaller ranges for qU − qL lead to 
tighter linear relaxations. In conclusion, it is possible to write polyhedral relaxations of 
constraints (2a) as

(49)!(qS
i
) + !′(qS

i
)(q − qS

i
) ≤ ", ∀i ∈ {1,… ,Nc}

(50)!(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL) ≤ "

(51)!(qU) +
!(q̄) − !(qU)

q̄ − qU
(q − qU) ≥ #

(52)!(qL) + !′(qL)(q − qL) ≥ "

(53)!(qM
i
) + !′(qM

i
)(q − qM

i
) ≥ ", ∀i ∈ {1,… ,Nc}

(54)!(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL) ≥ "

(55)!(qL) + !′(qL)(q − qL) ≤ ""

(56)!(qU) + !′(qU)(q − qU) ≤ ""

(57)!(qS
i
) + !′(qS

i
)(q − qS

i
) ≤ ", ∀i ∈ {1,… ,Nc}"

(58)!(qL) +
!(qU ) − !(qL)

qU − qL
(q − qL) ≤ "

(59)!(qU) + !′(qU)(q − qU) ≥ "

(60)!(qL) + !′(qL)(q − qL) ≥ "

(61)!(qM
i
) + !′(qM

i
)(q − qM

i
) ≥ ", ∀i ∈ {1,… ,Nc}
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for suitable matrices Rt and Et and vectors rt that depend on qt
L
 and qt

U
.

Appendix 2: An illustrative example

In this appendix, we illustrate the graph decomposition routine outlined in Sect. 3.3 to 
compute the index set ! corresponding to links considered by the domain reduction 
procedure in Algorithm 1.

Consider the network ToyNet, whose layout is presented in Fig. 13. This network 
includes one fixed-head node H0 , and six unknown-head nodes. Moreover, node V6 is 
the only node in the network with degree one. In this case, there is a unique tree, which 
is composed by links P6 and P7 , and nodes V3 , V5 , and V6 . Node V3 is the root of the 
tree. Following the notation introduced in Sect. 2, the operation of ToyNet is consid-
ered under nl different demand conditions.

Let t ∈ {1,… , nl} . Equation (2c) at V6 implies that qt
P7

= dt
V6

 , where dt
V6

 denotes the 
demand at node V6 and time t. Therefore, flow across link P7 is known a priori, and 
upper and lower bounds on flow variables corresponding to link P7 are equal. Further-
more, Eq. (2c) imply that qt

P6
= dV5

+ dV6
 . Hence, also the flow across link P6 is known 

a priori. Furthermore, we observe that links P2 , P4 and P5 are connected in series. 
Equation (2c) yield that

As a result, it is possible to select link P4 as representative and derive bounds on var-
iables qP2

 and qP5
 using (63). In conclusion, the optimization based bound tightening 

(62)Rtqt + Et!t ≤ rt, ∀t = 1,… , nl

(63)qt
P2

= qt
P4
+ dt

V2

(64)qt
P5

= qt
P4
− dt

V4

Fig. 13  ToyNet



1 3

Global optimality bounds for the placement of control valves…

Table 2  Results obtained by Algorithm 2 with Nc = 0 for PescaraNet
nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 7684 25.24 26.87 6.46
2 7200 5720 24.44 26.65 9.04
3 7200 4938 24.14 25.55 5.84
4 7200 4200 23.96 25.07 4.60
5 7200 3756 23.81 24.97 4.85

Table 3  Results obtained by 
Algorithm 2 with Nc = 0 for 
Net25

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 1933 31.64 33.63 6.28
2 7200 1515 30.874 32.68 5.87
3 7200 1194 30.76 32.20 4.69
4 7200 1060 30.64 32.40 5.77
5 7200 1165 30.57 32.41 6.01

Table 4  Results obtained by 
Algorithm 2 with Nc = 1 for 
PescaraNet

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 7232 25.32 26.87 6.11
2 7200 4368 24.62 26.32 6.90
3 7200 3117 24.32 25.30 4.01
4 7200 1824 24.12 25.07 3.92
5 7200 1461 23.96 24.85 3.70

