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Abstract

Pose Graph Optimisation (PGO) is a technique that is used to solve the Simultaneous Local-
isation and Mapping (SLAM) problem by relying on least-square minimisation techniques to
find the most likely set of robot poses (i.e., location and orientation) given the set of meas-
urements. It formalises the maximum likelihood formulation using a pose graph, where poses
are represented as nodes, and measurements are represented as edges. Each measurement is
paired with a measurement model that maps the related poses to an expected measurement
value. PGO tries to find the set of poses that minimises the difference between the expected
measurement values and the true measurement values. An accurate solution requires accurate
measurement models. Models can be dependent on knowledge of specific robot parameters,
or may fail to account for unknown systematic measurement deviations. By identifying the
dependency of the unknown parameter within the measurement model, the parameter can
be added as a graph node, thereby creating a pose-parameter graph and the accompanying
Pose-Parameter Graph Optimisation (PPGO) problem.

In this thesis, a generalised approach to PPGO is proposed that is based on the implement-
ation of two generally applicable parameters (a bias and scaling factor). Each parameter
implementation definesmodified measurement models that relate the newly defined parameter-
nodes. Connectivity strategies are proposed that connect the set of parameter-nodes within
the pose-parameter graph based on the nature of the parameter fluctuation.

For this thesis, a framework was developed in python that uses g2o to solve the PPGO prob-
lem. A GUI was designed to intuitively visualise graph components and evaluate performance
metrics. The estimation of the bias parameter is found to be reliable over all measurement
components, whereas the scaling factor only allows for reliable estimation over measurement
components that exhibit consistent non-zero values. The static connectivity strategy can be
reliably utilised to estimate an unknown constant parameter value. The sliding window and
timely batch strategies are able to reconstruct a sinusoidal parameter with time, with the
former offering an accurate instantaneous estimate with a slight delay, and the latter offering
higher accuracy when applied as a post-processing step. The spatial batch strategy is able to
reconstruct a sinusoidal parameter with space by creating a matching parameter heat map.
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Chapter 1

Introduction

A problem central to mobile robotics is that of navigation. Mobile robots are not fixed to
one physical location and have the capability to move around in their environment. Ideally, a
mobile robot should have the capacity to autonomously avoid dangerous conditions (such as
collisions) and safely reach target destinations. This robust form of navigation requires the
robot to have a sense of spatial awareness, and this is what the navigation problem is trying
to solve.

Being able to build a map of the environment and to simultaneously localise within this
map is an essential skill for mobile robots navigating in unknown environments in absence of
external referencing systems. This problem is referred to as the Simultaneous Localisation
and Mapping (SLAM) problem [8, 1, 10, 2], which comprises the simultaneous estimation of
the state of a robot and the construction of a model (or map) of the environment using data
from on-board sensors. In simple instances, the robot state is described by its pose: a position
and orientation (i.e., a translation and rotation).

The graph-based formulation of the full SLAM problem [32] aims not only to estimate the
current pose (in addition to the map), but rather the entire path. Pose Graph Optimisa-
tion (PGO), in particular, aims to solve the SLAM problem by finding the most likely tra-
jectory (represented by a set of poses) given the set of measurements. Due to influences of
measurement and/or process noise, the set of (relative) pose transformation measurements
available for this purpose are not necessarily mutually congruent. The maximum likelihood
formulation is formalised using a pose graph, where robot poses are represented by nodes and
the measurements are encoded in its edges. By representing the nodes in space according to
the corresponding translation value, the pose graph functions as an intuitive visualisation of
the robot trajectory, as shown in Figure 1-1.

Each measurement is paired with a measurement model that maps the related poses to an
expected measurement value, thereby establishing a relationship between the set of poses
and the set of measurements. PGO relies on least-square minimisation techniques to find a
solution that maximises the likelihood of the set of poses given the set of measurements based
on the mismatch between the expected and true measurement value over all measurements.
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2 Introduction

Figure 1-1: Pose graph visualisation of a dataset acquired at Intel Research Lab in Seattle [4].

This solution is defined in terms of the node configuration of the pose graph.

PGO relies on the measurement models that are encoded in the pose graph to be accurate. Of-
tentimes, these measurement models are dependent on knowledge of specific robot parameters
that are to be set a priori, such as e.g. wheel radii or sensor coordinate frame transformation.
However, such parameters could be hard to measure, require the use of lengthy ad-hoc cal-
ibration procedures, or be simply subject to change, promptly rendering any initial estimate
useless [31, 6, 5, 21]. Other times, the observation of a systematic measurement deviation
requires the model to be modified to include an unknown parameter based on an assumed
dependency relation — take, for instance, an unanticipated sensor bias or unaccounted for
kinematic parameter of the odometry system.

For the purpose of estimating these parameters without modifying the physical robot configur-
ation, calibration techniques exist that rely only on data gathered by the robot [17, 22]. These
techniques include the unknown parameters in the set of nodes, thereby creating a graph that
contains both pose-nodes and parameter-nodes. In this research, such a graph will be referred
to as a pose-parameter graph. Accordingly, the measurement models are extended to include
a dependency on the set of parameter-nodes. Finding the maximum likelihood solution will
be referred to as the Pose-Parameter Graph Optimisation (PPGO) problem.

1-1 Motivation

Although PPGO is easily described by its extended set of nodes (consisting of pose-nodes and
parameter-nodes), the implementation of the extra node-type is not trivial. With a generalised
approach not readily available, and most approaches relying on custom implementations [6, 5],
the need arises for a generalised approach to PPGO that is applicable to a variety of commonly
occurring use-cases.
Whereas PGO is able to provide an estimate for the robot pose for every time instance, the
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1-2 Research objective 3

extension to PPGO does not enable the same for the parameters. Because the parameter
values are not directly measured, but rather deduced from inconsistencies between the meas-
urement models and actual measurement values, the addition of a unique parameter-node for
each time instance would result in an under-constrained optimisation problem. Therefore,
a different connectivity strategy is required that is dependent on the definition of the meas-
urement model, the nature of the underlying parameter value, and the performance that is
sought to be achieved.

This thesis aims to serve as a starting guide for implementing PPGO for a variety of commonly
occurring use-cases. For this purpose, a set of generally applicable basis measurement models
is defined and its behaviour investigated in a variety of scenarios. These basis parameters
comprise an additive bias parameter and a multiplicative scaling factor parameter.

1-2 Research objective

The objective of this research is formulated using the following set of research questions:

• Which types of parameters can be estimated with the use of Pose-Parameter Graph Op-
timisation?
Although the modification to the measurement models to include a dependence on the
basis parameters is rather straightforward, whether such a PPGO problem is able to find
a correct cost-optimal solution is not so. The primary goal of the graph optimisation
techniques employed to solve the SLAM problem is to approximate the ground truth,
irrespective of the cost value associated with the cost-optimal solution. As such, the
cost-optimal solution is only deemed correct if approximates the ground truth.

• How does the performance of Pose-Parameter Graph Optimisation compare with Pose
Graph Optimisation under appropriate conditions?
It is important to compare multiple viable implementations with the PGO counterpart for
every use-case because the implementation of PPGO depends on the connectivity strategy
employed. The connectivity strategy in turn depends on the fluctuation of the underlying
parameter and the performance sought.

• Under what conditions is Pose-Parameter Graph Optimisation able to capture the dynam-
ics of a parameter?
The nature of the dynamics of the true underlying parameter also influences the imple-
mentation. These dynamics can be assigned to either be subjected to a temporal correlation
or a spatial correlation, each of which stipulates its corresponding connectivity strategy.
As such, the following sub-questions are formulated:

– What insights can be gained by modelling a parameter’s temporal correlation using the
sliding window and timely batch connectivity strategies?
For the purpose of modelling a parameter subjected to a temporal correlation, two
connectivity strategies are proposed: the timely batch strategy and the sliding window
strategy.

– What insights can be gained by modelling a parameter’s spatial correlation using the
spatial batch strategy?
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For the purpose of modelling a parameter subjected to a spatial correlation, the spatial
batch connectivity strategy is proposed.

1-3 Contributions

• A first-principles derivation of the Pose-Parameter Graph Optimisation problem formula-
tion, which includes the implementation of the additive bias parameter and the multiplic-
ative scaling factor parameter.

• A novel formulation of a dynamic sliding window approach for the modelling of parameters
with a temporal correlation.

• A novel formulation of a spatial batch approach for the modelling of parameters with a
spatial correlation.

• A simulation framework that provides an intuitive and easily extendable Application Pro-
gramming Interface (API) to generate and optimise pose-parameter graphs.

• A pose-parameter graph analysis framework with a Graphical User Interface (GUI) that
intuitively visualises all graph components and provides a means of evaluating performance
criteria.

• A modification to the g2o framework [11], which allows for PPGO to be used as of now
in any robot with a SLAM framework that makes use of g2o.

1-4 Outline

This thesis consists of the following six chapters:

• Chapter 1 ‘Introduction’ gives an overview of this research by introducing its motiva-
tion, formulating the research objective, and listing the contributions. It introduces Pose-
Parameter Graph Optimisation, which is an extension of Pose Graph Optimisation, and
establishes the need for a generalised approach that is applicable to a variety of commonly
occurring use-cases.

• Chapter 2 ‘Pose graph optimisation’ derives the Pose Graph Optimisation problem for-
mulation while introducing notation and performance metrics. The notation is necessary
for the derivation of Pose-Parameter Graph Optimisation in Chapter 3. Furthermore, the
performance metrics are used in the performance assessment in Chapter 5.

• Chapter 3 ‘Parameter calibration’ derives the Pose-Parameter Graph Optimisation prob-
lem formulation, defines the measurement models for the basis parameters, and introduces
the connectivity strategies. The combination of measurement model and connectivity
strategy constitutes the parameter implementation.

• Chapter 4 ‘Simulation framework’ introduces the simulation framework and trajectories
that are used to generate the result of Chapter 5.

• Chapter 5 ‘Results’ presents the results of the considered parameter implementations
under the influence of constant parameters and dynamic parameters with both a temporal
correlation and a spatial correlation.
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1-4 Outline 5

• Chapter 6 ‘Conclusion’ concludes the thesis by stacking up the results with the research
objective and suggesting the work that is left for future research.

The outline of this thesis is visualised in Figure 1-2.

Figure 1-2: Thesis outline
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Chapter 2

Pose graph optimisation

Pose Graph Optimisation (PGO) is a technique that addresses the full SLAM problem by
finding the most likely trajectory (represented by a set of poses) given the set of measurements
[10, 3, 2]. PGO forms the basis from which Pose-Parameter Graph Optimisation (PPGO) is
derived, as will be discussed in Chapter 3. This chapter provides an extensive derivation of
the PGO problem and introduces the notation necessary for the extension to PPGO.

PGO utilises a pose graph to formalise maximum likelihood formulation of a set of robot poses
given the set of measurements. In a pose graph, poses are represented by nodes and measure-
ments are encoded in edges. Due to influences of measurement and/or process noise, the set of
measurements is likely to be incongruent. As such, PGO relies on least-square minimisation
techniques to find the solution that maximises the likelihood over all measurements.

This chapter covers the following:

• Section 2-1 ‘Notation’ introduces the necessary notation used to derive the PGO problem
formulation. Furthermore, it introduces the mathematical objects used to express poses
and rotations, known as Lie groups, alongside the corresponding Lie theory.

• Section 2-2 ‘Problem formulation’ derives the PGO problem formulation as a least-square
minimisation problem. It introduces the formalisation of the maximum likelihood formu-
lation of the set of robot poses given the set of measurements over a special factor graph
called a pose graph.

• Section 2-3 ‘Constraints’ introduces the measurement models that map the connecting
poses to the expected measurement value, which are used to establish a relationship
between the set of poses and the set of measurements in the form of graph constraints.

• Section 2-4 ‘Congruence’ introduces the concept of graph congruence, which describes an
incomplete graph due to the lack of conflicting measurements.

• Section 2-5 ‘Linearisation’ linearises the PGO problem and introduces the quadratic form.
• Section 2-6 ‘Error metrics’ introduces the error metrics that use the ground truth solution

to assess the performance of the estimate solution.
• Section 2-7 ‘Summary’ provides a summary of the introduced material.
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8 Pose graph optimisation

2-1 Notation

This section introduces the notation that is used to derive the PGO problem formulation,
which comprises the definition of relevant reference frames, the definition of poses and meas-
urements, and the sets of interest.

2-1-1 Reference frames

Reference frames are used to express relative transformations, translations, and rotations.
Each is defined as a right-handed Cartesian coordinate frame and is denoted by in Sans-serif
typeface. The expression of one (reference) frame A in another frame B is defined by its rigid
body transformation T (B)

A , which comprises the relative translation of the origins t(B)
A and

relative rotation of the axes R(B)
A . The specifics of these mathematical objects are discussed

in Section 2-1-2. The following reference frames are defined:

1. The fixed global (or inertial) reference frame O (where ‘O’ refers to the ‘global origin’) is
typically fixed at the robot’s starting position.

2. The robot-fixed reference frame R is fixed to the robot’s odometric centre (i.e., at the
centre of rotation, with the x-axis pointing along the axis of forward motion and the z-
axis pointing up). Due to the movement of the robot, the relative transformation of R with
respect to O changes with time. To highlight this time-dependence and indicate which
version of the robot-fixed frame is referred to, the relative transformation is denoted by
T (O)

Rt
:= T (O)

R (t).
3. The sensor-fixed reference frame Sid that is fixed at the centre of measurement of sensor

with identifier ‘id’. The sensor attachment is assumed to be rigid and, therefore, the
relative sensor frame transformation `id := T (R)

Sid is considered a constant. On the other
hand, the transformation T (O)

Sid
t

:= T (O)
Sid (t) is a function of time.

2-1-2 Poses

As discussed in Section 2-1-1, the transformation T (O)
Rt

of body-fixed reference frame with
respect to the inertial frame comprises a translation and rotation. This rigid body transform-
ation is what is implied by the robot pose. Robot poses are denoted by xi, where i denotes
the node index and/or time instance. Furthermore, X = {x} denotes the set of all robot
poses.

At first sight, one would expect such a transformation to be defined in vector space, given
by T (O)

Rt
= (x, y, θ) ∈ R3, where x, y, θ ∈ R are the x-translation, y-translation and planar

rotation components, respectively. However, the expression of a planar rotation using a
scalar angle θ ∈ R does not respect the circle topology; that is, the wrap-around property of
angles that stipulates that θ ∈ [0, 2π) or θ ∈ [−π, π). This can be solved by using rotation
matrices to represent rotations, where the compounding of multiple rotation matrices by
matrix multiplication results in another rotation matrix. This has the advantage that no
additional steps are required to make rotation matrices respect the required circle topology.
The special structure of rotation matrices is described by a rotation manifold, which can be
expressed using Lie theory.
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2-1 Notation 9

Lie theory

Rotations and transformations are conveniently described by matrix Lie groups, which are
thoroughly examined in Appendix B. Lie theory (and the accompanying Lie groups) can be
summarised with the following bullet points:

• A Lie group G is a smooth manifold whose elements satisfy the group axioms [28].
• The associated Lie algebra g is a vector space that can be considered a linearisation of the

Lie group. It has the same dimension nG as the number of degrees of freedom of G; any
element can therefore be identified by vector τ ∈ RnG .

• There exists a mapping (called the exponential map) that provides the ‘de-linearisation’
from g to G. As a result, the vector τ ∈ RnG that identifies the Lie algebra, efficiently
parameterises the Lie group element g ∈ G. This is indicated by τ ∼= g ∈ G, with
τ ∈ RnG ∼= G.

To aid in the manipulation of Lie group elements (e.g. for defining measurement models in
Section 2-1-3), the following operators are introduced:

• The plus operator ⊕ defines a homomorphism that is used to find the updated group
element z ∈ G from x ∈ G, obtained by composition with a group element y ∈ G identified
by y ∈ RnG . The homomorphism is defined by

⊕ : G × RnG → G : x× y 7→ z ∈ G,

with x y = z. This basically allows for incrementing a Lie group element by a vector and
returning another group element, which is useful in e.g. iterative optimisation.

• Similarly the minus operator 	 can be thought of as the inverse of ⊕ (i.e., for all x, y ∈ G,
it holds that x⊕ (y	 x) = y). That is, it finds the difference between two group elements
and expresses it as a vector:

	 : G × G → RnG : z × x 7→ y ∈ RnG ,

with x−1 z = y.

Rotations

The orientation of a body is described by the relative rotation between a body-fixed coordinate
frame and a fixed (or inertial) coordinate frame. Let B be the body-fixed coordinate frame
and A be the inertial coordinate frame. The rotation matrix R(A)

B describes the orientation
of B relative to A.

For the 2-dimensional case, it is obtained by stacking the unit coordinate vectors of the
principal axes x(A)

B ,y(A)
B ∈ R2 of B as seen from A; that is,

R(A)
B =

[
x(A)

B y(A)
B

]
=
[
R11 R12
R21 R22

]
∈ SO(2),

where rotations matrices are represented by the Special Orthogonal group SO(n). ‘Special’
refers to unit determinant (det(R) = 1), and ‘Orthogonal’ refers to the orthogonality con-
straint (R>R = In). The rotation group is defined as

SO(n) = {R ∈ Rn×n : R>R = In, det(R) = 1}.
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10 Pose graph optimisation

The planar rotation angle θ in radians parameterises the rotation group element as

R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2),

which is indicated by θ ∼= R(θ), with θ ∈ R ∼= SO(2). This definition can be inverted to give
θ = tan−1(R21/R11).

Transformations

The instantaneous orientation and position of a body coordinate frame B relative to an
inertial frame A is described using a rigid body transformation T (A)

B . For the 2-dimensional
case, let t(A)

B ∈ R2 be the translation vector of the origin of frame B relative to frame A,
and R(A)

B ∈ SO(2) the orientation of frame B relative to A. The transformation T (A)
B then

comprises the pair
(
t(A)

B , R(A)
B
)
defined over the Special Euclidean Group SE(2):

SE(n) = {(t, R) : t ∈ Rn, R ∈ SO(n)} = Rn × SO(n).

Alternatively, the Special Euclidean group can be defined as a homogeneous matrix repres-
entation [9]:

S̄E(n) =
{
T̄ =

[
R t
0 1

]
∈ R(n+1)×(n+1) : R ∈ SO(n), t ∈ Rn

}
.

Let q be a point in 2-dimensional space that is expressed in the B frame as q(B) ∈ R2. To
obtain the expression of q in the A frame, a coordinate transformation T (A)

B is required. This
coordinate change can be expressed as the affine transformation[

q(A)

1

]
︸ ︷︷ ︸

q̄(A)

=
[
R(A)

B t(A)
B

0 1

]
︸ ︷︷ ︸

T̄ (A)
B

[
q(B)

1

]
︸ ︷︷ ︸

q̄(B)

,

where T̄ (A)
B ∈ R3×3 is the homogeneous matrix representation of T (A)

B ∈ SE(2), and q̄(A), q̄(B) ∈ R3

are the homogeneous coordinates of q(A),q(B) ∈ R2.

The parameterisation of SE(n) that corresponds to Lie algebra se(n) is given in Appendix B.
For the 2-dimensional case, however, it is more intuitive to use the identifying vector ξ =
(x, y, θ) ∈ R3, which is simply the concatenation of translation t = (x, y) and the planar
rotation angle θ. As such, any transformation group element is given by

T
(
(x, y), R(θ)

)
=

cos(θ) − sin(θ) x
sin(θ) cos(θ) y

0 0 1

 ∈ SE(n).

In summary, robot poses in two dimensions are represented by elements of the 2-dimensional
transformation group SE(2), which are efficiently and intuitively parameterised by a vector
ξ ∼= T (ξ), with ξ = (x, y, θ) ∈ R3 ∼= SE(2). That is, xi ∈ SE(2) and X ⊂ SE(2), where xi
comprises the rotation and translation components, Ri ∈ SO(2) and ti ∈ R2, respectively.
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2-2 Problem formulation 11

2-1-3 Measurements

In PGO, a measurement refers to a relative pose transformation, translation, or rotation,
derived from sensor data. Measurements are denoted by zI , where I denotes the set of node
indices I = {i}. Furthermore, Z = {z} denotes the set of all measurements.

Measurements typically originate from two types of sensors:

• Proprioceptive sensor systems, which measure the robot’s interaction with the environ-
ment, such as:

– Rotary encoders on wheels to measure wheel rotation and derive a relative pose trans-
formation estimates between consecutive poses T (Rt)

Rt+1 ∈ SE(2);
– GPS sensors to measure a relative pose translations t(O)

Rt
;

– Accelerometers, gyroscopes and magnetometers to derive estimates for relative pose
transformations T (Rt)

Rt+1 ∈ SE(2), relative pose translations t(Rt)
Rt+1 ∈ R2, and relative pose

rotations R(Rt)
Rt+1 ∈ SO(2).

• Exteroceptive sensor systems, which directly measure the environment, such as:

– (Depth) cameras and optical flow or scan matching algorithms to derive relative pose
transformation estimates T (Ri)Rj

∈ SE(2);
– Active ranging systems with LiDAR, sonar and radar and scan matching algorithms

to derive relative pose transformation estimates T (Ri)Rj
∈ SE(2).

The measurements used in PGO are elements in SE(2), or its sub-components: translations
in R2 and rotations in SO(2). That is, zI ∈ SE(2) ∪ SO(2) ∪ R2 =M.

