
Scalability and fault-tolerance in the
groupware domain

Master Thesis, January 12th, 2014, Final Version

Simon Bernardus Kok

Scalability and fault-tolerance in the
groupware domain

MASTER THESIS

submitted in partial fulfilment of
the

requirements for the degree of

MASTER OF SCIENCE
in

COMPUTER SCIENCE

by

Simon Bernardus Kok
born in Voorburg, The Netherlands

Web Information Systems Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, The Netherlands
http://eemcs.tudelft.nl

Scalability and fault-tolerance in the
groupware domain

Author: Simon Bernardus Kok
Student id: 1550616
Email: siem.kok@gmail.com

Committee: Prof. dr. ir. G.J.P.M. Houben (Delft University of Technology)
Dr. ir. A.J.H. Hidders (Delft University of Technology)
Dr. ir. A. Iosup (Delft University of Technology)
Ir. B.R. Joseph (Zarafa)
Ing. I. Timmermans (Zarafa)

Abstract

In most businesses, email and collaboration services are essential to the performance of the
company. Delivering a communication platform that scales well with the growth of the
company, and provides the services anytime, anywhere, even in the event of failures is hard
to achieve at low costs. Literature has proven that simplified email storage is scalable.
Interactive collaboration services on the MAPI protocol, however, are limited in their
scalability due to the data complexity. With this thesis, I analysed the groupware use case
and data structure for possible solutions to this problem. Based on the service requirements
and storage layers available, a proposed key-value data structure is presented. While out
dated, the literature presented benchmark results for this database category with small 1
KB values. In this thesis, I benchmarked MySQL Cluster, Cassandra, Riak, Voldemort, and
HBase using 10 KB values while focussing on the I/O subsystem throughput and failure
tolerance of these databases, simulating email characteristics. The proposed solution,
utilizes Riak with ZooKeeper to provide a single point of entry, scalable, and fault-tolerant
communication service. I developed a prototype service and load simulator to demonstrate
its scalability and failure tolerance through an extensive load simulation of 32 thousand
users. The results show how failures are dealt with, and how the cluster expands, all
without disrupting the user interaction on the service.

Preface

This report is the result of my master thesis project, written as the conclusion to my study
Computer Science at the Delft University of Technology. The research has been conducted
at Zarafa in Delft. At Zarafa, I was introduced with the scalability problem of groupware
data and the business side of open source development. To conduct a thorough research,
Zarafa supported me to conduct a broad literature survey on possible data storage solutions.
Furthermore, Zarafa enabled me to conduct an independent load simulation of several storage
architectures.

Through Zarafa’s network, I was introduced with several key players in the open source
groupware community. I would like to thank Zarafa for their support and for showing me
the beauty of open source development. More specifically, I would like to thank Steve Hardy,
Michael Kromer, John van der Kamp, and Mark Sartor for their technical insights, support,
and brainstorm sessions. Additionally, I would like to thank Brian Joseph and Ivo Timmer-
mans for their support and guidance as my direct supervisors. I would like to thank Joeri
Smit, Heleen van Beek, Dominique Debyttere, Ivo van Geel, and Paul Boot for keeping me
motivated throughout the graduation project.

I would like to thank my colleagues and friends at FeedbackFruits, without their support
I would not have been able to reach my goals. Carlos Toro-Bermudez, Sander Geursen,
Felix Akkermans, Jakob Buis, and Niels Doekemeijer, thanks for discussing all the technical
difficulties I faced. I would like to thank Amber van Hauwermeieren, Ewoud de Kok, Bart
Kaas, and Daan Eigenraam for their extensive support, scrum meetings, and advice on getting
it done.

Furthermore, I would like to thank my supervisors at the Delft University of Technology for
their support and advice on this matter. Especially I would like to thank Jan Hidders and my
fellow graduation students, who were present at the colloquium meetings, for their interest
and advice.

Last but not least, I would like to thank my family for their endless support throughout my
study, without you I would not have been able to achieve this.

Simon Bernardus Kok

Delft, The Netherlands
January 12th, 2014

i

Table of Contents

List of Figures vii

List of Tables ix

List of Algorithms ix

1. Introduction 1
1.1. Problem statement and motivation . 1
1.2. Research relevance . 2
1.3. Research objectives and scope . 2
1.4. Research questions . 3
1.5. Research strategy . 3
1.6. Thesis overview . 4

2. Background 7
2.1. Groupware use case . 7
2.2. MAPI structure . 10
2.3. Related Work . 15

3. Service requirements 21
3.1. Performance requirements . 21
3.2. Availability requirements . 22
3.3. Management requirements . 23
3.4. Conclusion . 24

4. Problem analysis 25
4.1. Performance problem . 25
4.2. Scalability problem . 26
4.3. Availability problem . 27
4.4. Management problem . 28
4.5. Load Simulator . 28
4.6. Conclusion . 29

5. Data replication analysis 31
5.1. Property storage . 31
5.2. Body storage . 35
5.3. Attachment storage analysis . 36
5.4. Listing messages . 42
5.5. Conclusion . 45

iii

6. Storage comparison 47
6.1. Property storage solutions . 47
6.2. Body storage solutions . 50
6.3. Attachment storage solutions . 50
6.4. Conclusion . 52

7. Key-value benchmarks 53
7.1. Benchmark scenarios . 53
7.2. Experimental setup . 54
7.3. MySQL Cluster . 54
7.4. Cassandra . 57
7.5. Riak . 59
7.6. Voldemort . 61
7.7. HBase . 64
7.8. Conclusion . 66

8. Proposed solution 67
8.1. Architectural design . 67
8.2. Automated user segmentation . 69
8.3. Single point of entry . 72
8.4. Cluster coordination . 75
8.5. Autonomous scalability . 76
8.6. MAPI servers . 76
8.7. Write agents . 78
8.8. Blob storage . 79
8.9. Attachment storage . 79
8.10. Conclusion . 80

9. Validation 81
9.1. Test cluster . 82
9.2. Workload measurements . 83
9.3. Limitations . 83
9.4. Conclusion . 85

10.Conclusions and future work 87
10.1. Conclusions . 87
10.2. Discussion . 87
10.3. Future work . 89

11.References 91

iv

Appendices

A. Key-value experimental setup 99

v

List of Figures

1. Research Strategy . 4
2. Email usage versus the cost of storing over time 7
3. Emails sent and received in an IT company on a typical workday. 8
4. Email management strategies . 9
5. Message entity structure . 10
6. Logic behind deferred updates. 13
7. MAPI view on a table of messages. 13
8. MAPI view used by Microsoft Exchange, storing multiple MAPI views con-

currently. 15
9. Email entity storage, storing each property (Type) of an object (HID) separately. 32
10. Email entity storage, storing each entity (HID) as a blob. 34
11. Using network shares to share the attachment data between the servers. . . . 37
12. Using a distributed file system to share the attachment data between the servers. 39
13. Using a globally accessible storage service to store all attachments on. 41
14. MySQL Cluster Benchmark Results . 55
15. Six node MySQL Cluster: Temporary node disconnect 55
16. Six node MySQL Cluster: Full node failure 56
17. Cassandra Benchmark Results . 57
18. Six node Cassandra Cluster: Temporary node disconnect 58
19. Six node Cassandra Cluster: Full node failure 58
20. Riak Benchmark Results . 60
21. Six node Riak Cluster: Temporary node disconnect 60
22. Six node Riak Cluster: Full node failure . 61
23. Voldemort Benchmark Results . 62
24. Six node Voldemort Cluster: Temporary node disconnect 63
25. Six node Voldemort Cluster: Full node failure 63
26. HBase Benchmark Results . 65
27. Six node HBase Cluster: Temporary node disconnect 65
28. Six node HBase Cluster: Full node failure . 66
29. Architecture design of intermediate components 68
30. Virtual nodes on the key ring . 70
31. Validation prototype architecture . 81
32. Validation scalability and load resilienceness measurements 84

vii

List of Tables

1. Property table . 11
2. Transposed property table . 12
3. Deferred updates table . 12
4. Row storage calculation . 14
5. Requirement list for property storage . 48

List of Algorithms

1. Balance virtual nodes across nodes . 71
2. Segment virtual nodes . 71
3. Process configuration on nodes . 72

ix

1 Introduction

The research of this thesis has been conducted at Zarafa. Zarafa is the developer of its
like-named open-source groupware solution. The groupware solution offered by Zarafa allows
its client to set-up a groupware environment that operates similar to Microsoft Exchange.
However, since the product of Zarafa is open source, the community around the product helps
to improve and extend it. The customer demand has grown very rapidly in the last couple of
years, as large corporations start to inquire for their solutions. The current server architecture
of the groupware product, scales perfectly for small to middle-sized corporations. However,
it has its limitations in terms of scalability. With the research presented in this thesis, Zarafa
wants to acquire insights how to organise data stores, to deal with the scalability demands
for its groupware services.

1.1 Problem statement and motivation

In order to achieve scalability, large customers need to set-up multiple servers, where the
user base is split into many smaller groups that are spread across these servers. The set-up
is failure resistant by adding slave servers that mirror the data set completely. However, the
current implementation of the Zarafa server does not support automatic load balancing, and
in terms of scalability it has several limitations as well.

Since the current set-up forces the user base to be divided into multiple smaller groups, the
end-users cannot share their data directly across these groups. The customer, however, would
prefer to work on a single environment, where a scalable cluster of servers operates as if it
were a single extremely robust server. The data inside this preferred set-up should be stored
redundantly, where the clients would be load balanced between the servers, such that the
server capacity is utilized across the complete user group effectively. In a preferred setup,
data loss due to server outage is highly unlikely and the end-users have a reliable service to
operate on. In short, the customer is looking for a system that is easy to manage, and scales
well with the growth of the organisation.

A problematic aspect of scaling groupware services is the amount of shared data across the
user base. Part of the data is only accessible to its own end-user, or shared with a small group
of users. Whereas some data needs to be accessed by large groups of users. Additionally,
since Zarafa allows its end-users to access their data from multiple clients concurrently, the
data needs to be passed to these different clients in a small period of time. These clients
include mobile devices, tablets, and personal computers. Keeping this data in sync across
these devices is important, as the end-user needs to be able to trust the data to be up-to-date
in order for the product to have a good customer satisfaction ratio.

1

1.2 Research relevance

Groupware need to store a lot of data, of which a huge proportion is accessed. This data,
however, cannot be stored in memory of the servers providing a groupware service, as the
costs would exceed the reasonable limit. Therefore, groupware requires a very well performing
Input/Output (IO) sub layer to retrieve data from disk. The research covers the limitations
and opportunities of data redundancy in IO intensive applications that require scalability.
Researchers and companies that are looking into the horizontal scalability of IO intensive
applications might find the findings of this research relevant.

The research in terms of scalability covers several related aspects of hosting a fault-tolerant
and scalable service. The research on this matter will be relevant for developers that need to
develop a service requiring the same levels of scalability and redundancy.

The research on fault-tolerant databases that provide near linearly-scalable storage of data
is limited to small data objects, allowed the database to cache a lot of the data internally,
and used out-dated versions of the databases that are available today. This research analyses
MySQL Cluster, Cassandra, HBase, Riak, and Voldemort through extensive tests where the
performance of the database was measured using object sizes of 10 KB. The storage servers
had limited memory available, such that it would be possible measure the IO performance.
Furthermore, the benchmark tests included failure tests as well, disconnecting one of the
servers temporarily, and making one of the nodes fail completely with a recovery process
afterwards. The benchmark results are interesting for any party that needs fast and reliable
performance of their scalable database. Additionally, the shared insights on the usability of
the databases might be of interest to the developers of the databases and companies that
want to incorporate a new scalable database into their platform.

1.3 Research objectives and scope

The objective of this research is to achieve virtually unlimited scalability of a groupware
service. With this research, Zarafa wants to acquire insights how they should effectively
organise user data, such that a cluster of servers provides access to the groupware service,
allowing it to grow with user demand, while being failure resilient.

The scope of the research is limited to the area of groupware services, in which the users
share calendars, have their own mailboxes, and access shared mailboxes. The research will
focus on achieving a scalable groupware service, hosted on a single location; the geo-graphical
distribution of data is outside the scope of this research. Out of scope are search operations,
the security related to the storage of user data, and archiving of old mails on different storage
clusters. Furthermore, the user authentication is outside the scope as well. Throughout the

2

research, it is expected that a scalable and fully fault-tolerant user-authentication service
exists.

1.4 Research questions

Through an explorative research, the following research questions will be answered to find
an appropriate solution offering data redundancy and load balancing for scalable groupware
solutions. The main question for the research of this thesis is:

What would be an optimal solution to store groupware data, across multiple
servers that together behave like one robust service provider, allowing scalability
in the order of n+ 1?

This main research question has been broken down into multiple sub questions that together
give a broader idea why this is optimal and how this can be applied best in the field of
groupware solutions.

Q1. What is required by the customers of groupware solutions in the area of data
redundancy?

Q2. What data replication techniques could be implemented to achieve n + 1 scala-
bility?

Q3. How could a failure resilient single-point of entry be defined to ease set-up for
end-users of the cluster?

Q4. How should the data be split across multiple servers? On which data level: per
user, store, or even entity?

Q5. How could a cluster of servers operate fully autonomously, achieving scalability,
failover, and load balancing?

Q6. How could data consistency be realized, if data is redundantly stored and users
access the stores using different clients?

With these sub questions, data replication techniques used in other fields will be analysed, an
analysis on combining load-balancing techniques with redundancy techniques will be given,
and methods to keep all the data consistent on all servers within a reasonable amount of time
are discussed.

1.5 Research strategy

In order to research how to design one robust service provider for groupware data, the research
is structured in several phases, these phases are depicted in Figure 1. At the start, data and
usage statistics were acquired of several groupware servers and research reports. Along with
an in-depth analysis of the data architecture of the Zarafa implementation, this showed where

3

the bottlenecks in groupware services are located. The findings were compared to competing
groupware solutions and research projects that focus on scaling Input/Output (IO) intensive
services.

Before this research started, I conducted an extensive literature survey on the topic of scalable
online, and fail-safe data technologies [37]. The insights acquired in this literature research
are the fundament of this research. The literature survey, along with additional literature
on scaling IO intensive services, brought forward several storage solutions that theoretically
would be up to the job to scale data in linear terms, while providing fault-tolerant, high-
available data access. These storage solutions are benchmarked on their performance in
terms of reading, updating, and inserting data, as well as their ability to scale and their
ability to operate while facing failures. Based on the results of these benchmarks, and the
conceptual design that was formed based on the storage criteria, literature, and data analysis,
the benchmark results showed the architectures that are up to the job. Aside of the database
layer, other fundamental architectural decisions are also presented, resulting in the proposal
of a scalable, fault-tolerant groupware service architecture. The proposal is validated using
a load simulator that is developed during the research, the simulator will test whether the
system is able to withstand node failures, and performs acceptably. Furthermore, the valida-
tion will show whether the system is able to operate as if it were a single robust server, while
actually running on a shared-nothing cluster of commodity hardware.

Figure 1: Research Strategy

1.6 Thesis overview

The background of groupware and its characteristics, in terms of data and usage, are dis-
cussed in Section 2.1. As this research focuses on the scalability and availability problems of
Zarafa’s groupware solution, the internals of MAPI are discussed in Section 2.2 to describe

4

the requirements and locate bottlenecks. Section 2.3 describes how other groupware solu-
tions have been designed to tackle the scalability and availability issues. The requirements
in terms of performance, availability, and manageability are discussed in Section 3. Followed
by Section 4, where the service bottlenecks are analysed in detail. To work around these
bottlenecks, the data and possible strategies to deal with the data are discussed in Section 5.
Several storage solutions that theoretically offer linear scalability, while being fault-tolerant,
and well performing, are presented in Section 6. These storage engines are benchmarked
on several aspects in Section 7. In Section 8, the architecture of the proposed solution is
presented. Followed by a validation of the proposed architecture in Section 9. Lastly, the
conclusions and areas for future work are discussed in Section 10.

5

2 Background

The background of this thesis is discussed through analysis of the use case of groupware.
As the MAPI protocol is required by enterprise groupware products, the analysis of this
protocol is discussed in the section after that. Related work in terms of research and product
development is covered last. These sections require knowledge on MVCC, BASE, ACID, and
CAP, these are described in the literature survey [37].

2.1 Groupware use case

Groupware services have to deal with a lot of data with very diverse usage patterns, as was
shortly introduced in Section 1.1. Part of the data is shared among groups of users, while
other data is only accessible to a single user. Groupware entails enormous amounts of data,
which all need to be accessible, but of which only the most recent proportion is operated
on a lot. This later characteristics is exactly what makes archiving email so important. By
setting up an archiving server, data that is not used frequently can be moved to slower storage
servers for archiving, allowing the high-end servers to work on a smaller data set. Figure 2
depicts the access rates of data over time.

100%

0%

50%

0 days 30 days 90 days 1 year forever

Amount o
f d

ata

P
ro

b
ab

ili
ty

 o
f r

eu
se

Days since creation

Probability of reuse

Figure 2: Email usage versus the cost of storing over time. Modelled based on data acquired
by Horizon [48]

Aside of being a fully extended Messaging API (MAPI) compliant email server, the Zarafa
server is designed to offer its end-users capabilities such as calendar sharing, meeting request
support, mail delegations, integration with Spreed, Alfresco, and other third party software
solutions. All of these data types are stored using the same base type as used by email
messages in the database, therefore they are all located in the same database table and
perform like they are no different. However, as the main data of users is formed by mail

7

messages, the performance and storage requirements of users in groupware systems is mainly
determined through their email usage.

Focussed on the business market, there are 850 million email accounts world-wide, sending
about 89 billion email messages a day, as was reported by the Radicati Group in 2012 [34].
Limited to this segment, the amount of mails sent per day is expected to increase with an
average of 13 per cent per year. In 2012, this adds up to about 105 emails per business
account per day, heading towards 125 emails per day in 2016 [34]. In 2012, the Microsoft
Security Intelligence team [44] published that besides all these related emails, about 75 per
cent of the messages that gets delivered to the server are spam and should be filtered.

According to Radicati [56], an average email with attachments takes 500 KB, while emails
without attachments take 26 KB including their body. Per attachment email, on average the
attachments together would require about 474 KB of storage. Radicati states that a total of
24.2 per cent of all messages sent have attachments. Thus, attachments would take about
81.5 per cent of the total storage; calculated using Radicati’s email statistics report [56].

0"
2"
4"
6"
8"
10"
12"
14"
16"
18"
20"

0:00" 1:00" 2:00" 3:00" 4:00" 5:00" 6:00" 7:00" 8:00" 9:00" 10:00" 11:00" 12:00" 13:00" 14:00" 15:00" 16:00" 17:00" 18:00" 19:00" 20:00" 21:00" 22:00" 23:00"

Em
ai
ls
'p
er
'u
se
r'

Time'of'the'day'

Figure 3: Emails sent and received in an IT company on a typical workday.

Figure 3, shows a two-week average of the emails sent and received on a workday in an IT
company. For each industry this pattern might differ, for example a transportation company
might send and receive most emails around the start and end of the day. These differences
between industries and companies are very useful, according to Harms and Yamartino [33],
as the differences flatten out the spikes that would otherwise stress the service. Therefore,
the more different the companies that use a groupware service are, the steadier the resources
will be utilized. This allows a better provisioning of servers to operate the service.

When dealing with emails, actions like marking a message as read, flagging it, moving it,
or acting with the message all update some fields in the headers of the message. Using
the access, move, reply, and forward action statistics of the Microsoft Email benchmark
configuration [43], each message will be opened, and 70 per cent of those messags will face
another update. Whereas the body of the message is rarely touched after it has been created,
the body only gets updated in case a draft is edited, or the body of a calendar item gets

8

changed. The attachments of an email are only added or deleted, facing no updates at all.

Unfortunately, the powerful MAPI interface is not compatible with generic solutions to scale
email and other common Internet services. MAPI adds a lot of metadata to the email headers,
making it a complex object. The clients use these headers to query the data. Therefore, the
metadata needs to be available to index the email; this is a feature that generic scalable mail
solutions cannot perform.

In terms of types of users, there are two important characteristics to group the users by.
The first characteristic is how they organize their emails. All users have at least one folder
where the messages are initially delivered to, their inbox. However, whether a user organizes
email in folders and when these users do so differs. Boardman and Sasse [65], categorized the
users into four types based on their organizing strategy. Bälter [9] analysed the categories
further, depicting four types of users, how they are related and showed how a user could move
from one category to another due to time-pressure or an email overload, this is depicted in
Figure 4. There are some users that organize their messages continuously, organizing the
mail threads in folders, these types of users are called the frequent filers [65]. Another type of
user organizes their inbox every couple of weeks, these are referred to as Spring Cleaners [9],
moving messages to folders, and deleting those that are not relevant to keep. The folderless
cleaners, keeps important messages in their inbox, utilizing the search feature of their mail
client to look-up messages later on. Fisher et al. [28] introduced a fourth category that
covers users that keep their inbox and folders small, using multiple strategies to achieve this.
Figure 2 shows that the likelihood of a message being used later on decreases quickly over
time [48].

Although previous research has made many pertinent
observations and recommendations, we observe two key
limitations. Firstly, findings have been fragmented along tool
boundaries. Although it has been observed that people often
employ multiple PIM tools in support of their high-level
activities [7,10], there has been little consideration of PIM as
a cross-tool activity. Do individuals employ similar
strategies in email as in files? How are PIM tools used
together? Such questions must be addressed to provide a firm
empirical foundation for design work aimed at improving
PIM-tool integration (see below).
Secondly, little attention has been paid to how PIM strategies
change over time. One exception is Bälter [2] who proposed
a model of strategy changes in email (see Figure 1). The
model can be summarized in terms of two sets of strategy
transitions: (1) “pro-organizing” transitions involving
increases in filing tendency (solid arrows), and (2) “anti-
organizing” transitions (dashed arrows). Bälter suggested
that users who receive many messages might change their
strategies along an “anti-organizing” path, leading to an end-
state of folderless spring-cleaner as they file less over time.
Alternatively, users might devote increased effort towards
managing email and move the other way (e.g. spring-cleaner
to frequent-filer). Bälter noted that further longitudinal data
was needed to confirm his model. However, most work to
date has been based on short-term “snapshots” of behaviour.

Prototype Design
The second area of research has focused on the exploratory
prototyping of new PIM interfaces. As well as design
directed at improving specific PIM tools (e.g. email), there
has been extensive interest in the potential to improve
integration between tools. Two main approaches can be
identified in efforts to improve integration: (1) embedding
support for managing multiple types of information within an
existing tool, e.g. [5], and (2) unifying interaction with
multiple types of information (e.g. files and email) within a
consolidated interface. Examples of this second genre
include Stuff-I’ve-Seen [8] which provides a unified search
interface, and UMEA [10] which enables the organization of
multiple types of information in terms of projects. Although
many innovative designs have been proposed, we see a
mismatch between the tool-specific studies that have
provided observations about users’ activities and problems –

Figure 1: Model of changes in email management strategy [2]

and the substantial design effort directed at cross-tool
integration. There is a need for cross-tool empirical data to
provide a foundation for such cross-tool design.

STUDY OBJECTIVES AND METHOD
Our study aimed to build on previous research in two ways:
1. To provide a more effective foundation for cross-tool

design, we profiled user practices across 3 commonly
managed collections of personal information: files,
email and web bookmarks (Phase 1, 31 participants).

2. To investigate long-term issues relating to PIM we also
collected longitudinal data for 8 of the participants,
again across the 3 collections (Phase 2).

Phase 1: Profiling PIM Practices
We carried out semi-structured interviews with 31 users,
centered on guided tours of their file, email and bookmark
collections on their main work computer. The interviews
were structured to cover Barreau’s four sub-activities in each
tool. Since personal files are often distributed across multiple
drives, in order to focus the study we asked each participant
to nominate their main file collection (e.g. “My Documents”,
UNIX home directory, or a network drive). The use of the
desktop to manage files, email or bookmarks was considered
an adjunct to the respective collection. We asked participants
not to tidy before the interview, which proved to be judicious
(P27: “So you know what I do now - I would have tidied it
up if you’d let me”). We performed content analysis on the
interview data to extract themes relating to strategies,
problems and needs. Screenshots were also captured of the
desktop and the folder structures in each collection. We
analyzed the folder structures to investigate: (1) the concepts
used to name folders (e.g. project, person, place), and (2) the
level of folder overlap (folders common to two or more
collections). Finally we carried out cross-tool profiling to
investigate the consistency of each participant’s strategies
across the collections (see “Cross-tool Profiling” section).

