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Abstract In a recent work Levine et al. (Ann Henri Poincaré 17:1677-1711, 2016.
https://doi.org/10.1007/s00023-015-0433-x) prove that the odometer function of a
divisible sandpile model on a finite graph can be expressed as a shifted discrete bilapla-
cian Gaussian field. For the discrete torus, they suggest the possibility that the scaling
limit of the odometer may be related to the continuum bilaplacian field. In this work
we show that in any dimension the rescaled odometer converges to the continuum
bilaplacian field on the unit torus.
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1 Introduction

The concept of self-organized criticality was introduced in Bak et al. [2] as a lattice
model with a fairly elementary dynamics. Despite its simplicity, this model exhibits
a very complex structure: the dynamics drives the system towards a stationary state
which shares several properties of equilibrium systems at the critical point, e.g. power
law decay of cluster sizes and of correlations of the height-variables. The model was
generalised by Dhar [5] in the so-called Abelian sandpile model (ASP). Since then, the
study of self-criticality has become popular in many fields of natural sciences, and we
refer the reader to Jarai [ 10] and Redig [20] for an overview on the subject. In particular,
several modifications of the ASP were introduced such as non-Abelian models, ASP
on different geometries, and continuum versions like the divisible sandpile treated in
Levine and Peres [ 15, 16]. We are interested in the latter one which is defined as follows.
By a graph G = (V, E) we indicate a connected, locally finite and undirected graph
with vertex set V and edge set E. By deg(x) we denote the number of neighbours
of x € V in E and we write “y ~y x” when (x, y) € E. A divisible sandpile
configuration on G is a function s : V. — R, where s(x) indicates a mass of particles
at site x. Note that here, unlike the ASP, s(x) is a real-valued (possibly negative)
number. If a vertex x € V satisfies s(x) > 1, it topples by keeping mass 1 for itself
and distributing the excess s(x) — 1 uniformly among its neighbours. At each discrete
time step, all unstable vertices topple simultaneously.

Given (0 (x))xey 1.i.d. standard Gaussians, we construct the divisible sandpile with
weights (o (x))yey by defining its initial configuration as

1
s@ =1+0@)——Y o(y). (1.1)

VI

As in many models of statistical mechanics, one is interested in defining a notion of
criticality here too.

Let ¢ (x) denote the total mass distributed by x before time 7 to any of its neigh-
bours. If e™ (x) 1 ey where ey : V — [0, +00], then ey is called the odometer of
s. We have the following dichotomy: either ey < +oo for all x € V (stabilization), or
ey = +oo for all x € V (explosion). It was shown in Levine et al. [17] that if s(x) is
assumed to be i.i.d. on an infinite graph which is vertex transitive, and if E[s(x)] > 1,
s does not stabilize, while stabilization occurs for E[s(x)] < 1. In the critical case
(E[s(x)] = 1) the situation is graph-dependent. For an infinite vertex transitive graph,
with E[s(x)] = 1 and 0 < Var(s(x)) < +oo then s almost surely does not stabilize.

For a finite connected graph, one can give quantitive estimates and representations
forey.Itis shownin Levineetal. [17, Proposition 1.3] that the odometer corresponding
to the density (1.1) on a finite graph V has distribution

(ev (x))rev < (n(x) - minn(z)>
zeV

xeV
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Scaling limit of the odometer in divisible sandpiles 831

where 7 is a “bilaplacian” centered Gaussian field with covariance

1
Eln()n(y)] = YT %g(x, w)g(w, y)
setting
1
8.y = n D g, y) (12)
zeV

and g°(x,y) = E [an;é ]l{smzy}] for S = (Syu)m=0 a simple random walk on V
starting at x and 7, := inf{m > 0 : §;, = z}. The field is called “bilaplacian” since a
straightforward computation shows that

> 1 (y) —
A ( R > gl wigw, y)) =60) — 7

weV

where A, denotes the graph Laplacian

Agf)= > f()—f(x). f:V—>R.

y~vx

Hence the covariance is related to the Green’s function of the discrete bilaplacian (or
biharmonic) operator.

The interplay between the odometer of the sandpile and the bilaplacian becomes
more evident in the observation made by Levine et al. on the odometer in V := ZJ,
the discrete torus of side length n > 0 in dimension d. They write (after the statement
of Proposition 1.3):

“We believe that if o is identically distributed with zero mean and finite variance,
then the odometer, after a suitable shift and rescaling, converges weakly as
n — 400 to the bilaplacian Gaussian field on RY”.

Note that, although they work with Gaussian weights in the proof of Proposition 1.3,
their comment comprises also the case when o has a more general distribution. Inspired
by the above remark, we determine the scaling limit of the odometer in d > 1 for
general i.i.d. weights: we show that indeed it equals E, the continuum bilaplacian,
but on the unit torus T¢ (see Theorems 1 and 2). A heuristic for the toric limit is that
the laplacian we consider is on Z‘,f , which can be seen as dilation of the discrete torus
TN (n~" Z)¢. We highlight that E is not a random variable, but a random distribution
living in an appropriate Sobolev space on T¢. There are several ways in which one
can represent such a field: a convenient one is to let E be a collection of centered
Gaussian random variables {(E, u) : u € H~'(T%)} with variance E [(E, u)?] =
llul|% |, where

Il = (u A’zu)
L2(T4)
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832 A. Cipriani et al.

and A2 now is the continuum bilaplacian operator. We will give the analytical back-
ground to this definition in Sect. 2.2. As a by-product of our proof, we are able to
determine the kernel of the continuum bilaplacian on the torus which, to the best of
the authors’ knowledge, is not explicitly stated in the literature.

Related work Scaling limits for sandpiles have already been investigated: in the ASP
literature limits for stable configurations have been studied, for example, in Levine
et al. [18] and Pegden and Smart [19]. Their works are concerned with the partial
differential equation that characterizes the scaling limit of the ASP in Z>. They
also provide an interesting explanation of the fractal structure which arises when
a large number of chips are placed at the origin and allowed to topple. The prop-
erties of the odometer play an important role in their analysis. In the literature of
divisible sandpiles models, the scaling limit of the odometer was determined for
an «a-stable divisible sandpile in Frémeta and Jara [6], who deal with a divisible
sandpile for which mass is distributed not only to nearest-neighbor sites, but also
to “far away” ones. Their limit is related to an obstacle problem for the truncated
fractional Laplacian. In the subsequent work Cipriani et al. [4], the authors of the
present paper extend the result to the case in which the assumption on the finite vari-
ance of the o’s is relaxed, and obtain an alpha-stable generalised field in the scaling
limit.

The discrete bilaplacian (also called membrane) model was introduced in Sakagawa
[23] and Kurt [11,12] for the box of 74 with zero boundary conditions. In d > 4 Sun
and Wu [27] and Lawler et al. [13] construct a discrete model for the bilaplacian field
by assigning random signs to each component of the uniform spanning forest of a
graph and study its scaling limit. As far as the authors know, Levine et al. [17] is the
first paper in which the discrete bilaplacian model has been considered with periodic
boundary conditions.

1.1 Main results

Notation We start with some preliminary notations which are needed throughout the
paper. Let T? be the d-dimensional torus, alternatively viewed as H%j oras[—1, %)d -
RY, ZZ = [-7, %]d N Z4 is the discrete torus of side-length n € N, and ij =
[—%, %]d Nn! Z)d is the discretization of T¢. Moreover let B(z, p) aball centered
at z of radius p > 0 in the £°°-metric. We will use throughout the notation z - w for the
Euclidean scalar product between z, w € R?. With || - |lec We mean the £%°-norm,
and with || - || the Euclidean norm. We will let C, ¢ be positive constants which may
change from line to line within the same equation. We define the Fourier transform of
a function u € L'(T9) as uQy) = de u(z)exp(—2mey-z)dzfory e Z%. We will
use the symbol ~ to denote also Fourier transforms on Zﬁf and R?. We will say that a
function f(n) = o (1) if lim,— o0 f(n) = 0.

We can now state our main theorem: we consider the piecewise interpolation of
the odometer on small boxes of radius ﬁ and show convergence to the continuum
bilaplacian field.
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Scaling limit of the odometer in divisible sandpiles 833

Theorem 1 (Scaling limit of the odometer for Gaussian weights) Let d > 1 and let
(0(x)),cpa be a collection of i.i.d. standard Gaussians. Let e,(-) := eya(-) be the

odometer on Zg associated to these weights. The formal field

E,(x) =472 Y 0T ey(n2) ILB(Z >(x), xeT? (1.3)

€1
* 2n
zeTd

converges in law asn — 400 to the bilaplacian field & on T¢. The convergence holds
in the Sobolev space H_.(T) with the topology induced by the norm || - 3¢, (xa) for

any € > max {1 + %, %} (see Sect. 2.2 for the analytic specifications).