As an abstraction for the different measurement types, the generalisation addition and sub-
traction operators are introduced, which are denoted by ‘�’ and ‘�’, respectively. Both are
defined as follows:

� :M× Rm →M
� :M×M→ Rm,

where m is the dimension of the identifying vector of the measurement. For the different
measurement types, the generalised addition and subtraction operators are defined as:

• For transformation and rotation group elements, the generalised addition and subtraction
parameters are equal to the addition plus operator ‘⊕’ and minus operator ‘	’, respectively.

• For vectors, the generalised addition and subtraction parameters are equal to the vector
addition operator ‘+’ and vector subtraction operator ‘−’, respectively.

2-2 Problem formulation

This section introduces the PGO problem formulation as a least-square minimisation problem.
It does so by first deriving the maximum likelihood formulation, then introducing the factor
graph formalisation, and the Gaussian measurement model assumption. Finally, the least-
square minimisation formulation is derived.
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12 Pose graph optimisation

2-2-1 Probabilistic formulation

The SLAM problem is often formulated as a Maximum a Posteriori (MAP) problem [20, 2].
The MAP estimate is an estimate of an unknown quantity on the basis of empirical data. It
maximises the posterior probability, which describes the probability of an unknown quantity,
conditional on the evidence. Intuitively, the MAP estimate is the unknown quantity that is
most probable, given the empirical data or evidence.

When applied to SLAM, the posterior probability describes the probability of the set of robot
poses X given the set of measurements Z. It is given by

p(X | Z) = p(X ,Z)
p(Z) = p(Z | X )

p(Z) p(X )

∝ L(X ;Z)p(X )

and contains the following elements:

• L(X ;Z) denotes the likelihood of X given Z, and is defined as any function proportional
to p(Z | X );

• p(X ) denotes the prior belief of X .

The normalising constant 1/p(Z) is dropped, since it only ensures the posterior probability
integrates to one, and therefore does not change the maximum point. The solution X ∗ to the
full SLAM problem is the set of poses X that maximises the posterior probability:

X ∗ = arg max
X
L(X ;Z)p(X ).

When no prior knowledge is available for X , p(X ) becomes constant (i.e., a uniform distri-
bution) that is inconsequential for optimisation, and can thus be dropped. As a result, the
solution to the full SLAM problem is given by

X ∗ = arg max
X
L(X ;Z). (2-1)

Assuming the measurements Z are independent (i.e., the corresponding measurement noise
is uncorrelated), the maximum likelihood formulation of (2-1) formalises into

X ∗ = arg max
X

∏
I
p(zI | XI). (2-2)

2-2-2 Gaussian noise assumption

Measurements are subject to uncertainties. In many cases, it is both convenient and justi-
fied to model measurements as corrupted by additive zero-mean Gaussian noise [29]. The
measurement zI is then modelled as

zI � ε = fI(X ),

where

• fI(X ) := fI(XI) : X → M denotes the measurement model function, which maps the
related poses XI to an expected measurement value inM. It is assumed to be an unbiased
estimator.
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2-2 Problem formulation 13

• ε ∈ RmI denotes an mI-dimensional measurement noise vector, where ε ∼ N(0,ΣI) is
drawn from a zero-mean Gaussian distribution with measurement model covariance ΣI ∈
RmI×mI .

Rewriting yields the measurement error vector function

eI(X ) = fI(X ) � zI ∈ RmI .

The conditional probability density of the measurement zI given the poses XI is given by the
multivariate Gaussian distribution as

p(zI | XI) = 1√
(2π)m|ΣI |

exp
(
− 1

2
∥∥eI(X )

∥∥2
ΣI

)
, (2-3)

where

‖eI(X )‖2ΣI
:= e>I (X ) Σ−1

I eI(X ) ∈ R

denotes the squared Mahalanobis distance.

2-2-3 Factor graph

Problem (2-2) can be interpreted as inference over a factor graph [7, 16]. This model provides
a mechanism for compactly describing the complex probability density function, such as given
in (2-2).

A factor graph is a bipartite graph representing the factorisation of a function. The graph is
denoted g = (U ,V, E) and contains elements of the following types:

• Variable nodes vi ∈ V, which represent the function variables;
• Factor nodes ui(Vi) ∈ U , which represent factorisation of the connecting variable nodes;
• Edges ei,j ∈ E , which connects factor nodes i to the the dependent variable nodes j.

A factor graph then defines the factorisation of a global function f(V) as

f(V) =
∏
i

ui(Vi).

The factor graph and its factorisation can utilised to factorise the likelihood of robot poses
X given measurements Z by taking:

• The set of robot poses X to be the variable nodes;
• The set of conditional measurement probability densities {p(zI | XI)} to be equal to the

factor nodes.

By only considering robot poses as variables nodes, the factor graph is classified a pose graph
[3]. The pose graph encodes the dependence relation of the measurements with the corres-
ponding robot poses: each factor node encodes the posterior probability of the connecting
robot poses given the observed measurement. Not only does the factor graph offer an in-
sightful visualisation of the robot path, but its connectivity also defines the sparsity of the
resulting SLAM problem.

Section 2-4 introduces an example of a pose graph with Figure 2-1.
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14 Pose graph optimisation

2-2-4 Least-square error minimisation

By combining maximum likelihood formulation derived in (2-2) (which is identical to what
is formalised by the factor graph factorisation) and the conditional measurement probability
density under the Gaussian noise assumption described in (2-3), the MAP estimate is written
as

X ∗ = arg max
X

∏
I

[ 1√
(2π)m|ΣI |

exp
(
− 1

2
∥∥eI(X )

∥∥2
ΣI

)]
.

By taking the negative log-likelihood of this expression, the product maximisation problem
turns into a summation minimisation problem, and is written as

X ∗ = arg min
X

∑
I

[
ln
√

(2π)m|ΣI |︸ ︷︷ ︸
const.

+1
2
∥∥eI(X )

∥∥2
ΣI

]
.

The measurement covariance is independent of the solution X . Therefore, the first term for
every conditional measurement density can be dropped [26]. By also dropping the factor 1/2,
the pose graph optimisation problem is written as a least-square minimisation problem

X ∗ = arg min
X

∑
I

∥∥eI(X )
∥∥2

ΣI
.

Each measurement contributes a scalar quadratic cost term

‖eI(X )‖2ΣI =
(
fI(X ) � zI

)>Σ−1
I
(
fI(X ) � zI

)
∈ R,

the structure of which has a few interesting consequences:

• The cost term is minimally zero when fI(X ) = zI ; i.e. when the outcome of the meas-
urement model perfectly matches the observed measurement value. More specifically, this
occurs when the components of the related poses are configured such that the measurement
model yields a value that is identical to what is observed by the sensors.

• The cost term that corresponds to each measurement scales quadratically with the error
function eI(X ) = fI(X )�zI that compares the expected measurement value with the true
measurement value. This function imposes a soft constraint on the connected nodes, which
penalises potential solutions for not aligning with the measurement (or constraint value)
and rewards poses that are placed close to what is dictated by the relevant measurements.

• Measurements that are deemed less accurate are characterised by a larger measurement
model covariance (or constraint covariance matrix). Since each cost term is scaled inversely
with the constraint covariance, inaccurate measurements result in weaker constraints and
vice versa.

Each measurement contributes a cost term that imposes a constraint on the related poses.
Accordingly, the cost-optimal solution to PGO is the set of poses that is a perfect match to all
measurements, as this would yield the minimal zero cost function value. However, eventually,
measurements are bound to conflict, even if it is by the tiniest margins due to measurement
noise, so a cost-optimal compromise has to be found with respect to the pose configuration.

In summary, PGO seeks to find the most likely set of poses given the set of measurements.
It relies on least-square minimisation techniques to find the cost-optimal MAP estimate that
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2-3 Constraints 15

minimises the weighted mismatch between the expected and true measurement values over
all constraints. The PGO problem formulation is given by

eI(X ) = fI(X ) � zI ,

FI(X ) =
∥∥eI(X )

∥∥2
ΣI
,

Fpgo(X ) =
∑
I
FI(X ),

X ∗ = arg min
X

Fpgo(X ),

(2-4)

where

• I = {i} denotes the set of pose identifiers that are related by a constraint;
• X = {x} ⊂ SE(2) denotes the set of robot poses. Correspondingly, XI ⊆ X denotes the

subset of poses given by indices I;
• zI ∈ Z ⊂M denotes the true measurement value that relates the poses identified by I;
• fI(X ) := fI(XI) ∈ M denotes the measurement model function, which maps the set of

related poses XI to the expected measurement value;
• eI(X ) := eI(XI) ∈ RmI denotes the vector error function that describes the mismatch

between the expected measurement value (as defined by the measurement model function)
and the true measurement value. A perfect match yields ei(X ) = 0;

• ΣI ∈ RmI×mI denotes the mI-dimensional measurement model covariance (or constraint
covariance) matrix of the constraint identified by I;

• FI(X ) := FI(XI) ∈ R denotes the scalar constraint cost term function, which is identical
to the exponent of the measurement likelihood distribution and is given by the Mahalan-
obis distance of the vector error function and measurement model covariance.

• Fpgo(X ) ∈ R denotes the scalar PGO cost function that is the summation of the cost terms
‖eI(X )‖2ΣI

contributed by all constraints formalised in the pose graph, as a function of
the set of nodes X .

Note that simply scaling a cost function will not move its extrema. As such, only the rel-
ative values of the constraint covariances are of importance. In essence, these values act as
weights that indicate the varying degree of importance (or accuracy) of each measurement.
Therefore, the information that each measurement provides will be taken into consideration
for optimisation based on the relative value of the accompanying constraint covariance value
relative to all other constraints.

2-3 Constraints

As discussed in Section 2-2-4, each measurement contributes a cost term that imposes a
constraint on the related poses, which forces the poses to (more or less) comply with the
measurement. To achieve a low PGO cost function value, a set of poses is sought that
minimises the weighted mismatch between the expected and true measurement value.
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16 Pose graph optimisation

In this section, the constraint classifications are discussed and the measurement models are
defined for some of the most common constraints used in PGO.

2-3-1 Classifications

A pose graph typically consists of two classifications of constraints:

1. Odometry constraints, which connect poses sequentially. Technically, odometry is the use
of data from the movement of actuators to estimate the change in position over time;
such as e.g. the use of rotary encoders to measure wheel rotation. However, these sensors
and/or actuators might not always be available. Therefore, the definition of odometry is
extended to include equivalent information. That is, any measurement of displacement
between consecutive robot poses is considered an odometry measurement.
Odometry constraints are typically the first to be established after instantiating a new
pose. Odometry constraints can be introduced by both proprioceptive and exteroceptive
sensor systems.

2. Loop closure constraints, which occur after a robot has returned to a previously visited
location. By establishing this relationship, two distant poses are connected by a constraint
and a portion of the pose graph is made cyclic, thereby closing a loop. In order to register
whether this has happened, exteroceptive sensors are required.

2-3-2 Measurement models

For each of the measurements considered in PGO, a constraint is introduces that contributes
an cost term based on the measurement value and the measurement model. The measurement
model defines ameasurement model function fI and ameasurement model covariance ΣI . The
measurement model maps the set of related poses to an expected measurement value inM.

The measurement models for some of the most common measurements are defined below:

• Pose transformation measurements ztransf.
i,j ∈ SE(2) relate two robot poses xi, xj ∈ SE(2),

and approximate the relative transformation T (Ri)Rj
∈ SE(2) of the robot-fixed frame Rj in

terms of Ri. Accordingly, the measurement model defines

f transf.
i,j (X ) = T (Ri)

Rj
(xi, xj) ∈ SE(2). (2-5)

As stated in Section 2-1-2, matrix Lie group elements are compounded using matrix mul-
tiplication. As such, a pose transformation T (Ri)Rj

can be ‘added’ onto a pose xi = T (O)
Ri

by
right-multiplication to yield pose xj = T (O)

Rj
[7]:

xi T
(Ri)
Rj

= xj =⇒ T (Ri)
Rj

= x−1
i xj = f transf.

i,j (X ). (2-6)

The closed homogeneous form of the relative pose transformation derived using the fact
that rotation matrices are ortho-normal, which implies that their inverse is equal to their
transpose:

T̄ (Ri)
Rj

= x̄−1
i x̄j =

[
R>i −R>i ti
0 1

] [
Rj tj
0 1

]
=
[
R>i Rj R>i (tj − ti)

0 1

]
∈ S̄E(2).
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2-3 Constraints 17

Finally, the error function etransf.
i,j (X ) of a relative pose transformation is defined as

etransf.
i,j (X ) = f transf.

i,j (X )	 ztransf.
i,j = x−1

i xj 	 ztransf.
i,j ∈ R3. (2-7)

• Pose rotation measurements zrot.
i,j ∈ SO(2) relate two robot poses xi, xj ∈ SE(2), and

approximate the relative transformation R(Ri)Rj
∈ SO(2) of the robot-fixed frame Rj in

terms of Ri. Accordingly, the measurement model defines

f rot.
i,j (X ) = R(Ri)

Rj
(xi, xj) ∈ SO(2).

In similar fashion the case of pose transformations, the measurement model function and
error function are derived as

RiR
(Ri)
Rj

= Rj =⇒ R(Ri)
Rj

= R>i Rj = f rot.
i,j (X ),

erot.
i,j (X ) = f rot.

i,j (X )	 zrot.
i,j = R>i Rj 	 zrot.

i,j ∈ SO(2).

• Pose translation measurements ztransl.
i,j ∈ R2 relate two robot poses xi, xj ∈ SE(2), and

approximate the relative translation t(Ri)Rj
∈ R2 of the robot-fixed reference frame Rj in

terms of Ri. Accordingly, the measurement model defines

f transl.
i,j (X ) = t(Ri)

Rj
(xi, xj) ∈ R2.

Composition of Cartesian vectors is done by simple addition; as such, the pose translation
follows from

ti + t(Ri)
Rj

= tj =⇒ t(Ri)
Rj

= tj − ti = f transl.
i,j (X ).

Consequently, the error function etransl.
i,j (X ) of a pose translation is defined as

etransl.
i,j (X ) = f transl.

i,j (X )− ztransl.
i,j = tj − ti − ztransl.

i,j ∈ R2.

• Orientation prior measurements zor.
i,j ∈ SO2 relate a single robot poses xi ∈ SE(2), and

approximate the relative translation R(O)
Rj
∈ R2 of the robot-fixed frame Ri in terms of the

inertial frame O. Accordingly, the measurement model defines

for.
i (X ) = R(O)

Rj
(xi) ∈ SO(2).

This translation is a direct component of the robot pose xi, which brings about the meas-
urement function for.

i (X ) = Ri. If it holds that O = R0, the measurement model function
for.
i = f rot.

0,i .
The orientation prior error function eor.

i (X ) is defined as

eor.
i (X ) = for.

i,j (X )− zor.
i = Ri − zor.

i ∈ SO(2).

• Location prior measurements zloc.
i,j ∈ R2 relate a single robot poses xi ∈ SE(2), and ap-

proximate the relative translation t(O)
Rj
∈ R2 of the robot-fixed frame Ri in terms of the

inertial frame O. Similar to the case of orientation prior, the measurement model function
and error function are derived as

f loc.
i (X ) = ti

eloc.
i (X ) = f loc.

i (X )− zloc.
i = ti − zloc.

i ∈ R2.
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18 Pose graph optimisation

Pose transformation: f transf.
i,j (X ) = x−1

i xj
Pose rotation: f rot.

i,j (X ) = R>i Rj
Pose translation: f transl.

i,j (X ) = tj − ti
Orientation prior: for.

i (X ) = Ri
Location prior: f loc.

i (X ) = ti

Table 2-1: Measurement model functions for some of the most common measurements.

The measurement models are summarised in Table 2-1.

With all measurements being elements in SE(2) or its sub-components, the measurement
model functions exhibit the same relationship. That is, all models can also be defined in
terms of the pose transformation measurement model function f transf.

i,j :

f rot
i,j (X ) = R

[
f transf.
i,j (X )

]
,

f transl
i,j (X ) = t

[
f transf.
i,j (X )

]
,

for.
i (X ) = R

[
f transf.

0,i (X )
]
,

f loc.
i (X ) = t

[
f transf.

0,i (X )
]
,

where R
[
f transf.
I (X )

]
∈ SO(2) and t

[
f transf.
I (X )

]
∈ R2 denote the rotation and translation

elements of f transf.
I (X ) ∈ SE(2), respectively.

2-4 Congruence

This section introduces the notion of congruence of a pose graph. A pose graph is said to be
congruent if all accumulated constraints over the set of adjacent constraints can be satisfied.
The corresponding solution yields zero-cost over all constraints, which indicates a graph to be
under-constrained. Due to the presence of measurement and process noise, measurements are
likely to conflict. The solution that takes into account many conflicting measurements tends
to neutralise the noise influence and therefore yield an accurate solution. A congruent graph,
on the other hand, takes no conflicting measurements into account and produces a solution
that perfectly matches all noise influences.

Consider the toy example shown in Figure 2-1, where a pose graph is shown with nodes
X = {xi}4i=1. The pose graph is in the process of adding two scan-matching loop-closure
constraints, zscan

2,4 , zscan
1,4 ∈ SE(2). Initially, in Figure 2-1a, all nodes are only connected se-

quentially by odometry constraints Z = {zodo
1,2 , z

odo
2,3 , z

odo
3,4 } ⊂ SE(2). A constraint is satisfied

if the poses are configured such that the constraint cost function is zero. For instance, the
constraint that corresponds to zodo

1,2 is satisfied if

eodo
1,2 (x1, x2) =

∥∥fodo
1,2 (x1, x2)	 zodo

1,2
∥∥2

Σ1,2
= 0 =⇒ x−1

1 x2 = zodo
1,2 ,

where fodo
I = f transf.

I . An accumulated constraint is constructed by linking together multiple
constraints by substitution. For instance, the accumulated constraint of {zodo

1,2 , z
odo
2,3 , z

odo
3,4 }

Art van Liere Master of Science Thesis



2-4 Congruence 19

relates the poses x1 and x4, and is satisfied if

x−1
1 x4 = zodo

1,2 zodo
2,3 zodo

3,4 .

The graph shown in Figure 2-1a is congruent, because all accumulated constraints can be
satisfied. More specifically, the graph configuration that satisfies

x−1
1 x2 = zodo

1,2 ,

x−1
2 x3 = zodo

2,3 ,

x−1
3 x4 = zodo

3,4 ,

also satisfies all accumulated constraints. Therefore, it can be concluded that for the pose
graph shown in Figure 2-1a, the congruent solution exists. The constraints that are satisfied
by the congruent solutions are indicated by a blue colour.

(a) Graph(4-3) (b) Graph(4-4) (c) Graph(4-5)

Figure 2-1: A toy example of a pose graph.

Such an acyclic (sub)graph, where all nodes are connected sequentially, is referred to as a
‘tail’ (or ‘graph dead end’). Its composition inherently allows for all accumulated constraints
to be satisfied, because none are conflicting. In contrast, when a graph is made cyclic, such
as shown in Figure 2-1b, the set of all accumulated constraints is not likely to be satisfied.
For instance, the accumulated constraints of {zodo

2,3 , z
odo
3,4 } and of {zscan

2,4 } both relate the poses
x2 and x4. Due to influence of measurement and process noise, the constraint value is likely
to be different; i.e.,

zodo
2,3 zodo

3,4 6= zscan
2,4 .

In this case, the graph configuration that satisfies the constraint of {zodo
2,3 , z

odo
3,4 } does not

satisfy the constraint of {zscan
2,4 }. That is, the measurements zodo

2,3 and zodo
3,4 are said to be in

conflict with the measurement zscan
2,4 . Constraints that are part of the incongruent solution are

indicated by a red colour. At this point, the subgraph with {x1, x2, z
odo
1,2 } is still congruent

due to it being a tail.

An acyclic subgraph inherently has no conflicting accumulated constraints, because between
any two nodes only one ‘path’ of constraints exists. This can be included in the definition for
congruence: a subgraph is congruent if a single path of measurement constraints exists between
any set of nodes. This is also the reason that graph optimisation is only performed after the
establishment of a loop closure constraint: because the tail is made cyclic, the congruent
solution is no longer valid, and optimisation is required.
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20 Pose graph optimisation

2-5 Linearisation

In an effort to solve the non-linear least-square minimisation problem defined in (2-1), methods
such as Gauss-Newton or Levenberg-Marquardt approximate the error function terms eI by
its first-order Taylor series expansion around a given linearisation point X̆I . By considering
a small vector parameterisation ∆xI ∼= ∆XI with ∆xI ∈ RmI , the approximation at XI =
X̆I � ∆xI is given by

eI(XI) = eI(X̆I � ∆xI) ≈ eI(X̆I) + J̆I∆xI ,

where J̆I := JI(X̆ ) is the Jacobian matrix of partial derivatives of eI at X̆ with respect to
XI ⊂ X . Note that the generalised addition operator � is used instead of ⊕ to not invalidate
this notation by the introduction of additional parameter-nodes in Chapter 3 that are not
necessarily of the type SE(n).

By substituting the linear approximation into the error function, a quadratic approximation
is obtained:

FI(X̆ � ∆x) = eI(X̆ � ∆x)> Σ−1
I eI(X̆ � ∆x)

≈
[
eI(X̆ ) + J̆I∆x

]>
Σ−1
I

[
eI(X̆ ) + J̆I∆x

]
=
[
eI(X̆ )>Σ−1

I eI(X̆ )
]

︸ ︷︷ ︸
cI

+ 2
[
eI(X̆ )>Σ−1

I J̆I
]

︸ ︷︷ ︸
b>

I

∆x + ∆x>
[
J̆>I Σ−1

I J̆I
]

︸ ︷︷ ︸
HI

∆x.

