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SUMMARY

The introduction and adoption of seismic full waveform inversion (FWI) revolutionized
Earth’s subsurface imaging practices. FWI uses all the information in the seismic data
(amplitudes and phases) to reconstruct a detailed Earth’s subsurface model. However,
it does come with limitations. Beyond the reach of refractions and diving waves, FWI
cannot effectively reconstruct subsurface layers. This led to the development of reflection
waveform inversion (RWI), which exclusively uses the pair of transmission-after-reflection
wavepaths to sample deeper compared to FWI. RWI reconstructs the background velocity
model of the subsurface by alternating between a migration loop and a tomography loop.

Despite the theoretical appeal, RWI has its own share of limitations. This dissertation
investigates the barriers limiting the optimal performance of reflection waveform inver-
sion in the context of one-way RWI (ORWI), a variation of reflection waveform inversion
that adopts one-way wavefield propagators to forward model seismic reflection data.
After exploring the barriers, the dissertation offers solutions to improve the reliability,
accuracy, and convergence of ORWI.

The dissertation acknowledges several barriers that limit the optimal performance of
conventional/standard ORWI. First, ORWI relies on accurate subsurface images. However,
limited-resolution images with unpreserved amplitudes, resulting from the migration
loop, lead to suboptimal background velocity updates. This issue also extends to the
tomography loop, where limited-resolution tomographic wavepaths impede optimal
background velocity updates. Second, ORWI overlooks the immediate impact that updat-
ing the velocity model has on the reflectivity model, as the reflectors’ positions in depth
remain fixed while the background velocity is updated. This oversight leads to incon-
sistent reflectivity and velocity models in ORWI, introducing full-wave inconsistencies
in the short-offset residual waveforms for tomography. Third, similar to other seismic
waveform inversion techniques, ORWI suffers from the detrimental effect of including
cycle-skipped data from long offsets.

To mitigate the barriers, the dissertation proposes a range of solutions. Initially, the
dissertation introduces a computationally efficient high-resolution migration algorithm
called preconditioned least-squares wave-equation migration (PLS-WEM) through depth-
dependent gradient preconditioning. PLS-WEM reconstructs high-resolution, amplitude-
preserved seismic images in fewer iterations.

Following that, by incorporating PLS-WEM into standard ORWI, the dissertation
enhances ORWI, achieving improved reflectivity imaging and thereby reconstructing
tomograms that are more representative of the true subsurface layers. The dissertation
also proposes the following data solutions: (a) Muting short-offset residual waveforms
in the tomography data to reduce the adverse imprint of inconsistencies between the
reflectivity and velocity models on the tomographic gradient of ORWI. (b) Building on
(a), extending the migration offset to the maximum effective migration offset (MEMO)
to enhance both the signal-to-noise ratio and the illumination of the reflectivity model.

xi



xii SUMMARY

(c) Introducing a data selection algorithm to minimize the impact of cycle-skipped long-
offset data.

The dissertation then presents high-resolution ORWI (HR-ORWI) technology, which
leverages depth-dependent gradient preconditioning in both migration and tomography
loops to reconstruct optimal tomograms in fewer cycles.

The dissertation next evaluates three approaches to depth-dependent gradient pre-
conditioning: conventional, source-interference-free, and source-interference-inclusive.
Numerical results show the superiority of the source-interference-inclusive approach,
offering enhanced resolution, reduced computational demands, and resilience to source
interference.

Lastly, the dissertation develops a mathematical framework that integrates early-
arrival waveform inversion with ORWI through the subspace gradient method, combining
the strengths of transmission and transmission-after-reflection wavepaths to enhance
tomogram reconstruction.

In conclusion, this dissertation offers a comprehensive set of solutions to overcome
the limitations of ORWI, facilitating its broader adoption and application in seismic
exploration and velocity model building.



SAMENVATTING

De introductie en invoering van seismische full waveform inversie (FWI) heeft de beeld-
vorming van de ondergrond van de aarde revolutionair veranderd. FWI maakt gebruik van
alle informatie in seismische data (amplitude en fase) om een gedetailleerd model van
de ondergrond van de aarde te reconstrueren. Desondanks zijn er beperkingen. Diepe
ondergrondlagen, buiten het bereik van refracties en zogenoemde brekende golven, kan
FWI niet effectief reconstrueren. Dit heeft geleid tot de ontwikkeling van reflection wave-
form inversie (RWI), die uitsluitend gebruikmaakt van transmissie-na-reflectie-golfpaden
om dieper te bemonsteren met de beschikbare dataset in vergelijking met traditionele
FWI. Door af te wisselen tussen een migratielus en een tomografielus reconstrueert RWI
het achtergrond snelheidsmodel van de ondergrond.

Ondanks de theoretische aantrekkingskracht kent RWI ook zijn beperkingen. Dit
proefschrift onderzoekt de barrières die de optimale prestatie van reflection waveform
inversie belemmeren, in de context van one-way RWI (ORWI), een variant van reflection
waveform inversie die gebruikmaakt van een-weg golfveldpropagatoren om seismische
reflectiedata voorwaarts te modelleren. Na het identificeren van de barrières presenteert
dit proefschrift oplossingen die bedoeld zijn om de prestaties van ORWI te verbeteren in
termen van betrouwbaarheid, nauwkeurigheid en convergentie.

Het proefschrift erkent verschillende barrières die de prestaties van standaard ORWI
beperken. Ten eerste is ORWI afhankelijk van nauwkeurige afbeeldingen van de reflec-
toren in de ondergrond. Echter, laag-resolutiebeelden met niet-bewaarde amplitudes,
resulterend uit de migratielus, leiden tot suboptimale bijwerkingen van het achtergrond
snelheidsmodel. Dit probleem strekt zich ook uit tot de tomografielus, waar laag-resolutie
tomografische golfpaden optimale bijwerkingen van het achtergrond snelheidsmodel
in de weg staan. Ten tweede negeert ORWI het directe effect dat het bijwerken van het
snelheidsmodel heeft op het reflectiviteitsmodel, omdat de posities van de reflectoren
in de diepte gelijk blijven terwijl het achtergrond snelheidsmodel wordt bijgewerkt. Dit
leidt tot inconsistente reflectiviteit- en snelheidsmodellen in ORWI, wat inconsistenties
introduceert in de kort-offset residuele golfvormen voor tomografie. Ten derde lijdt ORWI,
net als andere seismische waveform inversietechnieken, onder de nadelige effecten van
het in ogenschouw nemen van cycle-skipped data van lange offsets.

Om deze barrières aan te pakken, stelt het proefschrift een reeks oplossingen voor.
Allereerst introduceert het een computationeel efficiënt hoge-resolutie migratiealgo-
ritme genaamd preconditioned least-squares wave-equation migration (PLS-WEM) door
middel van diepte-afhankelijke gradient preconditionering. Dit algoritme genereert
hoge-resolutie, amplitude-bewaarde seismische beelden in minder iteraties.

Vervolgens bouwt het voort op standaard ORWI door PLS-WEM te integreren om de re-
flectiviteitsbeelden te verbeteren en tomogrammen te reconstrueren die representatiever
zijn voor de werkelijke ondergrondlagen. Het proefschrift stelt ook het volgende voor: (a)
Het dempen van korte-offset residuele golfvormen in de tomografiedata om de nadelige
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invloed van inconsistenties tussen reflectiviteits- en snelheidsmodellen op de tomografi-
sche gradient van ORWI te verminderen. (b) Het uitbreiden van de migratie-offset naar
de maximale effectieve migratie-offset (MEMO) om zowel de signaal-ruisverhouding als
de illuminatie van het reflectiviteitsmodel te verbeteren. (c) Een data-selectie-algoritme
om de impact van cycle-skipped lange-offset data te minimaliseren.

Vervolgens introduceert het proefschrift high-resolution ORWI (HR-ORWI). Deze tech-
niek, voortbouwend op de diepte-afhankelijke preconditionering in zowel de migratie-
als tomografielussen, bereikt optimale tomogrammen in minder cycli.

Daarnaast vergelijkt het proefschrift drie verschillende diepte-afhankelijke preconditi-
oneringen (updatevergelijkingen) voor least-squares wave-equation migration: conventi-
oneel, zonder broninterferentie, en met broninterferentie. Deze vergelijking benadrukt de
superioriteit van de laatste aan de hand van numerieke voorbeelden, waarbij verbeterde
resolutie, verminderde computationele intensiteit en weerstand tegen broninterferentie
worden aangetoond.

Tot slot biedt het proefschrift een wiskundige basis die vroege-aankomst waveform
inversie combineert met ORWI via de subspace gradient-methode. Dit benut de sterke
punten van zowel transmissie- als transmissie-na-reflectie-golfpaden voor verbeterde
tomogramgeneratie.

Dit proefschrift presenteert kortom een uitgebreide reeks oplossingen om de beper-
kingen van ORWI aan te pakken, waarmee het de weg vrijmaakt voor breder gebruik en
optimale prestaties in seismische exploratie en snelheidsmodelbouw.



1
INTRODUCTION

“If I have seen further, it is by standing on the shoulders of giants.”

– ISAAC NEWTON

1.1. EXPLORATION SEISMOLOGY
Exploration seismology is an applied branch of seismology that primarily focuses on
understanding Earth’s subsurface structures and physical properties through the study
of elastic wave propagation inside the Earth. The study starts with generating seismic
waves with explosives, vibrators, or air guns placed on the Earth’s surface, at depth, on the
seafloor, or towed behind survey vessels in a marine environment. These waves travel
into the Earth and interact with different geological layers, making direct, refracted, and
reflected seismic waves. Seismic sensors, known as geophones or hydrophones, planted
on the Earth’s surface, at depth, on the seafloor, or towed behind survey vessels in a
marine environment, record the returning seismic waves. Exploration seismologists then
process the returning signals recorded by the sensors to create a seismic profile. A seismic
profile represents the time it takes for the seismic waves to travel (back and forth) into the
Earth as well as the amplitudes of the returned signals. A seismic profile could be indeed
interpreted as a time picture of the studied subsurface.

Exploration seismology has long served as the mainstay of oil and gas exploration. This
role is indeed attributed to its capabilities in providing precise subsurface imaging (from
shallow to deep), identifying potential deposits of oil and gas resources, and optimizing
the utilization of oil and gas reservoirs (monitoring applications).

Over the years, and particularly in recent times with the global shift towards cleaner
energy alternatives, exploration seismology has actively broadened its applications be-
yond the traditional use linked to oil and gas. It would seem that exploration seismology
continues to remain a central player in unlocking an essential component of the world’s

1
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green-energy future: geothermal energy power, through assessing and mapping subsur-
face heat reservoirs. Moreover, amidst the urgent challenge of climate change, exploration
seismology evidently serves as a core element in navigating carbon capture and storage
(CCS) technologies, aiding in the identification/monitoring of geologically suitable forma-
tions for securely sequestering CO2. Additionally, in the pursuit of critical minerals for the
“green” era, such as, among others, Copper, Lithium, Cobalt, Graphite, Aluminum, Nickel,
and Manganese, exploration seismology facilitates the sustainable supply chain of those
minerals necessary for the production of battery storage, solar panels, wind turbines, and
electric vehicle components (renewable energy technologies). Furthermore, exploration
seismology has taken a leading role in guiding and optimizing wind farm installation by
characterizing potential sites and assessing the risk of geological hazards—earthquakes
or unstable subsurface conditions—which could impact the long-term stability of wind
turbines.

Advanced imaging algorithms, including seismic migration and tomography, may
be employed to further process the seismic profiles. The objective is to accurately posi-
tion the recorded seismic waves in time in their genuine subsurface locations in depth,
allowing for a clear understanding of the geological attributes (structures and properties)
beneath the Earth’s surface.

1.2. SCALE SEPARATION: MIGRATION + TOMOGRAPHY
While seismic migration in the presence of a fixed velocity model explains the amplitudes
of observed seismic waves and retrieves a high-wavenumber subsurface model, seismic
tomography explains the moveouts existing in observed seismic waves and retrieves a
low-wavenumber subsurface model (Figure 1.1). Although, in 1985, the model scale sepa-
ration, the separation between the tomography and migration worlds, is acknowledged
by Claerbout (1985), Tarantola (1984) ambitiously tries to seek a broadband-wavenumber
subsurface model by introducing full waveform inversion (FWI) thorough taking advan-
tage of all geometrical and scattering properties of observed waves (Figure 1.1), without
using any sort of model scale separation. More precisely, Tarantola’s FWI, least-squares
FWI, is a data-fitting problem by defining an l2-norm objective function, comparing the
Euclidean distance between all properties of the predicted and observed seismic waves,
from now on called seismic waveforms or data, and involves an iterative closed-loop
process (Figure 1.2) via forward and adjoint operators, based on the wave equation, until
the data residual almost vanishes.

However, without any sort of model scale separation, Tarantola’s FWI faces a serious
challenge called cycle-skipping (Virieux and Operto, 2009). The cycle-skipping challenge
is defined as having an estimated model that is not kinematically mature/accurate enough
to predict data with less than half a cycle time shift (∆t ) with respect to the observed data
at each iteration. To avoid cycle-skipping, there exist two basic but significant remedies.
The first remedy is known as the frequency continuation strategy, firstly introduced by
Kolb et al. (1986) and Bunks et al. (1995). They showed that the likelihood of cycle skipping
and being trapped in a local minimum situation is lower with low-frequency information
compared to high-frequency information. This is because low frequencies exhibit a
more linear relation with the low-wavenumber components of the model (Sirgue and
Pratt, 2004). As is shown in Figure 1.3 schematically, a more convex objective function is
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Figure 1.1: Tarantola’s FWI takes advantage of both amplitudes and moveouts.

Figure 1.2: FWI workflow as a closed loop.

(a) (b)

Figure 1.3: The risk of cycle skipping and being trapped in local minima with low-frequency information is less
than high-frequency information. (a) A non-convex objective function is achieved using high-frequency

information. (b) A more convex objective function is achieved using low-frequency information.

achieved using low-frequency information, increasing the chance of reaching the global
minimum. However, the low-frequency information recorded by the data acquisition
systems of that time was not low enough in order to follow the frequency continuation
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strategy in practice.

Figure 1.4: Illustration of the diffraction tomography principle. The source-, ks , and receiver-side plane wave
vectors, kr , make the local illumination angle, θ, and model wavevector, km , at a point diffractor.

The advent of modern seismic acquisition systems, including broadband sources and
wide-aperture systems, is acknowledged as the second remedy to cycle-skipping. After
the advent of broadband sources (about 3 Hz) and wide-aperture seismic acquisition
systems (about 8 km), the flame of hope was rekindled that the FWI gradient could be
able to retrieve a broadband wavenumber subsurface model as the modern acquisition
systems can acquire long offsets and low frequencies, which are necessary to make the low
local model wavenumbers. This is illustrated by the generalized diffraction tomography
principle, introduced by Devaney (1982), where the local model wavevector (km), sampled
by the single-scattering-based FWI gradient through the zero-lag cross-correlation of
the source-side and receiver-side local plane waves at each point diffractor within the
medium (Figure 1.4), is given by

km = ks +kr = 2k0 cos

(
θ

2

)
n, (1.1)

where θ is called the local scattering/illumination angle, made by the source-side, ks , and
receiver-side plane wave vectors, kr , at a point diffractor, k0 is the nominal wavenumber,
and n is a unit vector in the direction of km . Note that Equation 1.1 is called Devaney’s
equation from now on. Sirgue and Pratt (2004) reconstruct the low-wavenumber com-
ponents of the subsurface model with the simultaneous use of low frequencies and long
offsets.

1.3. DIFFERENT WAVEPATHS IN THE FWI GRADIENT
Based on Devaney’s equation, for a 360◦ and broadband data, the corresponding local
model-wavenumber spectrum is completely white. However, band-limited seismic data
and surface acquisitions cause a series of wavenumbers, that are typically present in the
model-wavenumber spectrum, not to be sampled. As a result, the model-wavenumber
spectrum will be inherently colored due to the gap in the spectrum. Before exploring
the information gap, in order to understand better the rest of the discussion, differ-
ent wavepaths constructing the FWI gradient are introduced. We know that the FWI
gradient is the superposition of zero-lag cross-correlations between the source and re-
ceiver wavefields traveling in two different regimes, the same travel directions, either
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upwards or downwards, which is called propagative regime, or opposite travel direc-
tions, which is called scattering regime, see Table 1.1. For a homogeneous model with
one reflector, meaningful cross-correlations between the direct and adjoint energies
have been represented in Figure 1.5a. Additionally, corresponding to each type of cross-

Table 1.1: Different regimes in the FWI gradient and their corresponding illumination angles.

regime illumination angle

propagative Θ≈ 180◦

scattering Θ< 180◦

correlation, a type of wavepath is defined, where the model parameter update is done
along it. Accordingly, three different wavepaths are introduced (Figure 1.5b): (a) the
transmission wavepath, marked by number 1, which is propagative-based so contributes
to updating low-propagative wavenumbers, (b) the pair of transmission-after-reflection
wavepaths, marked by number 2, which are propagative-based so contribute in updating
low-propagative wavenumbers, and (c) the migration wavepath, marked by number 3,
which is scattering-based so responsible for updating high reflective wavenumbers. Note
that, in Figure 1.5b, the intensity of the blue color serves to illustrate the amplitude of
the wavepaths schematically. As is seen, the pair of wavepaths marked by number 2 is
shown by a less intense blue color, and this is due to having much weaker amplitudes
than the others because of being scaled by the reflection coefficient of the reflector in
the medium. This means that the FWI gradient is dominated by the transmission and
migration wavepaths (Figure 1.6). From now on, based on Devaney’s equation, the trans-
mission (1) and migration wavepaths (3) are called low- and high-wavenumber wavepaths,
respectively.

To confirm the theory presented in this part, two reflection-acquisition acoustic FWI
cases are represented. While a circular velocity anomaly lies within the reach of the low-
wavenumber wavepath in case (a) (Figure 1.7a), a similar anomaly lies beyond the reach
of the low-wavenumber wavepath in case (b) (Figure 1.7b). The corresponding inverted
models, both started from a 3000-meter-per-second homogeneous model, are shown in
Figures 1.7c and 1.7d. While both kinematics and dynamics of the true velocity model are
properly extracted in case (a) by the FWI gradient, there is no trace of tomography in case
(b), and all is done is migration, so only the reflectors are retrieved in its corresponding
inverted model.

1.4. SAMPLED LOCAL MODEL WAVENUMBERS BY FWI
Generally, sampling of high reflective-wavenumbers is nonlinearly dependent on the sam-
pling of low-propagative wavenumbers in FWI. As a result, if low-propagative wavenum-
bers are not sampled accurately enough, high-reflective wavenumbers are not sampled
properly. This means that low-propagative wavenumber sampling is a critical thing.
For a single frequency and a homogeneous background velocity model, the local model
wavenumber spectrum corresponding to each wavepath existing in the FWI gradient can
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Figure 1.5: Different cross-correlations and corresponding wavepaths constructing the FWI gradient. (a)
Meaningful zero-lag cross-correlations of the source-side and receiver-side local plane waves at each point

diffractor, constructing the FWI gradient. (b) The wavepaths constructing the FWI gradient: the transmission
wavepath, marked by number 1, the pair of transmission-after-reflection wavepaths, marked by number 2, and

the migration wavepath, marked by number 3.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The FWI gradient is dominated by only the transmission and migration wavepaths.

be shown analytically (Zhou et al., 2018). Following the approach of Zhou et al. (2018),
based on Devaney’s equation, if one examines the local model wavenumbers sampled
by the low-wavenumber wavepath in the FWI gradient (refer to the first wavenumber
experiment in Appendix 1.A), it is evident that:

• The low-wavenumber wavepath originally samples vertical wavevectors with rel-
ative magnitudes smaller than 0.5, making the low part of the spectrum and con-
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(c) Inverted model for (a)
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(d) Inverted model for (b)

Figure 1.7: Two reflection-acquisition acoustic FWI cases are represented. (a) and (b) True velocity models. (c)
and (d) Corresponding inverted models. While both kinematics and dynamics of the true velocity model are
properly extracted in case (a) by the FWI gradient, there is no trace of tomography in case (b), and all that is

done is the migration of the reflectors.

tributing to illuminating horizontal layers (see Figure 1.A.2).

• At deeper depths within the medium, the illumination power of the low-wavenumber
wavepath naturally becomes weaker as we can not extend the maximum offset to
infinity to record all the refractions coming back from the deep Earth, that is, the
larger the maximum-offset-to-depth ratio, the wider the vertical low local model
wavenumber spectrum bandwidth (see Figure 1.A.2).

• There are unsampled regions in the spectrum (see the two blank semicircles in Fig-
ure 1.A.2) due to the low sensitivity of the FWI gradient to the pair of transmission-
after-reflection wavepaths. Indeed, the unsampled regions correspond to the low
wavevectors but mostly the horizontal ones, contributing to illuminating near-
vertical or dipping layers.

If one explores the impacts of large and small maximum-offset-to-depth ratios on the
local model wavenumber spectrum sampled by the low-wavenumber wavepath (refer to
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the second wavenumber experiment in Appendix 1.A), the following insights are gained:

• Large maximum-offset-to-depth ratios significantly contribute to extracting a wide
vertical low local model wavenumber bandwidth (see Figure 1.A.5).

• Small maximum-offset-to-depth ratios lead to missing very low vertical wavevectors.
Recognizing that, for a natural transition from a low-resolution velocity model to a
high-resolution velocity model, the inclusion of these missing wavevectors becomes
essential (see Figure 1.A.5).

• Wavevectors with pure horizontal wavenumbers are sampled when both the source
and receiver are positioned at infinity (see Figure 1.A.5).

• Examining the interrelation between the sampling patterns of the low-wavenumber
and high-wavenumber wavepaths within the FWI gradient reveals that they do not
overlap but form a complementary relation (see Figure 1.A.5).

1.5. SAMPLED LOCAL MODEL WAVENUMBERS BY REFLECTION

TOMOGRAPHY
Although the regions unsampled by the low-wavenumber wavepath of the FWI gradient
could be recovered by starting the frequency continuation strategy from ultra-low frequen-
cies (Operto et al., 2015), such a recovery is not feasible, at least for deep targets, due to the
typical small maximum-offset-to-depth ratios and band-limited seismic data. Reflection
tomography could be considered a suitable alternative to recover the unsampled regions.

Reflection tomography is a cyclic/iterative technique designed to enhance seismic mi-
gration by refining an initial background velocity model. Of all the reflection tomography
variations, those integrating wave-equation forward modeling have gained prominence,
for their superior handling of wave propagation in complex media. One may choose to
conduct reflection waveform tomography in either the data domain or the image domain.
The succeeding chapters will thoroughly review this versatility, but this study is exclusively
centered on the data-domain approach, i.e., reflection waveform inversion (e.g., Xu et al.,
2012).

Reflection waveform inversion (RWI) originated to sample deep subsurface targets
using pure reflection data. Operating as a data-domain reflection waveform tomography
technique, RWI involves mapping a temporary stacked image (migration) in each cycle to
refine the subsurface background velocity model based on that image. This cyclic process
indeed contributes to a refined representation of the subsurface image by cyclically
updating the background velocity model (Figure 1.8).

If one compares the sampling pattern of the pair of transmission-after-reflection
wavepaths, which is active in the reflection tomography gradient, with the other wavepaths
active in the FWI gradient (refer to the third wavenumber experiment in Appendix 1.A),
the following insights are gained:

• The wavenumber spectrums that are resolved do not overlap and are complemen-
tary to each other (see Figure 1.A.7).



1.5. SAMPLED LOCAL MODEL WAVENUMBERS BY REFLECTION TOMOGRAPHY

1

9

Figure 1.8: RWI cycle in which background velocity (reflection tomography) and image reconstructions
(migration) alternate.

• While the pair of transmission-after-reflection wavepaths (reflection tomography
gradient) sample low horizontal wavevectors, the transmission wavepath (the to-
mographic component of the FWI gradient) sample vertical low wavevectors (see
Figure 1.A.7).

• By reducing the maximum offset by half, a gap appears in both sampled spectrums.
Indeed, by decreasing the maximum offset, two things happen: at an identical
depth level, (1) the tomographic component of the FWI gradient would be unable to
sample similar low vertical wavevectors as before, and (2) the reflection tomography
gradient would sample fewer vertical wavevectors than before, but it preserves its
sampling power of low horizontal wavevectors, which is beneficial when, for any
reason, acquiring the long-offset is not feasible (see Figure 1.A.7).

Throughout this dissertation, our research is supported by a reflection waveform
inversion technology facilitated by a one-way forward modeling scheme known as pri-
mary wavefield modeling (PWMod) (Berkhout, 2014), which we abbreviate as one-way
reflection waveform inversion (ORWI). Adequate parameterization in PWMod (angle-
independent reflectivity and background velocity) leads to a natural scale separation in
ORWI. This separation allows for the independent calculation of migration and tomogra-
phy gradients within each ORWI cycle, thereby freeing tomograms from high-reflective
model wavenumbers. Based on a zero initial reflectivity model, a smooth initial back-
ground velocity model, and pure reflection data, ORWI begins with the migration loop
(see the “M” loop, in blue, in the cycle displayed in Figure 1.8). It proceeds to alternate
between the reflection tomography loop (see the “T” loop, in red, in the cycle displayed
in Figure 1.8), and the migration loop until reaching convergence with accurate solutions
for the background velocity and image.
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1.6. MOTIVATION OF THE DISSERTATION
Despite its conceptual appeal, RWI could face a few limitations due to multiple factors,
which are as follows:

1. Non-optimal background velocity updates in RWI may partly linked to low-resolution
seismic images with unpreserved amplitudes (migration loop), and the same rea-
soning can also be used to attribute the poor background velocity updates of RWI
to low-resolution tomographic wavepaths (tomography loop).

2. The alternating approach of conventional RWI imposes a forced decoupling be-
tween reflectivity and velocity model updates—disregarding simultaneous model
updates. This leads to inconsistent reflectivity and velocity models in RWI, intro-
ducing full-wave inconsistencies in the short-offset residual waveforms used for
tomography.

3. All waveform inversion techniques, including RWI, are prone to being negatively
impacted by the inclusion of cycle-skipped long-offset data.

By addressing these limitations in the context of ORWI, this dissertation aims to
improve the accuracy, robustness and convergence of ORWI, paving the way for its wider
adoption and impact in seismic imaging and velocity model building.

1.7. DISSERTATION STRUCTURE
To guide you through the remainder of this dissertation, I will briefly overview the content
of each of the subsequent chapters below:

As low-resolution images with unpreserved amplitudes can degrade the background
velocity updates retrieved by ORWI, Chapter 2 proposes a computationally efficient pre-
conditioned least-squares wave-equation migration (PLS-WEM) algorithm for estimating
high-resolution, amplitude-preserved seismic images. By leveraging a one-way wave-
field extrapolation technique in the frequency-depth domain, PLS-WEM construct the
approximate Hessian operator for gradient preconditioning recursively depth by depth.
PLS-WEM decomposes and reduces the massive approximate Hessian operator for the
entire domain into multiple smaller operators, each corresponding to a specific depth
level. As a result, with PLS-WEM, each time a depth-dependent approximate Hessian
and its reciprocal is calculated, only a fraction of the total model parameters is involved,
which saves computational costs.

Chapter 3 supercharges standard ORWI. Not only does it integrate PLS-WEM into
standard ORWI for high-resolution, amplitude-preserved reflectivity imaging, but it also
tackles the other ORWI limitations using new proposals. It recommends muting inconsis-
tent short-offset residual waveforms for tomography to handle the imprint of inconsistent
reflectivity and velocity models. Building upon the muting of short-offset residuals for
tomography, it suggests extending the migration offset beyond short offsets to enhance
reflectors’ illumination and signal-to-noise ratio. This chapter also introduces a data-
selection algorithm to exclude the negative impact of cycle-skipped long-offset data from
tomography. These proposals unite to tackle the challenges of conventional ORWI, aiming
for tomograms of the highest fidelity.
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Chapter 4 proposes a high-resolution ORWI (HR-ORWI) algorithm to achieve opti-
mal tomograms in fewer cycles through a cost-friendly gradient preconditioning in both
imaging and tomography loops. By leveraging the depth-dependent preconditioning
introduced in Chapter 2, HR-ORWI attempts to not only improve the seismic image reso-
lution and accuracy but also develop the required mathematical groundwork to integrate
the depth-dependent preconditioning concept for background velocity reconstruction.
This two-fold effort enables the generation of high-resolution and optimal tomograms
through HR-ORWI.

Investigating depth-dependent preconditioning for least-squares wave-equation mi-
gration, Chapter 5 compares three update equations: conventional, free of source inter-
ference, and including source interference. It demonstrates the superiority of the update
equation including source interference through numerical examples, showing superior
resolution, reduced computational intensity, and resilience to source interference.

While the transmission wavepath mostly samples horizontal layers tomographically,
the transmission-after-reflection wavepaths mostly sample dipping layers tomograph-
ically. To benefit from both, Chapter 6 proposes combining early-arrival waveform
inversion (EWI) and ORWI with the aid of the subspace gradient method. Note that this
chapter is only establishing a framework and does not yet present conclusive results.

Finally, Chapter 7 brings this dissertation to a close. Here, we recap the key findings,
draw conclusions, and offer suggestions for future research that could build upon and
expand our work, propelling the field further.

1.8. CONTRIBUTIONS
This dissertation significantly advances seismic subsurface imaging and velocity model
building through the following contributions:

1. Investigating ORWI limitations: This research investigates the limitations of one-
way reflection waveform inversion (ORWI), which is crucial for understanding the
challenges in seismic velocity model reconstruction.

2. Introduction of PLS-WEM: Preconditioned least-squares wave-equation migration
(PLS-WEM) is proposed as a high-resolution, amplitude-preserved imaging algo-
rithm, which is then incorporated into standard ORWI to enhance its performance.

3. Innovative data solutions: This includes muting short-offset residual waveforms to
address inconsistencies in reflectivity and velocity models, extending the migration
offset for better reflectivity model illumination and signal-to-noise ratio, and intro-
ducing a data-selection algorithm to exclude cycle-skipped long-offset data—all
aimed at enhancing ORWI performance.

4. Introduction of HR-ORWI: High-resolution ORWI (HR-ORWI) is introduced, lever-
aging depth-dependent gradient preconditioning in both imaging and tomography
loops to reconstruct optimal tomograms in fewer cycles.

5. Investigating various approaches for depth-dependent preconditioning: Three
different approaches to depth-dependent gradient preconditioning for least-squares
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wave-equation migration are investigated, offering insights into preserving ampli-
tudes and enhancing resolution while reducing computational demands.