The reason to impose € > max {1 + ‘Zl, %} is two-folded: on the one hand, it
ensures the tightness of E,, on the other it allows us to define the law of E prop-
erly (see the construction of abstract Wiener space in Sect. 2.2). Observe moreover
that max {1 + %, %} has a transition at d = 4, which is reminiscent of the phase
transition of the bilaplacian model on 74 (see for instance Kurt [12]).

We can now show the next Theorem, which generalises the previous one to the
case in which the weights have an arbitrary distribution with mean zero and finite
variance. We keep the proof separate from the Gaussian one, as the latter will allow
us to obtain precise results on the kernel of the bilaplacian, and has also a different
flavor. Moreover, the more general proof relies on estimates we obtain in the Gaussian
case. With a slight abuse of notation, we will define a field E,, as in Theorem 1 also
for weights which are not necessarily Gaussian (in the sequel, it will be clear from the
context to which weights we are referring to).

Theorem 2 (Scaling limit of the odometer for general weights) Assume (o (x)) e7d

is a collection of i.i.d. variables with E [c] = 0 and E [02] =1.Letd > 1 and e, (-)
be the corresponding odometer. If we define the formal field 2, as in (1.3) for such
weights, then it converges in law as n — +00 to the bilaplacian field & on T¢. The
convergence holds in the same fashion of Theorem 1.

We now give an explicit description of the covariance structure of Z. Our motiva-
tion is also a comparison with the whole-space bilaplacian field already treated in
the literature. More precisely, for d > 5, Sun and Wu [27, Definition 3] define the
bilaplacian field Zq on R? as the unique distribution on (Cfo(Rd ))* such that, for all

u € CXRY), (€4, u)is a centered Gaussian variable with variance

ar uf’| = //RR u(u(y)lx - ylI*4 dxdy.

Since we obtain a limiting field on T¢, we think it is interesting to give a representation
for the covariance kernel of the biharmonic operator in our setting. From now on, when
we use the terminology “zero average” for a function u, we always mean de u(x)d
x =0.

R

E|f
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834 A. Cipriani et al.

Theorem 3 (Kernel of the biharmonic operator in higher dimensions) Let d > 5. Let
furthermore u € C* (T9) and with zero average. Then there exists G € Ll(Rd) such

that
E [(E u)z] = (u, A_2u>
L2(T9)

= //dew u(z)u(z) Z Gaz—7 +w)dzdz. (1.4)

wezd

Ga can be computed as follows: there exists hy € C ©(RY) depending on d such that
a (d—4 _
gd(»:n“—zr(T)n-u“ ot ha(). (1.5)

Remark 1 (Kernel of the biharmonic operator in lower dimensions) The convergence
result of Theorem 2 allows us to determine the kernel in d < 3 too. In fact, for such
d interchanging sum and integrals is possible, so that we can write

i _ aw)? _ : Ndad s
(0 a7) 0= 2 W_//Mwu(z)u(z K(z—2)dzdZ, (1.6)

veZd \{0}
where we can define the kernel of the bilaplacian to be

, eZM(z—z’)~v , 4
K(Z—Z)Z= Z W, z, 7 e T¢.
vezZd \{0}

Outline of the articleThe necessary theoretical background is given in Sect. 2, together
with an outline of the strategy of the proof of Theorem 1. Auxiliary results and estimates
are provided in Sect. 3. The proof of Theorem 1 lies in Sect. 4, and of Theorem 2 in
Sect. 5. Finally we conclude with the proof of Theorem 3 in Sect. 6.

2 Preliminaries

In this section we review the basics of the spectral theory of the Laplacian on the
discrete torus from Levine et al. [17]. We also remind the fundamentals of abstract
Wiener spaces which enable us to construct standard Gaussian random variables on a
Sobolev space on T¢. The presentation is inspired by Silvestri [25]. We also comment
on the basic strategy of the proof of Theorem 1 and make some important remarks on
the test functions we use for our calculations. We refer for the Fourier analytic details
used in this article to Stein and Weiss [26] and for a survey on random distributions
to Gel’fand and Vilenkin [7].
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Scaling limit of the odometer in divisible sandpiles 835

2.1 Fourier analysis on the torus

We now recall a few facts about the eigenvalues of the Laplacian from Levine et al.
[17] for completeness. Consider the Hilbert space L> (ZZ) of complex valued functions
on the discrete torus endowed with the inner product

1 -
(f8)=—3 > f)g).

XEZZ

The Pontryagin dual group of fo is identified again with fo. Let {¢, : a € Zz}
denote the characters of the group where v/, (x) = exp(2mex - 7). The eigenvalues of
the Laplacian A on discrete tori are given by

d
hp==4Y sin? (), wezd.
n
i=1

Recalling (1.2), we use the shortcut g,(y) := g(y, x). Let gy denote the Fourier
transform of g,. It follows that

2O =n""> g =1L @1

yeZd

forall x e Zg (it can be seen in several ways, for example by translation invariance,
that L is independent of x). Finally, we recall Levine et al. [17, Equation (20)]: for all
a #0,

hagrl@) = =2dn~ Yo (x). 2.2)

2.2 Gaussian variables on homogeneous Sobolev spaces on the torus

Since our conjectured scaling limit is a random distribution, we think it is important to
keep the article self-contained and give a brief overview of analytic definitions needed
to construct the limit in an appropriate functional space. Our presentation is based on
Sheffield [24, Section 2] and Silvestri [25, Sections 6.1, 6.2].

An abstract Wiener space (AWS) is a triple (H, B, i), where:

(1) (H, (-, -)g) is a Hilbert space,

(2) (B, |l - ) is the Banach space completion of H with respect to the measurable
norm || - || g on H, equipped with the Borel o-algebra B induced by || - || g, and

(3) p is the unique Borel probability measure on (B, B) such that, if B* denotes the
dual space of B, then p o ¢~ ~ N(0, ||<$||%1) for all ¢ € B*, where 5 is the
unique element of H such that ¢ (h) = (Eg, h)yy forallh € H.

We remark that, in order to construct a measurable norm || - || on H, it suffices to
find a Hilbert—Schmidt operator T on H, and set || - ||p := ||T - ||g-
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836 A. Cipriani et al.

Let us construct then an appropriate AWS. Choose a € R. Let us define the operator
(—A)“ acting on L?(T%)-functions u with Fourier series D opezd u(v)e, () as follows
((ey) cza denotes the Fourier basis of L2(T9)y):

A DY awe, | @)= Y vIFawe, ).

vezd veZ4 \{0}

Let “~” be the equivalence relation on C°°(T%) which identifies two functions dif-
fering by a constant and let H*(T%) be the Hilbert space completion of C*(T¢)/~
under the norm

(fr®ai= D IWI*FW)EW).

vezd \{0}

Define the Hilbert space
Hy = {u € LA(T9) : (—A)u € Lz(Td)} J~.
We equip H, with the norm
e, pay = ((8)u, (=28)u) 12 pa) -

In fact, (—A)™“ provides a Hilbert space isomorphism between H, and H¢ (T9),
which when needed we identify. For

b d 2.3)
<a-—— .
4

one shows that (—A)?~4 is a Hilbert—Schmidt operator on H* (cf. also Silvestri [25,
Proposition 5]). In our case, we will be setting a := —1. Therefore, by (2.3), for any
—e := b < 0 which satisfies € > 1 + %, we have that (H™', H_,, U—¢) is an AWS.
The measure (1 is the unique Gaussian law on H_, whose characteristic functional

is
2
D (u) :=exp (— ”M!_l> .

The field associated to ® will be called E and is the limiting field claimed in Theorem 1.