With this local approximation, the total cost function is obtained as through summation over
all constraints, which can then be combined into a single matrix equation:

Fpgo(X̆ ⊕∆x) ≈
∑
I

(
cI + 2b>I∆x + ∆x>HI∆x

)
= c+ 2b>∆x + ∆x>H∆x.

In order to take a closer look into this linearisation process, a single constraint is considered
in detail. The constraint with identifier I has m-dimensional measurement zI and thus an
m-dimensional vector error function eI(X ). It is connected to q nodes XI .

1. First, the Jacobian matrices of the error function eI are calculated with to respect to each
of the connected nodes. That is, for each node xi ∈ XI with parameterisation xi ∈ Rmi ,
the Jacobian sub-matrix is defined as

J̆Ii =



∂e[1]
I (XI)
∂x[1]

i

∣∣∣∣
XI=X̆I

· · · ∂e[1]
I (XI)
∂x[mi]

i

∣∣∣∣
XI=X̆I

... . . . ...

∂e[m]
I (XI)
∂x[1]

i

∣∣∣∣
XI=X̆I

· · · ∂e[m]
I (XI)
∂x[mi]

i

∣∣∣∣
XI=X̆I


∈ Rm×mi ,

where x[j]
i and e[j]

I (XI) denote jth elements of xi and eI(XI), respectively. Each of the
columns of the Jacobian sub-matrix describes the gradient of the error function eI(XI)
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with respect to a degree of freedom of node xi ∈ XI . The jth column, denoted by J̆ [j]
Ii
,

can be numerically approximated with a central difference scheme as [11]

J̆
[j]
Ii
≈ 1

2δ
(
eI
(
xi � δ1[j]

mi

)
− eI

(
xi �−δ1[j]

mi

))
∈ Rmi ,

where δ > 0 is a small constant (e.g. 1× 10−9) and 1[j]
mi ∈ Rmi denotes the unit vector of

size mi along dimension j.
The Jacobian sub-matrix J̆Ii of eI with respect to node xi can then be constructed by
concatenating all columns as

J̆Ii =
[
J̆

[1]
Ii
· · · J̆

[mi]
Ii

]
∈ Rm×mi .

Finally, the full constraint Jacobian can be constructed by concatenating all sub-matrices
that correspond to the connecting nodes as

J̆I =
[
J̆I1 · · · J̆Iq

]
∈ Rm×

(
Σimi

)
.

2. The linearisation constants, bI and HI , comprise of matrix-blocks for each of the connec-
ted nodes, with

bI := J̆>I Σ−1
I eI(X̆ ) =

[
J̆I1 · · · J̆Iq

]>
Σ−1
I eI(X̆ )

HI := J̆>I Σ−1
I J̆I =


J̆>I1

Σ−1
I J̆I1 · · · J̆>I1

Σ−1
I J̆Iq

... . . . ...

J̆>Iq
Σ−1
I J̆I1 · · · J̆>Iq

Σ−1
I J̆Iq



2-6 Performance metrics

The performance of a PGO solution is evaluated using performance metrics that compare the
ground truth solution to the estimated solution. This is in contrast to using the solution cost
as a performance metric, which does not necessarily imply an accurate solution, but rather an
cost-optimal solution [24]. In the map optimisation domain, the error surface can be complex
due to the nature of the underlying observations. As such, it is possible for a map to change
dramatically with little effect on the error value. Furthermore, if a graph is constructed from
only odometric constraints that relate poses sequentially, the graph is labelled congruent (see
Figure 2-1a), and a zero-cost solution exists that places each pose perfectly at the measured
location relative to the previous pose. Even if the measurements are completely off and the
resulting graph looks nothing like the ground truth, the cost will be zero.

For a performance metric to be unaffected by these issues, the ground truth has to be taken
into account when evaluating the solution quality. Two frequently employed methods are
defined below [30, 27]. Note that it is assumed that the estimate graph and ground truth
graph contain identical indexing of robot poses that are identically connected by constraints.
If this is not the case, values of the metrics can still be computed by taking the intersection
of the relevant graph elements between both graphs.
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22 Pose graph optimisation

1. Absolute Trajectory Error (ATE) evaluates the global consistency of the graph by com-
paring the absolute distances between estimates and ground truth trajectory. For each
robot pose that is present in both graphs, a cost term is contributed that represents the
absolute difference in translation. The ATE is defined by taking the root-mean-square
error of these terms:

eate(X ) =
√

1
|X |

∑
i

∥∥ttruth
i − ti

∥∥2
.

2. Relative Position Error (RPE) evaluates the local accuracy of the trajectory by comparing
pairs of robot poses connected by relative pose transformation constraints. For two poses
that are connected by such a constraint, the relative transformation is denoted by ∆XI =
x−1
i xj , where I = {i, j}. The RPE is divided into a translation component erpe−transl.(X )

and a rotation component erpe−rot.(X ), which are defined as

erpe−transl.(X ) =
√

1
|Z|

∑
I

∥∥transl(∆X truth
I −∆XI

)∥∥2
,

erpe−rot.(X ) =
√

1
|Z|

∑
I

∥∥rot(∆X truth
I −∆XI

)∥∥2
.

The performance metrics provide a scalar value evaluation of the estimated graph relative to
the ground truth. To offer more insight, all metrics can be plotted over time with respect to
an increasing graph. This provides insights into the influence of certain constraints by the
induced effect on the performance metrics.

2-7 Summary

Pose Graph Optimisation (PGO) formalises the maximum likelihood formulation of the set
of poses X ⊂ SE(2) given the set of measurements Z ⊂ M using a pose graph. In a pose
graph poses are represented by nodes and measurements are encoded in the edges. Each
measurement zI ∈ Z, identified by the set of node indices I, is paired with a measurement
model to form a graph constraint. The measurement model comprises:

• Measurement model function fI : X →M, which maps the set of poses X to an expected
measurement value inM;

• Measurement model covariance (or constraint covariance) ΣI ∈ RmI×mI , which describes
the accuracy of the measurement in terms of a covariance matrix.

Each constraint defines an error function eI(X ) = fI(X ) � zI ∈ RmI and contributes an cost
term FI(X ) = ‖eI(X )‖2ΣI

that is quadratic in the error function and linear in the constraint
covariance. The PGO problem is given by

X ∗ = arg min
X

∑
I
FI(X ).

PGO relies on least-square minimisation techniques to find the cost-optimal solution over all
constraints in the pose graph.

Congruence describes the presence of conflicting measurements within a subgraph. A graph
that is congruent has a zero-cost solution that perfectly matches all constraints. Although
this seems favourable at first sight, congruence indicates a graph to be under-constrained.
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Chapter 3

Parameter calibration

Pose Graph Optimisation (PGO) relies on the measurement models that are encoded in
the pose graph to be accurate. Oftentimes, these measurement models are dependent on
knowledge of specific robot parameters that are to be set a priori, or these models simply fail
to account for unknown systematic measurement deviations. By identifying the dependency
of the unknown parameter within the measurement model, the parameter can be modelled
by a set of graph nodes [17], thereby creating a pose-parameter graph and the accompanying
Pose-Parameter Graph Optimisation (PPGO) problem. This is an extension of PGO, which
is derived in Chapter 2.

In this chapter a generalised approach to PPGO is proposed that is based on the imple-
mentation of two generally applicable parameters (a bias and scaling factor). These imple-
mentations comprise modified measurement models and connectivity strategies of the set of
parameter-nodes within the pose-parameter graph.

This chapter covers the following:

• Section 3-1 ‘Motivation’ discusses the motivation for the use of PPGO by introducing a
number of interesting use-cases.

• Section 3-2 ‘Pose-parameter graph optimisation’ introduces the PPGO problem formula-
tion and discusses the implementation differences with respect to PGO. Extended meas-
urement models are required for the construction of the pose-parameter graph that simul-
taneously relate the pose-nodes and parameter-nodes. Connectivity strategies dictate the
set of parameter-nodes used to model a parameter.

• Section 3-3 ‘Parameter-nodes’ introduces the measurement models of the generally ap-
plicable parameters that are investigated in this research: the bias parameter (and sensor
frame parameter) and the scaling factor parameter.

• Section 3-4 ‘Connectivity strategies’ discusses the connectivity strategies that exist for the
estimation of a constant parameter, a time-fluctuating parameter, and a space-fluctuating
parameter.

• Section 3-5 ‘Summary’ summarises the content of this chapter.
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3-1 Motivation

Every sensor system is dependent on some set of parameters that is used to convert the raw
sensor data to meaningful measurements. Especially in PGO and its derivatives, where all
measurements are some form of relative pose transformation, rotation, or translation, meas-
urements are often dependent on robot-specific parameters. The accuracy of these parameters
can have a substantial effect on the accuracy of the potential SLAM solution.

Some parameters can be hard to measure and only obtained using lengthy ad-hoc calibra-
tion procedures (such as e.g. a sensor coordinate frame transformation), which need to be
performed every time the robot configuration changes. Furthermore, if a parameter is sub-
ject to change during operation (such as e.g. wheel radii for inflated tyres), any estimate
obtained from such a procedure is promptly rendered useless during the mapping process.
Self-calibration can also be employed to compensate for a systematic measurement deviation
(such as e.g an unanticipated sensor bias). In this case, the deviation is modelled as a para-
meter and the measurement models are modified based on an assumed dependency relation.

To highlight the advantages of PPGO. some use-cases are sketched that would benefit from
the live parameter-calibration capabilities of PPGO:

• Consider a robot that carries a LiDAR sensor. The relative transformation T (R)
Slidar of the

sensor-fixed frame Slidar with respect to the body-fixed frame R is required to derive the
relative pose transformation from the scan-matching algorithm, which itself produces a
relative sensor-frame transformation. Without a good estimate of this parameter, all
relevant constraints will be systematically off, and the solution will not be accurate.

For a rigidly-attached sensor, the body-to-sensor transformation can be considered con-
stant. Its value can be considered a sensor frame parameter that needs to be added at
both ends of the relative sensor transformation.

• Consider a post-delivery robot that goes around an office building carrying packages of
varying weights. Packages are constantly being loaded and unloaded as it moves around.
Its wheels comprise tyres that deform based on the weight of the load being carried by
the robot. If the odometry sensor system relies on rotary encoders on the wheels for its
pose transformations, an accurate estimate of the wheel radii is required.

This influence can be modelled by a time-dependent parameter that acts as a scaling factor
on the translation component of the pose transformation measurements. The weight of
A heavy load constitutes are small effective wheel radius, and therefore a scaling factor
value below one.

• Consider a robot that uses a GPS sensor to establish location prior constraints in the
vicinity of tall buildings. The GPS signal can be obstructed by the buildings or cause
deviations due to the signal reflection. The measurement deviation is a function of the
environment and fluctuates as a function of space.

The measurement deviation can be modelled by a space-dependent translation bias para-
meter. A parameter value map can be constructed for use in other robots or mapping
processes.
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3-2 Pose-parameter graph optimisation

Pose-Parameter Graph Optimisation (PPGO) is proposed as an extension to Pose Graph Op-
timisation (PGO) that is able to estimate a parameter value by including a set of parameter-
nodes in the pose-graph, thereby forming a pose-parameter graph. The pose parameter graph
formalises the maximum likelihood formulation of the set of poses-nodes and parameter-nodes,
given the set of measurements. The goal of PPGO is to find the most likely path (represented
by a set of pose-nodes) and parameter values (represented by a set of parameter-nodes) given
the set of measurements.

This section covers the implementation of PPGO in terms of the required modifications with
respect to the PGO problem.

3-2-1 Problem description

Similar to PGO, PPGO relies on least-square minimisation techniques to find the cost-optimal
Maximum a Posteriori (MAP) estimate that minimises the weighted mismatch between the
expected and true measurement values over all measurements. The PPGO problem formula-
tion is given by

eI(N ) = fI(N ) � zI ,

FI(N ) =
∥∥eI(N )

∥∥2
ΣI
,

Fppgo(N ) =
∑
I
FI(N ),

N ∗ = arg min
N

Fppgo(N ),

(3-1)

where the following differences with (2-4) are noted:

• P = {p} denotes the set of parameter-nodes;
• N = X ∪P denotes the set of all PPGO variables, which is union of the set of pose-nodes
X and the parameter-nodes P;

• Fppgo(N ) denotes the scalar PPGO cost function that is the summation of the cost terms
‖eI(N )‖2ΣI

contributed by all constraints formalised in the pose-parameter graph, as a
function of the set of nodes N .

3-2-2 Connectivity strategies

In PGO, a trajectory is represented by a set of pose-nodes with a unique entry for every
time instance. Correspondingly, the set of pose-nodes is able to provide an estimate for the
robot pose at every instance. The extension to PPGO does not enable an identical modelling
approach for the set of parameters: a unique-parameter node for every time instance could
result in an under-constrained optimisation problem. This is because the parameters are not
directly measured, but rather deduced from systematic inconsistencies between the measure-
ment models and actual measurement values. As a result, no meaningful constraints can
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be imposed on the set of parameter-nodes. Without constraints, the set of parameter-nodes
can be manipulated to form a zero-cost solution irrespective of the value of the connecting
pose-nodes. Alternative connectivity strategies are required to connect a set of (non-unique)
parameter-nodes to the set of relevant constraints.

As given by (2-4) and (3-1), the constraint cost term function is defined as

FI(NI) = ‖eI(NI)‖2ΣI = ‖fI(NI) � zI‖2ΣI .

This function has a unique minimum where the pose-nodes and parameter-nodes are con-
figured such that the outcome of the measurement model fI(NI) perfectly matches the ob-
served measurement value zI , resulting in eI(NI) = 0. This node configuration is only part
of the solution if the rest of the pose graph contains no conflicting accumulated constraints
that relate the same set of nodes (see Section 2-4). The addition of a unique parameter-node
for every instance could result in an underdetermined system for eI(NI) = 0, with infinitely
many solutions for NI .

Consider the example posed Figure 3-1.

Figure 3-1: An underdetermined PPGO problem due to the addition of a unique parameter-node
for every instance. Without constraints imposed on the parameter-nodes, the system Fppgo(N ) =
0 has 8 unknowns (9 nodes of which x1 is fixed at the origin, and 5 equations (or measurements).

The congruent solution to the PPGO cost function

Fppgo(N ) =
∑
I
‖eI(NI)‖2ΣI = 0

has 8 unknowns (4 parameter-nodes {podo
1′ , podo

2′ , podo
3′ , podo

4′ } and 4 pose-nodes {x2, x3, x4, x5},
with x1 fixed at the origin) and 5 equations:

e1,2,1′(x1, x2, p
odo
1′ ) = 0,

e2,3,2′(x2, x3, p
odo
2′ ) = 0,

e3,4,3′(x3, x4, p
odo
3′ ) = 0,

e4,5,4′(x4, x5, p
odo
4′ ) = 0,

e6,7,5′(x5, x6, p
odo
5′ ) = 0.

If no other constraint is imposed on the value of the parameter-node, its value can be chosen
freely to always intersect with the congruent solution, irrespective of the values of XI ⊂ NI .
This undesired behaviour can be mitigated by strategically connecting a set of parameter-
nodes that is not unique for every time instance. This will be referred to as a connectivity
strategy. The connectivity strategies proposed in this research are discussed in Section 3-4.
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3-2-3 Measurement models

The measurement model function fI : N → M maps the set of connected nodes NI to an
expected measurement value in M. Its implementation depends on the sensor from which
the measurement is generated, which in turn defines a dependency relation with a set of
pose-nodes XI ⊂ NI and a set of parameter-nodes PI ⊂ NI .

In Section 2-3-2, the measurement model functions are introduced for some of the common
measurements, irrespective of sensor implementation. These models are repeated in Table 3-1.

Pose transformation: f transf.
i,j (X ) = x−1

i xj

Pose rotation: f rot.
i,j (X ) = R>i Rj = R

[
f transf.
i,j (X )

]
Pose translation: f transl.

i,j (X ) = tj − ti = t
[
f transf.
i,j (X )

]
Location prior: f loc.

i (X ) = ti = t
[
f transf.

0,i (X )
]

Table 3-1: Measurement model functions for some of the most common measurements.

In order to include a dependency on a set of parameter-nodes, a relationship has to be
defined that describes the effect of the parameter-node value on the expected measurement
value. This relationship is dependent on the interpretation of the parameter-node. Whereas a
pose-node has the unambiguous interpretation of a robot pose at a specific time instance, the
interpretation of the parameter-node as e.g. a bias term or scaling factor inherently changes
the definition of the corresponding measurement model function.

3-3 Parameter-nodes

This research investigates the reconstruction of two generally applicable parameters: a bias
parameter and a scaling parameter. Furthermore, the reconstruction of the sensor frame
transformation parameter (which is essentially a special case of the bias parameter) is also
investigated. The parameters are modelled by corresponding parameter-nodes, which are
defined in terms of a modified measurement model that includes a dependency on a corres-
ponding parameter-node.

3-3-1 Bias

The bias of an estimator is the difference between this estimator’s expected value and the
true value. A biased estimator can be made unbiased if an unbiased estimate of the bias is
subtracted from the biased estimator.

The implementation of a bias parameter is dependent on the type of constraint it is connected
to. As discussed in Section 2-3-2, all measurement model functions can be defined in terms of
the pose transformation model function f transf.

I . The same is true for the modified measure-
ment model functions used in PPGO. The model function f transf.

i,j approximates the relative
transformation T (Ri)Rj

∈ SE(2) of the robot-fixed frame Rj in terms of Ri, and is derived in
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(2-6) as

f transf.
i,j (X ) = x−1

i xj ∈ SE(2).

The bias parameter can be modelled to be present on any of the components of the relative
pose transformation measurement model function f transf.

i,j .

First, consider a bias parameter-node pbias(x,y,θ) ∈ SE(2) applied to all components {x, y, θ}
of f transf.

i,j . The modified measurement model is given by

f transf.
i,j,k (N ) = f transf.

i,j (X ) pbias(x,y,θ)
k = x−1

i xj p
bias(x,y,θ)
k ∈ SE(2), (3-2)

where the bias parameter-node pbias(x,y,θ)
k is ‘added’ onto the PGO measurement model func-

tion f transf.
i,j by right-multiplication.

Now, consider the case of a bias parameter-node pbias(x,y)
k ∈ R2 applied to the translation

component of f transf.
i,j . Although composition of an element in SE(2) with an element R2

is undefined, the desired result can be achieved by constructing a dummy transformation
element T

〈
p

bias(x,y)
k

〉
∈ SE(2) that has all unconsidered components set to zero. That is,

T
〈
p

bias(x,y)
k

〉
= T

(
p

bias(x,y)
k , R(0)

)
, where R(0) ∈ SO(2) is the zero-rotation element. The

dummy transformation element can be composed with f transf.
i,j (X ), similarly to (3-2). For all

lower-dimension parameter-nodes, the same trick can be applied:

T
〈
pbias
k

〉
=



T
(
p

bias(x)
k , 0, 0

)
, for x-translation bias node pbias(x)

k ∈ R
T
(
0, pbias(y)

k , 0
)
, for y-translation bias node pbias(y)

k ∈ R
T
(
0, pbias(θ)

k

)
, for rotation bias node pbias(θ)

k ∈ SO(2)
T
(
p

bias(x,y)
k , R(0)

)
, for (x, y)-translation bias node pbias(x,y)

k ∈ R2

p
bias(x,y,θ)
k , for transformation bias node pbias(x,y,θ)

k ∈ SE(2)

The generalised modified measurement model function abstracts the specific implementation
of the parameter-node by containing the dummy transformation element in its definition, and
is given by

f transf.
i,j,k (N ) = f transf.

i,j (X )T
〈
pbias
k

〉
= x−1

i xj T
〈
pbias
k

〉
.

Using the generalisation derived in Section 2-3-2, all measurement models can be defined in
terms of the pose transformation measurement model as

f rot.
i,j,k(N ) = R

[
f transf.
i,j,k (N )

]
∈ SO(2),

f transl.
i,j,k (N ) = t

[
f transf.
i,j,k (N )

]
∈ R2,

for.
i,k (N ) = R

[
f transf.

0,i,k (N )
]
∈ SO(2)

f rot.
i,k (N ) = t

[
f transf.

0,i,k (N )
]
∈ R2.

(3-3)
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3-3-2 Scaling factor

A scaling factor parameter is a multiplicative parameter that linearly scales the measurement
model function. Similar to the case of the bias parameter considered in Section 3-3-1, the
modification to the measurement model due to the addition of the scaling parameter node
can be generalised by considering the pose transformation measurement model f transf.

I .

Consider a scaling parameter pscale(x,y,θ) =
(
xscale
k , yscale

k , θscale
k

)
∈ R3, where each element rep-

resents the scaling factor that corresponds to measurement components {x, y, θ} of f transf.
i,j .

The identifying vector of the measurement model is denoted by ξfi,j
(X ) =

(
xfi,j

, yfi,j
, θfi,j

)
(X ) ∈ R3,

where ξfi,j
(X ) ∼= fi,j(X ). The modified measurement model is defined by the element in SE(2)

that follows from the element-wise vector product (denoted by operator �) of pscale(x,y,θ)
k and

ξfi,j
(X ):

f transf.
i,j,k (N ) = T

(
p

scale(x,y,z)
k � ξfi,j

(X )
)

= T


xscale

k · xfi,j
(X )

yscale
k · yfi,j

(X )
θscale
k · θfi,j

(X )


 .