Phase 2 – Longitudinal Tracking of PIM Practice
Eight of the participants also took part in Phase 2, during
which we tracked the evolution of the three collections and
the strategies used to manage them. We developed a tool to
capture snapshots of the folder structures, including counts of
items within folders. Details of specific items - such as
filenames - were not recorded. Participants were asked to
manually initiate snapshots to lessen the infringement of
their privacy. Snapshots were requested at two-week
intervals over the first three months, and a final snapshot was
requested five months later. Average participation was 286
days (min 218, max 309). Participants were also asked to
keep a diary of significant incidents relating to the
management of their files, email and bookmarks. We
suggested two example incidents: creating a new folder and
failing to locate an item. At the end of the study, an interview
focusing on changes made to PIM strategies was carried out.

During Phase 2 we also invited the participants to try out
WorkspaceMirror (WM), a software prototype developed by

Figure 4: Email management strategies, model of changes [9].

The second characteristic is their level of interaction with the groupware service. So called
Power Users are connected to their groupware account throughout the day, make heavy use
of the search feature, have larger inboxes, receive a lot of emails and invitations throughout
the day, and make use of the mobile support extensively [29]. The Information Workers have
larger inboxes, use a mail client on their pc to access their mailboxes throughout the day [29].
The last user group are the Occasional Users, these mainly use a web client to access their
mailbox, have limited storage available, and periodically check their mailboxes [29].

9

2.2 MAPI structure

All emails, calendar events, meeting request, and other related data types are stored as
messages on the server. These messages can embed other messages. Although one could store
all messages as raw data inside a mail journal if all messages were only made available as a
time-ordered list. The MAPI servers need to be capable of sorting the messages on different
properties as well, more specifically, the API states that any property should be available as
a sort-key. This requirement forces the server to index all the data on these properties. The
message structure, how all of these properties are indexed and stored efficiently on a single
server, as well as the storage of messages in folders are described in this section.

2.2.1 Message structure

Figure 5 shows the message structure diagram, each message can have multiple recipients and
attachments. The message itself, each recipient, and each attachment are entities themselves.
Each entity has its properties stored inside the properties table.

Each message is able to hold a reference to multiple recipients and attachments, in which an
attachment can have another message embedded. Every message, recipient, and attachment
has its own unique Hierarchy ID. These recipients and attachments exist as a collection of
properties, and are stored in a special properties table, just like any message.Message structure, v1

Message

 Recipients

 Attachments

 Properties

 Properties

 Properties

1

1 0..n

0..n

1

1

1..
n

1..
n

1..
n

1

Attachments can hold new messages

Development Department / Current Storage Architecture 7.1

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 5: Message entity structure, showing how each message comprises several entities.

The hierarchy table is used to link these entities together; it stores the parent of each entity,
enabling quick lookup of child entities, as well as parent entities, given a Hierarchy ID. In
general, an email consists of about 10 hierarchy entities.

10

2.2.2 Entity properties

By the design of MAPI, each entity type has different properties, and between two entities
of the same type there can be a difference in the properties that are available. To enable this
flexible design in data layer, Zarafa implemented a centralized property table that would be
able to hold all properties of all entities using a limited number of columns.

Each property is stored in the property table, as shown in Table 1, using the Hierarchy ID and
the type attribute of the property that is stored. The Hierarchy ID and Type columns define
the primary key on the property table. This allows the Zarafa server to lookup properties of
each message, recipient or attachment very quickly; as the InnoDB engine will write these near
to each other. How this results in improved performance is further discussed in Section 4.1.

HID Type Value
1 5 ...
1 6 ...
1 7 ...
1 8 ...
1 9 ...
1 10 ...
1 13 ...
2 2 …
2 3 ...
2 4 ...
2 5 ...

Table 1: Property table, storing all properties (Type) related to an object (HID).

Each entity in the property table is written by a single thread, connected to a single database,
therefore all of the written properties will be located near each other on disk. Unless, of course,
the user added new properties to the entity, in this case the InnoDB engine might need to
move elements around to make them fit in the same page files as the other related properties.
This operation can be quite expensive in terms of disk Input/Output operations (IOPS).

In order to speed up the sorting process, Zarafa introduced a transposed properties table,
referred to as the tproperties table. This table enables quick lookup of all entities in a certain
folder, sorted on the type of the properties, for example on the subject of the message. This
table structure enables the user to sort on any property very quickly. However, inserting
new entities to this table is quite expensive, as all the properties of an entity are placed on
different places, forcing the InnoDB engine to use as many IOPS as the number of properties
of an email message. On average this results in about 50 IOPS per message written.

The transposed property table as shown in Table 2, is structured to store all properties of
type x in folder y. This allows the Zarafa Server to lookup all properties of the objects in
a certain folder. The primary key is formed using the Folder ID, Type, and Hierarchy ID
columns.

11

FID T HID Value	
 (truncated)
11 5 1 ...
11 5 2 ...
11 5 4 ...
11 5 5 ...
11 5 7 ...
11 6 9 ...
11 6 10 ...
11 6 11 ...
11 8 13 ...
12 5 2 ...
12 5 3 ...

Table 2: Transposed property table, storing all properties of type x (T) of all the objects
(HID) in folder y (FID).

To speed up the writing process of new emails, the Zarafa server waits until it collected 20
new messages in that single folder, before it will commit the data to the tproperties table.
This reduces the amount of IOPS by a factor of 20, as for each property the InnoDB engine
is able to write 20 rows at once. All new messages that have been written to the properties
table are put into the deferred updates table. This allows the server to keep track of the
amount of records that still need to be inserted into the tproperties table. This table is also
used to add these entities on the fly until they have been inserted. Although this means that
the server still needs to retrieve a maximum of 19 records for each folder to construct the
sort list. However, since these messages have recently been created they are most likely still
available in the cache of the database, allowing them to be retrieved instantly.

FID HID
11 5
11 6
12 2

Table 3: Deferred updates table, stores all the Hierarchy IDs (HIDs) that have been updated
in a folder (FID) recently.

In the deferred updates table, of which an example is shown in Table 3, the table stores which
Hierarchy IDs have been updated and need to be merged into the transposed properties table.
The Folder ID and Hierarchy ID columns together form the primary key of this table. If an
object gets moved to another folder before it is merged, only the reference to this object will
be changed in the deferred updates table.

Constructing a list view for the user requires the server to sort the elements on the user-
specified property within that folder; using the tproperties table it retrieves all the objects
with that property quickly. The constructed view is stored in the server cache to speed up
reloads, all new and updated messages end up in the deferred updates table which are quickly
inserted before the list is sent to the user. This requires the server to retrieve the new and

12

Deferred updates storage architecture, v5

Start Mail arrives Append mail to
properties table

Add new entity
to deferred

updates table

are there 20
items in deferred
updates table for

this folder?

Flush updated
items of this
folder to the
transposed

properties table

Yes

End

No

Development Department / Current Storage Architecture 7.1

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 6: Logic behind deferred updates.

updated messages from the properties table instead of the tproperties table.

2.2.3 MAPI data view

The Zarafa server offers methods to access the data; the most commonly used protocol to
access it is MAPI, as most enterprise email clients and mobile devices use this protocol.
Figure 7 depicts the MAPI view on a table of messages. The MAPI view is constructed using
a quick look-up of all the entries in that folder, merging it with the deferred update records
retrieved from the properties table.Constructing the MAPI view from tproperties, v1

From To Subject Date

V
is

ib
le

 ro
w

s
to

 th
e

us
er

Sorting on Subject

All subjects
for this

folder are
retrieved

from
tproperties
to sort and
determine
which rows
are visible

for the
user.

Development Department / Current Storage Architecture 7.1

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 7: MAPI view on a table of messages.

13

The primary key in the tproperties table is defined as the Folder ID, Type of property,
and Hierarchy ID columns together. If a user looks up all messages in a certain folder,
the InnoDB engine can retrieve all the records with the given sort property with a single
IOP, this drastically improved the sorting of messages in a folder, compared to previous sort
implementations that walked through the property table to define the order, resulting in as
many IOPS as there are messages in the folder.

Field Bytes
Primary	
 key	
 (FID,	
 T,	
 HID) 12
	
 	
 	
 	
 Folder	
 ID 4
	
 	
 	
 	
 Type 4
	
 	
 	
 	
 Hierarchy	
 ID 4
Date 8
Transaction	
 and	
 rollback 6
InnoDB	
 overhead 7
Total 33

Table 4: Row storage calculation, for each entry in the tproperties table.

In the tproperties table, each record holds about 33 bytes of data including InnoDB overhead.
With a page size of 16 KB, each page file is able to hold about 496 records. If you would
have a single folder with 100 thousand messages, this would result in 202 page files. In order
to retrieve all of the records, the InnoDB engine would have to execute 202 IOPS. Compared
to 100 thousand IOPS this is a really good improvement.

Increasing the page size to 64 KB, would reduce the number of IOPS from the theoretical
202 to about 51. In other words, increasing the page size lets us linearly scale the number of
IOPS. However, although this theory sounds great, increasing the page size would also incur
a lot of extra overhead costs, as for each new page that is created more data needs to be
reserved.

2.2.4 Microsoft Exchange 2013

Microsoft Exchange uses an almost similar approach to store each entity in a dedicated
properties table, as the Zarafa architecture described in Section 2.2. The differences in the
MAPI view and scalability are discussed next. After which the cloud offering of Microsoft
Exchange is discussed.

MAPI views In order to speed up the sorting process, Microsoft Exchange constructs a
dedicated sorted view for the last eleven views that have been used. Figure 8 shows a drawing
of these concurrently stored views. This is designed with the mindset that an Exchange server
faces far more read operations than write operations, as writing a single message to each of
these views requires 22 IOPS.

14

Microsoft Exchange Multiple MAPI Views, v3

From To Subject Date

V
is

ib
le

 ro
w

s
to

 th
e

us
er

Sorting on Subject

The view is
stored on
disk, new
messages

will be
inserted in
place as
soon as

they arrive,
sorted on
subject.

From To Date

V
is

ib
le

 ro
w

s
to

 th
e

us
er

Sorting on To

Subject From DateDate

V
is

ib
le

 ro
w

s
to

 th
e

us
er

Sorting on Date

Subject

Repeated for the most
recently used eleven
views, stored on disk

The view is
stored on
disk, new
messages

will be
inserted in
place as
soon as

they arrive,
sorted on
recipient.

The view is
stored on
disk, new
messages

will be
inserted in
place as
soon as

they arrive,
sorted on

date.

Development Department / Microsoft Exchange 2010

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 8: MAPI view used by Microsoft Exchange, storing multiple MAPI views concurrently.

Scalability The complete domain of Exchange users is split up into several segments, chunks,
in which the data of a group of users is stored completely. In other words, the smallest data
segment in one such a chunk is all the data of one single user. On average, the number of
users that together form such a chunk is about 100. Each of these chunks have one primary
server, which hosts the primary database, and one or more secondary servers (its replicas).
In case the primary server goes down, one of the secondary servers becomes the primary for
that chunk of data.

Exchange in the cloud Microsoft offers access to their latest Exchange 2013 servers through
its Office 365 SaaS platform. Behind the scene, the service uses multiple clusters of exchange
servers to provide a single interface. Each company is assigned to a specific cluster, such that
the employees within that company can access each other their agenda’s and share accounts
as well. With the earlier 2010 introduction of the cloud service, the size of each company was
limited to a maximum of thirty thousand accounts [47].

2.3 Related Work

Related to the research of this thesis is research related to setting up email as a service, as
well as load simulations, and I/O performance papers. Related research on these topics is
covered in that order in this Section.

15

2.3.1 Email as a Service

Saito, Bershad, and Levy introduced Porcupine in 2000 [60]. Porcupine is a scalable cluster
mail server that operates on commodity hardware. Their service is able to distribute the
load, where the nodes in the cluster are all equal to each other. In the case of failures, the
cluster gracefully degrades, keeping the service up and running as long as the replication
nodes are still operational. The cluster uses standardized SMTP, IMAP, and POP to deliver
email to the users [59]. This is quite different from MAPI mail data, as these services are
limited in their write intensity and offer limited support for sorting and other more advanced
operations.

At the start of the 21st century, Gribble et al. [32] described the Ninja project, to research
possible innovations to distribute Internet services at scale, creating a robust service. Within
this project, several applications were analysed. One of these services is generic email, hosted
through several worker replicas that are able to perform the task. The project covered
standard mail interfaces, including SMTP, IMAP, and POP. How it manages to keep the
data up to date across the workers was not covered by the research.

In 2012, research conducted by Bloomberg [15] concluded that email as a service might
face difficulties to integrate fully with the identity and access management of corporations.
Forrester [30, 29] stated that email as a service brings many advantages for the corporate
market, most importantly allowing its staff to focus on corporate matters, scalability of the
service, and the price at which it is offered. In an interview, Raghu Ramakrishnan [14] stated
that “people are more comfortable with not owning and operating critical computing services
than they were (say in the early 2000s. . .)”.

Cáceres et al. [17] discuss the generic ability of the cloud to provide scalability at the in-
frastructure level. This discussion includes showing how compute instances can be scaled
vertically, by adding more resources to the machine. As well as scaling a cluster horizon-
tally, by adding more instances to the cluster. Cáceres et al. show how generic applications
would be able to take advantage of these scalabilities. The paper, however, focuses mainly
on the infrastructure level, leaving out the difficulties of scaling the data to support such a
horizontally scaled cluster.

On behalf of Microsoft, Harms and Yamartino [33] conducted a research to investigate
whether cloud services could be an advantage in several markets, including email as a ser-
vice. The email service provided by Microsoft uses a similar set-up of their on-site Exchange
software. Each user is located in a distributed access group (DAG) that is served by a group
of servers that provide failover internally. Since this DAG setup uses a relational database
underneath, only a small group of servers can be used to provide the service, this limits the
scalability of the platform to the maximum number of users that can be located in a DAG

16

cluster setup.

Where Microsoft moved its mail server product to the service market, Google developed
the service from scratch to become scalable and fault-tolerant. In order to achieve this,
Google developed Megastore [8] on top of its Bigtable database engine. Megastore is ACID
compliant, offering fast and reliable read operations, whereas writing required the database
to solve write conflicts and stale data. Megastore is used in many of Google’s interactive
applications, including Gmail, to make it perform and fault-tolerant at large scale. A June
2012 press release stated that Gmail has over 425 million monthly active users [54].

2.3.2 Load simulations

The email information flow inside enterprises was analysed by Karagiannis and Vojnovic [36],
showing the characterized workload of an email service and benefits of sharing resources to
put an optimal load on the server hardware.

As a service to its Exchange mail server customers, Microsoft developed the LoadSim [43] tool
such that the customer could compare the performance of their mail server setup with other
customers. The 2003 version of the load simulator used a fully MAPI compliant interface
to perform benchmarks on the server, allowing it to simulate the load on non-Microsoft
email servers as well. With their newer releases, however, the tool used an internal protocol,
which makes integration impossible. However, in their benchmark tool, Microsoft described
the exact workload that is performed to simulate the users, called MMB3. This workload
describes how many email are sent, flagged, moved, etc. on a normal workday, simulating
the load of thousands of users on the target email cluster.

On the I/O performance of databases, the research by Cooper et al. [22] on the Yahoo! Cloud
Serving Benchmark (YCSB) has become the benchmark tool to compare the performance and
behaviour of the different scalable databases. The results of the tests performed by Cooper
et al. are based on 1 KB records, each record consists of 10 columns with 100 bytes. The
benchmarks focussed on the throughput of the databases at a fixed scale of heavy-duty
servers, with multiple thread configurations, and analysed the performance if the database
scaled up in terms of number of servers.

2.3.3 I/O Performance

Luo and Yokota [42] compared the Hadoop Distributed File System (HDFS) with their own
Fat-Btree, their performance results showed that HDFS is designed to operate on large files,
resulting in a network performance bottleneck when a lot of small files are stored. Their
solution introduced a more efficient storage, up to 400 times faster when using a lot of small

17

files.

Expósito et al. [26] performed benchmarks on the I/O performance of the different types of
compute solutions provided by Amazon. In their analysis, they looked at the different levels
of the I/O subsystem to evaluate the cloud storage devices thoroughly, from ephemeral disks
to Elastic Block Store volumes. Through parallel I/O benchmarks, the performance and cost
metrics of these solutions have been tested as well. After the extensive tests, the conclusion
was drawn that Amazon’s latest High I/O instance type (HI1), provides the best performance
through the ephemeral SSD storage. However, considering the costs of this instance type, it
might not be the best solution to opt for.

In High Performance Computing (HPC), the computational power increases at the rate de-
scribed by Moore’s Law. However, the I/O subsystems do not scale at the same rate, there-
fore, they have become the bottleneck for data-intensive scientific applications. Ali et al. [2]
proposed an I/O forwarding paradigm where all the I/O operations are forwarded to a dedi-
cated I/O cluster. The I/O cluster performs the operation on behalf of the compute nodes,
enabling caches, rescheduling, and aggregating techniques to process the requests more effi-
ciently. Similarly, Lang et al. [39], described the IO bottlenecks they faced in the design of
the Blue Gene/P system, concluding that a dedicated storage cluster would have a lot of per-
formance benefits with related read and write operations. Logan and Dickens [41] introduced
an interval based IO file system to deal with the parallel bottlenecks to process scientific data,
as they think the access requirements do not fit with a traditional file structure. Providing a
scalable and fault-tolerant groupware service, requires a powerful I/O subsystem to deal with
the enormous load of I/O operations and store the data while ensuring fault-tolerant access
to it. Although the HPC is a different domain, the I/O limitations faced by data-intensive
research applications apply to a scalable and fault-tolerant service as well. There is one ma-
jor difference between the two, that is the difference in quality as HPC servers are built to
last; the machines used in the groupware scalability research are commodity machines, facing
frequent failures.

Dorier et al. [25] dived into the problem where concurrent-processing bursts of I/O requests
in HPC clusters causes a bottleneck. Dorier et al. developed Damaris, an approach that
uses a dedicated I/O core on each Symmetric Multi-Processor (SMP) node. Using the shared
memory of its host, the system is able to efficiently process asynchronous I/O tasks. This
completely hides the jitter and related I/O costs, increases sustained write performance 15
times, and allows a near perfect scalability. This, however, requires a shared inter-node
memory system. Cloud scalability uses a shared-nothing to become more failure resistant,
in other words, cloud instances share no memory or physical hardware to speed up the
computation, and each instance is isolated from the others.

Tlili et al. [61] developed a peer-to-peer reconciliation infrastructure using an Operational

18

Transformation (OT) approach. Edits are replicated to other peers optimistically, where
other OT solutions fail to work on peer-to-peer infrastructure, the proposed solution of Tlili
et al. assures liveness and eventual consistency even though the network is dynamic and faces
a lot of sudden changes. The peer-to-peer logging and timestamping infrastructure is called
P2P-LTR, utilizing a distributed hash table to track the changes. The P2P-LTR solution
excels when more than 15 users are editing the same document. A peer-to-peer infrastructure
is more dynamic, faces more failures, and has only limited resources to keep its consistency.
Therefore, the eventual consistency strategies are interesting as scaling servers up and down
changes the cluster behaviour more like that of a peer-to-peer network, albeit one with far
more resources in terms of bandwidth and performance.

19

3 Service requirements

This Section describes the service requirements that an email service should meet in order
to be successful. More specifically, this Section answers the first sub question on “What is
required by the customers of groupware solutions in the area of data redundancy?”. To start,
the performance requirements are analysed. Followed by the availability requirements, and
lastly the managerial requirements to keep the service running. Section 3.3 discusses the
issues related to managing the setup, initiating the discussion to answer “How could a failure
resilient single-point of entry be defined to ease set-up for end-users of the cluster?”, which
is the third sub question of this research.

3.1 Performance requirements

Email can be classified as non real-time and asymmetric. It uses a best effort protocol without
Quality of Service (QoS) reliability to deliver emails. This best effort protocol processes
emails based on first in, first out [19]. However, two mails sent by the same user to the same
destination will not necessarily be delivered in order, as the paths of the mail messages might
vary while in transit.

Server to server delivery of emails tolerate hours of delay, as email is a store and forward type
of service. In other words, when an email is delivered externally, the email might be queued
until the server is able to process it. However, the communication between the end-user and
the server should meet the expectation of the user that the changes are applied within certain
limits.

Where the server has hours to complete an external delivery, the user should get feedback that
the email is in transit in a time frame of two to five seconds [19]. Actually, the later case is
different, as the user expects the server to accept the mail message, ensuring it will not be lost,
but whether the email is sent instantaneously or within an hour does not really matter [19].
As long as the user can continue to use the groupware service in the meanwhile. In terms
of reading mails, a user experiences opening mail as instantaneously when the request would
be processed within 100 ms, according to the usability guidelines of Nielson [50].

The CIO of SBI Life, Mr J.B. Bhaskar, published the requirements they had to meet to
move their email solution to the cloud in 2012 [13]. At SBI Life, the email service had major
performance issues during the morning and evening hours, as their servers were not able to
scale to deal with the load increase. Furthermore, at the end of the month, and even worse
at the end of the year, the service was unable to process the incoming mails. On a daily
basis, they delivered 120 thousand messages inside their domain, and 60 thousand leaving
their domain. This results in a data transfer of roughly 20 GB per day, email only. Their
peak demand is about 25 thousand emails per hour. In their calculations, they only looked

21

at valid emails, leaving out the 315 spam messages each day that should be filtered for each
user, as was described in Section 2.1.

3.2 Availability requirements

Forrester Consulting conducted a survey research on the criteria companies use in their pur-
chase decision for email platforms [30]. Forrester Consulting was commissioned by Microsoft
to conduct this research in December 2010. Forrester concluded that there is a gap between
the IT vision and business vision when it is related to email. Although email seems like just
another tool to communicate, it is used thoroughly between businesses to reach goals and
become profitable. This makes email a business-critical resource for companies today [30].
Businesswise, not being able to reach the email service, is a scenario most companies want
to avoid. Businesses would also want to use the latest email and collaboration software to
communicate efficiently without downtime to upgrade to newer versions. Seen from the IT
side, these two are both hard to realize. Each upgrade to the next platform involves some
downtime, however, being late with applying updates is a risk in terms of security as well.

From a business aspect, availability is very important. However, zero downtime solutions are
too expensive to realize. According to Forrester Consulting, an email service should guarantee
an uptime of 99.9 per cent to be placed among the best email solutions available. Furthermore,
if the system goes down, businesses require the data to be replicated continuously, with a
recovery time objective (RTO) of one hour or less [30]. Since email can be really valuable to
businesses, it would be better to deliver mail late than losing it. Among other requirements,
businesses find it important that their email solution supports mobile devices, and is capable
of storing large mailboxes [30, 15]. In the second quarter of 2012, the Radicati Group reported
that about 34 per cent of the email users worldwide access their mail through a mobile
device [34].

In order not to annoy the end-users, separate devices should get updated using at least some
form of eventual consistency that takes at most a couple of minutes to complete. However,
when previous email data is consistent, it should remain consistent from that moment on,
with the exception of new or edited emails.

Whether a company is open to cloud email solutions, depends on their business nature and
legal requirements. Compared with on-site email solutions, cloud-based email is a lot cheaper
to realize, as the costs for redundancy are limited and included in the nature of the email
service provided. Comparing medium sized companies with enterprises, the medium sized
companies are more likely to opt for an email solution as a service, as they require the same
RTO and redundancy as enterprises, but are too small to manage it themselves. Although
enterprises are capable to setup redundant email solutions internally, migrating these to the
latest version takes too long according to the responsible decision-makers [30].

22

Moving email to the cloud allows businesses to focus on what they do best. Leaving upgrades
of the platform to the IT specialists of the email service provider. In case anything goes wrong,
the responsibility can be offloaded to a domain specialist, this decreases risks and costs of
the email solution.

