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The individual time trial as an optimal
control problem

Jenny de Jong1, Robbert Fokkink2, Geert Jan Olsder2 and AL Schwab3

Abstract
In a cycling time trial, the rider needs to distribute his power output optimally to minimize the time between start and
finish. Mathematically, this is an optimal control problem. Even for a straight and flat course, its solution is non-trivial and
involves a singular control, which corresponds to a power that is slightly above the aerobic level. The rider must start at
full anaerobic power to reach an optimal speed and maintain that speed for the rest of the course. If the course is flat
but not straight, then the speed at which the rider can round the bends becomes crucial.
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Introduction

The individual time trial is a road bicycle race, in which
cyclists race alone against the clock. We use mathemati-
cal tools to determine the optimal pacing strategy of a
cyclist in such an individual time trial, for which we
have a relatively flat and short course in mind. The
opening stage of the Giro d’Italia (Figure 1) – the pro-
logue – through the city of Apeldoorn in 2016 is a good
example. The course of a prologue can be divided into
a number of relatively straight segments between bends,
which the rider can round only at a limited speed. We
study the optimal pacing on the straight segments as a
mathematical optimal control problem. We consider
the speeds at the bends as fixed external conditions,
which appear in our differential equations as initial
conditions. Determining the optimal speed in a bend is
a challenging problem, which deserves further studies.

The problem of finding the optimal pacing strategy
for a straight course has been studied before, see, for
example, De Koning et al.1 and Underwood and Jermy.2

These studies compared a finite number of pacing strate-
gies and selected the best strategy by numerical compu-
tation. In our considerations, we allow all possible
pacing strategies and select the optimal strategy using
Pontryagin’s maximum principle.3, 4 We have summar-
ized our results previously.5 This paper is an extended
version, which contains the full analysis.

The mathematical model

We model the rider as a point mass moving on the
line from start to finish in minimal time. The rider’s

force F counterbalances the resisting forces, which are:
the air resistance FA, slope resistance FS, rolling resis-
tance FR, and bump resistance FB. The air resistance is
given by FA =KA(v+ vw)

2, where v is the velocity of
the rider, vw is the velocity of the wind, and KA is a
drag coefficient. The slope resistance is FS =mg sin(u),
where g is the gravitational acceleration and u is the
angle of inclination (tan(u) is the slope). The rolling
resistance is FR =mgCR, where CR is the resistance
coefficient. The excess force of F minus the resisting
forces will accelerate the rider, or decelerate him when
the excess is negative. Facc =mea, where me is the effec-
tive mass, which slightly exceeds the mass of the rider
plus bike, m, to account for the kinetic energy of the
bicycle’s rotating wheels. This all adds up to

F=KA(v+ vw)
2 +mg(s+CR)+mea

The rider’s power is equal to u(t)=F(t)v(t), where F(t)
is the force and v(t) is the velocity. If we substitute the
expression for F into u(t)=F(t)v(t), we obtain a differ-
ential equation, known as the power equation6
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u(t)= KA(v(t)+ vw)
2 +mg(s+CR)+me

dv(t)

dt

� �
v(t)

To simplify the mathematical details of our analysis, we
assume that there is no headwind. The equation thus
reduces to

u(t)= c1v(t)
2 + c2 + c3

dv(t)

dt

� �
v(t)

In this equation, the constants c1 and c3 are positive.

Aerobic and anaerobic power

The precise measurement of a cyclist’s power remains a
topic of research7 and there exist many biomechanical
models to describe it. We adopt the model of Monod
and Schrerrer.8 An athlete produces power from aero-
bic sources, which can be sustained for a long time, and
anaerobic sources, which run out quickly and are used
to reach the peak power. In the model of Monod and
Scherrer,8 the power output varies between a critical
power level, CP, which can last for a time longer than
the race and a peak power level umax, which can only
last for a short time. In our model, we do not allow for
recovery. The anaerobic reserve cannot be recharged if
the rider spends some time at a power below CP. We
assume that the excess power u(t)� CP is limited,
depending on the athlete’s qualities, but we make no
further assumptions. Thus, we arrive at the optimal
control problem of minimizing the total time T of the
time trial, under the constraints that

Ð T
0 u(t)� CP dt is

constant, that CP4u(t)4umax, and that the solution
v(t) of the power equation satisfies

Ð T
0 v(t)dt=L, where

L is the length of the circuit. This fits in the framework
of Pontryagin’s maximum principle.

