

Delft University of Technology

Unreal Success: Vision-Based UAV Fault Detection and Diagnosis Framework

de Alvear Cardenas, J.I.; de Visser, C.C.

DOI
10.2514/6.2024-0760
Publication date
2024
Document Version
Final published version
Published in
Proceedings of the AIAA SCITECH 2024 Forum

Citation (APA)
de Alvear Cardenas, J. I., & de Visser, C. C. (2024). Unreal Success: Vision-Based UAV Fault Detection
and Diagnosis Framework. In Proceedings of the AIAA SCITECH 2024 Forum Article AIAA 2024-0760
(AIAA SciTech Forum and Exposition, 2024). American Institute of Aeronautics and Astronautics Inc.
(AIAA). https://doi.org/10.2514/6.2024-0760
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2024-0760
https://doi.org/10.2514/6.2024-0760

Unreal Success: Vision-Based UAV Fault Detection and
Diagnosis Framework

José Ignacio de Alvear Cárdenas∗†

San Jose State University Research Foundation, Moffett Field, California, 94043, United States

Coen C. de Visser‡

Delft University of Technology, Delft, Zuid Holland, 2629HS, The Netherlands

Online fault detection and diagnosis (FDD) enables Unmanned Aerial Vehicles (UAVs) to
take informed decisions upon actuator failure during flight, adapting their control strategy
or deploying emergency systems. Despite the camera being a ubiquitous sensor on-board of
most commercial UAVs, it has not been used within FDD systems before, mainly due to the
nonexistence of UAV multi-sensor datasets that include actuator failure scenarios. This paper
presents a knowledge-based FDD framework based on a lightweight LSTM network and a
single layer neural network classifier that fuses camera and Inertial Measurement Unit (IMU)
information. Camera data are pre-processed by first computing its optical flow with RAFT-S,
a state-of-the-art deep learning model, and then extracting features with the backbone of
MobileNetV3-S. Short-Time Fourier Transform is applied on the IMU data for obtaining their
time-frequency information. For training and assessing the proposed framework, UUFOSim
was developed: an Unreal Engine-based simulator built on AirSim that allows the collection
of high-fidelity photo-realistic camera and sensor information, and the injection of actuator
failures during flight. Data were collected in simulation for the Bebop 2 UAV with 16 failure
cases. Results demonstrate the added value of the camera and the complementary nature of
both sensors with failure detection and diagnosis accuracies of 99.98% and 98.86%, respectively.

I. Nomenclature

𝑏cam, 𝑏IMU = Camera and IMU buffers
𝐶𝑈𝐸4 = Occupancy grid cell size, ICFUE4 length units
𝑓cam, 𝑓IMU = Camera and IMU sampling frequency, Hz
𝑓FDD = FDD execution frequency, Hz
𝑓p = AirSim physics engine thread calling frequency, Hz
𝑓res, 𝑡res = STFT frequency, Hz, and time resolution, s
𝑘UE4 = Conversion factor between UE4 and AirSim coordinate frames
𝑛seg = Number of IMU samples in 𝑏IMU before FDD execution
𝑛𝑥 , 𝑛𝑦 = Occupancy grid coordinates
𝑛win = STFT window size
𝑜 = STFT window overlap size
𝑝𝑖𝑥 , 𝑝𝑖𝑦 = Waypoint coordinates in the occupancy grid coordinate frame
𝑝𝑖𝑥 , 𝑝𝑖𝑦 , 𝑝𝑖𝑧 = Waypoint coordinates in the AirSim drone coordinate frame
−→
𝑋 = Vehicle state vector
𝑥, 𝑦, 𝑧 = Position coordinates, m
𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 = Reference position coordinates, m
𝑥𝐷0 , 𝑦𝐷0 = Drone initial spawn coordinates in ICFUE4
𝑥UE4, 𝑦UE4 = Position coordinates in ICFUE4
𝜈 = Measurement noise

∗Project Associate, Human Systems Integration Division, San Jose State University Research Foundation, jose.dealvearcardenas@sjsu.edu
†Work performed as MSc Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
‡Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology, AIAA member

1

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

 AIAA SCITECH 2024 Forum

 8-12 January 2024, Orlando, FL

 10.2514/6.2024-0760

 Copyright © 2024 by J.I. de Alvear Cardenas, C.C. de Visser. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

 AIAA SciTech Forum

𝜓𝑟 = Drone reference heading, rad
𝜔 = Propeller rotational speed, rad/s
Ω = Vehicle angular velocity, rad/s

II. Introduction

With the advent of Smart Cities, Unmanned Air Vehicles (UAVs) have seen a surge in their number of applications,
from package delivery [1, 2] to Urban Air Mobility (UAM) [3]. Most recently, as a response to the COVID-19

pandemic [4], the implementation of UAVs for medical purposes has been accelerated. Zipline, a drone start-up in
California (USA), has been granted permission for transporting medical supplies in North Carolina and AVY, a start-up
based in Amsterdam (The Netherlands), has received a grant from the European Commission for urgent medical
transport between healthcare facilities. With Air Traffic Control programs under development for the management of
drones, such as the U-Space in Europe [5], one of the main concerns of the future crowded urban airspace is safety [6].

Most of the research in this field has been focused on fault tolerant control [7], with companies such as Verity
Studios successfully filing a patent in 2020 for a final product [8]. However, in order to improve the resilience of
multi-rotor and hybrid drones to potential failures, work is also carried out in obstacle avoidance [9], upset recovery
[10], system identification [11] or fault detection and diagnosis [12]; the latter consisting of the fault classification, as
well as its location and magnitude identification. Literature in actuator fault detection and diagnosis (FDD) is very
extensive but it deals with a single failure type at a time and has been limited to the manipulation of signals from the
Inertial Measurement Unit (IMU), namely the accelerometers and gyroscopes, or additional external sensors such as
microphones or optical flow sensors [13, 14], which add weight and complexity to the system. Cameras are nowadays
ubiquitous in commercial UAVs and they have been ignored for this task, even though their information is already being
processed for navigation, such as Simultaneous Localisation and Mapping (SLAM) [15], and state estimation in GPS
denied urban regions, such as Visual Inertial Odometry [16]. Visual information is very rich and it could potentially
identify multiple failure types at once, as well as increase the accuracy when fused with the IMU sensor.

FDD expands the envelope of the UAV’s self-awareness and allows informed decisions when deploying emergency
systems, such as a parachute, and switching between controllers or internal physics models to counteract a failure.
Figure 1 shows a classification of FDD methods from literature which can be divided in 3 main groups: model-based,
signal-based and knowledge-based. Historically, knowledge-based approaches have shown to be the most suitable for
dealing with high-dimensional visual data, especially with the rise of deep learning model architectures. In contrast with
model-based approaches, they do not make use of the physical properties of the system and do not build a mathematical
model. However, they require greater amounts of historic data in order to create implicit models.

Model-based

Signal-based

Knowledge-based

FDD methods

Observer and filter
based method

Machine
Learning Symbolic AI

Supervised
learning

Unsupervised
learning

Reinforcement
learning

Time domain Frequency domain Joint time
frequency domain

Semi-supervised
learning

QualitativeQuantitative

Causal models Abstraction
hierarchy

Parameter
estimation

Dynamic observerStatic observer

Simultaneous state
& parameter
estimation

Parity space
method

Fig. 1 Fault detection and diagnosis method taxonomy.

2

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Machine learning methods are exploited in modern fault detection systems because they do not require a lot of
computations, allowing their use online in real-time. Among them, Long Short-Term Memory (LSTM) networks are
a supervised learning method that can be fed sequential data in order to extract temporal relationships to generate
an output [17]. It generates predictions based on the current input and an internal state that stores information from
an arbitrary number of previous inputs. It is usually combined with batch normalisation (BN) to reduce the internal
covariate shift and accelerate the convergence of the algorithm. Zhao et al. [18] exploit this combination to extract
dynamic information from data for online FDD within chemical processes and they demonstrate its superiority over
alternative knowledge-based FDD approaches.

For the development and performance assessment of vision-based FDD algorithms, it is required to have a dataset
which includes IMU and camera output in nominal flight and in failure scenarios. Unfortunately, the current available
datasets do not include IMU sensor information, such as the VisDrone dataset [19] or the Indoor Navigation UAV
Dataset [20], and do not have any recorded scenarios with failures, such as the UZH-FPV Drone Racing Dataset [21] or
the Zurich Urban Micro Aerial Vehicle Dataset [22].

Gathering large quantities of data for knowledge-based fault detection models with an UAV is very time consuming,
dangerous and expensive; data would have to be annotated, multiple failure modes would have to be induced in the
vehicle and the flight environment, as well as the UAV, would have to be adapted to minimise the potential risk. Besides
that, in an experimental physical setting it is very difficult to collect data from various environments and conditions. A
suitable alternative is the simulation of the vehicle in a realistic environment, the storage of the sensor synthetic data for
model training and the transfer learning to the real world UAV. Research has shown that the addition of large quantities
of synthetic data to a smaller real dataset would lead to a performance increment [23].

In previous literature, Gazebo has been the quadrotor simulation tool of choice by the research community leading
to simulators such as RotorS [24] and Hector [25]. Despite its high-fidelity physics engine, the output quality of its
visual cues is far from photo-realistic. In this regard, there has been an effort in developing high-fidelity simulators for
computer vision tasks in the last 10 years. Blender’s Game Engine was used for the development of simulators, such as
MORSE [26] from 2011 to 2016. However, Unity and Unreal Engine have become the new state-of-the-art (SOTA).
Besides their photo-realism, these engines have the benefit of providing an online asset marketplace for the generation
of an infinite number of simulation environments.

Examples of photo-realistic simulators are FlightGoggles [27] and Flightmare [28] developed in Unity, and UnrealCV
[29], Sim4CV [30] and AirSim [31] developed in Unreal Engine. AirSim was launched in 2017 by Microsoft as an
open-source simulator built on Unreal Engine 4 (UE4) for AI research. It is a modular framework that fosters the
simulation of autonomous drones and ground vehicles with realistic physics and visual cues. It also includes C++ and
Python APIs that allow the researcher to interact programmatically with the vehicle for the extraction of state and sensor
information, as well as for providing vehicle control inputs. In contrast with the other simulators, it has an adaptable
framework for the introduction of new vehicle models and it is well documented. Thanks to its modularity, later works
have been built on AirSim for specialised applications, such as the AirSim Drone Racing Lab [32]. Another promising
simulator is Isaac Sim∗ developed by NVIDIA for the development and deployment of artificial learning applied to
robotics in their Omniverse simulator environment. Unfortunately, its computational requirements are beyond the
specifications of most commercially available workstations.

The main contribution of this paper is an LSTM-based online FDD framework that fuses camera and IMU data.
To this end, the camera information is pre-processed by a SOTA optical flow model in order to extract the magnitude
and direction of the vehicle’s ego-motion. The IMU data are passed through a Short-Time Fourier Transform for
feature extraction. To the authors’ knowledge, it is the first time that both sensor sources are combined for UAV FDD.
Furthermore, this paper also presents UUFOSim (Unreal UAV Failure injectiOn Simulator), a data gathering pipeline
built on AirSim for the collection of synthetic flight data with actuator failures in a urban environment.