6. A novel mathematical framework for integrating EWI and ORWI: A novel mathe-
matical framework is developed, synergizing early-arrival waveform inversion with
one-way reflection waveform inversion using the subspace gradient method to
reconstruct broadband tomograms.

Overall, these contributions advance the field of seismic reflection tomography, pro-
viding enhanced insights into the Earth’s subsurface model.
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APPENDIX

1.A. WAVENUMBER ANALYSES
This appendix explores the sampling patterns of wavepaths within the FWI and RWI
gradients in the kx −kz plane, relying on Devaney’s equation. Through a few experiments,
we aim to understand how the wavepaths distribute and sample information in this space.

1.A.1. FIRST WAVENUMBER EXPERIMENT

Following Zhou et al. (2018), relying on Devaney’s equation, the first wavenumber ex-
periment is designed to analyze and illustrate the sampled wavenumbers by the low-
wavenumber wavepath in the Full Waveform Inversion (FWI) gradient. For three sets of
parameters listed in Table 1.A.1, different in trial depth level, three local model wavenum-
ber spectrums corresponding to the low-wavenumber wavepath are displayed in Figure
1.A.2. Note that, each point in the local model wavenumber spectrums displayed in this
report denotes the tail of a wavevector. The resultant spectrums are displayed in Figure
1.A.2.

Table 1.A.1: First wavenumber experiment: three sets of parameters used for illustrating the illuminated
wavenumbers sampled by the low-wavenumber wavepath.

case
frequency

(Hz)
background
velocity (m/s)

lateral distribution
of sources (km)

maximum
offset (km)

trial
depth (km)

1 10 2000 [-10, 10] ±10 1
2 10 2000 [-10, 10] ±10 3
3 10 2000 [-10, 10] ±10 6

Background Velocity Model
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)

Figure 1.A.1: The trial depth levels are marked blue (1 km deep), black (3 km deep), and red (5 km deep) in a
homogenous background velocity model (2000 m/s).
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1.A.2. SECOND WAVENUMBER EXPERIMENT

To see the effects of large and small maximum-offset-to-depth ratios on the local model
wavenumber spectrum sampled by the low-wavenumber wavepath in the FWI gradi-
ent, the second wavenumber experiment is designed. For two sets of parameters listed
in Table 1.A.2, different in maximum offset, two local model wavenumber spectrums
corresponding to the low-wavenumber wavepath are displayed in Figure 1.A.4.

Table 1.A.2: Second wavenumber experiment: two sets of parameters used for illustrating the illuminated
wavenumbers sampled by the low-wavenumber wavepath.

case
frequency

(Hz)
background
velocity (m/s)

lateral distribution
of sources (km)

maximum
offset (km)

trial
depth (km)

1 10 2000 [-10, 10] ±∞ 3
2 10 2000 [-10, 10] ±10 3

Background Velocity Model

-10 -8 -6 -4 -2 0 2 4 6 8 10
Lateral location (km)
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10
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)

Figure 1.A.3: The trial depth level is marked green (3 km deep) in a homogenous background velocity model
(2000 m/s).

For the same set of parameters, but with both the maximum offset and the lateral
distribution of sources extending from −∞ to +∞ km, Figure 1.A.5 depicts the sampled
model wavenumber spectrum by the low- and high-wavenumber wavepaths within the
FWI gradient.
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1.A.3. THIRD WAVENUMBER EXPERIMENT

To evaluate the sampling pattern of the pair of transmission-after-reflection wavepaths,
which is active in the reflection tomography gradient, in connection to the wavepaths
in the FWI gradient, the third wavenumber experiment is designed. For two sets of pa-
rameters listed in Table 1.A.3, different in maximum offset, two local model wavenumber
spectrums corresponding to all introduced wavepaths are displayed in Figure 1.A.7.

Table 1.A.3: Third wavenumber experiment: two sets of parameters used for illustrating the illuminated
wavenumbers sampled by all introduced wavepaths.

case
frequency

(Hz)
background
velocity (m/s)

lateral distribution
of sources (km)

maximum
offset (km)

trial
depth (km)

reflector
depth (km)

1 10 2000 0-20 ±10 1 1.3
2 10 2000 0-20 ±5 1 1.3

Background Velocity Model

-10 -8 -6 -4 -2 0 2 4 6 8 10
Lateral location (km)

0
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ep
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)

Figure 1.A.6: The trial depth level (1 km deep) and reflector (1.3 km deep) are shown by a dashed white line and
a solid white line, respectively, in a homogenous background velocity model (2000 m/s).
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EFFICIENT PRECONDITIONED

LEAST-SQUARES WAVE-EQUATION

MIGRATION

“Success is often the result of taking a misstep in the right direction.”

– AL BERNSTEIN

Since the appearance of wave-equation migration, many have tried to improve the resolution and
effectiveness of this technology. Least-squares wave-equation migration is one of those attempts that
tries to fill the gap between the migration assumptions and reality in an iterative manner. How-
ever, these iterations do not come cheap. A proven solution to limit the number of least-squares
iterations is to correct the gradient direction within each iteration via the action of a preconditioner
that approximates the inverse Hessian. However, the Hessian computation, or even the Hessian
approximation computation, in large-scale seismic imaging problems involves an expensive com-
putational bottleneck, making it unfeasible. Therefore, we propose an efficient computation of the
Hessian approximation operator, in the context of one-way wave-equation migration (WEM) in the
space-frequency domain. We build the Hessian approximation operator depth by depth, considerably
reducing the operator size each time it is calculated. We prove the validity of our proposed method
with two numerical examples. We then extend our proposal to the framework of full-wavefield
migration, which is based on WEM principles but includes interbed multiples. Finally, this efficient
preconditioned least-squares full-wavefield migration is successfully applied to a dataset with strong
interbed multiple scattering.

This chapter is based on the following paper: Abolhassani, S., & Verschuur, D. J. (2024). Efficient preconditioned
least-squares wave-equation migration. Geophysics, 89(3), S275-S288.
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2.1. INTRODUCTION
Seismic migration, also called seismic imaging, has been an imperative tool in character-
izing the Earth’s subsurface geological structures in the search for subsurface resources
over the last half-century. Numerous research efforts have been attempted to contribute
to the theoretical developments of modern seismic migration, being one- or two-way
wave-equation migration, notable among which are Claerbout (1971) and Claerbout
and Doherty (1972) for introducing finite-difference migration, Stolt (1978) and Gazdag
(1978) for inventing and developing migration in the wavenumber-frequency domain,
Berkhout and Wulfften (1979) for introducing migration as a spatial deconvolution in the
space-frequency domain, and also Baysal et al. (1983), Whitmore (1983), and McMechan
(1983) for pioneering the use of reverse-time migration (RTM).

Most wave-equation migration algorithms share the same imaging mechanism. They
first propagate the source wavefield forward into the medium while also propagating the
receiver wavefield backward into the medium. They then construct the subsurface image
by applying an imaging condition (Jones, 2014) on the forward and backward propagated
wavefields at every trial image point. Note that wave-equation migration can also be
interpreted and implemented as a generalized diffraction stack migration (Schuster, 2002;
Zhan et al., 2014).

Despite the similarities, wave-equation migration algorithms differ in a couple of
aspects, among which are the dimension—either time or depth—along which they propa-
gate wavefields, and the scalar Helmholtz equation—either one-way or two-way—they
solve to propagate wavefields. Generally speaking, the most popular wave-equation
migration algorithms can be split into two main kinds: one-way wave-equation migration
(WEM) and RTM (Etgen et al., 2009; Jones, 2014). While RTM propagates wavefields along
the time axis through the numerical solution of the two-way Helmholtz equation via
direct methods such as finite-difference, spectral-element, and finite-element model-
ing, WEM propagates wavefields along the depth axis through the numerical solution
of the one-way Helmholtz equation. WEM algorithms, to avoid the well-known com-
putational overhead of direct solutions to the Helmholtz equation, are mostly built on
the solution of an approximation to the square root of the Helmholtz operator, which
is cheap, specifically for 3D cases (Mulder and Plessix, 2004). Although RTM outper-
forms WEM in addressing large-propagation angles (greater than ±90◦), so delivering
superior images in complex subsurface regions, it is a more computationally-intensive
and memory-demanding operation. Hence, WEM is still a frequently used migration
technique in the industry for high-frequency imaging or large-scale datasets (Mehta et al.,
2017), if steep reflecting structures are not expected. Additionally, WEM principles may
be used in the so-called full-wavefield modeling (Berkhout, 2014b) to generate multiple
scattering in order to apply full-wavefield migration (Berkhout, 2014a). From another
perspective, however, it may be argued that interpreting such comparative statements
between WEM and RTM as the outright dismissal of one over the other is a misconception.
In fact, the preference for one over the other could be significantly affected by various
factors, particularly the geological complexity of the medium, the current stage of the
project—it is in the early stage or full production mode—and, more importantly, efficient
project resource allocation.

WEM and RTM algorithms both have proven effective on their own provided that
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a couple of fundamental migration assumptions are satisfied: (a) their input dataset
is regularly sampled, (b) their input dataset is free of multiples if the first-order Born
approximation is followed, (c) there is no amplitude problem in their input dataset due to
the source energy variation/dissipation, (d) there is an accurate migration velocity model,
(e) there is a broadband source function, and (f) there is an accurate migration operator.
Otherwise, their output would not be an ideal representation of the subsurface reflectivity
model, as they suffer from migration artifacts (Jones, 2018).

To resolve better images and close the gap between the migration assumptions and
reality, the iterative least-squares migration (LSM) concept was introduced and leveled
up any standard migration algorithm into a local minimization problem (e.g., Cole and
Karrenbach, 1992; Nemeth et al., 1999; Chavent and Plessix, 1999; Duquet and Marfurt,
1999). While the number of iterations increases, any LSM technique can effectively
suppress the part of migration artifacts that appear by irregular acquisition geometry,
a band-limited source function, and geometrical spreading (Huang et al., 2014). This
iterative process, however, comes with high computational costs, so keeping the number
of iterations to a minimum is crucial.

To reduce the number of least-squares iterations, one remedy is to precondition the
gradient vector in each iteration with an approximation to the reciprocal of the Hessian
matrix-operator (Pratt et al., 1998). As a result, the model perturbation vector ∆m reads,

Ha∆m =−g, (2.1)

in which g and Ha denote the gradient and Hessian approximation, respectively, and are
given by,

g = J†∆d, (2.2)

Ha = J†J, (2.3)

where ∆d is the data error vector, † denotes adjoint, and J is the forward (Born) modeling
operator, or Jacobian matrix-operator, each column of which represents the wavefield
scattered by a small perturbation of the model parameter mi (i denotes the location of
the model parameter here) while all the other model parameters are kept fixed. It math-
ematically follows that while diagonal Hessian elements carry the scattered wavefield
auto-correlations, off-diagonal Hessian elements carry the scattered wavefield cross-
correlations of neighboring model parameters in the medium (Operto et al., 2013). Al-
though it is expected that the scattered wavefields exhibit only auto-correlations (i.e., only
on-diagonal coefficients in Ha have values), this is not the case. Indeed, due to the limited
bandwidth of seismic sources and the proximity of model parameters in space, they are
also partially cross-correlated (both on-diagonal and off-diagonal coefficients in Ha have
values). It follows that the Hessian approximation matrix has a diagonally-dominant
structure rather than a pure diagonal one, as noted by Pratt et al. (1998).

As is clear from equation 2.1, each element of the gradient vector is a weighted sum
of all the model perturbations. This clarifies how blurred will be a migrated image us-
ing a forward modeling operator with nonunitary columns (i.e. Ha is not an identity
matrix) and, at the same time, explains why LSM after the action of the inverse Hessian
approximation on the gradient converges faster (Aoki and Schuster, 2009). However,
for large-scale seismic imaging problems, even such an approximation to the Hessian
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operator has a considerable computational burden—if it is rebuilt/updated in each itera-
tion—as it requires in each iteration to construct, invert, and multiply a matrix of size:
number of model parameters × number of model parameters.

To make the computation of the Hessian operator feasible, some have replaced it
with a diagonal approximation (e.g., Beydoun and Mendes, 1989; Chavent and Plessix,
1999; Shin et al., 2001), and others have approximated the entire set of coefficients with a
manageable computational burden. Unlike the reciprocal of the diagonal coefficients,
which only corrects the migration image for the amplitude-related artifacts, the reciprocal
of the entire set of coefficients can correct the migration image for both bandwidth- and
amplitude-related artifacts. Therefore, to gain a better image resolution, there have been
many proposals to approximate the entire Hessian matrix, either in the data domain or
image domain, among which the most remarkable are as follows. Hu et al. (2001) approxi-
mate the inverse Hessian matrix by a migration deconvolution filter constructed based on
a single reference acoustic velocity profile v(z), leaving laterally-invariant deconvolution
filters. For a layered medium with lateral velocity variations, Yu et al. (2006) construct
a set of different deconvolution filters based on multiple acoustic velocity profiles to
apply on different parts of the migrated image. Guitton (2004) approximates the Hessian
inverse matrix by designing a matching convolution filter for each point in the image
space to locally match a reference image to its corresponding migrated image in a least-
squares sense. For a target-oriented imaging problem, Valenciano et al. (2006) compute a
sparse-structure Hessian matrix explicitly through the cross-correlation of the source and
receiver Green’s functions within the target area. Lecomte (2008) and Fletcher et al. (2016)
calculate the Hessian approximation matrix using point spread functions (PSFs), in which
each PSF measures the scattered wavefield for every point in the image space. Metivier
et al. (2014) estimate the product of the Hessian approximation matrix and any vector that
lies within the subsurface model space through the second-order adjoint-state method
and then solve equation 2.1 using conjugate-gradient iterations. Assis and Schleicher
(2021) use the same technique as Metivier et al. (2014) but in the context of one-way
reflection waveform inversion. Lu et al. (2018), in the context of viscoacoustic anisotropic
WEM, compute J and J† implicitly and then solve equation 2.1 using an iterative sparse
solver of the LSQR family. In their recent study, Yang et al. (2021) approximate the inverse
Hessian by comparing the S-transform spectra of two images of the subsurface: one
obtained through Born migration, and the other obtained by remodeling the Born image
and then remigrating it.

Over the past years, there have also been significant studies on transforming the
migration operator from an adjoint to a pseudo-inverse under the high-frequency as-
sumption, commonly known as a “true-amplitude migration operator”, mostly taking into
account the geometrical spreading loss. In such context, Zhang et al. (2007) achieve a true-
amplitude WEM by introducing the high-frequency approximation of true-amplitude
downgoing (forward) and upgoing (backward) wavefields at every trial image point.
Kiyashchenko et al. (2007) propose a true-amplitude correlation-based imaging condition
applicable with a finite-difference solution of the one-way wave equation, mathemati-
cally equivalent to the high-frequency approximation of the LSM solution (Bleistein et al.,
2001). There exist alternative true-amplitude migration schemes that explicitly take into
account the transmission effect as well (e.g., Deng and McMechan, 2007). ten Kroode
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(2012) derives a pseudo-inverse to the subsurface extended scale-separated Kirchhoff
modeling operator, and Hou and Symes (2015) obtain a pseudo-inverse to the subsurface
extended Born modeling operator. In the same spirit as Hou and Symes, Chauris and
Cocher (2017) construct a pseudo-inverse to the subsurface extended Born modeling
operator but after linearizing the phase of the Born operator, promoting shorter offsets,
smaller dips, and vertical rays in practice. A pseudo-inverse operator, more importantly,
can be advantageous in a least-squares framework too as it can be applied to the data
residual to speed up the convergence rate of the least-squares inversion scheme that
relies merely on the steepest descent update direction (e.g., Hou and Symes, 2016).

This paper aims to present a cost-friendly Hessian approximation operator in the
context of space-frequency domain least-squares one-way wave-equation migration
(LS-WEM) relying on angle-independent reflection/transmission coefficients (Berkhout,
1982; Berkhout, 2014a). To this purpose, we build the Hessian approximation opera-
tor depth by depth, significantly reducing the operator size each time it is calculated
(Abolhassani and Verschuur, 2022). We also rebuild/update the Hessian approximation
operator within each iteration, taking into account the updated transmission effects.
This paper is organized as follows. First, we present our preconditioned LS-WEM theory
(forward and inverse problems), in which the reciprocal of our proposed depth-based
Hessian approximation operator is used to precondition the gradient direction. This is
followed by two numerical examples for two synthetic datasets, including only primary
reflections, one from a velocity model with a lens-shaped inclusion and the other from
the SEG/EAGE overthrust velocity model. In addition, we evaluate the effectiveness of
our proposed approach within the context of full-wavefield migration (Berkhout, 2014a)
with a numerical example for a synthetic dataset including strong interbed multiples. We
finish with a final discussion and conclusions.

2.2. PRECONDITIONED LEAST-SQUARES ONE-WAY WAVE-EQUATION

MIGRATION (PLS-WEM)
The theoretical and algorithmic aspects of PLS-WEM are presented here.

2.2.1. FORWARD PROBLEM

The Kirchhoff integral for homogeneous fluids describes how to model the pressure
wavefield at an arbitrary point inside a closed surface S when the pressure wavefield and
the normal component of the particle velocity everywhere on S are known. The Kirchhoff
integral can be simplified by choosing a plane surface for S and absorbing boundary
conditions for one-way Green’s functions (see, e.g., Berkhout and Wapenaar, 1989). The
resultant integral is then represented as the Rayleigh II integral, which is the basis here for
one-way forward and adjoint wavefield extrapolations in a 2D inhomogeneous acoustic
medium.

With an extrapolation step bounded by origin and destination depth levels, the 2D
forward extrapolated wavefield, in which the wavefields existing at all lateral positions
located at the origin depth level (zℓ) are extrapolated in the +z direction towards a lateral
position located at the destination depth level (zℓ+1) (Figure 2.1), is defined as (known as
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the Rayleigh II integral),

p+(x j , zℓ+1,ω f ) = 1

2π

∫ +∞

−∞
p̃+ (

kx , zℓ,ω f
)

e
−i

(√(ω f

v j

)2−k2
x

)
|∆z|

e−i kx x j dkx , (2.4)

where v j is the acoustic velocity at position (x j , zℓ+1), ω f denotes a given angular fre-
quency component, kx is the horizontal wavenumber, ∆z denotes the laterally con-
stant extrapolation step (the vertical distance between the origin and destination depth
levels) and is assumed small enough to be considered homogeneous vertically, and
p+(x j , zℓ+1,ω f ) and p̃+ (

kx , zℓ,ω f
)

are the monochromatic downgoing acoustic wave-
fields that read the following forward and inverse Fourier conventions,

p̃(kx j ) =
∫ +∞

−∞
p(x)e

i kx j x
d x, (2.5)

p(x j ) = 1

2π

∫ +∞

−∞
p̃ (kx )e−i kx x j dkx . (2.6)

Inserting equation 2.5 into 2.4 gives a convolution integral along the x-axis,

p+(x j , zℓ+1,ω f ) = 1

2π

∫ +∞

−∞
p+(x, zℓ,ω f )

( w+: extrapolation kernel︷ ︸︸ ︷∫ +∞

−∞
e
+i

(√(ω f

v j

)2−k2
x

)
|∆z|

e−i kx (x j −x)dkx

)
d x

= 1

2π

∫ +∞

−∞
p+ (

x, zℓ,ω f
)

w+
zℓ+1;zℓ

(
x j −x,ω f

)
d x,

(2.7)
in which the downward wavefield extrapolation is marked by w+, and x j denotes the
convolution lag. Rewriting equation 2.7 into the vector-matrix form gives the following
equations (Berkhout, 1982),

p+(zℓ+1,ω f ) = W+
zℓ+1;zℓp+(zℓ,ω f ), (2.8)

p−(zℓ,ω f ) = W−
zℓ;zℓ+1

p−(zℓ+1,ω f ), (2.9)

where p−(zℓ,ω f ) is the monochromatic upgoing acoustic wavefield at zℓ, and p+(zℓ,ω f )
is the monochromatic downgoing acoustic wavefield at zℓ, p+(zℓ+1,ω f ) is the monochro-
matic downgoing acoustic wavefield at zℓ+1, p−(zℓ+1,ω f ) is the monochromatic upgoing
acoustic wavefield at zℓ+1, W+

zℓ+1;zℓ is the downward (zℓ→ zℓ+1) wavefield extrapolation
matrix-operator, and W−

zℓ;zℓ+1
is the upward (zℓ+1 → zℓ) wavefield extrapolation matrix-

operator.
With an extrapolation step without lateral velocity variations (v j = v everywhere at

the destination depth level), W becomes a Toeplitz matrix-operator, i.e., each row vector-
operator of W comes with a finite length of nx and contains the same elements as others
but is moved by one element to the right compared to its preceding row. However, with an
extrapolation step including lateral velocity variations (a different v j for every x j at the
destination depth level), W turns into a space-variant convolution matrix-operator, i.e.,
each row vector-operator of W is defined based on a locally-averaged velocity so comes
with a short spatial extent of L such that L ≪ nx (Berkhout, 1982; Thorbecke et al., 2004).
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Origin

Destination

Lateral positions

∆𝑧

Figure 2.1: Extrapolation from all existing lateral positions located at the origin depth level towards a lateral
position located at the destination depth level. Note that ∆z denotes the extrapolation step.

To model monochromatic angle-independent primary seismic data at the Earth’s
surface (traditional surface seismic data) for a given shot location, the following equations,
extrapolating the seismic source signature downward from z0 (the Earth’s surface) to zN

and then upward from zN to z0, are solved in the space-frequency domain,

p−
mod

(
z0,ω f

)= 1∑
m=N

U−
z0;zm

(
r∪ (zm)◦p+

mod

(
zm ,ω f

))
, (2.10)

p+
mod

(
zm ,ω f

)= U+
zm ;z0

s+
(
z0,ω f

)
, (2.11)

U+
zm ;z0

=
[ 1∏

n=m−1
W+

zn+1;zn
T+ (zn)

]
W+

z1;z0
, (2.12)

U−
z0;zm

=
[m−1∏

n=1
W−

zn−1;zn
T− (zn)

]
W−

zm−1;zm
, (2.13)

in which p−
mod

(
z0,ω f

)
denotes the monochromatic upgoing wavefield received at the

depth level z0, p+
mod

(
zm ,ω f

)
indicates the monochromatic downgoing wavefield re-

ceived at the depth level zm , r∪ (zm) represents the angle-independent upward reflec-
tivity vector-operator at zm , T+ (zn) is the downward transmission diagonal-operator
and reads T+ = I+diag

(
r∪

)
, T− is the upward transmission diagonal-operator and reads

T− = I−diag
(
r∪

)
, U+

zm ;z0
is called the total downward extrapolator and contains all the

downward extrapolation operators (W+) coupled with the downward transmission opera-
tors required to reach from z0 to zm , U−

z0;zm
is called the total upward extrapolator and

contains all the upward extrapolation operators (W−) coupled with the upward transmis-
sion operators required to reach from zm to z0, s+

(
z0,ω f

)
indicates the monochromatic

downgoing physical source at the Earth’s surface, N is the total number of depth levels,
and finally the symbol ◦ means the Hadamard product (Figure 2.2). Henceforward, we
refer to the above-described primary wavefield modeling approach as PWMod.

As clear from equations 2.10 to 2.13, PWMod calculates the Earth’s primary two-way
response via a recursive summation (equation 2.10) in depth by including reflection and
transmission effects. The recursive summation, indeed, includes the multiplication of the
total upward extrapolator and the upward scattered wavefield at each depth level.
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,

Figure 2.2: Wavefield updating in PWMod with angle-independent reflections at a given depth level, where p+
is the downgoing wavefield, p− is the upgoing wavefield, r∪ represents the upward reflectivity, t+ and t−

denote the downward and upward transmission.

1

Velocity 

Model 

Data Error 

Functional

Migration

Modeled 

Data
PWMod

Observed 

Data

Reflectivity 

Model

Figure 2.3: LS-WEM cycle. LS-WEM starts with an accurate migration velocity model (fixed in the cycle) and a
zero-reflectivity model (variable in the cycle). Then, using PWMod, the modeled data is generated and

contrasted with the multiple-free observed data using a data error functional. The data error is then
back-projected into the reflectivity model to build/update the reflectors through a scaled steepest descent

algorithm. The cycle repeats itself until the data error almost disappears.
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2.2.2. INVERSE PROBLEM
LS-WEM is a seismic depth migration technology based on a data-fitting process that
seeks the Earth’s reflectivity model. LS-WEM iteratively minimizes a data error functional
in a least-squares sense (Schuster, 2017). To minimize the data error functional, LS-WEM
follows a migration-demigration cycle, as depicted in Figure 2.3. The LS-WEM cycle starts
with an accurate migration velocity model fixed in the cycle and a zero-reflectivity model
variable in the cycle. The modeled data is then generated via PWMod, and the data error
is calculated and back-projected into the reflectivity model to build/update the reflectors
via a steepest descent algorithm. The cycle iterates until the data error almost vanishes.

To introduce preconditioning in the LS-WEM algorithm, we seek the least-squares
solution of the linear system (Lines and Treitel, 1984; Tarantola, 1984),

∆d− = J∆r∪, (2.14)

where ∆d− represents the error between the observed and modeled data at z0, ∆r∪
denotes the total upward reflectivity perturbation, and J is given by,

J = ∂p−
mod (z0)

∂r∪
. (2.15)

Therefore, to solve equation 2.14, we minimize the following error functional (Shin
et al., 2001; Jang et al., 2009; Oh and Min, 2013), as a quadratic function of ∆r∪

(
ω f

)
,

C = 1

2

N f∑
f =1

Ns∑
s=1

∥∥∆d−
s

(
ω f

)− Js
(
ω f

)
∆r∪

(
ω f

)∥∥2
2 , (2.16)

in which
∆d−

s

(
ω f

)= p−
obs,s

(
z0,ω f

)−p−
mod,s

(
z0,ω f ,r∪

)
, (2.17)

and p−
obs,s

(
z0,ω f

)
is the monochromatic multiple-free observed data recorded at the

Earth’s surface for shot s, p−
mod,s

(
z0,ω f ,r∪

)
represents the monochromatic modeled pri-

mary data at the Earth’s surface for shot s, ∆d−
s

(
ω f

)
is the monochromatic residual data

for shot s, ω f represents an angular frequency component, Ns is the total number of shot
locations, N f indicates the total number of frequency components, and r∪ is ordered as,

r∪ =



r∪ (z0)

r∪ (z1)
...

r∪ (zN )


. (2.18)

Minimizing equation 2.16 with respect to ∆r∪(ω f ) gives the descent direction,

∆r∪ =−
N f∑
f =1

∆r∪(ω f ), (2.19)
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in which

∆r∪(ω f ) =R


( Ns∑

s=1

Ha
s (ω f )︷ ︸︸ ︷

J†
s (ω f )Js (ω f )

)
−1

R


Ns∑

s=1

gs (ω f )︷ ︸︸ ︷
J†

s (ω f )∆d−
s

(
ω f

) , (2.20)

and, to link the linearized and non-linear inverse problems, g and Ha are referred to as the
gradient and Hessian approximation (also known as the Gauss-Newton Hessian approxi-
mation). The introduced frequency-dependent preconditioning operation here exhibits
certain parallels with the deconvolution imaging condition introduced by Valenciano and
Biondi (2003) that accounts for source deconvolution.

Using equation 2.20, the reflectivity model can be updated iteratively via,

r∪k+1 = r∪k +αk∆r∪k , (2.21)

where α denotes the minimization step length, and k denotes the current iteration. Since
with PWMod, the acoustic wavefield is accessible depth by depth, the gradient vector in
equation 2.20 can be rewritten as,

gs (ω f ) =


gs (z0,ω f )

...

gs (zN ,ω f )

=
[ total Jacobian︷ ︸︸ ︷
∂p−

mod,s

(
z0,ω f

)
∂r∪ (z0)

· · ·
∂p−

mod,s

(
z0,ω f

)
∂r∪ (zN )

]†
∆d−

s (ω f ), (2.22)

in which each element of g is a vector representing the gradient associated with the
model parameters located at a given depth level, and each column of the total Jacobian
denotes the partial derivative of the upgoing modeled wavefield at the receiver locations
with respect to the model parameters located at a given depth level. What is important
to note here is that equation 2.22 allows us to construct not only the gradient vector
depth by depth but also the Jacobian matrix, paving the way for constructing the Hessian
approximation matrix with a reduced number of elements at each depth level.

Each column of the total Jacobian matrix, after calculating the corresponding partial
derivatives, is simplified to,

∂p−
mod,s

(
z0,ω f

)
∂r∪ (zm)

=


U−

z0;zm



p+
1 mod,s

(
zm ,ω f

)
0
...

0


U−

z0;zm



0

p+
2 mod,s

(
zm ,ω f

)
...

0



. . . U−
z0;zm



0

0
...

p+
nx mod,s

(
zm ,ω f

)




,

(2.23)
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Figure 2.4: Decomposing the massive Hessian approximation operator into several small operators, each
related to a depth level.

where nx denotes the number of grid points at zm (inversion and modeling grids are
similar), and p+

j mod,s

(
zm ,ω f

)
is a complex number representing the downgoing modeled

wavefield at the j th grid point of zm . As the vectors multiplied by U−
z0;zm

in equation 2.23
each have only one active element, the multiplications can be simplified to,

∂p−
mod,s

(
zm ,ω f

)
∂r∪ (zm)

=
[

p+
1 mod,s

(
zm ,ω f

)
U−

∗,1z0;zm
p+

2 mod,s

(
zm ,ω f

)
U−

∗,2z0;zm

. . . p+
nx mod,s

(
zm ,ω f

)
U−

∗,nx z0;zm

]
,

(2.24)

in which U−
∗, j z0;zm

denotes the j th column of U−
z0;zm

.

According to equation 2.3, the Hessian approximation matrix for each pair of source
and frequency is expressed as,

Ha
s (ω f ) =

[∂p−
mod,s (z0,ω f )

∂r∪
]†[∂p−

mod,s (z0,ω f )

∂r∪
]

, (2.25)

and as seen, it shows a square and symmetric structure with the massive dimension
of nm ×nm , where nm represents the total number of model parameters in the whole
medium. As an alternative to constructing one massive, computationally unfeasible
Hessian approximation operator all at once, where it is required to perform the cross-
correlation between the partial derivative wavefields associated with model parameters
located at all depth levels (the whole medium), we split up the massive Hessian approxi-
mation operator into several smaller operators, each calculated for the model parameters
located at a different depth level (nx model parameters are located at each depth level).
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Figure 2.5: Proposed small Hessian approximation operators assembled into one big operator. Each block is a

matrix of nx ×nx related to a depth level, where nx = nm

N
and N = 11.