The time trial control problem: three
levels of power

To apply Pontryagin’s maximum principle, it is conve-
nient to put the problem in a different, but mathemati-
cally equivalent form. Minimizing the final time over a
fixed distance is mathematically equivalent to maximiz-
ing the final distance over a fixed time Tf. This leads to
the following optimal control problem, which turns out
to be very similar to Goddard’s problem in rocket sci-
ence, as treated by Dmitruk and Samylovskiy9

max
CP4u(t)4umax

ðTf

0

v(t) dt

subject to the constraints

dx

dt
= v(t)

dv

dt
=

u(t)

c3v(t)
� c1v(t)

2

c3
� c2
c3

da

dt
= u(t)� CP

2
6666664

with boundary conditions x(0)=0, v(0)=a . 0,
a(0)=0, a(Tf)=W. Note that we require that the ini-
tial velocity v(0) is positive (but arbitrarily small), to
avoid a singularity in the second constraint at time
zero. We can now apply the maximum principle, which
yields the Hamiltonian function

H(x, u, l)= v(t)+ l1(t)v(t)+ l2(t)

u(t)

c3v(t)
� c1v(t)

2

c3
� c2
c3

� �
+ l3(t)(u(t)� CP)

It is important to observe that this Hamiltonian is lin-
ear in u and therefore the optimal control u�– the opti-
mal power distribution of the athlete – satisfies

u�(t)=

CP if
l2(t)

v(t)
\ g

using if
l2(t)

v(t)
= g

umax if
l2(t)

v(t)
. g

2
6666664

where g : = � c3l3. The optimal power distribution
has three levels: the anaerobic peak level, umax, the aero-
bic long term level, CP, and an intermediate singular
power level, using. We will show that it is optimal to
switch back in power from peak to critical power and
to cross the critical level at g only once. It does not
seem possible to express g in physical terms. The para-
meter c3 is the effective mass of the rider, but l3 is a
multiplier, which is a purely mathematical variable.

Figure 1. The course of the Giro d’Italia Prologue 2016
consisted of nine relatively straight segments, with lengths
varying from 200 m to 2000 m. In a race like this, riders round
the bends at high speed and are willing to take risks. Prologue
specialists Jos van Emden and Stefan Küng slipped and fell in the
bend marked in red. The surprise runner up, Primož Roglič, has
a very good sense of balance. He used to be a ski jumper.
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The parameter g, which determines the switch
between the power levels, needs to be computed from a
system of differential equations. These equations con-
tain the constraints on the original problem and the
constraints

dli

dt
= � dH

dxi

where x1=x, x2 = v, x3 = a on the multipliers Yielding.

dx

dt
= v(t) x(0)=0 ð1Þ

dv

dt
=

u(t)

v(t)c3
� c1
c3

v(t)ð Þ2 � c2
c3

v(0)=a ð2Þ

da

dt
= u(t)� CP a(0)=0, a Tfð Þ=W

ð3Þ

dl1

dt
=0 l1 Tfð Þ=0 ð4Þ

dl2

dt
= � 1+ l1 �

l2(t)u(t)

c3 v(t)ð Þ2
� 2

c1
c3

l2(t)v(t)

 !

l2 Tfð Þ=0

ð5Þ

dl3

dt
=0 ð6Þ

Mathematical solution of the control
problem

Our analysis will show that the rider needs to go all out
at peak power at the start and aim for a velocity that
can be maintained at the intermediate singular power
level. Once the rider gets close to the finish, he can
switch back to the critical power level and the velocity
will slowly decay. Interestingly, this is entirely counter
to human psychology. Any athlete will go all out once
the finish line gets close. However, cold mathematical
logic dictates that this is excess power, which should
have been used earlier.

We need to make some straightforward assumptions
to carry out our analysis. We first state them in a legible
form before translating them into formulae.

(I) The trial is not too short. It is impossible to go all
out and maintain peak level for the entire trial.

(II) The course is not too steep. The critical power
level suffices to achieve a positive velocity.

(III) The rider does not start from a standstill. The ini-
tial velocity is positive, but small.

(IV) The rider is in shape. The anaerobic power level
is sufficiently high to get to a velocity that can be
maintained indefinitely at critical power.

We need to introduce some further notation to make
this precise. The rider can apply CP indefinitely and,
doing this, will be able to maintain a certain velocity.
We denote this cruising velocity vCP.

In control theory, starting at maximum power and
using it all up before switching back to minimum power
is called bang–bang control. In this terminology, the
optimal power distribution in an individual time trial is
bang–singular–bang.

If we translate our four assumptions into mathemati-
cal conditions, we get

(I) Tf . W
umax�CP . 0;

(II) c1 and c2 are such that vCP . 0;
(III) the initial velocity a satisfies 0\ a \ vCP;
(IV) the final velocity v(Tf) is at least equal to vCP.

We will show that the three levels of power in an opti-
mal pacing strategy correspond to three stages of the
velocity v:

� initial stage of peak power, when v increases above
vCP;

� middle stage of singular power, when v is constant;
� final stage of critical power, when v decreases but

remains above vCP.