The potential of UUFOSim has been demonstrated for the Parrot Bebop® 2 UAV. Its aerodynamic model is available
from literature [11, 33] and it has been complemented with the blade damage model from [34]. The FDD framework was
run at 10 Hz and it had to distinguish between 17 states: 16 failure states (4 levels of blade damage per propeller), and a
healthy state. The results show the added value of the camera-IMU combination versus their isolated performances.

The remainder of this paper is organised as follows. Section III describes the data gathering pipeline within
UUFOSim. Section IV covers the FDD framework and provides the details of the camera and IMU data pre-processing.
Then, section V presents the results when both contributions are applied to the Bebop 2 platform. Finally, concluding
remarks and recommendations for further work are provided in section VI.

∗https://developer.nvidia.com/isaac-sim

3

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

https://developer.nvidia.com/isaac-sim

III. UUFO Simulator
The simulator, that the authors have named Unreal UAV Failure injectiOn Simulator (UUFOSim), consists of flying

a simulated drone or Undiagnosed Failing Object (UFO) in a urban environment avoiding obstacles between two random
locations. UFOs fly at a uniformly sampled constant altitude and an actuator failure, within a set of modes, is injected at
a random point along the trajectory. During the whole flight, including the manoeuvres after the failure, the camera and
IMU data are stored to later shape the dataset for the training and testing of the FDD framework.

Figure 2 shows the three main blocks that shape the data gathering pipeline. Once the flight is concluded by
achieving one of the terminating conditions, the environment and UFO are reset to their original state and the cycle is
repeated. The loop continues for as many flights as it is desired for building the dataset.

Occupancy map
extraction

Drone grid
navigation Drone flight

UUFOSim

Fig. 2 Data gathering pipeline block diagram

In order to discuss in detail each of the presented blocks, this section will first present how the information from the
environment is extracted offline and translated to an occupancy grid in subsection III.A. Once the environment state
is known, the path that the drone should follow is computed in subsection III.B using common robot path planning
algorithms. Finally, the drone flight including the sensor data collection and fault injection during flight are discussed in
subsection III.C.

A. Environment and occupancy map
The environment is discretised into a matrix of inter-independent fix size cells which store whether they are free or

occupied in the form of a boolean. This form of representation is called a grid occupancy map and has been exploited
in the autonomous driving industry [35, 36], and more recently in the (flying) robotics sector [37, 38], to reduce the
environment information to a tractable and efficient data structure.

Figure 3 describes all the steps taken to build a static 2D grid occupancy map in order to encapsulate all the
information about the static obstacles found by the drone at its flying altitude prior to executing its flight.

Select random
altitude

Extract UE4
obstacle vertices

Obtain environment
dimensions

Slice point cloud at
flight altitude and

project to 2D

Create and fill
occupancy grid with

obstacle points

Fill grid cells
enclosed by
obstacles

Plot occupancy map

Occupancy map
extraction

Fig. 3 Occupancy map extraction block diagram.

4

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

First, the flight altitude is randomly selected within a range to avoid overfitting of the FDD algorithm to object
instances found only at certain heights (bushes, trees, windows) and horizon line locations in drone images. Next, for
obstacle information extraction, AirSim’s API returns 3D point clouds based on UE4 assets’ triangular static meshes
(see Fig. 4 for a sphere) in which each point has a label for an object in the environment.

Fig. 4 Sphere mesh in Unreal Engine 4.

1

2 3

4

Fig. 5 Blocks environment limits for drone flight
bounded by the 4 monoliths in the red rectangle cor-
ners.

Figure 5 shows the Blocks environment that will be used to showcase the following steps carried out on the grid
occupancy map. It consists of grey blocks, an orange sphere, a blue cone and multiple cylinders. To ensure drone
navigation around obstacles, flight boundaries are defined using the obstacles’ farthest x and y coordinates. For the
Blocks environment, the drone flights are confined to the red rectangle shaped by the four corner monoliths, resulting in
a 3D point cloud from the obstacles’ meshes of 46,248 points.

Furthermore, maintaining a constant flight altitude enables the reduction of the point cloud by slicing it within a
specific altitude range and projecting 3D points onto a 2D x-y plane. Fig. 6 presents the Blocks’ 2D point cloud at a
drone altitude of seven meters with a three-meter range. The points that are close to each other with the same colour are
part of the same object. This figure contains 8,956 2D points due to overlapping projections from various altitudes. This
abundance of points can be seen when zooming to the orange blob in Fig. 7. Despite a fivefold reduction in obstacle
points (and an eightfold reduction in information by discarding altitude data), many points lack meaningful information,
with only the outer edges of object groups preserving vital obstacle representations.

−1.0 −0.5 0.0 0.5 1.0
y-coordinate 1e4

−1.0

−0.5

0.0

0.5

x-
co
or
di
na
te

1e4

Fig. 6 2D projection of the Blocks environment ob-
ject vertices within 4 and 10 metres altitude.

2.8 3.0 3.2 3.4 3.6 3.8
y-coordinate 1e3

3.0

3.5

4.0

x-
co
or
di
na
te

1e3

Fig. 7 Zoom-in of the 2D projected points of the
sphere.

To address the desire of discarding unnecessary points, the concept of an occupancy map is introduced. The
environment is divided into cells, and cells with points inside are marked as occupied (black), whereas those without
any points are considered empty (white). This discretisation simplifies the data, reducing multiple points within a cell to
a single data point. In the case of the Blocks example, the 2D point cloud is transformed from the world coordinate

5

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

frame to the grid coordinate frame, projecting all points onto a 2D grid and filling cells occupied by obstacle points,
as shown in Fig. 8 and Fig. 9. The FDD data gathering pipeline then operates exclusively on this grid information,
reducing the stored data and computational load. Instead of the initial 8,956 2D points, now a grid of 80 by 54 cells is
used, totalling 4,320 cells. Since the data points (cells) are homogeneously distributed, their individual locations need
not be stored, as long as the dimensions of the occupancy grid (x and y) are known. This transformation results in a 1D
data stream, reducing the number of data points by a factor of two and the stored information by a factor of four. Refer
to Table 1 for a summary of the evolution of the number of points and coordinates (information) through the projection
and occupancy grid stages.

Fig. 8 2D points projected in empty occupancy grid. Fig. 9 Filled occupancy grid and 2D projected points.

Table 1 Evolution of the number of points and coordinates upon the occupancy map generation.

Original 2D projection Occupancy map
Points 46,248 (100%) 8,956 (19.36%) 4,320 (9.34%)
Coordinates 138,744 (100%) 17,912 (12.91%) 4,320 (3.11%)

Fig. 9 illustrates the limitation of merely filling grid cells occupied by obstacle vertices when creating an occupancy
map. There are grid cells that lie within objects, that should not be accessible but that are not marked as occupied since
there is no vertex of the static mesh on that particular cell. This problem becomes more pronounced with finer mesh
resolutions. To address this, an algorithm was developed utilising Delaunay triangulation:

1) Objects in the environment are assigned coordinates of grid cells occupied by their 2D points on the occupancy
map. Objects with fewer than three grid coordinates or forming linear shapes are excluded.

2) Delaunay triangulation creates a triangular mesh of each object’s grid cells. Afterwards, the algorithm iterates
over all the edges of each of the object’s triangles, and if an edge is covered more than once, it is considered an
internal edge shared by two triangles and is subsequently discarded. The remaining edges form the obstacle’s
outer polygon boundary.

3) All empty grid coordinates are evaluated to determine if they lie within each obstacle’s polygon boundaries,
marking grid cells within obstacles as occupied. See Fig. 10 for the Blocks environment. This occupancy map is
then utilised by the path planning module.

B. Path planning
The steps to achieve a smooth drone flight path can be observed in Fig. 12.

1. Start and goal selection
First, random initial and goal flight coordinates are generated. These locations are subject to three design

requirements:

6

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Fig. 10 Filled occupancy grid considering obstacle
inner cells identified with Delaunay triangulation.

Fig. 11 Occupancy grid with start and goal locations.

Select random initial
and goal flight

coordinates

Check start and goal
coordinates

requirements

Plot start and goal
points in occupancy

map

Path planning with A*
Reduce the number of

path points with B-
spline

Check path obstacle
collision

Plot final path in
occupancy map

Drone grid navigation

Transform grid
coordinates to AirSim

drone inertial
coordinate frame

Smoothen path with
cubic spline

Check path obstacle
collision

Fig. 12 Drone grid navigation block diagram.

1) The start and end locations must be separated by a distance greater than a user-defined minimum distance. This
prevents extremely short paths that cannot accommodate the injection of failures.

2) The distance between the start and end locations should not exceed a user-defined maximum distance. This
restriction ensures that excessively long paths, which do not significantly contribute to the training of the FDD
framework and decrease the number of flights that would be executed in an allocated time, are avoided.

3) The start and goal locations must be positioned at a minimum distance from all identified obstacles in the
occupancy map. This constraint guarantees the absence of unexpected collisions due to the drone’s dimensions.

The random selection and requirement check are iteratively performed until the start and goal coordinates meet
these established criteria. Once these conditions are satisfied, the coordinates are integrated into the occupancy map.
For the Blocks example, the start and goal locations are depicted as red dots inFigure 11.

2. Path planning algorithm selection
Only two classic robot path planning methods are considered: grid (discrete) approaches and road-map methods.

Figure 13 visually categorises the algorithms under investigation. Within the grid approach, both methods consist of

7

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

two steps: propagation (search) and back propagation. The primary distinction is that the Wavefront Path Planner
conducts its initial search across the entire grid, whereas A∗ uses a function to prioritise cells for inspection based on
the discovered solution space. As a result, even though each iteration in A∗ is more computationally expensive, fewer
iterations are required because only a portion of the grid is examined.

Path planning

Grid/discrete
approaches

Road-map
approaches

A* Wavefront
Path Planner

Geometric
approaches

Sampling
 approaches

Voronoi Road-
Map Planning PRM RRT*

Fig. 13 Path planning algorithm classification

Regarding sampling techniques, PRM necessitates the drone to pass through randomly sampled points in the solution
space, whereas RRT∗ only requires movement in their direction without point-to-point convergence.

All the approaches can maintain a configurable safe distance from obstacles, except for Voronoi Road-Map planning,
which seeks to maximise this distance. In the Blocks environment, A∗ exhibits the lowest computation time, followed by
Voronoi Road-Map planning. Wavefront Path Planner and PRM show similar computation times, whereas RRT∗ is the
least efficient, requiring 17 times more time than A∗. Consequently, the A∗ algorithm is the preferred choice. Figure 14
illustrates the A∗ path for the Blocks example.

0 20 40 60 80
y-coordinate

0

10

20

30

40

50

x-
co
or
di
na
te

Fig. 14 A∗ Path Planner applied to the Blocks environment example.