For all lower-dimension parameter-nodes, a dummy scaling vector in R3 can be constructed
that has the unconsidered elements set to the default scaling vector of 1. This operation is
denoted by operator υ

〈
pscale
k

〉
∈ R3. Consequently, the generalised modified measurement

model is defined as

f transf.
I (N ) = T

(
υ
〈
pscale
k

〉
� ξfi,j

(X )
)
.

For constraints with different measurements (i.e., pose translation, rotation, and location
prior), the error function can be obtained similarly to (3-3).

3-3-3 Sensor frame

The sensor frame parameter is a special case of the bias parameter that models the transform-
ation component between the sensor-fixed coordinate S frame and the robot-fixed coordinate
frame R, denoted by T (R)

S ∈ SE(2). Consider, for instance, a sensor that measures the trans-
formation between the sensor coordinate frame at two different instants, Si and Sj , denoted
by T (Si)Sj

. Accordingly, the measurement model defines

f transf.
i,j,k (N ) = T (Si)

Sj
(xi, xj , pframe

k ) ∈ SE(2),

where

T (Si)
Sj

= T (Rj)
Sj

T (Ri)
Rj

T (Si)
Ri

.

If the sensor frame transformation is assumed constant, it can be denoted by ` = T (Si)Ri
=
(
T

(Rj)
Sj

)−1.
The closed form can then be is written as

T (Si)
Sj

=
[
R(Ri)Rj

R>`
[
t(Ri)Rj

+
(
R(Ri)Rj

− I2
)
t`
]

0 1

]
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The closed form reveals that for a constant sensor frame transformation, only the translation
component of the pose transformation is affected. Furthermore, for a small pose rotation,
R(Ri)Rj

≈ I2 and

T (Si)
Sj

=
[
R(Ri)Rj

R>` t(Ri)Rj

0 1

]
, (3-4)

of which only the translation component is affected by the sensor frame transformation.
Moreover, for small R`, following the small-angle approximation {sin(θ) ≈ θ, cos(θ) ≈ 1},
only the y-component of t(Ri)Rj

is significantly affected.

` ∈ SE(2) can be modelled as a sensor frame parameter-node over all dimensions, given by
p

frame(x,y,θ)
k ∈ SE(2). The corresponding measurement model is written as

f transf.
i,j,k (N ) =

(
p

frame(x,y,θ)
k

)−1
f transf.
i,j (X ) pframe(x,y,θ)

k .

For lower-dimension parameter-nodes, a dummy transformation can be constructed as T
〈
pframe
k

〉
∈

SE(2). The measurement model function is then written as

f transf.
i,j,k (N ) =

(
T
〈
pframe
k

〉)−1
f transf.
i,j (X )T

〈
pframe
k

〉
.

The measurement model can be generalised as a sub-component of the relative pose trans-
formation measurement model for the relative pose rotation and translation similarly to (3-3).
However, this generalisation does not hold for the location prior, because only a single sensor
frame transformation is present in the measurement model function:

f transf.
i,k (N ) = f loc.

i (X )T
〈
pframe
k

〉
.

3-3-4 Summary

In this section, the measurement model functions were defined for two generally applicable
parameters: a bias parameter and a scaling factor parameter. Furthermore, a special case
of the bias parameter waas introduced that models the sensor frame transformation T (R)

S .
The parameters are defined in terms of modified measurement model functions that include
an extra dependency on a corresponding parameter-node. The modified pose-transformation
measurement models are summarised in Table 3-2. The operators T 〈p〉 ∈ SE(2) and υ〈p〉 ∈
R3 are used to construct dummy variables of appropriate dimensions for lower-dimension
parameter-nodes p.

The accompanying measurement model functions for pose rotation, translation, and location
prior follow from the generalisation derived in Section 2-3-2:

f rot.
i,j,k(N ) = R

[
f transf.
i,j,k (N )

]
∈ SO(2),

f transl.
i,j,k (N ) = t

[
f transf.
i,j,k (N )

]
∈ R2,

for.
i,k (N ) = R

[
f transf.

0,i,k (N )
]
∈ SO(2)

f rot.
i,k (N ) = t

[
f transf.

0,i,k (N )
]
∈ R2.

Note that the modified measurement model for the sensor frame parameter is only defined
for models that relate two nodes (i.e., pose transformation, rotation, and translation; not
location prior).
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Bias: f transf.
i,j,k (N ) =

[
f transf.
i,j (X )

][
T
〈
pbias
k

〉]
Scaling factor: f transf.

i,j,k (N ) = T
(
υ
〈
pscale
k

〉
� ξfi,j

(X )
)

Sensor frame: f transf.
i,j,k (N ) =

[
T
〈
pframe
k

〉]−1[
f transf.
i,j (X )

][
T
〈
pframe
k

〉]
Table 3-2: Modified measurement models for the bias, scaling factor, and sensor frame para-
meters.

3-4 Connectivity strategies

Connectivity strategies use a set of one or multiple parameter-nodes to model the para-
meter value over time (or space). As discussed in Section 3-2-2, the addition of a unique
parameter-node for every constraint could result in an underdetermined system for the con-
straint optimum with infinitely many solutions. Therefore, alternative connectivity strategies
are necessary that induce the approximation of the true parameter value.

In this section, connectivity strategies are proposed for the following scenarios:

• Constant parameters: static strategy in Section 3-4-1;

• Time-dependent parameters: sliding window strategy in Section 3-4-2 and timely batch
strategy in Section 3-4-3;

• Space-dependent parameters: spatial batch strategy in Section 3-4-4.

3-4-1 Static strategy

The static strategy connects a single parameter-node to all constraints that originate from the
corresponding sensor. Static refers to the type of parameter that this connectivity strategy
is best applied to parameters that are unchanging. An example of such a parameter is the
sensor frame transformation for a sensor system that is rigidly secured to the robot.

The connection of a single parameter-node to multiple constraints is equivalent to connecting
a unique parameter-node per constraint, with the set interconnected by equality constraints,
as shown in Figure 3-2.

If the measurement model covariance is equal over all constraints, the error terms contributed
by the connected constraints are weighted equally. Thus, the value for podo

1′ that induces the
largest average cost reduction also induces the largest total cost reduction. The connectivity
strategy of Figure 3-2b ensures that a value is found for podo

1′ that on average results in the
largest constraint cost reduction. This essentially follows the law of large numbers, which
states that the average of the results obtained from a large number of trials should be close
to the expected value and will tend to become closer to the expected value as more trials
are performed. As such, the more constraints connect the parameter-node, the better the
estimate will be.

A few things are to be noted about the pose-parameter graph of Figure 3-2b:

• The scan-matching loop closure constraint zscan
1,3 induces incongruence only within sub-
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(a) Connectivity strategy of a unique parameter-node
per constraint, with the set interconnected by equality
constraints.

(b) Connectivity strategy of a single parameter-node
connected to all constraints.

Figure 3-2: A pose-parameter graph where a parameter on the odometry sensor is modelled with
the static connectivity strategy. The connection of a single parameter-node podo

1′ to constraints
{zodo

1,2 , z
odo
2,3 , z

odo
3,4 , z

odo
4,5 } is equivalent to connecting a unique parameter-node per constraint, with

the set interconnected by equality constraints, denoted by ‘=’.

graph {x1, x2, x3, p
odo
1′ } (indicated by red edge colours), whereas subgraph {x3, x4, x5, p

odo
1′ }

is left congruent (indicated by blue edge colours).
• Congruent subgraph {x3, x4, x5, p

odo
1′ } does not contribute to the solution for podo

1′ because
of the lack of conflicting measurements. Therefore, the solution for podo

1′ is determined
simultaneously with nodes {x1, x2, x3} to satisfy connecting constraints {zodo

1,2 , z
odo
2,3 , z

odo
1,3 }

as best as possible. Furthermore, the solution that is found podo
1′ should improve the

accuracy of the congruent solution for x4 and x5.

3-4-2 Sliding window strategy

The sliding window strategy estimates the dynamic behaviour of the parameter using a set
of constraints of which the content moves with the current pose. In other words, the set of
constraints represents a sliding window of recent constraints that are used to estimate the
current value of the parameter. When the sliding window moves beyond a constraint it is
disconnected from the parameter-node. To account for the change in dependency, the most
up-to-date parameter estimate is embedded in the constraint value. That is, the measurement
value encoded in the constraint is updated with a value that includes composition with the
most up to date estimate of the parameter. This results in an identical measurement function
value for the same pose-node configuration, irrespective of the contents of the parameter-node.

Consider the example posed in Figure 3-3, which shows the evolution of a graph with a (single)
parameter podo

1′ that is implemented following the constant-size sliding window connectivity
strategy of window size 2. Each new graph contains an extra robot pose, along with all
constraints established from this new pose. A few things are to be noted about the pose-
parameter graph of Figure 3-3:

• For graph instance 1 the number of available odometry constraints is less than the window
size. Only in such a case is the number of connected constraints less than what is stipulated
by the window size.

• The parameter node podo
1′ is identical over all graph instances; only the set of constraints

it is connected to changes. When reconstructing the parameter behaviour over time, the
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Figure 3-3: Various phases of pose-parameter graph where a parameter on the odometry sensor
is modelled with the sliding window connectivity strategy of window size 2. Each instance shows
the graph after the addition of a new robot pose, along with all relations established from this
new pose. Constraints that fall beyond the sliding window, have the most up to date parameter
estimate embedded in the constraint value, which is represented by the dotted arrow.

solution for podo
1′ is taken to correspond to the time instance of the most recent pose-node.

• After a constraint has moved beyond the sliding window, the most up-to-date parameter
estimate is permanently embedded in the constraint value, which is represented by the
dotted arrow. The accuracy of the aforementioned ‘most up-to-date’ parameter estim-
ate depends on the local topology surrounding the sliding window. Three cases can be
distinguished, where the parameter-node is estimated from:

– An incongruent set of constraints, as in graph instance 2. Here, the value of podo
1′ is

chosen to be cost-optimal with respect to all constraints {zodo
1,2 , z

odo
2,3 } in the sliding

window.
– A partially incongruent set of constraints, as in graph instance 3. Here, the value

of podo
1′ is chosen to be cost-optimal with respect to only zodo

2,3 . For such a case, the
parameter is estimated from a set of constraints that smaller than what is stipulated
by the sliding window size.

– A congruent set of constraints, as in graph instances 4 and 5. Here, the set of constraints
is congruent, and podo

1′ is left unchanged with respect to the previous graph instance.
For such a case, the value of the parameter-node does not reflect recent observations.

The accuracy of the parameter estimate is important because its effect is permanently
embedded in the constraints that fall beyond the sliding window. However, with the above-
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mentioned approach, the implemented parameter estimates cannot be guaranteed to be of
minimum quality (i.e., to follow from a minimum amount of incongruent constraints).

The proposed sliding window strategy falls short in the presence of a (partly) congruent sliding
window set of constraints. It can be improved by dynamically adjusting the window size such
that the sliding window set of constraints encompasses at least two pose-nodes at which a loop
closure constraint is established. This also induces graph optimisation to be performed. After
optimisation, the parameter estimate is embedded in overdue constraints and the window size
is reduced to its default size. This approach should guarantee each constraint to be updated
with a parameter value that is estimated from a set of constraints that is at least as large as
stipulated by the sliding window size.

Figure 3-4: A modification to Figure 3-3: Various phases of pose-parameter graph where a
parameter on the odometry sensor is modelled with the dynamic sliding window connectivity
strategy of window size 2.

Consider the example posed in Figure 3-4, which, similarly to Figure 3-3, shows the evolution
of a graph with a parameter podo

1′ that is implemented with the modified sliding window
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strategy. A few things are to be noted about the pose-parameter graph of Figure 3-4:

• Up until graph instance 3, the composition is identical to that of the unmodified sliding
window approach. After the addition of x5, the sliding window would have consisted of
the congruent set {zodo

3,4 , z
odo
4,5 }, but with the modified strategy it is extended until loop

closure is established.
• At graph instance 6, the loop closure constraint zscan

3,7 is established between x7 and x3, and
the sliding window is adjusted to include five constraints. The value of podo

1′ is chosen to be
cost-optimal with respect to constraints {zodo

2,2 , z
odo
4,5 , z

odo
5,6 , z

odo
6,7 }. Although constraint zodo

3,4
is congruent, it is still able to benefit from the improved estimate due to the surrounding
incongruent constraints.

Figure 3-4 shows the modified sliding window strategy is better able to cope with the short-
comings that plague the naive strategy shown in Figure 3-3. The downside of this approach
is that when applied to scenarios for which loop closures are scarce, the sliding window might
expand by a considerable amount. This decreases the ‘recency’ of the set of constraints, as
the parameter value is estimated with measurements made over a longer duration of time.

3-4-3 Timely batch strategy

A batch strategy tries to capture the dynamic behaviour of a parameter by using a set of
parameter-nodes, each of which is connected to a ‘batch’ of constraints. The timely batch
approach organises these batches of constraints by timely correlation. Essentially, for each
period of time, a new parameter-node is added to the graph, and constraints added within
that time period are connected to this parameter. The set of parameter-nodes models the
value of the parameter at a subset of all considered time instances. In contrast to the sliding
window strategy of Section 3-4-2, the parameter estimate of the timely batch strategy has
the ability to improve as more constraints are added to the graph. As a result, the parameter
estimate covered by the first parameter-node is a function of the time.

Consider the example posed in Figure 3-5, which shows a pose-parameter graph where a
parameter on the odometry sensor is modelled with the timely batch connectivity strategy
of batch size 2. That is, parameter-node podo

1′ is connected to batch {zodo
1,2 , z

odo
2,3 } and podo

2′ is
connected to batch {zodo

3,4 , z
odo
4,5 }.

Figure 3-5: A pose-parameter graph where a parameter on the odometry sensor is modelled with
the timely batch connectivity strategy of batch size 2.

A few things are to be noted about the pose-parameter graph of Figure 3-5:

• The batch set of constraints connected to podo
1′ is incongruent (due to loop closure constraint

zscan
1,3 ), whereas the batch set connected to podo

2′ is congruent. As such, for podo
2′ , the
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congruent solution exists until a conflicting constraint is established within that subgraph.
• With the availability of four odometry constraints {zodo

1,2 , z
odo
2,3 , z

odo
3,4 , z

odo
4,5 }, and a batch size

of two, only two data points (i.e., the estimates of {podo
1′ , podo

2′ }) are available to reconstruct
the dynamics of the parameter. This is contrast to the sliding window strategy, which
proposes a new parameter estimate for every time instance.

3-4-4 Spatial batch strategy

The spatial batch strategy is a batch strategy that organises the constraints by spatial correla-
tion. That is, a set of parameter-nodes is introduced with each representing a region of space.
Constraints are then allocated to the parameter-nodes based on the constraint centroid: the
centroid of the translation components of the connected pose-nodes. The motivation for this
is quite straightforward: under the influence of a space-varying parameter, constraints that
are established from similar points in space should encounter similar parameter values.

Consider the example posed in Figure 3-6, which shows a pose-parameter graph with a para-
meter on the odometry sensor modelled with the spatial batch connectivity strategy of batch
quantity 2.

Figure 3-6: A pose-parameter graph where a parameter on the odometry sensor is modelled with
the spatial batch connectivity strategy of batch quantity 2. The constraint-to-batch allocation
is marked by the dotted line, with parameter-node podo

1′ connected to batch set of constraints
{zodo

1,2 , z
odo
2,3 , z

odo
3,4 } and parameter-node podo

2′ to {zodo
4,5 , z

odo
5,6 , z

odo
6,7 }.

A few things are to be noted about Figure 3-6:

• Parameter-node podo
1′ connects to batch set of constraints {zodo

1,2 , z
odo
2,3 , z

odo
3,4 } and parameter-

node podo
2′ to {zodo

4,5 , z
odo
5,6 , z

odo
6,7 }. The parameter-nodes are placed approximately at the

spatial centre of the set of connected constraints, which represents the space components
of the parameter estimate. That is, the parameter-node represents an estimate of the
parameter at a location it encodes.

• The loop closure constraints zscan
4,7 and zscan

3,7 results in the congruent set of odometry
constraints podo

2′ to {zodo
3,4 , z

odo
4,5 , z

odo
5,6 , z

odo
6,7 }. Although the batch that connects to podo

2′ is
incongruent, the batch that connects to podo

1′ is not. Similar to the case of the timely batch
strategy discussed in Section 3-4-3, the parameter-node can be connected to a (partly)
congruent set of constraints, which results in not all constraints being taken into account
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for the parameter estimation.

The thing that sets the spatial batch connectivity strategy apart from the strategies that
model time-dependent parameters is that the constraint-to-batch allocation is not determ-
inistic. That is, a circular dependency relationship exists between the node configuration
N and the constraint-to-batch allocation: the set of pose-nodes defines which constraints are
connected to which parameter-nodes, and the connection of constraints with parameter-nodes
defines the solution for the pose-nodes.

To resolve the circular dependency, an iterative strategy is proposed based on the k-means
clustering algorithm [18] (or Lloyd’s algorithm [19]), which aims to partition a set of points
into k clusters with each point belonging to the cluster with the nearest mean (i.e., cluster
centres or centroids). In other words, k-means clustering identifies k number of centroids,
and then allocates every data point to the nearest cluster, while minimising the in-cluster
sum-of-squares. The algorithm can be used with the constraint centroids to find the optimal
constraint-to-batch allocation by placing the respective parameter-nodes at the calculated
cluster centroids. The iterative strategy is applied until it converges to stable constraint-to-
batch allocation, as highlighted by Algorithm 1.

Algorithm 1 Converging to an optimal constraint-to-batch allocation
Input: Pose-parameter graph g, constraints E , number of clusters k
Output: Populated graph g′
1: procedure Allocate-constraint-to-batch(g, E , k)
2: g′ ← Optimise(g) . Optimise pose-parameter graph g
3: C ← k-means

(
{centroid({t(xi) for xi ∈ e}) for e ∈ E}

)
. Perform k-means clustering

4: do
5: C′ ← C
6: P ← P(C) . Create parameter-nodes P from clustering C
7: for p ∈ P do
8: Assign(p, E , C, g′) . Connect constraints E to node p based on clustering C in g′
9: end for

10: g′ ← Optimise(g′) . Optimise updated graph g′
11: C ← k-means

(
{centroid({t(xi) for xi ∈ e}) for e ∈ E}

)
. Perform k-means clustering

12: while C 6= C′
13: return g′ . Return the solution g′ containing k parameter-nodes
14: end procedure

Note that the accuracy of the constraint-to-batch allocation is directly dependent on the ac-
curacy of the set of poses. Adding a set of parameter-nodes based on the spatial batch strategy
is therefore performed after the graph has been completed, at which point all information
has been gathered and the pose accuracy is likely to be highest. Application of the spatial
batch strategy can thus be considered a post-processing step. Besides, there is no meaning-
ful continuity of the clustering between consecutive graph instances, which complicates any
temporal analysis of its behaviour.

3-5 Summary

Pose-Parameter Graph Optimisation (PPGO) is an extension of Pose Graph Optimisation
(PGO) that includes a set of parameter-nodes P in the optimisation problem over N =
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X ∪ P. The set of parameter-nodes model a parameter that influences the accuracy of the
measurement models. The extended problem formulation is given by

N ∗ = arg min
N

∑
I
FI(N ),

where FI(N ) = ‖fI(N ) � zI‖2ΣI
comprises the extended measurement model function fI(N )

that defines a dependency on the set of parameter-nodes. For the purpose of this research,
the generally applicable bias and scaling factor parameters are modelled, along with a special
case of the bias parameter: the sensor frame parameter. The measurement models are defined
in Table 3-2.

Because the parameters are not directly measured, but rather deduced from systematic in-
consistencies between the measurement models and the actual measurement values, PPGO
is not able to provide an estimate for the parameter value at every instance (unless extra
constraints are imposed). Therefore, alternate connectivity strategies are required that stra-
tegically connect a set of parameter-nodes that is not unique for every time instance. The
following connectivity strategies are proposed for the following scenarios:

• Constant parameters are modelled with the static strategy;
• Time-dependent parameters are modelled with the sliding window strategy and the timely

batch strategy;
• Space-dependent parameters are modelled with the spatial batch strategy.
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Chapter 4

Simulation framework

In order to assess the performance of Pose-Parameter Graph Optimisation (PPGO), a simu-
lation framework is set up that is used to construct pose-parameter graphs similar to what
would be constructed by a real robot. This simulation framework incrementally builds a graph
based on an input trajectory and sensor models with parametric dependencies. The frame-
work includes analytic tools that aid in the verification of the simulations. Unfortunately, no
real-world experiments have been performed to validate the simulations. The analytic tools
are used to assess the performance of PPGO, the results of which are presented in Chapter 5.

This chapter covers the following:

• Section 4-1 ‘Overview’ describes the simulation framework configuration, and evolution
and optimisation procedures.

• Section 4-2 ‘Trajectories’ introduces the two trajectories used in this research: a proced-
urally generated Manhattan grid and a dataset obtained at the Intel Research Lab in
Seattle.

• Section 4-3 ‘Summary’ summarises the content of this chapter.

4-1 Overview

The software implementation of the simulation framework is thoroughly discussed in Ap-
pendix A. To summarise: it consists of a python framework that utilises the General (Hyper)
Graph Optimisation framework (or g2o [11]) for optimisation. Graphs are constructed via
simulation, written to a .g2o file, read by the g2o library, its solution written to another
.g2o file, which is finally interpreted by the simulation framework for further use.

The advantage of relying on simulations to investigate the performance is that a ground truth
is available. The ground truth can be used to assess the accuracy of the solution, both in
terms of the pose accuracy and parameter accuracy.