There is a perhaps more explicit description of E which is based on Gaussian
Hilbert spaces [9, Chapter 1]. The construction is taken from Janson [9, Exam-
ple 1.25]. Let (2, A, P) be a probability space with A its Borel o -algebra. Assume
that on €2 one can define a sequence of i.i.d. standard Gaussians (X;;,)en. Let further
(X,n)men be an orthonormal basis of H ~!(T¢). Then there is an isometric embedding
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Scaling limit of the odometer in divisible sandpiles 837

2 . H-'(T9) < L2(Q, P) such that (2, X,,) < X,, for all m. Indeed, by the
properties of AWS, the mapping (H ™ ¢)* > ¢ — (E, ¢) is an isometry of the dense
subspace (H™¢)* onto § := {(E, uy: ue (H_E)*}. The mapping can be extended
by continuity to an isometry between H ! and the corresponding closure of S. Tak-
ing Q := H_. and P := u_, this entails an alternative construction of E: it is the

unique Gaussian process indexed by H~! such that & 4 {(E, u): ue H_I(Td)}
with (8, u) ~ N (0, |ull?,) for any u € H=1(T9).

2.3 Strategy of the proof of Theorem 1

Firstly, we show that n can be decomposed into the sum of two independent fields,
namely

Proposition 4 There exist a centered Gaussian field (xx),.yd¢ With covariance
Elxxxyl = H(x, y) as in (3.3) and a centered normal random variable Y with vari-
ance (2d)~*n? L? (where L is as in (2.1)), such that Y is independent from () gezd
and

NN ezt £ O+ X)yeg-

In particular, e, (-) admits the representation

d .
(e”(x))er:‘; = <Xx — min XZ) .
erg

d
7€l

This decomposition is similar in spirit to the one in the proof of Levine et al. [17,
Proposition 1.3], but we stress that the random fields we find are different. The proof
of the above Proposition can be found in Sect. 3.1. As a consequence, to achieve
Theorem 1 it will suffice to determine the scaling limit of the x field, because test
functions have zero average, and hence we can get rid of the minimum appearing in
the odometer representation. We will therefore show

(P1) (L(E,)),en is tight in the space H_.(T%) where —e < —%.

(P2) From the above tightness result, there exists a subsequential scaling limit
B = limy_, 4 o 8y, for the convergence in law in the space H _.. The proof is
complete once we show this limit is unique: by Ledoux and Talagrand [14, Sec-
tion 2.1], it suffices to prove that, for all mean-zero test functions u € C* (']I‘d),

lim E [exp (L (Ep, u))] = @ (u),

n

where the RHS is the characteristic function of E. We will calculate the limit
of the second moment of (&, u) directly in d < 3 and through a mollifying
procedure in d > 4.
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838 A. Cipriani et al.

This will conclude the proof. Since the “finite dimensional” convergence is somewhat
more interesting, we will defer the tightness proof to Sect. 4.2 and show (P2) in
Sect. 4.1.

A note on test functions By the above construction, the set of test functions we will
consider is the set of smooth functions C°(T¢) with zero mean. We need to stress at
this juncture an important remark: C (T%) does not correspond to the class of continuous
functions on [—%, %)d, but only to functions which remain continuous on R? when
extended by periodicity. Similar comments apply to C*°(T¢) functions. See also Stein
and Weiss [26, Section 1, Chapter VII] for further discussions. Therefore, when we
consider u : RY — R which is periodic and belongs to C*°, we consider its restriction
to [—%, %)d while computing its integral on T¢.

3 Auxiliary results

In this section we provide a proof of Proposition 4. The result helps us tackle the sin-
gularity arising from the zero eigenvalue of A, and will also reduce the determination
of the scaling limit to finding the scaling limit of (xx),c7d-

3.1 Proof of Proposition 4

Proof First, observe that, by Parseval’s identity on the discrete torus, we can write the
covariance of the Gaussian field (7(x)) ,cza as
n

Eln@nml=Qd)> ) gz, 0g, y)

zeZﬂ
= Q)7 n'G 050 + ) ! Y @& @, G

zeZd\(0}

First observe that using the description of g(x, y) in terms of the simple random walk
(Sm)m=0 on Zﬁ we derive

GO =" g M=n"Y 3N PSu=y,m<1)

yeZs yeZd zezd m=0

=n_2d2 Z ZPX(Sm=y,m<Tz)

ze2d yezd \{z) m=0

=n Z Z Po(r, >m) =n"2¢ Z Exlz]. (3.2

zezd m=0 zeZ8
One can notice that g, (0) is independent of x by translation invariance. Hence we

get that the first term in the left-hand side of (3.1) is a constant equal to (2d) 2n?L?
having set L := n— > gezd E.[7,]. As for the contribution from other sites,
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Scaling limit of the odometer in divisible sandpiles 839

exp (—2mx . %) exp (zmy . %)

e Y a5 Ead Y T
Z

ze2d\(0} zeZ4\{0}

Define a centered Gaussian field (x), .7« With covariance given by

- exp(2mi(y — x) - )

n
H(x,y) = —
16 > ) —5
2€Zy \{0) (Zf’zl sin’ (”fz—’))

(3.3)

The field associated to H is well-defined and in fact H is positive definite. To see this,
given a function c : Z;f — C one has that ZX’yEZd H(x, y)c(x)c(y) = 0. Indeed,

_ pd 2r(y —x)- % .
Y H@ewem =" Y Y FRCTO =9 0) (e
x,yezd x,yeZd zeZd \(0) (Z?:l sin’ (nzn_l)

—d

== Y @I =0,

z€24\{0)

where d(z) := erzif exp(—2mix - %)(Zle sin?(w %))_%(x). Hence it turns out
that (17(x)), oz has the same distribution as (Y + x1), .z« Where Y is a Gaussian
random Variablne with mean zero and variance (2d )_QndL2 irnldependent of the field .
To conclude, note that the odometer function satisfies e, (x) 4 n(x) —min,_ ezd n(z) 4

X = MN__pd X O

4 Proof of Theorem 1

We recall that it will suffice to prove the two properties (P1) and (P2) to achieve the
Theorem. We first use to our advantage the fact that the test functions we consider
have zero average, hence we can get rid of the minimum term which appears in the
definition of the odometer. Let us recall the field in (1.3)

En() =472 0T ey (n2) Lo )

d
zeT4

We define a linear functional on C*°(T¢) by setting

(En, u) == /11*01 42n Z ]lB<z’ ﬁ)(x)en(nz) u(x)dx.

d
zeT4
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840 A. Cipriani et al.

However using Proposition 4, and the fact that # has zero mean, one sees that

(Bj, u) =472 Zn 2 an/ 1 u(x)dx

zeTd Bz 2;)
— 472 Z n - <m1n xw>/ u(x)dx
weZd B(z,5-)
ZET”[ 2n
2 —
=45 Z nz an/ | u(x)dx = (8}, u)
z€Td Bz 2)

letting

E;() = 4x? Z ”%an HB(Z, ﬁ>()

zeTé

By the theory of Gaussian Hilbert spaces of Sect. 2.2, E, = &/, in distribution. Hence

in the sequel we will, with a slight abuse of notation, consider Z/, but denote it simply
as &y, since the law of the two fields is the same. We are now ready to begin with
(P2).

4.1 Proof of (P2)

Overview of the proof We have just seen that

d—4
(B, u) = 472 Z nTan/ 1 u(x)dx.

2eTd B o)

We now replace the integral over the ball above by the value at its center and gather
the remaining error term. More precisely we get

d—4 d—
4r? Z nT)(,,Z/ 1 u(x)dx = 47? Z n%xnzn_d/ 1 ndu(x)dx
B(Z»ﬁ)

zeTd B30 zeTd
d—4
= 45?2 Z nTann_du(z)
zeTd
d—
4 Z n e ([ atuedx - uo
e )
g4
=470 Y snctt(@) + Ruw).
zeTd
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Scaling limit of the odometer in divisible sandpiles 841

Here the remainder R, (1) is defined by

R, (u) := 47> Z nd%x,lzn_d </ 1 nfu(x)dx — u(z))
B(z, E)

d
zeTq

=470 Y A Ka(2) .1
where using that the volume of B(z, ﬁ) is n~4 we have

Kn(z) := / nlux)dx —u(z) =n? [f (u(x) — u(2)) dxi| . 4.2
B(z, 2) B(z, 2)

We observe that using the above decomposition one can split the variance of (E,, u)
as

E[(En, u)2]=16n4n_(d+4) 3 M(Z)M(Z/)E[an)(nz’]+E[Rn(u)2]

/ d
z,7/€Ty

+47%E | 0T Y @)z Ra)

d
ZETH

To deal with the convergence of the above terms we need two propositions. The first
one shows that the first term yields the required limiting variance.