3. B-spline path point number reduction
In shaping the final flight path, certain points bear no valuable information. Straight-line points can be reduced to

two and some curves could be avoided if straight lines were taken. Whereas A∗ determines a flight path using many
points spaced by an occupancy grid cell size, B-spline helps reduce it to its most indispensable points.

B-splines [39] of order k are piecewise polynomials used as the basis for spline functions, they generate smooth
trajectories connecting data points and are of degree k-1. In this study, B-splines of degree 2 (order 3) are employed
for optimising paths. The goal is to minimise the number of points, beginning with only 5% of the initial number. If
unsuccessful, the number of points is increased by 5% in each iteration. A 100% point retention indicates no reduction
is possible, and the A∗ generated path proceeds to the next step in path planning.

Reduced paths are checked for collisions with environmental obstacles. Vectors connecting path points are discretised,
and grid cells they traverse are examined for occupancy. Additionally, this process is repeated with two parallel vectors,
each shifted one cell to the right and left of the original vector, ensuring a minimum one-cell distance from obstacles. If

8

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

any of these checks detect an obstacle, it is treated as an unsuccessful point reduction, and the percentage of retained
points is increased by 5%. A new B-spline is then generated, and the reduced path is re-evaluated for obstacles. In
Fig. 15, even though the central vector connects the two path points through open space, an obstacle is detected because
one of the points of the right parallel vector can be found within an occupied grid cell.

Fig. 15 B-spline reduced path obstacle detection. The blue and green cells are two path points, and the red cells
are occupied by environment obstacles. The black lines are the discretised vectors for obstacle detection.

The advantages of reducing path points using B-splines are evident in the occupancy grid. Figures 16 and 17 display
the path before and after point reduction. Fig.16 mirrors the path in Fig.14, comprising 61 points. In contrast, Fig. 17
achieves the same path with just 9 points

Fig. 16 Zoom-in of Blocks occupancy map with A∗

flight path represented by small green arrows.
Fig. 17 Zoom-in of Blocks occupancy map with B-
spline reduced flight path represented by large green
arrows.

4. Cubic spline path smoothing
The B-spline method enabled the identification of pivotal points that serve as a foundation for cubic smoothing

splines. Smoothing would have been proved ineffective if applied on the A∗ flight path due to its fine path discretisation
in single occupancy grid cells.

This smoothing is essential to eliminate sharp corners. In the final smooth flight path, points are still separated by
one occupancy grid cell’s size, but they are no longer constrained to cell corners as in the A∗ and B-spline reduced paths.
After smoothing, collision checks are performed using the same approach as with the B-spline.

Figure 18 displays the final flight path marked by red arrows, whereas Fig. 19 visually confirms that the cubic
spline intersects the pivot points (yellow circles), with flight path points unrestricted to grid cell boundaries. Notably, a
marked improvement resulting from the combination of B-splines and cubic splines (small red arrows) is evident when
compared to the original A∗ flight path (small green arrows).

5. Flight path transformation to AirSim drone inertial coordinate frame
Finally, the grid coordinates of the smoothed spline flight path are transformed to the AirSim drone’s inertial

coordinate frame. Four distinct inertial coordinate frames are essential in this process:

9

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Fig. 18 Zoom-in of Blocks occupancy map with cubic
spline smoothed flight path represented by small red
arrows.

Fig. 19 Visual confirmation of the final path not
being constrained to the occupancy grid and it passes
through B-spline pivot points (yellow circles).

1) Unreal Engine 4 inertial coordinate frame (ICFUE4): used to build the UE4 environment. Hence, the centre
of coordinates and the direction of its axes vary from map to map. It is a drone-independent coordinate frame.

2) Occupancy grid inertial coordinate frame (ICFOG): it has its origin at the bottom left of the occupancy map,
with the y-axis pointing to the right and the x-axis pointing to the top in the 2D grid. Objects and points in the
occupancy map have positive coordinates. The environment has been discretised with cells of predefined size,
CUE4. As can be seen in Eq. (1) and Eq. (2), in order to define the number of cells in the grid (𝑛𝑥 and 𝑛𝑦), the
minimum and maximum X- and Y-coordinates among all the obstacles in UE4 environment (𝑥UE4min , 𝑥UE4max ,
𝑦UE4min , 𝑦UE4max) are required. It is a drone-independent coordinate frame.

𝑛𝑥 = (𝑥UE4max − 𝑥UE4min)/𝐶UE4 (1)

𝑛𝑦 = (𝑦UE4max − 𝑦UE4min)/𝐶UE4 (2)

3) AirSim inertial coordinate frame (ICFAS): shares the same origin as ICFUE4, with axes aligned similarly, but
the units are scaled differently. In this frame, 1 unit is equivalent to 100 units in ICFUE4. This factor is defined as
kUE4. It is a drone-independent coordinate frame.

4) AirSim drone inertial coordinate frame (ICFASD): identical to ICFAS, but with its origin adjusted to the initial
drone spawn location within the environment, expressed as x𝐷0 and y𝐷0 in ICFUE4. The location of the drone
within the controller is expressed using ICFASD. It is a drone-dependent coordinate frame.

To convert the flight path from the occupancy map to the AirSim drone inertial coordinate frame, the transformations
depicted in Fig. 20 were utilised with the provided parameters.

Fig. 20 Inertial coordinate frame transformations: from ICFOG to ICFASD

Given a trajectory T: [(𝑝1𝑥
, 𝑝1𝑦

), (𝑝2𝑥
, 𝑝2𝑦

), ..., (𝑝𝑛𝑥
, 𝑝𝑛𝑦

)] of n points in R2 in ICFOG, the points of the flight path
can be transformed to ICFASD (𝑝𝑖𝑥 and 𝑝𝑖𝑦) with Eq. (3) and Eq. (4).

𝑝𝑖𝑥 = (𝑝1𝑥
· 𝐶UE4 + 𝑥UE4min)/𝑘UE4 − 𝑥𝐷0 𝑖 = 1, 2, ..., 𝑛 (3)

𝑝𝑖𝑦 = (𝑝1𝑦
· 𝐶UE4 + 𝑦UE4min)/𝑘UE4 − 𝑦𝐷0 𝑖 = 1, 2, ..., 𝑛 (4)

10

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

C. Data collection
The next step is to fly the drone within the UE4 environment, potentially induce an actuator failure and gather all the

vision-based and signal data for the FDD training. Figure 21 summarises all the steps taken during the final block of the
data gathering pipeline. In the following sections, each of the blocks will be briefly discussed.

Initialise sensors
Teleport drone to

selected start
location and altitude

Select and initialise
failure type and

mode

Store flight and
failure info in log

file

Start flying
computed path

Start sensor data
collection

Check failure
injection distance

Drone flight

Check collision, fly
off and arrival to

destination

Store collected
sensor data

Compute distance to
goal

Reset client and
failure factory

Fig. 21 Drone flight block diagram

1. Sensor initialisation and drone teleportation
In the sensor initialisation stage, data structures for IMU and camera data are created. A single drone can carry

multiple cameras, each providing different information like depth, segmentation, or RGB.
After initialising the sensors, the drone is teleported to the start location with the heading set towards the first

trajectory point. Users can choose whether the drone should take off from the ground or start at a specified altitude. In
our research, focused on cruise phase failures, the drone is teleported to the desired altitude, as shown in Fig. 22 in the
Blocks environment.

Fig. 22 Drone teleported to start location

11

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

2. Failure type & mode selection and initialisation
In this study, four actuator failure types are considered: actuator saturation, actuator lock, propeller fly-off, and

propeller damage. Actuator saturation locks the propeller at its maximum rotational rate, whereas actuator lock fixes it
at a percentage of this maximum. In the case of propeller fly-off, the propeller is detached completely, and for propeller
damage, one or more blades are broken. The first three failure types are simulated by providing predefined locked values
to the propeller’s rotational rate.

To simulate propeller damage, the Blade Element Theory (BET) model presented in [34] was implemented as a
plug-in to the nominal vehicle physics model. Blade damage requires a closer look at the propeller aerodynamics and
centre of gravity shift, which create a loss of thrust and vibrations along the three body axis, as demonstrated in Fig. 23
and Fig. 24, which show the BET-simulated forces and moments for the Bebop 2 drone front left propeller after suffering
20% damage while rotating at 600 rad/s.

Fig. 23 BET-simulated evolution of mass and aero-
dynamic forces generated by lost blade sections upon
20% Bebop 2 blade damage for 0.25 s rotating at 𝜔0 =

600 rad/s [34].

Fig. 24 BET-simulated evolution of mass and aero-
dynamic moments generated by lost blade sections
upon 20% Bebop 2 blade damage for 0.25 s rotating
at 𝜔0 = 600 rad/s [34].

Each failure type has a varying number of failure modes. For example, propeller fly-off has four failure modes, one
for each propeller. Two hyper-parameters were introduced: discrete vs. continuous and abrupt vs. linear. Discrete values
are selected from the list <0.2, 0.4, 0.6, 0.8>, whereas continuous values lie within the open interval (0,1). In the abrupt
case, failure occurs instantaneously, whereas in the linear case, it transitions linearly from nominal to the fault state.

To create a balanced dataset for FDD algorithm training, users select failure types and modes. A pool of potential
combinations is created and uniformly sampled before each flight. For example, if the user selects discrete and abrupt
actuator saturation and actuator lock, the algorithm samples from 21 alternatives, including four actuator saturation
options (one for each propeller), 16 actuator lock options (four per propeller), and one healthy option.

Before each flight, a random distance along the planned trajectory is chosen for failure injection, at least five meters
from the start and goal locations, to avoid capturing transient effects at flight initialisation and completion.

3. Drone flight: guidance, control and physics model
The drone follows the computed path in a three-step loop (Fig. 25). Firstly, the guidance block generates reference

position (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟) and heading (𝜓𝑟) for the controller based on the planned path and current vehicle states (
−→
𝑋),

accounting for measurement noise (𝜈). Secondly, the controller translates these references into actuator rotation
velocities (𝜔𝑖𝑐 | i=1,2,3,4). Finally, the physics model simulates the drone’s response to these commands and provides
the next time step’s vehicle states as measured by the vehicle sensors.

Guidance:
Generation of

reference position
and heading

Controller Bebop 2 physics
model

Fig. 25 Drone flight guidance, controller and physics model pipeline.

12

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Until now, the simulation pipeline is platform agnostic. However, to showcase the FDD framework, the Bebop 2
drone is chosen for this paper. In order to simulate as close as possible to reality its behaviour, the authors integrated
the Incremental Nonlinear Dynamic Inversion (INDI) controller [7] and grey-box physics model [11, 33] from Delft
University of Technology using AirSim’s C++ API. Additionally, the existing AirSim guidance approach was leveraged.

For numerical integration, the simulation employs the Beeman and Schofield explicit method [40] outlined in
Eq. (5) and Eq. (6), where 𝑥 is the position or attitude, 𝑣 is the linear or angular velocity and 𝑎 is the linear or angular
acceleration. Additionally, Δ𝑡 is the time step duration and the subscripts n+1, n and n-1 refer to the next, current and
previous time steps.

𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝑛Δ𝑡 +
1
6
(4𝑎𝑛 − 𝑎𝑛−1) Δ𝑡2 (5) 𝑣𝑛+1 = 𝑣𝑛 +

1
6
(2𝑎𝑛+1 + 5𝑎𝑛 − 𝑎𝑛−1) Δ𝑡 (6)

4. Sensor data collection, failure injection and flight termination
During flight execution, sensor data could be collected through AirSim’s Python API default functions. However,

these functions have a maximum sampling rate of 26 Hz in the basic Blocks environment, falling short of the desired
rates for IMU (500-1000 Hz) and camera (30-60 Hz). Additionally, this sampling rate fluctuates during flight due to
simulator workload and Python API computations, with variations of up to a factor of 2.3.

To boost IMU sampling rates, its data collection has been coupled to the simulator’s physics engine in C++. When
the flight ends, the data are retrieved by the Python API and the C++ vectors are cleared for the next flight. This approach
is also applied to other signal-based sensors like the barometer, magnetometer, and GPS. Users can select the sensors to
activate and their sampling rates.

An advantage of tying IMU data collection to the physics engine is immunity to simulation slowdowns. However,
the sampling frequencies are limited to integer factors of the physics engine thread calling rate. With the nominal
physics engine thread calling period of 0.003 seconds (𝑓p = 333.33 Hz), the sampling frequencies available for IMU
data gathering are discrete and limited to values of 𝑓p divided by integer values.

For video sampling rates, it is not possible to couple the image data storage to the physics engine because the AirSim
image retrieval functions are part of another simulator thread. Therefore, the simulation clock speed is modified to
achieve a higher number of frames per second (fps). This, in turn, affects the physics engine and the IMU sampling
rates. For instance, using a clockspeed factor of 0.5 would allow an IMU sampling rate of up to 666.66 Hz. Therefore, a
trade-off must be made between IMU and camera sampling rates by tuning the clockspeed factor.

Concurrently, as data are collected, the drone’s proximity to the goal location is monitored. When the designated
failure point along the trajectory is reached, the Python API triggers the chosen failure. For actuator-related failures, the
damage coefficient is adjusted, whereas for blade damage, forces and moments from lost blade sections are added to the
healthy aerodynamic model. The timing of these changes depends on whether the failure is abrupt or continuous.

Once the failure has been injected, the simulation pipeline starts to check whether any of the following flight
termination conditions has been reached: collision with the ground, collision with an obstacle, drone flies above a
predefined altitude or timeout.

5. Flight & failure metadata logging and sensor data storage
Once the flight has been concluded, flight and failure metadata, such as the type, location and magnitude of the

failure, are stored for the posterior labelling of the gathered data for the training and testing of FDD algorithms. The
data recorded by the IMU at every time step of the flight are stored in a .csv file. All the camera frames are stored in the
same directory as the IMU, each image with the name of the timestamp at which it was taken in order to preserve the
temporal sequence information.

Finally, the client, sensors and failure factory are reset to their original values in order to repeat the complete data
gathering pipeline shown in Fig. 2 for the next flight.

IV. Fault detection and diagnosis framework
This section introduces an FDD framework designed to detect drone actuator failures, point to the failed actuator

and quantify the damage. The architecture proposed here fuses data from the Inertial Measurement Unit (IMU) and the
on-board camera. Thanks to the simulator developed in section III, it is possible to use knowledge-based approaches
previously impossible due to the lack of data.

13

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

The complete FDD architecture can be observed in Fig. 26. It comprises two independent parallel data processing
paths for the camera and IMU, followed by feature fusion using a Long Short-Term Memory (LSTM) network,
architecture with feedback connections which allows the ingestion of sequential data. Subsequently, a dense Neural
Network is employed for data classification, with the number of output neurons aligning with distinct classes. For
instance, in the context of failure detection, there are two classes: ’healthy’ and ’failure,’ resulting in two output neurons.

IMU
buffer

Camera
buffer

Feature
extraction
(STFT)

Optical flow
(RAFT-S)

Feature extraction
(MobileNetV3-S)

Flattening

Concatenation

Resize

= 555 Hz
IMU

Accelerometer

Gyroscope

Time series model

3x

= 10 Hz

Classifier

x 17Camera

= 30 Hz
LSTM

30
cells

BN

Softmax
& argmax

Detection &
diagnosis

FR
BD50

Sensor fusion and classification module

Fig. 26 The FDD pipeline consists of (i) an IMU time-frequency feature extractor in the form of a Short-Time
Fourier Transform, (ii) the MobileNetV3-S as feature extractor from the camera optical flow computed with
RAFT-S and (iii) a Long Short-Term Memory network followed by a single layer Neural Network as sensor fusion
and classification module. The FDD framework is run at 10 Hz and the sampling rate of the IMU and camera
are 555 Hz and 30 Hz, respectively.

Synchronising data from sources with varying sampling rates without discarding precious data can present a
challenge for FDD architectures. On drones, the IMU often samples data at a much higher rate than the camera. Rather
than naively synchronising data at the camera’s frequency and discarding the IMU data between camera shots, the
presented FDD architecture accommodates flexible operation without data loss at a commanded frequency, provided it
does not exceed the slowest sensor’s rate. This adaptability accommodates diverse computation constraints.

In the following sections, a detailed exposition of each architecture component is provided, specifically tailored to
the Bebop 2 drone’s characteristics (frequencies and tensor sizes) used in our research. First, subsection IV.A delves
into image feature extraction. Then, subsection IV.B details the IMU data processing. Finally, subsection IV.C shows
the fusion of sensor features for detection and diagnosis prediction, treating the tasks as classification problems.

A. Camera data processing
The inspiration for the introduction of the camera into the FDD pipeline stems from the observation that human

beings are able to detect that they are falling thanks to their "natural time differentiated accelerometer" or vestibular
system, an apparatus within the inner ear that provides information about changes in acceleration, as well as from their
visual sensory system. When the vestibular system is saturated (e.g. rapidly rotating on an office chair) or the changes in
acceleration are imperceptible (e.g. accumulating slow changes in aircraft attitude), the visual sensory system is still
able to detect the subject’s ego motion thanks to the relative movement of elements of the environment in its visual field.
For instance, if a human subject sees a block moving to the right in a static environment, the subject understands that it
is moving then to the left.

The two main factors affecting judgement of self-motion are the gradients and the pattern of optical flow which
provide information about the relative velocity (amount) and direction of relative motion, respectively. Hence, the
authors believe that knowledge about the magnitude and direction of the optical flow could enhance the diagnosis
component of the FDD framework by implicitly quantifying the failure magnitude and identifying the failed actuator.
For instance, if the front right clockwise rotating (from top view) propeller is lost, then it is expected that the drone will
lose lift, tilt forward and rotate clockwise. In optical flow, this should translate to a vector field with an up-left direction.
The stronger the gradient, the greater the failure magnitude.

There are two ways in which optical flow can be represented, namely sparse and dense optical flow [41]. The main
difference is that the first computes the optical flow for a predetermined number of features of interest whereas the
second computes it for the complete frame. Even though the sparse optical flow is less computationally expensive, it has

14

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

two main problems. First, those features of interest may disappear or become hidden after a few frames, forcing the
optical flow approach to select new features. Second, the algorithm may choose different features between frames as
some become more salient than others throughout time. As a result, it is difficult to infer a potential actuator failure
from a specific optical flow change pattern as it could be attributed to the tracking of different features over consecutive
frames. Hence, dense optical flow was chosen.

In literature there are two main classes of dense optical flow approaches, namely traditional or classical energy-based
and deep-learning based. In recent years, deep learning based approaches have been able to surpass the traditional
counterparts in accuracy and lower inference times, allowing them to run in real time and becoming the de facto choice
for computationally constrained devices and platforms [42, 43].

Within this deep-learning based approaches there are three architectures that stand out from literature for their high
accuracy and low inference time, while providing their code and trained model weights:

• CNNs for Optical Flow using Pyramid, Warping, and Cost Volume (PWC-NET†) [44]. It was published in June
2018, one of the fastest methods in literature and the fastest from the selection; it is considered a milestone
algorithm in the field [45].

• Recurrent All-Pairs Field Transforms for Optical Flow (RAFT‡) [46]. It was published in November 2020 and
it shows the highest performance of the three considered approaches in the MPI-Sintel dataset with the highest
reported inference time [46].

• Displacement-Invariant Matching Cost Learning for Accurate Optical Flow Estimation (DICL-Flow§) [47]. It was
published in December 2020 and it shows a reported runtime and performance between the PWC-NET and RAFT
approaches.

Next to them, two more approaches were taken into consideration: a classical approach for comparison, namely
Gunnar Farneback’s algorithm [48] developed in 2003, and a small pre-trained RAFT model (RAFT-S) implemented
within the Torchvision library. In contrast with the original RAFT model, it contains five times less parameters but it
maintains superior performance when compared to the PWC-NET and, in some instances, DICL-Flow models.

Unfortunately, it is not clear whether the inference times reported in literature were obtained from systems with
similar compute specifications. To compare these approaches, they were executed on three datasets collected with
UUFOSim at different image resolutions, resulting in the inference times shown in Table 2. Each time value is the
average that each algorithm took to predict the optical flow for 250 frames on a laptop with a 6 core Intel Core i7-9750H
CPU, 16 GB of RAM DDR4 and an NVIDIA Quadro P2000 with 5 GB of GDDR5 memory. As can be seen, even
though DICL-Flow is the intermediate option from literature, it presents the worst inference time for all resolutions.

Table 2 Inference time of dense optical flow approaches on the UUFOSim dataset at different resolutions.

Methods
256×144 512×288 1024×576

(s) (s) (s)
PWC-NET 0.073 0.143 0.423
RAFT 0.17 0.17 0.36
DICL-Flow 0.274 0.296 0.617
RAFT-S 0.06 0.10 0.35
Farneback 0.008 0.042 0.177

Figure 27 allows for a visual comparison of the approaches’ optical flow quality with a frame from the 1024×576
dataset. As can be seen in Fig. 27b, even though PWC-NET has the lowest run time among the deep learning approaches,
its optical flow prediction is very noisy without any recognisable features, indicating a poor cross-dataset generalisation.
Furthermore, from Fig. 27f it can be seen that Farneback does not perceive slight movements. Most of the pixels are
black, leading to the loss of potential features (pixels) that could serve as rich sources of information further down the
FDD pipeline. Besides that, a strong flickering behaviour has been observed in Farneback’s optical flow over multiple
frames, which hints to unreliable predictions.

†https://github.com/philferriere/tfoptflow
‡https://github.com/princeton-vl/RAFT
§https://github.com/jytime/DICL-Flow

15

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

(a) Original (b) PWC-NET (c) RAFT (d) DICL-Flow (e) RAFT-S (f) Farneback

Fig. 27 Dense optical flow visual quality comparison.

Given the high inference time of DICL-Flow with the collected dataset and the low visual quality of PWC-NET and
Farneback, the two remaining options for optical flow computation are RAFT and RAFT-S. As both show similar visual
quality and RAFT-S has a run time three times lower than its larger version for the lowest resolution, RAFT-S is chosen
as the optical flow module of the FDD pipeline.