Table 5  Results obtained by 
Algorithm 2 with Nc = 1 for 
Net25

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 2032 31.65 33.63 6.25
2 7200 1525 30.87 32.67 5.86
3 7200 1189 30.76 32.20 4.67
4 7200 1007 30.64 32.40 5.76
5 7200 1356 30.57 32.41 6.02

Table 6  Results obtained by 
Algorithm 2 with Nc = 3 for 
PescaraNet

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 7894 25.38 26.87 5.89
2 7200 4746 24.72 26.65 7.83
3 7200 3098 24.39 25.30 3.71
4 7200 1726 24.16 25.07 3.76
5 7200 1309 24.00 24.89 3.68
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Table 7  Results obtained by 
Algorithm 2 with Nc = 3 for 
Net25

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 1583 31.65 33.63 6.25
2 7200 1098 30.87 32.67 5.86
3 7200 918 30.76 32.20 4.66
4 7200 796 30.65 32.40 5.75
5 7200 1165 30.57 32.41 6.01

Table 8  Results obtained by 
Algorithm 2 with Nc = 5 for 
PescaraNet

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 7055 25.38 26.87 5.86
2 7200 4274 24.72 26.64 7.78
3 7200 2762 24.41 25.30 3.64
4 7200 1551 24.17 25.07 3.73
5 7200 1194 24.01 24.89 3.64

Table 9  Results obtained by 
Algorithm 2 with Nc = 5 for 
Net25

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 7200 1449 31.64 33.63 6.23
2 7200 1024 30.87 32.67 5.86
3 7200 852 30.76 32.20 4.67
4 7200 752 30.63 32.68 6.68
5 7200 905 30.57 32.41 6.01

Table 10  Results obtained by Algorithms 1 and 2 with Nc = 0 for PescaraNet
nv Time (s) Time in 

Alg. 1 (s)
No. Iter. LB (m) UB (m) !"# (%)

1 7200 16 6923 26.34 26.87 2.02
2 7200 13 4417 25.10 26.65 6.16
3 7200 13 3832 24.43 25.30 3.50
4 7200 13 2119 24.08 25.09 4.19
5 7200 12 1424 23.86 24.81 3.94

Table 11  Results obtained by 
Algorithms 1 and 2 with Nc = 0 
for Net25

nv Time (s) Time in 
Alg.1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 47 3088 32.46 33.63 3.61
2 7200 47 1750 31.27 32.67 4.51
3 7200 44 914 31.02 32.16 3.69
4 7200 44 662 30.92 31.75 2.72
5 7200 43 374 30.84 31.47 2.05
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Table 12  Results obtained by 
Algorithms 1 and 2 with Nc = 1 
for PescaraNet

nv Time (s) Time in 
Alg. 1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 14 8486 26.49 26.87 1.42
2 7200 15 4650 25.61 26.06 1.78
3 7200 16 3886 24.82 25.30 1.94
4 7200 15 1531 24.47 25.06 2.41
5 7200 15 1405 23.24 24.89 2.67

Table 13  Results obtained by 
Algorithms 1 and 2 with Nc = 1 
for Net25

nv Time (s) Time in 
Alg.1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 54 2591 32.68 33.63 2.92
2 7200 52 1570 31.45 32.67 3.89
3 7200 52 786 31.16 32.16 3.21
4 7200 51 534 31.03 31.75 2.32
5 7200 50 275 30.96 31.47 1.66

Table 14  Results obtained by 
Algorithms 1 and 2 with Nc = 3 
for PescaraNet

nv Time (s) Time in 
Alg. 1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 18 8218 26.57 26.87 1.12
2 7200 20 4650 25.69 26.06 1.45
3 7200 20 3886 24.85 25.30 1.80
4 7200 19 1531 24.55 25.06 2.04
5 7200 19 1405 23.34 24.85 2.08