Proposition 5 In the notation of this Section,

16z Tim =@ Y u(2)u(e )l xne]

n——+0o
z,7/€Td
= 167* lim n~ @+ Z u(@QuYH (nz, nz/)
n—-+00
z,7eTd
2
= llullZ;.

The second Proposition says the remainder term is small.
Proposition 6 In the notations of this Section, lim,_, 1 oo R,(u) = 0 in L2

Then an application of the Cauchy-Schwarz inequality will allow us to deduce that

lim E[(8. 0] = i,

n——+00

and the condition (P2) will be ensured. We give the proof of Proposition 5, which is
the core of our argument, in Sect. 4.1.1 and of Proposition 6 in Sect. 4.1.2.
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4.1.1 Proof of Proposition 5

Before we begin our proof we would like to prove a bound which would be crucial in
estimating the eigenvalues of the Laplacian on the discrete torus. This lemma will be
used later for other parts of the proof too.

Lemma 7 There exists ¢ > 0 such that for alln € N and w € ZZ \{0} we have

-2
1 e\
||nw||4 : (Zsm G )> - (IInwll2+n_2> )

Proof We consider

S ()£t (540)

with 0] := Twin~! € [—m/2, w/2]1\{0}. This gives the left-hand side of (4.3).
Moreover

. 2
2 d 2.2 (TTWi d 2.2 S‘“(Qz’n) 4 2
lmwl® =" n?sin (T)=§ win® (1= (=) | = Clwi‘n
i=1 i

i=1

because 0 < 1 — sinz(x)x_2 < C x? for some C > 0. In this way

1 1wl = 3 n? sin® ()
> n2sin? () ll7r wl|? > n2sin? (Z2) |rw)?
C 4 -2
< —— |'|u;|| :w» - (4.4)
Yo n?sin® (51 |rw|
Considering that, for x € [—m /2, /2], sin? ()c))c_2 S [4/712, 1], one gets that
d TW;
3 n? sin? (—) > 4wl 4.5)
i=1 "
which plugged into (4.4) gives that
1 1 < p—2
Y4 n2sin? (Z2)  fwwl* T
for C > 0, thus (4.3) is proven. O
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Remark 2 The equation (4.5) is not enough to obtain sharp asymptotics for
Zf.l:l n? sin? (rw;i/n) as n — oo. On the other hand, we will use it in the sequel
while looking for a uniform lower bound for the same quantity for all w # 0.

We begin with the proof of Proposition 5. Let u : T¢ — R be a smooth function
with zero mean. Define u,, : Zz — Ras u,(z) := u($). Note that

16740 2dpd—* Z M(Z)U(Z/)E[anan’]

z,7/€Td
= 167*n~ 2?4 Z u()u(z)H(nz,nz')
2, 7/€Z8
o expQri(z —7) - w
i D DI I CO RN P Ak L P
d s 2 (Tw; 2
2, 7/€Td weZd \{0) (Zi:l s (T‘))

To show the above expression converges it is enough to consider the convergence of

i ey Y SR z) W) @.7)

lw]*
z,7/€Td weZd \{0})

This can be justified by showing that (4.6) can be bounded above and below appro-
priately by (4.7). Now observing that

n— Z u(uz) expRui(z — ') - w) = i (w)|*> > 0 (4.8)

z,7/€Td

the lower bound of (4.3) immediately gives

iy —2d—4 Z w(2)u(z') Z exp2ri(z —2') - w)

d in2 (Wi 2
2, 7€ weZd \(0) (Zi:l sin (T))
- expri(z —2) - w)
=n ) w@uE) ) wl® '
z,7/€Td weZd \{0}

For the upper bound, using the bound in (4.3) we get

gin~2d4 Z u(2)u(z) Z eXp(2miz = 7) - w)

d s 2 (Wi 2
z,2/€TY weZg \{0} (Zi:l Sin (T))
1 c\?
4 —2d / !
<7m'n u(z)u exp(Rmi(z — -w — ] .
< Y u@uE) Y expmiz—2) )(”nw”ernz)
z,7/€Td weZd \{0}
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Now we expand the square: the first term gives the correct upper bound as in (4.7) and
the other two terms are negligible. In fact we show firstly that

. _od - expmi(z — ') - w)
nEI—Poo on Zdn ? Z M(Z)M(Z/) Z ||w||2 =0
z,7/€Td weZd \{0}

Using (4.8) and Parseval’s identity we get

cn~2p=2 Z u()u(z’) Z expemiz —2) - w)

2
w
z,2/€Td weZj \(0} ol
1
-2 ~ 2
=cn Z W|Mn(w)|
weZd \{0}
lwi=1 —~ _ —~
< o Y )P <en™ Y i (w)l?
weZd \{0}) weZd
-2 —d w |2 -2 —da 2
=cn “n Z ‘u (—)‘ =cn n Z [u(w)|
n
weZd weTq

Since =Y pa lu(w)> — [ralu(w)]>dw < +00 we get that the second term
n .
converges to zero. Note that the same computation shows

n N u@uE@) Y expQuiz =) wy<a ™t (a7 Y uw)l* .

z,7/€Td weZd \(0}) weTd
which again goes to zero as n — 4-00. So this shows that we can from now on

concentrate on showing the convergence of (4.7). We split now our proof, according
to whetherd <3 ord > 4.

The case d < 3 In the first case, the argument is more straightforward: we rewrite

— —4 —d . —d, ) _ ’
@n= > lwl L,z > nu@expQmiz-w) Y ) exp(=2miz’ - w).
weZ4 \{0} zeTd Z/eTd

Since Zzeﬂl‘ﬁ n~%u(z) exp(2miz- w) is bounded above uniformly in 1, and Y owezd \(0}
w]~* < +o00ind < 4, we can apply the dominated converge theorem and obtain

lim @7 = Y fwl|™* @w)* = ul?,

n——+00
weZ4\ {0}

which concludes the proof of (P2) for d < 3.
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The case d > 4 Here it is necessary to think of another strategy since Zwezd lw]~*
is not finite. Let¢ € S (Rd), the Schwartz space, be a mollifier supported on [— %, %)d
with fRd ¢(x)dx = 1 and let ¢ (x) := K’dqb(f) for x > 0. It is a classical result
[22, Theorem 7.22] that for § = 0, 1, 2 ... there exists A > 0 (depending on x and
&) such that

|<137c(w)| <A+ w7 (4.9)

Now to show the convergence of (4.7) is equivalent to considering

lim lim n~%¢ Z u()u(z) Z (z;(w)eXp(Zm(z—z)-w)

RECPLS IR
z,7/€Td weZd \{0}

since we claim that

expQri(z —z7)-w)
lw]*

lim lim sup n—>¢ Z u(2)u(z) Z (cj/),:(w)—l)

k=0 400
z,7/€Td weZd \{0}

(4.10)

Indeed, using the fact that fRd ¢ (x)dx = 1 we have
G —1]= [ g -ifay.
Exploiting the fact that | exp(2mix) — 1|> = 4sin(rx) and | sin(x)| < |x| we obtain
e (w) — 1] = Cxljw] fRd IyI9 () dy < Cxllwl 411)

due to the fact that ¢ is supported on [— %, %)d . Recalling u,, (z) = u(;;) and plugging
the estimate (4.11) in (4.10) we get that

S
Y % 3 u@uE)exp@uiz —2) - w)
weZd \{0) z,2/€T]

<Ce Y w7 i w)? . @.12)
weZi \(0)

Using |jw]| > 1 we have

Yool lmP < Y lm@)F < Y i)

weZd \ (0} weZd \{0} weZd
2
= Y () = ’
=n u\— =n u(w
" lu(w)|
weZd weTy
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where we have used Parseval’s identity. We observe then that

be(w) — 1
lim sup |n =24 E % E u(2)u(?)expQui(z —7') - w)
n—+00 y flwll d
weZd \{0} 2. 2/€Td

< Ckllull? s pay < +00.

(T)

Taking the limit k — O in the previous expression we deduce the claim (4.10). Now
we have to derive the limit of the following expression:

n~2d Z u(z)u(z') Z &;(w)exp(Zm(z”—A‘z)-w). (4.13)

w
z,7/€Td weZd \(0}) I
Since (ﬁ,\( has a fast decay at infinity, and

lim n¢ Z u(z) exp(2miz - w) = u(w)

n—-+00
zeTd

we can apply the dominated convergence theorem to obtain

~ 2 -7’
im 272 Y uwue) Y ¢K(w)exp( 7z ”41) w)

n—+00 [|w
z,7/€Td weZd \{0})

~ 12
_ Z q;x(w)lu(w)I.