During simulation, two graphs are constructed in parallel by two sub-simulations:
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1. The truth graph gtruth, which represents the ground truth. The measurements in this graph
are unperturbed my measurement noise, and therefore exactly satisfy the measurement
model. The result is a fully congruent truth graph that is always in its optimal state with
Fppgo(N truth) = 0.

2. The estimate graph gest., which represents what the robot would construct from the in-
coming measurements. The measurements are derived from the truth graph but are per-
turbed my measurement noise. As such, the estimate graph is likely to be incongruent
with Fppgo(N est.) 6= 0.

Between the two graphs, the set of measurements is identical in size. As a result, both graphs
establish the same number of constraints and introduce the same number of pose-nodes. The
modelling of any parameters, however, is not necessarily identical. Whereas gtruth is in its
optimal state with a unique parameter-node per time instance, the corresponding estimate
graph gest. would be under-constrained (as discussed in Section 3-4-1). As such, gest. is
configured with a different parameter connectivity strategy. Furthermore, different sensor
models are utilised per sub-simulations to account for modelling deficiencies in the estimate
sub-simulations.

4-1-1 Configuration

The configuration of a simulation comprises the following components:

1. Trajectory. The robot trajectory consists of a set of poses {xtraj.
i ∈ SE(2)} from which

the pose-parameter graphs are derived. It is a simulation input and serves as the ground-
truth path of the robot. As such, after simulation, the truth graph will perfectly match
the input trajectory with its pose-nodes. The trajectories that are used in this research
are discussed in Section 4-2.

2. Parameters. The influence of any parameters is modelled as a set of parameter-nodes in
the ground truth graph gtruth that is uniquely added to every constraint of a specific sensor.
This set of parameter-nodes represents the ground truth parameter value over time (or
space) and is referred to as the input parameter. The corresponding estimate graph gest.
models the parameter by adding its own set of parameter-nodes according to a defined
connectivity strategy. Because the addition of a unique parameter-node per constraint
would result in an under-constrained optimisation problem, the set of parameter-nodes in
gest. is inherently different (i.e., smaller) than that of gtruth. The parameter estimate that
is reconstructed from the set of parameter-nodes is referred to as the output parameter.

3. Sensors. A sensor generates measurements from the input trajectory and input paramet-
ers. This operation is similar to what is defined by the measurement models

(
fI ,ΣI

)
that are introduced in Section 2-3-2. For the truth graph gtruth., measurements are dir-
ectly generated by gtruth and encoded in the truth graph with truth measurement model(
f truth
I ,Σtruth

I
)
. For the estimate graph f est.

I , the same measurements are perturbed by
measurement noise as described by Σtruth

I . The perturbed measurements are encoded in
the gest. along with an estimate measurement model

(
f est.
I ,Σest.

I
)
. Note that the estim-

ate measurement model
(
f est.
I ,Σest.

I
)
is not necessarily accurate for how the corresponding

measurements are generated.

4. Random Number Generator (RNG). RNGs are used to simulate the uncertainties that oc-
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cur in real-life experiments. Furthermore, they are used to procedurally generate ‘random’
trajectories. In order to maintain reproducibility of simulations, all RNGs are seeded.
The following set of seeded RNGs are used:
• Sensor noise. As explained in Section 2-1-3, the measurement noise is assumed to be

zero-mean Gaussian. For each sensor, a separate seeded RNG is used.
• Constraint generation. Odometry constraints are established between each consecutive

pair of robot poses of the input trajectory. Loop closure constraints, on the other hand,
are only established when the exteroceptive sensor successfully finds a scan match
between an incoming measurement and a previously recorded measurement. Modelling
the probability of a successful scan match as a function of nearby poses requires precise
modelling of environment features, which is well beyond the scope of this simulation.
Therefore, for each robot pose, a set of eligible loop closure constraints is proposed
based purely on the translation component of the current pose and its proximity to
previous poses. The choice of loop closure constraint from this set is determined with
a separate seeded RNG.

• Path generation. Some trajectories are procedurally generated, which requires a sep-
arate seeded RNG.

Both the gtruth and gest. are initialised with starting pose x0 = T (0, 0, 0) ∈ SE(2). This
pose is fixed relative to the inertial coordinate system O and, as a result, all poses are in-
directly defined relative to x0. Furthermore, the equivalence of x0 in both graphs allows for
comparisons to be made in terms of divergence from an identical starting point.

The initialisation of the input parameter-nodes is considered a simulation input, whereas the
output parameter-nodes are initialised to a default value (usually zero), as its true value is
considered unknown within the estimate sub-simulation.

4-1-2 Evolution

To build up the desired graphs, the simulation is continuously evolved by adding new robot
poses and connecting constraints. The addition of a constraint relating poses XI using a given
sensor is done as follows:

1. A ground truth measurement value ztruth
I is derived by applying the measurement model

of the corresponding sensor in the ground truth sub-simulation on the relevant pose-nodes
and sensor parameter-nodes N truth

I = X truth
I ∪ Ptruth

I . That is,

ztruth
I = f truth

I (N truth
I ).

2. A constraint is established in the ground truth graph of the form

FI(N truth
I ) = ‖f truth

I (N truth
I ) � ztruth

I ‖2Σtruth
I

.

3. An estimate measurement value zest.
I is derived by perturbing the ground truth measure-

ment ztruth
I with additive zero-mean Gaussian noise ε ∼ N(0,Σtruth

I ). That is,

zest.
I = ztruth

I � ε.
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4. A constraint is established in the estimate graph of the form

FI(N est.
I ) = ‖f est

I (N est.
I ) � zest.

I ‖2Σest.
I
,

where N est.
I = X est.

I ∪ Pest.
I . Note that the measurement model that is embedded in the

constraint does not necessarily match the model that the corresponding measurement was
generated with, which is the result of modelling deficiencies.

The procedure of adding a constraint is summarised in Algorithm 2.

Algorithm 2 Adding a constraint between nodes I
Input: Node indices I, truth graph gtruth and sensor (f truth

I ,Σtruth
I ), estimate graph gest. and sensor

(f est.
I ,Σest.

I )
1: procedure Add-constraint(I, gtruth, (f truth

I ,Σtruth
I ), gest., (f est.

I ,Σest.
I ))

2: ztruth
I ← f truth

I (N truth
I ) . Calculate truth measurement

3: F truth
I ←

∥∥f truth
I (N truth

I ) � ztruth
I

∥∥2
Σtruth

I
. Construct truth constraint

4: gtruth.add(F truth
I ) . Add constraint to truth graph

5: ε ∼ N(0,Σtruth
I . Draw measurement noise vector

6: zest.
I ← ztruth

I � ε . Calculate estimate measurement
7: F est.

I ←
∥∥f est
I (N est.

I ) � zest.
I
∥∥2

Σest.
I

. Construct estimate constraint
8: gest..add(F est.

I ) . Add constraint to estimate graph
9: end procedure

From starting position x0 = T (0, 0, 0), the simulation uses the following procedural simulation
step to build up its graphs. Consider xi to be the current pose. The simulation step establishes
one or more of the following constraints:

1. Odometry constraint. The odometry measurement defines the location of new pose xj
with respect to xi. In the truth graph, the pose xtruth

j = xtraj.
j is drawn from the input

trajectory. Following the procedure of adding a new constraint described above, the pose
xest.
j is set such that f est.

I (xest.
i , xest.

j ,PI) = zest.
I . That is, the estimated pose is placed

exactly in line with the measurement value. As such, the constraints in both graphs will
contribute a cost term of zero.

2. Loop closure constraint. A loop closure constraint is established after a robot has returned
to a previously visited location. Based on the translation proximity in the ground truth
graph of the current pose with previous poses, a set of eligible loop closure constraints is
proposed. After consulting the constraint generation RNG, a loop closure constraint is
added in both graphs based on the ground truth graph. Note that the poses related by
the loop closure constraint might not be close in the estimate graph.

3. Proximity constraint. Similar to loop closure constraints, proximity constraints are estab-
lished between poses that are close in the truth graph. The difference is that proximity
constraints are usually established from short term memory between poses separated by
only a few odometry constraints, whereas loop closure constraints are established from
long term memory between poses that are established at potentially vastly different time
instances.

After each simulation step, both the truth and estimate graph states are saved. Therefore,
after the simulation is completed, the entire graph history is available for analysis.
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4-1-3 Optimisation

During simulation, the estimate graph is continuously optimised to yield the instantaneous
optimal solution. However, this optimisation step is not necessary for every simulation step.
As mentioned above, the new pose introduced at every step is placed such that the relative
pose transformation satisfies the odometry measurement model. That is, the odometry con-
straint contributes an error term that has an instantaneous value of zero. Therefore, for a
simulation step that only establishes an odometry constraint, the current pose is placed in a
graph tail, and the addition of an odometry constraint will not result in a different solution for
the nodes that were present in the subgraph before addition. Accordingly, optimisation is only
performed after a loop closure constraint and/or proximity constraint has been established
and the current subgraph has been made inconsistent.

Graph ptimisation is performed using g2o [11]. This framework is widely used, fast, and
allows for the definition of custom hyper-edges, which is exactly what is required for using the
measurement models and accompanying error functions discussed in Section 3-3. Although
g2o seems to work consistently for Pose Graph Optimisation (PGO), it does not always
converge to an optimal solution after parameter-nodes have been added to form a PPGO
problem. More specifically, a solution was occasionally found with a cost function value that
was significantly higher than that of the same graph without the parameter-nodes. This is
inherently non-optimal, as the same (and in this case lower cost) solution could be obtained
by matching the solution of the graph without parameters while negating the presence of
parameter-nodes by re-initialising them to their default value (zero and one for additive
and multiplicative parameters, respectively). Note that optimal refers to the solution that
minimises the cost function of the non-linear least-square PPGO problem; not the solution
that minimises all error metrics.

In an effort to filter these non-optimal results, a graph is optimised according to Algorithm 3.
The procedure contains the following steps:

1. All parameter-nodes are re-initialised to their default value. This ensures that the initial
condition of the optimisation step is as close to standard PGO as possible. That is, the
cost function has convex properties at the initial condition, which should aid convergence
[15].

2. The solution out of g2o is checked with respect to a cost threshold. If the solution has a
cost function value beyond the threshold, it is not accepted. Of course, the cost threshold
should be chosen carefully as not to exclude the optimal solution.

3. If g2o is not able to find a solution with a cost value within the threshold, all parameter-
nodes are fixed at their initial value, which results in a regular PGO problem. Since PGO
is proven to converge to a value within the threshold, its solution is by definition more
optimal than what g2o can come up with.

All parameter-nodes are un-fixed for the next optimisation step, and the solution is ac-
cepted.

For this research, it was found that the cost threshold of twice the cost at the previous simula-
tion step was sufficient to exclude non-converging solutions, while still allowing for an optimal
solution to be found. Solving the issue of non-convergence for PPGO generalises this research,
as the conclusions should still be valid for other optimisers.
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Algorithm 3 Filtering non-optimal solutions
Input: Unoptimised pose-parameter graph g0, cost threshold α
Output: Optimised graph g1 or g2
1: function Add-constraint(g0, α)
2: for p ∈ P(g0) do
3: re-initialise(p) . Re-initialise all parameter-nodes of g0
4: end for
5: if α not given then
6: α← cost(g0) . Set the cost threshold to that of g0 prior to optimisation
7: end if
8: g1 = g2o.optimise(g0) . Optimise g0 with initialised parameter-nodes
9: if cost(g1) < α then . Check if g1 is optimal

10: return g1 . Accept solution g1
11: end if
12: for p ∈ P(g0) do . cost(g1) > α =⇒ g1 is not optimal
13: fix(p) . Fix all parameters at the re-initialised value
14: end for
15: g2 = g2o.optimise(g0) . Optimise g0 with fixed and initialised parameter-nodes
16: assert cost(g2) < α . Assert g2 to be optimal
17: for p ∈ P(g2) do
18: un-fix(p) . Un-fix all parameter-nodes of g2
19: end for
20: return g2 . Accept solution g2
21: end function

4-2 Trajectories

The performance of PPGO is assessed based on the following two trajectories [14]:

1. Manhattan grid [25] (see Section 4-2-1), which fulfils the function of ideal case, with shorts
loops and numerous possibilities for loop closing. Furthermore, it is easily interpretable
with a grid-like trajectory.

2. Intel Research Lab dataset [14] (see Section 4-2-2), which is derived from real data. This
trajectory contains an long initial loop and should provide interesting insights, especially
for fluctuating parameters.

Both graphs are discussed in subsequent subsections.

4-2-1 Manhattan grid

The Manhattan grid is not a dataset per se, but more a method for a procedurally generated
path. The path moves in a straight line for a given number of steps, after which it takes
either a ninety-degree left or right turn, as though a robot was travelling the city streets in
upper Manhattan [25]. This makes it easy to visually appraise a map: all corners should be
perpendicular and paths should overlap exactly.

Figure 4-1 shows one such instance, consisting of 3500 nodes and 5453 constraints [4].

For some cases, the path might be distorted to ensure that a non-zero y-translation is likely
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(a) Unoptimised pose graph (b) Optimised pose graph

Figure 4-1: Pose graph derived with the Manhattan method for 3500 nodes [4]. Figure (a)
shows the pose graph that is constructed from the raw data [4]. Figure (b) shows the graph after
optimisation.

to occur at each step. This is done by generating for each step a small translation ‘sidestep’
value from a zero-mean Gaussian distribution, and adding the average of the last two sidestep
values to the next step translation. The result of which is shown in Figure 4-2

(a) Without sidestep (b) With sidestep

Figure 4-2: Comparison of two Manhattan 300-grid trajectories with and without sidestep. Figure
(a) shows the graph without sidestep, and Figure (b) shows the same graph with sidestep drawn
from a zero-mean Gaussian distribution with a standard deviation of 4 cm.
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4-2-2 Intel dataset

The Intel dataset consists of a pose graph obtained by processing the raw measurements from
wheel odometry and laser range finder, acquired at the Intel Research Lab in Seattle [4]. A
solution to this dataset in the form of an occupancy grid is shown in Figure 4-3.

Figure 4-3: Occupancy grid derived from the data set of Intel Research Lab in Seattle [14].

The pose graph that is derived from the raw data is shown in Figure 4-4a and consists of 1228
poses and 1483 constraints. The graph is unoptimised, which is indicated by the (usually
short) loop closure constraints stretching all over the graph domain. The optimised graph is
shown in Figure 4-4b.

(a) Unoptimised pose graph (b) Optimised pose graph

Figure 4-4: Pose graph derived from the Intel dataset [4]. Figure (a) shows the pose graph that
is constructed from the raw data [4]. Figure (b) shows the graph after optimisation.
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What is interesting about the Intel dataset is that, during the first traversal of the ground
floor (consisting of 166 steps), no loop closures are established until the robot reaches its
starting point. During this time, the current robot pose exists in a graph tail; a scenario in
which PPGO can showcase its strengths by potentially nullifying any systematic components
of the drift.

Since the Intel dataset already contains poses and constraints that are based on measurements
without the presence of any systematic deviations, its measurement cannot directly be used
to assess the performance of PPGO. The poses of the optimised graph are taken as a ground
truth trajectory and measurements that include deviations are generated as per Section 4-1-2.

4-3 Summary

The simulation framework developed for the purpose of investigation the performance of
PPGO constructs two graphs in parallel:

• The truth graph, which is unperturbed by sensor noise;
• The estimate graph, which represents what a robot would construct in a realistic scenario

from incoming measurements.

The framework is developed in python and utilises the g2o framework for graph optimisation.

Two trajectories are used to assess PPGO’s performance:

• The Manhattan grid, which is a procedurally generated path that is easy to visually
appraise. The Manhattan grid comprises a grid-like path that is similar to a path taken
in the city streets of upper Manhattan;

• The Intel dataset, which is derived from real measurements performed at the Intel Research
Lab in Seattle. The graph contains a large traversal of its environment, which results in
graph segment with only a small amount of loop closure constraints.
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Chapter 5

Results

The goal of Pose-Parameter Graph Optimisation (PPGO) is to estimate the value of para-
meters that influence the measurement models (in addition to robot trajectory represented
by a set of poses). This ability should allow PPGO to be applied to scenarios that traditional
Pose Graph Optimisation (PGO) struggles with. The performance of PPGO depends on its
ability to accurately estimate the set of poses (referred to as pose accuracy) and its ability to
estimate the parameter value over time or space (referred to as tracking accuracy or parameter
accuracy).
In this chapter, the performance of PPGO is assessed for a variety of scenarios. Furthermore,
its performance is compared to that of traditional PGO to highlight the benefits of simultan-
eous parameter estimation. First, the feasibility of the parameter implementations in terms
of the modified measurement models are examined. Second, the ability of the connectiv-
ity strategies to track both time-dependent and space-dependent parameter fluctuations is
examined.

This chapter covers the following:

• Section 5-1 ‘Simulation’ introduces the simulation used to generate the results.
• Section 5-2 ‘Constant parameters’ examines the performance of PPGO for estimation of

constant parameter, which are best modelled with the static connectivity strategy.
• Section 5-3 ‘Time-dependent parameters’ examines the performance of PPGO for estim-

ation of time-dependent parameters, for which two connectivity strategies are proposed:
the sliding window strategy and the timely batch strategy.

• Section 5-4 ’Space-dependent parameters’ examines the performance of PPGO for estim-
ation of space-dependent parameters, which are best modelled with the proposed spatial
batch approach.

• Section 5-5 ‘Summary’ summarises the content of this chapter.
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5-1 Simulation

The performance of PPGO is examined in simulation, as discussed in Chapter 4. Simulations
are run according to the following procedure:

1. First, an input parameter is defined to influence the measurement of the odometry sensor.
The odometry sensor is chosen because it generates the most constraints, and its modelling
deficiencies are therefore most likely to influence the solution quality. Furthermore, it
allows for all connectivity strategies to be tested without apprehension that constraint
availability might be a bottleneck. The value of the input parameter is kept constant or
is varied with time or space, depending on the scenario. In case of a varying parameter
value, a new parameter-node is added to the truth graph for every time instance.

2. A set of PGO simulations are run that are configured without means of modelling the
unknown parameter value. The result of these simulations serves as an indication of the
performance of traditional PGO when provided with measurements that do not match the
measurement models encoded in the graph.

3. A second set of PPGO simulations are run that are configured with a matching parameter
model. The connectivity strategy that defines the set of parameter-nodes that are added
to the estimate graph is varied depending on the scenario. The result of these simulations
should highlight the abilities of PPGO to correctly reconstruct the input parameter when
provided with the correct measurement models. Furthermore, it should show potential
performance improvements as well as limitations compared to traditional PGO.

Each simulation is run 20 times in a Monte Carlo-type fashion with a different sensor noise
seed in order to model the probability of different outcomes in the process that cannot easily
be predicted due to the intervention of random variables.

Sensors
Odometry

Sensor type: Wheel encoder
Measurement type: SE(2)
fodo

i,j (X ): f transf.
i,j (X ) = x−1

i xj

Σodo
i,j : diag(400, 400, 400)

Loop closure / proximity
Sensor type: LiDAR scan-matching
Measurement type: SE(2)
fLiDAR

i,j (X ): f transf.
i,j (X ) = x−1

i xj

ΣLiDAR
i,j : diag(8000, 8000, 12000)

Location prior
Sensor type: GPS
Measurement type: R2

fGPS
i (X ): f loc.

i (X ) = ti

ΣGPS
i : diag(1, 1)

Table 5-1: Simulation configuration, where diag(. . . ) denotes a diagonal matrix.

The simulation configuration is detailed in Table 5-1, which comprises the following sensors:

• Wheel encoder used to establish for odometry, with a measurement standard deviation of
5 cm and 0.05 rad for translation and rotation, respectively.

Art van Liere Master of Science Thesis



5-2 Constant parameters 51

• LiDAR scan-matching system used to establish loop closure constraints, with a measure-
ment standard deviation of 1.1 cm and 0.009 rad for translation and rotation, respectively.

• GPS system used to establish location prior constraints, with a translation measurement
standard deviation of 1 m.

For each simulation, the two trajectories shown in Figure 5-1 are considered (see Section 4-2).
The Manhattan path has a step size of 1 m, a grid size of 5 steps, and a sidestep standard
deviation of 4 cm to ensure that a non-zero y-translation is likely to be present.

(a) Manhattan grid graph (200, 271): 200 pose nodes,
199 wheel odometry constraints, 62 LiDAR loop closure
/ proximity constraints, 10 GPS constraints.

(b) Intel path graph (300, 403): 300 pose nodes, 299
wheel odometry constraints, 94 LiDAR loop closure /
proximity constraints, 10 GPS constraints.

Figure 5-1: Simulation trajectories. Figure (a) shows the Manhattan grid graph (200, 271).
Figure (b) shows the Intel path graph (300, 403).

5-2 Constant parameters

First, PPGO is applied to the simplest case: constant parameters. As discussed in Section 3-
4-1, constant parameters are best modelled with the static connectivity strategy with a single
parameter-node connected to all constraints of the corresponding sensor.