To do so, it suffices to write,

Ha
s (zm ,ω f ) =

[∂p−
mod,s (z0,ω f )

∂r∪(zm)

]†[∂p−
mod,s (z0,ω f )

∂r∪(zm)

]
, (2.26)

where the reciprocal of Ha
s (zm ,ω f ) compensates for geometrical spreading and spatial

correlations of neighboring model parameters, while also conducting source deconvolu-
tion.

Therefore, to precondition every depth-level gradient, we calculate an individual tiny

Hessian operator with the dimension of nx ×nx , where nx = nm

N
(Figure 2.4), reducing the

number of model parameters by a factor of N whenever the Hessian operator is calculated.

This is feasible since equation 2.24 enables us to construct
∂p−

mod,s (z0,ω f )

∂r∪ for each depth

level in the medium. This obviously allows us to decompose the Hessian approximation
operator into several small operators, each of which only carries the correlation of partial
derivative wavefields associated with a single depth level. These minimal operators
are computationally cheap to build, store, and invert in each iteration, enabling us to
precondition the gradient vector efficiently. Figure 2.5 represents the structure of such an
approximate Hessian.
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2.3. NUMERICAL EXAMPLES OF PLS-WEM
To investigate the effect of the suggested approximate Hessian while solving equation 2.19
in each iteration, we contrast PLS-WEM with a scaled version of LS-WEM. In this scaled
version, the LS-WEM gradient vector is scaled by the diagonal components of an inverse
approximate Hessian (see Plessix and Mulder, 2004, equation 27), where the Hessian
operator itself is given by,

H = ∂2C ′

∂r∪2
= ∂2

∂r∪2

(
1

2

N f∑
f =1

Ns∑
s=1

∥∥∆d−
s

(
ω f

)∥∥2
2

)
, (2.27)

and the approximate Hessian operator is derived by neglecting the terms in the derivative
above that depend on the residual data, as discussed in Cova and Innanen (2013).

Both PLS-WEM and LS-WEM methods are tested here on two synthetic datasets
associated with a lens-shaped inclusion model and the SEG/EAGE overthrust model.

2.3.1. LENS-SHAPED INCLUSION MODEL
In this example, our true model is a homogeneous model with a lens-shaped anomaly
in the middle (Figure 2.6). The true model is represented by 201 × 173 grid points in
the horizontal and vertical directions. The horizontal and vertical grid sizes are 15 and 7
m, respectively. 41 shot points with 75 m spacing are laid out on top of the model, and
201 receivers with 15 m spacing are used per shot to record the reflection data (fixed-
spread acquisition). The source function used in this example is a Ricker wavelet with a
dominant frequency of 10 Hz. Our forward modeling tool for generating the observed
dataset (only primaries) is PWMod, applied to the true model, the so-called inverse
crime. The recording time is 1.4 s, and the largest offset used in the migration process is
3 km. Employing an accurate migration velocity model with sharp reflectors, we apply
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Figure 2.6: True lens-shaped inclusion reflectivity model.

both LS-WEM and PLS-WEM in such a setup to evaluate the action of the reciprocal of
the suggested depth-based Hessian approximation operator on the gradient. Figure 2.7
depicts the results. Figures 2.7a, 2.7c, and 2.7e display the LS-WEM results after 1, 3, and
5 iterations, respectively. Figures 2.7b, 2.7d, and 2.7f show the PLS-WEM results after 1, 3,
and 5 iterations, respectively.
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The results show that the reciprocal of the suggested depth-based Hessian approxima-
tion operator significantly impacts the gradient vector from very early iterations. Image
deconvolution and preserved amplitudes are clearly the most noticeable impacts of em-
ploying the suggested preconditioner. Therefore, the PLS-WEM images demonstrate
superior focusing compared to the LS-WEM images. As seen in Figures 2.7e and 2.7f,
even after 5 least-squares iterations, the LS-WEM image quality does not reach the image
quality of PLS-WEM after its first iteration.

To compare the convergence characteristics of LS-WEM and PLS-WEM, their normal-
ized data error values in each iteration in the log scale are plotted in Figure 2.12a. As
evident, the PLS-WEM method shows a faster convergence ratio and also reaches smaller
data errors, which means its estimated image fits the observed data better.

2.3.2. SEG/EAGE OVERTHRUST MODEL
In the next example, our true model is one vertical slice of the 3D SEG/EAGE overthrust
model (Figure 2.8) (Aminzadeh et al., 1994). The selected model contains 501 × 151 grid
points in the horizontal and vertical directions, with a grid interval of 24 m. 101 shot
points with an interval of 120 m are used on top of the model, and 501 receivers per shot
with an interval of 24 m collect the reflection data (fixed-spread acquisition). PWMod
is used to generate the observed reflection data (only primaries) using a Ricker wavelet
with a dominant frequency of 10 Hz as the source function, the so-called inverse crime.
The trace length is 2.6 s, and the largest offset used in the migration process is 4 km. With
the aid of an accurate migration velocity model including sharp reflectors, both LS-WEM
and PLS-WEM are tested in such a setup to examine the action of the reciprocal of the
suggested depth-based Hessian approximation operator on the gradient. The results are
shown in Figure 2.9. Figures 2.9a, 2.9c, and 2.9e display the LS-WEM results after 1, 3, and
5 iterations, respectively. Figures 2.9b, 2.9d, and 2.9f show the PLS-WEM results after 1, 3,
and 5 iterations, respectively.

The results confirm the effectiveness of the action of the suggested preconditioner
on the gradient. From the first iteration, balanced-amplitude reflectors and image de-
convolution are again the most visible outcomes of applying the depth-based Hessian
approximation inverse on the gradient vector. While LS-WEM in its early iterations
leaves us with an image affected by the limited bandwidth of the seismic data, PLS-WEM
mitigates such an unfavorable effect and estimates a high-resolution image from early
iterations. As demonstrated in Figures 2.9e and 2.9f, even after 5 iterations, unfocused
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Figure 2.8: True SEG/EAGE overthrust reflectivity model.
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Figure 2.10: Magnified sections of the estimated SEG/EAGE overthrust reflectivity models by LS-WEM and
PLS-WEM after 5 iterations, shown in Figures 2.9e and 2.9f. (a) Magnified section of the estimated reflectivity

model by LS-WEM. (b) Magnified section of the estimated model by PLS-WEM.
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Figure 2.11: Estimated 1D reflectivity profiles using the LS-FWM and PLS-FWM methods after 5 iterations,
associated with the SEG/EAGE overthrust model. The profiles are taken from the estimated reflectivity models

shown in Figures 2.9e and 2.9f and represent the lateral location of 6 km.

reflection energies are visible in the LS-WEM image, but the PLS-WEM image appears to
be focused clearly.

In Figure 2.10, a specific region of the estimated images after 5 iterations, specified
by dashed yellow rectangles in Figures 2.9e and 2.9f, is presented to obtain magnified
sections for deeper investigation. While in Figure 2.10b (PLS-WEM) faults and curvatures
are accurately imaged together with focused, stronger, accurate reflectors, in Figure
2.10a (LS-WEM) faults and curvatures are mapped inaccurately together with unfocused,
weaker reflectors. Figure 2.11 also compares the 1D vertical reflectivity profiles estimated
by LS-WEM and PLS-WEM with the true profile at the lateral location of 6 km.

The convergence properties of LS-WEM and PLS-WEM are compared in Figure 2.12b
by plotting their data error values for each iteration. As expected, the PLS-WEM method
shows a higher convergence ratio and achieves smaller data errors, which means that its
estimated image is more in line with the observed data. Figure 2.13 represents the initial
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Figure 2.12: Convergence curves. (a) Lens-shaped inclusion model. (b) The SEG/EAGE overthrust model.
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Figure 2.13: Residual data associated with the SEG/EAGE overthrust model. (a) Initial residual data. (b) Final
residual data with LS-WEM (iteration 5). (c) Final residual data with PLS-WEM (iteration 5).
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and final residual data, confirming the convergence properties.

2.4. APPLICATION TO LEAST-SQUARES FULL-WAVEFIELD MIGRA-
TION

In the preceding examples, we ignored multiple scattering while modeling the seismic
data. As a result, to avoid matching data events with different scattering orders, known
as cross-talk noise or multiple imprints, the observed data events caused by multiple
scattering were required to be detected and eliminated prior to the migration process
using a multiple elimination algorithm (Berkhout and Verschuur, 1997; Weglein et al.,
1997; Weglein et al., 2003; Berkhout and Verschuur, 2005; Groenestijn and Verschuur, 2009;
Ypma and Verschuur, 2013; Slob et al., 2014; Siahkoohi et al., 2019; Zhang and Slob, 2020;
Thorbecke et al., 2021). While eliminating multiple scattering offers benefits, it can also
be a challenging task or exceed budgetary limits in some seismic applications. Therefore,
from this perspective, it would be ideal if a migration algorithm could effectively manage
multiple scattering together with first-order scattering waves.

Some studies have shown that when a migration algorithm effectively manages multi-
ple scattering, it can enhance illumination, especially in areas where primary imaging fails
to provide adequate illumination due to missing/masked-by-multiple primary reflections
in the observed data (Berkhout and Verschuur, 2016; Davydenko and Verschuur, 2017;
Lu et al., 2018; Slob et al., 2021). Moreover, when reflectors are better focused from early
iterations, through an effective gradient preconditioning, multiple scattering modeling
will be more accurate, which should result in a better reduction of cross-talk noise on
the final stacked image. This is indeed expected as the outcome of a clearer distinction
between the primary and multiple reflections during data matching, especially when they
overlap.

Taking into account interbed multiples in modeling, the following example first ex-
amines the successful application (enhanced resolution and stronger reflectivities) and
subsequently investigates the expected improvement (better cross-talk noise reduction),
if any, of the suggested depth-based preconditioner within the context of the least-squares
full-wavefield migration (LS-FWM) algorithm, which was first introduced by Berkhout
(2014a).

LS-FWM is a non-linear least-squares one-way wave-equation migration technique
that uses the full (primary and multiples) two-way Earth’s response by incorporating
multiple scattering (via iterative modeling) into the forward modeling theory already
presented in the forward problem section. LS-FWM and LS-WEM share the same inver-
sion cycle (Figure 2.3), with the difference that LS-FWM uses full-wavefield modeling
(FWMod) (Berkhout, 1982; Berkhout, 2014b) rather than PWMod. The LS-FWM gradient
vector, similar to the LS-WEM gradient vector, in each iteration is scaled by the diagonal
components of the inverse Hessian approximation derived by the linear part of equation
2.27.

Angle-independent FWMod models angle-independent primary reflections at the
Earth’s surface by extrapolating the seismic source signature first downward from z0 to
zN and then upward from zN to z0 by accounting for reflection and transmission effects,
which is called one roundtrip/iteration. Subsequent FWMod roundtrips contribute to
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,
,

Figure 2.14: Wavefield updating in FWMod with angle-independent reflections at a given depth level, where p+
is the downgoing wavefield, p− is the upgoing wavefield, r∪ represents the upward reflectivity, r∩ shows the

downward reflectivity, t+ and t− denote the downward and upward transmission.

new orders of multiple scattering while still explaining reflection and transmission effects.
Compared to PWMod, FWMod takes into account the multiple scattering by replacing
equation 2.11 with,

p+
mod

(
zm ,ω f

)= m−1∑
n=0

U+
zm ;zn

(
s+

(
zn ,ω f

)+ r∩ (zm)◦p−
mod

(
zm ,ω f

))
, (2.28)

where r∩ (zm) represents the angle-independent downward reflectivity vector-operator at
zm , and r∩ =−r∪ (acoustic medium assumption) (Figure 2.14).

As is clear, FWMod in its first roundtrip calculates the Earth’s two-way response
(primary reflections) via a recursive summation in depth by including reflection and
transmission effects. FWMod has control over multiple scattering, and each roundtrip
(other than the first roundtrip) adds an order of scattering to the primaries. As a result,
with FWMod, modeling primary reflections, surface-related multiples, interbed multiples,
and total reflection wavefields are easily accessible.

PLS-FWM minimizes the same error functional as PLS-WEM, i.e., equation 2.16,
with the difference that p−

obs and p−
mod in the equation are now the full (primaries and

multiples) observed and modeled data at the Earth’s surface. Other details of the method
can be found in Berkhout (2014a). As a result, for deriving the suggested preconditioned
model update in the PLS-FWM framework, nothing mathematically changes from what is
already derived for PLS-WEM, as FWMod can be seen as an iterative PWMod, where the
upgoing/downgoing wavefields stored at different depth levels in former roundtrips are
used as the input wavefields for the subsequent roundtrips. Therefore, the same theory is
here employed to build the preconditioned model update for PLS-FWM in each iteration.

2.5. NUMERICAL EXAMPLES OF PLS-WEM
To evaluate the application and impact of the suggested depth-based preconditioner
within the framework of least-squares full-wavefield migration, we use a multi-reflector
wedge model placed between two horizontal reflectors, in which each reflector is only
due to the density contrast, as we utilize a homogeneous velocity of 2000 m/s to build the
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Figure 2.15: Variations in the true resonant wedge density model in kg/m3. The change in density between the
layers is 50%, and the dipping layers all have identical thicknesses.

reflectivity model. This extreme example yields alternating local reflection coefficients of
r = 1/5 and r =−1/5 in the model, causing medium-strength interbed multiples in the
data compared to the reflection coefficients used in Slob et al. (2021). Figure 2.15 shows
the true resonant wedge density model in kg/m3. To add the resonant feature to the
model, the dipping layers in the wedge part all come in the same thickness. Besides, while
each layer on the left side has a thickness of 100 m, the thickness approaches zero on the
right. An acoustic finite-difference modeling scheme with a grid size of 1 m generates the
observed reflection data. As a source wavelet, a 15 Hz Ricker wavelet is used. 31 shots with
a 120 m shot spacing are deployed on top of the model such that the first shot is placed at
200 m and the last shot at 3800 m. Each observed shot gather includes 401 traces with 10
m trace spacing (fixed-spread acquisition), and the length of the traces is 2.92 s. With the
same source-receiver setup and the true homogeneous velocity model, FWMod with a
horizontal grid size of 10 m and a vertical grid size of 4 m generates the modeled reflection
data in every iteration. The maximum frequency used in the migration is 40 Hz, and the
largest offset used in the migration is 4 km. Note that in Slob et al. (2021) it is already
shown that such a model can be viewed as an extreme scenario when interbed multiples
mask primaries. With this experimental setup, LS-FWM and PLS-FWM are employed here
to assess the extent of achievement of the reciprocal of the suggested depth-based Hessian
operator in preconditioning the gradient direction within the context of full-wavefield
migration. Figure 2.16 displays the results.

Figures 2.16a and 2.16b show the LS-FWM and PLS-FWM output images after 5
iterations, respectively. For the purpose of analysis, the output images can be laterally
split into three main regions: the first 1000 m of the lateral distance of the image (left-
edge region), from 1000 to 3000 m of the lateral distance of the image (middle region),
and the last 1000 m of the lateral distance of the image (right-edge region). For the left-
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edge region as deep as the dipping layers, LS-FWM delivers an alternating sequence of
positive and negative amplitudes. Consequently, it is challenging to determine which
ones represent the real dipping reflectors. In contrast, by removing the source signature
and balancing the reflector amplitudes, PLS-FWM delivers a clean view of the real dipping
reflectors there. For the middle region as deep as the dipping layers, we notice that PLS-
FWM compared to LS-FWM, effectively performs better and maps the reflectors with less
blurriness. For the right-edge region as deep as the dipping layers, where the resolution
limit is reached, we notice that for recovering the fifth dipping reflector (yellow arrow),
while PLS-FWM does not stably function, LS-FWM functions slightly more stable.

We can also see that after 5 iterations, both images exhibit a common characteristic,
that is, the cross-talk noise or equally ghost reflectors generated in the image owing to the
presence of interbed multiples in the data. As a result, the last real dipping reflector is not
retrieved as strongly as the others, as denoted by the green arrow in Figure 2.16b, and also
several ghost reflectors are built, as indicated by the blue arrows in Figure 2.16b.

Figures 2.16c and 2.16d display the LS-FWM and PLS-FWM results after 15 iterations,
respectively. Comparing the images reveals that the ghost reflectors existing in the fifth-
iteration images are now attenuated after 15 iterations as shown by the blue arrows in
Figure 2.16d. In addition, we observe that the weak real dipping reflector in the fifth-
iteration images is now recovered much stronger after addressing both primaries and
interbed multiples (see also Slob et al. (2021)), as denoted by the green arrows in Figure
2.16d, but still not as strong as the other real dipping reflectors. We also notice that the
ghost reflectors are marginally better reduced by PLS-WEM, as denoted by the red arrows
in Figure 2.16c; see also the discussion section.

Figure 2.17 compares the 1D reflectivity profiles corresponding to the LS-FWM and
PLS-FWM images in iteration 15, depicted in Figures 2.16c and 2.16d, at the lateral location
of 2150 m. It clearly proves the accuracy of the PLS-FWM image in comparison to the
LS-FWM image in terms of the resolved resolution, reflectivity magnitudes, and reduction
of multiple cross-talk (red arrows). Therefore, we can state that PLS-FWM outperforms
LS-FWM in terms of image quality.

2.6. DISCUSSION
Despite the limitations outlined in the introduction, the industry has continued to em-
brace the practice of mapping primary energies back into the image space using LS-WEM
due to its notable advantage of lower computational cost when compared to LS-RTM.
Although LS-WEM has proven itself quite effective in recovering decent images, we ob-
served that our newly developed PLS-WEM algorithm outperforms LS-WEM. It shows
faster convergence and superior resolution. Moreover, it is efficient in computation when
compared to an alternative solution that computes a huge Hessian approximation opera-
tor for the entire medium. While feasible, it still remains time-wise expensive compared
to LS-WEM, with the current implementation and contemporary computing resources.
However, based on our internal investigations, PLS-WEM with source subsampling in
the computation of Hessian approximation operators (Matharu and Sacchi, 2019)—one
source out of three—can generate similar high-resolution images, comparable to this
study, in half the iterations of LS-WEM, although its wall time for each iteration is observed
to be double to triple.
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Figure 2.17: Estimated 1D reflectivity profiles using the LS-FWM and PLS-FWM methods after 15 iterations,
associated with the resonant wedge model. The profiles are taken from the estimated reflectivity models shown

in Figures 2.16c and 2.16d and represent the lateral location of 2150 m.

It is important to acknowledge that both LS-WEM and PLS-WEM algorithms pre-
sented in this paper may underperform due to flaws in the multiple elimination stage,
poor wavelet estimation, the angle-independent reflection coefficient assumption, steep
reflectors, and an inaccurate migration velocity model.

In the case of the full-wavefield migration example, while we expected a better resolu-
tion and stronger reflection coefficients from PLS-FWM compared to LS-FWM, we also
hoped for more reduction of cross-talk noise. According to the resonant wedge example
results, even though PLS-FWM achieves a greater resolution and stronger reflectivities,
the cross-talk noise is not better reduced. As previously stated, better-focused reflectors
are expected to end in more accurate modeling of multiple scattering and hence better
attenuation of multiple imprints. However, this doesn’t seem to work as well as we thought
it would, although it gave slight improvements in reducing the cross-talk noise, see the
red arrows on Figures 2.16c and 2.17. This capacity may be partially underused due to the
double-edged nature of preconditioning; the preconditioner does its function on both
real and ghost reflectors in each iteration, giving high-resolution ghost and real reflectors
for modeling, leading to a conflict between real and fake reflections in the corresponding
data minimization problem, still ending up in a local minimum. From another perspec-
tive, the underperformance could also be attributed to the highly nonlinear nature of
the resonant wedge experiment. Lastly, the underperformance might be linked to the
FWMod convergence issue with spatially inhomogeneous media (McMaken, 1986). To
ascertain the main cause, further investigation must be conducted.

Typically, the convergence of LSM exhibits a faster rate in the initial iterations and a
slower rate in the subsequent iterations. In Figures 2.12a and 2.12b, it can be observed
that the data error between the second and third iterations remains almost identical,
indicating a minimal change in the image update. The observed phenomenon can
be attributed to the nonlinear dynamics introduced into the modeling process by the
implicit accounting for the transmission effects in the modeled data, as shown by the

factor:
(
1+ r∪)(

1− r∪)= 1− (
r∪)2. In the first iteration of LSM, there is no information
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about the reflection coefficients. This lack of information may lead to an overcorrection
of the transmission coefficients with the nonlinear factor, resulting in modeled data that
is not amplitude-consistent with the observed data. In order to correct this, the next
iteration of LSM performs data amplitude balancing, resulting in a relatively similar data
error when compared to the previous iteration. With each subsequent iteration, this
issue gradually irons itself out, bringing the modeled data into close alignment with the
observed data.

Superior imaging can also help build high-resolution and strong tomographic updates
in reflection waveform inversion (RWI). RWI is described as a method for constructing
a low-wavenumber velocity model via confining the full waveform inversion sensitivity
kernel along the transmission-after-reflection wavepaths. RWI sequentially solves a multi-
parameter primary-reflection-data-driven inverse problem with velocity and reflectivity
as the parameters. In RWI, reflectors are first mapped using a migration technology, and
then the tomographic update is built based on the mapped reflectors. As a result, in such
a flow, a higher-resolution image with stronger amplitudes may lead to a more consistent
and stronger tomographic update, something that our proposed PLS-WEM can facilitate.

2.7. CONCLUSION
We mathematically showed how the Hessian approximation operator and its reciprocal as
the gradient preconditioner could be efficiently built for LS-WEM in a depth marching
regime. We showed that our proposed cost-friendly PLS-WEM algorithm, thanks to
PWMod, comes with a minimal computational effort in each iteration in comparison to its
alternatives that compute a massive Hessian approximation for the entire medium. Using
two numerical examples, we verified how the proposed preconditioner effectively cut the
migration artifacts generated by the band-limited nature of seismic data and preserves
the reflectivity amplitudes. We also confirmed that the improvement in migration images
results in a faster convergence ratio and a better data fit for PLS-WEM. We also used the
proposed preconditioner in the context of full-wavefield migration. With an extreme
scenario generating strong interbed multiples, we showed that PLS-FWM outperforms
LS-FWM in the same two ways that PLS-WEM outperforms LS-WEM. That is, PLS-FWM
removes the source signature from the image quickly and recovers stronger and more
accurate reflectivities than LS-FWM. We also observed that PLS-FWM only provided
limited improvement in minimizing the cross-talk noise, contrary to our expectations.
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3
IMPROVED ONE-WAY REFLECTION

WAVEFORM INVERSION

“Life can only be understood backwards; but it must be lived forwards.”

– SOREN KIERKEGAARD

Conventional reflection waveform inversion solves a two-parameter seismic inverse problem alter-
nately for subsurface reflectivity and acoustic background velocity as the model parameters. It seeks
to reconstruct a low-wavenumber velocity model of the subsurface from pure reflection data cyclically,
through alternating migration and tomography loops, such that the remodeled data fits the observed
data. Low-resolution seismic images with unpreserved amplitudes, cycle skipping in long-offset
data, and full-wave inconsistency in the short-offset data due to inconsistent reflectivity and velocity
models are perceived as the main reasons for poor tomographic updates and slow convergence in
conventional reflection waveform inversion. In the context of one-way reflection waveform inversion,
this paper addresses the listed limitations through four main components. First, it augments one-
way reflection waveform inversion with a computationally affordable preconditioned least-squares
wave-equation migration algorithm, to ensure high-resolution reflectors with preserved amplitudes.
Second, the paper verifies how well the full-wave consistency condition in the short-offset data is
satisfied in one-way reflection waveform inversion and suggests muting inconsistent short-offset resid-
ual waveforms in the tomography loop to attenuate their adverse imprint. Third, with short-offset
residual waveforms muted, the paper suggests extending the migration offset beyond short offsets
to improve both the illumination and the signal-to-noise ratio of the reflectors. Fourth, the paper
presents a data-selection algorithm to exclude the damaging effect of the cycle-skipped long-offset
data in the tomography loop. The effectiveness of the proposed one-way reflection waveform inversion
algorithm is finally validated through three numerical examples, demonstrating its capability to
recover high-fidelity tomograms.

This chapter is based on the following manuscript: Abolhassani, S., Verschuur, D. J. (2024) Improved One-
Way Reflection Waveform Inversion and Strategies for Optimal Offset Selection. Submitted to Geophysical
Prospecting, GP-2024-4391.R3
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3.1. INTRODUCTION
Since the early 1980s, multiple efforts have been made by geoscientists to recover high-
resolution subsurface models (e.g., velocity, density) by explaining observed seismic
waveforms. In a big step forward, Tarantola (1984) introduced full waveform inversion
(FWI) in the acoustic approximation. Conventional FWI solves a minimization prob-
lem by defining an L2-norm misfit function that measures the difference between the
modeled and observed seismic waveforms to reconstruct high-resolution subsurface
models. While conventional FWI has shown great success in reconstructing high-fidelity
shallow subsurface models described by the field data (e.g., Vigh et al., 2011; Liu et al.,
2012; Plessix et al., 2013), it has shown incapable of retrieving deep subsurface targets,
where refracted and diving waves do not reach due to the limited offset range in the
acquired data (e.g., Irabor and Warner, 2016; Vigh et al., 2016; Jones, 2019; Brittan and
Jones, 2019). Given the technical barriers of acquiring ultra-long-offset seismic data,
the expenses of modern seismic data acquisition equipment for acquiring long offsets,
physical obstacles in acquisition areas, and short-offset legacy data, conventional FWI
cannot always provide the optimum outcome.

While observed refracted and diving waves suffer from limited penetration depth
for a given offset, the reflected waves can penetrate deeper. To benefit from pure re-
flection data and illuminate deep targets, Mora (1989) elaborated on the significance of
scale separation, separating the retrieval of high-reflective local model wavenumbers
(migration process, also called imaging) from the retrieval of low-propagative local model
wavenumbers (tomography process). After Mora (1989), multiple variations of migration-
based velocity analysis (MVA) relying on model scale separation have been developed.
Notably, among these variants, those incorporating wave-equation forward modeling
(Born approximation) have emerged as significant due to their enhanced handling of
wave propagation in complex geological environments. Specifically, wave-equation MVA
(WEMVA) algorithms, as introduced by Sava and Biondi (2004), typically aim to optimize
an image-domain error function computed from common image gathers (CIGs). This
optimization is achieved using either the classical semblance or a differential semblance
(DS) function, which evaluates the flatness or coherency of the CIGs (Chauris and No-
ble, 2001; Shen et al., 2003). WEMVA can also be expressed within the extended-image
framework as described by Shen (2005) and further explored by Lameloise et al. (2015).
Shen and Symes (2008) demonstrated the use of the DS function in conjunction with
subsurface-offset CIGs. Later, Symes (2008) developed the theory of a joint framework for
combining WEMVA and FWI, known as tomographic full-waveform inversion (TFWI). In
the following years, Almomin and Biondi (2012), Biondi and Almomin (2012), and Sun
and Symes (2013) practically showed that TFWI works, although expensively due to the
extended-domain imaging condition employed and the number of the Green’s functions
involved.

In the meanwhile and with the same thinking as WEMVA, several reflection wave-
form inversion (RWI) techniques also originated by combining wave-equation migration
and FWI into a single framework (e.g., Xu et al., 2012a; Zhou et al., 2012). RWI, like
WEMVA, relies on the idea of model scale separation; however, such a separation between
the migration and tomography sensitivity kernels in waveform inversion has always
been challenging. So far, there are three main alternatives to address the challenge: (a)
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scattering-angle filtering (e.g., Alkhalifah, 2014; Xie, 2015; Kazei et al., 2016; Wu and
Alkhalifah, 2017; Yao et al., 2018; Yao et al., 2019a), (b) wavefield decomposition (e.g., Liu
et al., 2011; Wang et al., 2013; Tang et al., 2013; Irabor and Warner, 2016; Chi et al., 2017;
Lian et al., 2018), and (c) Born modeling (e.g., Xu et al., 2012a; Xu et al., 2012b; Zhou et al.,
2012; Sun et al., 2016; Vigh et al., 2016; Wang et al., 2018). To improve the RWI gradient,
some studies examined merging early-arrival waveform inversion and RWI (Zhou et al.,
2015; Wu and Alkhalifah, 2015).

Berkhout (2012) and Berkhout (2014b) introduced an algorithm for reflection wave-
form inversion—based on wavefield decomposition into upgoing and downgoing waves—and
named it joint migration inversion (JMI). Wavefield decomposition in JMI relies on a one-
way acoustic wavefield extrapolation scheme known as full wavefield modeling (FWMod),
which includes both primaries and controlled-order multiples (Berkhout, 2014a). Angle-
independent FWMod is set up on two classes of parameters: acoustic background velocity
and angle-independent reflectivity. Due to the adequate parametrization in FWMod, the
tomographic and imaging sensitivity kernels in JMI appear independent. Recently, Lu
et al. (2018), Dong et al. (2018), Romahn et al. (2021), Hassine et al. (2022), and Soubaras
et al. (2023) have also utilized the one-way acoustic wave equation for the purpose of
wave-equation migration and reflection waveform inversion. Constraining FWMod to
single-scattered waveforms—primary wavefield modeling, in short PWMod—we use
the same notion as JMI for reflection waveform inversion here and refer to it as one-
way reflection waveform inversion (ORWI). As an inverse problem, ORWI alternately
solves a two-parameter minimization problem with a misfit function that measures the
reflection data (primaries) error in the least-squares sense. Both classes of parameters
in ORWI—background velocity and angle-independent reflectivity—are reconstructed
in a cyclic process, including least-squares migration and reflection tomography loops
(Algorithm 3.1). Based on a zero initial reflectivity model, a smooth initial background
velocity model, and full-offset reflection data in both migration and tomography loops,
the flow begins with the migration loop and proceeds to alternate between the loops until
reaching convergence with accurate solutions for the background velocity and reflectivity.

Algorithm 3.1: Cyclic workflow of ORWI

1 Providing a smooth initial background velocity and zero initial
reflectivity model when cycle number k = 1.

2 while convergence not reached do
3 for i ← 1 to m do
4 UPDATE the reflectivity model using one-way wave-equation

while keeping the background velocity model fixed (migration).

5 for j ← 1 to n do
6 UPDATE the background velocity model using one-way

wave-equation while keeping the reflectivity model fixed
(reflection tomography).