Returning the attention to Fig. 26, the bottom information path shows the camera data processing. In the case of
the Bebop 2 drone, the camera captures images at 1080p, meaning frames of 1080 pixels in height and 1920 in width
with three RGB channels [1080×1920×3], and they are resized to a tensor of dimensions [144×256×3] before being
stored in the camera buffer (𝑏cam). Then, at every time step at which the FDD framework is executed, the 𝑏cam contains
𝑓cam/ 𝑓FDD + 1 samples, and the first and last entry of the buffer are passed on to the optical flow model. Here, 𝑓cam
stands for the fps rate at which the drone collects image data and 𝑓FDD is the frequency at which the FDD pipeline is
executed on board of the drone. Next, the buffer is emptied except for the last stored image, which remains in memory
for the next FDD time step. This ensures the temporal coherence of the optical flow over multiple FDD calls.

Once RAFT-S computes the optical flow, the output tensor is fed to a feature extractor. For this part of the pipeline,
the authors opted for transfer learning. The model of choice was the backbone of MobileNetV3-Small [49] with frozen
weights pre-trained on the ImageNet dataset [50] because it has the lowest inference time among all keras pre-trained
models¶ at the time of writing. A depth multiplier (alpha) of 0.75 was set in order to proportionally decrease the number
of filters in each layer, achieving a reduction in the number of parameters from 2.9 to 2.4 million (3 ms of inference
time). Finally, the last layer of MobileNetV3-Small is set to be a global average pooling layer which collapses the width
and height of the output tensor to a single feature, resulting in a 1D tensor of 432 features.

B. IMU data processing
From the IMU, the FDD algorithm receives six 1D data streams, namely the linear acceleration and the angular

velocity in the x, y and z directions. Two key signal features that contribute to the detection and classification of these
failures are the evolution of their bias through time and the amplitude of their oscillations; the latter especially in the
case of blade damage, as highlighted in [34]. Information about both features can be encapsulated in their Short-Time
Fourier Transform (STFT), creating compact time-frequency maps or spectrograms and removing potential sensor noise.
To illustrate this, Fig. 28 shows the accelerometer signal in the x-direction and its spectogram for a random flight within
the dataset which experienced a blade damage failure of 0.8, 6.83 seconds after the start (as highlighted by the red
dashed vertical line). As can be seen, failure can easily be detected by the sudden appearance of signal content at high
frequencies, in this case between 173 and 186 Hz.

0.0 2.5 5.0 7.5
Time [s]

−1.0

−0.5

0.0

0.5

1.0

a x
 [m

/s
2]

1e2

0.0 2.5 5.0 7.5
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

f [
H

z]

1e2

Fig. 28 UAV x-axis acceleration and its spectrogram. The dashed red vertical line denotes the time of failure.
¶https://keras.io/api/applications/

16

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

From the IMU information path shown in the upper half of Fig. 26, the incoming data from the accelerometer and
the gyroscope is stored in a buffer (𝑏IMU). Once the FDD module is called, the buffer is emptied and its data are used for
computing the STFT. This form of frequency analysis is a windowed approach which divides the time signal into small
equally sized segments and applies an independent Fourier transform to each one of them. Hence, there is a trade-off
between the time and frequency resolutions; the wider the window the higher the frequency resolution at the expense of
the time resolution. Since the STFT is applied to small sample sizes of 𝑛seg=⌊ 𝑓IMU/ 𝑓FDD⌋ at a time, a window size
of 𝑛win=⌊𝑛seg/4⌋ is chosen with 𝑜 = ⌊3/4𝑛win⌋ samples of overlap between windows, i.e. a stride of s=⌈1/4𝑛win⌉. The
sample vector is padded such that the time resolution or the number of steps in which the time axis of the spectrogram
is divided is 𝑡re=⌈𝑛s/(𝑛win-𝑜)⌉+1. As can be seen, as 𝑛win increases, 𝑡res decreases. The opposite is observed in the
frequency resolution 𝑓res=⌊𝑛win/2⌋ + 1.

For the present research, 𝑓IMU of the collected dataset and 𝑓FDD approximately equal 555 Hz and 10 Hz, respectively.
Hence, 55 samples are fed to the STFT at every FDD time step, which outputs a tensor of dimensions [7×15×6]. This
means a frequency resolution of seven and a temporal resolution of 15. Figure 29 and Fig. 30 show the IMU signals and
their STFTs for the same flight as in Fig. 28, using a time segment of 0.1 s (𝑓FDD=10 Hz) starting at 6.78 s in order to
include the transition from a healthy to a failure state. Again, it can still be clearly observed when the blade damage
has taken place for failure detection. Finally, the STFT output tensor is flattened to a single dimensional tensor of 630
features that will be fused with those coming from the camera data processing path of the pipeline.

−5
0
5

a x
 [m

/s
2]

1e1

0.0

2.5

f [
H

z]

1e2

−1

0

a y
 [m

/s
2]

1e2

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−1.00

−0.95

a z
 [m

/s
2]

1e1

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Fig. 29 Sample flight accelerometer signals and spec-
trograms for a 0.1 s time interval starting at 6.78 s.

−5

0

Ω x
 [r

ad
/s

] 1e−1

0.0

2.5

f [
H

z]

1e2

−5

0
Ω y

 [r
ad

/s
] 1e−1

0.0

2.5

f [
H

z]

1e2

6.80 6.85
Time [s]

−2.5

0.0

Ω z
 [r

ad
/s

]

6.80 6.85
Time [s]

0.0

2.5

f [
H

z]

1e2

Fig. 30 Sample flight gyroscope signals and spectro-
grams for a 0.1 s time interval starting at 6.78 s.

C. Sensor fusion and classification module
As can be seen in Fig. 26, the features from the camera and the IMU are concatenated into a single vector of 1062

features and fed to a sequence-to-sequence LSTM model, which allows the FDD framework to take decisions based on
current and previous data at every time step. LSTM cells have an internal state that stores information from an arbitrary
number of previous inputs which, in conjunction with the current input, is used to extract sequential relationships to
generate an output. For the present research, the time series model consists of a simple stack of three LSTM layers
of 30 cells, each followed by a Batch Normalisation (BN) layer; transformation that maintains the mean and standard
deviation of its input batch close to zero and one, respectively. At every FDD time step, an input vector of 1062 features
is fed into the network which outputs a tensor of 30 features.

The last stage of the FDD pipeline is the classifier that will simultaneously perform the tasks of failure detection,
failure magnitude quantification and failed propeller identification. The problem is simplified by considering each
potential drone state, namely each failure mode and the healthy state, as a class. As an example, if abrupt actuator
saturation and abrupt propeller fly-off are considered as the only modes of failure, then the classification layer would
have to discern among nine classes, namely two failure classes per propeller and one for the healthy state. To perform
this classification task, a single layer dense neural network layer (NN) is used with the number of neurons equal to
the number of classes, followed by the softmax activation function in order to generate a multinomial probability
distribution; the model outputs the probability it believes the input belongs to each class. The goal is that the highest
probability is attributed to the correct failure or healthy drone state at each time during the flight.

Both the LSTM model and the classifier are the only two trainable components of the FDD pipeline, as the RAFT-S
and MobileNetV3-S weights are frozen. For their training, the sparse categorical cross-entropy loss function and adam
optimiser are used, both extensively exploited in literature for multi-class classification.

17

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

V. Results

A. UUFOSim dataset
The right clockspeed is a function of the image resolution; the larger the image, the lower the camera sampling rate

at the same clockspeed. Therefore, a trade-off needs to be performed between sampling rate accuracy and simulation
speed for the chosen image resolution of 256×144 (width×height). Figures 31 and 32 show 20 simulations at different
clockspeeds and their camera and IMU sampling rates. It can be observed that a clockspeed of 0.6 has a large spread
of camera sampling rates between flights and the clockspeeds of 0.4 and 0.5 have IMU sampling rates far below the
desired 512 Hz. Since the remaining clockspeeds show similar performance, 0.3 was selected for being the fastest.

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

28

29

30

31

32

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Fig. 31 Boxplot of the camera sampling rate for
different clockspeeds with an image resolution of
256×144 pixels (width×height).

0.1 0.2 0.3 0.4 0.5 0.6
Clockspeed [-]

350

400

450

500

550

IM
U

 s
am

pl
in

g
ra

te
 [H

z]
Fig. 32 Boxplot of the IMU sampling rate for differ-
ent clockspeeds with an image resolution of 256×144
pixels (width×height).

The IMU sampling rate samples are almost constant at the same clockspeed because the data gathering of this
sensor has been coupled with the simulator’s physics model, as discussed in subsection III.C. In contrast, the camera
sample rates are much more dispersed, especially the higher the clockspeed. For the same simulation time and slower
clockspeed, the simulation checks the thread that receives the calls from the Python API more frequently. Hence, the
frequency at which camera images can be called is higher, reducing the impact of simulation slow downs and, hence,
the camera sampling rate dispersion.

5,000 flights were flown with a clockspeed of 0.3 and image resolution of 256×144. To verify that the camera and
IMU sampling rate predictions estimated with 20 flights were accurate, the same box plot was created with the flown
5,000 flights. The results are shown in Fig. 33 and Fig. 34: the camera runs at 31.81 fps and the IMU has a sampling
rate of 555.59 Hz.

0.3
Clockspeed [-]

31.7

31.8

31.9

32.0

C
am

er
a

sa
m

pl
in

g
ra

te
 [f

ps
]

Fig. 33 Boxplot of the camera sampling rate for
5,000 flights with a clockspeed of 0.3 and an image
resolution of 256×144 pixels (width×height).

0.3
Clockspeed [-]

555.55

555.60

555.65

IM
U

 s
am

pl
in

g
ra

te
 [H

z]

Fig. 34 Boxplot of the IMU sampling rate for 5,000
flights with a clockspeed of 0.3 and an image resolution
of 256×144 pixels (width×height).

The simulation pipeline discussed in section III was run in a Windows OS PC with a 20 core Intel Xeon W-2255
CPU, 32 GB of RAM DDR4 and an NVIDIA RTX A4000 GPU with 16 GB of GDDR6 memory. The 5,000-flight
dataset was collected in 61.67 hours and has a memory footprint of 239 GB. Only blade damage failures of 20%, 40%,
60% and 80% were simulated since those are the failure modes that will be used to train and test the FDD pipeline. A
sample of frames from a single flight separated by 35 frames from each other can be observed in Fig. 35.

18

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Fig. 35 Camera captured frames during single flight read from top to bottom and from left to right (only shown
one every 35 frames).