Because of the abundance of parameter implementations available (e.g. a bias can be applied
on any combination of components of a pose transformation measurement, namely x or y or
θ or (x, y) or (x, θ) or (y, θ) or (x, y, θ)), only case with the highest plausible dimensionality is
explicitly examined; the rhetoric being that if PPGO is able to reconstruct a parameter applied
over all measurement components, it is also able to reconstruct a parameter applied over just
a subset. The highest-dimension parameter results in the most measurement inconsistencies
and offers the most degrees of freedom in the optimisation problem. As such, this parameter
implementation is considered worst-case.
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5-2-1 Bias

A baseline is established by running a simulation without the influence of any paramet-
ers. The corresponding PGO solution represents the best-case performance for the defined
simulation configuration. The PPGO sub-simulation is configured with a parameter-node
pbias(x,y,θ) ∈ SE(2) to test whether its estimate approximates the zero bias value of T (0) ∈
SE(2). The result on the Manhattan path is shown in Figure 5-2, in which the Absolute
Trajectory Error (ATE) and parameter estimate are plotted for an increasing graph size.

Figure 5-2: Manhattan path unparameterised with a static output parameter on the odometry
sensor: PGO graph without parameters (blue) versus PPGO graph with static parameter
(orange).

The following conclusions can be drawn:

• Tracking accuracy: the vector representation of parameter-node pbias(x,y,θ) ∈ SE(2) is
found to stay close to the true value of 0 ∈ R3. The least accurate parameter estim-
ate is derived at the moment the first loop closure constraint is established. The standard
deviation of the estimate decreases with the number of constraints added.

• Pose accuracy: the ATE over time is almost identical for the PGO and PPGO solutions
(apart from the small error spike at the beginning of the simulation, which can be attrib-
uted to an inaccurate parameter estimate). This corresponds with the correct estimation
of the parameter value, where an estimate of zero effectively negates its effect on the
measurement model. The result is a similar optimisation problem with a similar solution.
This verifies that the addition of any redundant parameter-node components in the PPGO
graph does not have a significant adverse effect on the solution quality.

The pose accuracy can be summarised using a single value: the average ATE over the period
of graph construction. This value represents the average pose error one would encounter
for this given scenario. The average ATE is similar for both graphs: 0.540 m and 0.566 m
for PGO and PPGO, respectively. The average ATE for all parameter implementations are
summarised in Table 5-2, which makes for easy comparison with the baseline performance.

Table 5-2 shows that the PPGO performance is relatively consistent over the period of graph
construction in terms of ATE, irrespective of the parameter implementation. More specifically,
the PPGO solution always is within 26 % of the baseline on the Manhattan path, and within
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Simulation Manhattan (200, 271) Intel (300, 403)
no par. static par. no par. static par.

Baseline 0.540 0.566 0.826 0.916
bias(x) = 0.1 0.955 0.570 1.641 0.834
bias(y) = 0.1 0.651 0.556 1.048 0.830
bias(θ) = 0.1 1.126 0.632 6.219 0.915
bias(x, y) = (0.1, 0.1) 1.098 0.582 1.569 0.836
bias(x, θ) = (0.1, 0.1) 1.432 0.645 6.434 0.918
bias(y, θ) = (0.1, 0.1) 1.247 0.678 6.375 0.925
bias(x, y, θ) = (0.1, 0.1, 0.1) 1.614 0.681 6.599 0.925

Table 5-2: Average ATE (in meters) over the period of graph construction for all bias parameter
implementations (averaged over 20 simulations).

12 % on the Intel path. The PGO performance more than triples in ATE for the worst-case
on the Manhattan path and shows an even more substantial increase under the influence of
any orientation bias on the Intel path.

Consider the worst-case simulation on the Manhattan path with a constant input parameter
‘bias(x, y, θ)’ = (0.1 m, 0.1 m, 0.1 rad) and a parameter-node pbias(x,y,θ) ∈ SE(2) added with
the static connectivity strategy.

Figure 5-3: Manhattan path with constant input parameter ‘bias(x, y, θ)’ = (0.1 m, 0.1 m,
0.1 rad) and a static output parameter on the odometry sensor: PGO graph without parameters
(blue) versus PPGO graph with static parameter (orange).

The result is shown in Figure 5-3, which indicates that:

• Tracking accuracy: the vector representation of parameter-node pbias(x,y,θ) ∈ SE(2) quickly
converges to the true value (0.1, 0.1, 0.1) ∈ R3. What is notable is that the estimate stays
at its initialisation value of 0 ∈ R3 until a loop-closure constraints is established. This
constraint conflicts with the string of prior odometry constraints, and the introduced
congruence allows for estimation of the bias parameter. Similar to the case of Figure 5-2,
the more constraints are added, the more the parameter estimate steadies.

• Pose accuracy: the ATE over time shows clear improvements with respect to the PGO
solution. Before the establishment of the loop closure constraint, the value for ATE is
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identical between both graphs (because the parameter value is still at its initialised value
of zero). Once the parameter can be estimated, the PPGO solution shows approximately
a 66 % decrease in ATE over the period of graph construction, with an average error more
or less in line with the baseline.

A more striking relative performance gain is found in Figure 5-4, where the same simulation
with ‘bias(x, y, θ)’ = (0.1 m, 0.1 m, 0.1 rad) is run over the Intel path. Whereas the PPGO
solution is again consistent with the baseline, the PGO solution shows a substantial increase
in ATE. The increased ATE corresponds with the solution path, which does not agree with
the input trajectory shown in Figure 5-1b. The incorrect solution can be attributed to the
accumulated orientation bias, which induces a path that rotates in on itself. Performing PGO
from this node configuration does not result in the correct solution, resulting in consistently
large ATE.

Figure 5-4: Intel path with constant input parameter ‘bias(x, y, θ)’ = (0.1 m, 0.1 m, 0.1 rad)
and a static output parameter on the odometry sensor: PGO graph without parameters (blue)
versus PPGO graph with static parameter (orange).

5-2-2 Sensor frame

As discussed in Section 3-3-3, the sensor frame is a special case of the bias parameter that
is only defined for transformations that relate two poses. Consider a simulation on the Man-
hattan path with a constant input parameter ‘frame(x, y, θ)’ = (0.1 m, 0.1 m, 0.1 rad) and a
similar configuration of parameter-node pframe(x,y,θ) ∈ SE(2) added with the static connectiv-
ity strategy.
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The result shown in Figure 5-5, which indicates improved performance for the unparamet-
erised PGO graph with respect to the consistent PPGO solution. This can be attributed to
the fact that for small pose rotations, the y-translation component is mostly affected by the
modelling deficiency, as given by (3-4) in Section 3-3-3. Because the majority of the pose
transformations comprise a small pose rotation, the unmodelled sensor frame transformation
parameter has a similar effect as an unmodelled y-bias. For this case, a low-cost solution
exists that compensates for a positive y-bias with a combination of increased orientation and
y-translation, which explains the improved PGO performance.

Figure 5-5: Manhattan path with constant input parameter ‘frame(x, y, θ)’ = (0.1 m, 0.1 m,
0.1 rad) and a static output parameter on the odometry sensor: PGO graph without parameters
(blue) versus PPGO graph with static parameter (orange).

5-2-3 Scaling factor

Consider the case of a scaling factor parameter-node pscale(y) ∈ R connected to all odometry
constraints in the estimate graph of the PPGO sub-simulation. The value of pscale(y) ∈ R is
varied as to minimise the graph cost function. The trajectories considered in this research are
derived from the case of a wheeled robot, which is considered a non-holonomic system (i.e., a
system whose state depends on the path taken) that is barred from pure y-translation without
a change in x-translation and orientation. Accordingly, for the considered trajectories, the
lateral translation component is consistently found to be close to zero, whereas the orientation
component is only non-zero when making a turn, as shown in Figure 5-6.

This is a characteristic of the trajectories derived from wheeled robots, which influences the
ability to reconstruct scaling parameters. With the ground truth lateral translation compon-
ent consistently small, the corresponding measurement component is subject to domination by
sensor noise. As a result the parameter-node pscale(y) ∈ R in the parameterised sub-simulation
is optimised to find the amplification of y-translation measurement components (which con-
sists largely of sensor noise) that minimises the cost function value. Without a perceivable
true y-translation component to scale, such a parameter implementation is considered illo-
gical. Therefore, due to the nature of the trajectories considered in this research, a scaling
parameter on the y-translation is not considered. The occasional non-zero orientation com-
ponent, however, does allow for estimation with the static connectivity strategy.
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Figure 5-6: Measurements of the Intel path with constant input parameter ‘scale(y)’ = 1.1.

Table 5-3 summarises the average ATE over the period of graph construction for all parameter
implementations. It again shows consistently better performance of the PPGO solutions with
respect to that of PGO. Furthermore, the PPGO performance is always within 6 % of the
baseline on the Manhattan path, and within 5 % on the Intel path.

Simulation Manhattan (200, 271) Intel (300, 403)
no par. static par. no par. static par.

Baseline 0.540 0.559 0.826 0.838
scale(x) = 0.1 0.915 0.575 1.078 0.832
scale(θ) = 0.1 0.591 0.566 0.826 0.872
scale(x, θ) = (0.1, 0.1) 0.773 0.590 1.057 0.875

Table 5-3: Average ATE (in meters) over the period of graph construction for all scaling factor
parameter configurations (averaged over 20 simulations).

Consider the worst-case simulation on the Manhattan path with a constant input parameter
‘scale(x, θ)’ = (1.1, 1.1) and a parameter-node pscale(x,θ) ∈ R2 added with the static connectiv-
ity strategy. The result shown in Figure 5-7 which shows similar performance to the case
of Figure 5-5. indicates improved PGO performance with respect to the consistent PPGO
performance. The improved PGO performance can be attributed to the fact that the incon-
sistency due to an unmodelled scaling factor parameter scales linearly with the magnitude of
the measurement value.

5-3 Time-dependent parameters

For the estimation of time-dependent parameters, two connectivity strategies are proposed in
Section 3-4:

• The sliding window strategy (introduced in Section 3-4-2), which estimates the dynamic
behaviour of a parameter using a single parameter-node connected to a set of constraints
of which the content moves with the most recent pose. The measurement value is therefore
estimated using a set of only the most recent constraints.
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Figure 5-7: Manhattan path with constant input parameter ‘scale’(x, θ) = (1.1, 1.1) and a
static output parameter on the odometry sensor.: PGO graph without parameters (blue)
versus PPGO graph with static parameter (orange).

• The timely batch strategy (introduced in Section 3-4-3), which estimates the dynamic
behaviour of a parameter using a set of parameter-nodes, each of which is connected to a
batch of similarly aged constraints. Each parameter-node estimate represents the average
parameter estimate over a period of time, as covered by the corresponding constraints.

Following the discussion of Section 5-2, only the highest-dimension (or worst-case) parameter
implementations are considered. To test the tracking accuracy of both approaches, the para-
meter is varied according to the sinusoidal function

fsin(α, t) = 0.1 sin
( π

100αt
)
,

where α ∈ N is used to scale the function frequency. A sinusoidal function is chosen because:

• It is symmetric about the origin. As a result, both positive and negative parameter values
are estimated.

• It is continuously changing.
• Its frequency can easily be manipulated in order to test the reactivity of the parameter

estimate.

5-3-1 Sliding window strategy

The sliding window connectivity strategy is introduced in Section 3-4-2. It uses a dynamically-
sized set of constraints that extends such that its constraints encompass at least two pose-
nodes at which a loop closure has been established. This approach guarantees that each
constraint is updated with a parameter value that is estimated from a set of constraints at
least as large as stipulated by the sliding window size.
Consider the simulation on the Manhattan path with a time-dependent input parameter
‘bias’(x, y, θ) =

(
fsin(1, t), fsin(2, t), fsin(3, t)

)
and a parameter-node pbias(x,y,θ) ∈ SE(2) added

with the sliding window connectivity strategy with window size 5. This window size was
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found optimal by running the same simulation for a range of window sizes and choosing the
value with the lowest average squared parameter tracking error. The result of the simulation
is shown in Figure 5-8.

Figure 5-8: Manhattan path with sinusoidal input parameter ‘bias(x, y, θ)’ =
(
fsin(1, t),

fsin(2, t), fsin(3, t)
)
and sliding window (with window size 5) output parameter on the odometry

sensor: PGO graph without parameters (blue) versus PPGO graph with sliding window
parameter (orange).

The following conclusions can be drawn:

• Tracking accuracy: the single parameter-node with the sliding window connectivity strategy
is able to reconstruct the sinusoidal parameter relatively well. Due to the nature of the
strategy, where the parameter value at any time instance is estimated from a set of con-
straints that all have been established before that instance, a delay can be observed between
the true parameter value and its estimate.

• Pose accuracy: the difference in ATE between the PGO and PPGO solution is relatively
small compared to the results achieved in Section 5-2. This can be attributed to the
sinusoidal nature of the parameter, of which the mean value is zero. That is, the systematic
measurement deviation due to the modelling inconsistency are both negative and positive
over time. The Relative Position Error (RPE) shows a large increase around step 140,
which corresponds to the inaccurate instantaneous parameter estimate.
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The Manhattan grid is considered a more ideal path, due to the abundance of loop closure
constraints. In Section 3-4-2 it was discussed that a key characteristic of the sliding window
strategy was its ability to dynamically adjust its resize to encompass at least two pose-nodes
at which a loop closure has been established. The same simulation is run on the Intel path,
which has considerably fewer loop closure constraints in its first traversal of the map. The
result is shown in Figure 5-9.

Figure 5-9: Intel path with sinusoidal input parameter ‘bias(x, y, θ)’ =
(
fsin(1, t), fsin(2, t),

fsin(3, t)
)
and sliding window (with window size 5) output parameter on the odometry sensor:

PGO graph without parameters (blue) versus PPGO graph with timely batch parameter
(orange).

The following conclusions can be drawn:

• Tracking accuracy: the parameter estimate over time clearly exhibits a step-like behaviour
due to the absence of loop closure constraints. After each optimisation, however, the
parameter estimate is close to the true value, which is also the value that is embedded in
the intermediary odometry constraints.

• Pose accuracy: the ATE shows improved pose accuracy for the PPGO solution compared
to the PGO solution. The relative performance difference is larger than observed in
Figure 5-8, which is due to the worse performance of the PGO solution.

5-3-2 Timely batch strategy

The timely batch connectivity strategy is introduced in Section 3-4-3 for the purpose of estimat-
ing time-dependent parameters. It is a batch strategy that organises the constraints by timely
correlation, where each batch of similarly aged constraints is represented by a parameter-node
that corresponds to a time period. In contrast to the sliding window strategy, the parameter-
nodes are permanently connected to its set of constraints, and any information added in a later
phase will benefit its estimate. Therefore, the parameter estimate is constantly improving as
more constraints are added to the graph, similar to the pose estimates.

Consider the simulation on the Manhattan path with a time-dependent input parameter
‘bias(x, y, θ)’ =

(
fsin(1, t), fsin(2, t), fsin(3, t)

)
and a set of parameter-nodes

{
pbias(x,y,θ) ∈ SE(2)

}
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added with the timely batch connectivity strategy with batch size 10. The result is shown in
Figure 5-10.

Figure 5-10: Manhattan path with sinusoidal input parameter ‘bias(x, y, θ)’ =
(
fsin(1, t),

fsin(2, t), fsin(3, t)
)
and timely batch (with batch size 10) output parameter on the odometry

sensor: PGO graph without parameters (blue) versus PPGO graph with static parameter
(orange).

The following conclusions can be drawn:

• Tracking accuracy: the estimated values of the parameter-nodes are data points from
which the parameter estimate is reconstructed through linear interpolation. As indicated
by the plot, the interpolated estimate is an accurate reconstruction of the true parameter
value. In contrast to the sliding window solution of Figure 5-8, the timely batch solution
shows no indication of a delay.

• Pose accuracy: remarkably, the pose accuracy of the PPGO solution is less than that of
the PGO solution, even though the tracking accuracy seems high. This is because the
parameter reconstruction is taken from the final estimate of all parameter-nodes. The
estimate for the parameter-nodes is continually improved as more constraints were added
to the graph. As such, the parameter interpolation is not a representation of the parameter
estimate during graph construction, but rather after graph construction.
The increased ATE can be attributed to an inaccurate estimate of a parameter-node at
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the corresponding graph instance. The inaccuracy in the parameter-node estimates is
reflected in the RPE, which show periods of large error.

The same simulation run over the Intel dataset is more problematic and yields no solution
until the graph contains one full map traversal. The lack of incongruence within the graph
due to an absence of loop closure constraints results in problems for some parameter-nodes.
This can be attributed to insufficient graph complexity and an excess of degrees of freedom;
i.e., an under-constrained optimisation problem.

A solution to the fact that accuracy (and in some cases convergence) can not be guaranteed for
all applications of the timely batch strategy is to consider it a post-processing step. The same
parameter tracking result can be obtained by first considering the PGO solution; until the
graph is fully constructed, at which point all parameter-nodes are added in a single instance
according to the timely batch strategy. The result is a satisfactory estimate of the parameter
value over time, but only after the graph has been constructed.

Consider the same simulation on the Intel path with the timely batch strategy applied as a
post-processing step. This time, the graph converges, with the result is shown in Figure 5-11.

Figure 5-11: Parameter tracking on the Intel path with sinusoidal input parameter
‘bias(x, y, θ)’ =

(
fsin(1, t), fsin(2, t), fsin(3, t)

)
and timely batch (with batch size 10) output

parameter on the odometry sensor.

5-4 Space-dependent parameters

The spatial batch strategy is proposed in Section 3-4-4 for the purpose of estimating space-
dependent parameters. It is a batch strategy that organises the constraints by spatial cor-
relation, where each batch of nearby constraints is represented by a parameter-node that
corresponds to a region of space. The constraints are allocated to the batches based on the
centroid of the translation components of the connected pose-nodes. Note that the spatial
batch strategy is considered a post-processing step, with the parameter-nodes added to the
graph after all measurements have been collected.

The k-means clustering algorithm is used to find the optimal constraint-to-batch allocation
that minimises in-cluster sum-of-squares. The algorithm is applied in an iterative fashion
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because of the circular dependency relationship between the node configuration and the
constraint-to-batch allocation. That is, the pose-parameter graph is optimised and its con-
straint reallocated until the batch composition has converged (see Algorithm 1).

Figure 5-12 shows the converged constraint-to-batch allocation for 20 parameter-nodes on
the Manhattan grid (400, 541) and the Intel path (800, 1106). This allocation is independ-
ent of any parameters that might apply. The plots are colour-coordinated to highlight the
correspondence of constraints to parameter-nodes.

(a) Manhattan grid (400, 541) with 399 odometry con-
straints.

(b) Intel path (800, 1106) with 799 odometry con-
straints

Figure 5-12: Converged constraint-to-batch allocation for 20 parameter-nodes on (a)Manhattan
grid and (b) Intel path.

The spatial batch connectivity strategy only provides a data point in space for each parameter-
node. Using the constraint-to-batch allocation illustrated in Figure 5-12, only 20 of such data
points are available. Therefore, the estimation of the spatial relationship of any parameters
is restricted to slow moving functions.

To test the tracking accuracy of the spatial batch strategy, a ‘bias(x)’ parameter is applied
to the odometry constraints and varied according to the sinusoidal function

fspace(x, y) = 0.2 cos
(
x+ y

10

)
.

The results of estimating this parameter are shown in Figure 5-13 and Figure 5-14 for the
Manhattan grid and Intel path, respectively. The plots compare the parameter estimate in-
terpolated over the data points represented by the parameter-nodes in the estimate graph (on
the left) with interpolation of the ground truth parameter values over the data points repres-
ented by each odometry constraint (on the right). The interpolation represents a parameter
map, with the parameter value in 2-dimensional space indicated by colour in a heat map.
The ground truth parameter map represents the best possible interpretation of the parameter
value as a function of the space covered by the trajectory. For the ground truth, a data point
is available for each constraint, which constitutes a larger domain to interpolate over.
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The parameter estimate interpolation clearly resembles the ground truth interpolation, even
though it is derived from a significantly reduced set of data points.

(a) Estimate parameter map interpolated over 20
parameter-nodes.

(b) Ground truth parameter map interpolated over all
400 odometry constraints.

Figure 5-13: Interpolated parameter map on the Manhattan path (400, 541) of a space-
dependent sinusoidal input parameter, modelled by a spatial batch (with 20 batches) output
parameter on the odometry sensor.

(a) Estimate parameter map interpolated over 20
parameter-nodes.

(b) Ground truth parameter map interpolated over all
799 odometry constraints.

Figure 5-14: Interpolated parameter map on the Intel path (800, 1106) of a space-dependent
sinusoidal input parameter, modelled by a spatial batch (with 20 batches) output parameter on
the odometry sensor.

5-5 Summary

The capabilities of PPGO are assessed by comparing an adequately configured PPGO graph
with a PGO counterpart, which does not have any means of estimating the parameter value.
The simulations are configured with a wheel encoder for odometry, a LiDAR scan-matching
setup for loop closures and proximity constraints, and a GPS sensor for location priors. Each
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simulation is tested on the Manhattan grid and Intel path for 20 runs to account for different
outcomes due to the influences of sensor noise.

The estimation of the bias and sensor frame parameters is found to be reliable over all pose
transformation measurement components with consistent pose accuracy over all graphs. For
the scaling factor, only the rotation and longitudinal translation components are considered,
with the lateral translation component disregarded. This is because, for the data sets used
in this research, the ground truth lateral translation component is found close to zero, which
results in the measurement component likely to be dominated by sensor noise. When consid-
ering only the two above-mentioned measurement components, the scaling factor parameter
estimation is found to be reliable with consistent pose accuracy.

The sliding window and timely batch connectivity strategies are found to be able to reconstruct
a time-dependent sinusoidal parameter:

• The sliding window strategy offers an instantaneous parameter estimate, albeit with a
slight delay. The delay is inherent to the sliding approach, as its parameter estimate is
the value that minimises the cost over a set of past constraints. Since all estimations are
embedded in the overdue constraints, any estimation inaccuracy has a permanent effect
on the solution.