In terms of the user expectancies, any recoverable failure of the service should not annoy the
user. The user might notice a hick-up, but should not interact manually in order to recover
the connection. Furthermore, among the devices that a user would use to browse email, the
latency between an update and it being visible on other devices is acceptable up to a couple of
minutes. In terms of performance, reading is more important to finish quickly than writing,
as the user performs more read than write requests.

3.3 Management requirements

From a system administrator point of view, the system should be fully autonomous in terms
of determining on which server the users should be placed. The less management this system
requires, the cheaper it would be to keep it running.

The system should be self-healing, as soon as a node fails it should automatically ensure that
the data that was provided by that node is replicated. This replication process should finish
fast enough such that the probability of failure on the other replica nodes is highly unlikely.

Furthermore, in order to scale with the increasing demand of storage, adding a server to the
cluster should be as easy as booting it up. Even better yet, if the boot process can be auto-
mated by an automated cluster manager, it will be able to scale without any administration
tasks.

In terms of performance, the cluster should be able to add new nodes and remove idles nodes
automatically. The process should drop nodes to cut costs if their service is not necessary,
while adding new ones if user demand requires so.

For the end-users of the service, the configuration to connect to the service needs to be
simple. A single point-of-entrance should allow all users to connect, without requiring the
users to remember the cluster they are placed on. Additionally, in case the connection with
the service got interrupted, for example if a node in the cluster failed, a simple reconnect
should suffice to get back to what they were working on.

23

3.4 Conclusion

In terms of data redundancy and availability, to setup an email service among the top line
we require:

• it to deal with 105 new emails per account per day, the delivery should be guaranteed
to 99.9 per cent;

• the incoming mail layer to be able to filter 315 spam emails per account per day;

• the service to accept messages sent in at most five seconds, while it has hours to deliver
the email to the other party, as long as it does not disrupt the process;

• an open request to be processed within 100 ms in order to experience it as instanta-
neously;

• mail should be delivered late, rather than on time if that risks losing it;

• read operations to be prioritized compared to write operations in terms of performance;

• the data to be replicated continuously;

• should be built to have the data accessible 99.9 per cent of the time;

• to have a fallback mechanism in place that takes at most one hour to take over (RTO);

• should support large data sets between one and five GB per user;

• should support concurrent connections to the same data, with a consistent view within
a matter of minutes;

• server management and user placement should be fully autonomous;

• the service to be self healing, with automated node recovery;

• adding more servers to the cluster should be as easy as booting it;

• cluster management should be able to automatically add and remove node as load
requires;

• and lastly, the service should have a single endpoint to connect to, however, this cannot
become the single point of failure.

In other words, the user should be able to access the service anytime, anywhere, and the
user should not be bothered by heavy usage of other users. Therefore, the service should
keep data redundant, should write fast, but read even faster, and should be able to deal with
concurrent sessions accessing the shared data.

Sections 3.1, 3.2, and 3.3 provide a detailed guideline on what is required to become a scalable,
fault-tolerant, and fully automated groupware service. With these requirements, the next
section will describe what problems are faced to realize these.

24

4 Problem analysis

In this section, the internal data structure of Zarafa will be explained. The design of the
database has been changed several times along the development of new major versions of the
product. Apart of features such as utf-8 encoding support, the improvements focussed on
getting the best performance on a single server level. This section will analyse the internal
data structure, while discussing why these design choices were made, and what the benefits
and disadvantages of such a design are. Followed upon these sections, is the analysis of the
scalability of the platform. This starts with showing how a scalable set-up would operate, as
well as showing the limitations of this architecture.

4.1 Performance problem

The current architecture of Zarafa server relies on the MySQL relational database, with
InnoDB as its storage engine. MySQL in combination with InnoDB is fully ACID compliant,
enabling transactional support, with crash recovery. The table is locked at row-level for
write operations, while supporting consistent reads to optimize its performance in concurrent
multi-user sessions. MySQL is able to scale up to hundreds of gigabytes of data. According
to Oracle, some of their clients use it with 5 billion rows and a couple of hundred thousand
tables [52]. However, since MySQL is ACID compliant, it faces the limitations in scalability
by guaranteeing consistent writes.

Furthermore, the Zarafa product requires each server process to connect to its own database.
As long as that process is the only one writing to the database, it can ensure that the data in
the database matches its internal caches without being forced to check the database for recent
updates regularly. This is a typical example of a scalability trade-off, focussing on single-
server performance instead of multi-server environments. In order to guarantee uptime of
the data, Zarafa has developed a special replication agent that will synchronize small multi-
master clusters with each other. The data is replicated by cloning the data into a new MAPI
object on the replica server. The data is cloned at fixed intervals, leaving the newest version
on the server in case a conflict arises.

However, a more preferred and supported solution would be to set-up a failover slave replica
using standard MySQL redundancy techniques. These MySQL set-ups offer more control,
and have been implemented across many industries to achieve redundancy. MySQL limits
replication to a couple of servers, although technically you could set this up using multiple
separate database clusters that are randomly assigned each others backup slaves, this is very
labour-intensive. If a server fails inside such a cluster, the slave server will need to deal with
the immediate load increase. Even though one could set-up multiple Zarafa servers on a
single machine, this still requires all the slaves to deal with an enormous amount of extra

25

load. For example, if each machine would have four Zarafa servers running, and host four
slave copies of other servers, if it would fail the load on the slave machines increases by 25
per cent.

A very important requirement that limits the throughput of groupware data is the require-
ment that all data needs to be stored persistently on a storage device. Since groupware is
very data intensive, and part of the data is accessed heavily, the performance characteristics
of the underlying storage device are very important. At this moment there are two disk types
that have completely different storage implementations, these are mechanical disks generally
referred to as hard drive disks (HDD) and solid-state disks (SSD). Both of these disks have
their own advantages, mechanical disks perform best at sequential read operations, whereas
solid-state disks perform best while processing random read operations. In the design of the
Zarafa server, the database architecture is optimized to utilize the performance advantage
for mechanical disks. In terms of performance per buck, the solid-state disks offer the best
solution. Performance is an issue for fresh data, as these are accessed most. As shown in
Figure 2 shows, after a month the performance of the data is less of an issue, for data that
is older it would benefit larger storage disks, this is where mechanical disks would meet the
demand best.

4.2 Scalability problem

Changing the database layer to a distributed database would be hard to accomplish, due
to the optimized use of MySQL database features, as discussed in the previous section.
Especially when multiple servers need to connect with the same distributed database.

Strictly speaking, this design limits the available options in terms of database scalability to
vertical scalability. With vertical scalability, the database server scales up by changing the
server hardware to high-performance hardware. Another way to scale the database is to add
more machines that together are responsible for hosting the database, this type of scalability
is called horizontal scalability [17].

To share the load across multiple Zarafa servers, in which each connects to its own database,
Zarafa implemented an agent that copies the latest changed content from one server to the
other. Technically, this synchronization agent is able to developed to synchronize two servers,
but with some modifications three or more servers would also be an option. However, the syn-
chronization process delays the delivery of messages, and while copying the messages conflicts
might arise. The implemented conflict resolution is to take the last version and present that
to the user. If multiple servers are synchronized with this agent, the probability of conflicts
increases. Therefore, improving the conflict resolution algorithm of this agent would become
a necessity. However, with this synchronization method the overhead of copying messages
and conflict resolution technique will become the first bottleneck in terms of scalability.

26

By design, each Zarafa server connects to one database, which could be configured to be
replicated to another server. The servers that contain a replica of another node together
form a cluster. In the field of email scalability this is called a database availability group
(DAG). This structure, however, forces the administrator to assign users to a specific server.
Microsoft Exchange uses a similar structure, in their architecture the maximum number of
servers in a single DAG is limited to sixteen [45].

Another limitation to the DAG architecture is how new users should be dealt with. If one
cluster reaches its limit, each new user needs to be moved to another cluster. Unfortunately
the users that are placed in the new cluster would not be able to interact with the data on
the other cluster directly. For a single enterprise this would force the company to segment
the users into departments, to hide this limitation as much as possible.

Although their recent changes have strengthened the scalability of Zarafa, it is limited to
set-ups of tens of thousands users and labour intensive to setup. The scalability limitations
require a redesign of the storage layer to make it scale horizontally even further.

4.3 Availability problem

The Zarafa server preferably connects to one database that runs on the same machine to
take away the network overhead. To guarantee the availability of the database, a replica of
the database is hosted on another server. In the current design, each user is assigned to a
specific server, with one or more replica servers for availability. This, however, introduces a
very important limitation in terms of availability, if a server fails, the entire load is moved
to its replica. The load cannot be distributed across the other servers, as the data is not
available to those servers. Thereby, the replica will have to deal with the extra load. Either
the servers have extra capacity, or all the users that are assigned to the failed node or its
replica will notice performance degradation.

Since the servers replicate each other, the set-up forms a small cluster. If servers are added
to the cluster, the nodes that will replicate the data of the new node need to be restarted;
therefore the accounts on that cluster will not be available for a brief period of time.

In terms of user experience, if the server fails, the users would notice a hick-up, as their client
needs to reconnect, followed by the failover performance degradation. Another issue with
this set-up is the risk that a single entity could crash a server, in case the users are grouped
together, the whole group will experience the crash on all slave servers as well. While if each
user would be randomly assigned to a server, the master and slave servers of a single user
might fail, but for all other users this would result in a slight hick-up, but the system keeps
running.

27

4.4 Management problem

In managerial tasks, the overhead required to add new users and keeping such a cluster
operational at large scale become another bottleneck to deal with.

Theoretically, you could configure a complete cluster to replicate as one big chain. Con-
figuring the servers to replicate the data in such a structure and assigning users to specific
servers becomes harder with each server that is added to the cluster. Each server needs to
be configured to connect to its cluster, this requires careful partitioning of data and users.
Each user would be assigned to a specific master node that is replicated by one or more repli-
cas. However, to which server the user is connected to when logging in is very important,
as network latency would become a major bottleneck for the performance. Therefore, upon
login, the user should be connected to the node that is closest to the data of that specific
user. This configuration would have to be published across the cluster, such that the con-
nection of the user can be reconfigured to connect to the responsible node at the start. The
administrators of the cluster would have to assign the users to their cluster using a database
for user authentication, for example LDAP.

More recently, Zarafa introduced some features that should ease management of cluster set-
ups. Through reverse-proxy support, the end-users would have a single point of entry to
connect to, which will redirect the users to their designated server. In the same version,
Zarafa also introduced support for multiple LDAP servers to make the authentication process
redundant, providing higher availability.

When a cluster is increased in size, the other nodes need to be configured to use this new
node as a replica and vice-versa. This requires quite a lot of tasks to set-up correctly. At
some point the overhead of adding another node to the cluster is too high, such that a new
cluster needs to be created. To be effective in terms of scalability, each of these processes
need to be automated.

4.5 Load Simulator

In order to analyse the performance of Zarafa compared to other products, Zarafa utilized
the Microsoft Load Simulator 2003. Newer versions of this product have been released, but
unfortunately Microsoft switched from the MAPI interface, that is supported by Zarafa, to
an internal Remote Procedure Call interface to execute the tasks on its Exchange servers.
Therefore, the newer versions of the load simulator only operate on Microsoft Exchange
servers.

Until recently this was not a real problem, as the previous version still operated correctly.
However, when the scalability tests ran in a virtualized project, a bug of the load simulator

28

made it crash completely. What caused this behaviour is unknown up until now, but the
analysis of the crashes suspect that the load simulator needs to have guaranteed CPU capacity
that cannot be guaranteed on virtualized machines.

This made testing the set-up impossible, to solve this problem we decided to develop a load-
simulator that would be able to connect to any MAPI compliant cluster. For the development
of the load-simulator, the part that I worked on was the test suite of the Zarafa WebApp
client, later extended to interface to the prototype type to validate this thesis as well.

The load simulator is based on the MAPI Messaging Benchmark 3 (MMB3) defined by
Microsoft [43]. The MMB3 specification defines the exact workload that users would otherwise
generate on a typical workday. This includes login in and off, retrieving contacts from the
address book, composing messages, browsing through the inbox, replying to emails, flagging
messages, copying, moving, deleting, etc. All of these tasks use a set of email templates that
are used to simulate real-life workload. It connects to the server through MAPI or WebApp
and simulates the workload of thousands of users. It allows configuring the amount of time
it should simulate, the number of users, and how exactly the users should login. Each of
the tasks are profiled and at the end of the test a performance score can be determined
based on the average latency measured. As the load simulation is sending emails to users,
the recipients of the emails sent will react on these events and simulate real on going mail
conversations.

4.6 Conclusion

With the developed load simulator, tests could be performed to determine the recovery pro-
cess of the current Zarafa server, as well as performance measurements when a large group
of users uses the mail cluster.

In terms of its single server per database design as discussed earlier, the architecture limits
the scalability as it will become more complex with every server that is added. Especially
since recovering or scaling up require the administrators to intervene. As the users are stati-
cally assigned to a certain server, the load cannot be balanced automatically when multiple
heavy users have been assigned to the same server. Furthermore, when a failure occurs, the
replica node will have to deal with the additional load. Leaving the cluster unbalanced until
administrators distribute the load. To conclude, the scalability is limited and labour intensive
to achieve with its current architecture.

The next section will analyse data replication strategies to enable automated scalability and
load balancing.

29

5 Data replication analysis

In this section, the data replication techniques that could be used in order to achieve n + 1

scalability will be discussed, answering the second sub question (Q2). To determine which
replication strategies could be applied, a list of requirements is presented first. Followed
by listing of possible database solutions, whether they match, and what their strengths and
weaknesses are. Once the list of database solutions is filtered, the remaining candidates
are tested with a benchmark test to profile their performance under groupware usage load
patterns. Based on the benchmark results, the best performing database will be selected as
the database user for the scalable groupware service prototype.

As described in Section 2.2, all emails are stored inside the MySQL database using three
important tables, in the current storage architecture of Zarafa 7.1, these are the:

• Hierarchy table; holds all the relations between entities.

• Properties tables; holds all the properties related to the entities.

• Transposed properties table; holds a transposed truncated view of the entities, sorted
on the folder they are stored in and the property type.

A detailed look at the email clients, and the structure of email messages in MAPI, show that
email messages can be split up into three parts. The first being the envelope of the message,
these include the headers, in MAPI terms these are called the properties. The second is
the body of the message, this is another type that behaves quite different compared to the
properties of messages. And last, but certainly not least, are the attachments of the message.
These hold the most data in general. These three data structures are covered in this order
in detail in the following three sections. Followed upon that, the topic of indexing these
messages is covered, as the user would like to sort the messages in a certain manner.

5.1 Property storage

The properties table holds all properties of entities such as mails, calendar items, recipients,
and attachments. As all data is indexed using the transposed properties view, the properties
table is merely used to store all properties related to a single entity. In the current architecture
of Zarafa 7.1 the properties table allows each property to be accessed independently. With
the design of the InnoDB storage engine in mind, these properties use a primary-key structure
that will place the properties near to each other on the file system. This allows InnoDB to
read all the properties related to an entity using a minimal number of IO operations. In
other words, it is designed to read and write the data per entity. An alternative way to store
the data would be to write it as a single binary object. Both these storage strategies will be
discussed in the following two sub sections.

31

5.1.1 Single property read/write structure, record per property

The record per property structure, allows the server to read and write single properties of
entities directly. As discussed in Section 2.2.2, the design of this structure focuses on minimal
data transfer to and from the disk for single properties. By structuring the primary key to
store related data near to each other, as depicted in Figure 9, the disk will be able to write
the data as a stream, instead of chunks. This design focuses on the performance advantages
of mechanical hard drive disks (HDD) to benefit from their sequential read and write speed,
as discussed in Section 4.1.

Email to Properties mapping, v11

From: John Doe
Sent: Fri Nov 30 12:23:08 2012
To: Jane Doe
Cc: Marc Doe
Subject: Scalable storage engine

Dear Jane,

Duis mollis, est non commodo luctus, nisi erat porttitor ligula,
eget lacinia odio sem nec elit. Nullam quis risus eget urna
mollis ornare vel eu leo. Donec id elit non mi porta gravida at
eget metus. Praesent commodo cursus magna, vel
scelerisque nisl consectetur et. Vestibulum id ligula porta felis
euismod semper. Duis mollis, est non commodo luctus, nisi
erat porttitor ligula, eget lacinia odio sem nec elit.

Cras mattis consectetur purus sit amet fermentum.
Maecenas faucibus mollis interdum. Fusce dapibus, tellus ac
cursus commodo, tortor mauris condimentum nibh, ut
fermentum massa justo sit amet risus. Fusce dapibus, tellus
ac cursus commodo, tortor mauris condimentum nibh, ut
fermentum massa justo sit amet risus.

Morbi leo risus, porta ac consectetur ac, vestibulum at eros.
Morbi leo risus, porta ac consectetur ac, vestibulum at eros.
Fusce dapibus, tellus ac cursus commodo, tortor mauris
condimentum nibh, ut fermentum massa justo sit amet risus.
Sed posuere consectetur est at lobortis.

Sincerely yours,
John

Properties Table

 HID Type Value

Email Hierarchy
Element

ID: 11

Recipient
Hierarchy
Element

Jane Doe

ID: 12

Recipient
Hierarchy
Element

Marc Doe

 ID: 13

11 date Fri Nov 30 12:23:08 2012

11 from John Doe

11 subject Scalable storage engine

11 body Dear Jane,

11

12 name Jane Doe

12 email jane@example.com

12

13 name Marc Doe

13 email marc@example.com

13

Development Department / Scalable Entity Storage

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 9: Email entity storage, storing each property (Type) of an object (HID) separately.

The most common operations that make use of updating a single property are:

• Setting a flag on an email;

• Marking it as read;

32

• Linking a reply to the original message.

These operations would execute with a minimal amount of data to be touched in the process.
However, when multiple properties of a message need to be updated, this structure will
require multiple rows in the properties table to be updated. The database will have to lock
them one by one in order to guarantee the write operation.

There are a few operations that benefit from an architecture that tracks single properties.
However, the most frequent operations are reading and writing the entire entity. As discussed
in detail in Section 2.2.2, reading a message requires all properties of the message to be read.
In order for this operation to perform well, the properties need to be retrieved with a minimum
of disk and network operations. In other words, the data needs to be stored near to each
other. Enforcing this requires a level of flexibility of a distributed database that could limit
our options heavily.

5.1.2 Entity stored as a blob

An alternative would be to store the complete entity as a document or binary large object
(blob), with all properties stored inside, as depicted in Figure 10. This would reduce the
overhead of storing separate rows per property, and makes sure that the data is always
written together. With each update or extension of the entity, the storage engine will rewrite
the complete object. In most storage engines, this would force the engine to place the object
as one data block, forcing it to write it sequentially. With both SSDs and HDDs this means
that the data is written and read very quickly. Another advantage of this data structure, is
the fact that the MAPI message object can be serialized or deserialized very quickly. Since
the headers of a message are stored in one blob, the replication process is also easier. The
client application would not have to query multiple servers, nor does the storage layer have
to be told which properties are related to replicate them to similar servers.

In the document / blob storage, it could occur that the object grew to a size that does not fit
to the same location as where it was previously stored. The storage engine will therefore find
a place where it can store the entity entirely; this might be out-of-order with the hierarchy id
order. With HDDs this would matter, as these disks would benefit of having all related data
stored sequentially, SSDs do not have this issue as they have a very good random read/write
performance.

Compared to the single row per property architecture where indexing the data is fast using
the transposed properties table, a blob or document structured database would have to index
the data differently to allow fast sorting of messages in folders. Blob structured databases
are not able to analyse the internal structure of messages. Alternatively, the messages could
also be stored as documents inside a document database. Some of the document databases

33

Entity storage as documents, v1

From: John Doe
Sent: Fri Nov 30 12:23:08 2012
To: Jane Doe
Cc: Marc Doe
Subject: Scalable storage engine

Dear Jane,

Duis mollis, est non commodo luctus, nisi erat porttitor ligula,
eget lacinia odio sem nec elit. Nullam quis risus eget urna
mollis ornare vel eu leo. Donec id elit non mi porta gravida at
eget metus. Praesent commodo cursus magna, vel
scelerisque nisl consectetur et. Vestibulum id ligula porta felis
euismod semper. Duis mollis, est non commodo luctus, nisi
erat porttitor ligula, eget lacinia odio sem nec elit.

Cras mattis consectetur purus sit amet fermentum.
Maecenas faucibus mollis interdum. Fusce dapibus, tellus ac
cursus commodo, tortor mauris condimentum nibh, ut
fermentum massa justo sit amet risus. Fusce dapibus, tellus
ac cursus commodo, tortor mauris condimentum nibh, ut
fermentum massa justo sit amet risus.

Morbi leo risus, porta ac consectetur ac, vestibulum at eros.
Morbi leo risus, porta ac consectetur ac, vestibulum at eros.
Fusce dapibus, tellus ac cursus commodo, tortor mauris
condimentum nibh, ut fermentum massa justo sit amet risus.
Sed posuere consectetur est at lobortis.

Sincerely yours,
John

Email document / blob data structure

HID: 11 - Email document

{
 from: "John Doe",
 sent: "11/30/2012 12:23:08",
 to: [12],
 cc: [13],
 subject: "Scalable storage engine",
 body: ""
}

HID: 13 - Recipient document

{
 name: "Marc Doe",
 email: "marc@example.com"
}

HID: 12 - Recipient document
{
 name: "Jane Doe",
 email: "jane@example.com"
}

Development Department / Scalable Entity Storage

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 10: Email entity storage, storing each entity (HID) as a blob.

are very efficient in indexing the data. Unfortunately, the MAPI specification, as discussed in
Section 2.2, states that the folders should be sortable on a wide group of properties. Keeping
an index for all is too expensive, more details on this limitation and possible solutions are
further discussed in Section 5.4.2 and 5.4.3.

5.1.3 Conclusion

The performance problem, discussed in Section 4.1, is caused by the fact that a lot of data
segments are present in a groupware service, getting the best performance requires a lot of
IOPS. Although new storage devices offer tremendously higher IO performance than older
disks, the database structure should perform well with the IO constraint. Therefore, the
level at which the single row per property structure is built up is far too detailed and IO
consuming. Especially since most of the operations involve reading or writing the complete
message anyway. Writing documents or blobs at once puts the data on the same location on
disk, this protects the storage layer from writing a single document in fragments.

Even mechanical disks would perform better using this structure, as these disks perform
optimally when data is written sequentially, and by design of blob storage databases the data
is written this way. When new headers are added or some are removed, the internal structure
changes. However, in case of blob storage the database does not need to organize the data,
allowing it to write it sequentially. Therefore, there is less overhead when storing, reading,
and writing the properties. The replication process would gain from this structure as well,
as all related header data of a message can be replicated by replicating the blob. Reading all

34

the headers of a single message would be available with a single read request.

Reading and writing using this data structure requires less IOPS for normal message handling.
The built-in ability to list messages ordered by one of the properties does not outweigh the
constraints it introduces. Opting for blob storage requires designing another method to
construct an index of the messages, this is explained in Section 5.4.3. However, when two
concurrent write operations change some properties of the message, only one of them would
survive in most blob storage layers. If a Multi Version Concurrency Control (MVCC) type of
storage layer is chosen, the user or an automatic resolver could fix these conflicts, as discussed
in the literature survey [37].

5.2 Body storage

In this section, the characteristics of the body data are analysed per storage architecture to
compare them and decide which storage class would be able to serve the body data best.

When a message is delivered to the server, the body of the message gets written once.
Whereas, when a user is typing a new message, the body of the message gets updated every
couple of minutes, as the message is saved as a draft. In both cases, the likelihood that a
message gets updated once it is sent or received is very small. Only other data types that are
also stored in the database next to messages, such as calendar events, could see some updates
over time. But even in this case, the updates are most likely taking place in the headers of
the object, for example to move an appointment.

In other words, leaving aside possible files that are attached to a message, the body of a
message involves a lot of data that is rarely updated. Thus, the characteristics of the body
of a message:

• Some updates when it is still relatively new;

• Likelihood that the body gets updated decreases rapidly over time;

• And the body of the message contains a lot of data compared to the headers.