7 k = k +1 // The reflectivity model (image) can be
reset to zero at this point.
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Building true amplitude and high-resolution reflectors can considerably help any RWI
technique recover strong and in-phase tomographic wavepaths in each cycle (Gomes
and Yang, 2018; Chen et al., 2020). However, iterative least-squares migration (LSM)
techniques, e.g., least-squares reverse time migration (LS-RTM) and least-squares one-
way wave-equation migration (LS-WEM), are often expensive to employ in RWI because
LSM requires iterations to be converged optimally. Although the number of iterations
can be cut down by preconditioning the gradient direction with the reciprocal of the
Hessian information, the Hessian computation turns prohibitively costly when dealing
with large-scale seismic problems (Lines and Treitel, 1984). For cost reduction, Beydoun
and Mendes (1989), Chavent and Plessix (1999), Shin et al. (2001), and Plessix and Mulder
(2004) approximated the diagonal coefficients of the Hessian matrix rather than full coef-
ficients, and others have tried to approximate the complete coefficients at an affordable
cost in either data or image domain. Pratt et al. (1998) calculated the Gauss-Newton
approximation of the Hessian matrix (also known as the linear or approximate Hessian).
Hu et al. (2001), Guitton (2004), and Yu et al. (2006) approximated the inverse Hessian by
constructing deconvolution filters in the image domain. For a target-oriented imaging
problem, explicit computation of a sparse Hessian matrix via cross-correlation of the
source and receiver Green’s functions is feasible (Valenciano et al., 2006). Choi et al. (2008)
replaced the Hessian with a scaled pseudo-Hessian. Point spread functions have also
been used to reduce the relevant cost via computing local Hessian matrices in the image
domain (Lecomte, 2008; Fletcher et al., 2016). The truncated-Newton method is also used
to implicitly approximate the application of the inverse Hessian on the gradient vector
(Metivier et al., 2013; Assis and Schleicher, 2021; Assis et al., 2024). Recently, researchers
have also proposed explicit inverse formulas for the one/two-way modeling operators
in the high-frequency limit, mostly compensating for geometrical spreading. In this
context, Zhang et al. (2007) and Kiyashchenko et al. (2007) proposed true-amplitude
wave-equation migration schemes with one-way forward modeling operators. ten Kroode
(2012) derived an explicit inversion expression for the Kirchhoff modeling operator, while
ten Kroode (2014) and Hou and Symes (2015) derived similar inversion expressions for
the Born modeling operator, both in the subsurface-extended domain. In a similar vein
as Hou and Symes (2015), Chauris and Cocher (2017) approximated a pseudo-inverse
operator for the subsurface-extended Born modeling operator; Chauris and Cocher (2018)
presented a comparison of the two methods. A pseudo-inverse operator can also be used
as a preconditioner in a gradient-descent inversion scheme to speed up convergence,
as demonstrated by Hou and Symes (2016) and Qin and Lambaré (2016). In this paper,
to build the approximate Hessian information with affordable computational cost, we
use the efficient preconditioned least-squares wave-equation migration (PLS-WEM) algo-
rithm recently introduced by Abolhassani and Verschuur (2024). PLS-WEM constructs
the approximate Hessian operator recursively depth by depth, thanks to PWMod. It de-
composes and reduces the massive approximate Hessian operator for the entire domain
into sub-operators relevant to each depth level. PLS-WEM can recover reflectors to be fit
for our purpose in one to five iterations at best.

It is well understood that two-way traveltime varies with both reflector’s depth and
background velocity, a fundamental problem known as ambiguity in the depth-velocity
determination problems. From a traveltime perspective, RWI also aims to resolve this
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ambiguity and estimate the subsurface model by measuring how much of the overall
traveltime error in the reflection data is due to errors in depth versus errors in background
velocity. As a waveform inversion technique, RWI achieves this relying on full-wave
consistency between short-offset modeled and observed data (Verschuur et al., 2016).
However, since the alternating approach of conventional RWI ignores the fact that a
change in the velocity model immediately changes the reflectivity model—by fixing the
reflectors’ positions in depth while updating the background velocity—the full-wave
consistency condition in the short-offset data does not perfectly hold. This issue, referred
to hereafter as the imprint of inconsistent reflectivity and velocity models, is also known
as reflectivity-velocity coupling, phase ambiguity in the short-offset data, and reflectivity-
velocity conflict (Baina and Valensi, 2018; Audebert and Cocher, 2020; Valensi and Baina,
2021; Provenzano et al., 2023). To address the imprint of inconsistent reflectivity and
velocity in RWI, several approaches have been suggested so far. Many have minimized
the imprint of inconsistent reflectivity and velocity by using migration with short-offset
data or even near-zero offset data (e.g., Zhou et al., 2015; Guo and Alkhalifah, 2017; Wang
et al., 2018; Li et al., 2019; Yao et al., 2020). Another solution is pseudo-time domain
RWI, where reflectors’ positions are calculated in vertical time and are less dependent
on background velocity (e.g., Qu et al., 2020; Provenzano et al., 2023). Recently, Chen
et al. (2020) used a rolling-offset strategy to deal with the imprint, Valensi and Baina
(2021) proposed to ensure full-wave consistency in the zero-offset data by accounting
for the reflectivity-velocity consistency in the RWI tomographic gradient, and Liang et al.
(2022) proposed replacing the conventional image in RWI with an image extracted from
stacked, flattened common image gathers. This paper, first investigates how effectively
the full-wave consistency condition holds for the short-offset reflcetion data within the
context of ORWI, and then suggests to mute the short-offset inconsistent waveforms in
the residual data domain to minimize the imprint of inconsistent reflectivity and velocity
on the ORWI tomographic gradient. Relying on the mitigation of imprints of inconsistent
reflectivity and velocity models, this paper also proposes extending the migration offset
beyond near-zero or short offsets to avoid limitations in the reflectors’ illumination and
amplitudes. The extended migration offset is defined as the offset at which the misfit
function no longer significantly decreases. This offset is referred to as MEMO, standing
for maximum effective migration offset.

Cycle skipping (Virieux and Operto, 2009) in long-offset data due to a poor initial
background velocity model is perceived as another hurdle in RWI. Building a kinematic-
accurate initial background velocity model, multi-scaling (Bunks et al., 1995; Pratt et al.,
1998), and adopting alternative misfit functions rather than traditional waveform-based
misfit functions have been the most common solutions. Notable among the alternative
misfit functions are traveltime-based misfit functions (Luo and Schuster, 1991; Hoop and
Der Hilst, 2005; van Leeuwen and Mulder, 2010; Ma and Hale, 2013; Luo et al., 2016),
unwrapped-phase misfit functions (Choi and Alkhalifah, 2013; Choi and Alkhalifah, 2014;
Choi et al., 2015), envelope-based misfit functions (Bozdağ et al., 2011; Wu et al., 2014; Chi
et al., 2014; Chen et al., 2018), optimal-transport-based misfit functions (Métivier et al.,
2016; Yang and Engquist, 2018), and the normalized integration method (Chauris et al.,
2012; Donno et al., 2013). In this paper, we first illustrate the detrimental contribution of
cycle-skipped long-offset data on the tomographic gradient of ORWI. We then introduce,
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inspired by van Leeuwen and Mulder (2010), a time-domain two-step data-selection
algorithm excluding the contribution of the cycle-skipped long-offset residual data in
each iteration of the tomography loop to obtain a high-fidelity tomographic update. The
algorithm relies on global and local cross-correlations between the observed and modeled
reflection data in the time domain.

This paper is ordered as follows. After the introduction, we first review the theoretical
features of ORWI and reintroduce the PLS-WEM technology to replace the migration core
of ORWI. Next, we examine how far the full-wave consistency condition is supported in
the context of ORWI. Following this, we explain how we deal with the conflict of reflectivity
and velocity in reflection waveform inversion. We then introduce the concept of MEMO
and its significance. We also present a workflow to extract the uncycle-skipped part of the
long-offset reflection data in each tomography loop. We evaluate our proposal through
three numerical examples: two dipping layers placed in a linear background velocity
model, the flat section of the Marmousi model, and the faulted section of the Marmousi
model. We end with a discussion and conclusions.

3.2. STANDARD ONE-WAY REFLECTION WAVEFORM INVERSION

(ORWI)
ORWI is an acoustic reflection waveform tomography tool working based on wavefield
decomposition into upgoing and downgoing waves. Wavefield decomposition in ORWI
relies on a one-way wavefield extrapolation scheme known as PWMod (Berkhout, 2014a),
based on first-order scattering and also informed of transmission effects. PWMod per-
ceives wave propagation as a one-way extrapolation from multiple points at zℓ to a point
at zℓ+1, where zℓ and zℓ+1 denotes two subsequent virtual depth levels, respectively. The
absolute value of the vertical distance between zℓ and zℓ+1 is called the extrapolation
step and is considered small enough to be assumed homogeneous vertically. The upward
and downward data extrapolations are performed using extrapolation kernels, which are
the analytical solutions to the acoustic wave equation in a homogeneous medium in the
frequency-wavenumber domain. PWMod defines the 2D forward extrapolated wavefield
from all lateral positions located at zℓ towards a lateral position located at zℓ+1 in the +z
direction as a frequency-space convolution integral along the x-axis (Rayleigh integral II
in 2D)

p+(x j , zℓ+1,ω f ) =
∫ +∞

−∞
p+ (

x, zℓ,ω f
)

w+
zℓ+1;zℓ

(
x j ; x j −x,ω f

)
d x, (3.1)

in which w+
zℓ+1;zℓ denotes the monochromatic downward wavefield extrapolation kernel

from the virtual depth level zℓ to one lateral position at the virtual depth level zℓ+1, the
index j means the lateral position at zℓ+1, x j is the convolution lag, ω f is a given angular
frequency, p+(x, zℓ,ω f ) is the monochromatic downgoing wavefield located at zℓ, and
p+(x j , zℓ+1,ω f ) is the monochromatic downgoing wavefield at the lateral position x j

located at zℓ+1. The wavefield extrapolation kernel in equation 3.1 reads

w+
zℓ+1;zℓ

(
x j ; xo ,ω f

)= 1

2π

∫ +∞

−∞
e
−i

√(ω f

v j

)2−k2
x |δz|

e−i kx xo dkx , (3.2)
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in which the integral represents the inverse Fourier transform of the downward extrapola-
tion kernel—downward phase-shift extrapolation kernel—in the frequency-wavenumber
domain in the x-direction, the index o means the lateral position at zℓ, x j ; xo means from
xo to x j , δz represents the extrapolation step and equals the vertical distance between zℓ
and zℓ+1, v j represents the velocity value at x j between the virtual depth levels zℓ and
zℓ+1, and kx is the horizontal wavenumber.

The downward extrapolation kernel in its matrix form is expressed as

W+
zℓ+1;zℓ =



w+
zℓ+1;zℓ

(
x1; x,ω f

)
. . .

w+
zℓ+1;zℓ

(
x j ; x,ω f

)
. . .

w+
zℓ+1;zℓ

(
xnx ; x,ω f

)


,

(3.3)
where nx shows the total number of model parameters located on each virtual depth
level, W+

zℓ+1;zℓ is a square matrix of dimension nx ×nx , and w+
zℓ+1;zℓ

(
x j ; x,ω f

)
represents

a row vector. For a virtual layer without lateral velocity variations, W+
zℓ+1;zℓ becomes a

Toeplitz matrix (Berkhout, 1982, page 164), and for a laterally inhomogeneous virtual layer,
defined by locally averaged velocities, W+

zℓ+1;zℓ becomes a space-variant convolutional
matrix (Thorbecke et al., 2004). Figure 3.1a schematically displays one row of W+

zℓ+1;zℓ . If
more clarification is required, the extrapolation kernel is further described in Berkhout
(2014a).

(a)

,

(b)

Figure 3.1: (a) Schematic representation of the jth row of the downward extrapolation matrix W+
zℓ+1 ;zℓ

for a
virtual layer bounded between two virtual depth levels. (b) Schematic representation of how the incident
wavefields interact (reflection and transmission) at a particular virtual depth level in PWMod, where r∪

represents an upward reflection scalar, t+ represents a downward transmission scalar, and t− represents an
upward transmission scalar.

PWMod reads the following equations—in the vector-matrix form—to model the
angle-independent primary reflection data (traditional surface seismic data excluding
direct waves, refractions, and diving waves) including reflection and transmission effects
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(Figure 3.1b)

p−
mod

(
z0,ω f

)= 1∑
m=N

[[m−1∏
n=1

W−
zn−1;zn

T− (zn)
]

W−
zm−1;zm

](
r∪ (zm)◦p+

mod

(
zm ,ω f

))
, (3.4)

p+
mod

(
zm ,ω f

)= [[ 1∏
n=m−1

W+
zn+1;zn

T+ (zn)
]

W+
z1;z0

]
s+

(
z0,ω f

)
, (3.5)

in which p−
mod

(
z0,ω f

)
is the monochromatic upgoing wavefield modeled at z0, p+

mod

(
zm ,ω f

)
is the monochromatic downgoing wavefield modeled at zm . The matrix-matrix mul-
tiplication operations enclosed by the outer square brackets in equation 3.4 contain
the upward extrapolation operator (W−) along with the upward transmission diagonal-
matrix-operator (T− (zn) = I−diag(r∪ (zn)), encapsulating all the operators required for
a wavefield to reach from zm to z0. The matrix-matrix multiplication operations en-
closed by the outer square brackets in equation 3.5 contain the downward extrapola-
tion operator (W+) along with the downward transmission diagonal-matrix-operator
(T+ (zn) = I+diag(r∪ (zn)), encapsulating all the operators required for a wavefield to
reach from z0 to zm . Here, r∪ (zm) represents the angle-independent upward reflectivity
vector-operator at zm , s+

(
z0,ω f

)
shows the monochromatic downgoing physical source

at the Earth’s surface, N is the total number of virtual depth levels, and the symbol ◦
means element-wise product. Note that, diag(.) represents a mathematical function that
receives a vector and gives a diagonal matrix as its output, and I means the identity matrix.

ORWI inverts for reflectivity and background velocity (two different classes of pa-
rameters) by minimizing the errors in primary reflection waveforms for each class of
parameters alternately. Standard ORWI minimizes the following misfit function iteratively

C (r∪,v) = 1

2

N f∑
f =1

Ns∑
s=1

∥p−
obs,s

(
z0,ω f

)−p−
mod,s

(
z0,ω f ;r∪,v

)∥2
2, (3.6)

in which p−
obs,s

(
z0,ω f

)
represents the observed monochromatic multiple-free reflection

waveforms for shot s recorded at the receiver locations, p−
mod,s

(
z0,ω f

)
represents the

modeled monochromatic primary reflection waveforms for shot s recorded at the receiver
locations, the vector difference p−

obs,s

(
z0,ω f

)−p−
mod,s

(
z0,ω f

)
is called the monochro-

matic residual data vector for shot s and represented later by δd−
s

(
ω f

)
, v represents the

background velocity vector, r∪ represents the angle-independent upward reflectivity
vector, Ns is the total number of shots, and N f is the total number of angular frequency
components.

Taking the partial derivatives of the misfit function with respect to r∪ and v gives the
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total descent direction as

g =



gr (z0)
...

gr (zN )

gv (z0)
...

gv (zN )


=−

N f∑
f =1

Ns∑
s=1

ℜ



[
gs (ω f )︷ ︸︸ ︷

Js
(
ω f

)︷ ︸︸ ︷
∂p−

mod,s

(
z0,ω f

)
∂r∪ (z0)

· · ·
∂p−

mod,s

(
z0,ω f

)
∂r∪ (zN )

∂p−
mod,s

(
z0,ω f

)
∂v (z0)

· · ·
∂p−

mod,s

(
z0,ω f

)
∂v (zN )

]†
δd−

s

(
ω f

)


,

(3.7)
in which g denotes the total two-parameter gradient vector, gr (zm) shows the reflectivity
gradient at a given depth level for migration, gv (zm) shows the background velocity
gradient between zm and zm+1 for tomography (for simplicity, shown in notation at zm),
gs (ω f ) is the total gradient vector for one shot and one frequency, † means the adjoint
operator, Js

(
ω f

)
is the total Jacobian matrix for one shot and one frequency, and each

column of Js
(
ω f

)
denotes the partial derivative of the upgoing modeled wavefield at the

receiver locations with respect to the model parameters of one class, either reflectivity or
background velocity, located at a given depth level.

The two-parameter nature of ORWI—as a minimization problem—is turned into a
single-parameter by keeping a class of parameters constant while updating the other
class. As a result, equation 3.7 is broken into two parts

gr =−
N f∑
f =1

Ns∑
s=1

ℜ
[∂p−

mod,s

(
z0,ω f

)
∂r∪ (z0)

· · ·
∂p−

mod,s

(
z0,ω f

)
∂r∪ (zN )

]†
δd−

s

(
ω f

) , (3.8)

gv =−
N f∑
f =1

Ns∑
s=1

ℜ
[∂p−

mod,s

(
z0,ω f

)
∂v (z0)

· · ·
∂p−

mod,s

(
z0,ω f

)
∂v (zN )

]†
δd−

s

(
ω f

) , (3.9)

where gr shows the total reflectivity gradient for migration and gv shows the total velocity
gradient for tomography. Indeed, with such a gradient separation, ORWI turns into an
iterative cycle alternating between LS-WEM and least-squares one-way wave-equation
reflection tomography (LS-WET) until the data residual vanishes (Algorithm 3.1).

Expanding one component of equation 3.8, which denotes the reflectivity gradient for
a particular depth level, frequency component, and shot, yields (Figure 3.2)

gr
s (zm ,ω f ) =−ℜ


(
p+

mod,s

(
zm ,ω f

))∗ ◦
back-propagated wavefield︷ ︸︸ ︷(

L−†

z0;zm
δd−

s

(
ω f

))  , (3.10)

in which L−
z0;zm

is defined as

L−
z0;zm

=
[m−1∏

n=1
W−

zn−1;zn
T− (zn)

]
W−

zm−1;zm
. (3.11)
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(a)

Figure 3.2: Schematic representation of one element of the reflectivity gradient for one shot, equation 3.10, in a
medium including five virtual depth levels. Green signifies forward wavefields, while yellow denotes

back-propagated wavefields.
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(a) Receiver-side background velocity gradient
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(b) Source-side background velocity gradient

Figure 3.3: Schematic representation of one element of the background velocity gradient for one shot, equation
3.12, in a medium including five virtual depth levels. (a) Receiver-side background velocity gradient for one

shot: the term gv A
s (zm ,ω f ) from equation 3.12. (b) Source-side background velocity gradient for one shot: the

term gvB
s (zm ,ω f ) from equation 3.12. Green signifies forward wavefields, while yellow denotes

back-propagated wavefields.
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Expanding one component of equation 3.9, which denotes the velocity gradient for a
particular depth level, frequency component, and shot, yields (Figure 3.3)

gv
s (zm ,ω f ) = gv A

s (zm ,ω f )+gvB
s (zm ,ω f ) =−ℜ

G−∗
zm ;zm+1

q−∗
mod,s

(
zm+1,ω f

)◦
back-propagated wavefield︷ ︸︸ ︷((

L−
z0;zm

T− (zm)
)†
δd−

s

(
ω f

))


−ℜ

G+∗
zm+1;zm

q+∗
mod,s

(
zm ,ω f

)◦
back-propagated wavefield︷ ︸︸ ︷([

L−
z0;zm+1

R∪ (zm+1)+
[ m+2∑

m′=N

L−
z0;zm′ R∪ (zm′ )L+

zm′ ;zm+1

]
T+ (zm+1)

]†

δd−
s

(
ω f

))
 ,

(3.12)
and given the assumption that W+

zm+1;zm
approximates W−

zm ;zm+1
, G is defined as

G+
zm+1;zm

= G−
zm ;zm+1

=



∂w1,⋆
∂v1

∂w2,⋆
∂v2

...

∂wnx ,⋆
∂vnx


, (3.13)

in which w j ,⋆ means the j th row of W−
zm ;zm+1

, and

q−
mod,s

(
zm+1,ω f

)= T− (zm+1)p−
mod,s

(
zm+1,ω f

)+R∪ (zm+1)p+
mod,s

(
zm+1,ω f

)
,

q+
mod,s

(
zm ,ω f

)= T+ (zm)p+
mod,s

(
zm ,ω f

)
,

(3.14)

in which R∪ (zm+1) = diag
(
r∪ (zm+1)

)
. It is important to recall that while equation 3.12

represents the background velocity gradient at zm in notation, it updates the background
velocity over the depth interval between zm and zm+1 in practice.

To optimize the update direction, standard ORWI preconditions both gradient vectors
as follows (equivalent to equation 27 in Plessix and Mulder (2004))

δr∪(zm) =ℜ



preconditioner (a column vector)︷ ︸︸ ︷
N f∑
f =1

Ns∑
s=1

(
p+

mod,s

(
zm ,ω f

)◦p+∗
mod,s

(
zm ,ω f

))◦( Ng∑
g=1

[
L−

z0;zm

]
g,⋆ ◦

[
L−∗

z0;zm

]
g,⋆

)T



−1

◦gr (zm),

(3.15)
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and

δv(zm) =ℜ



preconditioner (a column vector)︷ ︸︸ ︷
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Ns∑
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(3.16)
with

Θ= L−
z0;zm

T− (zm)G−
zm ;zm+1

,

Ψ=
[

L−
z0;zm+1

R∪ (zm+1)+
[ m+2∑

m′=N

L−
z0;zm′ R∪ (zm′ )L+

zm′ ;zm+1

]
T+ (zm+1)

]
G+

zm+1;zm
,

(3.17)

where δr∪(zm) represents the reflectivity update/perturbation vector at zm , δv(zm) is the
background velocity update/perturbation vector between zm and zm+1.

Finally, standard ORWI updates the total angle-independent upward reflectivity and
background velocity vectors as

r∪k+1 = r∪k +αr
kδr∪k , (3.18)

vk+1 = vk +αv
kδvk , (3.19)

in which k means the current cycle number, δr∪ is the total reflectivity perturbation vector,
δv is the total velocity perturbation vector, and αv and αr represent the minimization
step lengths for estimating reflectivity and background velocity, respectively. For αr

k , we
use

αr
k = δd†

(
r∪k +δr∪k ,vk

)
δd

(
r∪k ,vk

)
δd†

(
r∪k +δr∪k ,vk

)
δd

(
r∪k +δr∪k ,vk

) , (3.20)

and for αv
k , we use

αv
k = δd†

(
r∪k+1,vk +δvk

)
δd

(
r∪k+1,vk

)
δd†

(
r∪k+1,vk +δvk

)
δd

(
r∪k+1,vk +δvk

) , (3.21)

where δd is the superposition of all shots and the frequency components within the range.
For more information on the gradient derivation, see Sun et al. (2019).

3.3. ENHANCED MIGRATION ALGORITHM IN ORWI
In this section, we introduce the first of our four proposed improvements to the ORWI
methodology, with which we aim to enhance the migration algorithm embedded within
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ORWI. LSM techniques have proven to be computationally expensive as their convergence
requires multiple iterations. Gradient preconditioning helps reduce the number of LSM
iterations. The preconditioned least-squares one-way wave-equation migration (PLS-
WEM) introduced by Abolhassani and Verschuur (2024) is a depth least-squares migration
technology that recovers high-resolution and accurate seismic images by reconstructing
the approximate Hessian information recursively in depth; PLS-WEM accelerates the
convergence of the migration process after employing the reciprocal of the approximate
Hessian information for gradient preconditioning. PLS-WEM is relatively fast when com-
pared to similar technologies because it recursively calculates the approximate Hessian
operator depth by depth rather than calculating one huge approximate Hessian for the
entire medium. This reduces the huge approximate Hessian operator for the entire do-
main into smaller, depth-dependent operators. Furthermore, as PLS-WEM uses PWMod
for forward modeling, this facilitates to switch from LS-WEM to PLS-WEM in the standard
ORWI cycle. This section provides an overview of the PLS-WEM theory.

To incorporate gradient preconditioning into equation 3.8, PLS-WEM minimizes the
misfit function (Shin et al., 2001; Jang et al., 2009; Oh and Min, 2013)

C
(
δr∪

)= 1

2

N f∑
f =1

Ns∑
s=1

∥∥δd−
s

(
ω f

)− Jr
s

(
ω f

)
δr∪

(
ω f

)∥∥2
2 , (3.22)

where Jr
s

(
ω f

) = ∂p−
mod,s

(
z0,ω f

)
∂r∪ and is called the total monochromatic reflectivity Jaco-

bian for shot s.
The stationary point of equation 3.22 with respect to δr∪

(
ω f

)
is given by

δr∪ =−
N f∑
f =1

(
R

{
Ns∑

s=1
Hr,a

s (ω f )

}−1

R

{
Ns∑

s=1
gr

s (ω f )

})
, (3.23)

with gr
s (ω f ) and Hr,a

s (ω f ) defined as

gr
s (ω f ) = Jr

s
†(ω f )δd−

s

(
ω f

)
, (3.24)

Hr,a
s (ω f ) = Jr

s
†(ω f )Jr

s (ω f ), (3.25)

in which Jr
s (ω f ) denotes the monochromatic reflectivity Jacobian for shot s, gr

s (ω f ) rep-
resents the monochromatic reflectivity gradient for shot s (mathematically derived in
equation 3.10 for each virtual depth level), and Hr,a

s (ω f ) refers to the monochromatic
reflectivity approximate Hessian for shot s compensating for geometrical spreading, spa-
tial correlations of neighboring model parameters on the same virtual depth levels (Pratt
et al., 1998), and also conducting source deconvolution as it acts on the gradient vector
frequency by frequency.

Thanks to PWMod, each column of the total monochromatic reflectivity Jacobian for
shot s, introduced in equation 3.24, satisfies

Jr
s (zm ,ω f ) =

∂p−
mod,s (z0,ω f )

∂r∪(zm )
. (3.26)
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Abolhassani and Verschuur (2022) showed that Jr
s (zm ,ω f ) can be expressed as follows

Jr
s

(
zm ,ω f

)= [ 1∏
n=m−1
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]
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0
...

0
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. . .



0

0
...

p+
nx mod,s

(
zm ,ω f
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


,

(3.27)

in which nx denotes the number of gridpoints at zm , p+
j mod,s

(
zm ,ω f

)
is the monochro-

matic downgoing modeled wavefield at the j th gridpoint of zm , and Jr
s (zm ,ω f ) is a matrix

of dimension nx ×nx . Plugging equation 3.27 into equation 3.25 yields Hr,a
s (zm ,ω f ).

Adopting equation 3.23 for each virtual depth level, the reflectivity update vector δr∪(zm)
is now constructed. Clearly, equation 3.23 requires a direct inversion of the approximate
Hessian matrix for each frequency component. Finally, equation 3.18 is used to update
the total angle-independent upward reflectivity vector.

PLS-WEM is computationally more feasible compared to alternative technologies
that approximate Hessian coefficients at once, as it operates in a depth-marching regime.
PLS-WEM achieves this by decomposing and reducing the entire approximate Hessian
operator into multiple smaller sub-operators. Each of these sub-operators is relevant
to a single virtual depth level and captures only the correlation of the partial derivative
wavefields at that depth level. If assembled together for all virtual depth levels, these
operators form a block-diagonal presentation of the approximate Hessian operator for the
entire medium. With PLS-WEM, each time Hr,a

s (zm ,ω f ) and its reciprocal are calculated,
indeed, only 1/N of the total number of model parameters is involved (Abolhassani and
Verschuur, 2024).

To evaluate the performance of ORWI based on PLS-WEM compared to ORWI based
on LS-WEM (standard ORWI), for a flat-layered medium shown in Figure 3.4, we compare
the background velocity model update estimated by standard ORWI to that estimated
by ORWI equipped with PLS-WEM, both after one cycle. To avoid amplitude fitting in
tomography, we use relative amplitude scaling proposed by Son et al. (2013). With a
zero initial reflectivity model, a homogeneous acoustic velocity model of 2000 m/s, a
Ricker wavelet with a peak frequency of 10 Hz, surface acquisition, the reflection dataset
within the range of 0-15 Hz, a maximum offset of 500 m for migration, and a maximum
offset of 1000 m for tomography (no cycle-skipping), we run the comparison. After 1
cycle of ORWI, including 1x LS migration and 1x LS tomography, the resultant images and
tomograms are shown in Figure 3.5. As expected, ORWI based on PLS-WEM delivers a
superior tomographic update compared to ORWI based on LS-WEM. The superposition of
tomographic wavepaths obtained based on PLS-WEM is stronger and more geometrically
consistent with the true layers. This enhanced performance is attributed to the improved
amplitude preservation and resolution power of PLS-WEM, as shown in Figure 3.5d.
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Figure 3.4: Flat-layered medium. (a) True background velocity model. (b) True reflectivity model.

3.4. OPTIMIZING THE TOMOGRAPHIC GRADIENT IN ORWI
In this section, we first examine how well the full-wave consistency condition is met
in ORWI. Next, we suggest three strategies for offset selection (in both migration and
tomography loops) to optimize the tomographic updates in ORWI.

3.4.1. TOMOGRAPHIC UPDATE ANALYSIS

RWI solution primarily relies on a full-wave consistency condition between the anchor
portions of the modeled and observed reflection data (Verschuur et al., 2016). To meet this
condition, the migration loop must predict the reflectors’ positions in depth so that the
anchor portions of the observed and modeled waveforms (i.e., short-offset waveforms)
remain consistent in terms of amplitude and traveltime, resulting in zero energy for
tomography. This implies that, for example, for a simple model with a flat reflector and
a homogeneous overburden, the velocity update direction remains unique whether the
homogeneous initial velocity is greater or less than the true velocity: it either increases
or decreases the initial velocity. As soon as the full-wave consistency condition does not
hold, confusion arises in the velocity update direction, where the long and short-offset
data act oppositely, which can result in getting trapped in a local minimum situation.
Figure 3.6 shows an example of reflection data from a flat reflector medium when the
full-wave consistency condition fails in the short-offset data (this data is derived after one
cycle of reflection waveform inversion).

To verify whether or not the full-wave consistency in the short-offset data is well
supported by ORWI, we here display the tomographic update of ORWI for a single-reflector
medium after one cycle. The medium consists of a single reflector and a homogeneous
overburden with an acoustic velocity of 3000 m/s (Figure 3.7a). For the initial background
velocity model, a homogeneous model with an acoustic velocity of 2700 m/s is used
(Figure 3.7b). For such a medium, the tomographic updates following one cycle of ORWI,
including 1x LS migration and 1x LS tomography, in four different data scenarios are
displayed in Figure 3.8. The data scenarios are listed in Table 3.1. Note that in the table,
offsets with absolute values smaller than 1000 m are counted as uncycle-skipped.