The singular power level

We first consider the singular power level and assume
that

l2

v
= � c3l3

on a certain time interval. Both c3 and the multiplier l3

are constants. Differentiation gives

d

dt

l2

v

� �
=

v(t) dl2

dt (t)� l2(t)
dv
dt (t)

v(t)2
=0

Substituting equations (2) and (5) yields

d

dt

l2

v

� �
= � 1

v(t)
+3

c1
c3

l2(t)+
c2l2(t)

c3 v(t)ð Þ2
ð7Þ

On the time interval that we consider

l2

v
(t)= � c3l3 = g

hence

d

dt

l2

v

� �
=3

c1
c3

gv(t)+
c2
c3

g � 1

� �
1

v(t)
=0 ð8Þ
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It follows that the velocity v(t) remains constant under
singular power, if the gradient and the wind velocity are
stationary. To be precise, the velocity is equal to

v(t)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3

3c1g
� c2
3c1

r

Using equation (2), we find that the singular power
level is equal to

using =
(c3 +2c2g)

ffiffiffiffiffiffiffiffiffiffiffi
c3�c2g

c1g

q
3
ffiffiffi
3
p

g
ð9Þ

The singular power level corresponds to a constant
velocity. Now it seems clear that the rider needs to
accelerate until reaching this velocity and sustain it at
the singular power level. To prove that, we still need to
show that the ratio

l2(t)

v(t)

increases monotonically, and stays fixed at �c3l3 until
t is close to Tf.

It is optimal to finish at minimum power level

The variable v is equal to the velocity and is positive by
our assumptions. The multiplier l2 needs to be com-
puted from the differential equation, and it turns out to
be positive as well.

Lemma 1.

l2

v
. 0

Proof. We prove that l2(t). 0 if t\Tf. The boundary
condition in equation (6) prescribes l2 Tfð Þ=0. We
inspect the expression on the right-hand side of this
equation

� 1+ l1 �
l2(t)u(t)

c3(v(t))
2
� 2

c1
c3

l2(t)v(t)

� �

The control variate l1 is equal to zero by equation (5).
The boundary value is l2 Tfð Þ=0 and therefore
l02 Tfð Þ= � 1. It follows that l2 is strictly positive on a
final interval in ½0,Tf�. We need to argue that, in fact,
l2(t). 0 for the entire time interval. If this were not
the case, we would have l2(t)=0 for t\Tf. We may
take t to be the final time before Tf with this property.
Since l02(t)= � 1 we must have that l2 is strictly nega-
tive in between t and Tf, which contradicts that l2 is
strictly positive on a final interval. Therefore, this final
interval is the entire time interval.

Lemma 2.

l3 \ 0

Proof. This can be proved by contradiction. If l350,
then g = � c3l340. We have just seen that l2/v is pos-
itive, so is above the switching level g. The rider will go
at peak level all the way, which contradicts our
assumption I.

These two lemmas imply that an optimal pacing
strategy ends at the minimum power level CP, because
the switching level is positive and the ratio l2/v is zero
at Tf because of the boundary condition on l2.

Switching power in optimal pacing

We are considering a time trial in which all conditions
are equal along the entire course. If the rider exerts a
constant power in such a stationary terrain, he will
eventually reach a stationary speed that is independent
of his initial velocity. Mathematically, this follows from
the fact that the right-hand side of equation (3)

dv

dt
=

u(t)

v(t)c3
� c1
c3

v(t)ð Þ2 � c2
c3

has a unique value of v(t) that makes it zero, if u(t) is
constant. For each of our three levels of power, there
are corresponding stationary velocities vCP \ vsing
\ vmax. By our assumptions, the rider starts at a velo-
city below vCP, so even if he would be able to apply
peak power the entire time, he will never reach vmax.
Therefore, the velocity will increase whenever the rider
applies peak power. We already noticed that if the rider
applies the singular power level, then the velocity is
constant and is necessarily equal to vsing. To reach this
velocity, the rider needs to apply peak power first.

Knowing all this, it may now seem obvious that the
rider starts at peak power until vsing is reached and then
applies singular power until all the anaerobic energy
runs out. However, we still need to make this mathe-
matically precise.

Lemma 3. Suppose that t0\ t00 are consecutive times at
which the rider switches power. In particular

l2

v
(t0)=

l2

v
(t00)= g

and

l2

v
(t) 6¼ g

for all t0\ t\ t00. If the rider applies peak power in the
interval (t0, t00) then v(t00)4v(t0), and if the rider applies
critical power then v(t00)5v(t0).