Naturally, all the characteristics of a body point to blob storage. Since Section 5.1 concluded
that the headers should be stored as a blob to perform optimally, the body could be included
in the same blob as the headers, or stored in a different blob as the characteristics are different.
The advantages and disadvantages of these are further discussed in that order.

5.2.1 Headers and body as one blob

Section 2.2 showed that the headers of a MAPI message contain a truncated version of the
body. This truncated body is stored for client applications that show a short summary

35

of a message directly from inside the list view. Instead of keeping this truncated version,
the complete body of the message could be included in the blob that contains the headers.
Putting the body and headers in the same blob allows the server to read and write all data
related to one message in one operation. When the data is replicated it is ensured that the
complete message is available at the responsible servers.

5.2.2 Body as a separate blob

The access and update characteristics of the headers and body differ tremendously. The
headers of a message are read at least as often as its body. Additionally, the headers are read
to list and sort the messages, whereas the client only retrieves the full body of a message when
the message is opened. The headers of a message face an average of 1.7 write operations over
time, as discussed in Section 2.1, while the body does not. When both are stored in the same
blob, the body data would have to be written every time the headers get updated as well.
Additionally this involves more data in the replication process, as the update involves the
complete blob. Therefore, to utilize the relaxed requirements of the body, the body should be
placed in a separate blob. Having both stored in separate blobs allows the body to be stored
in a long term blob storage that faces a lot of reads and inserts, with some rare updates.
Furthermore, since headers face more updates, keeping them small makes it cheaper to keep
track of older versions, allowing the user to solve write conflicts.

To relax the system even further, the body can easily be cached, as it gets updated rarely and
updates are most likely performed by the user itself. Compared to reading headers, the read
operation of bodies may take a bit longer as well, but should still be in acceptable ranges in
terms of performance.

5.2.3 Conclusion

When comparing the read and write operations of headers and bodies, the differences in
requirements are very clear. As bodies face a lot less read and write operations, as discussed
in Section 2.1 and5.2.2, the best way to take advantage of these relaxed requirements is to
store the bodies into a separate blob.

5.3 Attachment storage analysis

In the current Zarafa architecture, the attachments are stored inside the database or on the
local file system of the server. As only one server is able to access the database at any moment
in time, and the disk is only locally accessible, this design has to be revised.

36

Attachments take about 81.5 per cent of the total storage, as was shown in Section 2.1.
Moving this data to an environment where multiple servers can access the attachments would
allow the database to be a lot smaller, and therefore easier to move around.

In this section several methods are discussed in detail. In the first section it discusses how
network shares could be used, followed by an analysis how a distributed file system could
serve as well. Last, but not least, the use of a globally accessible storage service as the target
location is discussed.

5.3.1 Using network shares

Putting each of the servers in a virtual private network, where each of the servers can access
the attachments stored on another server was one of the options considered. This would
require all servers to store the attachments on disk, setting up a shared network service and
each of the servers should be able to determine where exactly the attachments related to an
entity are stored.Zarafa Multi Server, LDAP divided across nodes, v4

Internet

Firewall and load-balancer

LDAP Server
Users node 1 Users node 2 Users node 3 Users node 4

LDAP Admin
determines division of

users across Zarafa nodes

Development Department / Scalable Attachment Storage

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 11: Using network shares to share the attachment data between the servers.

Advantages

• Transfer speed and latency: The advantage of this set-up is that each server in the

37

multi server set-up is able to connect to the other server very quickly, transferring a file
from one node to the other is very fast due to the local area network connection.

• Manageable: All data related to a single user is stored on a specific server. In case
a server starts to malfunction, only part of the cluster might go down. By setting-
up a primary/secondary replication strategy, faults can be limited to a single problem
domain.

• Development: No programming is required to implement this, accessing files on disk is
already available. The replication between two servers, however, would still need to be
implemented.

Disadvantages

• Syncing data: In case each user group is stored using a redundant server set-up, all
data need to be kept in sync between the servers inside that group. As soon as the
primary goes down, all data that have not been synced will become unavailable.

• No load balancing: Since the attachment data is stored on the same servers as the
database for that user group, it experiences the same loads. In other words, a group
where some users search a lot, might slow down the usage of attachments as well. In
order to load balance the users across other nodes, more data needs to be copied to the
other servers, all attachments and data in the database of the users that are migrated
to another server.

• Disk IO: Accessing attachments requires additional disk IOPS, therefore slowing down
the performance of the database server in case they both operate on the same disk.
However, adding dedicated disks with fast IO for database storage could simply solve
this.

5.3.2 Using a distributed file system

Another option is to set-up a distributed file system that is responsible for hosting all the
attachment data to the groupware server cluster. This would require a cluster of file servers
that together form the distributed file system. A distributed file system that has a single
access point and manages redundancy internally is preferred. The distributed file system
could be hosted on the same machines as the groupware servers, however, placing the file
servers on dedicated machines enables them to use more memory for caching and decreases
the amount of data that needs to be replicated in case of a failure.

Advantages

38

Zarafa Multi Server, with DFS for attachment storage, v1

Internet

Firewall and load-balancer

Distributed File System

Zarafa
Replicated

Node

Zarafa
Replicated

Node

Zarafa
Replicated

Node

Zarafa
Replicated

Node

Single Access Point

Development Department / Scalable Attachment Storage

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 12: Using a distributed file system to share the attachment data between the servers.

• Automated replication: The DFS is responsible for replicating all the data across its
nodes. In case a DFS node fails, all the data on that node need to be replicated to
the other nodes to bring the cluster back in a stable and fully replicated state. On
most DFS implementations this requires at least three replicas. How the replication
is implemented depends on the type of DFS, the best replication strategy would have
the redundant copies spread across all other nodes, not on a single other node. This
allows the cluster to replicate the data very quickly by involving all the nodes in the
replication process. In a large cluster, such a quick replication burst could replicate all
data of a single node in about three minutes, copying terabytes of data in parallel.

• Single access point: To access an attachment, the server does not need to know where
the data is stored. A single access point does not necessarily mean that it would have
a single point of failure. Each server could, for example, connect to a random node in
the cluster until it fails, that node will redirect the requests if the data is hosted on
another node.

• Quick user migration: Since the attachment data is stored in a DFS, moving around
users does not involve copying the attachments from one server to the other. Allowing
the user data to be moved around quicker.

• Low latency: Although not as fast as true local storage, storing the files in the same

39

data centre allows a low latency and high throughput access to the attachment files.

• Costs: By choosing your infrastructure wisely, the DFS could be cheaper than a globally
accessible storage service.

Disadvantages

• Extra cluster of servers: For performance, a dedicated cluster that hosts the DFS would
be preferred. This requires more dedicated hardware to host the DFS.

• Management: The servers will need an administrator to manage it, since you add more
machines, the probability that one fails increases.

• Scalability: The administrator will need to add more nodes and disks in order for the
cluster to scale.

5.3.3 Globally accessible storage

Related to the idea of a DFS, the servers could also connect to a scalable storage platform
that offers cloud storage on the Internet. Using a scalable storage platform allows all the
servers to access the same data. Since the data is hosted elsewhere, the replication and
administration of the platform do not need to be managed. This eases the implementation
and allows the administrators to focus on the scalability of the groupware servers, leaving
the scalability of the attachment storage to a third party.

Advantages

• Fully replicated: The replication process is managed by the third party that offers the
storage service.

• Load balancing: Depending on the storage service, the data is automatically load bal-
anced across the nodes at the third party, this results in a higher performance for files
that are accessed more frequently.

• Scalability: This solution automatically scales with the growth of the cluster.

• Pay for usage: Storage is only paid for as soon as it is used. Using the storage layer
from the start involves no start-up costs, therefore, it is much cheaper to use in the
beginning phase.

Disadvantages

40

Zarafa Multi Server, Scalable Storage by third party, v2

Internet

Firewall and load-balancer

Scalable Storage
platform of third party

REST API, Attachment
Storage hosted by third party

Development Department / Scalable Attachment Storage

Send FeedbackSend Feedback Help Help

Edit 100% ExitSaveSave

Figure 13: Using a globally accessible storage service to store all attachments on.

• Costs: As soon as you store a lot of data, the costs of managing it in-house will be
lower than the extra price for the service the third party offers.

• Latency: To retrieve an attachment, the server needs to open a connection to the third
party storage provider, since the data might not be stored in the same data centre as
the groupware servers, this involves additional latency per attachment.

• Lock-in: As the amount of data stored inside the storage service increases, it will
become difficult to transfer all the data to another storage provider.

• Security: In case the security of the storage provider is breached, all the attachment
data could become accessible.

5.3.4 Conclusion

Considering the limitations and advantages of the shared network storage, distributed file
system, and globally accessible storage, the last option as a service allows immediate perfor-
mance at a fraction of the costs of hosting it on dedicated hardware. A globally accessible
storage as a service enables unlimited storage of attachments, with a single point of access
that scales, and balances the load internally. Moving the attachment data to this storage
service solves the scalability and load-balancing issues for 81.5 per cent of the data, in terms

41

of total size. However, which service provider is chosen is a very important decision that is
not easy to change later on. Which service provider could offer such a service is analysed in
Section 6.3.

5.4 Listing messages

The ability to create a sorted list of the messages in a folder is dependent on the choice of
the properties data structure of the messages.

With the single row per property the transposed properties table, as described in Section 2.2.2,
the database could sort all messages in a folder quickly. For example, listing the messages in
the inbox on their date is a simple query, requiring only a few IOPS to store the rows that
contain the date property of the messages in the inbox. With blob storage, the database is
not aware of the internal layout, and can therefore not query them efficiently. With some
document databases, it is able to perform queries on the internal layout. The database must
keep an index to do this efficiently, this will be discussed further below.

5.4.1 Single row per property

Section 2.2.2 explains the data structure of the transposed properties table and how it allows
the server to list all messages in a certain order. The first query uses the transposed properties
table to retrieve the message order in that folder. Afterwards, another query will retrieve all
other headers of those messages, such that the client application is able to show the other
header fields in the index as well.

An advantage of this structure is its ability to sort new messages immediately when they have
been written to the database. A major issue here is the level on which data is written to the
database, as this structure requires the properties to be written individually. This involves
a lot of overhead in storage, and requires a transaction to perform the write operation. As
discussed in Section 5.2 of the literature survey [37], these types of transactions are not
scalable as they focus on consistency and partitioning.

5.4.2 Document structure

With a document structure that allows efficient querying of internal message properties, the
database engine would be able to sort the messages in the right order. However, keeping an
index for all properties of the messages requires a lot of storage and processing time at write
operations, as the database will need to determine where the message is placed on the list of
each of its indexed properties. Once the database has figured out where to put it, it needs to
list the message reference and property value in the index. As described in Section 2.2, the

42

data structure of MAPI allows 256 types of properties in its sort query, if one would keep an
index for each property, the database would have to perform 256 + 1 write operations. One
for the message itself, and one for each indexed property.

Considering the fact that the database would have to make sure its write operation does
not get lost, each write operation would have to lock the index it is working on until it
is finished. If the database would not take the write operation of the index seriously, the
message would be stored in the database, but no reference allows the client applications to
find it. In other words, a single write operation would require locking 256 indexes, one at a
time. The probability that multiple processes are using these as well increases rapidly. This
has serious consequences for the write performance and overall efficiency of the database
storage layer.

The problem with document structures that use the index functionality of its database, is
that the indexes need to be determined up front. While the properties that get sorted on
differs per user. When a document database is chosen, the most popular selection of indexes
need to be determined, all users that sort their folder using a different property require a lot
more resources in CPU and memory terms. As these need to be sorted on the first query,
keeping the index in memory as long as the user is connected, and updating it when new
messages arrive.

5.4.3 Blob structure

With a blob architecture, the database layer is not aware of the internal structure of the
messages. Therefore, the messages cannot be sorted by the database itself and have to be
tracked otherwise.

There are several possible solutions to deal with this limitation. The first would be to keep
track of the messages sorted on the sort property of the client, for as long as the client is
connected. Another option would be to keep track of the sorted messages in a separate blob
that is updated in an ACID manner. These two strategies are further compared below.

In-memory index The advantage of an in-memory index is that it is very quick to update.
The server could construct the index on the first query of that folder by retrieving all messages
and ordering them as requested. As all the data required when building an index is available,
this can easily be kept in memory. However, this requires some time to construct, especially
if there are a lot of messages in a folder. As this happens when the user opens the folder for
the first time, and gets slower over time, this will definitively be noticed by the end-users.
Besides, keeping the indexes while the users are connected will require memory that can be
utilized more efficiently in other use cases. Although updates can be parsed in-memory, it

43

still requires other processes to be locked out of the index while it is writing. Besides, when
a user requests another sort order, the server should either keep track of multiple in memory,
or sort the messages as requested.

Blob index Alternatively, the server could also store the sorted list of messages in the
database in a separate blob. Storing the index would make it available directly when the user
connects and opens a folder. This structure operates the same way as a document database
index, however, one major difference is that with a self-constructed index the property that is
used to sort on can vary per folder. Instead of keeping track of all 256 properties as indexes,
this structure would allow us to keep the most common sort views as an index. This structure
would require more storage and involve some latency when the index is requested, however,
the latency of a read request would by far outweigh the processing time required to sort
when in-memory indexing is used, and storing data on disks is a lot cheaper than keeping it
in memory.

By keeping track of a deferred update list, as described in Section 2.2.2, new messages can
be kept in a separate list to be processed later. Better yet, since the index of messages is
constructed outside of the database layer, the first time the user gets back to the folder, or
when a server has time to process them, the messages can be inserted in the sorted list. This
would allow messages to be delivered by writing it as a blob in the database, and adding it
to the deferred updates journal, requiring no locking on the indexes unless the user is online.
As discussed in Section 3.1 on the performance requirements, the message has to be delivered
in several hours, this sort and write operation can be delayed until the server has time to
catch up.

5.4.4 Conclusion

Keeping each property separately or using a document based index mechanism introduce high
costs to enable the flexibility of MAPI when sorting folders. Considering the requirements,
the best solution would be to use the blob index as its easier and cheaper. To decrease its
latency, the index could be cached in-memory on the server as well. This allows the server to
utilize the best of both worlds; fast retrieval of the index and fast updates. This architecture
lets the server decide which properties need to be indexed on a folder level, allowing the
server to efficiently balance the costs of storing an index versus generating it. Furthermore,
using the deferred update structure allows the server to prioritize index updates, postponing
deferred updates for users that do not seem to use the folder anyway.

44

5.5 Conclusion

The different characteristics of headers, bodies, and attachments play a major role to replicate
the groupware data to achieve a n+ 1 scalability.

The headers and body of a message are best stored as separate blobs in the database, or
even different databases as they have different requirements in terms of consistency and data
size. The blob structure decreases the level of detail, simplifying the replication process and
reducing operational costs.

However, since the headers are placed in a blob, an index needs to be created to enable fast
access to the list of messages in a folder. With a custom indexing written in blob form, the
flexibility requirement of MAPI to sort on any property is met at acceptable costs. Indexes
need to be created on the fly, and should be written to permanent storage in case it is accessed
frequently.

Attachments are best stored inside a globally accessible storage service. This eases the design
in terms of scalability and load balancing, as the service provider is able to deal with these
issues at a far bigger scale.

As this Section showed, the data structure determines which techniques are available to
replicate all user data, thereby partly answering the second question (Q2); the next section
continues to answer this question by covering specific replication implementations through
different database providers.

45

6 Storage comparison

The literature survey on online scalable and fail-safe data technologies [37] formed the fun-
dament for the research on databases that match the requirements listed in Section 3.2.
The scope of the research are databases that were presented in the literature survey, as well
other databases that were not covered due to their similarities, but are used frequently in
production environments. Based on the data analysis presented in the previous section, the
candidates that met most of the important requirements are: Cassandra, MongoDB, Riak,
Voldemort, and HBase, these are listed in no particular order.

6.1 Property storage solutions

In order to make a good selection of candidate data technologies, they need to meet the
requirements listed in Table 5. The list of requirements is based on the requirements stated
by customers, end-users, and system administrators of groupware solutions, as discussed in
Section 2.1. Based on the design as presented in Section 3, the list of requirements has been
extended with the technological requirements to realize this design.

Cassandra is an Apache licensed open-source key-row database supported by Datastax [6].
Various companies used it in production, including Facebook with more than 600 nodes and
120 TB of storage. Twitter, Cisco, and Reddit are some of the many companies that still
use Cassandra in production. The database allows unlimited number of columns per row,
each with a variable length. All data is distributed using a consistent hashing algorithm [38],
without the need of a central node to coordinate the cluster. Cassandra is Rack-aware, with
multi data-center support to guarantee uptime [23].

MongoDB is an AGPL open-source document-oriented database [1] developed and sup-
ported by 10gen. The data is serialized using a JSON data model, allowing a rich query
language with range requests, and indexing support. MongoDB supports master-slave repli-
cation for high availability, with support for location awareness data storage. Sharding be-
tween its servers is automatic, as long as the servers have enough resources to add more data
to their shards. However, adding new shard nodes to the cluster for write performance, or
adding more replica servers for increase read performance, requires a system administrator
to intervene [20]. Important note on MongoDB is the 16 MB limitation of the document
size [64].

Riak is an Apache licensed key-value store that is based on the paper of Amazon’s Dynamo
database [10, 24]. Basho Technologies is the main developer, offering support for its Enter-

47

Requirement Type MoSCoW
1 The	
 database	
 must	
 have	
 proven	
 history	
 of	
 success. Support Must
2 The	
 database	
 must	
 have	
 an	
 active	
 community	
 or	
 development	
 team. Support Must

3 The	
 database	
 must	
 be	
 able	
 to	
 store	
 blobs	
 of	
 20k,	
 such	
 that	
 it	
 can	
 store	
 complete	

entries	
 at	
 once. Storage Must

4 It	
 must	
 have	
 a	
 replication	
 mechanism	
 built-­‐in. Replication Must
5 It	
 must	
 guarantee	
 at	
 least	
 three	
 replicas	
 for	
 each	
 entry. Replication Must

6
The	
 database	
 must	
 randomly	
 distribute	
 the	
 slaves	
 for	
 each	
 entry	
 written,	
 such	
 that	

all	
 the	
 data	
 on	
 one	
 server	
 is	
 replicated	
 on	
 a	
 random	
 set	
 of	
 other	
 servers,	
 not	
 just	
 a	

fixed	
 few.

Replication Must

7 When	
 a	
 new	
 server	
 is	
 added,	
 it	
 must	
 bring	
 it	
 up	
 to	
 speed	
 without	
 decreasing	
 the	

replication	
 factor.

Management,	

Replication Must

8 The	
 database	
 must	
 be	
 aware	
 of	
 the	
 load	
 on	
 its	
 nodes,	
 such	
 that	
 the	
 average	
 load	

can	
 be	
 determined. Management Must

9 It	
 must	
 detect	
 failure	
 of	
 one	
 of	
 the	
 servers	
 instantly. Management,	

Replication Must

10 The	
 database	
 should	
 have	
 an	
 option	
 to	
 get	
 professional	
 support. Support Should

11
These	
 blobs	
 should	
 be	
 efficient	
 with	
 append	
 requests,	
 in	
 other	
 words,	
 the	

database	
 should	
 be	
 able	
 to	
 write	
 10	
 percent	
 more	
 data	
 to	
 the	
 item	
 without	

requiring	
 more	
 processing	
 time	
 than	
 a	
 normal	
 in-­‐place	
 update	
 request.

Storage,	

Performance Should

12 Write	
 operations	
 that	
 were	
 queued	
 to	
 a	
 failing	
 server,	
 should	
 fail	
 too,	
 unless	
 the	

minimum	
 requirement	
 of	
 two	
 replicas	
 is	
 met.

Management,	

Replication Should

13 The	
 database	
 should	
 have	
 incremental	
 scalability	
 properties,	
 adding	
 a	
 new	
 node	

should	
 be	
 as	
 easy	
 as	
 dropping	
 one

Management,	

Performance Should

14 It	
 should	
 be	
 able	
 to	
 detect	
 hot	
 zones,	
 moving	
 the	
 data	
 from	
 those	
 servers	
 to	
 other	

locations	
 automatically. Magagement Should

15 If	
 the	
 database	
 requires	
 master	
 nodes	
 to	
 organize	
 everything,	
 the	
 master	
 should	

have	
 its	
 own	
 redundant	
 replica	
 as	
 well. Replication Should

16 The	
 master	
 server	
 should	
 be	
 able	
 to	
 recover	
 its	
 state	
 when	
 all	
 masters	
 fail. Replication Should

17 When	
 new	
 data	
 is	
 accepted,	
 it	
 should	
 guarantee	
 that	
 it	
 is	
 written	
 to	
 at	
 least	
 two	

nodes. Replication Should

18 When	
 a	
 new	
 server	
 is	
 added,	
 the	
 network	
 should	
 have	
 balanced	
 the	
 data	
 across	

the	
 nodes	
 within	
 24	
 hours. Replication Should

19 New	
 servers	
 should	
 be	
 able	
 to	
 help	
 with	
 the	
 load	
 increase,	
 within	
 half	
 an	
 hour. Performance,	

Replication Should

20 Write	
 requests	
 should	
 take	
 at	
 most	
 500	
 ms. Performance Should
21 Read	
 requests	
 should	
 take	
 at	
 most	
 200	
 ms. Performance Should

22 The	
 write	
 requests	
 should	
 be	
 non-­‐blocking,	
 such	
 that	
 multiple	
 processes	
 can	
 write	

to	
 the	
 same	
 data	
 entry	
 if	
 necessary. Performance Should

23 It	
 should	
 be	
 able	
 to	
 operate	
 on	
 commodity	
 hardware,	
 in	
 other	
 words,	
 it	
 should	
 be	

able	
 to	
 work	
 while	
 facing	
 continuous	
 failures	
 across	
 the	
 cluster.

Replication,	

Storage Should

24 Data	
 should	
 be	
 consistent	
 in	
 at	
 most	
 five	
 minutes. Replication Should

25
It	
 could	
 replicate	
 the	
 data	
 of	
 a	
 complete	
 server	
 in	
 15	
 minutes,	
 moving	
 it	
 to	
 the	

existing	
 servers	
 in	
 the	
 cluster,	
 such	
 that	
 data	
 loss	
 due	
 to	
 failure	
 of	
 multiple	
 servers	

is	
 less	
 likely.

Replication,	

Performance Could

26 It	
 could	
 add	
 new	
 nodes	
 as	
 load	
 increases,	
 to	
 deal	
 with	
 load	
 spikes	
 fully	

autonomously. Management Could

27 It	
 could	
 create	
 more	
 replicas	
 for	
 hot	
 entries,	
 such	
 that	
 the	
 load	
 is	
 spread	
 across	

multiple	
 servers	
 automatically.

Management,	

Performance Could

28
In	
 the	
 replication	
 process,	
 if	
 the	
 database	
 could	
 recognize	
 the	
 location	
 of	
 the	

server,	
 i.e.	
 which	
 rack	
 it	
 is	
 in,	
 and	
 is	
 able	
 to	
 make	
 two	
 servers	
 in	
 the	
 same	
 rack	
 less	

likely	
 to	
 become	
 each	
 other's	
 replication	
 server	
 for	
 data	
 served	
 is	
 a	
 pre.

Replication,	

Management Could

29 It	
 would	
 be	
 efficient,	
 if	
 the	
 database	
 supports	
 range	
 queries	
 based	
 on	
 the	
 primary	

key	
 of	
 the	
 entries. Storage Could

30
If	
 it	
 supports	
 range	
 queries,	
 it	
 should	
 place	
 the	
 entries	
 near	
 to	
 each	
 other	
 in	
 terms	

of	
 primary	
 key	
 distribution,	
 such	
 that	
 the	
 query	
 only	
 needs	
 the	
 least	
 amount	
 of	

IOPS	
 to	
 execute	
 it.

Storage,	

Performance Could

Table 5: The list of requirements for property storage

48

prise edition. Keys are distributed across a 160-bit ring, following a SHA1 based consistent
hashing [10, 11]. All Riak nodes are equal, no master node is required. Riak is eventual
consistent, with built-in methods to detect and resolve collisions automatically. Read consis-
tency can be enforced per request, setting a minimum of nodes that should agree upon the
value.