Scenario 1 evaluates the ORWI background velocity update when both data for imag-
ing and tomography are cycle-skipped. As evident in Figure 3.8a, associated with Scenario
1, the background velocity update appears to be completely inefficient. While a positive
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Figure 3.7: Single-reflector medium. (a) True background velocity model. (b) Initial background velocity model.

homogeneous velocity update everywhere above the reflector position is expected, an
inhomogeneous mixture of positive and negative velocity updates is retrieved. To have a
better understanding, the middle-shot subset of the tomographic update shown in Figure
3.8a is separately represented in Figure 3.9. According to Figure 3.9, the tomographic
update can be described as the superposition of three batches of tomographic wavepaths
updating against each other: uncycle-skipped mid-to-long-offset tomographic wavepaths,
denoted by the gray arrow, increasing the background velocity above the reflector (correct
update sign), cycle-skipped long-offset tomographic wavepaths, denoted by the blue
arrow, decreasing the background velocity above the reflector (incorrect update sign),
and short-offset tomographic wavepaths, denoted by the red arrow, decreasing the back-
ground velocity above the reflector (incorrect update sign). This complication in resolving
the tomographic gradient indicates that the tomographic gradient of ORWI is degraded
not only by cycle skipping in long-offset data due to longer propagation in the incorrect
velocity but also by full-wave inconsistency in the short-offset data—the imprint of in-
consistent reflectivity and velocity models. Note that narrowing the migration offset to
short offsets, given the depth of investigation, and increasing the number of LS migration
iterations can attenuate the imprint (Provenzano et al., 2023); this, however, comes at
the price of increased computational cost. Moreover, there might be cases where the
short-offset data is either missing or unusable due to technical reasons.

Table 3.1: Four different data scenarios for retrieving tomographic updates via ORWI.

Data for imaging Data for tomography Imprint of inconsistent
reflectivity and velocity

Scenario 1 cycle-skipped cycle-skipped present

Scenario 2 cycle-skipped uncycle-skipped present

Scenario 3 uncycle-skipped uncycle-skipped present

Scenario 4 uncycle-skipped uncycle-skipped muted

Scenario 2 evaluates the impact of excluding any contribution from the cycle-skipped
long-offset data into the tomographic gradient to improve the tomographic gradient
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Figure 3.9: The middle-shot subset of the tomographic update shown in Figure 3.8a. The arrows represent
different tomographic wavepath batches, as explained in the main body of the paper.

of ORWI. The background velocity update associated with Scenario 2 is represented in
Figure 3.8b. Clearly, following the recovery of the canceled-out velocity updates after
the exclusion of the cycle-skipped long-offset data, a fairly homogeneous background
velocity update, compared to Scenario 1, is achieved. The improved update should not,
however, obscure the fact that the full-wave inconsistency in the short-offset data still
degrades the update and must be resolved.

Scenario 3 examines the impact of excluding any contribution from the cycle-skipped
long-offset data into the imaging and tomographic gradients to improve the tomographic
gradient of ORWI. The background velocity update associated with Scenario 3 is repre-
sented in Figure 3.8c. Compared to the previous scenario, the update is more homoge-
neous, indicating better image focusing due to cycle-skipping avoidance. Nevertheless,
this does not guarantee an optimal tomographic update.

Scenario 4 examines the impact of muting erroneous short-offset tomographic wavepaths
(erroneous due to inconsistent reflectivity and velocity) and excluding contributions from
cycle-skipped long-offset data on the imaging and tomographic gradients, aiming to
improve the tomographic gradient of ORWI. Figure 3.8d shows the associated background
velocity update. As illustrated, Scenario 4 clearly enhances both the magnitude and
homogeneity of the background velocity update.

3.4.2. TOMOGRAPHY OFFSET: SHORT AND MID-TO-LONG OFFSETS
Based on the analysis of Scenarios 1 to 4, to minimize the imprint of inconsistent reflec-
ticity and velocity models on the tomographic gradient of ORWI, we propose muting the
relevant erroneous tomographic wavepaths in the associated residual data gather, de-
pending on the depth. As previously confirmed, these erroneous tomographic wavepaths
are typically established at short offsets, where the full-wave consistency condition is
not met. Figure 3.11a illustrates the conflict between reflectivity and velocity on the
middle-shot (surface acquisition) tomographic gradient of ORWI after one cycle for a
four-layer medium (Figure 3.10a), with the initial background velocity model being a
homogeneous model of 3500 m/s (Figure 3.10b). Figure 3.11b shows the muted area in
the middle-shot residual data gather, depending on the depth. As shown, the muted area
increases “linearly” with depth and has a maximum width of 500 m.
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Figure 3.10: Four-layer medium. (a) True background velocity model. (b) 1D vertical background velocity
profile, where BG stands for background.

3.4.3. MIGRATION OFFSET

In the introduction, it was acknowledged that one approach to mitigate the imprint
of inconsistent reflectivity and velocity in RWI is to use short-offset data for migration.
Figure 3.12a shows the stacked image estimated by the migration mode of standard ORWI
for the single-reflector medium (Figure 3.7) when the data for imaging is cycle-skipped
(all migration offsets are included). As can be observed, due to the velocity error, not
only do the reflector amplitudes highlighted in blue on the figure fail to dampen as one
moves away from the predicted reflector position, but also a phase effect is evident in
the recovered shape of the reflector. Such a partially out-of-focus image will definitely
affect modeled waveforms in the tomography loop, degrading the full-wave consistency
between the short-offset modeled and observed data for tomography. To lessen such
error leakage from the migration loop to the tomography loop, a focused image with
correct peak is required. The focused image may be obtained by either improving the
background velocity model or muting the problematic isochrones in the imaging gradient.
Since a better velocity model is what ORWI aims to achieve, the only way ahead would
be to mute the problematic isochrones. Clearly, the problematic isochrones are the ones
that are so affected by the velocity errors that they cannot stay in phase with the others,
and this is expected to occur at long offsets where the data could be cycle-skipped. As
a result, short-offset or even near-zero offset migration has become a widely accepted
and effective approach in the RWI community. Figure 3.12b displays how muting the
isochrones mapped with offsets of absolute values greater than 250 m results in a focused
stacked image compared to the original stacked image shown in Figure 3.12a.

Stacked images from short- or near-zero offset data often suffer from a low signal-to-
noise ratio (SNR) and poor illumination. While this can be resolved through LS iterations,
it increases the computational cost. Extending the migration offset is another way to
address the issue, although it compromises reflector focusing, as discussed (Figure 3.12).
Despite this trade-off, extending the migration offset may be justified, as we already
mute short-offset residual waveforms for tomography (to reduce the adverse impact of
inconsistent reflectivity and velocity), where reflector unfocusing would cause the most
significant damage. The most significant damage occurs at short offsets because there, the
reflectivity inaccuracy dominates the velocity inaccuracy due to the shorter propagation
time. Therefore, we suggest extending the migration offset. We extend the migration
offset to the point where the misfit function no longer significantly decreases. At this
offset, the amplitude fit does not get any better as the image is mapped by more and
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Figure 3.11: (a) The adverse imprint of inconsistent reflectivity and velocity is evident on the middle-shot
tomographic gradient of ORWI after one cycle; the dashed trapezoid represents the updates with incorrect signs
for each layer. (b) The gray and yellow areas in the middle-shot data gather corresponding to (a) indicate the

sections of the reflection data where full-wave consistency is not satisfied (short offsets), at depths of 0 and 800
meters, respectively. We propose muting the short-offset residual waveforms in the tomography loop based on
depth, with muting that increases linearly with depth, to minimize the corresponding erroneous tomographic

updates.
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more out-of-phase data due to velocity errors. We refer to this as the maximum effective
migration offset (MEMO). The MEMO may vary depending on the migration velocity,
acquisition geometry, and frequency content, and averagely sits somewhere between
the near-zero offsets and the maximum uncycle-skipped offset in the data. To set the
MEMO, we follow the pseudo-code presented in Algorithm 3.2 as a pre-processing/QC
step before running ORWI, which calculates the misfit function value associated with
different ranges of offsets (e.g., intervals of 250 m) up to the maximum offset available in
the acquisition. On the misfit-offset graph, we pick an offset right before the curve starts
to become nearly horizontal on a logarithmic scale (see the discussion on the amplitude
versus offset effect).

Algorithm 3.2: Migration offset analysis pseudo-code

1 for h ← 0 to max(offset) do
2 image← 1x LS migration with h
3 p−

mod (z0) ← forward modeling with image and background velocity
model

4 full-offset residual data← p−
obs (z0)−p−

mod (z0)
5 store the misfit function value associated with h

3.4.4. TOMOGRAPHY OFFSET: CYCLE-SKIPPED LONG OFFSETS

In every seismic waveform-fitting operation, cycle skipping occurs when the initial veloc-
ity model is not kinematically accurate enough in order to model the seismic waveforms
with less than half a cycle time shift with respect to the observed waveforms in each itera-
tion, leading to a local minimum situation in the corresponding minimization problem
(Virieux and Operto, 2009). Earlier, we elaborated on the damaging effect of the cycle-
skipped long-offset data on tomograms. This section presents a data-selection algorithm
to minimize such a damaging effect. While employing an L2-norm waveform-based
misfit function in ORWI, we develop an automated algorithm to recognize and exclude
the cycle-skipped long-offset reflection data in each tomography loop based on the same
idea suggested by van Leeuwen and Mulder (2010).

A given pair of modeled and observed seismic traces in the time domain is called
cycle-skipped if their corresponding maximum correlation lag is greater than a reference
lag, which is defined based on the dominant period of the observed trace. Based on
this, we base our time-domain data-selection algorithm on the cross-correlation of the
given traces within a sliding window (local cross-correlation), protected by a global cross-
correlation of the given traces beforehand (Algorithm 3.3). The global cross-correlation
serves as a kind of guard to keep the chain of the subsequent local cross-correlations
away from facing the irregularities in the modeled waveform before forming maturely.
Otherwise, the outputs of the local cross-correlations would not be accurate enough.
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Algorithm 3.3: Uncycle-skipped data extraction pseudo-code

// Dobs and Dmod are 3D matrices representing the observed and modeled
data (full-shot).

// nt× ng× ns is the size of Dobs.
// nt is the total number of time samples.
// ng and ns are the total number of receivers and the total number of

shots.
// ℓw and ℓr are the correlation-window length and reference lag.
// ωc is the current maximum frequency in D.
// ωm is the peak frequency of the seismic wavelet.
// winc is the current correlation window.

1 function CycleSkippingCheck(Dobs, Dmod, ng, ns, nt, ℓw, ℓr, ωc, ωm)
2 TIMETABLE ← a matrix of ones of size: ng × ns
3 for ishot ← 1 to ns do
4 ϕ← determine the anchor offset index in the current shot gather
5 ι← ϕ
6 κ← ϕ−1
7 for m ← [1, 2] do
8 flag ← true

9 while
(
m = 1 and flag = true and ι ≤ ng

)
or

(
m = 2 and flag = true and κ ≤ 1

)
do

10 dobs, nobs ← current observed trace and the associated first-break sample
11 dmod ← current modeled trace
12 if ωc > ωm then
13 dobs ← dobs[nobs : nt]
14 dmod ← dmod[nobs : nt]
15 else
16 dobs ← dobs[1 : nt]
17 dmod ← dmod[1 : nt]

18 calculate cross-correlation between dobs and dmod
19 if max correlation lag < ℓr then
20 win ← [1 : ℓw : nt]
21 b ← length(win)
22 for τ← 1 to b do
23 winc ← [1 : win(τ+1)]
24 calculate cross-correlation between dobs and dmod in winc
25 if max correlation lag < ℓr then
26 if τ = b then
27 tmp ← nt
28 else
29 tmp ← nobs+ winc(end)

30 if m = 1 then
31 TIMETABLE[ι, i shot ] ← tmp
32 else
33 TIMETABLE[κ, i shot ] ← tmp

34 else
35 flag ← false
36 break

37 else
38 flag ← false

39 if m = 1 then
40 ι= ι+1
41 else
42 κ= κ−1

43 return TIMETABLE

In Algorithm 3.3, for each source location, we run two ‘for’ loops independently (indi-
cated by the counter “m”), one starting from the receiver index meeting the apex point of
the shot gather and increasing, and one starting from the same index but decreasing. In
each of these two loops, for each index, we perform global cross-correlation between the
modeled and measured traces from the first-break time sample to the last time sample, to
calculate the average time delay between the two signals. If the calculated time delay is
less than a pre-defined reference time delay (reference lag), then we divide the signals
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into windows and perform cross-correlation for each window, until a time delay greater
than the reference lag is found. If the time delay is greater than the reference lag, we
exit the ‘for’ loop and move on to the next source location. The time delays calculated
during each iteration are stored in a time table. As a result, for a given shot gather, the
reflection data aperture is not allowed to be extended from the apex point towards the
positive/negative offsets unless it satisfies the relevant global cross-correlation as well as
the local cross-correlations to the last window.

3.5. PROPOSED ORWI ALGORITHM
In an effort to resolve the limitations inherent to conventional reflection waveform in-
version, as counted earlier and listed in the following, we propose our one-way reflec-
tion waveform inversion (ORWI) algorithm based on all of the analyses and discussions
that we carried out so far. Our proposed ORWI algorithm incorporates the introduced
cost-friendly preconditioned least-squares wave-equation migration (PLS-WEM) algo-
rithm to retrieve high-resolution amplitude-preserved reflectors, thereby overcoming
the challenge of low-resolution seismic images with unpreserved amplitudes in con-
ventional reflection waveform inversion. Muting short-offset residual waveforms in the
tomography loop is an additional aspect of our proposal that minimizes any full-wave
inconsistency due to the fixed reflector’s depth positions while updating the background
velocity. Leveraging this data mute, we advocate extending the migration offset beyond
short offsets by calculating the maximum effective migration offset (MEMO) to address
limitations in reflection tomography linked to suboptimal SNR and illumination of reflec-
tors. Furthermore, we propose a data-selection algorithm to exclude the negative impact
of cycle-skipped long-offset data. The general features of our proposed ORWI algorithm
is summarized in Table 3.2.

Table 3.2: General features of our proposed ORWI.

Proposed ORWI

1 Each Cycle LS migration and LS tomography

2 Migration Technology PLS-WEM

3 Migration Offset |offset| < MEMO based on Algorithm 3.2

4 Tomography Offset mid to long

5 Cycle-Skipping in Tomography Algorithm 3.3

It would now be insightful to compare our proposal (Table 3.2) to when it ignores any
offset selection (i.e., it uses full offsets for migration and tomography) and when it uses the
industry practice, (i.e., it uses short offsets for migration and full offsets for tomography).
To make the comparison, we take the four-layer medium already displayed in Figure 3.10a,
as the true model, and we choose a homogeneous 3500 m/s initial background velocity
model (Figure 3.10b). We invert the 0-30 Hz reflection data (surface acquisition) all at
once to estimate the background velocity model. Figure 3.13 displays the resulting graph
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following Algorithm 3.2 for the MEMO calculation, considering the initial background
velocity model and the full frequency band. Based on the graph, the MEMO is chosen to
be 1000 m. After 15 cycles, each including 1x LS migration and 1x LS tomography, Figure
3.14 exhibits the resultant tomograms.
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Figure 3.13: Migration offset analysis to extract the MEMO for the four-layer medium; the red line on the curve
denotes the MEMO.

As observed, while our proposed ORWI accurately estimates the background velocity
model of the four-layer medium from reflections within 15 cycles (Figure 3.14c), the two
other approaches do not retrieve the layers as effectively as our proposal within the same
number of cycles (Figures 3.14a and 3.14b). Although the tomogram estimated using the
industry practice is a much better estimation than the one obtained without any offset
selection, it remains less informative than the tomogram estimated by our proposed
ORWI. Note that moving closer to a zero-offset data for migration and increasing the LS
iterations for migration can improve the tomogram estimated using the industry practice,
as earlier pointed out. This examination shows that the offset selection strategies in our
proposed ORWI effectively refine the input data for migration and tomography, reaching
the optimal solution in fewer cycles.

3.6. NUMERICAL EXAMPLES
In this section, we apply our proposed ORWI algorithm to three synthetic cases. In all
cases, we refine velocity model updates in each cycle using a Gaussian smoothing operator
with a standard deviation of 3 (gridpoint).

3.6.1. EXAMPLE 1: TWO-DIPPING-LAYER MODEL
First, we apply our proposed ORWI algorithm on a two-dipping-layer model, where two
dipping layers are placed in a linear background velocity model (following Warner et al.,
2018). Figures 3.15a and 3.15b show the true and initial background velocity models,
respectively. The model is 5 km in width and 1.5 km in depth and is discretized by 251
× 301 gridpoints with a horizontal grid interval of 20 m and a vertical grid interval of
5 m. As shown, the main task here is to reconstruct the missing layers from the initial
background velocity model. The observed dataset, containing only primary reflections,
is modeled via PWMod and acquired using 51 surface shots every 100 m and 251 fixed
receivers every 20 m. A Ricker wavelet with a peak frequency of 20 Hz is employed as the
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source function. The maximum available offset in the acquisition is limited to 4000 m.
We record the reflection dataset for 1.8 s.
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Figure 3.15: Two-dipping-layer model (Example 1). (a) True background velocity model. (b) Initial background
velocity model.
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Figure 3.16: Migration offset analysis to extract MEMO (Example 1); the red line on the curve denotes the
MEMO.

Figure 3.16 illustrates the migration offset analysis output graph, considering the
initial background velocity model and the full frequency band, for this example. According
to the misfit-offset graph, we choose the MEMO to be 1750 m (fixed). For tomography,
we use offsets larger than 500 m, and any contribution from the cycle-skipped long-
offset data into the tomographic gradient is excluded via Algorithm 3.3 in each cycle. As
we progress and update the background velocity, additional offsets become relevant in
tomography since they are not cycle-skipped anymore. This continues until all offsets are
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included. Figure 3.17 shows the data fit prior to inversion, where cycle skipping is obvious
in the dataset.
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Figure 3.17: Data fit for the first and middle shots calculated in the true background velocity model, shown in
red, and the initial background velocity model, shown in blue (Example 1). (a) First shot gather. (b) Middle shot

gather.
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Figure 3.18: Estimated background velocity model perturbation after 1 cycle of the proposed ORWI (Example 1).
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Figure 3.19: Final estimated background velocity model after 45 cycles of the proposed ORWI (Example 1).
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Figure 3.20: Vertical background velocity profiles. A vertical profile of the final estimated background velocity
model already shown in (a) Figure 3.19 at the lateral location of 2500 m and (b) Figure 3.25 at the lateral location

of 3000 m.

We invert the full-frequency band 0-60 Hz simultaneously (no multi-scaling strat-
egy) in 45 cycles, each including 1x LS migration and 1x LS tomography. Figure 3.18
shows the estimated background velocity model perturbation after 1 cycle. As seen, the
reconstructed background velocity perturbation accurately represents the true update
direction from the very first cycle. Figure 3.19 shows the final background velocity model
estimated after 45 cycles. The result shows a remarkable accuracy in recovering the miss-
ing dipping layers in the background velocity. This recovery comes with a high level of
vertical resolution. Note that the finite lateral extent of the estimated layers is due to the
finite extent of the acquisition. Also, note that we cannot update the deepest layer in the
model, below 1300 m, using reflection tomography, as expected. One profile of the final
estimated background velocity model is shown in Figure 3.20a. This profile once more
illustrates the effective vertical illumination via our proposed ORWI algorithm.

3.6.2. EXAMPLE 2: FLAT SECTION OF THE MARMOUSI MODEL

Next, we verify our proposed ORWI algorithm with a selected part of the Marmousi model
that is almost flat. Figure 3.21a shows the true background velocity model, which is 6
km in width and 1,74 km in depth. The model is discretized by 251 × 175 gridpoints
with a horizontal grid interval of 30 m and a vertical grid interval of 10 m. To construct
the initial background velocity model, after smoothing out the true background velocity
model using a 2D Gaussian filter with a standard deviation of 50 (gridpoint), we select
a single vertical profile to construct the initial 1D model. Figure 3.21b shows the initial
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background velocity model. 41 surface shots are used for acquisition, with a shot spacing
of 150 m. There exist 251 fixed receivers distributed on the surface every 10 m. The
recording time is 2.2 s. The maximum available offset is limited to 4000 m. Using a Ricker
wavelet with a peak frequency of 15 Hz as the source function, the observed reflection
dataset, containing only primaries, is generated by PWMod.
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Figure 3.21: Flat section of the Marmousi model (Example 2). (a) True background velocity model. (b) Initial
background velocity model.
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Figure 3.22: Migration offset analysis to extract MEMO (Example 2); the red line on the curve denotes the
MEMO.

Figure 3.22 displays the migration offset analysis output graph, considering the initial
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Figure 3.23: Data fit for the first and middle shots calculated in the true background velocity model, shown in
red, and the initial background velocity model, shown in blue (Example 2). (a) First shot gather. (b) Middle shot

gather.

background velocity model and the full frequency band. Based on the misfit-offset graph,
the MEMO is fixed at 3000 m. Comparing the MEMO with the maximum available offset
in the acquisition, we can infer that the cycle skipping is not that severe in this example.
For tomography, offsets larger than 500 m are employed, and the cycle-skipped long-offset
data contribution to the tomographic gradient is excluded in each cycle by Algorithm
3.3. As we advance in cycles and update the background velocity, more and more offsets
contribute to tomography because they are no longer cycle-skipped. This process goes
on until all offsets are addressed. Figure 3.23 demonstrates the data fit in the first- and
middle-shot gathers prior to inversion, confirming the minimum cycle skipping in the
dataset.

We invert the full-frequency band 2-45 Hz at once (no multi-scaling strategy). We
perform 150 cycles of the proposed ORWI, each consisting of 1x LS migration and 1x LS
tomography. Figures 3.24a to 3.24c display the cumulative background velocity model
perturbation estimated after 1, 50, and 150 cycles. As seen, the recovery of the background
velocity model begins with large-scale events and develops towards tiny events. One
profile of the final estimated background velocity model is also displayed in Figure 3.20b,
revealing a good vertical resolution. Figure 3.25 shows the final background velocity
model estimated after 150 cycles of the proposed ORWI, confirming the effectiveness of
the proposal.

3.6.3. EXAMPLE 3: FAULTED SECTION OF THE MARMOUSI MODEL

Finally, we validate our proposed ORWI algorithm using the faulted section of the Mar-
mousi model (marine scenario). The true background velocity model, illustrated in Figure
3.26a, spans almost 7 km in width and 2.5 km in depth. This model is discretized into 296
× 104 gridpoints, with a horizontal grid interval of 25 m and a vertical grid interval of 25
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(a) Estimated model perturbation after 1 cycle
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(b) Estimated model perturbation after 50 cycles
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Figure 3.24: Estimated background velocity model perturbations (Example 2). (a) Estimated background
velocity model perturbation after 1 cycle. (b) Cumulative estimated background velocity model perturbation

after 50 cycles. (c) Cumulative estimated background velocity model perturbation after 150 cycles.
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Figure 3.25: Final estimated background velocity model after 150 cycles of the proposed ORWI (Example 2).

m. To create the initial background velocity model, we apply a 2D Gaussian filter with a
standard deviation of 20 (gridpoint) to construct the true background velocity model. The
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resulting initial background velocity model with a water layer on top is depicted in Figure
3.26b. For acquisition, 31 surface shots are used on the surface (the shots are spaced
either 250 m apart or 225 m apart), and 296 fixed receivers are distributed on the surface at
25 m intervals. The recording time is 4.092 s, and the maximum available offset is limited
to 4000 m. Using a Ricker wavelet with a peak frequency of 10 Hz as the source function,
we generate the observed reflection dataset, only primaries, through PWMod. Figure
3.27 illustrates the output of migration offset analysis, considering the initial background
velocity model and the full frequency band, through the misfit-offset graph. The MEMO
is set at 2000 m based on the misfit-offset graph. In the tomography process, offsets
exceeding 500 m are employed, and the contribution from the cycle-skipped long-offset
to the tomographic gradient is excluded in each cycle through Algorithm 3.3. As we
progress through cycles and update the background velocity, an increasing number of
offsets contribute to tomography since they are no longer cycle-skipped. This process
carries on until all offsets have been accounted for.

The inversion here employs a multi-scaling strategy, which starts from a low frequency
of 2 Hz and gradually increases up to 21 Hz. Table 3.3 displays the frequency strategy used
in the inversion, presenting details on the frequency ranges, number of total cycles, and
number of iterations for both LS migration and LS tomography within each cycle. Note
that the reflectivity model is reset back to zero after each frequency scale. Figures 3.28a
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Figure 3.26: Faulted section of the Marmousi model (Example 3). (a) True background velocity model. (b) Initial
background velocity model.
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Figure 3.27: Migration offset analysis to extract MEMO (Example 3); the red line on the curve denotes the
MEMO.

to 3.28c show the estimated background velocity models estimated after the frequency
ranges of 2-7 Hz, 2-14 Hz, and 2-21 Hz, respectively, and Figures 3.29a to 3.29c present the
stacked images mapped using the true, initial estimated, and final estimated background
velocity models, respectively.

Table 3.3: Frequency strategy employed with Example 3.

2-3 Hz 2-5 Hz 2-7 Hz 2-14 Hz 2-21 Hz

Total cycle 4 4 4 20 25

LS migration iteration in each cycle 5 5 5 3 2

LS tomography iteration in each cycle 5 5 5 3 2

Image reset to zero after each cycle yes yes yes yes yes

As can be seen in Figures 3.28 and 3.29, while not flawless, particularly in the deep
right of the estimated model marked with a dashed ellipse in Figure 3.28c, the kinematic
properties of the background velocity model during the inversion are improved signifi-
cantly to incorporate the essential traveltime information for accurate depth migration.
For a more precise evaluation of the overall accuracy in estimations, Figure 3.30 compares
the image difference between the true and initial image, as well as the difference between
the true and final estimated image.

3.7. DISCUSSION
In the field of exploration seismology, FWI has been widely regarded as the ultimate solu-
tion for subsurface property reconstruction since its introduction. However, it was later
discovered by the FWI community that the reflection-associated tomographic wavepaths
in the FWI kernel were too weak to update deep low-wavenumber properties beyond the
reach of refractions. In response to this limitation, RWI was developed to make full use
of the reflection-associated tomographic wavepaths. Despite its potential, RWI has its
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Figure 3.28: Estimated background velocity models using different frequency ranges (Example 3). (a) Estimated
background velocity model with the frequency range of 2-7 Hz. (b) Estimated background velocity model with
the frequency range of 2-14 Hz. (c) Estimated background velocity model with the frequency range of 2-21 Hz.
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Figure 3.30: Image difference. (a) Difference between the images mapped by the true and initial background
velocity models. (b) Difference between the images mapped by the true and final estimated background

velocity models.

own limitations, as counted earlier. To address these limitations, in the present study, we
analyzed the current state of RWI in the context of one-way reflection waveform inversion
(ORWI).

We acknowledge that our proposed solution for addressing inconsistent reflectivity
and velocity models in ORWI is an intermediate approach and may not be perfect. It
could be considered a “dirty solution” that requires further investigation and optimization.
Other promising alternatives for addressing inconsistent reflectivity and velocity in RWI
include pseudo-time domain RWI, as well as approaches proposed by Valensi and Baina
(2021) and Liang et al. (2022).

In this research, we chose not to introduce any model-based regularization to our to-
mography misfit function. However, we believe that adding a model-based regularization,
particularly a structure-oriented type of regularization guided by the reflectivity model
(Masaya and Verschuur, 2018; Yao et al., 2019b; Provenzano et al., 2023), could positively
influence the overall performance of the tomographic updates. We plan to explore this
possibility in future investigations.

The multi-scaling strategy, in the context of reflection waveform inversion, involves
inverting the reflection waveforms at multiple scales or frequencies, starting from low
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frequencies towards higher frequencies. This is done to mitigate the effect of the cycle-
skipping issue in the long-offset waveforms in the context of RWI. With Example 3, we
showed that a multi-scaling strategy may be beneficial in ORWI wherever the full-band
reflection dataset is too complex to be resolved tomographically with the reflection
wavepaths all at once. The same is reported in Chen et al. (2020).

Another important aspect for discussion is the AVO effect. The ORWI process, given
its angle-independent properties, cannot reproduce AVO on the data. Indeed, an angle-
independent reflectivity model is insufficient for capturing AVO (Davydenko and Ver-
schuur, 2017; Farshad and Chauris, 2020). Therefore, we propose to reduce AVO in the
data before applying the ORWI methodology, as described in Qu and Verschuur (2021).
The examples in this paper were created with the inverse crime approach; that is, we
consider the optimum situation where AVO effects do not play a role, such that we can
focus on the convergence aspects of ORWI.

There are additional challenges in real data applications. An accurate estimation of
the source signal is essential. If there is a mismatch in the source signal, it will limit the
resolution in imaging and, thereby, tomography. As the 2D field data still has propagated
in a 3D world, amplitudes have to be corrected (3D to 2D transformation), and out-of-
plane effects may not be well addressed by 2D ORWI. Naturally, when ORWI is applied in
a full 3D sense to 3D field data, those amplitude and out-of-plane effects will no longer be
present. Another challenge with field data is the potential presence of the anisotropy effect.
While anisotropy effects can be included in ORWI, updating the anisotropy parameters is
not trivial (Alshuhail and Verschuur, 2019). The Q-effect in the data can represent another
challenge, and this can also be integrated into the ORWI process, as explained by Safari
and Verschuur (2023).

Finally, the ORWI method can be extended to the 3D case, where we have wavefields
measured along inline and crossline directions. The approximate Hessian matrix for the
entire medium will be a 3D block-diagonal matrix, where each block exhibits non-zero
elements on and around the main diagonals in three directions, forming a 3D band-
diagonal matrix for each virtual data plane, which is still manageable to invert. It will, of
course, incur higher computational costs, akin to the entire ORWI method, which is also
more expensive in 3D.

3.8. CONCLUSION
This paper addressed reflection waveform inversion limitations to recover an improved
background velocity model update. To do so, in the context of one-way reflection wave-
form inversion (ORWI), we replaced the least-squares wave-equation migration technol-
ogy with an efficient preconditioned least-squares wave-equation migration technology
to retrieve high-resolution reflectors with preserved amplitudes. To mitigate the adverse
imprint of inconsistent reflectivity and velocity models (i.e., full-wave inconsistency in
the short-offset data for tomography), we muted short-offset waveforms in the residual
data gathers to suppress their associated erroneous tomographic wavepaths before they
could establish in the tomographic gradient of ORWI. Thanks to the muting of short-offset
residual waveforms, we adopted an extended migration offset (MEMO) rather than short
offset to avoid limitations in reflection tomography linked to suboptimal SNR and illumi-
nation of the reflectivity model. We also proposed a data-selection algorithm to exclude
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the damaging effect of the cycle-skipped long-offset data from the tomographic gradient
of ORWI. The results of three numerical examples demonstrated the effectiveness of the
proposed approach in recovering high-fidelity tomograms with good vertical resolution.
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4
HIGH-RESOLUTION ONE-WAY

REFLECTION WAVEFORM

INVERSION

“Correlation does not imply causation.”