• The timely batch strategy is found to be better applied as a post-processing step because its
accuracy and convergence cannot be guaranteed when applied during graph construction.
This can be attributed to a resulting under-constrained optimisation problem.

The spatial batch connectivity strategy is also applied as a post-processing step. It is found to
be able to reconstruct a space-dependent sinusoidal parameter by interpolating the parameter-
node estimates over space. Although the parameter-nodes offer only a limited set of data
points over a limited domain, the estimate graph is able to successfully approximate the
ground truth parameter map.
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Chapter 6

Conclusion

In this chapter, a conclusion is formed on the research performed during this thesis. More
specifically, this chapter covers the following:

• Section 6-1 ‘Discussion’ reflects back on the research questions posed in Chapter 1 and
provides an answer based on the results presented in Chapter 5.

• Section 6-2 ‘Recommendations’ provides recommendations for future work.

6-1 Discussion

The main goal of this thesis was to serve as a starting guide for implementing Pose-Parameter
Graph Optimisation (PPGO) for a variety of commonly occurring use-cases. For this purpose,
a set of generally applicable basis parameters was defined alongside corresponding measure-
ment models. With the addition of a unique parameter-node for every instance yielding an
under-constrained optimisation problem, alternative connectivity strategies are proposed that
take into account the fluctuation of the underlying parameter: the static connectivity strategy
for constant parameters; the sliding window and timely batch connectivity strategies for time-
dependent parameters; the spatial batch connectivity strategy for space-dependent parameters.
To investigate the broad range of applications that this generalised approach to PPGO hopes
to cover, the following research questions were posed in Chapter 1:

• Which types of parameters can be estimated with the use of Pose-Parameter Graph Op-
timisation?
Section 3-1 provides a motivation for the definition of the two generally applicable basis
parameters, which comprise the additive bias parameter (with the sensor frame parameter
as a special case) and the multiplicative scaling factor parameter. These parameters
form the basis of an affine transformation of the unmodified measurement models. Any
parameter influence can at least be approximated by an affine transformation, which makes
the bias and scaling factor good candidates to be generally applicable.
In Section 5-2, the static connectivity strategy is investigated for all parameter implement-
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ations applied to the set of odometry constraints. The estimation of the bias and sensor
frame parameters is found to be reliable over all pose transformation measurement com-
ponents. For the scaling factor, only the rotation and longitudinal translation components
are considered, over which estimation was found to be reliable. For the lateral translation
component it was argued that, considering the nature of the trajectories with consistent
near-zero lateral translation measurements, such an application is illogical and therefore
disregarded in this research.

• How does the performance of Pose-Parameter Graph Optimisation compare with Pose
Graph Optimisation under appropriate conditions?

For PPGO, two performance criteria are considered: pose accuracy and tracking accuracy
(or parameter accuracy), with only pose accuracy applicable to Pose Graph Optimisation
(PGO). For the case of a constant parameter influence, PPGO is quick to converge
to an accurate parameter estimate, which results in an improved Absolute Trajectory
Error (ATE) with respect to the PGO counterpart. This performance is consistent across
all parameter implementations on all trajectories, with only a slight performance penalty
observed for increased parameter dimensionality. Even in the presence of any redundant
parameter-node components, PPGO performance is on par with PGO, with the redundant
components quickly estimated to be zero.

In the presence of varying parameters (see Section 5-3 and Section 5-4), it was found that
PPGO can be implemented to reconstruct both time-varying as space-varying paramet-
ers. The sliding window strategy is able to provide an accurate instantaneous parameter
estimate, which results in a consistently lower ATE over the period of graph construc-
tion. The batch strategies (both timely and spatial) are found to be best employed as a
post-processing step, where the accuracy of the parameter reconstruction also provides a
decrease in ATE.

• Under what conditions is Pose-Parameter Graph Optimisation able to capture the dynam-
ics of a parameter?

A pose-parameter graph can only be optimised when its constraints are incongruent (i.e.,
conflicting; see Section 2-4). Furthermore, because the parameters are not directly meas-
ured, but rather deduced from measurement inconsistencies, no meaningful constraints can
be imposed on the value of the set of parameter-nodes. As such, a parameter-node must be
connected to multiple constraints, which results in a parameter estimate that on average
compensates for the measurement inconsistency over all connected constraints. The para-
meter estimate accuracy inherently increases with the number of connected constraints.
As a result, sufficient connectivity of the parameter-nodes is required for accurate estim-
ation. Insufficient connectivity is the culprit that weakens the instantaneous performance
of the timely batch strategy, as discussed in Section 3-4-3.

– What insights can be gained by modelling a parameter’s temporal correlation using the
sliding window and timely batch connectivity strategies?
In Section 5-3 it was found that the sliding window and timely batch connectivity
strategies are both able to reconstruct a time-dependent sinusoidal parameter value.
∗ The sliding window strategy is able to provide an instantaneous parameter estimate

for every time instance, of which the fluctuations are subject to a slight delay. The
delay is inherent to the sliding approach because its estimation is based on a set
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of past constraints. The accuracy of the parameter estimate results in a decreased
ATE for PPGO relative to PGO.

∗ The timely batch strategy is found to be better applied as a post-processing step
because its accuracy and convergence cannot be guaranteed when applied during
graph construction for all implementations. The set of parameter-node estimates
can be interpolated into an accurate reconstruction of the parameter value over
time, without any delays in the fluctuations. This also results in a decrease in ATE
with respect to the PGO solution.

– What insights can be gained by modelling a parameter’s spatial correlation using the
spatial batch strategy?
The spatial batch connectivity strategy is also applied as a post-processing step. In
Section 5-4 it was found that the spatial batch strategy is able to provide an accurate
reconstruction of the underlying space-dependent parameter. Each batch represents
a data point at the centroid of the translation components of all related poses. As
such, the parameter-node estimates can be interpolated into a parameter map estim-
ate. The reconstruction is limited by the availability of data points, which depends
on the domain covered by the robot trajectory. Although the parameter-nodes offer
only a limited set of data points over a limited domain, the estimate map is able to
approximate the ground truth parameter map.

Overall, it can be concluded that PPGO can be applied to solve a variety of calibration scen-
arios for a variety of parameters, with both time-dependent and space-dependent parameters
reconstructable with the proposed connectivity strategies. The correct estimation of a para-
meter consistently results in better pose accuracy, with only a slight performance penalty
observed for higher-dimensional parameters.

The benefit of PPGO is that it can be applied on any existing robot that was already using
PGO: all that is required is the definition of a parameter implementation and a connectivity
strategy. The SLAM front-end [2] can stay the same and all hardware can stay the same.

6-2 Recommendations

Listed below are some ideas that could be addressed in future work:

• Explore the use of constraints strictly within the set of parameter-nodes.
In Section 3-2-2 it was posed that the addition of a single parameter-node per time in-
stance would result in an under-constrained optimisation problem because no meaningful
constraints could be imposed on the parameter-nodes without the availability of direct
measurements. However, one could argue that a random walk model could be imposed on
the set of parameter-nodes, which would effectively be equivalent to an uncertain equality
constraint. For this case, the random walk covariance would need to be tuned depending
on the characteristics of the parameter fluctuations. However, it would interesting to see
whether this strategy could be employed to allow for the addition of a unique parameter-
node per time instance, which would therefore alleviate the need for the connectivity
strategies posed in this thesis altogether.
The random walk parameter model could be used to generalise the work proposed in this
research; i.e., the static connectivity strategy is simply a random walk parameter model
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with zero covariance. The batch approaches can be described by a random walk parameter
model that defines zero covariance to nodes within a batch and infinite covariance to nodes
beyond the batch. It would be interesting to find out what challenges are posed by the
tuning of the random walk covariance.

• Investigate the sensitivity of the noise model assumptions for PPGO.
The Gaussian noise assumption is the key factor that enables the formulation of the PGO
and PPGO problems as least-square minimisation problems. In real-world scenarios, the
encountered measurement and/or process noise are unlikely to be perfectly Gaussian.
Therefore, it would interesting to see how PPGO is able to cope with measurements
influenced by other noise characteristics. Furthermore, the implications of coloured noise
could also be investigated.

• Validate results with real-world experiments.
With this research being based solely on simulation data, it would be interesting to see
how these results translate to real-world performance. Such experiments would inherently
expose the framework to different graph characteristics and different noise characteristics.
The simulations performed in this research should be considered an ideal case under the
influence of strictly Gaussian noise and perfect measurement models.

• Investigate the modelling of parameters on other sensors.
This research focuses solely on parameters that are applied only to the odometry sensor
system, which would unlikely be the only sensor system affected by unknown parameters
in a real-world scenario. Therefore, it could be interesting to investigate whether e.g. a
GPS bias parameter map could be estimated.
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Software

The software used in this research is written in python and utilises the General (Hyper)
Graph Optimisation C++ framework (or g2o [11]) for optimisation.

The source code is available on https://github.com/artjvl/self-calibrating-slam.

A-1 GUI

Figure A-1: The Graphical User Interface (GUI) of the Self-Calibrating SLAM visualiser.
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A-2 Graph

Figure A-2: UML - Graph

• Graph represents a pose-parameter graph. It sorts its elements (Nodes and Edges) by name
and by type. It stores a ground truth Graphreference (_truth), a previous instance graph
reference (_previous). It provides access to the performance metrics by e.g. accumulating
the Absolute Trajectory Error (ATE) terms of all corresponding SpatialNodes or the
Relative Position Error (RPE) terms of all corresponding Edges.
A Graph can optimise itself by saving to a .g2o-file and calling the g2o framework.

• Node represents a factor graph node. Each Node contains a unique identifier (_id) with
which it is identified in any NodeContainer sub-class (i.e., Edge and Graph). Furthermore,
it stores a time instance (_timestep) of creation, a reference to a ground truth Node
(_truth), and a boolean to indicate whether its value is fixed (_is_fixed).
– SpatialNode represents a node with a ‘spatial’ interpretation; i.e., a pose-node (mod-

elled by NodeSE2) or a landmark-node (modelled by NodeV2). Its value is drawn in
space when visualising the graph. SpatialNodes can be implemented to contribute
to the ATE performance metric by assigning the squared absolute error (_ate2), if a
truth reference is assigned.
∗ NodeSE2 stores a value of type SE2, which typically represents a robot pose.
∗ NodeV2 stores a value of type Vector2, which typically represents a landmark.

– ParameterNode represents a parameter-node. It is defined by its value, its specification
(or interpretation, _specification) and its index (_index). The specification defines
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how the stored value should be interpreted by the constraint error function (which is
defined in the corresponding Edge) and which measurement model function should be
applied. For this research, the following specifications are defined: BIAS, SCALE, and
(sensor) FRAME. The index defines how the stored value is converted to a Vector3 when
used in the error function.
The ParameterNode sub-classes implement the compose_transformation method,
which defines how the stored value is used to manipulate a transformation measurement
value in SE2.
∗ ParameterNodeSE2 stores a value of type SE2 and can represents either a BIAS or

(sensor) FRAME in 3 dimensions. The index attribute is not used, as only a single
Vector3 representation is defined for the SE2 data-type.

∗ ParameterNodeV1 stores a value of type Vector1 and can represent all scalar spe-
cifications. The index attribute defines which dimension is represented by the scalar
parameter value. For a stored value of 1.0, a default value of 0.0, and an index of
0, the Vector3 representation is given by [1.0 0.0 0.0].

∗ ParameterNodeV2 stores a value of type Vector2 and can represent all 2-dimensional
specifications. The index attribute defines which dimension is not represented by
the 2-dimensional parameter vector value. For a stored value of [2.0 1.0], a de-
fault value of 0.0 and an index of 1, the Vector3 representation is given by [2.0
0.0 1.0].

∗ ParameterNodeV3 stores a value of type Vector3 and can represent a 3-dimensional
SCALE. The index attribute is not used.

• Edge represents a factor Graph(hyper) edge, which is used to model a pose-parameter
graph constraint. Each Edge stores a cardinality value (_cardinality), an appropriately-
sized information matrix (_info_matrix), a truth reference (_truth), and an error vector
value (_error_vector). Edges can be implemented to contribute to the RPE performance
metrics by assigning the squared relative translation and rotation errors (_rpet2 and
_rper2, respectively).
The Edge sub-classes override the error_vector method to define how its stored value
and connected nodes are manipulated into an error vector value. This is where the
specification and Vector3 representation of the ParameterNode come in.
– EdgeSE2 represents an edge that stores a measurement in SE2.

∗ EdgePosesSE2 connects to two pose-nodes (NodeSE2) and represents a pose trans-
formation constraint.

– EdgeV2 represents an edge that stores a Vector2 measurement.
∗ EdgePoseV2 connects to a single pose-node (NodeSE2) and represents a location
prior constraint.

∗ EdgePosePointV2 connects to a pose-node and a landmark-node and represents a
landmark observation.

A-3 Simulation

• BiSimulation contains a ground truth sub-simulation (_truth_sim) and an estimate sub-
simulation (_estimate_sim), which are both run simultaneously. It stores the ground
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Figure A-3: UML - Simulation

truth poses in hash-map (_geo) based on a 2-dimensional grid. Furthermore, it stores an
optimiser (_optimiser) and seeds for the constraints (_constraint_seed) and for the
sensors (_sensor_seed).

Sub-classes of the BiSimulation are required to implement the methods:

– configure(), which configures most importantly the estimate simulation model using
set_plain_simulation() or set_optimising_simulation() or set_post_simulation().

– initialise(), which configures the sensors (with add_sensor) and the model para-
meters.

– simulate(), which defines the simulation loop. A simulation loop typically com-
prises the addition of an odometry constraint (with add_odometry()), a ‘roll’ of the
_constraint_rng to establish a loop closure constraint (with roll_closure()) or
proximity constraint (with roll_proximity(), any parameter updates, and a step
forward in time (with step()).

– finalise(), which typically defines the post-processing steps.

• Simulation represents single-Graphsub-simulation instance. Sub-classes of the Simulation
are required to implement the step() method.
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All simulations have the ability to add parameter-nodes according to the static connectivity
strategy (with add_static_parameter() and update_parameter(), which is typically
only used in the truth simulation to define a truth parameter fluctuation).
– PlainSimulation represents the simulation that does not optimise its Graphwhen a

loop closure has been established. This simulation instance is the fastest to execute,
and is typically used to as a ‘path-finder’, to verify the trajectory implementation.

– OptimisingSimulation represents the simulation that optimises at every loop closure
constraint. It has the ability to add parameter-nodes according to the sliding win-
dow strategy (with add_sliding_parameter()) and the timely batch strategy (with
add_timely_parameter()).

– PostSimulation represents the simulation that performs a post-processing step. It
has the ability to add a spatial batch parameter (with add_spatial_parameter(),
which is technically a PostAnalyser) and perform the corresponding post-processing
step (with post_process()).

• GraphManager handles the Graph construction by making sure new Nodes are assigned a
unique identifier.

• Model stores all Sensors.
• Sensor defines that is able to generate measurements according to its noise model (_rng

and _info_matrix) and its assigned Parameters.
– SensorSE2 measures transformations in SE2.
– SensorV2 measures translations in Vector2.

• Parameter represents a parameter model that creates a set of ParameterNodes, depending
on its own implementation. It stores a specification and the corresponding simulation
(_sim, which it needs to freely create Nodes).
– StaticParameter creates a single ParameterNode and connects it to all incoming

constraints.
– SlidingParameter creates a single ParameterNode and handles the dynamic resizing

(from _window_size) until its set of constraint encompass at least two nodes at which
a loop closure is established. Furthermore, it handles the embedding of the most recent
parameter estimate into the outgoing constraints.

– TimelyBatchParameter creates a new ParameterNode for each set of constraints, as
stipulated by its batch size (_batch_size)

• PostAnalyser represents a post-processing action. It stores the Edges that correspond to
the Sensor it is applied to.
– SpatialBatchAnalyser represents the post-processing step of adding ParameterNodes

according to the spatial batch connectivity strategy. The post_process() method
performs the k-means clustering step.
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Appendix B

Lie groups for 2D and 3D
transformations

The robot is considered a rigid body, which is defined as a collection of particles such that
the distance between any two particles remains fixed, regardless of any motions of the body
or forces exerted on the body. Its continuous rigid motion is discretised as a set of rigid dis-
placements, and each is described by a rigid body transformation. For such a transformation,
distance is preserved between all points in R3, and the cross product is preserved between all
vectors in R3 [23]. As such, particles in a rigid body can only rotate, but not translate, with
respect to each other.

To keep track of the rigid body motion, a right-handed Cartesian coordinate frame is fixed at
some point of the body (usually the odometric centre). The body-fixed coordinate frame is
then expressed in terms of the inertial reference frame by a rigid body transformation, which
defines a rotation and translation. This rigid body transformation is what is implied by the
robot pose.
Rotation matrices are used to describe a rotation of one reference frame relative to another.
Compounding multiple rotation matrices by matrix multiplication results in another rotation
matrix; i.e., no additional steps are required to make rotation matrices respect the required
circle topology. By exploiting its special structure, a rotation matrix in R3 can be paramet-
erised by 3 numbers. The most common choice is to make use of the vector of Euler angles:
yaw, pitch, and roll. These angles represent a relative rotation via a series of rotations about
each axis. Although intuitive, this representation suffers from singularities at gimbal lock
[12], which occurs when two of the three rotational axes align. Alternatively, quaternions,
which generalise complex numbers, can be used to represent rotations in much the same way
as complex numbers on the unit circle can be used to represent planar rotations. Although
these do not suffer from singularities, they parameterise rotations by 4 numbers, making them
over-parameterised. In order to find an efficient parameterisation, rotation matrices have to
be examined more closely.

The special structure of rotation matrices is described by a rotation manifold, which can

Master of Science Thesis Art van Liere



76 Lie groups for 2D and 3D transformations

be expressed using Lie theory. Lie theory allows for the representation of manifolds that are
useful for the expression of rigid motion and kinematics. Lie theory can be exploited to devise
a coherent and robust framework for representing 3D transformation.

B-1 Lie theory

Lie theory (and the accompanying Lie groups) are useful for formulating estimating problems
properly; that is, proper modelling of the states and measurements, the functions relating
them, and their uncertainty. In particular, such modelling designs utilise manifolds, which are
essentially the smooth topological surfaces of the Lie groups, where the state representation
evolve.

B-1-1 Lie groups

The Lie group encompasses the concepts of group (1) and smooth manifold (2) in a unique
body; that is, a Lie group G is a smooth manifold whose elements satisfy the group axioms
[28]. These concepts are defined as:

1. A group (G, ◦) is a set, G, equipped with a binary composition operation, ◦, that combines
any two elements to form a third element in such a way that four conditions called group
axioms are satisfied, namely:
• Closure under ◦: If g1, g2 ∈ G, then g1 ◦ g2 ∈ G;
• Associativity: If g1, g2, g3 ∈ G, then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3);
• Identity e: There exists an identity element e ∈ G, such that e◦ g = g ◦ e = g, for every
g ∈ G;

• Invertibility g−1: For each g ∈ G, there exists a (unique) inverse g−1 ∈ G such that
g−1 ◦ g = g ◦ g−1 = e.

2. A smooth (or differentiable) manifold is a topological space that locally resembles linear
space. Its smoothness implies the existence of a unique tangent space at each point. It
can be visualised as a curved, smooth (hyper)-surface, with no edges or spikes, embedded
in a space of higher dimension.

In a Lie group, the manifold looks identical at every point. Lie groups join the local properties
of smooth manifolds, which allow calculus to be performed, with the global properties of
groups, which enable non-linear composition of distant objects.

B-1-2 Lie algebra

Every Lie group G has an associated Lie algebra g := TeG, which is defined as the tangent
space at the identity element e ∈ G. That is, the Lie algebra is the vector space generated by
differentiating the group transformations along chosen directions in the space, at the identity
transformation [9]. Its definition involves the identity element, as this is the only element
that every group is guaranteed to have (i.e., the Lie algebra is automatically defined for every
Lie group). The tangent spaces at all group elements are isomorphic (i.e., there exists an
isomorphism, or structure-preserving mapping between two structures of the same type that
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can be reversed by an inverse mapping). Therefore, it is sufficient to study only the tangent
space at the identity element.

Figure B-1: Representation of the rela-
tion between the Lie groupM (blue sphere)
and Lie algebra m (red plane), which is the
tangent space at the identity E ∈ M [28].
Through the exponential map, each straight
path vt through the origin on the Lie algebra
produces a path exp(vt) around the mani-
fold.

Figure B-2: A manifold M and the vec-
tor space TXM ∼= R2 tangent at the point
X ∈M, and a convenient side-cut [28]. The
velocity element, Ẋ = ∂X/∂t, does not be-
long to the manifold M, but to the tangent
space TXM.

The Lie algebras are closely related to Lie groups, as can be seen in Figure B-1. Each straight
path through the origin on the Lie algebra produces a (curved) path around the manifold,
which runs along the respective geodesic. Conversely, each element of the Lie group has an
equivalent in the Lie algebra. This relation is so profound that (nearly) all operations in
the Lie group, which is curved and non-linear, have an exact equivalent in the Lie algebra,
which is a linear vector space. This correspondence allows one to study the structure and
classification of Lie groups in terms of Lie algebras.