Voldemort is inspired by Amazon’s Dynamo database [55], just like Riak. Voldemort has
been developed by LinkedIn to solve high-scalability storage problems, however, neither
LinkedIn, nor any other company is backing up Voldemort by offering support contracts.
Each server holds one or more partitions of the ring, these partitions are equally divided
without requiring a master node. It is able to balance the load by moving partitions if these
become hot zones, allowing both write and read operations to be scaled linearly.

HBase is based on the proprietary column-oriented BigTable project of Google, made avail-
able under the Apache license [7]. Just like BigTable, HBase runs on top of a distributed file
system, in this case the HDFS file system to distribute the data. It provides linear and mod-
ular scalability, with many contributing companies that offer support, like Cloudera [21]. All
data is automatically sharded with redundancy built-in to provide failover. HBase supports
atomic increments [57], with multi versioning as the underlying concurrent write resolver,
updates become new versions of the same object, only the last object is returned, which
is resolved at read time [58, 57]. HBase runs on top of HDFS, through this requirement,
HBase fully adopts all automated failure recovery, and location awareness features as built
in HDFS [58, 7]. This also includes automatic balancing of data between nodes to equalize
the load, as well as moving data out of hot-zones [63].

Impossible alternatives Databases such as Megastore and Google F1 have been analysed
as well, unfortunately these do not have an open-source counterpart available yet, using
the proprietary software is no option unfortunately as their developers are not offering it.
Megastore has been used as the database layer to store email data at huge scale. The article
of Google F1 looks very promising; unfortunately the system is not available nor any open-
source projects that are based on this engine. BigTable has an open-source counter-part
named HBase, although BigTable itself is not available.

The Dynamo database is Amazon proprietary, based on the pricing model of Dynamo it
would be unsuitable for use cases that require a lot or IOPS with 20KB blob values. Riak is
an open source alternative, based on the Amazon Dynamo paper [11].

Another database that has been looked into is CouchDB, but it does not meet the require-
ments, as it is designed to replicate single node data to multiple nodes [40]. However, the

49

size purpose of this research is to find a data store that scales far beyond anything that a
single node could manage.

6.2 Body storage solutions

The header data is split from the body data to optimize the write and read queries when the
header is updated or read in a batch. The header is read and written to far more often than
the body of the message, as was discussed in Section 5.1. However, for both blob objects a
key-value database would suffice, as long as it would know how to deal with long message
bodies. Therefore, the discussion for the header property storage solutions applies to the
body storage solutions as well.

6.3 Attachment storage solutions

In Section 5.3, the conclusion was drawn that the attachments were best stored on a cloud
storage provider. However, moving data to a cloud storage provider means that the provider
should meet up in terms of uptime, performance, availability, and scalability. Therefore,
in order to determine which storage provider to opt for, an analysis is presented including
the following five candidates, being: Amazon, Google, HP, Microsoft, and Rackspace. The
analysis compares the scalability of the providers, the throughput speed, the latency of the
provider, and how failure tolerant the cluster has proven to be. Based on these criteria, the
best candidate for storing the attachment data is selected.

6.3.1 Amazon S3

Amazon’s S3 platform is the biggest and most mature storage provider. As of June 2012,
Amazon S3 stores more than 1 trillion objects in their cluster [4]. Nasuni published an annual
report about the state of the different cloud providers that exist [49]. According to Nasuni,
Amazon is the second fastest storage provider in terms of writing files, with an uptime of
100 per cent during the test period of 31 days [49]. While S3 showed no errors while writing
data, the read process faced about 0.0018 per cent of read failures. Nasuni concluded that
the scalability within a container performs well, showing no degradations in performance if
a container was filled with millions of objects.

6.3.2 Microsoft Azure

Microsoft Azure performed best in terms of reading, writing and deleting files during the
Nasuni benchmarks [49]. With a 99.996 per cent up time during the benchmark tests, no

50

read or write errors, an average response time of about 500 ms, and just slight variations in
terms of processing time, the Azure storage service has proven to be mature [49].

However, some of their latest performance improvements are only available to new customers,
according to Microsoft’s own publication on this matter [46]. According to Nasuni, the cluster
scaled well, showing no significant performance degradation if the number of objects inside
a container increased.

6.3.3 Google

Nasuni’s availability tests, showed that the Google storage platform was the slowest during
the response time benchmark, although their uptime was 100 per cent. Throughout the tests
it showed no write errors, 0.0030 per cent read errors, and with increased container sizes it
scaled well.

6.3.4 Rackspace

Rackspace is one of the founding parties of OpenStack. The Rackspace storage service showed
performance spikes of 26.1 per cent, with 0.000001 per cent write failures, and 0.0012 per
cent read errors. Performance varied enormously during the availability tests, spiking from
about 900 ms to 1.9 seconds. The platform was online 99.962 per cent of the time through
the availability benchmarks. The service performed worse while more objects were added to
a single container, showing that the service is not linearly scalable in terms of objects inside
a single container [49].

6.3.5 HP

The cloud storage service provided by Hewlett Packard is based on OpenStack. During the
benchmark tests of Nasuni, the service replied 99.977 per cent of the time, with performance
variations up to 23.5 per cent [49]. Throughout the read and write tests the service returned
some errors, 0.00017 per cent in writing, and 0.0099 per cent while reading data. Like
Rackspace, the service did not scale very well, showing significantly slower performance when
millions of objects were stored.

6.3.6 Conclusion

Microsoft Azure has shown to be the best performing storage provider overall, especially the
stable performance that is delivered is outstanding compared to the other service providers.

51

Therefore, the proposed storage provider to work with is Microsoft Azure, as it scales well,
performs best of its class, and showed the least amount of performance variations.

6.4 Conclusion

In terms of the properties and bodies of email, several key-value databases have been matched
with a list of requirements to form a candidate list. In this analysis, databases like Cassandra,
Riak, Voldemort, and HBase have been discussed as the candidates to run tests on. The
benchmark tests for these databases are presented in the next section.

As presented in Section 5, the attachments of emails have different characteristics and could
be stored inside an external storage provider to move 81.5 per cent of the data outside
the cluster. Providers that were compared include Amazon S3, Microsoft Azure, Google,
Rackspace, and HP file storage. Of this subset, Microsoft Azure showed best performance in
tests performed by Nasuni [49].

52

7 Key-value benchmarks

In order to determine the database architecture to use, the databases discussed in Section 6.1
have been tested on their performance in reading, updating, and inserting data, as well as
their ability to recover from network failures and full node failures. Section 2.1 showed the
statistics on mail usage online, on average the body and headers of emails comprise around
26 KB of data. Since the headers are stored separately from the bodies, the databases are
tested with 10 KB of data per entity to simulate the storage of these data types.

The scenarios and the logic behind these, are both covered in the first section. Followed
upon this, is the section that explains the experimental setup, showing all the ins and outs
of the benchmark cluster, and why this has been set-up this way. Hereafter, the performance
results of each of the databases is showed one-by-one, covering MySQL Cluster, Cassandra,
Riak, Voldemort, and HBase, in that order.

7.1 Benchmark scenarios

The performance tests are executed on a three-node cluster and a six-node cluster, to de-
termine whether the database meets near-linear scalability. At the start of the performance
tests, the databases are filled with about twenty times more data than the nodes have as
memory. This forces the database to use the IO storage layer to store and retrieve the data,
allowing the test to simulate the massive amount of data accessed, where most of the data
queries are in segments that are not available in the cache of the database.

100% inserts The tests started with the insertion tests, immediately generating data for the
following test stages. In this test the performance degradation of the inserts were measured.

50% reads - 50% updates In this stage, the database is benchmarked with a 50 per cent
read, 50 per cent update test, this test stresses the database in terms of updates and reads,
one way or the other this will show where the logic of resolving conflicts resides, in the read
operation, write, or whether it is offloaded in a background process.

80% reads - 50% updates The test that followed executed 80 per cent read, 20 per cent
update queries to simulate the massive amount of reads and writes that would be required
for the headers of emails.

95% reads - 5% inserts To simulate reading bodies and receiving new emails, the database
is projected a workload to perform 95 per cent read queries, and 5 per cent inserts.

53

100% reads The last workload tests how the database will perform if there would only be
read operations fired at it.

Temporary network failure Once these tests have been performed on both clusters, the
six-node cluster is used to perform the failure tests. The failure tests start to test how the
database responds if a node suddenly becomes unavailable, but picks up a couple of minutes
later, simulating a network disconnect of one of the nodes. Facing an 80 per cent read, 20
per cent update workload to test whether the read, update, or both operations would show
increased latencies, during such a failure or recovery process.

Full node failure and recovery Followed by another test, in which a full node fails, and a
new node is inserted in the cluster to take over the load a few minutes after. This test used
the same workload profile as the temporary disconnect test.

7.2 Experimental setup

For this set of experiments, nine Amazon EC2 m1.xlarge instances were used. These machines
have 15 GiB of memory and provide high I/O performance. Using high-end machines for the
set-up makes it is less likely that there are more machines running on the same server that
hosts the virtual machine. The experiments used a dataset of about ten times the size of the
available memory, such that the performance of the IO layer would be visible. This simulates
the use of groupware data, in which the data does not fit in memory and is stored on disk as
well. The set-up cluster is further discussed in detail in Appendix A.

7.3 MySQL Cluster

Hypothesis: In theory, the MySQL Cluster allows scalable and fault-tolerant storage of
data. Separate SQL nodes are able to connect to the data nodes in the cluster to execute SQL
queries on this data. Due to this extra layer, the complexity of transactions increases, and
since the MySQL cluster is designed to be fully compatible with the normal MySQL database,
it is expected that the functionality comes at the cost of performance and availability, when
using the disk storage of this cluster.

Results: The latency results are presented in Figure 14, it shows that the MySQL Cluster
performs less optimal when nodes are added. However, the latency of both read and write
requests is quite low, the benchmark showed that even in a six-node cluster the read and
write requests are able to finish in about 20 ms. However, in terms of failure tolerance, the
database showed a lot of side effects when the cluster would try to recover from a node failure,

54

as is seen in Figure 15 and 16. With spikes up to 100 ms during recovery, and complete failure
of the cluster when the old node was replaced by a new one. Due to time constraints and
limited documentation on the recoverability, the cause of this crash has not been analysed in
depth.

0.1$

1$

10$

100$
10
0%

$In
se
rt
$

50
%
$R
ea
d$
/$5

0%
$U
pd

at
e$

80
%
$R
ea
d$
/$2

0%
$U
pd

at
e$

95
%
$R
ea
d$
/$5

%
$In
se
rt
$

10
0%

$R
ea
d$

La
te
nc
y(
(m

s)
(

MySQL(Cluster(

Read63$

Read66$

Write63$

Write66$

Figure 14: MySQL Cluster benchmark results: While inserting new data, the six-node cluster
performed better than its three-node cluster counterpart. Whereas the three-node
cluster had more throughput while performing update and read operations. The
graph shows that the difference is significant, especially while performing read
only operations. This shows some limitations in terms of the scalability of the
database.

4"

5"

6"

1"

10"

100"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250" 260" 270" 280" 290" 300" 310" 320" 330" 340" 350" 360" 370" 380" 390" 400"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

MySQL&latency&with&temporary&network&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"

Node"disconnect" Node"reconnect" Node"recovered"

Figure 15: Six node MySQL Cluster: Temporary node disconnect. The graph shows that the
performance is quite consistent while it endured a temporary disconnect of one of
the nodes. The latency increased from 20 ms to 35 ms during the failure. When
the node finished its recovery process, the responsibility hand-off caused a short
latency spike up to 156 ms. The light blue line shows that a node failed after one
minute, the recovery process started two minutes after. Full recovery of the node
is depicted by the blue line being drawn at the sixth node line after three minutes
of recovering.

55

4"

5"

6"

1"

10"

100"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500" 5000" 5500" 6000"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

MySQL&latency&under&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera<on"New"node"added"

Full"node"failure" End"of"formaCng"node" Crashed,"restar<ng"node" Crashed,"monitoring,"no"recovery"

Figure 16: Six node MySQL Cluster: Full node failure. According to the documentation of
MySQL Cluster, the database should be able to recover from a full node failure.
Unfortunately, after more than two weeks of figuring out why it fails, I decided to
leave the test as having failed and continue my efforts on the other databases. The
graph depicts one of the many attempts to restart the cluster after a node failure,
as the lines show, it failed to recover at each point where the line disappeared.
The light blue line shows the recovery process and where it restarted, as this line
shows the recovery.

Strengths and limitations: A major strength of the MySQL Cluster is its ability to setup
a single database cluster that is able to perform complex SQL queries, as well as execute
key-value queries directly on the subsystem used by the SQL node. The scalability of the
two layers, being the data nodes and query nodes, are defined separately, allowing the cluster
to add additional query nodes if the a temporary spike in queries occurs. While running the
benchmark, the cluster crashed many times with a very generic error message, “Table is Full”.
According to the documentation [51], the error could be caused by several error scenarios.
After researching all the available information on this topic, the cause of the error was the
use of a blob field in the database to store data. Apparently, the cluster saves the first 256
bytes of each blob or text field in memory, while storing the rest on disk [53]. Translated to
the email domain, storing 256 bytes per record in memory is a lot, per one thousand users
this would require about 9 GB of additional memory per year, leaving spam messages out of
scope. Alternatively, the blobs could be segmented into multiple varchar columns, however,
the limit for each row is set to 14 KB of data [51]. As the average body size is determined to
be 10 KB, discussed in Section 5.2, some emails might be too big to store in a single record.
During the configuration process, two size limits had to be predefined. First, it required to
add log files and data files manually to the cluster, these are required to store the records
in. And second, the maximum amount or rows should be defined. These both show that the
cluster is not built to be scalable in terms of the amount of data.

Conclusion: The hypothesis did not hold, the MySQL database became slower as more
nodes were added due to the complexity, however, the cluster was unable to recover after a
full node failure occurred.

56

7.4 Cassandra

Hypothesis: Cassandra is designed to perform best on write operations with extreme through-
put characteristics. It is completely decentralized, with advanced redundancy and failover
support. Hundreds of nodes and hundreds of terabytes of data are no problem for Cassandra
in terms of scalability. Since Cassandra is designed to determine the correct value on read,
the read operations will most likely be a lot slower than write operations.

Results: Figure 17 shows that the database performs very well write operations, with a
latency around 1 to 2 ms. Reading data, however, requires about 65 to 80 ms per request.
Although this is still acceptable in terms of the performance, when a node failure occurs, as
is depicted in Figure 18, the latency can spike up to 180 ms. In terms of full node recovery,
Cassandra is the winning party, it was the only database that recovered a full node in less than
1200 seconds during the tests, shown in Figure 19, whereas other database could easily take
about 9000 seconds or more. Surprisingly, the write performance faced the most performance
hits while a new node was in the recovery process, with some requests taking 180 ms, whereas
reading did not take longer than 100 ms in this process.

0.1$

1$

10$

100$

10
0%

$In
se
rt
$

50
%
$R
ea
d$
/$5

0%
$U
pd

at
e$

80
%
$R
ea
d$
/$2

0%
$U
pd

at
e$

95
%
$R
ea
d$
/$5

%
$In
se
rt
$

10
0%

$R
ea
d$

La
te
nc
ty
((m

s)
(

Cassandra(

Read63$

Read66$

Write63$

Write66$

Figure 17: Cassandra Benchmark Results: The fact that Cassandra is built to write a lot
of data is clearly shown in this graph. Read operations determine the latest ver-
sion, and therefore require more time to execute. With writing data the difference
between the three and six-node cluster is not significant. With reading, the com-
munication overhead to resolve which version is the latest limits the throughput
for the six-node cluster a bit.

57

4"

5"

6"

1"

10"

100"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000" 1100"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Cassandra&latency&with&temporary&network&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"

Node"disconnect" Node"reconnect" Node"recovered"

Figure 18: Six node Cassandra Cluster: Temporary node disconnect: Throughout the recov-
ery process of Cassandra, the write process was able to perform at a consistent
rate. The read, however, showed a couple of peaks that took about ten times
longer than it normally would.

4"

5"

6"

1"

10"

100"

0" 500" 1000" 1500"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Cassandra&latency&under&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera:on"

New"node"ready"New"node"added"Full"node"failure"

Figure 19: Six node Cassandra Cluster: Full node failure: Noteworthy, are the spikes in up-
date latency at the beginning, these map directly on top of the read latency spikes
that occurred rhythmic throughout the tests. Outstanding, was the performance
of Cassandra to recover a node that was lost, as soon as a new node was added, the
replicas copied the data concurrently to the new node, taking around 17 minutes
to complete a full copy of about 20 GB.

58

Strengths and limitations: Datastax, the group behind Cassandra, provided very clear per-
formance instructions, with a special segment on tuning the performance on virtual instances
as well. The benchmark clearly showed that the conflict resolving logic is placed in the read
operation, making it fairly unstable in terms of the required latency. The write operation,
however, was very consistent throughout the benchmarks. The three-node cluster was able
to perform read operations more quickly than the six-node cluster, as it needs to retrieve the
latest updates on all the nodes, but as the cluster is bigger it experiences more concurrent
operations, increasing the overhead on the read operations.

Conclusion: The hypothesis did hold, the Cassandra cluster clearly showed that the database
performs best with write operations, even when failures occur.

7.5 Riak

Hypothesis: Riak supports guaranteed writing [10], ensuring that each write operation will
be performed. Riak uses vector clocks to achieve this, allowing a resolver algorithm to merge
the write operations if multiple concurrent writes occurred. In terms of availability, no
management nodes are required, as all nodes are equal in Riak. This improves the reliability
of the cluster, as there is no single point of failure. Riak is easy to scale up, and reaches an
almost linear performance increase when new nodes are added [10].

Results: Riak performed very well throughout the tests. Read operations were almost
twice as fast as write operations, where write operations took around 20 ms to complete, as
is depicted in Figure 20. Even with 80 per cent reads, 20 per cent updates, the database
was able to execute read requests in 7 ms on average. In case of a disconnected node, the
read operations were executed with a stable average latency of 8 ms. The write performance
did notice the disconnect though, its latency spiked up to 350 ms, with an average of 75 ms.
With a full node failure, the maximum read latency measured was 30 ms, with an average
of 7 ms, as is shown in Figure 22. The recovery process degraded the performance to write
data, latency degraded up to 375 ms, with an average of 43 ms.

Strengths and limitations: A major strength of Riak was its documentation, it covered
all aspects from failure of nodes, expanding the cluster, and even documentation how to
perform benchmark tests. Furthermore, the developers behind the database wrote detailed
performance instructions. However, the topic of replacing a failed node with a new node was
not completely clear, through some extra research on this matter and trial and error the test
that includes node failure succeeded. The YCSB tool crashed while performing node failure
tests, main reason for this was the inability of the connector to recover from executing requests

59

0.1$

1$

10$

100$

10
0%

$In
se
rt
$

50
%
$R
ea
d$
/$5

0%
$U
pd

at
e$

80
%
$R
ea
d$
/$2

0%
$U
pd

at
e$

95
%
$R
ea
d$
/$5

%
$In
se
rt
$

10
0%

$R
ea
d$

La
te
nc
y(
(m

s)
(

Riak(

Read63$

Read66$

Write63$

Write66$

Figure 20: Riak Benchmark Results: Except for inserting new data, Riak performed better
with each of the operations in the six-node cluster, compared to the three-node
cluster. Riaks design to focus on well performing read operations is clearly visible
in the graphs. The write performance of this database is well below 30 ms for all
of the operations.

4"

5"

6"

1"

10"

100"

1000"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250" 260" 270" 280" 290" 300" 310" 320" 330" 340" 350" 360" 370" 380" 390" 400"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Riak&latency&with&temporary&network&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"

Node"disconnect" Node"reconnect" Node"recovered"

Figure 21: Six node Riak Cluster: Temporary node disconnect: Throughout the temporary
disconnect tests, the read latency was around 10 ms. With the write operation,
the failed connection to one of the nodes caused some of the update requests to
last about 400 ms, on average the write latency was around 100 ms.

60

4"

5"

6"

1"

10"

100"

1000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500" 5000" 5500" 6000" 6500" 7000" 7500" 8000" 8500" 9000" 9500" 10000" 10500" 11000" 11500" 12000" 12500" 13000" 13500"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Riak&latency&under&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"New"node"added"

Full"node"failure" New"node"ready"

Figure 22: Six node Riak Cluster: Full node failure: A full node failure resulted in the same
behaviour as a temporary node disconnect. The write performance takes most of
the hit, with a few spikes that remain below 300 ms in terms of latency. There
was some turbulence in the read performance around 6500 seconds to 7500, after
this recovery period the latency was very consistent at around 10 ms.

on a failed node. Through some code changes in the connector used in YCSB, the benchmark
tool was able to operate while enduring failures. Although the performance degraded quite
a lot while trying to recover the failed or disconnected nodes, the performance only caused
write operations to slow down, whereas read requests executed stable like no failure had
occurred.

In Riak, it is possible to specify the replication factor, which by default is set at 3. However,
according to the documentation of Riak, setting a replication factor does not mean that the
data is replicated to specifically that number of different nodes [12]. Especially, if a small
cluster is used, the changes are high that some of the data might be replicated less than that.
Statistically speaking, this would be no issue in a large cluster, but it is something to be
aware of.

Conclusion: The hypothesis did hold, the Riak nodes performed better when more nodes
were used. Scaling up was as easy as booting new Riak nodes.

7.6 Voldemort

Hypothesis: The way Voldemort uses versioning to resolve concurrent write requests, the
database is most likely performing best on write and update operations, forcing read requests
to deal with the resolving operations, also known as read-repair [55]. Since there is no master
required, and it supports automatic replication and balancing of data across the cluster, this
key-value database would be suitable for high availability workloads, specifically those who
require non-blocking write operations.

61

Results: With the exception of 50 per cent read and 50 per cent write operations, the
cluster performed extremely well. Read and write operations both finished in about 10 ms
on average, however, when the cluster got bigger the performance did degrade noticeably, as
can be determined in Figure 23. In contradiction to the hypothesis, the read performance of
the cluster was a bit faster than the write performance. Both by far meet the performance
requirements as stated in Section 3.1. In terms of scalability, the cluster scales nearly linearly
when more nodes are added, this is a big advantage showing that the overhead of adding
more nodes is almost neglectable.

When the cluster experienced failures, the performance degraded a bit, with spikes to about
200 ms on a full node failure, shown in Figure 25. Recovering the node took a lot of time
compared to the other clusters, however, with a few outliers, the performance of the cluster
stayed well below the 50 ms line. With a temporary node disconnect, shown in Figure 24 the
cluster recovered steadily as well.

0.1$

1$

10$

100$

10
0%

$In
se
rt
$

50
%
$R
ea
d$
/$5

0%
$U
pd

at
e$

80
%
$R
ea
d$
/$2

0%
$U
pd

at
e$

95
%
$R
ea
d$
/$5

%
$In
se
rt
$

10
0%

$R
ea
d$

La
te
nc
y(
(m

s)
(

Voldemort(

Read63$

Read66$

Write63$

Write66$

Figure 23: Voldemort Benchmark Results: Comparing the three and size node clusters, the
operations appear to perform a bit worse at scale. On average, Voldemort is very
well performing in terms of read and write operations. A test at larger scale should
be executed to determine the true scalability limit of this database, due to resource
constraints these tests have been limited to at most six nodes.

Strengths and limitations: In order to make Voldemort perform at its best, the cluster
was set-up using some performance instructions for running Voldermort on EC2 instances as
written down by True [62] in 2010. The results showed that the performance degradation,
while it experiences failures, is neglectable. Although the cluster scaled in a linear fashion,
the configuration by far does not. In order to add nodes to the cluster, the configuration files
of all the cluster nodes had to be updated to discover the new node. This requires all nodes

62

4"

5"

6"

1"

10"

100"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250" 260" 270" 280" 290" 300" 310" 320" 330" 340" 350" 360" 370" 380" 390" 400"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Voldemort&latency&with&temporary&network&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"

Node"disconnect" Node"reconnect" Node"recovered"

Figure 24: Six node Voldemort Cluster: Temporary node disconnect: The performance of
the cluster was very consistent, even though one of the nodes temporary lost his
connection with the rest of the cluster.