(STATISTICAL PRINCIPLE)

Reflection Waveform Inversion (RWI) is a technique that uses pure reflection data to estimate sub-
surface background velocity, relying on evolving seismic images. Conventional RWI operates in
a cyclic workflow, with two key components in each cycle—migration and reflection tomography.
Conventional RWI may result in suboptimal background velocity estimation, partly due to limited or
unresolved resolution within each component in each cycle. While gradient preconditioning with
the reciprocal of Hessian information helps resolve this issue in both components of RWI, it becomes
impractical for a large number of model parameters. One-way reflection waveform inversion (ORWI)
is a reflection waveform inversion technique in which the forward modeling scheme operates in one
direction (downward and then upward) via virtual parallel depth levels within the medium. Leverag-
ing the ORWI framework, we decompose and reduce the linear Hessian operator (also known as the
approximate Hessian or Gauss-Newton Hessian) into multiple smaller sub-operators. In particular,
the diagonal blocks of the mono-frequency approximate Hessian operators, each corresponding to a
single depth level within the medium, are extracted and inverted to precondition the corresponding
mono-frequency gradients in both the migration and reflection tomography components of ORWI.
This depth-dependent gradient preconditioning transforms standard ORWI into a high-resolution,
yet computationally feasible version aimed at addressing suboptimal velocity estimation, referred to
as high-resolution ORWI (HR-ORWI). The effectiveness of the proposed approach is demonstrated
through successful applications to synthetic data examples.

This chapter is based on the following paper: Abolhassani, S., Hoogerbrugge, L., & Verschuur, D. J. (2025) One-
Way Reflection Waveform Inversion with Depth-Dependent Gradient Preconditioning. Geophysical Journal
International, 240(1), 652–672.
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4.1. INTRODUCTION
Tarantola (1984) introduced the conventional full waveform inversion (FWI) in acous-
tic approximation, a well-known non-linear data-fitting technique to estimate high-
resolution subsurface velocity models. Conventional FWI has become widely adopted for
evaluating shallow subsurface targets. Indeed, incorporating refracted and diving waves,
it offers a detailed subsurface model and has proven to be highly effective for this purpose
(e.g., Vigh et al., 2011; Zou et al., 2014). However, when attempting to map the targets that
lie beyond the reach of refracted and diving waves (“deep targets”), its performance may
falter (e.g., Plessix et al., 2013; Brittan and Jones, 2019). This limitation arises because,
while the sampling of high-reflective model wavenumbers is nonlinearly dependent on
the sampling of low-propagative model wavenumbers in FWI (Audebert and Ortiz-Rubio,
2018), conventional FWI fails to actively sample low-propagative model wavenumbers
within the deep targets because of weak transmission-after-reflection wavepaths within
the FWI gradient, commonly known as “rabbit-ear” wavepaths. Scaled by reflection coeffi-
cients, the rabbit-ear wavepaths exhibit weaker amplitudes compared to other wavepaths
within the FWI gradient, i.e., the transmission wavepath and migration isochrone (Fig.
4.1). This failure to sample low-propagative model wavenumbers significantly limits the
capture of high-reflective model wavenumbers by conventional FWI, highlighting the
significance of model scale separation for reflection tomography (Mora, 1989).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: The wavepaths constructing the FWI gradient: the transmission wavepath, labeled as number 1, the
pair of transmission-after-reflection wavepaths (rabbit-ear wavepaths), labeled as number 2, and the migration

isochrone, labeled as number 3. As can be observed, the pair of transmission-after-reflection wavepaths
appears in a lighter shade of blue, illustrating its much weaker amplitude compared to the other existing

wavepaths. This occurs as a consequence of scaling by the reflection coefficient of the reflector within the
medium. Hence, it can be concluded that the FWI gradient is dominated by the transmission wavepath and
migration isochrone, while the pair of transmission-after-reflection wavepaths remains relatively inactive.

Over the years, several variants of migration-based velocity analysis (MVA), each built
upon the principle of model scale separation based on Born modeling, have been devel-
oped. Among them, the ones incorporating wave-equation forward modeling have stood
out due to the improved handling of wave propagation in complex media. Wave-equation
MVA (WEMVA) algorithms (Sava and Biondi, 2004) typically optimize an image-domain
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error function measured on the common image gathers (CIGs) either via a classical
semblance or a differential semblance (DS) function, measuring the flatness (coherency
property) in CIGs. While with the classical semblance function, the flatness measure of
CIGs is given by the stack power of image amplitudes over surface offsets (Chauris and
Noble, 2001), the flatness measure of CIGs with the DS function is given by squaring the
L2 norm of the derivative of image amplitudes with respect to surface offsets (Shen et al.,
2003). WEMVA may also be formulated in the subsurface offset domain, where, at the
correct velocity, the image is expected to be focused at zero offset. In this domain, mea-
suring the focusing of subsurface-offset CIGs mirrors the use of the classical semblance
and DS function with surface CIGs (Shen, 2005; Shen and Symes, 2008; Lameloise et al.,
2015). Alternatively, a scattering angle can serve as the extension parameter, with flatness
measured on angle-domain CIGs (Biondi and Symes, 2004).

Expanding on the foundations of extended-domain WEMVA, Symes (2008) formulated
a theory that laid the groundwork for integrating extended-domain WEMVA and FWI,
leveraging their synergy. This theory was subsequently validated by Almomin and Biondi
(2012). In recent initiatives to enhance MVA, Chauris and Cocher (2017) introduced the
notion of inversion velocity analysis (IVA) by substituting standard migration with itera-
tive migration to map cleaner CIGs, reducing migration artifacts and multiple crosstalk.
Moreover, they adopted a pseudo-inverse of the Born modeling operator, rather than an
adjoint, to reduce the migration iterations. In the same vein, Assis et al. (2022) introduced
tomographic Hessian-based IVA.

Employing migrated images for velocity model building also triggered another trend
of development known as reflection waveform inversion (RWI). RWI represents a wave-
equation reflection tomography tool with a data-domain error function (Xu et al., 2012;
Zhou et al., 2012; Berkhout, 2012; Wang et al., 2013). Conventional RWI in acoustic approx-
imation alternately solves a two-parameter minimization problem for the background
velocity and “reflectivity” of the subsurface. Although RWI and the migration-based
traveltime waveform inversion (MBTT) (Clément et al., 2001) share some similarities, it is
important to note that the migration step in MBTT operates on reflectivities in time rather
than depth—images in time are largely invariant to velocity, unlike images in depth, but
this assumes a 1D velocity model.

Unlike FWI, RWI is specifically tailored to sample deep targets tomographically
harnessing exclusively reflection data through the pair of transmission-after-reflection
wavepaths. RWI involves estimating the background velocity of the subsurface in a cyclic
process as displayed in Fig. 4.2, relying on an evolving stacked image that fits near-offset
observed and modeled “phase information" within each cycle. Therefore, it is expected
that RWI naturally suppresses any ambiguities initiated by the phase mismatch in the
near-offset reflection data Provenzano et al. (2023), particularly within the deep areas
or the areas with challenging data acquisition conditions where FWI suffers severely. To
improve the RWI tomogram, specifically within reach of refractions and diving waves,
some studies have also investigated the impact of integrating early-arrival FWI (EWI) and
RWI in order to steer the search direction toward recovering a full (horizontal and vertical)
low local-model-wavenumber spectrum for the background velocity model (Zhou et al.,
2015; Wu and Alkhalifah, 2015). For a full review of the other aspects of RWI in recent
years, the reader can refer to Yao et al. (2020).
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Background 
Velocity

Image

Figure 4.2: Conventional RWI cycle in which background velocity estimation and image reconstruction
alternate.

Although RWI is built upon the notion of model scale separation, making this sep-
aration has been a struggle. To address the issue, several approaches have been put
forth. Among others, we reference Alkhalifah (2014) for introducing the scattering-angle
filtering solution, Wang et al. (2013) for adopting the wavefield decomposition solution,
and Xu et al. (2012) for leveraging Born modeling as the solution. Additionally, Berkhout
(2012) and Berkhout (2014) introduced the joint migration inversion (JMI) technique
that makes use of a one-way forward modeling scheme called full-wavefield modeling
(FWMod), parameterized based on reflectivity and acoustic background velocity, to fulfill
the model scale separation by wavefield decomposition into upgoing and downgoing
wavefields. FWMod models full (both primaries and multiples) downgoing and upgoing
reflection wavefields within the JMI framework, in which zero-lag cross-correlations of
same-direction source and receiver wavefields (either both upwards or both downwards)
reconstruct the reflectivity model update (small-scale medium variations), and correla-
tions of opposite-traveling source and receiver wavefields (one upgoing, one downgoing)
estimate the background velocity model update (large-scale medium variations).

Adopting the concept of JMI for reflection waveform inversion and constraining
FWMod to primary wavefield modeling (PWMod), assuming internal multiples are weak
or resolved via pre-processing, this paper represents and investigates upon a one-way
reflection waveform inversion technique, hereafter referred to as standard ORWI. The
approporiate parameterization in PWMod leads to a natural scale separation—separation
of migration isochrones and transmission-after-reflection wavepaths—in standard ORWI.
This separation allows for the independent calculation of migration and tomography
gradients within each ORWI cycle, thereby freeing tomograms from high-reflective model
wavenumbers. Algorithm 4.1 shows the cyclic workflow of standard ORWI, which involves
an alternating sequence between the image and background velocity reconstructions.
Standard ORWI cyclically minimizes the error function

E = 1

2

∫
dω

∑
s
∆d−

s,ω
†∆d−

s,ω, (4.1)

where ∆d− is the residual data vector (upgoing) between the observed and modeled
reflection data recorded at the Earth’s surface, the subscript s indicates a source location,
ω shows an angular frequency component, and the superscript † represents the complex
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conjugate transpose operation.
Suboptimal background velocity estimation in RWI can be attributed, among others,

to the use of seismic images with limited or unresolved resolution as well as suboptimal
preservation of true amplitudes in each cycle (e.g., Hou and Symes, 2015; Chauris and
Cocher, 2017; Gomes and Yang, 2017). With the same line of reasoning, one can also link
suboptimal background velocity estimation in RWI to the use of tomograms with limited
or unresolved resolution. Pratt et al. (1998) showed that the Newton optimization method
in waveform inversion estimates accurate velocity models with higher resolution than the

Algorithm 4.1: Cyclic workflow of ORWI

Provide a smooth initial background velocity model and set the initial reflectivity model to

zero when cycle number k = 1.

while convergence not reached do
for i ← 1 to m do

UPDATE the reflectivity model using one-way wave-equation while keeping the

background velocity model fixed (migration).

for j ← 1 to n do
UPDATE the background velocity model using one-way wave-equation while

keeping the reflectivity model fixed (reflection tomography).

k = k +1 ▷ The reflectivity model can be reset to zero at this point.

gradient decent method since it uses the reciprocal of second-order derivatives of the
error function (inverse Hessian) to precondition the gradient. However, the calculation
demand of the Hessian matrix-operator for large-scale problems in seismology renders
the Newton method impossibly expensive in computing terms. Several attempts, either in
the data or image domain, have been made thus far to approximate an effective yet cost-
effective preconditioner: migration deconvolution filters (Hu et al., 2001; Yu et al., 2006),
matching filters (Guitton, 2004; Aoki and Schuster, 2009; Guitton, 2017; Guo and Wang,
2020; Yang et al., 2021), point spread functions (Lecomte, 2008; Fletcher et al., 2016; Yang
et al., 2022), target-oriented solutions (Valenciano et al., 2006; Tang, 2009), asymptotic
pseudo inverses to the Born modeling operator (ten Kroode, 2014; Hou and Symes, 2015;
Chauris and Cocher, 2017), linear Hessian (also known as the Gauss-Newton Hessian
or approximate Hessian) (Pratt et al., 1998), pseudo Hessian (Choi et al., 2008; Jun et al.,
2015), diagonal approximate Hessian (Chavent and Plessix, 1999; Shin et al., 2001; Plessix
and Mulder, 2004), and approximating the application of the Hessian inverse operator
on the search direction (Brossier et al., 2009; Asnaashari et al., 2013; Métivier et al., 2013;
Assis and Schleicher, 2021). Within the context of iterative least-squares one-way wave-
equation migration (LS-WEM), while Lu et al. (2018) obtained an approximate Hessian by
implicitly formulating the modeling operator and its adjoint, Abolhassani and Verschuur
(2022) introduced a computationally affordable, depth-dependent approximate Hessian,
referred to henceforth as preconditioned LS-WEM (PLS-WEM).

This paper aims to increase the resolution power of standard ORWI tomograms, ex-
panding upon the findings of Abolhassani and Verschuur (2022) on depth-dependent
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preconditioning for image reconstruction. While employing depth-dependent precondi-
tioners for high-resolution image reconstruction with standard ORWI, we concurrently
develop the required mathematical groundwork to integrate the depth-dependent pre-
conditioning concept for background velocity estimation. This two-fold effort facilitates
more accurate velocity estimation with ORWI. We refer to it as high-resolution ORWI
(HR-ORWI).

In the following sections, we will first review the theory of HR-ORWI. Then, we will
present a brief overview of the depth-dependent gradient preconditioning concept for
migration (PLS-WEM). Following that, we will mathematically demonstrate its relevance
for tomography within the context of ORWI. Next, we will provide three numerical exam-
ples, where the first two compare standard ORWI and HR-ORWI, and the third validates
that our cost-friendly high-resolution updates in both migration and tomography loops
of HR-ORWI result in a reliable background velocity estimation for the Marmousi2 model.
Lastly, we end with discussions and conclusions.

4.2. HR-ORWI THEORY
The theoretical aspects of high-resolution one-way reflection waveform inversion (HR-
ORWI) are presented here. We rely on Berkhout (1981) and Berkhout (1982) for the forward
problem theory.

4.2.1. FORWARD PROBLEM
The two-way acoustic wave equation for a homogeneous medium in the space-frequency
domain can be written as

∂2u

∂z2 =−ω
2

c2 u − ∂2u

∂x2 − ∂2u

∂y2 , (4.2)

in which u represents the monochromatic pressure wavefield, and c is the velocity.
Replacing the differentiations in eq. 4.2 with spatial convolutions (Berkhout, 1982, p.

347) gives
∂2u

∂z2 =−
(
ω2

c2 δ(x)δ(y)+d2(x)+d2(y)

)
∗u, (4.3)

where ∗ denotes the spatial convolution, δ means the Dirac delta function, and the
operators d2(x) and d2(y) represent spatial differential operators of order 2 with respect
to x and y , respectively. When the initial condition u (z0) is available, eq. 4.3 reads

∂2u(x, y, z)

∂z2

∣∣∣∣
z=z0

= h2(x, y)∗u(x, y, z0). (4.4)

After splitting the total pressure wavefield into up- and downgoing wavefields (u =
u++u−), eq. 4.4, following its transformation into the wavenumber-frequency domain
within the kx −ky plane, can be broken down into

∂ũ+

∂z

∣∣∣∣
z=z0

=−i h̃+
1 ũ+(z0),

∂ũ−

∂z

∣∣∣∣
z=z0

=+i h̃−
1 ũ−(z0),

(4.5)
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where z is pointing downward, ũ+ represents the monochromatic downgoing wavefield
in the wavenumber domain, and ũ− is the monochromatic upgoing wavefield in the

wavenumber domain. The partial derivatives
∂ũ+
∂z

and
∂ũ−
∂z

evaluated at z0, are denoted

as
∂ũ+
∂z

∣∣∣∣
z0

and
∂ũ−
∂z

∣∣∣
z0

, respectively. Here, i =p−1, and h̃+
1 = h̃−

1 =
√

h̃2 =
√

k2 −k2
x −k2

y ,

with k = ω
c .

Inserting the derived partial derivative wavefields into the Taylor expansion for ũ± (z0 ±|∆z|)
when k2 ≥ k2

x +k2
y yields

ũ+ (z0 +|∆z|) =

w̃+
z0+|∆z|;z0︷ ︸︸ ︷

e
−i

√
k2−k2

x−k2
y |∆z|

ũ+ (z0) ,

ũ− (z0 −|∆z|) =

w̃−
z0−|∆z|;z0︷ ︸︸ ︷

e
−i

√
k2−k2

x−k2
y |∆z|

ũ− (z0) ,

(4.6)

where ∆z denotes the extrapolation distance, w̃+
z0+|∆z|;z0

is the downward propagator
from z0 to z0 +∆z, and w̃−

z0−|∆z|;z0
is the upward propagator from z0 to z0 −∆z. Reverting

to the space-frequency domain, eq. 4.6 can be expressed as follows

u±(x, y, z0 ±|∆z|) = w±
z0±|∆z|;z0

(x, y,ω)∗u±(x, y, z0). (4.7)

When dealing with extrapolation distances with lateral velocity changes, a matrix
formulation is adopted to represent eq. 4.7 as

u+
ω (z0 +|∆z|) = W+

z0+|∆z|;z0
u+
ω (z0) , (4.8)

u−
ω (z0 −|∆z|) = W−

z0−|∆z|;z0
u−
ω (z0) , (4.9)

where W (extrapolation/propagation matrix) is a space-variant convolutional matrix
rather than a Toeplitz matrix. Fig. 4.3 schematically illustrates one row of W+

z0+|∆z|;z0
prop-

agating the wavefields downwards from z0 to a lateral position at z using a local average
velocity across an operator size of three—selected for illustrative purposes here—velocity
cells. Note that the velocity cells are defined between the virtual depth levels. For more
details on the space-variant extrapolation matrix and operator size, see Berkhout (1982)
and Thorbecke et al. (2004). One should note that the space-variant extrapolation matrix
used for this research remains an approximation valid under the condition of smooth
lateral velocity changes. Interested readers are referred to Sun and Verschuur (2020) and
Li et al. (2024) for insights on an accurate extrapolation matrix for strong lateral velocity
changes.

By discretizing the subsurface into N virtual depth levels separated by ∆z (∆z is sup-
posed to be sufficiently small to be considered vertically homogeneous), the fundamental
equation governing the modeling of monochromatic primary reflection data recorded at
the Earth’s surface (z0) with one monochromatic physical source positioned at z0 is given
by

u− (z0) =
N∑

m=1
W−

z0;zm
r∪ (zm)◦W+

zm ;z0
s+ (z0) , (4.10)



4

106 4. HIGH-RESOLUTION ONE-WAY REFLECTION WAVEFORM INVERSION

𝑧
0𝑧

∆
𝑧

𝑧

𝑥

(a)

𝑝
+

𝑝
−

𝑝
−
𝑡
−
+
𝑝
+

 𝑟
∪

𝑝
+
𝑡
+

𝑟
∪
,
𝑡
−

𝑡
+

(b
)

F
igu

re
4.3:(a)

Sch
em

atic
rep

resen
tatio

n
o

fd
ow

n
w

ard
w

avefi
eld

extrap
o

latio
n

b
etw

een
tw

o
virtu

ald
ep

th
levels,co

n
sid

erin
g

lateralvelo
city

variatio
n

.T
h

is
grap

h
ic

rep
resen

ts
on

e
sin

gle
row

ofW
+z0 +|∆

z|;z0 ,w
h

ich
p

rop
agates

th
e

w
avefi

eld
s

to
a

lateralp
osition

at
z

u
sin

g
a

localaverage
velocity

across
an

op
erator

size
ofth

ree
velocity

cells.N
o

te
th

atth
e

b
ackgro

u
n

d
velo

city
cells

are
d

efi
n

ed
b

etw
een

th
e

virtu
ald

ep
th

levels.(b
)

Sch
em

atic
rep

resen
tatio

n
o

fh
ow

th
e

in
cid

en
tw

avefi
eld

in
teracts

(refl
ectio

n
an

d
tran

sm
issio

n
)

ata
p

articu
lar

virtu
ald

ep
th

levelin
P

W
M

o
d

,w
h

ere
r ∪

m
ean

s
an

u
p

w
ard

refl
ectivity

scalar,t +
d

en
o

tes
a

d
ow

n
w

ard
tran

sm
issio

n
scalar,

an
d

t +
d

en
o

tes
an

u
p

w
ard

tran
sm

issio
n

scalar
o

fa
given

grid
p

o
in

tata
sp

ecifi
c

laterallo
catio

n
.



4.2. HR-ORWI THEORY

4

107

with

W+
zm ;z0

= W+
zm ;zm−1

T+ (zm−1) · · ·T+ (z1)W+
z1;z0

, (4.11)

W−
z0,zm

= W−
z0,z1

T− (z1) · · ·T− (zm−1)W−
zm−1,zm

, (4.12)

where u− (z0) is the modeled monochromatic reflection data recorded at the Earth’s
surface (z0), s+ (z0) is the physical monochromatic downgoing source at z0, r∪ is the
angle-independent upward reflectivity vector-operator at a layer boundary, T± is the
angle-independent downward/upward transmission matrix-operator at a layer boundary
and explicitly defined by T± = I±diag(r∪), and ◦ means the Hadamard product (Fig. 4.3b).
Note that despite expressing the forward modeling equations in three dimensions (3D),
for the remainder of this paper, we shall consider only the 2D case.

4.2.2. OPTIMIZATION PROBLEM

HR-ORWI minimizes a two-parameter error function by alternating updates of the two
parameters: angle-independent upward reflectivity and background velocity (see Algo-
rithm 4.1). The error function through a linearized forward problem approximation is
defined as a quadratic function of frequency-dependent model perturbation vectors

E = 1

2

∫
dωS (δmω) , (4.13)

with

S (δmω) =
Ns∑

s=1

(
∆d−

s,ω−
∂u−

s,ω (z0)

∂m
δmω

)†(
∆d−

s,ω−
∂u−

s,ω (z0)

∂m
δmω

)
, (4.14)

and

δmω =

 δr∪ω

δcω

 , (4.15)

where δmω is the mono-frequency total model perturbation vector, δr∪ω represents the
upward reflectivity perturbation vector (the total upward reflectivity perturbation vector
δr∪ is obtained by integrating over frequency), δcω denotes the background velocity
perturbation vector (the total background velocity perturbation vector δc is obtained by
integrating over frequency), ∆d−

s,ω represents the monochromatic residual data vector
between the observed and modeled primary reflection data at z0 for a given source

location,
∂u−

s,ω (z0)

∂m
represents the monochromatic sensitivity matrix—the first-order

partial derivative wavefield with respect to the model parameter change—for a given
source location, s counts the source locations, and Ns shows the numbers of source
locations.

Setting the derivative of eq. 4.13 with respect to δmω to zero (gradient descent opti-
mization method) gives

∂E

∂δmω
= ∂S

∂δmω
= 0, (4.16)
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which leads to

δmω = Re



Ha
ω︷ ︸︸ ︷

Ns∑
s=1

[
∂u−

s,ω (z0)

∂m

]† [
∂u−

s,ω (z0)

∂m

]


−1

Re


gω︷ ︸︸ ︷

Ns∑
s=1

[
∂u−

s,ω (z0)

∂m

]†

∆d−
s,ω

 , (4.17)

with

Ha
ω =


Ns∑

s=1

[
∂u−

s,ω (z0)

∂r∪

]† [
∂u−

s,ω (z0)

∂r∪

] Ns∑
s=1

[
∂u−

s,ω (z0)

∂r∪

]† [
∂u−

s,ω (z0)

∂c

]
Ns∑

s=1

[
∂u−

s,ω (z0)

∂c

]† [
∂u−

s,ω (z0)

∂r∪

] Ns∑
s=1

[
∂u−

s,ω (z0)

∂c

]† [
∂u−

s,ω (z0)

∂c

]
 , (4.18)

and

gω =

 gr
ω

gc
ω

 , (4.19)

where Ha
ω is the mono-frequency approximate Hessian matrix for all shots (equivalent

to the mono-frequency Gauss-Newton Hessian matrix), gω shows the mono-frequency
gradient vector, gr

ω represents the mono-frequency gradient vector for reflectivity, and
gc
ω denotes the mono-frequency gradient vector for background velocity—note that

with Gauss-Newton optimization in waveform inversion, the local convexity in inverse
modeling, despite a nonlinear forward model, resembles dealing with a linear forward
model in each iteration.

Following Jang et al. (2009) and Oh and Min (2013), the total model perturbation vector,
after accounting for the negative sign indicating the descent direction, can be expressed
as the linear combination of all the mono-frequency model perturbation vectors

δm =−
∫

dωδmω, (4.20)

where δm represents the total model perturbation vector.
In the nth cycle, the total model perturbation vector satisfies

m(n+1) = m(n) +α(n)δm(n), (4.21)

where α denotes the optimization step length and reads

α(n) =
∆d−†

(
m(n) +δm(n)

)
∆d−

(
m(n)

)
∆d−†

(
m(n) +δm(n)

)
∆d−

(
m(n) +δm(n)

) , (4.22)

resulting from minimizing the residual data with respect to the optimization step length.
To reduce the computational load of solving the multi-parameter inverse problem,

we first discard the off-diagonal blocks of the mono-frequency approximate Hessian,
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which represent the cross-talk between parameter classes. This is achieved by setting the
off-diagonal elements of Ha

ω to zero. As a result, eq. 4.18 transforms into

Ha
ω =

 Ha,r
ω

Ha,c
ω

 , (4.23)

where Ha,r
ω shows the mono-frequency approximate Hessian matrix to precondition gr

ω,
Ha,c
ω shows the mono-frequency approximate Hessian matrix to precondition gc

ω, and
zeros are omitted for brevity. With this, eq. 4.21 turns into a system of equations with
two equations with reduced and simpler terms. We then, instead of solving the two
equations simultaneously, opt to solve the equations “independently" (i.e., minimal
interdependency assumption between reflectivity and background velocity to further
ease the computational load). This process involves an alternating scheme where we first
solve the first equation to update r∪ while keeping c fixed (migration), and then solve
the second equation to update c while keeping r∪ fixed (reflection tomography). This
alternating scheme continues until convergence is achieved. This enables HR-ORWI to
cyclically update both r∪ and c, with an alternating scheme offering partial mitigation of
the neglected interdependency between r∪ and c (see Algorithm 4.1).

In the following section, we present how to calculate Ha,r
ω and Ha,c

ω in a depth-marching
regime. The gradient calculations are explained in detail in Sun et al. (2019).

4.2.3. DEPTH-DEPENDENT GRADIENT PRECONDITIONING

REFLECTIVITY

Since PWMod allows access to the acoustic wavefield at different virtual depth levels, gω
for the reflectivity class of parameters can be expressed as

gr
ω =


gr
ω(z0)

...

gr
ω(zN )

=



Ns∑
s=1

[
∂u−

s,ω (z0)

∂r∪(z0)

]†

∆d−
s,ω

...
Ns∑

s=1

[
∂u−

s,ω (z0)

∂r∪(zN )

]†

∆d−
s,ω

 , (4.24)

and

Ha,r
ω =


Ha,r
ω (z0)

. . .

Ha,r
ω (zN )

 , (4.25)

where Ha,r
ω shows a block-diagonal structure, and off-block-diagonal zeros are here omit-

ted for brevity.
Within the LS-WEM context, Abolhassani and Verschuur (2022a) showed that the

sensitivity matrix with respect to the upward reflectivity model at a given virtual depth
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level (zℓ) for a pair of source and frequency component reads

∂u−
s,ω (z0)

∂r∪ (zℓ)
=


W−

z0;zℓ



u+
1 s,ω (zℓ)

0
...

0


W−

z0;zℓ



0

u+
2 s,ω (zℓ)

...

0



. . . W−
z0;zℓ



0

0
...

u+
nx s,ω (zℓ)




,

(4.26)

in which nx denotes the number of gridpoints at zm , and u+
j s,ω

(zℓ) is a complex number

representing the downgoing modeled wavefield at the j th grid point of zℓ.
Integrating eqs 4.24, 4.25, and 4.26 into eq. 4.17 and then into eq. 4.20 yield the total

angle-independent upward reflectivity perturbation vector δr∪. Finally, eq. 4.21 is used
to update the total angle-independent upward reflectivity vector r∪ in each cycle.

BACKGROUND VELOCITY

By similarity, we will here derive the sensitivity matrix for the background velocity model
at a given virtual depth level (zℓ) for a pair of source and frequency component.

We rewrite the monochromatic primary reflection data recorded at the Earth’s surface
(eq. 4.10) into the superposition of two upgoing wavefields, one traveling from [zℓ+1, zN ]
to z0 and the other from [z1, zℓ] to z0,

u−
s,ω (z0) =

N∑
m=ℓ+1

W−
z0;zm

r∪ (zm)◦W+
zm ;z0

s+ω (z0)+
ℓ∑

m=1
W−

z0;zm
r∪ (zm)◦W+

zm ;z0
s+ω (z0) . (4.27)

The data sensitivity with respect to a single background velocity model parameter
located at zℓ (i.e., a single column of the respective sensitivity matrix) is found by taking
the derivative of eq. 4.27 with respect to c j (zℓ)

∂u−
s,ω (z0)

∂c j (zℓ)
=

da︷ ︸︸ ︷{
N∑

m=ℓ+1

∂W−
z0;zm

∂c j (zℓ)
r∪ (zm)◦W+

zm ;z0
s+ω (z0)

}
+

db︷ ︸︸ ︷{
N∑

m=ℓ+1
W−

z0;zm
r∪ (zm)◦

∂W+
zm ;z0

∂c j (zℓ)
s+ω (z0)

}
.

(4.28)
After reintroducing W−

z0;zm
and W+

zm ;z0
as

W−
z0;zm

= W−
z0;zℓ

T−(zℓ)W−
zℓ;zℓ+1

T−(zℓ+1)W−
zℓ+1;zm

, (4.29)

W+
zm ;z0

= W+
zm ;zℓ+1

T+(zℓ+1)W+
zℓ+1;zℓT+(zℓ)W+

zℓ;z0
, (4.30)
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and plugging them into eq. 4.28, we get

da = W−
z0;zℓ

T−(zℓ)
∂W−

zℓ;zℓ+1

∂c j (zℓ)
T−(zℓ+1)

N∑
m=ℓ+2

W−
zℓ+1;zm

r∪ (zm)◦W+
zm ;z0

s+ω (z0)

+W−
z0;zℓ

T−(zℓ)
∂W−

zℓ;zℓ+1

∂c j (zℓ)
r∪ (zℓ+1)◦W+

zℓ+1;z0
s+ω (z0) ,

(4.31)

db =
N∑

m=ℓ+2
W−

z0;zm
r∪ (zm)◦W+

zm ;zℓ+1
T+(zℓ+1)

∂W+
zℓ+1;zℓ

∂c j (zℓ)
T+(zℓ)W+

zℓ;z0
s+ω (z0)

+W−
z0;zℓ+1

r∪ (zℓ+1)◦
∂W+

zℓ+1;zℓ

∂c j (zℓ)
T+(zℓ)W+

zℓ;z0
s+ω (z0) ,

(4.32)

in which given the assumption that W−
zℓ;zℓ+1

and W+
zℓ+1;zℓ are approximate to each other,

the first partial derivatives of the extrapolation operator are defined as

∂W−
zℓ;zℓ+1

∂c j (zℓ)
=
∂W+

zℓ+1;zℓ

∂c j (zℓ)
=



0
...