B. Fault detection and diagnosis framework
To demonstrate the potential of the proposed FDD framework, only four modes of discrete failure were considered

per propeller, namely 20%, 40%, 60% and 80% single abrupt blade damage. As a result, there are 17 classes among
which the FDD pipeline should discern. For this purpose, the dataset was split into 70% training, 20% validation and
10% testing. Each flight of this dataset has a variable duration between 6 and 16.9 seconds with an average length of
11.6 seconds. The first second of every flight is ignored in order to avoid the acceleration transient after the flight has
started. From the remaining flight time, single 5.5-second data snippets are used per flight in order to batch train and
evaluate the pipeline with equal length data sequences without padding. Flights of length shorter than 6.5 seconds only
constitute 0.72% of the total dataset and were eliminated. Besides that, flights that were not properly recorded in UE4 —
the drone does not take off or the sensor data are not recorded at the correct rate — were also removed. At the end, the
training dataset consisted of 3,468 5.5-second flights.

Table 3 shows the results for the pipeline presented in section IV in terms of inference time and test accuracy. The
runtime was obtained from the same compute setup that was used to generate Table 2. Furthermore, three different types
of test accuracy are considered, namely general, detection and diagnosis. The first refers to the accuracy outputted by
the model. The second is obtained by lumping the failure classes 2 to 17 into a single class and computing the resulting
accuracy. This means that a prediction of a data point whose ground truth is a failure class is deemed correct as long
as any class from 2 to 17 is chosen, independently of whether the right class is predicted. The third is estimated by
ignoring the data points whose ground truth is class 1 (the healthy state) and recomputing the accuracy of correctly
classifying the failure among the remaining classes.

Table 3 FDD accuracy and inference time results. With a total of 17 classes, four discrete and abrupt failure
modes were simulated for the Bebop 2 UAV per propeller, namely 20%, 40%, 60% and 80% single blade damage.

Data
processing

Data fusion model
Inference

time
General
accuracy

Detection
accuracy

Diagnosis
accuracy

(ms) (%) (%) (%)
IMU LSTM (l3-c30)+BN 88.20 80.70 99.98 50.52
CAM LSTM (l3-c30)+BN 240.01 95.93 98.53 89.94

CAM+IMU
LSTM (l3-c30)+BN 250.47 99.55 99.98 98.86
Dense (l3-c128)+BN 241.77 93.56 99.98 83.49

Additionally, the same metrics of modified versions of the pipeline are also presented in order to demonstrate the
added value of each of its components. The "Data processing" column stands for the active branches of the network,
where CAM and IMU are networks with only the camera or the IMU paths active. LSTM (l3-c30)+BN is the data
fusion architecture explained in subsection IV.C, whereas Dense(l3-c128)+BN is an alternative approach where the
temporal relationships of the data are ignored by substituting the LSTM network with a three-layer dense NN with 128
neurons per layer.

19

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Even though the IMU-only network feeds the sequential model with 46% more features than the camera-only
network, as can be seen in Fig. 26, the latter shows an overwhelming superiority in the diagnosis of the failures with a
39.42% difference in accuracy. The reason behind that difference can be observed in Fig. 36; its confusion matrix of the
predicted and true failure modes. The IMU-only network systematically confuses the front right (FR) and front left
propellers (FL), as well as the back right (BR) and back left (BL). However, despite being unable to identify the failed
propeller, it is able to infer the correct degree of damage. This is shown by the parallel diagonals three cells apart.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

298 0 0 0 374 0 0 0 0 0 0 0 1 0 0 0

0 131 0 0 0 570 0 0 0 0 0 0 1 0 0 0

0 0 825 0 0 0 34 0 0 0 0 0 0 1 0 0

0 0 0 419 0 0 0 232 0 0 1 2 0 0 0 0

153 0 0 0 485 0 0 0 0 0 0 0 1 0 0 0

0 102 0 0 0 527 0 0 0 0 0 0 0 0 0 0

0 0 699 0 0 0 58 0 0 0 1 0 0 2 4 0

0 0 2 376 0 0 0 227 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 35 0 0 0 762 0 0 0

0 0 0 0 1 1 0 0 0 3 0 0 1 496 0 0

0 0 0 0 0 0 0 0 0 0 231 1 0 0 43 0

0 0 1 0 0 0 0 0 0 0 0 625 0 0 1 18

0 0 0 0 1 0 0 0 20 0 0 0 801 0 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 630 0 0

0 0 0 0 0 0 0 0 0 0 583 2 0 0 72 0

0 1 2 1 0 0 0 0 0 0 0 772 0 0 2 18
0

100

200

300

400

500

600

700

800

Fig. 36 IMU-only LSTM model confusion matrix of
the failure modes.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

568 7 0 0 0 0 0 0 10 0 0 0 0 0 0 0

17 642 8 7 0 0 0 0 0 0 0 0 12 0 0 0

1 9 660 172 0 0 0 0 0 0 0 0 0 1 1 0

0 4 21 615 1 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 619 2 0 0 4 0 0 0 0 0 0 0

0 0 0 0 3 617 2 0 0 0 0 0 0 0 0 0

0 0 0 0 1 3 654 88 0 1 0 0 0 0 0 0

0 0 0 0 1 0 20 571 0 0 2 0 0 0 0 1

0 0 0 0 2 0 0 0 718 4 0 0 0 0 0 0

0 0 0 0 0 1 0 0 3 488 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 227 39 0 0 0 0

0 0 0 0 0 0 0 0 0 0 30 601 0 0 0 4

41 15 0 0 10 0 0 0 1 0 0 0 714 1 0 0

0 0 0 0 0 0 0 0 0 2 0 0 2 614 1 0

0 0 0 0 1 0 0 0 2 0 0 0 0 4 517 124

1 0 0 1 0 0 0 0 0 0 0 0 0 1 18 763
0

100

200

300

400

500

600

700

Fig. 37 Camera-only LSTM model confusion matrix
of the failure modes.

In contrast, Fig. 37 shows that the camera-only network is able to correctly identify the failed actuator but fails to
always accurately quantify the damage. Most of the incorrectly labelled predictions are one degree of damage higher or
lower than the true label, but within the same actuator.

Both observations demonstrate the complementary nature of the camera and IMU sensors, which combined lead to
the highest measured diagnosis accuracy of 98.86%. Figure 38 shows the IMU+CAM network confusion matrix with
the main diagonal filled with -1’s in order to visually highlight error patterns. From the multiple coloured parallel lines
to the main diagonal, it can be inferred that the largest source of error originates from failing to correctly identify the
damaged actuator. However, it is not constrained to the front and back propeller combinations, as it was the case for the
IMU-only model.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

-1 0 0 0 3 0 0 0 1 0 0 0 2 0 0 0

1 -1 0 0 0 5 0 0 0 0 0 0 1 6 0 0

0 0 -1 0 0 0 4 0 0 1 0 0 0 0 6 0

0 0 0 -1 0 0 1 2 0 0 0 4 0 0 0 2

5 1 0 0 -1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 -1 0 0 0 1 0 0 0 2 0 0

0 0 4 0 0 0 -1 0 0 2 0 0 0 2 1 0

0 0 2 4 0 0 2 -1 0 0 0 0 0 1 1 1

2 0 0 0 1 0 0 0 -1 0 0 0 6 0 0 0

1 0 0 0 0 1 0 0 0 -1 0 0 0 2 0 0

0 0 1 0 0 0 0 0 0 0 -1 0 0 0 2 0

0 0 0 0 0 0 1 1 0 0 0 -1 0 0 2 1

0 0 0 0 2 0 0 0 4 0 0 0 -1 0 0 0

0 0 0 0 0 1 0 0 0 2 0 0 0 -1 0 0

0 0 1 0 0 0 0 0 0 0 1 1 0 0 -1 0

1 0 1 1 0 0 0 0 0 0 1 6 0 0 2 -1
1

0

1

2

3

4

5

6

Fig. 38 IMU+CAM LSTM model confusion matrix
of the failure modes with -1’s in main diagonal.

FL2
0

FL4
0

FL6
0

FL8
0

FR20
FR40

FR60
FR80

BR20
BR40

BR60
BR80

BL2
0

BL4
0

BL6
0

BL8
0

Predicted label

FL20

FL40

FL60

FL80

FR20

FR40

FR60

FR80

BR20

BR40

BR60

BR80

BL20

BL40

BL60

BL80

Tr
ue

 la
be

l

376 0 0 0 292 0 0 0 4 0 0 0 1 0 0 0

0 538 0 0 0 162 0 0 0 1 0 0 0 1 0 0

0 0 633 0 0 2 223 0 0 1 0 0 0 0 1 0

0 0 0 539 0 0 0 112 0 0 0 2 0 0 1 0

177 0 0 0 458 0 0 0 3 0 0 0 0 1 0 0

0 115 0 0 0 512 0 0 0 1 0 0 0 1 0 0

0 0 15 0 0 0 745 0 0 3 1 0 0 0 0 0

0 0 1 25 0 0 3 576 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 625 0 0 0 170 0 0 0

0 0 0 0 0 2 0 0 0 469 0 0 0 31 0 0

0 0 0 0 0 0 1 0 0 0 262 0 0 0 12 0

0 0 0 0 0 0 0 1 0 0 1 623 0 0 0 20

5 0 0 0 3 0 0 0 161 0 0 0 653 0 0 0

0 0 0 0 0 1 0 0 0 45 0 0 0 587 0 0

0 0 0 0 0 0 0 0 0 0 47 0 0 0 610 0

0 0 0 1 0 0 0 0 0 0 2 99 0 0 0 694
0

100

200

300

400

500

600

700

Fig. 39 IMU+CAM Dense model confusion matrix
of the failure modes.

20

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

Furthermore, the difference in diagnosis accuracy between the CAM+IMU LSTM and Dense models highlights the
importance of including the data temporal relationships in the FDD framework. However, it can also be seen from the
detection accuracy that this information does not play a role when detecting the presence of a failure.

From the confusion matrix of the CAM+IMU Dense model shown in Fig. 39, the misinterpretation among the
failures in the front and back propeller groups can again be seen. From this, it can be deduced that it is not the optical
flow but its change that allows their decoupling. If the optical flow and the LSTM can each be considered a first
derivative in time, then it is the second derivative of the camera’s visual information that carries the differentiation
factor between left and right actuators.

Finally, despite the success of the combined sensor approach, it has an inference time 2.84 times higher than the
IMU-only approach: 8.03 ms (3.20%) for STFT, 72.30 ms (28.77%) for RAFT-S, 90.53 ms (36.03%) for MobileNetV3-S,
and 80.41 ms (32.00%) for the LSTM+BN and classifier model. Further work has to be done in reducing the compute
required by the camera path of the model by, for instance, developing tailored optical flow and feature extraction models.
Additionally, an ablation study has to be performed on the hyper-parameters of the LSTM network.

VI. Conclusion
This paper proposes a novel UAV actuator FDD framework that fuses for the first time camera and IMU data online

with an LSTM network. The framework pre-processes the camera information by first computing its optical flow with
the RAFT-S model and then extracting features with the backbone of the MobileNetV3-S model. Both are off the shelf
pre-trained efficient SOTA deep neural networks. STFT is applied on the IMU signals in order to obtain time-frequency
features in the form of flattened spectrograms.