4"

5"

6"

1"

10"

100"

1000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500" 5000" 5500" 6000" 6500" 7000" 7500" 8000" 8500" 9000" 9500" 10000"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

Voldemort&latency&under&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera?on"

Full"node"failure"
New"node"added"

New"node"ready"

Figure 25: Six node Voldemort Cluster: Full node failure: The read and write throughput of
Voldemort are outstanding, except at the start of the node recovery process, the
read performance averaged around 20 ms, whereas the write operations faced a
latency of about 28 ms. Setting up a cluster and the manual tasks involved while
performing recovery tasks do not favour the database.

63

to be instructed to find the new node, instead of an automatic discovery of nodes, making
auto provisioning of resources a difficult task. The later option has been put on the agenda
of the Voldemort development team for years now [55], why this has not made a release yet
is unclear.

The available documentation of Voldemort is very brief and unstructured, while community
support and examples are lacking as well. This is a very important aspect, as these are
key to a good integration. With limited resources on documentation, the platform is not
a good candidate to integrate, especially since there is no company backing the product
either. The connector integrated into the YCSB did not support multi-threaded access to
the cluster, causing concurrent write operations to fail when they update the same record.
In order to perform the benchmarks, the connector has been improved. Rewriting part of
the connector showed that there is no clear documentation how to solve conflicts, forcing an
in-depth analysis of the source code to determine the real cause of this problem.

When a node becomes completely unavailable, the default implementation of the connector
is to wait and retry, blocking the client thread several minutes before giving up [27]. This can
be resolved, but requires some additional development work before it would be suitable for
production usage. Another issue with Voldemort is its inability to rebalance data automati-
cally, possible solutions have been researched by Gao et al. [31], however, since its publication
none have been implemented yet.

Conclusion: The hypothesis did not hold, throughout the tests its write operations were
slower than read operations most of the time. While failures occurred, the read operations
performed more consistently than write operations as well.

7.7 HBase

Hypothesis: HBase has proven track record in large-scale data storage on top of a Hadoop
cluster. As concluded in Section 6.1, the database is built to utilize the sequential write
performance of HDFS, therefore this database will perform very well during write operations,
at the cost of slower reads where data needs to be analysed to determine the latest version.
The availability and failure tolerance of this cluster are very good, as it is built on top of
Hadoop. Considering that it is designed to perform well with writing data, it would be a
good candidate for writing data logs to.

Results: The results showed that the HBase is write focused, in fact, writing was more than
10 times faster than reading in most scenarios, as is shown in Figure 26. The differences
between the two were even further apart when the cluster endured a failure. Reading data

64

is just within the boundaries, but especially when the cluster experiences failures, the read
performance degrades with latency peaks up to 580 ms. The latency measurements when
failures occurred are depicted in Figure 27 and 28.

0.1$

1$

10$

100$

10
0%

$In
se
rt
$

50
%
$R
ea
d$
/$5

0%
$U
pd

at
e$

80
%
$R
ea
d$
/$2

0%
$U
pd

at
e$

95
%
$R
ea
d$
/$5

%
$In
se
rt
$

10
0%

$R
ea
d$

La
te
nc
y(
(m

s)
(

HBase(

Read63$

Read66$

Write63$

Write66$

Figure 26: HBase Benchmark Results: Like Cassandra, HBase is a database that favours
write operations in terms of performance, the graph depicts this clearly. In a
larger cluster, the read operations take more time to decide on the latest value.

4"

5"

6"

0.01"

0.1"

1"

10"

100"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100" 110" 120" 130" 140" 150" 160" 170" 180" 190" 200" 210" 220" 230" 240" 250" 260" 270" 280" 290" 300" 310" 320" 330" 340" 350" 360" 370" 380" 390" 400"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

HBase&latency&with&temporary&network&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera@on"

Node"disconnect" Node"reconnect" Node"recovered"

Figure 27: Six node HBase Cluster: Temporary node disconnect: The write throughput was
extremely high with HBase, even in the event that a node disconnected, the highest
latency measured for writing was still lower than 2 ms. The latency while reading
data is a bit higher, this was measured at around 30 ms on average.

Strengths and limitations: If writing data would be the most important performing oper-
ation, with a stable average write latency far below 1 ms HBase would be the clear winner.
However, as read performance is most important in the case of groupware data, with contin-
uous failures faced by large clusters this database is not a good candidate. A major strength
of HBase is its abstraction, since it runs on top of Hadoop, it is able to build on top of the
failure tolerance logic of Hadoop. By design, another cluster runs ZooKeeper to monitor the
usage of the Hadoop cluster resources. This allows nodes to connect to the HBase cluster

65

4"

5"

6"

0.01"

0.1"

1"

10"

100"

1000"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500" 5000" 5500" 6000" 6500" 7000"

N
od

es
&

La
te
nc
y&
(m

s)
&

Time&(seconds)&

HBase&latency&under&failure&

Read"Latency"(us)" Update"Latency"(us)" Nodes"in"opera>on"

New"node"added"
Full"node"failure"

New"node"ready"

Figure 28: Six node HBase Cluster: Full node failure: Due to the logarithmic scale, the write
performance looks very instable. With a few exceptions, the HBase database
performed all of the write operations within 5 ms. Reading data did not perform
that well, when the node started its recovery process, the read operations took
around 400 ms to complete, whereas on average the read operations took about
57 ms to complete.

through a simple single point of entry without creating a single point of failure, as ZooKeeper
itself is highly available as well. HBase allows new nodes to deal with the load without a
single restart, just letting the node join the cluster is enough to get it configured and running.
However, there exists a lot of documentation on the Internet that is out dated and not fully
compatible with the latest version of the HBase cluster. If one would use a popular Linux
distribution such as Red-Hat Enterprise Linux, the installation process would be fairly easy,
as an automatic installer for clusters exists. However, with the benchmarks, the Amazon
Linux AMI was used as the Linux distribution, as this distribution is optimized to perform
on top of provisioned EBS devices used during the test.

Conclusion: The hypothesis did hold, the write performance was outstanding, especially in
comparison when compared to the read latency. These characteristics would fit perfectly to
write data logs to.

7.8 Conclusion

The benchmark results showed clear differences in the structure and performance of the
databases. The experience with setting up the databases and performing the different bench-
mark scenarios gave a lot of insights in the flexibility of the database, how well it was docu-
mented, and whether the database supports failover natively or a connector should implement
this logic.

In short, MySQL Cluster would be a good candidate if the cluster were relatively small,
allowing complex SQL queries to be executed on the data. Cassandra and HBase showed
outstanding write performance, even in the event of failure. Whereas, Riak and Voldemort
covered the other segment, where read operations are most important to perform well.

66

8 Proposed solution

With the insights acquired in Sections 5, 6, and 7, a proposed solution to store groupware
data, across multiple servers that together behave like one robust service provider, allowing
scalability in the order of n+ 1 is given. In other words, this section uses the answers to the
sub questions to answer the main research question of this thesis. The fifth sub question (Q5),
that questions how a cluster could operate fully autonomously, achieving scalability, failover,
and load balancing has not been answered yet; this topic will be discussed throughout this
section.

8.1 Architectural design

Following the requirements discussed in Section 3, the proposed architectural design entails
multiple clusters of servers to meet these requirements. These clusters are depicted in Fig-
ure 29, the clusters are coded with letters to ease referencing them.

Clients are able to use the Web Client or their own client software to access their email. The
web servers host the Web Client in cluster A. All web-based sessions will access the email
service like a MAPI client would. In case the user uses their own MAPI compatible client,
such as a desktop application or a mobile device with an email client installed, the client will
connect directly to cluster B through the MAPI protocol.

Since MAPI requires the server to keep track of the client state, each user is assigned to a
server that will keep track of this state as long as the client is connected. Cluster B is able to
track which server is responsible for the user that connected. The servers in cluster C holds
this session data.

The Zarafa load balancer cluster, depicted in cluster B, is responsible to track the state and
redirect clients to the right servers. The nodes in this cluster keep a cache of the state of the
nodes in cluster C, on failure this is easily recovered by querying the nodes of that cluster.
The Zarafa mail servers, depicted in cluster C, keep the state of the clients that connected.
This state includes an index for the folder that the user is viewing at this moment, as well as
caching of mails and folder attributes. All of this data is recoverable by retrieving the data
from the database layer, or by forcing the clients to reconnect; the reconnect will instruct the
client to inform the server about the state it expects.

All the Zarafa mail servers are connected to the database load balancer, this load balancer
allows ease of configuration on the Zarafa mail servers. As Riak is accessible through a REST
interface, a simple HTTP load balancer is sufficient. The load balancer should be able to
detect the state of the nodes, by polling one of the servers in the database cluster it can
determine whether they are all up and running. The load balancer redirects the requests to

67

one of the available database servers, depicted in cluster F, which will process or redirect
the query internally. The Riak database nodes hold all email data except attachments, the
attachments are written to an external storage provider. The mail servers in cluster C and
the write agents in cluster E access the attachments.

Internet

Database Load balancer

Web Load balancer

Scalable
Authentication

Service

Riak Cluster

MAPI servers

Write Agents

ZooKeeper
Cluster

SMTP Load balancer

Internet

Web servers

Cloud Storage
Provider

MAPI
Load Balancers

A

B

C

D

EF

Figure 29: Architecture design of intermediate components

Mail is delivered to the cluster through the SMTP protocol, passing the SMTP load balancer
as the first node. This load balancer will forward the request to one of the available Write
Agents, depicted in cluster E. These agents are each responsible for all write operations to

68

folders, these include delivery of mails, sorting the inbox, moving emails, deleting emails, etc.
Internally, all these tasks are assigned to an agent through the ZooKeeper cluster, depicted
in cluster D. The ZooKeeper cluster is able to track state of connected nodes very accurately.
It offers exclusive file access and locking mechanisms based on the paper of Burrows [16] on
the commercial implementation of the Chubby locking service.

Authentication is required at the level of the mail servers, however, since this is outside the
scope of this research, it is assumed that a scalable and fault tolerant authentication service
is available. The single point of entry of the web servers and Zarafa load balancers, the mail
interface, and database cluster layers are discussed individually in the following sections in
that order.

8.2 Automated user segmentation

Each email is referenced by a unique key, this key references to the body and header of the
email. Each email needs to be placed in a folder, in order for the user to access it.

The scenario might occur where two processes write to the same folder concurrently, in this
case one of the emails might be lost in the process. This would happen when they both
read the folder index at the same point in time, place the received email inside. When these
processes would have written the new index, the version that finished last will be available.
The other message would be lost in the process. Since iterating over all records in a key-value
database is like searching a needle in a haystack, the process of storing an email in a folder
should guarantee that the email is referenced correctly. Therefore, at any moment in time
there should be at most one process granted write access to a specific folder. In the proposed
design, the write agents are responsible for updating the folder indices.

To guarantee that only one process is writing to a specific folder, a process that would like
to write to the folder needs to have acquired the lock on that folder. The locking mechanism
is provided by a ZooKeeper cluster, as further discussed in Section 8.4. Other processes will
need to wait until the lock is released, before they can acquire the lock and start writing to
the folder.

It is important that a node failure will not lead to starvation of other processes, the lock
should be released in that case. Additionally, if multiple nodes interact with the same user,
deadlocks could occur. In order to solve this problem, a segmentation algorithm is proposed
to assign each user to a specific server. Making that server the responsible node to perform
all write operations on the folders of that user. The algorithm should keep track of the users
that have been assigned to a certain server, as these users need to be assigned to another
server if it failed. Keeping a long list of all the users and their assignment is very inefficient,
as the hand-off process would require locking each user individually. Therefore the proposed

69

128 bit ring

0

100

200

300

400
500

600

700

800

900

1000

unassigned
key space

Figure 30: Division of the complete 128-bit key ring into virtual nodes, all virtual nodes hold
an equal chunk size in terms of key range. Where the users are assigned on the
ring is randomly determined by their UUID. The unassigned key space depicts the
range of virtual nodes that are not assigned to a node and should be recovered.
The colours of each of these virtual nodes depict to which server these are assigned.

algorithm uses an approach similar to Riaks implementation to divide data across the nodes
in the cluster with so-called virtual nodes, depicted in Figure 30.

By splitting the user list into a fixed number of virtual nodes, the hand-off process requires
a single lock to be acquired per virtual node. For example, if we would have four servers,
each having four virtual nodes, each server would have to check whether it can access that
virtual node. Each virtual node might represent a couple of thousand users. Choosing a fixed
number of virtual nodes allows us to hash the user key and determine in which virtual node it
is located. However, fixing the number of virtual nodes completely, would limit the maximum
number of servers to that amount of virtual nodes. Therefore, the algorithm should be able
to scale the number of virtual nodes both up and down.

The leader executes Algorithm 1 to balance the virtual nodes over the available nodes. The
algorithm takes the previous active configuration and balances that with a minimal amount
of move operations. In other words, if a node is added to the cluster, the virtual nodes that
are released at each of the nodes will be the bare minimum to equalize the load.

In case a single node only operates with one virtual node, the leader will decide to split the
virtual nodes such that further growth is possible quickly. The leader will execute Algorithm 2
to instruct each of the nodes to release the virtual nodes it holds and take part in the new
configuration like any normal configuration update is processed. Each of the nodes will
process these configuration changes by executing Algorithm 3. If the number of virtual nodes
has changed, then it should release all the virtual nodes it has and continue when it is ready.
The next steps will check whether the node is part of the cluster, if it is, the node will release
all virtual nodes that are acquired and are no longer part of its configuration. Followed by
acquiring all the virtual nodes that were recently assigned to the node.

70

Algorithm 1 Balance algorithm to distribute the virtual nodes across the nodes evenly
1: procedure balance(virtualNodes, nodes)
2: minPerServer = floor(virtualNodes.length / nodes.length)
3: leftOver = virtualNodes.length % nodes.length
4: remainingVnodes = []
5: for node in nodes do
6: shouldHave = minPerServer + (node.number < leftOver ? 1 : 0)
7: if node.vnodes.length > shouldHave then
8: remainingVnodes.push(node.vnodes.popLast(node.vnodes.length - should-

Have))
9: end if

10: end for
11: for node in nodes do
12: shouldHave = minPerServer + (node.number < leftOver ? 1 : 0)
13: if node.vnodes.length < shouldHave then
14: node.vnodes.push(remainingVnodes.pop(shouldHave - node.vnodes.length)
15: end if
16: end for
17: end procedure

Algorithm 2 Segment virtual nodes, scaling up or down with the number of virtual nodes.
procedure segmentVnodes(virtualNodes, nodes)

newNrOfVnodes = 4 * nodes.length
remainingVnodes = [0 . . . newNrOfVnodes]
for node in nodes do

node.vnodes = remainingVnodes.pop 4
end for

end procedure

71

Algorithm 3 Process the staged configuration on all nodes
procedure processStagedConfig(stagedConfig)

if currentConfig.nrOfVnodes != stagedConfig.nrOfVnodes then
releaseAllVnodes()
once finished: processStagedConfig(stagedConfig)

end if
nodeConfig = stagedConfig.findNodeConfig(this.uniqueId)
if nodeConfig != null then

releaseTheseVnodes = this.myVnodes - nodeConfig.vnodes
for vnode in releaseTheseVnodes do

vnode.release() . Release the vnode immediately
end for
for vnode in this.myVnodes do

vnode.acquire() . This will wait async until it acquired the vnode
end for

else
releaseAllVnodes() . Release all the vnodes immediately

end if
end procedure

8.3 Single point of entry

For the users, the setup process to connect with the cluster should be as easy as possible.
The fact that there is a cluster behind the service should not be visible to the users. In
other words, the complete service should behave as one big, extremely reliable, server that
the user connects to. Just one domain to connect to, no further cluster knowledge should be
required, as discussed in Section 3.3. By discussing a proposed solution for the single point
of entry, this section will answer the third sub question (Q3), how to set-up a failure resilient
single-point of entry to ease its usage for end users.

How the user connects to the service depends on their client, with his or her own MAPI-
compatible client on their mobile, tablet, or pc the user would connect to the mail load
balancers, depicted as cluster B in Figure 29. If they use the web client to connect, the
web mail interface behaves like another client seen from the cluster itself, as the web servers
connect to the mail service like any other client would. Internally, each user gets assigned to
a certain MAPI server that will keep track of their connection details. Allowing the server to
cache the user data and tracking where the user is browsing currently, this is a requirement
to enable the stateful MAPI protocol.

To a user, the service would have a single point of entry if the domain name to connect with
would be equal for all users. Strictly speaking, if the user does not need to know about the
exact cluster assignment, the service would look like a single server to the user, even though
the users are placed on different nodes in the cluster.

72

Which methods would enable a single point of entry for an email service is discussed first.
However, the two portals of the email service, being the web client and the MAPI mail service,
require different approaches. How these services are accessible as a scalable service with a
single point of entry, without having a single point-of-failure, is discussed separately in the
concluding section.

8.3.1 Possible solutions

With each solution, it is important that the user is not required to specify direct routes to
servers and that the solution does not become the bottleneck of the service. The software
should determine to which server the user gets connected, and should immediately make the
server unavailable if it fails. This allows the cluster to scale and reliably replace nodes if they
appear to have failed in the meanwhile.

This section discusses the following solutions, DNS, reverse proxies, and load balancers.

DNS is a very important aspect in the design of a single point of entry, whichever additional
solution is chosen, the DNS layer will always be put in operation to ease the configuration.
As new users will not be able to connect to the cluster if the DNS service failed, this is a
very important service to setup to be fault tolerant.

Besides being the telephone book for the Internet, DNS can be set-up to deal with some
of the single point of entry difficulties as well. DNS can connect users to the cluster by
distributing the queries over a set of servers. There are many ways to distribute the load
across the servers in this manner, the most common and easiest method to use with DNS,
is to use a round-robin approach. A round-robin approach walks through the set of servers
and connects the incoming user connection to the server, based on a fixed order. However,
the cluster will need to update the DNS record in case a server fails or a new server is added
to the cluster. The way DNS works makes it possible that connecting clients will fail for up
to 60 seconds even after a node has been removed from the set.

Reverse proxy servers provide access to other resources by redirecting all the requests
through their own interfaces. In other words, all the requests will first go through the reverse
proxy, which will query the servers internally and return the results. Reverse proxies are
easy to set-up, can be used as the gatekeepers of the service, and would allow rescuing of
queries that failed somewhere inside the cluster without the user noticing. However, as the
reverse proxy itself can also fail, the user could notice a failure anyway, the problem just
moved to the proxy layer. One major advantage of a reverse proxy technique is its ability

73

to provide SSL termination services, moving the encryption load on the mail servers to the
reverse proxy.

Load balancer servers, operate like a DNS service, but provide a faster and more intelligent
solution to the problem. They process the establishment of a new connection, by connecting
the user to a specific server in the cluster behind it. Which server it picks depends on the
mechanism that is chosen, options include round robin, intelligent selection of a node that
faces the least load, or other factors that it can monitor. Compared to DNS, this allows
a smoother operation of continuously changing clusters, as intermediate DNS servers might
cache the results, possibly routing new clients to failed servers.

8.3.2 Conclusion

The cluster will face failures continuously. If a server fails, the users that were connected to
that server could notice a hick-up, but should be able to recover quickly. However, new users
should only be connected to servers that operate correctly. To guarantee this last requirement,
the service should be able to react instantly to failures, such that any interrupted server would
be removed from the redirection list of servers. Along with the requirement to connect all
devices of a single user to the same server, the best solution would be to use the load balancer
implementation.

Since the web client connects to the MAPI service like any other client would, the problem
of providing the web client as a single point of entry is similar to other web service solutions.
The proposed solution utilizes a simple HTTP load balancer to recover from server failures
immediately. The HTTP load balancer, however, should be smart enough to assign users
to the under-utilized servers. In case partitioning occurs, the load balancer should recognize
that a specific server is not able to communicate with the MAPI service and consider that
web server as failed.

8.3.3 Implementation of the load balancer

At the MAPI server level, the load balancer servers are actual Zarafa mail servers, as these
are able to look-up where users are stored internally to cleverly deal with this logic. The
assignment of the users to specific servers is stored inside the ZooKeeper cluster, depicted as
cluster D in Figure 29. The ZooKeeper cluster is designed to enable highly reliable distributed
coordination, Section 8.4 discusses the internals of ZooKeeper. If a MAPI server is not able to
communicate with ZooKeeper, Riak, or the storage provider, the server should be flagged as
failing. Failing servers will immediately be removed from the MAPI server pool. Additionally,

74

any server that faces heavy load is removed from the pool for new connections, until it has
recovered to a normal utilization level.

8.4 Cluster coordination

To keep track of the state of the cluster, a locking service should be used. All nodes should
have access to the state information, therefore it should be important that the service guar-
antees exclusive write access and has locking capabilities. In 2006, Burrows wrote a paper
on the Chubby lock service [16]. Chubby is used by Google Inc. to appoint the master server
in their Google File System [18] in a cluster of thousands of nodes. In 2010, Hunt et al. [35]
presented a paper on ZooKeeper, offering coordination services that are wait-free, scalable,
and reliable. ZooKeeper is based on the internals of the proprietary Chubby lock service,
as presented by Burrows. ZooKeeper meets all of the requirements necessary to provide a
reliable distributed coordination to elect a leader node and coordinate segmentation of data
across the nodes in the cluster.

As described in Section 8.2, only one node should be able to write to a folder at the same
time. In the proposed architecture, the nodes that are responsible for writing are referred to
as Write Agents. A leader node among the Write Agents executes the most important part of
the user segmentation algorithm, how these nodes operate is further described in Section ??.

The ZooKeeper nodes orchestrate the Write Agents. The ZooKeeper nodes are responsible
for electing a leader among the Write Agents, track tasks that should be executed by the
Write Agents. Furthermore, it holds the active and staged cluster configuration settings as
set-up by the leader of the Write Agents. When a new configuration is made active, the
ZooKeeper cluster will ensure that only one node is able to access a certain folder at a time.
Furthermore, since ZooKeeper enables ephemeral locking, each node in the cluster locks their
own ephemeral file that others use to determine which nodes are alive. In case a node loses its
connection with the ZooKeeper cluster, the lock is released immediately, notifying all other
nodes about the failure. This structure is used to track the active MAPI servers as well.

Any task that requires exclusive write access to the folder index, is first written to the
batch task directory of that user on ZooKeeper. Through ZooKeeper and the segmentation
algorithm discussed in Section 8.2, only one Write Agent can monitor the batch task directory
of a user at a time. This Write Agent will process the task and finalize it by deleting the task
from the batch directory. Tasks that require this locking service include sending, moving,
copying, deleting, and delivering emails, as well as sorting folders.

The ZooKeeper cluster has important tasks to fulfil, therefore it should be fully fault tolerant.
Since all the tasks require at most 100 bytes of data to be stored inside ZooKeeper, the
data is replicated very quickly to the replica nodes in the ZooKeeper cluster. Additionally,

75

ZooKeeper guarantees that the data is replicated before confirming the request; this ensures
that locks would survive failures inside the ZooKeeper cluster as well.

8.5 Autonomous scalability

Section 8.2 presented the logic behind automatically assigning users to servers and the re-
covery of this data. In order to ease the scalability of the platform, it is important that an
automated process is able to measure the current load on the cluster to scale up or down in
terms of servers.

By design, each of the clusters in the proposed solution are able to recover their data through
other nodes in the service cluster. By booting a new server, it will automatically join the
cluster through ZooKeeper, allowing the leader node to add the new server to the cluster.
This ensuring easy scalability, adding more nodes is as simple as booting clones of original
machines such that they join the cluster automatically.

Puppet and Chef are two autonomous scalability agents that are able to measure the load
on the different servers. If load increases, agents like these will allow a clone to be booted up
when the load increases on the service without further administrator interventions required.

8.6 MAPI servers

The MAPI servers are responsible for all client connections; therefore these servers are respon-
sible for a consistent view of a mailbox even though the same user uses multiple clients. This
Section will cover how such a consistent view on the mailbox is achieved, thereby it answers
the sixth sub question (Q6) how data consistency could be realized if data is redundantly
stored and users access the stores using different clients.