4
w

The bound |q§,:(~)| < 1 can be used to obtain a bound uniform in x on the right-
hand side of the above expression: consequently we apply the dominated convergence
letting k — 0 to achieve

lim lim n~% Z u(@)u(z) Z @(w)eXP(ZNL(Z—Z)-w)

k—0n—>+o00 ||w||4
z,7€Td weZd \{0}
~ 12
[t(w)] 2
= > - =lul?,.
lwl]

weZ4 \{0}
This concludes the proof of Proposition 5.
4.1.2 Proof on the remainder: Proposition 6

We owe the reader now the last proofs on R, (see (4.1)). First we state the following

Lemma 8 There exists a constant C > 0 such that sup e | K, (2)| < cnl.
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Proof Using the mean value theoremasu € C (T4 we get that, for some ¢ € (0, 1),
K@l=nt [ - u@ldx
B(z57)

Snd/ IVu(ex + (1 —)2)| Iz — x| d x
B(z, 2n)

d u oo (d
<C— ||Vu(cx+(1—c)z)||dx<C””4T).
2n ( )
*2n
Since [|Vu|l oo (ray < +00 the claim follows. O

We reprise now the proof on the limit of R, (u).
Proof of Proposition 6 We first compute E [ R, (u)?] obtaining

E [Rn(u)2] = 167*n2 3" nHH (nz, nZ) Ka (@)K, (2)

z,7/€Td

(45) 2 .
2 Z Z exp( 7”(2 _ Z') - w) K, (K, (Z/)

z,7/€T¢ weZd \ {0}

<n Z Z expri(z — ) - w) Ky (2) Ky ()

2,2/ €T¢ weZd \{0}

since |Jw| > 1.Letting K, (x) := K (jz—‘), thanks to Lemma 8 we have that the previous
expression is equal to

Y. KwK,w) < Y KWk, w)

weZgi \{0) wezd
=13 K K@) < Kyl gy < Cn2
weZ;{
This shows immediately that R, (1) converges in L to 0. O

We are then done with the proof of (P2) on page 7.

4.2 Tightness: proof of (P1)

We proceed to prove tightness. Before that, we must introduce a fundamental result:
Rellich’s theorem.

Theorem 9 (Rellich’s theorem) If ki < ko the inclusion operator H**(T¢) —
H*\(T?) is a compact linear operator. In particular for any radius R > 0, the closed
ball By . (0, R) is compact in H_.

“z
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Sketch of the proof The proofis readily adapted from the one in Roe [21, Theorem 5.8].
Let w > 0 be arbitrarily small. Let B be the unit ball of H*2(T?). We quotient then the
space H*2(T?) by the subspace Z := {f : f(v) =0 for ||v] > N} with N = N(w)
large enough so that || flly, < @ for f € B N Z. The unitary ball in H* /7 is
then compact and thus can be covered by finitely many w-balls, giving a finite 2w-
covering of balls for B in the H*!-norm as well. This shows the inclusion operator is
compact.

We take k1 := —€ and kp := —%. By the definitions in Sect. 2.2, there is a Hilbert
space isomorphism between H(T¢) and H,(T%). Applying the above observation,
we get the result. O

Proof of tightness Choose —e < —%. Observe that

”En”iz(']rd) = 167T4nd_4 Z (an — min Xw) (Xny - m%}i Xw)
we

d
weZ
X, yeTﬁ{ n n

is a. s. finite, for fixed n, being a finite combination of Gaussian variables and their
minimum. Hence &, € L2(T%) C H_(T%) a. s. By Rellich’s theorem it will suffice
to find, for all § > 0, a R = R(§) > 0 such that

supP (I1lly_, = R) <8.

neN

LY

A consequence of Markov’s inequality is that such an R(§) can be found as long as
we show that for some C > 0

sup E [nann%1 } <C.
neN 2

Since 8, € L2, itadmits a Fourier series representation 2, (9) = )_ c7d é\n(v)ev (©2)
with E,(v) = (Ep, €y)z2(r¢). Thus we can express

=22 —2¢ | 2
1Ball3 . = > 7> 2]
-2

vezZd \{0}
Observe that
— d—4
2,(v) = f (e, (1) dv = 47’ Z nTan/ e, (9)dv.
™ xeTd B(x, ﬁ)
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This gives

E[nann% ]
2

=167t Y > It 4E[anXny]/

vezd \{0} x, yeTd

=167 > > I Hn, ny)f ev(ﬁ)dz}’/ e d.
veZd \ {0} x, yeTd By 27)

ev(ﬁ)dﬁf e, (D) d
B(y, )

B(x, 5;)

(4.14)

Let us denote by F, , : T§ — R the function F, ,(x) := [p, 1 e()d. Since
e, € L2(T9), the Cauchy-Schwarz inequality implies that F,, , € L' (T¢).

Assume we can prove

Claim 10 There exists C' > 0 such that

sup sup > n“"H(nx, ny)F, oy () F, 0 (y) < C'. (4.15)

d
veZ nENx, yeTd

Using the above Claim and —e < —%, from (4.14) we get

[N

E|:||En||%{€:|=16714 DT i YD n Tt Hmx, ny)F () F ()

veZd \{0} x, yeTd
S C/deflfk S C
k>1
This concludes the proof, assuming Claim 10. O

We are then left to show the claim we have made:

Proof of Claim 10 First we use the bound (4.5) and the fact that

—_— —_ 2
> exp@rilr = ) - w) Py () Fry () = [ By ()| 0 =

x, yeTd
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to obtain

Y nT Hnx, ny)Fy v () Fy o ()
x, yeTd

pd—4,—d

2 —y)-
_ Z - Z expmi(x —y) w; Fr v OFD)
x,yeTq weZd \(0) (Zle sin? (7 %))

(45) Z Z expri(x —y) - w )n,v(x)m

x, yeT?d wezd \{0} i

(4.16)

Choose a mollifier ¢, as in the previous considerations (see below (6.1)). We rewrite
the expression in the right-hand side of (4.16) accordingly as

_~ 2 — .
c Z Z ¢K(w)eXP( TL(x —y) - w)

”w”4 Fn,v(x)Fn,v(Y)
x, yeT?¢ wezd \(0}

—~ 2 - . N
Y Y (1w 2 ”‘”(5)”4” 2 oy (). (17)
x, yeT¢ wezd \(0}

First we get a bound for the second term. Denote as G, , : Zﬁ — R the rescaled
function G, ,(2) 1= Fy, v(%). Now we have

c Z Z (1 B d;;(w)) expri(x —y) - w)

”w”4 Fn,v(x)Fn,v()’)
x, yeT?d wezd \{0)

¢K(w) PN
=C Z i Z Fy, U(Z)Fn,v(%) exp (Zm(x —y)- %)

weZd \{0} yezd

D> #Gn s Graw 2 cen 3 (G|
VTl

weZd

where in the last inequality we have used that ||w||

)
> 1 and ‘G,,,V(O)) > 0. The
description of G, ,, the fact that |F), ,(w)| < n—4

and Parseval give

3 \@,\v(w)\z =1 Y GGy w) =07 Y Fy () Fy ()

weZﬁ‘: weZd wETﬁ‘:
n 2y / ley ()] d D =n*2d/ ley ()| d D
e’]l"d B(w, 2n T¢

eyl 1 (pay < Cn~ (4.18)

@ Springer



Scaling limit of the odometer in divisible sandpiles 851

By means of (4.18) we get that

c > > (—dw) exp(zm(x”]y)‘w)Fn,v(an‘v(y)scfc. (4.19)

w
x, yeT¢ wezd \(0} |
We are back to bounding the first term in (4.17).

o~ 2 — . [
cY Y g ’”(:;”4” ) F (0T

Il
x, yeTd wezd \{0)

—~ 2 — . -
=Cc >y Y ¢K(w)eXp( ”‘(;'4” w)Fn,v(x)Fn,v(y)

Il
x, yeTd wez? \{0}

-~ 2 — . —
Y Y g ’”(x”4y) ) ) s ).

lw
x, YT weZd: |wlloo>n

Using (4.9) we obtain a bound on the second term as

—~ 2 — . -
Z Z ¢K(w)exp( 7”(-X||4 Y) w)Fn,v(x)Fn,v()’)

lw
x, YT weZd: |wloo>n

<C Z Z n_4|<5;(w)|

x, yeTd wezd: |wloo>n

Fn,v(x)Fn,u(y)