Additionally, a high-fidelity photo-realistic UAV simulator built in Unreal Engine 4 on AirSim, called UUFOSim,
was presented. It is the first simulator that allows the collection of multi-sensor UAV flight data with mid-flight actuator
failures injected programmatically. To the authors knowledge, UUFOSim generated the first synthetic dataset in literature
for the training and testing of UAV actuator FDD approaches. Such data are of superior quality when compared to
alternative simulation environments, e.g. Gazebo, allowing the development of applications with a reduced reality gap.

To demonstrate the potential of the FDD framework, UUFOSim was used to generate a dataset of 5,000 flights flown
in a urban environment by a Bebop 2 platform with four options of blade damage per propeller injected during flight.
The drone platform was simulated using a grey-box aerodynamic model [11] complemented with a Blade Element
Theory blade damage model [34]; both obtained from literature.

The IMU-only model has shown to fail to perform damage actuator identification by systematically confusing the left
and right propellers, whereas the camera-only model errors are from failure magnitude quantification. When combined,
they fill the gap left by each other’s weaknesses. Results show the complementary nature of the IMU and camera for
FDD, achieving an accuracy of 99.98% for detection and 98.86% for diagnosis on the test dataset.

The need for a model which considers the temporal relationships in sequential data was demonstrated by substituting
the LSTM layers with dense NN that do not share information about previous inputs. This modified FDD model led to a
decrease in diagnosis accuracy by 15.37 percentage points without any gain in inference time.

Despite the proposed vision-based FDD framework’s high accuracy, its inference time at 250 ms exceeds the
IMU-only alternative model by a factor of 2.84. To address this, the authors suggest optimising the camera data
processing by developing custom optical flow and feature extraction models, which currently contribute over 64% of
the inference time. Optical flow ground truth images for training and testing can be retrieved from UUFOSim, and
MobileNetV3-S could be further reduced in size by progressively removing the last layers and fine-tuning its weights.
Alternatively, it should be investigated whether the current camera pipeline could be substituted by a sparse optical flow
approach (e.g. Lucas-Kanade [51]) followed by histogram analysis for magnitude and direction of sparse optical flow
vectors. Since this work has shown that the main contribution of the camera is the identification of the failed actuator,
it may be the case that only the vector direction histogram would be necessary. Moreover, an ablation study on the
hyper-parameters of the LSTM network could lead to a reduction in layers and/or cells. The authors also expect the rise
of compute power available by the time UAVs and UAM concepts are introduced in urban environments.

Future work includes the study of a probabilistic classifier, such as a Bayesian NN, in order to provide a degree of
confidence besides a prediction, as well as improving the explainability of the black-box model. The potential of other
architectures that ingest sequential (image) data, such as Convolutional LSTMs and lightweight attention-based machine
learning approaches, should also be considered. Another alley of investigation is the substitution of MobileNetV3-S by
an image Fourier Transform as a more efficient feature extractor. Furthermore, atmospheric turbulence models should
be implemented within the simulator in order to assess the robustness of the FDD approach to external disturbances;

21

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

they could induce a similar initial UAV motion as an actuator failure. Additionally, a hybrid dataset could be built which
combines large quantities of synthetic UUFOSim data with a smaller real world dataset in order to reduce the reality
gap. Data from multiple drones could be collected in order to make the FDD framework platform agnostic. Finally, the
proposed framework should be implemented on a real Bebop 2 platform to validate the results.

To conclude, the proposed framework demonstrates the potential of including the UAV on-board camera for online
failure detection and diagnosis. The authors hope that UUFOSim will help the research community to build benchmarks
that will assist in the tracking of the future progress of UAV FDD, as well as other tasks that aim at making future drones
more resilient to failures.

Acknowledgments
The work presented in this paper was conducted when José Ignacio de Alvear Cárdenas was a graduate student at

the Faculty of Aerospace Engineering at Delft University of Technology within the Control and Simulation Division.
Hence, the authors would like to thank this academic institution for providing the funding and the resources that enabled
the completion of this research.

References
[1] Aurambout, J.-P., Gkoumas, K., and Ciuffo, B., “Last Mile Delivery by Drones: An Estimation of Viable Market Potential and

Access to Citizens Across European Cities,” European Transport Research Review, Vol. 11, 2019. https://doi.org/10.1186/s12544-
019-0368-2.

[2] Choudhury, S., Solovey, K., Kochenderfer, M. J., and Pavone, M., “Efficient Large-Scale Multi-Drone Delivery using
Transit Networks,” 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 4543–4550.
https://doi.org/10.1613/jair.1.12450.

[3] Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J.,
Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., and Verma,
S. A., “Urban Air Mobility Airspace Integration Concepts and Considerations,” 2018 Aviation Technology, Integration, and
Operations Conference, Atlanta, GA, 2018. https://doi.org/10.2514/6.2018-3676.

[4] Khan, H., Kushwah, K. K., Singh, S., Urkude, H., Maurya, M. R., and Sadasivuni, K. K., “Smart Technologies Driven Approaches
to Tackle COVID-19 Pandemic: A Review,” 3 Biotech, Vol. 11, No. 2, 2021. https://doi.org/10.1007/s13205-020-02581-y.

[5] Lappas, V., Zoumponos, G., Kostopoulos, V., Shin, H., Tsourdos, A., Tantarini, M., Shmoko, D., Munoz, J., Amoratis, N.,
Maragkakis, A., Machairas, T., and Trifas, A., “EuroDRONE, a European UTM Testbed for U-Space,” 2020 International
Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 1766–1774. https://doi.org/10.1109/icuas48674.2020.9214020.

[6] Mohammed, F., Idries, A., Mohamed, N., Al-Jaroodi, J., and Jawhar, I., “UAVs for Smart Cities: Opportunities and Challenges,”
2014 International Conference on Unmanned Aircraft Systems (ICUAS), 2014, pp. 267–273. https://doi.org/10.1109/icuas.2014.
6842265.

[7] Sun, S., Wang, X., Chu, Q., and de Visser, C., “Incremental Nonlinear Fault-Tolerant Control of a Quadrotor With Complete Loss
of Two Opposing Rotors,” IEEE Transactions on Robotics, Vol. PP, 2020, pp. 1–15. https://doi.org/10.1109/tro.2020.3010626.

[8] Mueller, M. W., Lupashin, S., D’andrea, R., and Waibel, M., “Controlled Flight of a Multicopter Experiencing a Failure
Affecting an Effector,” , 08 2020. URL https://patents.google.com/patent/EP3007973A1.

[9] Heng, L., Meier, L., Tanskanen, P., Fraundorfer, F., and Pollefeys, M., “Autonomous Obstacle Avoidance and Manoeuvring
on a Vision-Guided MAV Using On-Board Processing,” 2011 IEEE International Conference on Robotics and Automation,
Shanghai, 2011, pp. 2472–2477. https://doi.org/10.1109/icra.2011.5980095.

[10] Sun, S., Baert, M., Schĳndel, B., and de Visser, C. C., “Upset Recovery Control for Quadrotors Subjected to a Complete Rotor
Failure from Large Initial Disturbances,” 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris,
France, 2020, pp. 4273–4279. https://doi.org/10.1109/icra40945.2020.9197239.

[11] Sun, S., and de Visser, C., “Aerodynamic Model Identification of a Quadrotor Subjected to Rotor Failures in the High-Speed Flight
Regime,” IEEE Robotics and Automation Letters, Vol. 4, No. 4, 2019, pp. 3868–3875. https://doi.org/10.1109/lra.2019.2928758.

[12] Jiang, Y., Zhiyao, Z., Haoxiang, L., and Quan, Q., “Fault Detection and Identification for Quadrotor Based on Airframe
Vibration Signals: A Data-Driven Method,” 2015 34th Chinese Control Conference (CCC), 2015, pp. 6356–6361.
https://doi.org/10.1109/chicc.2015.7260639.

22

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

https://doi.org/10.1186/s12544-019-0368-2
https://doi.org/10.1186/s12544-019-0368-2
https://doi.org/10.1613/jair.1.12450
https://doi.org/10.2514/6.2018-3676
https://doi.org/10.1007/s13205-020-02581-y
https://doi.org/10.1109/icuas48674.2020.9214020
https://doi.org/10.1109/icuas.2014.6842265
https://doi.org/10.1109/icuas.2014.6842265
https://doi.org/10.1109/tro.2020.3010626
https://patents.google.com/patent/EP3007973A1
https://doi.org/10.1109/icra.2011.5980095
https://doi.org/10.1109/icra40945.2020.9197239
https://doi.org/10.1109/lra.2019.2928758
https://doi.org/10.1109/chicc.2015.7260639

[13] Chen, Z., Chen, W., Liu, X., and Song, C., “Fault-Tolerant Optical Flow Sensor/SINS Integrated Navigation Scheme for MAV
in a GPS-Denied Environment,” J. Sensors, Vol. 2018, 2018, pp. 1–17. https://doi.org/10.1155/2018/9678505.

[14] Iannace, G., Ciaburro, G., and Trematerra, A., “Fault Diagnosis for UAV Blades Using Artificial Neural Network,” Robotics,
Vol. 8, 2019, p. 59. https://doi.org/10.3390/robotics8030059.

[15] García, S., López, M. E., Barea, R., Bergasa, L. M., Gómez, A., and Molinos, E. J., “Indoor SLAM for Micro Aerial Vehicles
Control Using Monocular Camera and Sensor Fusion,” 2016 International Conference on Autonomous Robot Systems and
Competitions (ICARSC), 2016, pp. 205–210. https://doi.org/10.1109/icarsc.2016.46.

[16] Scaramuzza, D., and Zhang, Z., “Visual-Inertial Odometry of Aerial Robots,” Encyclopedia of Robotics, 2020.

[17] Chen, K., “Recurrent Neural Networks for Fault Detection : An Exploratory Study on a Dataset about Air Compressor Failures
of Heavy Duty Trucks,” Master’s thesis, Halmstad University, School of Information Technology, 2018.

[18] Zhao, H., Sun, S., and Jin, B., “Sequential Fault Diagnosis Based on LSTM Neural Network,” IEEE Access, Vol. 6, 2018, pp.
12929–12939. https://doi.org/10.1109/access.2018.2794765.

[19] Zhu, P., Wen, L., Du, D., Bian, X., Fan, H., Hu, Q., and Ling, H., “Detection and Tracking Meet Drones Challenge,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021, pp. 1–1. https://doi.org/10.1109/tpami.2021.3119563.

[20] Kouris, A., and Bouganis, C., “Learning to Fly by MySelf: A Self-Supervised CNN-based Approach for Autonomous
Navigation,” 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018, pp. 5216–5223.
https://doi.org/10.1109/iros.2018.8594204.

[21] Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., and Scaramuzza, D., “Are We Ready for Autonomous Drone
Racing? The UZH-FPV Drone Racing Dataset,” IEEE Int. Conf. Robot. Autom. (ICRA), 2019, pp. 6713–6719. https:
//doi.org/10.1109/icra.2019.8793887.

[22] Majdik, A., Till, C., and Scaramuzza, D., “The Zurich Urban Micro Aerial Vehicle Dataset,” The International Journal of
Robotics Research, Vol. 36, 2017, p. 027836491770223. https://doi.org/10.1177/0278364917702237.