Proof. We first assume that the rider applies peak
power between t# and t$. In this case

de Jong et al. 203



l2

v
. g

between t# and t$ assumes a maximum for some value
of t in this time interval. At a maximum of l2/v, the
right-hand side of equation (8) is equal to zero. More
specifically

3
c1
c3

gv(t)+
c2
c3

g � 1

� �
1

v(t)
=0

Since

3
c1
c3

gv(t)

is positive, we conclude that

c2
c3

g � 1

� �

is negative. It follows that

d

dt

l2

v

� �

increases with v. At time t0 we have that

d

dt

l2

v

� �
. 0

and at time t00 we have that

d

dt

l2

v

� �
\ 0

In other words, the velocity decreases at time t00 after
applying peak power. Clearly, this is nonsense.

If the rider applies critical power between t0 and t00

then all inequalities reverse, but the line of the argument
remains the same. In this case, the velocity increases at
time t00 after applying critical power. In principle, this
could happen if the rider applies critical power at the
start of the course, vCP. This is counter intuitive, but we
still need to rule it out.

Theorem 1. In an optimal pacing strategy, the rider
switches back in power.

Proof. We already know that the rider finishes at critical
power. What we need to prove now is that l2/v crosses
the critical level g only once. This may be a cross at a
single time, in which case the rider switches back from
peak power to critical power immediately, or it may be a
cross in a time interval. We already know that in this
case the rider maintains the constant velocity vsing.
We argue by contradiction and suppose that the ratio
l2/v crosses the critical level twice, or more. Crosses
always go in opposite directions, so one of these crosses

has to be from critical power to peak power. We know
that, in the end, the rider switches back to critical
power, so there must be a value of t0\ t00 such that

l2

v
t0ð Þ= l2

v
t00ð Þ= g

and

l2

v
(t). g

in between. By the previous lemma, the velocity would
then have decreased at t00 despite having applied peak
power, which is nonsense. The critical level g can only
be crossed once. By Assumption IV, the rider finishes
above vCP so the rider needs to apply at least singular
power. However, the rider can only apply singular
power at vsing and to get to that velocity, he first needs
to apply peak power. Therefore, the power crosses the
critical level exactly once.

Example

As an example, we consider a 5 km time trial with the
following parameters: initial velocity a=1m/s, total
energy W=20, 000 J, maximum power umax =800 W
and critical power CP=300 W, which is comparable
to the values of Atkinson and Brunskill.10 The con-
stants in the power equation are c1 = 0.128, c2 = 3.924
and c3 = 78. These parameters were computed from
c1 =0:5CdAr, where we set the product of the drag
coefficient and the frontal area equal to CdA=0:217
and r is air density; c2 =mg s+CRð Þ, where we take
slope s=0, CR =0:005 and c3 =m=78. These para-
meters are comparable to those of Wilson and
Papadopoulus,6 who recommend CR =0:002� 0:008
and CdA=0:32. The optimal pacing strategy depends
on the choice of the parameters, but the overall qualita-
tive picture remains the same. More results are con-
tained in De Jong.11

If the rider goes all out at maximum power, then W
is depleted after roughly 40 s and the rider has covered
approximately 1 km. For this relatively short time trial,
it is optimal to use up all anaerobic energy at peak level
before switching back to critical power. For a longer
trial of 5 km (Figure 2), it is optimal to switch back
through the singular power level. The rider sustains the
maximum power level for 10 s, reaching vsing of 13 m/s
and switches back to the singular power level. In the
final minute, he switches back to critical power and the
velocity decreases to vCP of 12m/s. This result is very
similar to the results of De Koning et al. [1] for short
trials, who found similar optimal velocity curves.

In Figure 3, the switching function l2/v, the value g

and the optimal control u* can be seen for this example.
The singular power cannot be computed in a

straightforward way. It can only be determined
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numerically. Our computations show that using
approaches umax in short trials and it approaches CP in
long trials.

Conclusions

Using only minimal assumptions, we have shown that
the optimal pacing strategy in an individual time trial
involves three levels of power. In an optimal pacing

strategy, the rider needs to go all out at the beginning
until he reaches a velocity that can be maintained for
almost the entire course. The peak power and the criti-
cal power are invariant, and only depend on the ath-
lete. The intermediate singular power level depends on
the terrain of the time trial, but can be computed
numerically.

In our computations, external variables such as wind
velocity and slope were constants. We have chosen sta-
tionary parameters to keep our computations simple
and transparent. It is possible to use variable wind velo-
city and slope. The computational effort remains the
same.

In our model of the rider’s power model, the anaero-
bic reserve cannot recharge. It is not straightforward to
extend our analysis to a power model that does allow
such a recharge. Our analysis of the three levels of
power has to be adapted; settling the mathematical
details will require further study. Our analysis only
applies to relatively short time trials.

In a short and flat time trial, it is crucial to round the
bends at the highest possible velocity. The optimal way
to round a bend in an individual time trial is important
and deserves further study.
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