2
=c > e D] 1Fv@)
weZ4: ||w|so>n xeTd
- C Z ”ev“il('ﬂvd) - C (4 20)
- I+ lwp® = '

weZd: ||wlso>n
Finally (4.9) tells us that

—~ 2 — . P
Z Z ¢K(w)exp( T”(x”4 Y) w)Fn,v(x)Fn,v()’)

lw
x, yeTd wez \{0}

1 -
<C Z Z m Fu (X)) Fy v (y)

x, yeTd wezd

1
<C ) — —leliim <C (4.21)
EZ:[, (T wly®

where C possibly depends on k and §. Plugging in (4.15) the expressions (4.19), (4.20)
and (4.21) we can draw the required conclusion. O

This gives a proof of (P1) on page 7 and completes the proof of Theorem 1.
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5 Proof of Theorem 2

Strategy of the proof We will argue as in Theorem 1 and need thus to show both (P1)
and (P2). While (P2) will follow almost in the same way as in the Gaussian case, (P1)
will require a different approach. Firstly, we will need to remove constants in defining
ey so that we will end up working with a field depending only on linear combinations
of (o(x)),z4. Secondly, we will show in Sect. 5.1 that, for o bounded a. s., the
convergence to the bilaplacian field is ensured via the moment method. Lastly, we will
truncate the weights o atalevel R > 0 and show that the truncated field approximates
the original one.

Reduction to a bounded field We first recall some facts from Levine et al. [17]. Note
that odometer e,, satisfies
Agen(x) =1-s(x),

min, zd ey (z) =0.

Also if one defines

1
) =52 Y 86 NG =), (5.1)

d
XL,

then Ag (e, — v,)(z) = 0. Since any harmonic function on a finite connected graph
is constant, it follows from the proof of Proposition 1.3 of Levine et al. [17] that
the odometer has the following representation also in the case where the weights are
non-Gaussian:

e, (x) = v,(x) — min v, (2). 5.2)
zezd

Let us define the following functional: for any function #,, : Zfl — R set

= 42 a4 d
En, (X) =477 ) 1" hy(n2) HB(Z’%>(x), x e T

zeTd
Note that for u € C*(T%) such that de u(x)dx = 0 it follows immediately that
(Een, u) = (Evn, u)
Observe that

1
s —l=0() =23 o)

ez

and hence we have from (5.1)

1 1
) =25 D 8o = Y y) Y o).

xezd xezd zeZ8
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By (3.2) it follows that 2d) ™' > ;4 g(x,y) = @d)"'n™>" _,a Ey[7,] which is
independent of y. We can then say that

1
vn(y) = > Y gl yo@) —Cn Y o).

erﬁ zeZZ
If we call

w(y) = Qd)™" Y g(x, y)o(x),

erﬁ

by the mean-zero property of the test functions it follows that (&,,, u) = (Ey,. u).
Therefore we shall reduce ourselves to study the convergence of the field E,,,. To
determine its limit, we will first prove that all moments of &, converge to those of
E; via characteristic functions, we will show that the limit is uniquely determined by
moments.

5.1 Scaling limit with bounded weights

The goal of this Subsection is to determine the scaling limit for bounded weights,
namely to prove

Theorem 11 (Scaling limit for bounded weights) Assume (0 (x)),.c5a is a collection

of ii.d. variables with E[o] = 0 and E [02] = 1. Moreover assume there exists
K < 400 such that |o| < K almost surely. Let d > 1 and e, (-) be the corresponding
odometer. Then if we define the formal field E,, as in (1.3) for such i.i.d. weights, then
it converges in law as n — +00 to the bilaplacian field & on T%. The convergence
holds in the same fashion of Theorem 1.

Before showing this result, we must prove an auxiliary Lemma. It gives us a uniform
estimate in n on the Fourier series of the mean of « in a small ball.

Lemma 12 Fix u € C®(T9) with zero average. If we define
T, : ™ > R

z > u(y)dy
B(z, 3-)

and T, : fo — Ris defined as T,(z) =T, (%) , then for n large enough we can find
a constant M := M(d, u) < +oo such that

n Z 17.(2)| = M.

d
4V
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Proof For z € Z¢ we can write

~ 1
1) = (T, ¥2) = — 3 TV ()
yeZ,

! 1

yeZg yETg

(5.3)

Since u € C°°(T¢), one can take derive under the integral sign and get that 7, €
C(T9), so > cezd | Tn (z)‘ < 4-00. Hence by the Fourier inversion theorem we have

the following inversion formula to be valid for every y € T¢:

T,(y) = Y Ty(w)exp Q2miy - w).

wezd

First we split the sum above according to the norm of w and plug it in (5.3). Namely
we get

7.(2)

1
=7 2 T exp(=2miz - y)
yeTd

1 ~
= >0 Tu(w)expQmuw - y)exp(—2miz - y)

yeTd wezd

1 _
+n—dz > T(w)exp@muw - y)exp(—2miz-y).  (54)

yeTd weZ: |wlloo>n

Let us look at the first summation: using the orthogonality of the characters of LZ(ZZ)
we can write

nid Z Z To(w) exp2riw - y) exp(—271z - y)

yeTd wezd

_ nid Z T, (w) Z exp (2mw . %) exp (—2mz : %)

weZd yezd
1 —~~ —~~
d
=7 2 Twn' Ty—e = T,
weZﬁ

Noting that

. 1 1 1
LO)=— ) Tin=-—73), /B(y’zl»u(x)dx = n—dfwu(x)dx =0,

yeTyd yeTyd
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this means we need to show that ZZEZd \(0} |f1(z)| < C(d)n~?. We follow the
proof of Stein and Weiss [26, Corollary 1.9, Chapter VII]. For a multi-index o =
(a1, ..., 0g) € N4 and a point x = (x1, ..., Xq) € R? we set

a | | @j
X = X
J

and adopt the convention 0° = 1. We choose now a smoothness parameter ko > d.
For any o with |o| := a1 + - - - + g < ko we can find a constant ¢ = c(kg, d) such
that

> An?? = iz,

o la|=ko

Note that

1

2
Z |f1(z)| = Z \T;(Z)} Z 4272 ||z||_koc_%
Z€ZI\{0} 2e24\(0} a: lal=ko

2

| X mef X o) | X ) o

ze74\{0} a: |a|=ko z€Z8\{0}

Bl—

D=

Here we have used the Cauchy-Schwarz inequality in the last step. Now since
Zzezd \(0} Iz ||_2k0 < 400 we can compute a constant C such that
. n

Yo nal=c| Y T2 > ani
z€Zi\(0) €24 \(0) o lal=ko

1
2

scl X Y |hefar| . (5.5)

a:la|=ko ez

Let us call D the derivative with respect to «. Using the rule of derivation of Fourier
transforms [26, Chapter I, Theorem 1.8] and Parseval we have that

> T2 422> = /d | DT, ()] d x.

T
zez4

By the smoothness of u we deduce that

|DaTn(X)| < ||DaM||Loc(Td)/ ' dw = ||Dau||Loo(Td)(2n)_d (56)
B, 5-)

> 2n
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Plugging this estimate in (5.5) we get that

=

Yo h@P=cn ™| Y 1Dl

zeZg \{0) alerl=ko

This finally gives that

> @] = Clko. d. wyn™.
ze24\{0)

For the second summand of (5.4) observe that
/ DT, (w)e 2" dw = 2m12)* Ty (z), o € N?.
Td

The parameter o will be chosen later so that the second summand is of lower order
than the first. By (5.4) and (5.6)

277 D% oo pa)

and |z¢|

|Tn (Z)| =
We use this estimate to get

1 P ~
v Z Z T, (w)expmiw - y) exp(—2miz - y) < Z |T,,(w)|

yeTd wlloo>n wloo>n
100 yd—1
C(u, d, £ _ _
<L i a)z e = Clu, dy a)n - (1+O(” 1))
n
l=n

Thus choosing « with || > d we find a constant M = M (d, u) such that
> |T@)] = Mn
zeZﬁ
as we wanted to show. O

We can now start with the moment method, and we being with moment convergence.

Moment convergence We now show that all moments converge to those of the required
limiting distribution. This is explained in the following Proposition.