0
∂w j ,⋆

∂c j

0
...

0


nx×nx

, (4.33)

and w j ,⋆ means the j th row of W−
zℓ;zℓ+1

or W+
zℓ+1;zℓ , with each 0 (zero in boldface) denoting

a row vector of dimension 1×nx .

Fig. 4.4 provides a schematic representation of the physical interpretation of eqs 4.31
and 4.32 for a medium consisting of six virtual depth levels, including z0. This illustration
focuses on the scenario where c j is positioned “at the virtual depth level z2” in notation
(between z2 and z3 in practice).

Now, after eq. 4.24, we can write,

gc
ω =


gc
ω(z0)

...

gc
ω(zN )

=



Ns∑
s=1

[
∂u−

s,ω (z0)

∂c(z0)

]†

∆d−
s,ω

...
Ns∑

s=1

[
∂u−

s,ω (z0)

∂c(zN )

]†

∆d−
s,ω

 , (4.34)
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Figure 4.4: Schematic representation of da and db for one shot, eqs 4.31 and 4.32, in a medium with six virtual
depth levels, including z0. (a) Receiver-side background velocity data sensitivity for one shot (i.e., da ). (b)

Source-side background velocity data sensitivity for one shot (i.e., db ).

and

Ha,c
ω =


Ha,c
ω (z0)

. . .

Ha,c
ω (zN )

 , (4.35)

where Ha,c
ω again shows a block-diagonal structure, and off-block-diagonal zeros are here

omitted for brevity.
Incorporating eqs 4.34, 4.35, and 4.28 into eq. 4.17 and subsequently into eq. 4.20 give

the total background velocity perturbation vector δc. Afterward, eq. 4.21 is employed to
update the total background velocity vector c in each cycle.

According to equations 4.25 and 4.35, the depth-marching nature of HR-ORWI frame-
work facilitates constructing mono-frequency, depth-dependent approximate Hessian
operators. Each mono-frequency, depth-dependent approximate Hessian operator is
calculated for model parameters located on a single virtual depth level (with nx model
parameters at each virtual depth level). This calculation involves both auto-correlation
and cross-correlation between the partial derivative wavefields associated with a specific
depth level, while disregarding any cross-correlation between the partial derivative wave-
fields of that depth level and those of other virtual depth levels. This choice, facilitated
by the frequency-domain, depth-marching nature of one-way propagators, reduces the
entire mono-frequency approximate Hessian, with a dimension of nm ×nm (nm = N ×nx ,
representing the total number of model parameters within the entire medium), into
multiple sub-operators, each tailored to a single virtual depth level (i.e., N operators
with a reduced dimension of nx ×nx ). Reducing the entire mono-frequency approximate
Hessian into N smaller sub-operators lowers the memory and processing demands for
constructing, storing, and inverting in large-scale problems, while still retaining essential
information for preconditioning at each depth level. The inverse of Ha,r

ω (zℓ) and Ha,c
ω (zℓ)
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accounts for geometric spreading and the spatial correlations of neighboring model
parameters at zℓ, while also performing frequency-wise source deconvolution. This
approach approximates a block-diagonal representation of the mono-frequency Gauss-
Newton Hessian (Pratt et al., 1998) if one assembles all mono-frequency, depth-dependent
approximate Hessians into a single large matrix, representing the entire medium (Abol-
hassani and Verschuur, 2024).

4.2.4. HR-ORWI VERSUS STANDARD ORWI
Standard ORWI leverages the same forward problem theory as HR-ORWI and similarly up-
dates reflectivity and background velocity by minimizing the errors in primary reflection
waveforms for each class of parameters alternately, meaning that both standard ORWI
and HR-ORWI follow the same inversion workflow, i.e., Algorithm 4.1.

Unlike HR-ORWI, standard ORWI minimizes eq. 4.13 as a quadratic function of δm
rather than δmω. Setting the derivative of eq. 4.13 with respect to δm to zero (gradient
descent optimization method) gives

δr∪ =−Re

{∫
dω Ha,r

ω (x,x)

}−1

Re

{∫
dω

Ns∑
s=1

[
∂u−

s,ω (z0)

∂r∪

]†

∆d−
s,ω

}
, (4.36)

δc =−Re

{∫
dω Ha,c

ω (x,x)

}−1

Re

{∫
dω

Ns∑
s=1

[
∂u−

s,ω (z0)

∂c

]†

∆d−
s,ω

}
, (4.37)

where Ha,r
ω (x,x) indicates that only the diagonal elements of the mono-frequency ap-

proximate Hessian possess values (see, Staal, 2015). This type of preconditioning only
accounts for geometric spreading. Lastly, eq. 4.21 is employed in order to update the total
angle-independent upward reflectivity vector r∪ and the total background velocity vector
c in each cycle.

We now use a two-layer model to evaluate the fidelity of the reflectivity and back-
ground velocity gradients in HR-ORWI versus Standard ORWI. The upper layer has a
homogeneous background velocity of 3500 m/s, while the bottom layer has a homoge-
neous background velocity of 3000 m/s. The interface is at a depth of 800 m. 41 shots are
triggered every 75 m on the surface. A 10 Hz Ricker wavelet is used as the source function
with a fixed-spread acquisition geometry (the maximum available offset is 3000 m). We
fix the migration offset—data offsets used for seismic migration—at 400 m (near-offset
imaging) and use an initial background velocity model of 3400 m/s (i.e., ≈ 3% error).
Fig. 4.5 display the stacked reflectivity perturbation (δr∪) and one-source-receiver-pair
background velocity perturbation, estimated after one cycle (1x LS migration and 1x LS
tomography) of standard ORWI and HR-ORWI.

Comparing Figs. 4.5a and 4.5b (standard ORWI) with Figs. 4.5c and 4.5d (HR-ORWI)
reveals that HR-ORWI provides significantly better resolution in both the image and
tomogram than standard ORWI. In Figs. 4.5a and 4.5b (standard ORWI), the signature of
the source function is visible in both the image and tomogram. The pair of transmission-
after-reflection wavepaths in Fig. 4.5b (standard ORWI) are unfocused and band-limited,
as manifested by the scattering of reflected energies over a larger area compared to Fig.
4.5d (HR-ORWI), which makes information extraction from the data more challenging.
In contrast, Figs. 4.5c and 4.5d (HR-ORWI) show superior resolution in both the image
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and tomogram. This improvement is attributed to the source signature deconvolution
effect embedded in the proposed depth-dependent approximate Hessian operators. With
better-focused transmission-after-reflection wavepaths, HR-ORWI is better positioned
to handle the complex interference of the wavepaths in challenging geological settings,
supporting more reliable search directions than standard ORWI.

With acquisition configurations identical to those used in the experiment associated
with Fig 4.5, we use the same two-layer model to compare the stacked background velocity
perturbations estimated through HR-ORWI and standard ORWI. In the experiment, we use
an initial background velocity model of 3000 m/s (i.e., ≈ 15% error). Additionally, we adopt
the offset-selection strategy presented in Appendix 4.A. That is, we fix the migration offset
at 800 m (maximum effective migration offset: MEMO), use the mid-to-far-offset residual
data (|offsets| > 500 m) for tomography, and exclude the cycle-skipped far-offset data for
tomography. Fig. 4.6 compares the respective background velocity perturbations (δc) after
one cycle (1x LS migration and 1x LS tomography) of HR-ORWI and standard ORWI. Upon
comparison, it is observed that the superposition of tomographic wavepaths estimated
through HR-ORWI exhibits a higher level of geometric consistency and homogeneity
with the true layer. This observation highlights the accuracy of HR-ORWI in capturing
subsurface features, resulting in a more faithful representation of the truth.

4.3. NUMERICAL EXAMPLES
First, we validate the effectiveness of HR-ORWI compared to standard ORWI using two
synthetic examples. Second, we evaluate the performance of HR-ORWI with the syn-
thetic data on the marine-environment Marmousi model (Martin et al., 2006). In all the
examples, we adopt the offset-selection strategy presented in Appendix 4.A.

4.3.1. FAULT MODEL

In the fault model example (Fig. 4.7a), the observed data is generated via PWMod (only
primary reflections), employing a 10 Hz Ricker wavelet. The fault model is discretized
with 201 gridpoints in the horizontal direction (20 m interval) and 201 gridpoints in the
vertical direction (5 m interval). 41 shots with 100 m spacing are used, and each shot
is recorded by 201 receivers with a fixed-spread acquisition geometry at the surface of
the Earth. The maximum available offset in the data is limited to 3000 m. The data is
recorded for a duration of 1.6 s. The initial background velocity model is a 1D linearly
increasing gradient model (Fig. 4.7b), and the initial reflectivity model is zero. We fix the
migration offset at 1000 m, use the mid-to-far-offset residual data (|offsets| > 500 m) for
tomography, and exclude the cycle-skipped far-offset data for tomography in each cycle.
The 0-30 Hz frequency band data is inverted at once, i.e., the inversion process does not
involve a multi-scaling strategy (Bunks et al., 1995). Each cycle of ORWI includes 1x LS
migration and 1x LS tomography. While Fig. 4.8 provides a comparison of the estimated
background velocity perturbations (δc) via standard ORWI and HR-ORWI after one cycle,
Fig. 4.9 compares the estimated tomograms using standard ORWI and HR-ORWI after 25
and 50 cycles.

Comparing Figs 4.8a and 4.8b reveals a clear optimization direction with HR-ORWI
shortly after the first cycle, where the fault line and balanced-amplitude background
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Figure 4.7: Fault model example. (a) True background velocity model. (b) Initial background velocity model.
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Figure 4.8: Background velocity perturbations associated with the fault model example estimated after one
cycle (1x LS migration and 1x LS tomography) of ORWI. (a) Background velocity perturbation estimated via

standard ORWI. (b) Background velocity perturbation estimated via HR-ORWI.

velocity perturbations are visible from shallow to deep. Emphasizing the reliability of HR-
ORWI, this comparison also highlights the potential confusion that might be introduced
with standard ORWI.

By comparing Figs 4.9a and 4.9c to Figs 4.9b and 4.9d, respectively, it becomes evident
that the estimated tomogram via HR-ORWI after 25 cycles closely aligns with, or even excel,
the estimated tomogram via standard ORWI after 50 cycles. Further comparison also
confirms the existence of persistent and non-physical artifacts in tomograms estimated
via standard ORWI from the first to the fiftieth cycle. The accuracy of the tomogram
estimated via HR-ORWI after 50 cycles (Fig. 4.9d) is self-evident. Fig. 4.10 (convergence
history) again validates that HR-ORWI exhibits faster convergence and is able to achieve
a better data fit in fewer cycles compared to standard ORWI.
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4.3.2. RESERVOIR MODEL

In the reservoir model example, a buried low-velocity reservoir lies beneath a lens-shaped
geological formation with high velocity (Fig. 4.11a), discretized into a grid of 251 points
horizontally and 121 points vertically, both spaced at 10 m intervals. The observed
dataset is acquired with a fixed-spread acquisition geometry, including 26 shots with 100
m spacing and 251 receivers, both distributed at the surface of the Earth. The dataset
contains 1.4 s records, generated with a 15 Hz Ricker wavelet as the source function using
PWMod, including only primary reflections. The maximum available offset in the dataset
is limited to 2000 m. The initial background velocity model is a 1D linearly increasing
gradient model, illustrated in Fig. 4.11b, and the initial reflectivity model is zero. We fix
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Figure 4.11: Reservoir model example. (a) True background velocity model. (b) Initial background velocity
model.

the migration offset at 1000 m (MEMO), use the mid-to-far-offset residual data (|offsets| >
500 m) for tomography, and exclude the cycle-skipped far-offset data for tomography in
each cycle. The 0-25 Hz frequency band data is inverted at once (no multi-scaling), and
each cycle of ORWI includes 1x LS migration and 1x LS tomography. Fig. 4.12 compares
the estimated tomograms using standard ORWI and HR-ORWI after 25 and 50 cycles.

Comparing Fig. 4.12a with Fig. 4.12b reveals that standard ORWI, after 25 cycles, still
struggles to distinguish between the lens body and the underlying flat layer, whereas HR-
ORWI reliably resolves this. Furthermore, while standard ORWI completely misestimates
the background velocity of the reservoir body, HR-ORWI shows an accurate retrieval.

Comparing Fig. 4.12c with Fig. 4.12b reveals that the tomogram estimated with
HR-ORWI after 25 cycles not only aligns with the tomogram estimated with standard
ORWI after 50 cycles but also surpasses in accuracy, especially at the reservoir level; this
occurs while both show nearly identical data errors, as illustrated in Fig. 4.13, with no
cycle-skipping observed in the fitted data. The accuracy of the tomogram estimated via
HR-ORWI after 50 cycles (Fig. 4.12d) is self-evident.

Fig. 4.13 (convergence history) again verifies that HR-ORWI comes with faster conver-
gence and can reach a better data fit in fewer cycles compared to standard ORWI.
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4.3.3. MARMOUSI2 MODEL

The Marmousi2 model example (Fig. 4.14) contains 334 × 103 gridpoints with intervals
of 22 m. The observed data is generated via PWMod (only primary reflections) with
a 10 Hz Ricker wavelet as the source function. With a shooting interval of nearly 200
m, 41 shots are triggered at the surface of the Earth, and each shot is recorded by 334
receivers planted on the surface of the Earth (fixed-spread acquisition). The data is
recorded for 4.096 s, and the maximum available offset is limited to 4 km. To build the
initial background velocity model, the true background velocity model is smoothed out by
applying a square Gaussian kernel with a standard deviation of 1100 m. Subsequently, a
single vertical profile is chosen to construct the initial 1D model with a water layer on top,
as shown in Fig. 4.14b. The initial reflectivity model is set to zero. We fix the migration
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Figure 4.14: Marmousi2 model example. (a) True background velocity model. (b) Initial background velocity
model.

offset at 2 km (MEMO), use the mid-to-far-offset residual data (|offsets| > 0.5 km) for
tomography, and exclude the cycle-skipped far-offset data for tomography in each cycle.
As we advance through cycles and update the background velocity, a growing number
of offsets contribute to tomography as they are no longer cycle-skipped. This process
continues until all offsets up to 4 km have been taken into account.

To invert the data within the 0-18 Hz frequency band, a multi-scaling strategy is
employed, involving three frequency bands: 0-5 Hz, 0-11 Hz, and 0-18 Hz. For both
0-5 Hz and 0-11 Hz, the inversion process involves 20 cycles, each with 1x LS migration
iteration and 1x LS tomography iteration. The image doesn’t reset to zero after each cycle.
For the 0-18 Hz band, the inversion process involves a total of 60 cycles, each with 1x
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LS migration iteration and 1x LS tomography iteration, and no image reset after each
cycle. Note that the reflectivity model is reset back to zero after each frequency scale. The
estimated background velocity perturbations (cycles 1 and 100) and tomogram (cycle
100) through HR-ORWI are displayed in Figs 4.15 and 4.16, respectively.

The estimated background velocity perturbation after the first cycle (Fig. 4.15a) illus-
trates that the preconditioned tomographic gradient reliably points in the right direction
even from the outset. The main reflections have been correctly interpreted. The tomo-
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Figure 4.15: Background velocity perturbations associated with the Marmousi2 model example. (a) Background
velocity perturbation estimated after the first cycle of HR-ORWI. (b) Background velocity perturbation

estimated after the 100th cycle of HR-ORWI.

graphic update focuses primarily on reflected events within the depth range of 0-1.5
km. Fig. 4.15b shows the estimated background velocity perturbation after the 100th
cycle. It is evident that the tomographic gradient of HR-ORWI successfully samples the
low-to-intermediate model wavenumbers of the true background velocity properly in
100 cycles from shallow to deep, though with a depth-dependent decreasing resolution
(Williamson, 1991).

The estimated tomogram after 100 cycles is shown in Fig. 4.16a. In addition, a
smoothed version of the true background velocity model with the aid of a square Gaussian
kernel with a standard deviation of 75 m and a water layer on top is generated and shown
in Fig. 4.16a. A comparison of the two models presented in Fig. 4.16 indicates that the
estimated tomogram has a resolution approximately similar to that of the smoothed true
model.

To check the quality of the estimated tomogram, different vertical profiles located at



4.3. NUMERICAL EXAMPLES

4

125

1
2

3
4

5
6

7
La

te
ra

l l
oc

at
io

n 
(k

m
)

0 1 2Depth (km)
15

00

30
00

45
00

c (m/s)

(a
)

Sm
o

o
th

ed
tr

u
e

b
ac

kg
ro

u
n

d
ve

lo
ci

ty
m

o
d

el

1
2

3
4

5
6

7
La

te
ra

l l
oc

at
io

n 
(k

m
)

0 1 2Depth (km)

15
00

30
00

45
00

c (m/s)

(b
)

E
st

im
at

ed
M

o
d

el
:C

yc
le

10
0

Fi
gu

re
4.

16
:(

a)
Sm

oo
th

ed
tr

u
e

b
ac

kg
ro

u
n

d
ve

lo
ci

ty
m

od
el

of
M

ar
m

ou
si

2
ge

n
er

at
ed

vi
a

a
sq

u
ar

e
G

au
ss

ia
n

ke
rn

el
w

it
h

a
st

an
d

ar
d

d
ev

ia
ti

on
of

75
m

an
d

a
w

at
er

la
ye

r
on

to
p.

(b
)

E
st

im
at

ed
to

m
o

gr
am

as
so

ci
at

ed
w

it
h

th
e

M
ar

m
o

u
si

2
m

o
d

el
ex

am
p

le
af

te
r

10
0

cy
cl

es
o

fH
R

-O
R

W
I.



4

126 4. HIGH-RESOLUTION ONE-WAY REFLECTION WAVEFORM INVERSION

1000 2000 3000 4000 5000
c (m/s)

0

0.5

1

1.5

2

D
ep

th
 (

km
)

Initial
True
Inverted

(a) Lateral location: 3000 m

1000 2000 3000 4000 5000
c (m/s)

0

0.5

1

1.5

2

D
ep

th
 (

km
)

Initial
True
Inverted

(b) Lateral location: 3750 m

1000 2000 3000 4000 5000
c (m/s)

0

0.5

1

1.5

2

D
ep

th
 (

km
)

Initial
True
Inverted

(c) Lateral location: 4600 m

Figure 4.17: Vertical background velocity profiles associated with the Marmousi2 model example. A vertical
profile of the estimated tomogram at the lateral location of (a) 3000 m, (b) 3750 m, and (c) 4600 m.

the lateral locations of 3000, 3750, and 4600 m are extracted and plotted out in Fig. 4.17.
It can be seen that the estimated background velocity in all extracted lateral locations is
smooth but significantly close to the true velocity.

To assess the extent of uplift in the background velocity from cycle 1 to cycle 100, vari-
ous images using different background velocity models, including true, initial, smoothed,
and estimated, are presented in Fig. 4.18. Upon comparing the images mapped with the
initial and estimated background velocity models (Figs 4.18b and 4.18d), a significant
kinematic uplift can be observed in Fig. 4.18d, attributed to the enhanced focus of the
reflectors. After comparing the images mapped with the true and estimated background
velocity models (Figs 4.18a and 4.18d), a significant kinematic uplift is again confirmed
in Fig. 4.18d based on the reasonably accurate positioning of the reflectors. Comparing
the images mapped with the smoothed and estimated background velocity models (Figs
4.18c and 4.18d) also suggests that a “maximum” kinematic uplift within the achievable
resolution of RWI has occurred in Fig. 4.18d.

4.4. DISCUSSION
The one-way (up and down) wave-equation extrapolation technique has persisted in the
seismic imaging industry despite its weaknesses (for details on weaknesses, see Mulder
and Plessix, 2004), as it offers computational efficiency when contrasted with direct solu-
tions to the Helmholtz equation. In this research, we demonstrated the potential use of
one-way wave-equation forward modeling, i.e., PWMod, in efficient gradient precondi-
tioning to enhance suboptimal images and tomograms resulting from RWI. In terms of
constructing, inverting, or storing, depth-dependent approximate Hessians computed
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Figure 4.18: Images using different background velocity models associated with the Marmousi2 model example.
The mapped images correspond to the (a) true, (b) initial, (c) smoothed, and (d) estimated background velocity

models.

based on PWMod are more feasible than doing so for preconditioners computed at once
for all model parameters within the medium. Despite being feasible, it remains time-
intensive compared to standard ORWI (i.e., HR-ORWI is six to nine times more expensive
but requires half the iterations of standard ORWI, effectively making it three to five times
more expensive overall), given the current implementation and the capabilities of the cur-
rent computing resources. However, there are ways to reduce the time intensity. Among
others, source subsampling in the computation of Ha (Matharu and Sacchi, 2019) sounds
promising. According to our in-house inquiries, HR-ORWI with source subsampling in
constructing Ha

ω—specifically, one source out of three—could retrieve high-resolution
tomograms consistent with this study. Even though each iteration would still take two to
three times longer, the retrieval is reached in half the iterations of standard ORWI, making
it almost equally expensive overall.

Selecting one technology over another often involves evaluating the cost-versus-
quality trade-off. While cost-effectiveness must remain a key priority, compromising ac-
curacy due to budget constraints in exploration seismology can raise significant concerns.
In the reservoir model example presented in this paper, we clearly observed how choosing
a budget-conscious technology (i.e., standard ORWI) can lead to incorrect subsurface
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illumination, resulting in misinterpretations of subsurface properties and potentially
far-reaching consequences. Using cheaper technology can indeed be a double-edged
sword; while it saves money upfront, the outcome could be irreversible. This portrays the
complexity of decision-making dynamics in exploration seismology.

Although we did not use any model-based regularization in this study, integrating
approaches like structure-oriented regularization guided by the reflectivity model may
further enhance the fidelity of tomographic updates in HR-ORWI (Masaya and Verschuur,
2018; Yao et al., 2019; Provenzano et al., 2023).

Real data applications require careful consideration of several additional factors. The
negative potential impact of source wavelet estimation errors and the absence of low-
frequency data on the stability of HR-ORWI should be carefully explored. Furthermore,
addressing amplitude versus offset (AVO) effects in the ORWI process is crucial. Qu and
Verschuur (2021) recommend minimizing AVO effects before applying ORWI. In this study,
through inverse-crime numerical examples, we assumed reduced AVO effects in the data,
facilitating a thorough examination of ORWI convergence. Challenges may also arise in
accommodating anisotropy effects and integrating the Q-effect into ORWI, as highlighted
in other studies (Alshuhail and Verschuur, 2019; Safari and Verschuur, 2023).

4.5. CONCLUSIONS
Limited or unresolved resolution in both migration and reflection tomography compo-
nents of RWI can lead to suboptimal velocity estimation. To address this within the
context of ORWI, we introduced a preconditioning strategy that enhanced both the mi-
gration and tomography loops, resulting in high-resolution updates for both reflectivity
and background velocity. We named this approach HR-ORWI, where diagonal blocks of
the mono-frequency Gauss-Newton Hessian operators, each corresponding to a specific
virtual depth level, are extracted and inverted to precondition their corresponding mono-
frequency gradients. This approach performs a partial deconvolution of the gradient
while keeping memory and computational requirements manageable. Through three
synthetic examples, we demonstrated that HR-ORWI generates superior background
velocity estimations compared to standard ORWI.
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APPENDIX

4.A. OFFSET-SELECTION STRATEGY
Despite its conceptual appeal and aside from the resolution challenges, ORWI could face
other limitations due to other factors: (1) Full-wave inconsistency in the short-offset
residual data for tomography due to inconsistent reflectivity and velocity models (Valensi
and Baina, 2021; Liang et al., 2022; Provenzano et al., 2023). (2) The standard practice in
the RWI community for mitigating the adverse imprint of inconsistent reflectivity and
velocity models often involves using short-offset or near-zero offset data for migration
(Provenzano et al., 2023). However, this can degrade the illumination and signal-to-
noise ratio of the reflectivity model and result in an increased number of least-squares
migration iterations. (3) Adverse contribution of cycle-skipped long-offset reflection data
in tomography (e.g., Abolhassani and Verschuur, 2022; Provenzano et al., 2023).

4.A.1. TOMOGRAPHY OFFSET: SHORT OFFSETS

To minimize the impact of inconsistent reflectivity and velocity models on the tomo-
graphic gradient of ORWI, we propose muting their relevant erroneous tomographic
wavepaths in the residual data gathers, which are typically established at short offsets.

4.A.2. MIGRATION OFFSET

Building upon the muting of short-offset residual waveforms for tomography, we extend
the migration offset to improve both the illumination and the signal-to-noise ratio of the
reflectors. We follow Algorithm 4.A.1, aiming for an extended offset for migration (rather
than short offset) where a significant reduction in the misfit function is impracticable.
The misfit indeed remains unchanged as the amplitude fit fails to better itself while
mapping more out-of-phase reflection data into the model space. This denotes the
maximum effective migration offset (MEMO), lying averagely between the short offset
and the maximum uncycle-skipped offset in the data. Algorithm 4.A.1 is applied as a
quality control measure prior to ORWI. This algorithm calculates the misfit function value
for various offset ranges up to the maximum offset within the acquisition. Following this,
on the misfit-offset graph, we pick an offset right before the curve starts to become nearly
horizontal on a logarithmic scale.

Algorithm 4.A.1: Migration offset analysis pseudo-code

for h ← 0 to max(offset) do
image ← 1x LS migration with h
d−

mod ← forward modeling with image and background velocity model
∆d− ← d−

obs −d−
mod ▷ ∆d− is the full-offset residual data

store the misfit function value associated with h
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4.A.3. TOMOGRAPHY OFFSET: LONG OFFSETS
A given pair of modeled and observed seismic traces in the time domain are called cycle-
skipped traces if their time distance is larger than half a cycle time shift (Virieux and
Operto, 2009).

Algorithm 4.A.2: Cycle-skipping check pseudo-code

▷ Dobs and Dmod are 3D matrices representing the observed and modeled data (full-shot).
▷ nt× ng× ns is the size of Dobs.
▷ nt is the total number of time samples.
▷ ng and ns are the total number of receivers and the total number of shots.
▷ ℓw and ℓr are the correlation-window length and reference lag.
▷ ωc is the current maximum frequency in D.
▷ ωm is the peak frequency of the seismic wavelet.
▷ winc is the current correlation window.
function CycleSkippingCheck(Dobs, Dmod, ng, ns, nt, ℓw, ℓr, ωc, ωm)

TIMETABLE ← a matrix of ones of size: ng × ns
for ishot ← 1 to ns do

ϕ← determine the anchor offset index in the current shot gather
ι← ϕ
κ← ϕ−1
for m ← [1, 2] do

flag ← true

while
(
m = 1 and flag = true and ι ≤ ng

)
or

(
m = 2 and flag = true and κ ≤ 1

)
do

dobs, nobs ← current observed trace and the associated first-break sample
dmod ← current modeled trace
if ωc > ωm then

dobs ← dobs[nobs : nt]
dmod ← dmod[nobs : nt]

else
dobs ← dobs[1 : nt]
dmod ← dmod[1 : nt]

calculate cross-correlation between dobs and dmod ▷ global cross-correlation
if max correlation lag < ℓr then

win ← [1 : ℓw : nt]
b ← length(win)
for τ← 1 to b do

winc ← [1 : win(τ+1)]
calculate cross-correlation between dobs and dmod in winc ▷ local cross-correlation
if max correlation lag < ℓr then

if τ = b then
tmp ← nt

else
tmp ← nobs+ winc(end)

if m = 1 then
TIMETABLE[ι, i shot ] ← tmp

else
TIMETABLE[κ, i shot ] ← tmp

else
flag ← false
break

else
flag ← false

if m = 1 then
ι= ι+1

else
κ= κ−1

return TIMETABLE

Inspired by van Leeuwen and Mulder (2010), we defined Algorithm 4.A.2 as a time-
domain two-step data-selection algorithm excluding the contribution of the cycle-skipped
long-offset residual data in the tomography loop of ORWI to obtain a tomographic update
free of the damaging effect of cycle-skipping in each iteration. In Algorithm 4.A.2, we iden-
tify a given pair of time-domain modeled and observed seismic traces as cycle-skipped
if their maximum correlation lag exceeds a reference lag determined by the dominant
period of the observed trace. Based on this criterion, our time-domain data-selection
algorithm relies on the cross-correlation of these traces within a sliding window (referred
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to as local cross-correlation), safeguarded by a preliminary global cross-correlation of
the given traces. This global cross-correlation functions as a protection, protecting sub-
sequent local cross-correlations from irregularities in the modeled waveform. Without
this safeguard, the outputs of the local cross-correlations would not meet the required
accuracy.





5
A COMPARATIVE STUDY OF THREE

APPROXIMATE HESSIANS IN

WAVE-EQUATION MIGRATION

“The most certain way to succeed is always to try just one more time.”

– THOMAS EDISON

Enhanced pre-stack depth migration, characterized by improved resolution and amplitudes,
ensures a more accurate representation of the subsurface, proving essential for reducing the
likelihood of geological misinterpretations and facilitating informed decision-making in
seismic exploration. However, obtaining high-resolution images with preserved amplitudes
through standard depth migration could face several hurdles known as migration artifacts.
Iterative least-squares migration (LSM) was developed to address these migration artifacts.
However, the convergence rate of LSM using a gradient descent approach tends to be slow.
Several researchers have attempted to achieve computational efficiency in linearized LSM
through gradient preconditioning. In the context of iterative least-squares wave-equation
migration, this extended abstract compares three approaches for minimizing an error
function. This comparison is carried out through two numerical examples, one with an
inverse-crime scenario and the other with a non-inverse-crime scenario.

This chapter is based on the following extended abstract: Abolhassani, S., Verschuur, E. (2024). A Comparative
Study of Three approximate Hessians in Wave-Equation Migration. 85th EAGE Annual Conference & Exhibition.
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5.1. INTRODUCTION
Pre-stack depth migration in exploration seismology transforms seismic data into a
subsurface depth image, aiming for accurate positioning of seismic amplitudes. However,
obtaining high-resolution images with preserved amplitudes through standard pre-stack
depth migration faces several hurdles associated with irregular acquisition geometry and
organized noises, among others, degrading image accuracy, known as migration artifacts
(Jones, 2018).