The groupware server layer is depicted as cluster C in Figure 29. This layer is responsible
for access management, making sure only authorized users can access the emails, as well as
keeping track of the state of client devices throughout their session. These servers process
composed emails, provide full access to editing emails, and access to move, copy, delete, and
sort operations on the emails inside folders.

The state that these servers have of a session is completely recoverable. In case a server fails,
the clients will be forced to reconnect to another server through the single point of entry
layer. Once the client connected to another server, it will inform this server about the state
that the device has, such that this server will be able to continue where the connection was
lost. By querying the Riak database, all email and folder data can be restored.

The MAPI servers are able, through ZooKeeper, to track where the session of a user resides
in the cluster, allowing them to make quick decisions where data should be redirected. This

76

segmentation of users across the MAPI servers is determined through the ZooKeeper cluster.
As soon as a server becomes responsible for a user, it will lock the user file in the ZooKeeper
cluster. ZooKeeper guarantees that only one server is able to lock a user at a time. If the
same user opens another session, the file will be locked, allowing the single point of entry
layer to redirect the connection to that specific server immediately. The lock is ephemeral,
as soon as the responsible node faces timeouts, the ZooKeeper cluster will release the lock
and allow other servers to become responsible for that user.

All MAPI servers have full write access to the email bodies, headers, and attachments. How-
ever, sorting a folder, or moving, copying, or deleting an email is processed asynchronously on
one of the Write Agents. This later tasks are asynchronous, as the write agents are responsible
for managing the folders. The write agents hold the latest copy of the folder and process all
requests in batches to optimize the write process, this hides the processing time required from
the user. The request is added to the queue of that user through the ZooKeeper cluster, on
which the responsible server will be notified to process the request. If the request is fulfilled,
the Write Agent will delete the request data on ZooKeeper, which informs a MAPI server
immediately if they monitor this task. Since all tasks are written to the ZooKeeper cluster,
failure of a Write Agent or MAPI server will not prevent the task from being executed, as
long as ZooKeeper confirmed it is written of course.

When a user sends a message, the headers and body of the email are written to the Riak
database. A batch task is written to the ZooKeeper directory of that user. When the write
agent found a timeslot to process the send request, it will send the message using the SMTP
protocol and upon success move the message to the sent messages folder. The MAPI server
will be able to process this request very quickly, leaving the time consuming task of delivering
the message to the recipients through SMTP to the write agents. The email is safe as soon
as the data is written to Riak and a task is created on ZooKeeper, a node failure could only
delay the delivery of the message.

In case the user uploads an attachment to send in an email, it is first stored in Riak before it
is written to an external storage service. In return, the user will get a unique attachment id
that is required to refer to the attachment and link it to the email that the user is composing.
This allows the user to upload attachments while writing, and ensures that the data is save
as long as the client did not lose the id on the client side. Since the MAPI server responsible
for storing the attachment temporarily, failure of the server node will not result in lost
attachment data. The write agent will retrieve the attachment from the Riak database when
it is delivering the email to the recipients.

77

8.7 Write agents

The write agents are responsible for processing incoming SMTP emails and all tasks that
require exclusive write access to a folder index. These servers hold no data, only a cache of
the folder index and email headers in that folder to speed up sorting and other tasks. All of
this data is reconstructed quickly by querying the Riak database and the ZooKeeper cluster.

The users are segmented in virtual nodes, of which each node holds a few. The virtual nodes
are divided across the nodes through the virtual node segmentation algorithm, as discussed in
Section 8.2. This algorithm is executed on the leader of the write agent cluster. The leader is
elected at the start of the cluster, the first node that started becomes the leader. ZooKeeper
guarantees that only one leader is elected. All the other nodes that join the cluster will
monitor their preceding node, such that a chain of servers monitors each other. If the leader
fails, the second node will become the new leader to take over its tasks instantly. A failure
of any non-leader write node will be discovered by the leader, in case a node fails, the leader
will start the virtual node segmentation algorithm to divide the users across the current set
of nodes. The same algorithm is executed in case a new node is added to the cluster.

When the cluster is booting up, the leader should parse and clean up all the previous con-
figurations. As soon as it is finished processing these, the leader will notify the other nodes
that are ready by writing a leader ready file to ZooKeeper. The other nodes will react to this
event by joining the cluster immediately.

When a new message is delivered through SMTP, the write agent will split the message into
separate header, body and attachment objects. The header and body are stored in the Riak
cluster, whereas the attachments are written to an external storage provider. The header
will hold a reference to the attachments, and both the header and the body of the email will
be stored in their designated buckets in Riak using the same key. This key is written as a
batch task to the ZooKeeper directory of that user. The write agent node that is responsible
for that user, this might be the same node, will react on the new batch task by processing it.
This division ensures that only one node is able to write to the folders of a user. Since this
design operates fully asynchronously, threads are not put in a locked state waiting for another
write process to finish. This design allows the write agent to sort the incoming requests based
on the folders they share. If multiple new emails should be delivered to the same folder, this
is a lot quicker to do in one batch, than one by one. Only once the email is written to the
Riak cluster, the Write Agent will confirm the delivery of the message. This ensures that, in
case the Write Agent or a temporary Riak failure occurred, the email will not be lost in the
delivery process.

Sending a message starts just like receiving one, except that the message is written to the
outbox of the user instead of their inbox. Sending a message uses the SMTP protocol for

78

external recipients. For all internal recipients, the write agent will clone the message and
process it like it has just been received through the SMTP server. In case a failure occurs
and the write agent was not able to accept the message, the outbox still holds a copy, the
process starts over until another write agent is found to process the mail delivery. If a failure
occurs while processing an external SMTP email delivery, emails that were delivered to that
server were either not confirmed to have been received successfully, or are safely stored in
Riak with a reference in ZooKeeper.

8.8 Blob storage

The blob storage layer is responsible for keeping track of all the headers and bodies that are
stored by the groupware service. This entails all the emails, calendar items, folders, address
book contacts, and other data that is linked to a user store inside the groupware platform.
It should ensure this data is available even though nodes fail, and it should offer a high
throughput in terms of reading and writing data.

Based on the results of Section 7, the Riak database has been selected as the best candidate
for storage of large amounts of groupware data. Proposed is to store all user data including
email, and folder indices with a replication factor of three.

Access to the storage layer is provided through a load balancer. The load balancer eases the
configuration of the servers to connect to a random storage server. All the servers connect
to the Riak cluster through the load balancer, this eases the set-up of the other servers, as
the load balancer will automatically get updated if storage servers fail or are added in the
process.

8.9 Attachment storage

As discussed in Section 5.3, attachment data behaves very different than the headers and
bodies of emails. The attachments are rarely updated, and if they are downloaded it happens
less frequently than reading the message it self.

As the attachment data entails the largest amount of data, to be precise about 81.5 per cent,
this data is best moved to a storage service provider. Especially since the attachment data
has typical storage access characteristics, storage providers are able to serve this type of data
at lower costs due to the scale at which they store data. Section 6.3, showed that Microsoft
Azure is the best performing cloud storage provider at this moment.

79

8.10 Conclusion

Each of the clusters depicted in Figure 29 is designed to scale up or down autonomously. Using
ZooKeeper, load measurements, and the proposed user segmentation algorithm, the cluster
will be able to recover from failing nodes automatically. The blob storage is automatically
balanced and able to deal with faults automatically, with Riak as its back-end.

All of this is designed to be hosted without increasing the complexity for the end users. Even
though a dynamic cluster of servers is hosting the groupware service, the ZooKeeper state
data together with the MAPI load balancers are able to provide access through a single point
of entry. The next section will validate the proposed design using a prototype that gets
benchmarked using the load simulation as described in Section 4.5.

80

9 Validation

In order to validate the proposed solution presented in Section 8, a prototype is developed
in Ruby. Figure 31 shows the implementation of the prototype in terms of clusters and their
connectivity.

Database Load balancer

Riak Cluster

REST Mail servers

Write Agents

ZooKeeper
Cluster

SMTP Load balancer

Cloud Storage
Provider

Load Simulator

Sample Mail Files in eml

B

C

D

EF

A

Figure 31: Validation prototype developed to validate the failure resilience and scalability
while performing load simulations.

The load simulator is developed as part of this thesis to simulate load on both the previous

81

platform and the scalable prototype, this simulator is depicted as cluster B. The load simu-
lator uses the MMB3 standard to perform a load simulation on the service. As discussed in
Section 4.5, tasks that are simulated include session management, composing emails, replying
to emails, reading messages, sorting mails, deleting mails, moving, etc. The load simulator
has been configured to measure the latency of each operation. Furthermore, to validate that
no emails would be lost in the process, the messages received in the inbox were validated
with the list of messages that were supposed to have arrived. Additionally, the client would
throw an exception in case it noticed a disruption of the service, in order to check whether
the service is available to the end users throughout the tests.

The Mail servers, depicted as cluster C, are developed in Ruby on Rails. These servers
perform all the tasks that the MAPI client would do in the load simulation. The mail servers
are connected to both ZooKeeper and the Riak database. Through ZooKeeper it registers
its availability in the cluster. The Mail servers use the Riak database to retrieve all the user
data including email bodies, headers, folder indices, and the user profile itself. All of this
data is recoverable; the mail server holds no unrecoverable state information. In order to
validate the single point of entry of the service, all of the operations are executed round robin
on one of the available mail servers. More specifically, it does not matter to which of the mail
servers the user got connected to, as the mail service manages the segmentation internally.

The delivery agents are developed in plain Ruby, as these perform the background tasks
in the cluster. The delivery agents are fully SMTP compliant servers, in order to test the
scalability of this part in the architecture, all of the emails that would otherwise be delivered
internally, are now delivered over SMTP to a random other delivery agent. To determine
which delivery agent to connect to, it queries the ZooKeeper cluster on the available SMTP
servers at that moment. Aside of this modification, the delivery agent is implemented with
all features and algorithms as discussed in Section 8.7.

9.1 Test cluster

The test cluster comprised of 13 64-bit Amazon EC2 instances, of which six m1.xlarge servers
were used, three for the Riak nodes, shown as cluster F, and three for the ZooKeeper cluster,
shown as cluster D. These nodes have 15 GiB of memory, four virtual cores of two compute
units each. The three Riak nodes used the same disk set-up as during the key-value bench-
marks in Section 7. Since slow I/O in the ZooKeeper cluster would limit the total throughput
of the cluster, these instances were configured with a four disk RAID-0 file system. Failure
of one of the disks would make the node fail, therefore a redundant set-up in this cluster is
even more important.

The mail servers and the load simulator, depicted as clusters C and B respectively, were
running on four c1.xlarge instances, these have 7 GiB of memory, eight virtual cores, each

82

having 2.5 compute units. The delivery agents were using the m3.2xlarge instances, each
instance has 30 GiB of memory, and 8 virtual cores with each 3.25 compute units each.

9.2 Workload measurements

The cluster was initialized with a thousand users, each having 100 messages in their inbox.
Ten messages that each has very different characteristics were randomly used to fill the inbox.
Each message got assigned a random sender that exists in the cluster, as well as a random
set of other recipients in this cluster. While performing the workload, the load simulator uses
the same logic to compose new messages. It retrieves messages from the inbox, replying to
some of them. Thereby it influences the inbox of these other users as well, such that a real
mail conversation is simulated.

The load simulator follows the MMB3 standard [43], where the workload comprises that of
normal users on a typical eight-hour day at the office. The simulated workload performed
these tasks in 15 minutes, thereby increasing the load on the cluster by a factor of 32.
Therefore, the simulated workload actually equals that of 32 thousand users for 15 minutes.
This has been decided to take away most of the initialization time required to bootstrap the
load simulation.

The tests have been performed four times, the average of these results is presented in Fig-
ure 32. The top graph shows the average utilization per cluster group, whereas the bottom
graph shows the latency of the services provided. The delivery agent utilization graph shows
a small increase in the workload when a node failed. The Riak servers show an increase of 20
going up to 40 per cent when another node failed. With the web servers and ZooKeeper the
load did not increase significantly. Important to notice is the relation with the latency shown
in the lower graph. The latency experience by the user is depicted as cluster C. While fail-
ures occur, this latency did not increase. The latency in mail delivery, however, did increase
significantly. This latency is hidden from the user, as this is executed in the background by
one of the delivery agents.

9.3 Limitations

The prototype focused on the aspects that need to be validated. The user authentication is
not implemented in the prototype as this is outside the scope of this research. The web client
and related web load balancer are not implemented as these operate like any other client
would, this service scales independently.

In order to simulate the clients, a RESTful server has been implemented as the MAPI mail
server. The MAPI clients, however, expect the server to operate stateful, whereas RESTful

83

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	
 61	
 121	
 181	
 241	
 301	
 361	
 421	
 481	
 541	
 601	
 661	
 721	
 781	
 841	
 901	
 961	
 1021	
 1081	
 1141	
 1201	
 1261	
 1321	
 1381	
 1441	
 1501	
 1561	
 1621	
 1681	

CP
U
	
 U
%l
iz
a%

on
	
 (1

.0
	
 is
	
 fu

ll	

ca
pa

ci
ty
)	

Time	
 (seconds)	

U%liza%on	
 per	
 cluster	
 type	

Failures	
 DA	
 Web	
 Riak	
 ZooKeeper	
 LoadSim	

DA	
 Failure	
 Web	
 Failure	
 Riak	
 Failure	
 ZK	
 Failure	
 DA	
 Added	

Web	
 Added	

Riak	
 Added	
 ZK	
 Added	

0	

0.5	

1	

1.5	

2	

2.5	

1	
 61	
 121	
 181	
 241	
 301	
 361	
 421	
 481	
 541	
 601	
 661	
 721	
 781	
 841	
 901	
 961	
 1021	
 1081	
 1141	
 1201	
 1261	
 1321	
 1381	
 1441	
 1501	
 1561	
 1621	
 1681	

La
te
nc
y	

(s
ec
on

ds
)	

Time	
 (seconds)	

Latency	
 of	
 service	
 with	
 failures	

Failures	
 BrowseMail	
 SendMail	

DA	
 Failure	
 Web	
 Failure	
 Riak	
 Failure	
 ZK	
 Failure	
 DA	
 Added	

Web	
 Added	

Riak	
 Added	
 ZK	
 Added	

Figure 32: Validation measurements of the utilization per cluster group (top) and average
latency of tasks performed (bottom).

84

servers do not hold state by design. Implementing a fully MAPI compatible server has
been considered, but after four weeks of developing a scalable prototype in the Zarafa server
codebase, I made the decision to move to another programming language that I’m more
familiar with to validate the architecture. In terms of scalability, allowing MAPI connections
does not form a bottleneck, as the segmentation of users across the mail servers could be
implemented as it has been at the delivery agents. Strictly speaking, this aspect of the
architecture is validated by the prototype. The statefulness of the server and the recovery
process of this state is covered by the delivery agents as well, as these require an index to be
rebuilt when another recovers the state where another delivery agent failed.

Furthermore, due to resource limitations, the scalability of the platform has been tested up
to a thousand users, simulating a workload of 32 thousand users. To perform these tests,
a total of 12 high-end servers have been used, all orchestrated by a single load simulation
server with enough resources to simulate this load. Tests have been performed to show that
it scales up to 12 servers; nevertheless, in order to validate whether it would operate with
millions of users, a larger test cluster would be required.

9.4 Conclusion

The prototype showed that the clusters that were proposed in Section 8.1, are able to scale
and recover from failures without noticeable disruptions to its end users. The prototype
showed that it was capable of dealing with the simulated workload of 32 thousand users.

The load simulation showed a clear separation of performance, where the user would not
notice any hiccups if one of the back-end servers fails. The results, depicted in Figure 32,
clearly showed this effect.

When the cluster continued in a recovery state, the delivery of emails took a bit longer than
they usually would. However, even though several nodes had failed in the cluster, no message
was lost in the process. When failures occurred, the cluster took more time to deliver emails,
this time is within the requirements as defined in Section 3.

When the mail server failed to which the user was directly connected, the connection was
reset, forcing the user to reconnect. After reconnecting the user got assigned to another
server, processing all requests like nothing happened. This has been validated by throwing
exceptions in the load simulator if the expected outcome of operations was not matched,
throughout the tests no exceptions were thrown.

85

10 Conclusions and future work

To conclude, the main findings that cover the main research question of this thesis are pre-
sented in the first upcoming section. Followed by areas of future work that have not been
covered in this research, but might be interesting to look at.

10.1 Conclusions

A self-managing, scalable, elastic, and fault tolerant architecture is important to provide a
cost effective groupware service. The characteristics of groupware data require a different
architectural approach, in order to be scalable without requiring the involvement of admin-
istrators.

On the basis of the MAPI protocol, this thesis presented an architecture to serve groupware
data on a cluster that meets these requirements. The growth in scalability is important as
this allows a large group of users to utilize the same cluster, allowing their different usage
patterns to even out the load on the cluster as a whole. This allows the operational costs to
go down, as its resources are utilized more efficiently.

A prototype of the architecture has been developed, on which experiments were performed.
The results of these experiments showed that the architecture scaled well, and continued
to be fully operational while failures at different levels occurred. The architecture operates
through a single point of entry, through which users will be able to access their groupware data
without having to worry about the whereabouts of their data. This is important as servers
will malfunction or become unreachable, these disruptions should, however, not disturb the
service provided.

10.2 Discussion

The aim of this thesis has been to research and prototype a scalable and fault-tolerant solution
in the groupware domain that provides its services as a cluster that behaves like one single
robust service provider. The characteristics of groupware data, especially in combination
with the stateful MAPI protocol, form a strict requirement list that conventional scalability
and fault-tolerant architectures do not meet.

The service requirements were determined for the ideal groupware service provider. These
requirements include the ability to access the service from anywhere, at anytime, where the
user has a consistent view on the data even though multiple clients are used. Furthermore,
the back-end should write fast, and read even faster. It should load balance automatically,
with new servers nodes being added autonomously. The management of the cluster should be

87

as easy as adding more hardware, where the cluster will manage itself in the event of failures
or increased load.

In the current design of the Zarafa server, a lot of effort was put into optimizing single server
performance. Through the set-up of distributed access groups, a cluster could theoretically
scale up to 18 servers, this does require a lot of overhead to administer and segment the
users across the servers in the cluster. To show the limitation in scalability, a load simulator
has been developed. The load simulations confirmed the communication overhead in case
multiple servers are made responsible for a group of users.

Analysis of the data in the current design showed that the level of detail at which properties
are stored form a major bottleneck in terms of scalability. By simplifying the data structure
into three data blocks, being the body, header, and attachments of the messages, the problem
of writing and locking dozens of fields is simplified to a minimum of two write operations per
e-mail. It was shown that the header is updated more frequently than the body, by keeping
them apart, each update operation of the header limits the size of data that needs to be
written to a minimum.

Based on the literature survey that has been conducted, several key-value databases were
compared with a set of requirements. The comparison left MySQL Cluster, Cassandra, Riak,
Voldemort, and HBase as the candidates for the storage back-end of the service architecture.
Related benchmarks on these key-value databases were out-dated, used a small dataset, or
used a small row size to test with. Therefore, several rounds of benchmarks with the YCSB
benchmark tool have been performed to determine the throughput and failure-tolerance of
the key-value databases. In the benchmark tests, the databases were tested with intensive
workloads using a dataset that has 20 times more data than the servers have as memory, to
test the I/O subsystem of the database. The two databases that met the requirements best
were Voldemort and Riak. However, Riak has been selected as the key-value database back-
end, as the documentation on Voldemort is very limited and no professional support options
are available. The benchmark results form a valuable resource for other research projects that
require insights in the I/O subsystem of the different key-value stores, or research projects
that use larger values just like the groupware domain requires to store email and other user
data.

The proposed service solution for Zarafa separated the servers that users interact with, from
the back-end that is responsible for delivering emails, updating folders, etc. Each of the
responsible server groups are designed to resolve issues with failing nodes immediately, such
that a failure might result in a short reconnect, but no noticeable hick-ups or service downtime
is preventing the user from accessing their account data. The architecture automatically
segments the users across the available servers, where failures automatically move these users
to their new assigned servers. The architecture is designed to operate as one single robust

88

service provider in the eyes of its users. The MAPI requirements are met by assigning
users to specific MAPI servers that are able to replicate the data from the storage cluster if
necessary. In the back-end, all mail is delivered through a separate cluster of nodes called
the Delivery Agents. These nodes process all incoming SMTP traffic, by ensuring that mails
are successfully written to the storage back-end on three nodes or more, the agent guarantees
that emails are delivered and failure of any delivery agent could not result in the loss of email
messages. The research showed how Riak and storage service providers could be used to keep
all data safe and accessible at all times. Adding nodes to the cluster is as simple as cloning
one of the nodes, the process of scaling up or down with an automated provisioning tool is
really straightforward.

The prototype validated the design of the proposed solution for Zarafa’s use case, where email
is processed by a scalable and fault-tolerant cluster of servers that together behave like one
single robust service provider. With this validation, the main research question of this thesis
has been answered and validated. The validation was executed using a 32 thousand user load
simulation on a cluster of 12 servers. These tests showed a clear separation of performance,
where failing back-end nodes were not noticeable in the user interaction with the cluster.

10.3 Future work

The prototype has been validated using a 12-node cluster, in order to show more insights
on the scalability characteristics of the cluster this should be tested using a cluster double
that size. These tests were not possible due to resource constraints. The limitation of this
resource constraint might implicate that the platform appears scalable, but really might be
a few steps away from the scalability bottleneck.

The same resource constraint limited the key-value database tests to a maximum cluster size
of six nodes and one load simulator. Since the database has been tested with a three-node
and six-node cluster, the scalability of the database is measured at the start of its scalability
capabilities. To test the true scalability performance of the databases, benchmark results on
a cluster that is several magnitudes larger would allow us to determine the real scalability of
the platform.

An interesting aspect that has been excluded from the scope of this research is the ability to
search through the user data. Search operations might require a different storage strategy
for the bodies of the emails. Furthermore, this research focussed on the full scope of email
data, being fresh and older data, the topic of archiving old email data was briefly touched
upon, but could allow further advancements in terms of performance and scalability.

The security issues related to storing mail data in one big cluster is left open for future
work, email data could be a valuable resource to some advertising parties, but should be kept

89

private at all times.

The financial achievability of the service discussed in this thesis is not covered by this research.
Future work might look into the different levels of outsourcing to set-up a cluster as the one
presented.

With the key-value benchmarks, the failure tolerance tests of the MySQL Cluster have been
aborted after two weeks of attempts, Oracle guarantees 99.999 per cent availability of the
cluster, however, due to time constraints and limited documentation on this subject, the
cause of the crash during the availability test has not been analysed in depth, as discussed
in Section 7.3.

How user session data should be tracked in such a scalable service has been considered as
available up until now, future research might look into the scalability of the user session data
to keep all clusters in sync on the available session data.

Another interesting topic to research is whether automatic resolvers could be implemented
to allow multiple nodes to write to a single key. For example, writing multiple emails concur-
rently to the same folder index, if the default conflict resolver of Riak is used these actions
will result in the loss of header references in the folder. However, if the database would be
able to determine the patch set of the change that is applied by each of the operations, the
two might be merged and applied as one.

90

11 References

[1] 10gen. Mongodb overview. Product support, December 2012. URL: http://www.10gen.
com/products/mongodb.

[2] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward, and
P. Sadayappan. Scalable i/o forwarding framework for high-performance computing sys-
tems. In Cluster Computing and Workshops, 2009. CLUSTER ’09. IEEE International
Conference on, pages 1–10, 2009. doi:10.1109/CLUSTR.2009.5289188.

[3] Amazon. Ebs devices. Amazon Web Services, November 2012. URL: http://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html.

[4] Amazon. The first trillion objects. Amazon S3, June 2012. URL: http://aws.typepad.
com/aws/2012/06/amazon-s3-the-first-trillion-objects.html.

[5] Amazon. Increasing ebs performance. Amazon Web Services, November 2012. URL:
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html.

[6] Apache Software Foundation. Cassandra. Apache Projects, January 2013. URL: http:
//projects.apache.org/projects/cassandra.html.

[7] Apache Software Foundation. Hbase website. Apache Projects, January 2013. URL:
http://hbase.apache.org.