[23] Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige,
K., Levine, S., and Vanhoucke, V., “Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic
Grasping,” 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, 2018, pp. 4243–4250.
https://doi.org/10.1109/icra.2018.8460875.

[24] Furrer, F., Burri, M., Achtelik, M., and Siegwart, R., RotorS – A Modular Gazebo MAV Simulator Framework, Springer
International Publishing, 2016, Chap. 7, pp. 595–625. https://doi.org/10.1007/978-3-319-26054-9_23.

[25] Kohlbrecher, S., Meyer, J., Graber, T., Petersen, K., Klingauf, U., and von Stryk, O., “Hector Open Source Modules for
Autonomous Mapping and Navigation with Rescue Robots,” RoboCup 2013: Robot World Cup XVII, edited by S. Behnke,
M. Veloso, A. Visser, and R. Xiong, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 624–631. https://doi.org/10.
1007/978-3-662-44468-9_58.

[26] Echeverria, G., Lassabe, N., Degroote, A., and Lemaignan, S., “Modular Open Robots Simulation Engine: MORSE,” 2011 IEEE
International Conference on Robotics and Automation, Shanghai, 2011, pp. 46 – 51. https://doi.org/10.1109/icra.2011.5980252.

[27] Guerra, W., Tal, E., Murali, V., Ryou, G., and Karaman, S., “FlightGoggles: Photorealistic Sensor Simulation for Perception-
Driven Robotics Using Photogrammetry and Virtual Reality,” 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 6941–6948. https://doi.org/10.1109/iros40897.2019.8968116.

[28] Song, Y., Naji, S., Kaufmann, E., Loquercio, A., and Scaramuzza, D., “Flightmare: A Flexible Quadrotor Simulator,” Conference
on Robot Learning, PMLR, 2020, pp. 1147–1157. https://doi.org/10.5167/uzh-193792.

[29] Qiu, W., Zhong, F., Zhang, Y., Qiao, S., Xiao, Z., Soo Kim, T., Wang, Y., and Yuille, A., “UnrealCV: Virtual Worlds for Computer
Vision,” ACM Multimedia Open Source Software Competition, 2017, p. 1221–1224. https://doi.org/10.1145/3123266.3129396.

[30] Müller, M., Casser, V., Lahoud, J., Smith, N., and Ghanem, B., “Sim4CV: A Photo-Realistic Simulator for Computer Vision
Applications,” International Journal of Computer Vision, Vol. 126, No. 9, 2018, p. 902–919. https://doi.org/10.1007/s11263-
018-1073-7.

[31] Shah, S., Dey, D., Lovett, C., and Kapoor, A., “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous
Vehicles,” Field and Service Robotics, Springer International Publishing, Zürich, Switzerland, 2018, pp. 621–635.
https://doi.org/10.1007/978-3-319-67361-5_40.

23

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

https://doi.org/10.1155/2018/9678505
https://doi.org/10.3390/robotics8030059
https://doi.org/10.1109/icarsc.2016.46
https://doi.org/10.1109/access.2018.2794765
https://doi.org/10.1109/tpami.2021.3119563
https://doi.org/10.1109/iros.2018.8594204
https://doi.org/10.1109/icra.2019.8793887
https://doi.org/10.1109/icra.2019.8793887
https://doi.org/10.1177/0278364917702237
https://doi.org/10.1109/icra.2018.8460875
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/978-3-662-44468-9_58
https://doi.org/10.1007/978-3-662-44468-9_58
https://doi.org/10.1109/icra.2011.5980252
https://doi.org/10.1109/iros40897.2019.8968116
https://doi.org/10.5167/uzh-193792
https://doi.org/10.1145/3123266.3129396
https://doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.1007/s11263-018-1073-7
https://doi.org/10.1007/978-3-319-67361-5_40

[32] Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., and
Kapoor, A., “AirSim Drone Racing Lab,” Proceedings of the NeurIPS 2019 Competition and Demonstration Track, Proceedings
of Machine Learning Research, Vol. 123, PMLR, Vancouver, Canada, 2020, pp. 177–191.

[33] Sun, S., de Visser, C. C., and Chu, Q., “Quadrotor Gray-Box Model Identification from High-Speed Flight Data,” Journal of
Aircraft, Vol. 56, No. 2, 2019, pp. 645–661. https://doi.org/10.2514/1.c035135.

[34] de Alvear Cárdenas, J. I., and de Visser, C. C., Blade Element Theory Model for UAV Blade Damage Simulation, 2023.
Manuscript submitted for publication.

[35] Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T. M.,
Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., and De Souza, A. F., “Self-driving cars: A survey,” Expert Systems with
Applications, Vol. 165, 2021, p. 113816. https://doi.org/10.1016/j.eswa.2020.113816.

[36] Godoy, J., Jiménez, V., Artuñedo, A., and Villagra, J., “A Grid-Based Framework for Collective Perception in Autonomous
Vehicles,” Sensors (Basel, Switzerland), Vol. 21, No. 3, 2021. https://doi.org/10.3390/s21030744.

[37] Carloni, R., Lippiello, V., D’Auria, M., Fumagalli, M., Mersha, A., Stramigioli, S., and Siciliano, B., “Robot Vision: Obstacle-
Avoidance Techniques for Unmanned Aerial Vehicles,” Robotics & Automation Magazine, IEEE, Vol. 20, 2013, pp. 22–31.
https://doi.org/10.1109/mra.2013.2283632.

[38] Krämer, M. S., and Kuhnert, K.-D., “Multi-Sensor Fusion for UAV Collision Avoidance,” Proceedings of the 2018 2nd
International Conference on Mechatronics Systems and Control Engineering, Association for Computing Machinery, New
York, NY, USA, 2018, p. 5–12. https://doi.org/10.1145/3185066.3185081.

[39] Wang, K., “B-Splines Joint Trajectory Planning,” Computers in Industry, Vol. 10, No. 2, 1988, pp. 113–122. https://doi.org/https:
//doi.org/10.1016/0166-3615(88)90016-4.

[40] Schofield, P., “Computer Simulation Studies of the Liquid State,” Computer Physics Communications, Vol. 5, No. 1, 1973, pp.
17–23. https://doi.org/10.1016/0010-4655(73)90004-0.

[41] Fortun, D., Bouthemy, P., and Kervrann, C., “Optical Flow Modeling and Computation: A Survey,” Computer Vision and
Image Understanding, Vol. 134, 2015, pp. 1–21. https://doi.org/10.1016/j.cviu.2015.02.008.

[42] Hur, J., and Roth, S., “Optical Flow Estimation in the Deep Learning Age,” Modelling Human Motion: From Human Perception
to Robot Design, Springer International Publishing, Cham, 2020, pp. 119–140. https://doi.org/10.1007/978-3-030-46732-6_7.

[43] Shah, S. T. H., and Xuezhi, X., “Traditional and Modern Strategies for Optical Flow: An Investigation,” SN Applied Sciences,
Vol. 3, No. 3, 2021, p. 289. https://doi.org/10.1007/s42452-021-04227-x.

[44] Sun, D., Yang, X., Liu, M.-Y., and Kautz, J., “PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume,”
CVPR, 2018, pp. 8934–8943. https://doi.org/10.1109/CVPR.2018.00931.

[45] Zhai, M., Xiang, X., Lv, N., and Kong, X., “Optical Flow and Scene Flow Estimation: A Survey,” Pattern Recognition, Vol.
114, 2021, p. 107861. https://doi.org/10.1016/j.patcog.2021.107861.

[46] Teed, Z., and Deng, J., “RAFT: Recurrent All-Pairs Field Transforms for Optical Flow,” Computer Vision – ECCV 2020,
edited by A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Springer International Publishing, Cham, 2020, pp. 402–419.
https://doi.org/10.1007/978-3-030-58536-5_24.

[47] Wang, J., Zhong, Y., Dai, Y., Zhang, K., Ji, P., and Li, H., “Displacement-Invariant Matching Cost Learning for Accurate
Optical Flow Estimation,” Proceedings of the 34th International Conference on Neural Information Processing Systems, Curran
Associates Inc., Red Hook, NY, USA, 2020, p. 15220–15231. https://doi.org/10.5555/3495724.3497000.

[48] Farnebäck, G., “Two-Frame Motion Estimation Based on Polynomial Expansion,” Image Analysis, edited by J. Bigun and
T. Gustavsson, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 363–370. https://doi.org/10.1007/3-540-45103-x_50.

[49] Howard, A., Pang, R., Adam, H., Le, Q., Sandler, M., Chen, B., Wang, W., Chen, L.-C., Tan, M., Chu, G., Vasudevan, V.,
and Zhu, Y., “Searching for MobileNetV3,” 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, pp.
1314–1324. https://doi.org/10.1109/iccv.2019.00140.

[50] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L., “ImageNet: A Large-Scale Hierarchical Image Database,” 2009
IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255. https://doi.org/10.1109/cvpr.2009.5206848.

[51] Lucas, B. D., and Kanade, T., “An Iterative Image Registration Technique with an Application to Stereo Vision,” Proceedings of
the 7th International Joint Conference on Artificial Intelligence - Volume 2, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1981, p. 674–679. https://doi.org/10.5555/1623264.1623280.

24

D
ow

nl
oa

de
d

by
 T

ec
hn

is
ch

e
U

ni
ve

rs
ite

it
D

el
ft

 o
n

Ja
nu

ar
y

9,
 2

02
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/6

.2
02

4-
07

60

https://doi.org/10.2514/1.c035135
https://doi.org/10.1016/j.eswa.2020.113816
https://doi.org/10.3390/s21030744
https://doi.org/10.1109/mra.2013.2283632
https://doi.org/10.1145/3185066.3185081
https://doi.org/https://doi.org/10.1016/0166-3615(88)90016-4
https://doi.org/https://doi.org/10.1016/0166-3615(88)90016-4
https://doi.org/10.1016/0010-4655(73)90004-0
https://doi.org/10.1016/j.cviu.2015.02.008
https://doi.org/10.1007/978-3-030-46732-6_7
https://doi.org/10.1007/s42452-021-04227-x
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1016/j.patcog.2021.107861
https://doi.org/10.1007/978-3-030-58536-5_24
https://doi.org/10.5555/3495724.3497000
https://doi.org/10.1007/3-540-45103-x_50
https://doi.org/10.1109/iccv.2019.00140
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.5555/1623264.1623280

	Nomenclature
	Introduction
	UUFO Simulator
	Environment and occupancy map
	Path planning
	Start and goal selection
	Path planning algorithm selection
	B-spline path point number reduction
	Cubic spline path smoothing
	Flight path transformation to AirSim drone inertial coordinate frame

	Data collection
	Sensor initialisation and drone teleportation
	Failure type & mode selection and initialisation
	Drone flight: guidance, control and physics model
	Sensor data collection, failure injection and flight termination
	Flight & failure metadata logging and sensor data storage

	Fault detection and diagnosis framework
	Camera data processing
	IMU data processing
	Sensor fusion and classification module

	Results
	UUFOSim dataset
	Fault detection and diagnosis framework

	Conclusion