Iterative least-squares migration (LSM) represents an advanced variant of pre-stack
depth migration, where the subsurface reflectivity model (image) receives iterative up-
dates through an iterative migration-demigration cycle to converge towards an “ideal rep-
resentation” of the reflectivity model, aiming to mitigate the migration artifacts (Nemeth
et al., 1999). However, the convergence rate of LSM using a gradient descent approach
tends to be rather slow. It may require quite a few iterations to get higher accuracy due to
the band-limited nature of seismic data, making it a demanding computational effort.

Linearized LSM, where the forward problem is linearized through the Born approxi-
mation, aims to accelerate the convergence rate and achieve the highest possible accuracy
within the resolution power of the acquired seismic data. It minimizes S, a quadratic
function of δr∪,

S(δr∪) = 1

2

∫
ω

dω
∑

s
∥δds,ω− Js,ωδr∪∥2

2, (5.1)

with the minimizer (Lines and Treitel, 1984),

∂S

∂δr∪
= 0 → δr∪ =−

Re
{∫

ω
dω

∑
s

J†
s,ωδds,ω

}
Re

{∫
ω

dω
∑

s
J†

s,ωJs,ω

} , (5.2)

in which δr∪ is the upward reflectivity model perturbation vector, ω is an angular fre-
quency component, s means a shot, δd denotes the data residual vector, † means adjoint,
J stands for the partial derivatives of the modeled wavefield, known as the Jacobian matrix,
and J†J is known as the approximate Hessian matrix (Ha). The upward reflectivity model
can be then updated iteratively via r∪k+1 = r∪k +αkδr∪k , where k andα are the iteration num-
ber and the minimization step length, respectively. If one assumes that S is a quadratic
function of the δr∪ω (frequency-dependent reflectivity model perturbation), the minimizer
transforms to (Jang et al., 2009; Oh and Min, 2013),

δr∪ =−
∫
ω

dω δr∪ω =−
∫
ω

dω

Re
{∑

s
J†

s,ωδds,ω

}
Re

{∑
s

J†
s,ωJs,ω

} , (5.3)

in which, an effective deconvolution effect on the source signature is facilitated through
the sequential application of the denominator (approximate Hessian) to the gradient at
each frequency, compared to Equation 5.2.

Over time, the replacement of the denominator in Equations 5.2 and 5.3 (gradient
preconditioning) with cost-effective alternatives has been pursued by several researchers
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Table 5.1: Investigated approaches

Approach
Error

Function
Update

Equation
Denominator in the Update Equation Explanation

AP-c S(δr∪) 2
“Equation 27” in Plessix and Mulder (2004)

(i.e., diagonal approximation of Ha)
–

AP-1 S(δr∪ω) 3
depth-dependent version of

∑
s J†

s,ωJs,ω

(i.e., block-diagonal approximation of Ha)
–

AP-2 S(δr∪ω) 3
depth-dependent version of (

∑
s Js,ω)† ∑

s Js,ω

(i.e., block-diagonal approximation of Ha)

it includes monochromatic source
interference in the denominator to be

cheaper than the AP-1 approach

to ensure the computational efficiency of linearized LSM in large-scale applications
(e.g., Shin et al., 2001; Plessix and Mulder, 2004; Choi et al., 2008; Lu et al., 2018). In
the context of space-frequency linearized least-squares one-way wave-equation migra-
tion, which uses angle-independent reflection/transmission coefficients and involves
upward/downward wavefield extrapolation between virtual data levels within the medium
(Berkhout, 2014a), Abolhassani and Verschuur (2022) introduced a depth-dependent Ha.
They partition Ha into smaller operators, each capturing the correlation of partial deriva-
tive wavefields at identical depth levels. The depth-dependent approximate Hessian,
constructed and applied (along with its inverse) directly at each virtual data level within
the medium, efficiently reduces computational expenses. This efficiency arises because
the number of model parameters per virtual data level constitutes only a small frac-
tion of the total. Combined into a single matrix, these operators form a block-diagonal
approximation for Ha.

In this extended abstract, we initially compare three minimization approaches, as
listed in Table 5.1, using an “inverse-crime” scenario. Subsequently, given the similar
performance of AP-1 and AP-2, but with AP-2 being cheaper, we further compare AP-c
and AP-2 using a full-wavefield “non-inverse-crime” scenario. We end the paper with
conclusions.

5.2. THEORY
In LS-WEM, we use a space-frequency one-way wavefield extrapolation scheme called
primary-wavefield modeling (PWMod) (Berkhout, 2014b). This scheme models angle-
independent two-way primary reflection data, including reflection and transmission
effects,

p−
mod (z0,ω) =

1∑
m=N

L−
z0;zm︷ ︸︸ ︷[[m−1∏

n=1
W−

zn−1;zn
T− (zn)

]
W−

zm−1;zm

](
r∪ (zm)◦p+

mod (zm ,ω)
)

(5.4)

p+
mod (zm ,ω) =

[[ 1∏
n=m−1

W+
zn+1;zn

T+ (zn)
]

W+
z1;z0

]
s+ (z0,ω) , (5.5)

in which p−
mod (z0,ω) is the monochromatic upgoing wavefield modeled at z0, p+

mod

(
zm ,ω f

)
is the monochromatic downgoing wavefield modeled at zm , W−

zn−1;zn
is the upward phase-

shift extrapolation matrix-operator from zn to zn−1, W+
zn+1;zn

is the downward phase-shift
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extrapolation matrix-operator from zn to zn+1, r∪ (zm) represents the angle-independent
upward reflectivity vector-operator at zm , T± (zn) denotes the downward/upward trans-
mission diagonal-matrix-operator

(
T± (zn) = I±diag(r∪ (zn)

)
, s+

(
z0,ω f

)
shows the monochro-

matic downgoing physical source at the Earth’s surface, N is the total number of virtual
depth levels, and the symbol ◦ means element-wise product.

Compared to PWMod, FWMod (full-wavefield modeling) takes into account the multi-
ple scattering by replacing Equation 5.5 with (Berkhout, 2014b),

P+
mod (zm ,ω) =

N∑
m=1

L+
zm ;z0

(
s+ (z0,ω)+ r∩ (zm)◦p−

mod (zm ,ω)
)

, (5.6)

where r∩ (zm) is the angle-independent downward reflectivity vector-operator at zm with
r∩ =−r∪. Now, running the recursive summation in Equation 5.4 for multiple iterations
results in multiple scattering.

In the introduction, we outlined three minimization approaches for linearized least-
squares one-way wave-equation migration, listed in Table 5.1, to be examined and com-
pared in this study, namely AP-c, AP-1, and AP-2, where AP stands for amplitude preserved.
The nominator in all update equations (“gradient”) for a pair of source and frequency
components and a given depth level (zm) reads,

gs (zm ,ω) = Re
{(

p+
mod,s (zm ,ω)

)∗
◦

back-propagated wavefield︷ ︸︸ ︷(
L−†

z0;zm
δd−

s (ω)
) }

, (5.7)

where ∗ denotes the complex conjugate transpose.
To calculate the denominators for AP-c, AP-1, and AP-2, the only absent component

is the Jacobian matrix. Abolhassani and Verschuur (2022) presented the expression of
Js (zm ,ω) as,

Js (zm ,ω) =
[

p+
1 mod,s

(
zm ,ω f

)
L−
∗,1z0;zm

p+
2 mod,s

(
zm ,ω f

)
L−
∗,2z0;zm

. . . p+
nx mod,s

(
zm ,ω f

)
L−
∗,nx z0;zm

]
,

(5.8)

in which L−
∗, j z0;zm

denotes the j th column of L−
z0;zm

, j denotes the lateral location of a

model parameter at zm , nx denotes the number of model parameters at zm .

5.3. NUMERICAL EXAMPLES
In the first example, our true model is a section of the BP 2004 model, including gas clouds.
To enhance the model, we introduce three point diffractors to the model, as shown in
Figure 5.1. The model consists of a grid with 351 × 326 points in both horizontal and
vertical directions. On top of the model, we have positioned 51 shot points with a spacing
of 175 meters. For each shot, 351 receivers spaced 25 meters apart record reflection data.
The source function used in this example is a Ricker wavelet with a dominant frequency of
10 Hz. Our forward modeling tool for generating the observed dataset is PWMod, i.e., only
primaries, applied on the true model (“inverse-crime” scenario), with a recording time
of 4.092 seconds. Employing an accurate migration velocity model (without diffractors),
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Figure 5.3: Wedge model: True density

we evaluate and compare AP-c, AP-1, and AP-2. Figures 5.2a, 5.2b, and 5.2c compare the
results after 5 iterations.

AP-1 and AP-2 outperform AP-c in resolution and amplitude preservation. Figure
5.2c highlights significant disparities. Notably, interference between neighboring mono-
frequency sources in AP-2 doesn’t degrade the image. Figure 5.2d confirms the faster
convergence of AP-1 and AP-2 over AP-c. Given the similar performance of AP-1 and AP-2,
the second example exclusively compares AP-2 with AP-c, as AP-2 is cheaper than AP-1
due to requiring fewer matrix-matrix multiplications.

In the second example, we use a density-driven wedge model (Figure 5.3) with alter-
nating reflection coefficients (r∪ =±0.1), where the true velocity model is a homogeneous
velocity of 2000 m/s. Acoustic finite-difference modeling with a 1 m grid and a 15 Hz
Ricker wavelet generates observed reflection data. For 2.92 s, 401 receivers, planted on
top of the model, at 10 m spacing record 31 shots at 120 m spacing from 200 m to 3800 m,
triggered sequentially on top of the model. For inversion, with the same source-receiver
setup and the true homogeneous velocity model, FWMod with a 10 m horizontal grid
and a 4 m vertical grid models the reflection data in each iteration (non-inverse-crime
scenario). With this experimental setup, we evaluate and compare AP-c and AP-2. Figure
5.4 displays the estimated images after 5 and 10 iterations.

As seen in Figure 5.4, AP-2 exhibits superior resolution and significantly better-
preserved amplitudes in half the iterations of AP-c. Once again, and now in a non-inverse-
crime scenario, we observe that the interference between adjacent mono-frequency
sources in AP-2 doesn’t degrade the image. Figure 5.5 depicts the data residual of AP-c
and AP-2 after 10 iterations for selected sources. It confirms that AP-2 reaches smaller
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data errors (faster convergence in terms of iterations).

5.4. CONCLUSIONS
This study highlights the notable impact of the depth-dependent approximate Hessian in
large-scale linearized least-squares migration, with AP-2 distinguishing itself in resolution
power and amplitude perseverance. The example with “non-inverse-crime” scenario
pinpoints the convergence benefit (in terms of iterations) of AP-2 over AP-c, achieving
superior images and less data errors in half the iterations. The resistance of AP-2 to
the interference between sources adds further to its appeal. These findings make clear
the potential of the depth-dependent approximate Hessian to enhance seismic imaging,
fostering improved subsurface characterization and interpretation.
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6
JOINT EWI AND ORWI VIA THE

SUBSPACE GRADIENT METHOD

“Shoot for the moon. Even if you miss, you’ll land among the stars.”

– NORMAN VINCENT PEALE

The successful application of deep full waveform inversion relies on the availability of
broadband and 360◦ seismic data. However, acquiring such data can be infeasible. Reflec-
tion waveform inversion was born to sample deep targets with short-offset seismic reflection
data via model scale separation. In Chapter 1, we explored the complementary characteris-
tics of transmission and transmission-after-reflection wavepaths. While the transmission
wavepath samples mostly vertical low local model wavenumbers, the transmission-after-
reflection wavepaths sample mostly horizontal low local model wavenumbers. To benefit
from both and retrieve a broadband subsurface model, in this chapter, we propose to com-
bine early-arrival waveform inversion (EWI) and one-way reflection waveform inversion
(ORWI) using the subspace gradient method.

6.1. INTRODUCTION
Almost all continuous linear inverse problems in geophysics have the general form of
(Hansen, 1998) ∫

Ω
input× systemdΩ= output, (6.1)

where the output (data) is given, and the input (model/solution) is unknown. Continuous
inverse problems in geophysics are almost always a subset of ill-posed problems (Ka-
banikhin, 2011) in the sense of Hadamard (1902). After discretization, the discrete form of
the problem inherits the quality of being ill-posed, i.e., it transforms to a discrete ill-posed

147



6

148 6. JOINT EWI AND ORWI VIA THE SUBSPACE GRADIENT METHOD

problem. For instance, if the solution to the continuous inverse problem lacks stability,
its discrete counterpart inherits this instability, manifesting as an ill-conditioned system
operator. Alternatively, in cases where the solution to the continuous inverse problem is
not unique, its discrete counterpart inherits this non-uniqueness, manifesting as a rank-
deficient system operator. Indeed, non-uniqueness spans a range from ill-conditioning
to singularity in discrete ill-posed problems. Note that non-uniqueness may also occur
when the system operator displays rank deficiency, attributed to computational “machin-
ery,” including floating-point and finite-precision arithmetic systems used in the digital
world (Hansen, 1998).

To tackle a non-unique inverse problem, we need to restrict the solution space, en-
suring a unique solution. This process, known as regularization, can be implemented in
various ways (Jackson, 1979), such as adding a positivity constraint, using a good reference
solution, looking for a desired degree of smoothness or sparseness of the solution, or
adding more geophysical observations to the problem through joint inversion methods.
Different approaches to classical geophysical joint inversion are illustrated in Figure 6.1
(Stefano et al., 2011; Dell’Aversana, 2014; Moorkamp et al., 2016). While multi-physics
joint inversion relies on multiple geophysical datasets, each sensitive to a different model
parameter, single-physics joint inversion relies on multiple geophysical datasets, all sensi-
tive to one model parameter, such as P-wave velocity. Their complementary nature helps
mitigate non-uniqueness, thereby enhancing the model reconstruction.

Figure 6.1: Different types of geophysical joint inversion.

In Chapter 1, we examined the sampling pattern of various wavepaths within the
FWI gradient. We observed that these patterns do not intersect; rather, they show a
complementary nature. Specifically, the transmission wavepath—constructed by div-
ing and refracted or early-arrival energies—samples low vertical local model wavenum-
bers for P-wave velocity. On the other hand, the pair of transmission-after-reflection
wavepaths—constructed by reflected energies—samples low horizontal local model
wavenumbers for P-wave velocity. This observation explains the potential advantage
of a joint inversion incorporating both reflected and early-arrival waveforms.

Several studies have explored the effectiveness of incorporating early-arrival waveform
inversion (EWI) and reflection waveform inversion (RWI) in one inversion framework.
This incorporation aims to guide the search direction, facilitating the retrieval of a wide
low local-model-wavenumber spectrum for the P-wave velocity model. Notable among
these studies are the works of Zhou et al. (2015), Wu and Alkhalifah (2015), and Davydenko
and Verschuur (2019), where, the objective function is considered as a weighted sum of
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early-arrival and reflection data. Moreover, a version of simultaneous EWI-ORWI was also
proposed by Davydenko and Verschuur (2020), where the total gradient is considered as a
weighted sum of the EWI (gdiv) and ORWI (grefl) gradients via constant scalars

gtot = (1−θ) gdiv +θ grefl, where θ ∈ [0,1]. (6.2)

Davydenko and Verschuur (2020) examine their proposed gradient (Equation 6.2)
using a true velocity model including a positive velocity contrast within the model that
generates diving waves (Figure 6.2a). Observed and modeled data are generated using
a finite-difference technique with a free-surface boundary condition. They examine
the proposed gradient with three different sets of weights. At first, by setting the ORWI
gradient weight to zero, exclusively activating EWI, the proposed gradient reaches a local
minimum compared to the true velocity model (See Figure 6.3a). Second, by setting the
EWI gradient weight to zero, exclusive activation of ORWI, the proposed gradient reaches
another local minimum in comparison to the true velocity model (see Figure 6.3b). Third,
by giving equal weights to the EWI and ORWI gradients, where both EWI and ORWI
are active with equal importance, the proposed gradient reaches a desired minimum
compared to the true velocity model (See Figure 6.3c). The results suggest that joint
EWI-ORWI shows promise, yet further improvement may be achieved by automatically
assigning optimized weights to the gradients.

This chapter will investigate the potential application of the subspace gradient method
in single-physics joint inversion between reflected and early-arrival waveforms (joint
EWI-ORWI), both sensitive to P-wave velocity, to achieve better model reconstruction.

6.2. SUBSPACE GRADIENT METHOD
In the subspace gradient method, initially introduced by Kennett et al. (1988), the idea is to
limit the model perturbation to our chosen subspaces. To do so, the model perturbation
is written as a linear combination of a couple of basis vectors

δm =
nb∑
j=1

δθ j a( j ), (6.3)

where δθ j is the coefficient for the basis vector a( j ) and nb is the number of basis vectors.
Ordering the basis vectors in a matrix called the projection matrix (A) whose columns are
the basis vectors gives the following:

A =



a(1)
1 a(2)

1 . . . a(nb)
1

a(1)
2 a(2)

2

... a(nb)
2

...
...

. . .
...

a(1)
nm

a(2)
nm

. . . a(nb)
nm


nm×nb

. (6.4)

In geophysics, nonlinear inverse problems are often simplified by implicitly assum-
ing that the forward modeling operator behaves linearly in the vicinity of the current
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model parameter vector. This enables the objective function (E) to be approximated as a
quadratic function (EQ ) around the current model parameter vector (mc ) using a Taylor
series expansion:

EQ (mc +δm) = E (mc )+gTδm+ 1

2
δmT Hδm, (6.5)

where g and H are the gradient and Hessian of the objective function, respectively, and T
denotes the matrix transpose operator. Replacing the model perturbation in Equation 6.5
with Equation 6.3 gives

EQ

(
mc +

nb∑
j=1

δθ j a( j )

)
= E (mc )+

nb∑
j=1

δθ j gT a( j ) + 1

2

nb∑
j=1

nm∑
k=1

δθ jδθk a(k)T Ha( j ). (6.6)

Instead of minimizing the quadratic approximation of the objective function with
respect to the current model, if the objective function is minimized with respect to the
coefficients of the basis vectors (first-order optimality condition)

∂EQ

∂δθ j
= 0 → δθ =−(

AT HA
)−1

AT g, (6.7)

where δθ is called the coefficient perturbation vector.
To back project into the initial model domain, it suffices to apply the projection matrix

on the coefficient perturbation vector (Equation 6.3)

δm =−A
(
AT HA

)−1
AT g. (6.8)

6.3. JOINT EWI AND ORWI USING THE SUBSPACE GRADIENT

METHOD
To bring the simultaneous EWI-ORWI in the framework of the subspace approach, the
objective function is defined as a function of two basis coefficients, one corresponding to
the reflection data and one corresponding to the refraction/diving wave data

E
(
δθdiv,δθrefl

)= 1

2

∥∥∥dobs
div −dmod

div

∥∥∥2

2
+ 1

2

∥∥∥dobs
refl −dmod

refl

∥∥∥2

2
, (6.9)

where dobs
refl and dmod

refl denote the observed and modeled reflection data vectors, respec-

tively, and dobs
div and dmod

div denote the observed and modeled refraction/diving wave data
vectors, respectively.

Following the objective function introduced in Equation 6.9, the total gradient vector
reads

[g]nm×1 = gdiv +grefl, (6.10)

where nm represents the number of model parameters for inversion.
After defining the projection matrix as

A = [
gdiv grefl

]
nm×2 , (6.11)
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the coefficient perturbation vector (δθ) is given by

δθ =

 δθdiv

δθrefl

=−

 gT
divHdiv div gdiv gT

divHdiv refl grefl

gT
reflHrefl div gdiv gT

reflHrefl refl grefl


−1

2×2

AT g. (6.12)

Replacing the Hessian matrices (H) in Equation 6.12 with identity matrices yields

δθ ≈−

 gT
div gdiv gT

div grefl

gT
ref gdiv gT

refl grefl


−1

2×2

 gT
div g

gT
refl g


2×1

, (6.13)

that could be solved iteratively through conjugate gradient (CG) iterations.
Referring to Equation 6.13, one can infer that the quest for a search direction in the

subspace simultaneous EWI-ORWI is conducted within a plane defined by the introduced
basis vectors. In this process, at each iteration, two suitable weights of the basis vectors
are combined, aiming to minimize the unified objective function. In the subspace ap-
proach, after acquiring the necessary basis vectors, a Gram-Schmidt orthogonalization
process may be used to avoid inter-dependency (Rawlinson and Sambridge, 2003). The
basis vectors can also be extended to account for potential leakage between gradient
components (Geng et al., 2020).

The prospect of this methodology seems bright, as its goal is to reconstruct a broad-
band subsurface model through a strategic combination of the strengths of EWI and ORWI
technologies, thereby effectively mitigating the individual limitations of each (highlighted
in Chapter 1). The innovative aspect of this approach lies in its ability to pinpoint specific
subsurface areas where both technologies can collaborate synergistically, maximizing
their combined potential for greater performance.

6.4. CONCLUSION
As the sampling of high-reflective wavenumbers nonlinearly depends on sampling low-
propagative wavenumbers, it is essential to estimate them accurately first. The simul-
taneous EWI-ORWI approach with equal weights for both EWI and ORWI gradients is
effective, but it could be improved significantly by the subspace approach, where two
proper weights, rather than two constant weights, are estimated for the basis vectors to
estimate a minimizer at each iteration.
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7
CONCLUSIONS AND

RECOMMENDATIONS

“Every exit is an entry somewhere else.”

– TOM STOPPARD

7.1. CONCLUSIONS
As the main conclusion, it can be stated that one-way reflection waveform inversion
(ORWI) or any waveform inversion scheme embodying transmission-after-reflection
wavepaths, demands considerable care in order to achieve an optimal background veloc-
ity model of the subsurface. Despite its conceptual appeal, ORWI faces several limitations,
including low-resolution images with unpreserved amplitudes, low-resolution tomo-
graphic wavepaths, imprint of inconsistent reflectivity and velocity models, and cycle
skipping in long-offset tomography data. The aim of Chapters 2, 3, 4, and 5 was to address
these limitations that hinder the effectiveness of ORWI.

Chapter 2 introduced a cost-effective preconditioned least-squares wave-equation
migration (PLS-WEM) algorithm for high-resolution seismic imaging. By leveraging a one-
way wavefield extrapolation technique, PLS-WEM decomposes and reduces the linear
Hessian operator (also known as the approximate or Gauss-Newton Hessian operator)
for the entire medium into multiple smaller sub-operators, each relevant to a specific
virtual depth level within the medium. Specifically, PLS-WEM extracts and inverts the
diagonal blocks of the mono-frequency Gauss-Newton Hessian operator to precondition
their respective mono-frequency gradients. Chapter 2 demonstrated how the proposed
depth-dependent preconditioners effectively deconvolve the seismic source signature
from the reflectors while preserving the reflector amplitudes.
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Chapter 2 also discussed how PLS-WEM could improve tomography in ORWI. This
is because ORWI relies on migrated reflectors for its tomographic updates, so a higher-
resolution, amplitude-preserved image is expected to yield more accurate and consistent
tomograms. Chapter 3 confirmed this discussion. In the ORWI context, Chapter 3 demon-
strated that generating strong, in-phase transmission-after-reflection wavepaths relies on
mapping reflectors with the truest possible amplitude and highest possible resolution,
considering inaccuracies in the background velocity model. This chapter addressed the
issue of inconsistent reflectivity and velocity models by muting short-offset waveforms
in the residual data gathers for tomography. By muting these short-offset residuals, this
chapter adopted an extended migration offset (MEMO) instead of short offsets, thereby
mitigating limitations in reflection tomography related to poor signal-to-noise ratio and
inadequate illumination of the reflectors. Additionally, this chapter introduced a data-
selection algorithm to exclude the damaging effect of cycle-skipped long-offset data
from the tomographic gradient in ORWI. With all the introduced additions to ORWI, This
chapter finally verified the successful application of the proposed ORWI. It concluded
that, while in scenarios with non-complex layering (“flattish layers”) the proposed ORWI
reliably estimates final tomograms that closely mirror reality across all depth levels, cap-
turing details from shallow to deep, it may struggle to accurately estimate deep structures
in scenarios with complex layering (“extreme faulting”), despite the additional aids.

Chapter 4 transformed ORWI into a fully high-resolution yet computationally feasible
version (HR-ORWI), aiming to enhance the non-optimal background velocity updates
attributed to the resolution issue in both migration and tomography loops. This was
established after developing the required mathematical groundwork to incorporate the
depth-dependent preconditioning concept, which was introduced in Chapter 2 for migra-
tion, also for background velocity reconstruction. Chapter 4 concluded that HR-ORWI
equipped with all the additional aids proposed in Chapter 3, proves itself as a promising
tool for accurate reflection tomography from shallow to deep even in the case of extreme
faulting (structural complexity) in the medium.

Chapter 5 investigated the effectiveness of depth-dependent gradient preconditioning
in the context of least-squares wave-equation migration through different update equa-
tions: conventional (AP-c), free of interference between neighboring mono-frequency
sources (AP-1), and including interference between neighboring mono-frequency sources
(AP-2). Chapter 5 revealed the appeal of AP-2 through two numerical examples. It showed
that while AP-1 and AP-2 converge faster in iterations and exhibit superior resolution
compared to AP-c, AP-2 provides equal image quality as AP-1 at a lower computational
time cost due to requiring fewer matrix-matrix multiplications.

Both vertical and horizontal model wavenumbers are essential to construct a broad-
band subsurface model. While the early-arrival waveform inversion (EWI) technique
mostly samples vertical low local model wavenumbers, ORWI mostly samples horizontal
low local model wavenumbers. As a result, Chapter 6 presented a math foundation using
the subspace gradient method to combine EWI and ORWI for optimal outcomes, to be
validated in future studies.

7.2. RECOMMENDATIONS
Further research is recommended to gain a deeper understanding of the following points.
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7.2.1. GRADIENT PRECONDITIONING AND MULTIPLE SCATTERING
While better-focused reflectors were expected to improve the modeling of multiple scat-
tering and lead to reduced cross-talk noise, the full-wavefield migration experiment in
Chapter 2 only yielded minor cross-talk noise reductions. We attributed the underperfor-
mance to the following factors:

• Preconditioning could indeed act as a double-edged sword in the case of full-
wavefield migration. It enhances resolution for both real and ghost reflectors in
modeling, yet this enhancement may result in conflicts between the two during
relevant data fitting, potentially leading to a local minimum.

• The resonant wedge experiment is highly nonlinear.

• FWMod has convergence problems with spatially inhomogeneous media (Mc-
Maken, 1986).

It is recommended to conduct additional investigations to quantify the contribution
of each factor and determine the main driver of underperformance.

7.2.2. MODEL-BASED REGULARIZATION IN ORWI
In this study, we chose not to include any model-based regularization in our tomog-
raphy misfit function. However, evidence suggests that incorporating such regulariza-
tion, particularly a structure-oriented approach guided by the reflectivity model, could
steer the tomographic updates positively (Masaya and Verschuur, 2018; Yao et al., 2019;
Provenzano et al., 2023). Therefore, exploring and demonstrating this potential benefit is
recommended.

7.2.3. IMPRINT OF INCONSISTENT REFLECTIVITY AND VELOCITY MODELS IN

ORWI
Our proposed solution for handling the imprint of inconsistent reflectivity and velocity
models in ORWI (due to the neglect of reflectivity-velocity coupling) averagely attenuates
the imprint but may not be optimal. As a potential improvement, training a deep learn-
ing model is recommended for effectively learning this task. Additionally, three other
approaches have been proposed in the literature to address the imprint of inconsistent
reflectivity and velocity models in RWI: simultaneous inversion of reflectivity and velocity
(e.g., Wu and Alkhalifah, 2015), ensuring arrival-time consistency in the data by taking into
account the coupling effect in the RWI gradient (Valensi and Baina, 2021), and pseudo-
time domain RWI (e.g., Qu et al., 2020; Provenzano et al., 2023). Given the availability
of pseudo-time ORWI within the Delphi research group as an in-house technology (Qu
et al., 2020), it is worth investigating how adopting this approach could enhance the
effectiveness and overall convergence of HR-ORWI.

7.2.4. INVERSE-CRIME ORWI VERSUS ORWI WITH FD DATA
A comparative study on various synthetic examples, ranging from “flattish” to “extreme
faulting” layering, “weak” to “strong” multiple scattering, and “weak” to “strong” AVO
effect between an inverse-crime ORWI and ORWI with finite-difference observed data
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is recommended. This study will offer valuable insights into the discrepancies of ORWI
when explaining finite-difference observed data. Furthermore, through validating ORWI
with field data and comparing the outcomes with insights from synthetic examples
based on finite-difference observed data, we can further deepen our understanding of
its performance. This will not only aid in refining the ORWI technology but also serve as
a blueprint for future research and development efforts aimed at optimizing ORWI and
PWMod/FWMod for improved subsurface imaging and exploration.

7.2.5. APPLICATION TO FIELD DATA
Studying the application of the proposed technologies to field data is crucial for several
reasons. First, HR-ORWI or PLS-WEM cannot directly model amplitude variation with
offset (AVO) due to their reliance on angle-independent reflectivities. Pre-processing
steps, as recommended by Qu and Verschuur (2021), are essential to mitigate the AVO
effect before applying PLS-WEM or HR-ORWI. Second, ensuring accurate estimation of
the source signature signal in real-world data applications is crucial for maintaining high
imaging resolution and tomographic accuracy when using depth-dependent precondi-
tioners. Third, another challenge with field data is the potential presence of anisotropy
and the Q-effect. Accounting for anisotropy and the Q-effect in PLS-WEM and HR-ORWI,
whether forward or inverse-wise, enhances our capability to explain such complexities in
real-world seismic data (Alshuhail and Verschuur, 2019; Safari and Verschuur, 2023).

7.2.6. 3D IMPLEMENTATION OF HR-ORWI
We believe that expanding HR-ORWI to a 3D scenario, where wavefields are observed
along both inline and crossline directions, is feasible. In this case, the Hessian approx-
imation matrix for the entire medium takes the form of a 3D block-diagonal matrix.
Each block, relevant to a specific virtual data plane, contains non-zero elements centered
around main diagonals in three directions, resulting in a 3D band-diagonal matrix for each
virtual data plane. While it is acknowledged that working in 3D requires significantly more
resources in terms of computing power compared to 2D, advancements in computing
technology make it increasingly viable to tackle such computational challenges. More-
over, with the growing demand for higher-resolution subsurface imaging, the benefits of
transitioning to a 3D framework outweigh the associated resource requirements.

7.2.7. COMBINING EWI AND ORWI FOR OPTIMAL OUTCOMES
According to Chapter 6, future research is advised to validate the joint EWI-ORWI frame-
work proposed through the subspace gradient method. This approach aims to develop a
broadband subsurface model with proper gradient weighting, where EWI targets vertical
model wavenumbers and ORWI targets horizontal ones.
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