[8] Jason Baker, Chris Bond, James C. Corbett, Jj Furman, Andrey Khorlin, James Larson,
Jean-Michel Léon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services. 5th Biennial Conference
on Innovative Data Systems Research (CIDR ’11), pages 223–234, January 2011.

[9] O. Bälter. Strategies for organizing email messages. Proc. HCI, pages 21–38, 1997.

[10] Basho Technologies, Inc. Concepts. Riak documentation, December 2012. URL: http:
//docs.basho.com/riak/latest/references/appendices/concepts/.

[11] Basho Technologies, Inc. Riak vs dynamo. Riak documentation, December 2012. URL:
http://docs.basho.com/riak/latest/references/dynamo/.

[12] Basho Technologies, Inc. N replication factor. Riak documentation, Jan-
uary 2013. URL: http://docs.basho.com/riak/latest/references/appendices/

concepts/Replication/#So-what-does-N-3-really-mean-.

[13] J.B. Bhaskar. Email and collaboration asa service on public cloud - an experi-
ence. SBI Life, September 2012. URL: http://www.slideshare.net/connect2mithi/
sbi-life-email-and-collaboration-as-a-service-on-public-cloud-an-experience.

91

http://www.10gen.com/products/mongodb
http://www.10gen.com/products/mongodb
http://dx.doi.org/10.1109/CLUSTR.2009.5289188
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
http://aws.typepad.com/aws/2012/06/amazon-s3-the-first-trillion-objects.html
http://aws.typepad.com/aws/2012/06/amazon-s3-the-first-trillion-objects.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
http://projects.apache.org/projects/cassandra.html
http://projects.apache.org/projects/cassandra.html
http://hbase.apache.org
http://docs.basho.com/riak/latest/references/appendices/concepts/
http://docs.basho.com/riak/latest/references/appendices/concepts/
http://docs.basho.com/riak/latest/references/dynamo/
http://docs.basho.com/riak/latest/references/appendices/concepts/Replication/#So-what-does-N-3-really-mean-
http://docs.basho.com/riak/latest/references/appendices/concepts/Replication/#So-what-does-N-3-really-mean-
http://www.slideshare.net/connect2mithi/sbi-life-email-and-collaboration-as-a-service-on-public-cloud-an-experience
http://www.slideshare.net/connect2mithi/sbi-life-email-and-collaboration-as-a-service-on-public-cloud-an-experience

[14] Gordon Blair, Fabio Kon, Walfredo Cirne, Dejan Milojicic, Raghu Ramakrishnan, Dan
Reed, and Dilma Silva. Perspectives on cloud computing: interviews with five lead-
ing scientists from the cloud community. Journal of Internet Services and Applica-
tions, 2:3–9, 2011. 10.1007/s13174-011-0023-1. URL: http://dx.doi.org/10.1007/
s13174-011-0023-1.

[15] Jason Bloomberg. Email as a service not as easy as it sounds. CIO - Applications, Octo-
ber 2012. URL: http://www.cio.com/article/717884/Email_As_a_Service_Not_As_
Easy_As_It_Sounds.

[16] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association. URL: http:
//dl.acm.org/citation.cfm?id=1298455.1298487.

[17] Juan Cáceres, LuisM. Vaquero, Luis Rodero-Merino, Álvaro Polo, and JuanJ. Hierro.
Service scalability over the cloud. In Borko Furht and Armando Escalante, editors,
Handbook of Cloud Computing, pages 357–377. Springer US, 2010. URL: http://dx.
doi.org/10.1007/978-1-4419-6524-0_15, doi:10.1007/978-1-4419-6524-0_15.

[18] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–
4:26, June 2008. doi:10.1145/1365815.1365816.

[19] Yan Chen, Toni Farley, and Nong Ye. Qos requirements of network applications on the
internet. Information, Knowledge, Systems Management, 4(1):55–76, 01 2004. URL:
http://iospress.metapress.com/content/YUBMB4NV3YU3U6UX.

[20] K. Chodorow. Scaling MongoDB. O’Reilly Media, 2011.

[21] Cloudera. Hadoop support, including hbase, hdfs, etc. Cloudera, Inc.,
February 2013. URL: http://www.cloudera.com/content/cloudera/en/products/

cloudera-support.html.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010.
ACM. doi:10.1145/1807128.1807152.

[23] Datastax. Deploying cassandra across multiple data centers. Cassandra
Developer Center, March 2011. URL: http://www.datastax.com/dev/blog/

deploying-cassandra-across-multiple-data-centers.

92

http://dx.doi.org/10.1007/s13174-011-0023-1
http://dx.doi.org/10.1007/s13174-011-0023-1
http://www.cio.com/article/717884/Email_As_a_Service_Not_As_Easy_As_It_Sounds
http://www.cio.com/article/717884/Email_As_a_Service_Not_As_Easy_As_It_Sounds
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dx.doi.org/10.1007/978-1-4419-6524-0_15
http://dx.doi.org/10.1007/978-1-4419-6524-0_15
http://dx.doi.org/10.1007/978-1-4419-6524-0_15
http://dx.doi.org/10.1145/1365815.1365816
http://iospress.metapress.com/content/YUBMB4NV3YU3U6UX
http://www.cloudera.com/content/cloudera/en/products/cloudera-support.html
http://www.cloudera.com/content/cloudera/en/products/cloudera-support.html
http://dx.doi.org/10.1145/1807128.1807152
http://www.datastax.com/dev/blog/deploying-cassandra-across-multiple-data-centers
http://www.datastax.com/dev/blog/deploying-cassandra-across-multiple-data-centers

[24] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. SIGOPS Oper. Syst.
Rev., 41(6):205–220, October 2007. URL: http://doi.acm.org/10.1145/1323293.

1294281, doi:10.1145/1323293.1294281.

[25] Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf. Damaris:
Leveraging Multicore Parallelism to Mask I/O Jitter. Rapport de recherche RR-7706,
INRIA, April 2012. URL: http://hal.inria.fr/inria-00614597.

[26] RobertoR. Expósito, GuillermoL. Taboada, Sabela Ramos, Jorge González-Domínguez,
Juan Touriño, and Ramón Doallo. Analysis of i/o performance on an amazon
ec2 cluster compute and high i/o platform. Journal of Grid Computing, pages 1–
19, 2013. URL: http://dx.doi.org/10.1007/s10723-013-9250-y, doi:10.1007/

s10723-013-9250-y.

[27] Alex Feinberg. Voldemort. Voldemort GitHub Wiki, July
2011. URL: https://github.com/voldemort/voldemort/wiki/

Client-side-failure-detector-implementations.

[28] Danyel Fisher, A. J. Brush, Eric Gleave, and Marc A. Smith. Revisiting whittaker &
sidner’s "email overload" ten years later. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work, CSCW ’06, pages 309–312, New
York, NY, USA, 2006. ACM. URL: http://doi.acm.org/10.1145/1180875.1180922,
doi:10.1145/1180875.1180922.

[29] Forrester, Inc. Tier your workforce to save money with cloud-based cor-
porate email. Forrester Information & Knowledge Management Profession-
als, August 2009. URL: http://download.microsoft.com/download/5/5/C/

55C69DCB-6D2B-4433-9D95-D6Fb5BD9FE86/Forrester%20Tier%20Your%20Workforce%

20to%20Save%20Money%20with%20Cloud-Based%20Corporate%20Email.pdf.

[30] Forrester, Inc. How to choose the right email solution for your business. White Papers,
May 2011. URL: http://g.microsoftonline.com/0BXPS00EN/1128.

[31] Lei Gao. Voldemort rebalancing. Voldemort GitHub Wiki, September 2012. URL:
https://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing.

[32] Steven D Gribble, Matt Welsh, Rob von Behren, Eric A Brewer, David Culler,
N Borisov, S Czerwinski, R Gummadi, J Hill, A Joseph, R.H Katz, Z.M Mao,
S Ross, and B Zhao. The ninja architecture for robust internet-scale systems and
services. Computer Networks, 35(4):473 – 497, 2001. <ce:title>Pervasive Com-
puting</ce:title>. URL: http://www.sciencedirect.com/science/article/pii/

S1389128600001791, doi:10.1016/S1389-1286(00)00179-1.

93

http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/1323293.1294281
http://dx.doi.org/10.1145/1323293.1294281
http://hal.inria.fr/inria-00614597
http://dx.doi.org/10.1007/s10723-013-9250-y
http://dx.doi.org/10.1007/s10723-013-9250-y
http://dx.doi.org/10.1007/s10723-013-9250-y
https://github.com/voldemort/voldemort/wiki/Client-side-failure-detector-implementations
https://github.com/voldemort/voldemort/wiki/Client-side-failure-detector-implementations
http://doi.acm.org/10.1145/1180875.1180922
http://dx.doi.org/10.1145/1180875.1180922
http://download.microsoft.com/download/5/5/C/55C69DCB-6D2B-4433-9D95-D6Fb5BD9FE86/Forrester%20Tier%20Your%20Workforce%20to%20Save%20Money%20with%20Cloud-Based%20Corporate%20Email.pdf
http://download.microsoft.com/download/5/5/C/55C69DCB-6D2B-4433-9D95-D6Fb5BD9FE86/Forrester%20Tier%20Your%20Workforce%20to%20Save%20Money%20with%20Cloud-Based%20Corporate%20Email.pdf
http://download.microsoft.com/download/5/5/C/55C69DCB-6D2B-4433-9D95-D6Fb5BD9FE86/Forrester%20Tier%20Your%20Workforce%20to%20Save%20Money%20with%20Cloud-Based%20Corporate%20Email.pdf
http://g.microsoftonline.com/0BXPS00EN/1128
https://github.com/voldemort/voldemort/wiki/Voldemort-Rebalancing
http://www.sciencedirect.com/science/article/pii/S1389128600001791
http://www.sciencedirect.com/science/article/pii/S1389128600001791
http://dx.doi.org/10.1016/S1389-1286(00)00179-1

[33] Rolf Harms and Michael Yamartino. The economics of the cloud. Microsoft Corporation,
page 22, November 2010.

[34] Quoc Hoang. Email statistics - 2012-2016. Radicati Group, April 2012.

[35] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference on USENIX annual technical conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association. URL: http://dl.acm.org/citation.
cfm?id=1855840.1855851.

[36] Thomas Karagiannis and Milan Vojnovic. Email information flow in large-scale enter-
prises. Microsoft Technical Report, pages 1–15, May 2008. URL: ftp://ftp.research.
microsoft.com/pub/TR/TR-2008-76.pdf.

[37] Simon Bernardus Kok. Online scalable and fail-safe data-technologies. Literature Study,
December 2012.

[38] Avinash Lakshman. Cassandra - a structured storage system on a p2p network. Face-
book Developers, August 2008. URL: http://www.facebook.com/note.php?note_id=
24413138919.

[39] Samuel Lang, Philip Carns, Robert Latham, Robert Ross, Kevin Harms, and William
Allcock. I/o performance challenges at leadership scale. In Proceedings of the Confer-
ence on High Performance Computing Networking, Storage and Analysis, SC ’09, pages
40:1–40:12, New York, NY, USA, 2009. ACM. URL: http://doi.acm.org/10.1145/
1654059.1654100, doi:10.1145/1654059.1654100.

[40] Joe Lennon. Exploring couchdb. IBM developerWorks, March 2009. URL: http://www.
ibm.com/developerworks/opensource/library/os-couchdb/index.html.

[41] J. Logan and P. Dickens. Interval based i/o: A new approach to providing high perfor-
mance parallel i/o. In Parallel Processing Workshops (ICPPW), 2011 40th International
Conference on, pages 289–297, 2011. doi:10.1109/ICPPW.2011.45.

[42] Min Luo and Haruo Yokota. Comparing hadoop and fat-btree based access method for
small file i/o applications. In Lei Chen, Changjie Tang, Jun Yang, and Yunjun Gao,
editors, Web-Age Information Management, volume 6184 of Lecture Notes in Computer
Science, pages 182–193. Springer Berlin Heidelberg, 2010. URL: http://dx.doi.org/
10.1007/978-3-642-14246-8_20, doi:10.1007/978-3-642-14246-8_20.

[43] Microsoft, Inc. Mapi messaging benchmark 3. Microsoft Exchange Server, December
2007. URL: http://technet.microsoft.com/en-us/library/cc164328(v=EXCHG.65)
.aspx [cited September 17th, 2012].

94

http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
ftp://ftp.research.microsoft.com/pub/TR/TR-2008-76.pdf
ftp://ftp.research.microsoft.com/pub/TR/TR-2008-76.pdf
http://www.facebook.com/note.php?note_id=24413138919
http://www.facebook.com/note.php?note_id=24413138919
http://doi.acm.org/10.1145/1654059.1654100
http://doi.acm.org/10.1145/1654059.1654100
http://dx.doi.org/10.1145/1654059.1654100
http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html
http://www.ibm.com/developerworks/opensource/library/os-couchdb/index.html
http://dx.doi.org/10.1109/ICPPW.2011.45
http://dx.doi.org/10.1007/978-3-642-14246-8_20
http://dx.doi.org/10.1007/978-3-642-14246-8_20
http://dx.doi.org/10.1007/978-3-642-14246-8_20
http://technet.microsoft.com/en-us/library/cc164328(v=EXCHG.65).aspx
http://technet.microsoft.com/en-us/library/cc164328(v=EXCHG.65).aspx

[44] Microsoft, Inc. Microsoft security intelligence report. Microsoft Corporation, June 2012.
URL: http://www.microsoft.com/security/sir/.

[45] Microsoft, Inc. Database availabilty group. Exchange 2013 Help, January
2013. URL: http://technet.microsoft.com/en-us/library/dd979799%28v=exchg.
150%29.aspx.

[46] Microsoft, Inc. Windows azure’s flat network storage and 2012 scal-
ability targets. MSDN Blogs: Windows Azure, 2012, November.
URL: http://blogs.msdn.com/b/windowsazure/archive/2012/11/02/

windows-azure-s-flat-network-storage-and-2012-scalability-targets.aspx.

[47] Robert L. Mitchell. Corporate e-mail in the cloud: Google vs. microsoft. Computer
World, April 2010. URL: https://www.computerworld.com/s/article/9176036.

[48] Fred Moore. Information lifecycle management. Horison Information Strategies, October
2003.

[49] Nasuni. The state of cloud storage - a benchmark comparison of performance, availability
and scalability. Industry Report, pages 1–17, February 2013.

[50] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Series in Interactive Technolo-
gies. Morgan Kaufmann Pub., 1994.

[51] Oracle. Error documentation. MySQL Cluster Documentation, 2013. URL: http:

//dev.mysql.com/doc/refman/5.5/en//table-size-limit.html.

[52] Oracle. Mysql 5.5 reference manual. MySQL Documentation, 2013. URL: http://dev.
mysql.com/doc/refman/5.5/en/innodb-storage-engine.html.

[53] Oracle. Mysql cluster disk database. MySQL Cluster Documen-
tation, 2013. URL: http://dev.mysql.com/doc/refman/5.1/en/

mysql-cluster-disk-data-storage-requirements.html.

[54] Sundar Pichai. Chrome & apps. Google I/O: Your web, everywhere, June 2012. URL:
http://googleblog.blogspot.nl/2012/06/chrome-apps-google-io-your-web.html

[cited February 22nd, 2013].

[55] Project Voldemort. Voldemort design. Project website, November 2012. URL: http:
//www.project-voldemort.com/voldemort/.

[56] Radicati Group. Email statistics - 2009-2013. White Papers, May 2009.

[57] Ryan Rawson. Hbase. StumbleUpon NoSQL Meetup, June 2009. URL: http://www.
docstoc.com/docs/9912857/HBase-nosql-presentation.

95

http://www.microsoft.com/security/sir/
http://technet.microsoft.com/en-us/library/dd979799%28v=exchg.150%29.aspx
http://technet.microsoft.com/en-us/library/dd979799%28v=exchg.150%29.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/11/02/windows-azure-s-flat-network-storage-and-2012-scalability-targets.aspx
http://blogs.msdn.com/b/windowsazure/archive/2012/11/02/windows-azure-s-flat-network-storage-and-2012-scalability-targets.aspx
https://www.computerworld.com/s/article/9176036
http://dev.mysql.com/doc/refman/5.5/en//table-size-limit.html
http://dev.mysql.com/doc/refman/5.5/en//table-size-limit.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data-storage-requirements.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data-storage-requirements.html
http://googleblog.blogspot.nl/2012/06/chrome-apps-google-io-your-web.html
http://www.project-voldemort.com/voldemort/
http://www.project-voldemort.com/voldemort/
http://www.docstoc.com/docs/9912857/HBase-nosql-presentation
http://www.docstoc.com/docs/9912857/HBase-nosql-presentation

[58] Ryan Rawson and Jonathan Gray. Hbase. Hadoop World NYC, september 2009. URL:
http://www.docstoc.com/docs/12426213/HBase-at-Hadoop-World-NYC.

[59] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability, availability and
performance in porcupine: a highly scalable, cluster-based mail service. SIGOPS Oper.
Syst. Rev., 33(5):1–15, December 1999. URL: http://doi.acm.org/10.1145/319344.
319152, doi:10.1145/319344.319152.

[60] Yasushi Saito, Brian N. Bershad, and Henry M. Levy. Manageability, availability, and
performance in porcupine: a highly scalable, cluster-based mail service. ACM Trans.
Comput. Syst., 18(3):298–, August 2000. URL: http://doi.acm.org/10.1145/354871.
354875, doi:10.1145/354871.354875.

[61] M. Tlili, R. Akbarinia, E. Pacitti, and P. Valduriez. Scalable p2p reconciliation infras-
tructure for collaborative text editing. In Advances in Databases Knowledge and Data
Applications (DBKDA), 2010 Second International Conference on, pages 155–164, 2010.
doi:10.1109/DBKDA.2010.21.

[62] Kirk True. Ec2 testing infrastructure. Voldemort GitHub Wiki, August 2010. URL:
https://github.com/voldemort/voldemort/wiki/EC2-Testing-Infrastructure.

[63] Jason Venner. Pro Hadoop: Build scalable distributed applications in the cloud. Apress,
2009.

[64] Miles Ward. Mongodb on aws. Amazon Web Services, January 2012. URL: http:
//info.10gen.com/rs/10gen/images/AWS_NoSQL_MongoDB.pdf.

[65] Stege Whittaker and Candace Sidner. Email overload: Exploring personal information
management of email. Proc. CHI, pages 276–283, 1996.

96

http://www.docstoc.com/docs/12426213/HBase-at-Hadoop-World-NYC
http://doi.acm.org/10.1145/319344.319152
http://doi.acm.org/10.1145/319344.319152
http://dx.doi.org/10.1145/319344.319152
http://doi.acm.org/10.1145/354871.354875
http://doi.acm.org/10.1145/354871.354875
http://dx.doi.org/10.1145/354871.354875
http://dx.doi.org/10.1109/DBKDA.2010.21
https://github.com/voldemort/voldemort/wiki/EC2-Testing-Infrastructure
http://info.10gen.com/rs/10gen/images/AWS_NoSQL_MongoDB.pdf
http://info.10gen.com/rs/10gen/images/AWS_NoSQL_MongoDB.pdf

Appendices

97

A Key-value experimental setup

For the key-value benchmark experiments, nine Amazon EC2 m1.xlarge instances were used.
To continue on the setup description introduced in Section 7.2, each machine has 15 GiB
of memory, 8 64-bit EC2 Compute units, of which there are 4 virtual cores, each having 2
compute units. The machines used a provisioned EBS drive as their target storage, using the
EBS-Optimized interface of 1000 Mbps. These machines have high I/O performance, making
them a suitable candidate for running database services in the cloud [3].

Although these machines are first generation EC2 instances, the m1.xlarge EC2 instance sup-
ports EBS-optimized storage, ensuring consistency and provisioned performance. The second
generation EC2 instances are not capable of using EBS-optimized storage, but provide addi-
tional CPU and memory performance. Since database services are more I/O intensive, than
CPU, the EBS-optimized storage outweighs the additional CPU and memory performance.
Besides, as this research is initiated to determine a good candidate for email storage, we
require the database layer to deal with a lot of data, a lot more data than could possibly fit
in memory at a reasonable price level. The perfect database would be able to read quickly
from the disk, and flush new updates to disk, without risking consistency or decreasing per-
formance when it flushes.

The chosen operating system used on the storage instances is the Amazon Linux AMI 2012.09,
as this is optimized for EC2 instances and fully supports EBS-optimized storage. All of the
instances were located in the same availability zone, in this case EU-west-1c was chosen as
the availability zone. The same availability zone was selected as the geographical scalability
of the groupware service is outside the scope of this research, as discussed in Section 1.3.

Each of the machines uses a small EBS volume of 8 GB hard drive to boot up. The attached
EBS-optimized device is able to store 60 GB of data, with a 500 provisioned IOPS. Amazon
guarantees that at least 99.9 per cent of the time, the I/O throughput is 10 per cent of the
provisioned IOPS or more. According to the Amazon Web Services documentation [5], the
drives have a 5 to 50 per cent reduction in IO performance when data is read or written to
for the first time. To make sure that this does not influence our tests, the disks have been
initialized by reading all data once, using:

dd if=/dev/md0 of=/dev/null

In the tests focus was put on the performance of the IO layer of each of the databases. To
simulate a lot of data, the test data should be several times bigger than the available memory,
such that the key-value store will actually have to read a lot from disk and flush changes
quickly. However, generating 60 GB of data per server, in a cluster of six servers, would take
a lot of time just to generate all of that. Especially since the data has to be generated for
each database, the decision was made to limit the available memory on the storage machines

99

such that the server would need to access its disks more often. The available memory was
set to 2 GB, of which each of the databases was allowed to take 1 GB for internal processing,
leaving 1 GB for the kernel to keep track of the file pages and caches these.

This forces the key-value stores to flush their changes to disk quickly, and limits the use of
caching as this would not be available with the retrieval of old mails either.

The benchmark setup used two clusters of servers, the first cluster had three storage servers,
while the second cluster used six storage servers. Each of these clusters had their own
benchmark server to generate the load. The instance type for these benchmark servers was the
c1.medium type, these have more CPU, faster memory, and a very fast network connection.
Throughout the benchmarks, the resources of the benchmark servers were monitored to make
sure that this would never become the bottleneck for the test itself. With each database, the
benchmarks were started at the same time on both clusters, such that general disruptions
and load on the network would interfere both tests equally. To equalize this even further, the
test size of the larger cluster was also doubled compared to the first cluster, such that the
duration in an optimal linearly scalable database would take the same amount of time.

100

	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Problem statement and motivation
	1.2 Research relevance
	1.3 Research objectives and scope
	1.4 Research questions
	1.5 Research strategy
	1.6 Thesis overview

	2 Background
	2.1 Groupware use case
	2.2 MAPI structure
	2.3 Related Work

	3 Service requirements
	3.1 Performance requirements
	3.2 Availability requirements
	3.3 Management requirements
	3.4 Conclusion

	4 Problem analysis
	4.1 Performance problem
	4.2 Scalability problem
	4.3 Availability problem
	4.4 Management problem
	4.5 Load Simulator
	4.6 Conclusion

	5 Data replication analysis
	5.1 Property storage
	5.2 Body storage
	5.3 Attachment storage analysis
	5.4 Listing messages
	5.5 Conclusion

	6 Storage comparison
	6.1 Property storage solutions
	6.2 Body storage solutions
	6.3 Attachment storage solutions
	6.4 Conclusion

	7 Key-value benchmarks
	7.1 Benchmark scenarios
	7.2 Experimental setup
	7.3 MySQL Cluster
	7.4 Cassandra
	7.5 Riak
	7.6 Voldemort
	7.7 HBase
	7.8 Conclusion

	8 Proposed solution
	8.1 Architectural design
	8.2 Automated user segmentation
	8.3 Single point of entry
	8.4 Cluster coordination
	8.5 Autonomous scalability
	8.6 MAPI servers
	8.7 Write agents
	8.8 Blob storage
	8.9 Attachment storage
	8.10 Conclusion

	9 Validation
	9.1 Test cluster
	9.2 Workload measurements
	9.3 Limitations
	9.4 Conclusion

	10 Conclusions and future work
	10.1 Conclusions
	10.2 Discussion
	10.3 Future work

	11 References
	A Key-value experimental setup