Proposition 13 Assume E[c] =0, E [02] = 1 and that there exists K < +00 such
that |o| < K almost surely. Then forallm > 1andallu € COO(']Td) with zero average,
the following limits hold:
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Q@m — D! ul™,, me2N

lim E[(8,,.u)"] = 5.7
n—~+00 [( tn ) ] 0, me2N+1. 67
Proof We will first show that the m = 2 case satisfies the claim.
Case m = 2 We have the equality
E[w, 0w, ()] = Q) > Y glx,y) Y g, y)Elo(x)o ().
xEZg x’eZﬂ
The independence of the weights gives
2
E[(8u, u)’] = 167"+ Z Y g, n)T(2)
xezd \zeTd
With the same argument of the proof of Proposition 4 one has
Qd)2 Y glx, g, y) =nL> + H(y,y') (5.8)
erﬁ
so that, using that test functions have zero average,
2
- 2
E[(cwn,u) ] = l6r* W Z D e, n)T(2)
xezd \zeTd
= 167"n"" Y H(nz, n)T,()T(2)
7,7/€Td
= 167404 Z H(nz,n7) u(x) dx/ u(xydx'.
2, 7eTd B(z. ) B, L)

Now we break the above sum into the following 3 sums (recall K, («) from (4.2)):

E [(Ewn, u)z] = 167*n?=* Z n 2 Hnz, n? u@)u()
z,7eTd
+ 167404 Z n"2 H(nz, nz ) K, (2)K,(2)
z,7/eTd
+ 327444 Z n_2dH(nZ,nZ/)Kn(Z)M(Z/)~

’ d
z,7/€Ty

A combination of Propositions 5 and 6 with the Cauchy-Schwarz inequality shows
that the first term converges to ||u||2_1 in the limit n — 400 and the other two go to
Zero.

Having concluded the case m = 2, we would like to see what the higher moments
look like. Let us take for example m = 3, in which case
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Y Elwmznwnz)wnz:)] Tz T(z) Th(z3)

d
71,22, 23€TY

271211"2;4 ’ 2 :
=<T> Z Z E HO’(.X]') ]_[g(xj, nz;j)Tn(z;)

21,22, 23€TY xq, x2, x3€Z¢ Jj=1 j=1

g(x, nz;)Tu(z;)

3 3
=1

Z Z E [03(x)] |

21,22, 23€T¢ xezd J

2 a5t 3
— <2n%2> E [03] YD gl n2)Ty(2)

xezd | zeTd

More generally, let us call P(n) the set of partitions of {1, ..., n} and as Pr(n) C
P(n) the set of pair partitions. We denote as IT a generic block of a partition P and
as |IT| its cardinality (for example, IT = {1, 2, 3} is a block of cardinality 3 of
P ={{1, 2, 3}, {4}} € P(4)). Observe that

. 272 d—4\ M m m
E[(Zu,, u) ]=<”T’“> > E|[Twetzp | [] Tz
14| J=l1 j=1

R

zd%‘t m
() 2 el B e

PeP(m) TP xezd \z;eTd: jen jell
]

Ele™] 3 | X sw. @] - 59

xezd \zeTd

I
—]
S

[\)
S
|38
S
T
I
SNS—
=

PeP(m) leP

For a fixed P, let us consider in the product over IT € P any term corresponding to a
block IT with |TT| = 1: this will give no contribution because o is centered. Consider
instead IT € P with £ := |I1| > 2. We see that

o d=an\ ¢
(2”+2> E["Z] DD et n) Tz

d d
xeZy \zeTy

2 i\ ¢
- <2ﬂ+2> E[o‘] YD s 9T

d d
X€Zy \z€ZLy
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Applying Parseval the above expression equals

d—a\ ¢ 12
<MT> E['] X | Y &0he
xeZy zezd
14
NGRS )ZE["@] 2 wf;x)fz(z) : (5.10)

xezd \zezZd \{0}

Here we have used that ’ZA;(O) = 0. Thanks to the fact that —A, > Cn 2 uniformly
over 7 € fo \{0} (see (4.5)) we obtain

2, 44\ ¢
(hT’”) E[e'] 3| X st n0T)

xezd \zeTd
14
< CE[o']n ¥+ ¥ 1T@l] - (5.11)

ze2d\(0}

Since o is almost surely bounded, by Lemma 12 we can conclude that eachtermin (5.9)

corresponding to a block of cardinality £ > 2 has order at most n So-nd _ ().
Hence in (5.9) only pair partitions of m will give a contribution of order unity to the

sum. Since, for m := 2m’ + 1, there are no pair partitions, E [(Ewn, u)zm H] will
converge to zero. Otherwise, for m := 2m’ we can rewrite
2\ "
4, d—4
_ o’ 4nn
E[En. " ]= X |T Y [N ew am@] | +o.
PePr(2m’) xezd \zezd

Since |P,(m)| = (2m — 1)!! and the term in the bracket above converges to ||u||2_l we
can conclude the proof of Proposition 13. O

Tightness The proof of tightness is, not suprisingly, a re-run of that in the Gaussian case.
In fact tightness depends on the covariance structure of the field we are examining;
since both the Gaussian functional &, and w, share the same covariance, we can
recover mostly of the results already calculated. First we notice that

16
1€, 172004y = (2;)2 nt YT gk o) Y gl y)o )

X, yeZﬁ x/, y/eZZ
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is finite with probability one, since o is bounded. One can then go along the lines of
the proof of (P1) in Sect. 4.2 and get to (4.14) which will become, in our new setting,

16”4 —2e_d—4
2d)? Z Z i n E[wn(nx)wn(ny)]é

veZ \{0} x, yeTy

(58) |64 Z Z ]| ~2€nd—* (ndL2 + H(nx, ny))

veZd \(0} x, yeT
x/ ev(ﬁ)dﬂ/ e, (9)dov.
B(x, 1) B(y, &)

Since de e, (v)d v = 0, the previous expression reduces to

e\,(ﬁ)dﬂ/ e, () d o
) By, 37)

1
(x, n

ot Y X e [ ewar [ w@as
veZd \{0} x, yeTd B(x, 5;) B(y, 2)

From this point onwards, the computations of the proof of (P1) can be repeated in a
one-to-one fashion.

5.2 Truncation method

At the moment we are able to determine the scaling limit when the weights are bounded
almost surely. To lift this condition to zero mean and finite variance only, we begin
by defining a truncated field and show it will determine the scaling limit of the global
field. Fix an arbitrarily large (but finite) constant R > 0. Set

1
wr R (x) = 57 2 8 NoW) Lioi<R),
yeZd
1
w,?R(X) = 2 gx, Yo () Ljoy)=R) -
yezd

Clearly w,(-) = w,fR(-) + wan(o). To prove our result, we will use

Theorem 14 (Billingsley [3, Theorem 4.2]) Let S be a metric space with metric p.
Suppose that (X, ,, X,) are elements of S x S. If

lim limsupP (o(Xp 4. Xp) =7) =0

U—>=+00 5 10g

forallt > 0, and X,,,, =n Z, =, X, where “ = indicates convergence in law as
x — +o0o, then X,, =, X.
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Following this Theorem, we need to show two steps:

(S1) limp_s 400 limsup, o, P (H Bu, — Byer HH > z> —Oforall T > 0.
(S2) For a constant vg > 0, we have EysR =n J/VRE =R & in the topology of
H_.

As a consequence we will obtain that &, converges to 2 in law in the topology of
H_.

5.2.1 Proof of (S1)

We notice that

=
= >R

= = —
=wy SR -

H-c

wi HH,E

by definition, for every realization of (o' (x)),,d. Since, for every T > 0,

P (
it will suffice to show that the numerator on the right-hand side goes to zero to show

(S1). But
H 2
E |: Dw’?R ”HE}

SCAED VDY ||v||—4fnd—4E[wnZR(xn)wnZR(ny)]

veZ \(0} x, yeT]

X / ev(ﬁ)dl?/ e, (9)dy (5.12)
B(x, &) B(y. %)

wyy Ho. — T2

2
e[|
Wy H—g
inly 2 ) s L

Since the ¢’s are i.i.d., we see that

E [w,?R(xn)w,?R(yn)] = # > glnx, wyglny, w)E [o(w)z]luo(wnzm]

weZd
tom D & wighy, VE[eo M jsw=R) Liowi=R)]
w#veZd
n 1
= (E [Uzﬂ{lalzR}] —E[01jo1>R)] )@ > glnx, wygny, w)
wEZﬁ
1
+ E[G]l{mz?z}]2 12 Z g(nx, w)g(ny, v). (5.13)

w, veZd
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Pluging the last expression into (5.12) gives two terms. The first one is, using (5.8),
equal to

167* (E[0*Loom) | = E [0 o 21
x Y I et YT Hnx, ny)Fa () F o (3)

veZd \(0} x, yeTd

where F), , (x) was defined as fB(X Lye () d ¥. We have at hand (4.15), which we
can use to upper-bound the previous expression by

2 _
167 (E [0 Lswizry | = E[0 L pmizm]?) 2 vl
veZd \{0}

for some C” > 0. The sum over v is finite as long as € > d /4, and

E[o @) Loz | = E [0 Lo wzr)]

is going to zero as R — 400 (note that o has finite variance). We will show that the
second term obtained by inserting the second summand of (5.13) in (5.12) is zero to
complete the proof of (S1). In fact we obtain

4 4
T E [0l r] Y I

d2
veZd\{0}

x Y Y glnx, wigny, v)Fa () F ().