Table 15  Results obtained by 
Algorithms 1 and 2 with Nc = 3 
for Net25

nv Time (s) Time in 
Alg.1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 66 2218 32.69 33.63 2.88
2 7200 65 846 31.47 32.67 3.86
3 7200 63 547 31.17 32.16 3.20
4 7200 61 386 31.04 31.75 2.30
5 7200 59 200 30.95 31.47 1.70
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Table 16  Results obtained by 
Algorithms 1 and 2 with Nc = 5 
for PescaraNet

nv Time (s) Time in 
Alg. 1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 22 8295 26.59 26.87 1.07
2 7200 24 4329 25.70 26.06 1.43
3 7200 24 1541 24.87 25.30 1.71
4 7200 24 2700 24.61 25.06 1.82
5 7200 23 1201 24.35 24.85 2.03

Table 17  Results obtained by 
Algorithms 1 and 2 with Nc = 5 
for Net25

nv Time (s) Time in 
Alg.1 (s)

No. Iter. LB (m) UB (m) !"# (%)

1 7200 80 937 32.68 33.63 2.92
2 7200 77 709 31.46 32.67 3.89
3 7200 74 465 31.17 32.16 3.19
4 7200 73 337 31.04 31.75 2.30
5 7200 71 188 30.95 31.47 1.67

Table 18  Results obtained by BARON (v18.8.23) for PescaraNet
nv Time (s) LB (m) UB (m) !"# (%)

1 7200 23.92 – –
2 7200 23.32 – –
3 7200 22.84 – –
4 7200 22.47 – –
5 7200 22.21 – –

Table 19  Results obtained by 
BARON (v18.8.23) for Net25 nv Time (s) LB (m) UB (m) !"# (%)

1 7200 31.22 – –
2 7200 30.37 32.67 7.58
3 7200 30.28 – –
4 7200 30.25 – –
5 7200 30.15 – –
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Table 20  Results obtained by 
SCIP (v3.2.1) for PescaraNet nv Time (s) LB (m) UB (m) !"# (%)

1 7200 25.95 26.87 3.54
2 7200 24.50 26.38 7.67
3 7200 23.39 25.61 9.46
4 7200 23.14 25.30 9.34
5 7200 22.62 25.16 11.23

Table 21  Results obtained by 
SCIP (v3.2.1) for Net25 nv Time (s) LB (m) UB (m) !"# (%)

1 7200 31.50 33.63 6.75
2 7200 31.37 33.36 6.34
3 7200 30.39 32.39 6.56
4 7200 30.47 32.22 5.72
5 33 – – –

Table 22  Results obtained by Algorithm 2 with Nc = 0 for BWFLnet
nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 86,400 580 35.36 47.41 34.09
2 86,400 36 29.98 39.31 31.14
3 86,400 1 27.14 36.23 33.49
4 > 86,400 – – – –
5 > 86,400 – – – –

Table 23  Results obtained by 
Algorithm 2 with Nc = 3 for 
BWFLnet

nv Time (s) No. Iter. LB (m) UB (m) !"# (%)

1 86,400 517 35.42 47.41 33.87
2 86,400 25 30.03 39.31 30.89
3 > 86,400 – – – –
4 > 86,400 – – – –
5 > 86,400 – – – –

Table 24  Results obtained by Algorithms 1 and 2 with Nc = 0 for BWFLnet
nv Time (s) Time in 

Alg.1 (s)
No. Iter. LB (m) UB (m) !"# (%)

1 86400 3707 783 42.48 47.41 11.61
2 86400 3293 29 35.54 39.31 10.62
3 86400 2885 1 32.44 36.20 11.58
4 > 86400 – – – – –
5 > 86400 – – – – –
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described in Algorithm 1 is performed only for flow variables corresponding to links 
in ! ∶= {P1 ,P4 ,P3 }.

Appendix 3: Supplementary material: tables with numerical results

See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,  16, 17, 18, 19, 20, 21, 22, 23, 
24, 25 and 26.                        
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