X, ye']I‘Z w, verf

We consider the second line in the previous expression to deduce that it equals

2 2
33 g, wF )| =023 3 G F ()

xeTd wezd weZd xezd
2
22 Ve (W) —— P
Zl2ay Y TR0 Y GORO)
weZd xezd \(0) wezd

where Parseval’s theorem was used in the first equality. Both the summands above are
zero: the first because

D ) =n"(o, Y1) =0, x#0,

w eZg
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the second because e, has zero average and so

Fuu(©) =n"" 3" Fuu(y) =0.

yEZ
5.2.2 Proof of (S2)

Our idea is to use the computations we did for the case in which o is bounded a. s.
since we are imposing that 0| < R. However we have to pay attention to the fact
that o 15| <Ry is not centered anymore, but has mean my, := E[o 1{,|<Rr;], nor has
variance 1, but v := Var[o 1y, <r)]. However we can circumvent this by using our
previous results. If we set

o R (x) i= (%) Ljo ()| <R) —MR

we can consider the field

En R () ——n"?‘ > Y s, no @)y, (), xeT

ze€Td wezd

Since (2d)~! ZyeZd g(-, y) is a constant function on ZZ it follows that

(En,?& u) = <Ewn<7a, u>

for all smooth functions u with zero average. Hence the field E,, % has the same law
of Ew,fR- If we multiply and divide the former by /v, we obtain

- 4% 4a o R(w)
C‘n,Rz /URgl’l 2 Z Z g(w, nz)ﬁ

2€T¢ wezd

Lg, 4)(0). x € T<.

Since now the weights ok (w) (U'R)_% satisfy the assumptions of Theorem 2, we know
that the above field will converge to /v & in law. Using the covariance structure
of the limiting field, the fact that the field is Gaussian, and limr_, o VR = 1, a
straightforward computation shows that ,/vR E converges in law to & in the topology
of H_.. With Theorem 14 we can conclude.

6 Proof of Theorem 3

Preliminaries We must conclude with the proof of Theorem 3 and begin by introducing
some notation. We take ¢, an (arbitrary) smooth radial function on ]Rd, such that

tx)=1 x|

| > 1,
. 6.1)
() =0 x|l <5 .
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Let us call
G = c@xl ™ = el ™ + o) = Dl
and let G, be its Fourier transform (in the sense of distributions)
Ga(x) = G(x).

Since (£(:) — || - || *isa compactly supported distribution, its Fourier transform

will be a smooth function which we call h,. Using the results on || - | ~# contained
in Example 2.4.9 of Grafakos [8], we have the explicit description of G, in (1.5). In
particular G; decays faster than the reciprocal of any polynomial function at infinity.
To see this, recall that ﬁ’f\G(x) = Qrw)* Gy (x), for any multi-index «. If the order
of the derivative is large enough (precisely || > d — 4), then D*G (x) € Ll(]Rd); in
this case, (2771x)1*! G;(x) is bounded on R? and hence |Gy (x)| < C|lx||~N for every
positive integer N as ||x|| — 4o0. Let us denote by f, := G4 * ¢ and note that

7e©) =Ga()e) = LOI - 174 0. (6.2)
It follows that for some C > 0 (depending on «),
|7eO)] = ca+1-m=" (6.3)

Moreover
lfeOl<CA+]-IH4! (6.4)

near infinity thanks to the rapid decay of G, atinfinity; furthermore G is integrable near
zeroind > 5by (1.5). Hence f, is C*°(RY) and also in L' (R?). Using f, = G4 * $s
and the definition of ¢ we have that

expRmi(z — ') - w)

@13)=n" 3" u@u@) Y )i (w)

4
2 ety wezd lwll
=02 3" w@u) Y fewexpQuiz —2) - w). (6.5)
z.7/eTd weZd
Now we can rewrite this term as
n—2d Z u(u(z) Z Fe(w)expmi(z — 7) - w)
z,7/€Td wezd
—n2 3" w@uE) Y fewexp@miz —2) - w).  (6.6)
z,7/€Td weZd: ||wso>n

First we show the second term above is negligible in the following Lemma.
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Lemma 15

lim o2 > u@uE) Y few)expQmi(z —2) - w) = 0.

n—-+o0o
z,7/€Td weZ: |wlleo>n

Proof Note that
n Y u@uE) Y few)exp@riz —2) - w)

z,7/€Td weZd: ||wso>n

= Z fe(w) | n™? Z u(z) exp(2miz - w)

weZ4: |wllso>n zeTd

n Z u(z') exp(—2miz’ - w)

Z/eTd

weZd:||w||OO>n

A

1
<Cu20o —<CuzOc n!
< Cllulfoorsy, Y T o = Sl

weZ: | wlleo>n

thanks to (6.3) and the Euler—-MacLaurin formula [1, Theorem 1]. This shows
Lemma 15. O

Therefore, rather than working on (6.5), we will concentrate on the first term of
(6.6).

Proof of Theorem 3 Following the proof of Proposition 5, it is enough to prove the
convergence of the first term of (6.6) to the right-hand side of (1.4). Since f, and ﬁ
satisfy the assumptions of the Poisson summation formula [26, Corollary 2.6, Chap-
ter VII], we apply it to (6.5) and obtain

lim n=2%4 Z u(2)u(z) Z fe ) expRri(z —2) - w)

n——+00

z,7/€Td wezd
T —2d ’ -
= lim 272 3 u@u) Y felle =) +w)
z,7/€Td wezd
N —2d / o
= lim 3 a7 Y u@uE) fel@ =) +w). (6.7)
weZd z,7/€Td

We would then like to exchange sum and limit and thus we shall justify the use of the
dominated convergence theorem. To this purpose we need to observe that ||z — 7/|| <
Vd sothat |||z — 2/ + w| — |lw||| < 2+/d. Therefore
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Yo Y u@uE) felz = )+ w)|

weZd z,2/€Td
©4) Ly 2 :
< Cn M ulf oo oo, > > (14 [z — 2/ + w])d+!
weZd: |wloo>/d 2,7 €T]
1
—2d 2
+Cn Nl gy D 2 Gri—erepe ©9

weZ: |wlleo<+/d 2,7/ €T

The second term can be directly bounded by a constant independent of n, being a finite
sum. As for the first term in (6.8) we have by the Euler—-MacLaurin formula

1
—2d 112
Cn Ml D0 X GrTi o rond
I+lz—2 +wl)
weZd: |wlleo>~d 2,2/ €TY

1
< Cnizd u 200
< lluell7 (Td) Z Z (1 —24/d + |lw])d+!

weZd: | wlleo>~/d 2,7 €TY

+o00 pdfl
<C do+ < 6.9
B </ﬁ—1 (1 —23/d + p)d+! P C) =€ ©

where C, c are independent of n in each occurence above. These inequalities plugged
into (6.8) give the desired bound which allows us to switch summation and limit in
(6.7). Going on and using also the smothness of f,, we compute

lim n— Z u(u@) fe((z —2) +w)

n——+0o

wezd z,7/eTd
= > f/ u@u() felz =) +wydzdz.
wezd Td xTd

The fast decay of G; and hence of f, at infinity enables us to apply the dominated
convergence again to finally arrive at

k—0

lim Z //Td Ny u@u) fe((z —7) +wydzd7
wezd x

= Z // u(@u(z)Gy((z — 7)) +w)dzdz.
Td xTd

weZd

Due to polynomial decay of G, at infinity it is immediate to exchange sum and integrals
to derive (1.4). O
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