Importantly, a tangent space associated with a Lie group G provides a convenient space
in which to represent differential quantities related to the group. That is, velocities and
Jacobians are well-represented in the tangent space around a transformation. This is due to
the following principles [9]:

• The Lie algebra g is a vector space with the same dimension nG as the number of degrees of
freedom of the group transformation G. Its basis elements Ei, which are called generators,
are each the time-derivative around the origin in the i-th direction. All tangent vectors
represent linear combinations of the generators, and can therefore be identified by vectors
in RnG .
If the vector τ ∈ RnG identifies an element of Lie algebra g, the corresponding element
is generally denoted with a ‘hat’ decorator (with v∧ for velocities and τ∧ = (vt)∧ = v∧t
for general elements). To pass from g to RnG and vice versa, two mutually inverse linear
maps (or isomorphisms), vee and hat, are defined as

(·)∧ (hat) : RnG → g : τ 7→ τ∧ =
nG∑
i=1

τiEi,

(·)∨ (vee) : g→ RnG : (τ∧)∨ = τ =
nG∑
i=1

τiei,
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with ei the base vectors of RnG (where e∧i = Ei). A subscript can be added to specify
the tangent space (e.g., similar to Figure B-2, for moving point g(t) ∈ G with velocity
ġ = ∂g/∂t = v∧g ∈ TgG expressed in the local tangent space of g). Consequently, it can
be deduced that g is isomorphic to the vector space RnG — this is written as g ∼= RnG (or
τ∧ ∼= τ ).
Since the velocity of a point moving on a Lie group’s manifold belongs to the tangent
space, the structure of the Lie algebra can be found by time-differentiating the group
constraint of invertibility (i.e., for each g ∈ G, there exists a (unique) inverse g−1 ∈ G
such that g−1 ◦ g = g ◦ g−1 = e) [28]. For multiplicative groups, this constraints results in
g−1ġ + ˙(g−1)g = 0, which applies to elements tangent at g. The elements of the Lie group
are therefore of the form

v∧ = g−1ġ = − ˙(g−1)g. (B-1)

• The exponential map converts any element τ∧ ∈ g exactly into a transformation g ∈ G.
Intuitively, this can be thought of as wrapping the tangent element around the mani-
fold following the geodesic. The inverse logarithmic map can then be though of as the
unwrapping operation. Both are isomorphisms, defined as

exp : g→ G : τ∧ 7→ g = exp(τ∧),
log : G → g : g 7→ τ∧ = log(g).

Closed forms of the exponential in multiplicative groups are obtained by writing the ab-
solutely convergent Taylor series,

exp
(
τ∧
)

=
∞∑
i=k

1
k!
(
τ∧
)k
. (B-2)

An additional exponential mapping can be defined that directly maps vector elements
τ ∈ RnG ∼= g with elements g ∈ G. These isomorphisms are denoted by the capitalised
exponential map and defined as

Exp : RnG → G : τ 7→ g = Exp(τ ) = exp(τ∧),
Log : G → RnG : g 7→ τ = Log(g) = (log(g))∨.

• The adjoint linearly and exactly transforms a tangent vector from one tangent space to
another. That is, the adjoint of G at x ∈ G is defined as

Adx : g→ g : τ∧ 7→ Adx(τ∧) := xτ∧x−1,

and can be used to transforms τ∧ from tangent space TxG to tangent space TeG = g, with
τ∧e = Adx(τ∧x ). Since the adjoint is a linear homomorphism (i.e., a structure-preserving
map between two algebraic structures of the same type), an equivalent adjoint matrix
operator can be found that maps the Cartesian tangent vectors τ e ∼= τ∧e and τ x ∼= τ∧x :

[Adx] : RnG → RnG : τ x 7→ τ e = [Adx]τ x

The adjoint property is what ensures that the tangent spaces at all group elements are
isomorphic (i.e., that the tangent space has the same structure at all points on the mani-
fold), since any tangent vector can be transformed back to the tangent space around the
identity.
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To conclude, the Lie algebra can be considered as a linearisation of the Lie group (near the
identity element), and the exponential map provides the “delinearisation”. As a result of this
isomorphism, the vector that identifies the Lie algebra efficiently parameterises the Lie group
element.

B-1-3 Encapsulation

Encapsulation is a fundamental of object-oriented programming, which refers to the principle
that data inside an object should only be accessed through a public interface, thereby pre-
venting direct access by unauthorised parties. In this setting, encapsulation means that the
manifold can be treated as a black box with only two possibilities for access: via the plus and
minus operators, denoted by ⊕ and 	 [13, 28]. As such, the encapsulation limits operations
on the manifolds that might void the constraints internal to its definition.

Figure B-3: The S3 manifold is a unit 3-sphere (blue) in the 4-space of quaternions [28]. The Lie
algebra Hp is isomorphic to the hyper-plane R3 (red grid). The tangent vector θ ∈ R3 (red segment)
wraps the manifold over the geodesic (dashed). The centre and right figures show a side-cut through this
geodesic. Mappings exp and log (arrows) map (wrap and unwrap) elements of the Lie algebra to/from
elements of the Lie group. In the right figure, the increment θ ∈ R3 is defined in the local tangent space
at p.

The two operators combine one Exp/Log operation with one composition. They are defined
as follows:

• The plus operator ⊕ defines a homomorphism that is used to find the updated group ele-
ment y ∈ G, obtained by addition of increment τ x ∈ RnG from x ∈ G. The homomorphism
is defined by

⊕ : G × RnG → G : x× τ x 7→ y = x⊕ τ x := x ◦ Exp(τ x) ∈ G. (B-3)

The increment τ x ∈ RnG is expressed in the local tangent space at x ∈ G, similarly to θ
in Figure B-3.

• The minus operator 	 can be thought of as the inverse of ⊕ (for all x, y ∈ G, it holds that
x⊕ (y	x) = y). That is, it finds the difference between two group elements, expressed in
the local tangent space of the subtracted group element. The homomorphism is defined
by

	 : G × G → RnG : y × x 7→ τ x = y 	 x := Log(x−1 ◦ y) ∈ TxG. (B-4)

The difference τ x ∈ RnG is again expressed in the local tangent space at x ∈ G, similarly
to Figure B-3.

As a result of this encapsulation, optimisation algorithms working on RnG work essentially the
same way on G: state updates are performed with ⊕, while state differences are determined
with 	.
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Because of the non-commutativity of the composition, an alternative ‘left’ version can also
be defined as

left-⊕ : RnG × G → G : τ e × x 7→ y = τ e ⊕ x := Exp(τ e) ◦ x ∈ G,
left-	 : G × G → RnG : y × x 7→ τ e = x 	 y := Log(y ◦ x−1) ∈ TeG = g.

Here, the increment or difference is defined in the global tangent space. While left- and right-⊕
are distinguished by operand order, the notation for 	 is ambiguous. Perturbations, however,
are always expressed locally, and therefore the right forms of ⊕ and 	 are used by default.

The left- and right- versions can be utilised to reveal the structure of the adjoint. By identi-
fying y ∈ G and setting both versions of ⊕ to be equal, the adjoint action is derived as

τ e ⊕ x = x⊕ τ x =⇒ exp(τ∧e ) = x exp(τ∧x )x−1 = exp(xτ∧xx−1) =⇒ τ∧e = xτ∧xx
−1.

B-2 Poses

A robot pose is the rigid body transformation that describes the body-fixed coordinate frame
as seen from the inertial reference frame in terms of a rotation and translation. Rotations and
transformations are conveniently described by matrix Lie groups, which are closed subgroups
of the General Linear group, GL(n), of n×n invertible matrices with entries in C. For matrix
Lie groups, the composition action is matrix multiplication.

B-2-1 Rotations

The orientation of a body is described by the relative orientation between a body-fixed co-
ordinate frame and a fixed (or inertial) coordinate frame. Let B be the body-fixed coordinate
frame and A be the inertial coordinate frame. The rotation matrix R(A)

B describes the orient-
ation of B (subscript) relative to A (superscript). For the 3-dimensional case, it is obtained
by stacking the coordinate vectors of the principal axes x(A)

B ,y(A)
B , z(A)

B ∈ R3 of B as seen from
A; that is,

R(A)
B =

[
x(A)

B y(A)
B z(A)

B

]
∈ SO(3),

where rotations matrices are represented by the Special Orthogonal group SO(n). With Spe-
cial referring to unit determinant (detR = 1), and Orthogonal referring to the orthogonality
constraint (R>R = In), the rotation group is defined as

SO(n) = {R ∈ Rn×n : R>R = In, det(R) = 1} ⊂ GL(n).

Every configuration of a rigid body that is free to rotate relative to a fixed frame can be
identified with a unique R(A)

B ∈ SO(3). Let q(B) =
(
q(B)

1 , q(B)
2 , q(B)

3
)
∈ R3 be the coordinates

of q relative to frame B. Since the elements q(B)
1 , q(B)

2 , q(B)
3 ∈ R are projections of q onto the

coordinate axes of B, the coordinates of q relative to frame A are given by

q(A) = x(A)
B q(B)

1 + y(A)
B q(B)

2 + z(A)
B q(B)

3 = R(A)
B q(B).

Accordingly, R(A)
B can be considered a linear map that rotates the coordinates of a point from

frame B to A. The intuition behind this operation can be twofold:
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• Frames A and B are misaligned. Rotation R(A)
B encodes this misalignment and can be used

to modify the expression of spatially-fixed q from coordinate frame B to coordinate frame
A.

• Frames A and B are aligned, and q is fixed to frame B, but expressed in A. Rotation R(A)
B

moves B relative to A, thereby modifying the expression of q within A.

Rotation matrices can be defined for both the 3-dimensional and 2-dimensional case:

1. Rotations in 3D space are represented by elements of the spatial rotation Lie group SO(3).
Its properties are described as follows:
• The structure of the Lie algebra so(3) follows from Equation (B-1); namely, for R ∈
SO(3) it follows that R>Ṙ = −(R>Ṙ)> = [ω]× ∈ so(3), where ω = (ω1, ω2, ω3) ∈ R3

denotes the vector of angular velocities. This reveals that the Lie algebra so(3) is the
set of 3× 3 skew-symmetric matrices, denoted by

[ω]× =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3).

A skew-symmetric matrix [a]× denotes the linear operator b 7→ a × b, which is equi-
valent to the cross product with a ∈ R3. This follows intuitively from the differential
equation q̇(t) = ω × q(t) describing the tip point trajectory of point q(t) due to a
rotation ω.
The generators of so(3) correspond to the derivatives of rotation around each of the
standard axes, evaluated at identity:

E
(1)
SO(3) =

 0 0 0
0 0 −1
0 1 0

 , E
(2)
SO(3) =

 0 0 1
0 0 0
−1 0 0

 , E
(3)
SO(3) =

 0 −1 0
1 0 0
0 0 0

 .
The Lie algebra is a vector space whose elements can be decomposed into

θ∧ = [ωt]× = θ1E
(1)
SO(3) + θ2E

(2)
SO(3) + θ3E

(3)
SO(3) ∈ so(3),

where θ = (θ1, θ2, θ3) = ωt ∈ R3 is the identifying vector of integrated rotations over
duration t (assuming constant angular velocity ω for duration t).

• From the structure of the Lie algebra, the ordinary differential equation Ṙ = R[ω]× ∈
TRSO(3) can be derived. Its solution R(t) = R0 exp([ωt]×), where R0 ∈ SO(3) is the
initial rotation. With R0 = I3, the spatial rotation matrix R follows from Equation (B-
2) as

R(t) = exp
(
[u]×θ

)
=
∑
k

θk

k!
(
[u]×

)k ∈ SO(3),

where uθ := θ = ωt ∈ R3 defines the integrated rotation in angle-axis form, with angle
θ and unit axis u. By taking advantage of the properties of skew-symmetric matrices,
the exponential map series can be simplified to the Rodrigues formula [9, 23, 28], which
is defined as

R(θ) = exp([u]×θ) = I + [u]× sin(θ) + [u]2×
(
1− cos(θ)

)
∈ SO(3). (B-5)
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The exponential map can be inverted to give the logarithm, from SO(3) to so(3), as

θ∧ = log(R) = θ

2 sin(θ)(R−R>) with θ = cos−1
(tr(R)− 1

2
)
. (B-6)

The identifying vector θ ∈ R3 is then formed by taking the off-diagonal elements of
θ∧ ∈ so(3).

2. Rotations in 2D space are represented by elements of the spatial rotation Lie group SO(2).
Its properties are described as follows:
• Similar to the case of 3D rotations, the Lie algebra so(2) is the set of 2 × 2 skew-

symmetric matrices. The single generator of so(2) corresponds to the derivative of 2D
rotation evaluated at the identity, which is given by

ESO(2) =
[

0 −1
1 0

]
.

An element of so(2) is then any scalar multiple of the generator,

θ∧ = [θ]× = θESO(2) ∈ so(2)

where θ is the planar rotation angle.
• The exponential map that yields a planar rotation matrix by θ radians follows from

Equation (B-2) as

R(θ) = exp([θ]×) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2).

The exponential map can inverted to yield the logarithmic map from SO(2) to so(2)
as

θ = Log(R) = tan−1(R21/R11), (B-7)

where then θ∧ = log(R) = θESO(2).

Practical implementations of the exponential and logarithmic forms should use the Taylor
series expansions of the coefficients where the numerator θ is small.

B-2-2 Transformations

Rigid motions are represented using rigid body transformations to describe the instantaneous
orientation and position of a body coordinate frame relative to an inertial frame. That is,
the position and orientation of a body-fixed coordinate frame B is described relative to an
inertial frame A. For the 3-dimensional case, let t(A)

B ∈ R3 be the position vector of the origin
of frame B relative to frame A, and R(A)

B ∈ SO(3) the orientation of frame B relative to A. A
configuration of frame B relative to A consists of the pair

(
t(A)

B , R(A)
B
)
defined over the Special

Euclidean Group SE(n), the (homogeneous) matrix form of which is defined as

SE(n) =
{
T =

[
R t
0 1

]
∈ R(n+1)×(n+1) : R ∈ SO(n), t ∈ Rn

}
⊂ GL(n).
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Alternatively, the Special Euclidean group can be defined as a tuple of the translation and
rotation:

SE(n) = {(t, R) : p ∈ Rn, R ∈ SO(n)} = Rn × SO(n). (B-8)

Let q(A),q(B) ∈ R3 be the coordinates of a point q relative to the frame A and B, respectively.
The transformation of points and vectors by rigid transformations has a simple representation
in terms of matrices and vectors in R4. In these homogeneous coordinates, the transformation
q(A) = T (A)

B
(
q(B)) is an affine transformation that can be represented in the linear form[

q(A)

1

]
︸ ︷︷ ︸

q̄(A)

=
[
R(A)

B t(A)
B

0 1

]
︸ ︷︷ ︸

T̄ (A)
B

[
q(B)

1

]
︸ ︷︷ ︸

q̄(B)

,

where T̄ (A)
B ∈ R4×4 is the homogeneous representation of T (A)

B ∈ SE(3), and q̄(A), q̄(B) ∈ R4

are the homogeneous coordinates of q(A),q(B) ∈ R3.

As with rotations, rigid transformations can be defined for both the 3D and 2D cases:

1. Rigid transformations in 3D space are represented by elements of the spatial rigid trans-
formation Lie group SE(3). Such transformations are described using screw theory, which
postulates that a rigid body can be moved from any one position to any other position
by a movement consisting of rotation followed by translation parallel to the rotation axis,
called a screw motion [23]. The differential equation

q̇ = ω × q(t) + v (B-9)

describes the twist as the tip point trajectory of point q(t) due to rotation ω through
the origin with velocity v parallel to the axis of rotation, as seen from an inertial frame.
Screw theory allows an an elegant, rigorous and geometric treatmetnt of spatial rigid body
motion. For instance, a revolute joint through p can be modelled by q̇(t) = ω× (q(t)−p)
(where v = −ω × q) whereas a prismatic joint can be modelled by q(t) = v.
The properties of the spatial rigid transformation group are described as follows:
• The structure of the Lie algebra se(3) follows from Equation (B-9) in homogeneous

coordinates. That is, se(3) is the set of 4× 4 matrices corresponding to the differential
translations and rotations (i.e., s ∈ R3 and θ ∈ R3, respectively) around the identity,
as in so(3). Thus, the six generators are described by

E
(i)
SE(3) =

[
0 ei
0 0

]
and E

(3+j)
SE(3) =

[
E

(j)
SO(3) 0
0 0

]
for i, j ∈ {1, 2, 3},

where ei are the Euclidean base vectors and E(j)
SO(3) are the generators of SO(3). The

Lie algebra is then the vector space whose elements are represented by multiples of the
generators as

ξ∧ = s1E
(1)
SE(3) + s2E

(2)
SE(3) + s3E

(3)
SE(3) + θ1E

(4)
SE(3) + θ2E

(5)
SE(3) + θ3E

(6)
SE(3),

where ξ = (s,θ) = (s1, s2, s3, θ1, θ2, θ3) = (v,ω)t ∈ R6 ∼= se(3) is the identifying
vector of integrated translations and rotations over duration t (assuming constant
linear velocity v and angular velocity ω over duration t).
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• The closed-form expression of the exponential map that maps the Lie algebra element
to the rigid transformation matrix follows from Equation (B-2) as

T (ξ) = exp(ξ∧) = exp
( [[θ]× s

0 0

] )
=
[
R(θ) V (θ)s

0 1

]
(B-10)

with V (θ) = I + [u]×(1− cos(θ)) + [u]2×
(
1− sin(θ)

θ

)
,

where R(θ) = exp([θ]×) is determined using the Rodrigues formula of Equation (B-5).
The logarithmic map is found by using Equation (B-6) to determine ω∧ and computing
s = V −1t with

V −1 = I − θ

2[u]× +
(
1− θ sin(θ)

2(1− cos(θ))
)
[u]2×.

2. Rigid transformations in 2D space are represented by elements of the planar translation
Lie group SE(2). Its properties are described as follows:
• The Lie algebra se(2) is the set of 3× 3 matrices corresponding to differential transla-

tions and rotation (i.e., s ∈ R2 and θ ∈ R, respectively) around the identity. Thus, the
three generators are

E
(i)
SE(2) =

[
0 ei
0 0

]
and E

(3)
SE(2) =

[
ESO(2) 0

0 0

]
for i ∈ {1, 2},

where ei are two Euclidean base vectors and ESO(2) is the generator of SO(2). The al-
gebra is the vector space whose elements are represented by multiples of the generators
as

ξ∧ = s1E
(2)
SE(2) + s2E

(2)
SE(2) + θE

(3)
SE(2)

where ξ = (s, θ) = (s1, s2, θ) ∈ R3 ∼= se(2) is the vector of translations and rotation
that identifies the Lie algebra.

• The closed-form expression of the exponential map is similar to Equation (B-10), and
is given by

T (ξ) = exp(ξ∧) = exp
( [[θ]× s

0 0

] )
=
[
R(θ) V (θ)s

0 1

]

with R(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and V (θ) = 1

θ

[
sin(θ) −(1− cos(θ))

1− cos(θ) sin(θ)

]
.

The exponential map can simply be inverted to yield the logarithmic map from SE(2)
to se(2), with log(R(θ)) = θ per Equation (B-7) and s = V −1t.
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Glossary

List of Acronyms

PGO Pose Graph Optimisation
PPGO Pose-Parameter Graph Optimisation
SLAM Simultaneous Localisation and Mapping
GUI Graphical User Interface
API Application Programming Interface
ATE Absolute Trajectory Error
RPE Relative Position Error
RNG Random Number Generator
MAP Maximum a Posteriori

List of Symbols

This list describes all symbols that are used beyond a first appearance and description, and outside
the section of introduction.

General
` Constant sensor frame transformation, where ` = T (S)

R ∈ SE(2).
O Fixed global (or inertial) reference frame.
Rt Robot-fixed reference frame at time t.
St Sensor-fixed reference frame at time t.
ΣI Measurement model covariance over node indices I.
υ〈pscale〉 Dummy scaling factor vector constructor for parameter-node pscale, where υ〈pscale〉 ∈

R3.
eI(·) Measurement error function over node indices I.
t(x, y) Translation vector constructor for elements x, y ∈ R, where t(x, y) ∈ R2.
t[T ] Translation element of transformation T ∈ SE(2), where t[T ] ∈ R2.
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t〈p〉 Dummy translation vector constructor for parameter-node p, where t〈p〉 ∈ R2.
t(B)

A Relative coordinate frame translation of A with respect to B, where t(B)
A ∈ R2.

ti Translation component of pose xi, where ti = t(O)
Ri
∈ R2.

FI(·) Constraint cost function over node indices I.
fI(·) Measurement model function over node indices I.
f loc.
I (·) Location prior measurement model over node indices I, with f loc.

I : N → R2.
f rot.
I (·) Pose rotation measurement model over node indices I, with f rot.

I : N → SO(2).
f transf.
I (·) Pose transformation measurement model over node indices I, with f transf.

I : N → SE(2).
f transl.
I (·) Pose translation measurement model over node indices I, with f transl.

I : N → R2.
Fpgo(·) PGO cost function formalised by the pose graph.
Fppgo(·) PPGO cost function formalised by the pose-parameter graph.
g Factor graph consisting of nodes and poses.
mI Dimensionality of the identifying measurement vector of the measurement relating nodes

with indices I.
n Dimensionality of the Cartesian space in which the SLAM problem is defined.
R(θ) Rotation element constructor for angle θ ∈ R, where R(θ) ∈ SO(2).
R[T ] Rotation element of transformation T ∈ SE(2), where R[T ] ∈ SO(2).
R〈p〉 Dummy rotation element constructor for parameter-node p, where R〈p〉 ∈ SO(2).
R(B)

A Relative coordinate frame rotation of A with respect to B, where R(B)
A ∈ SO(2).

Ri Rotation component of pose xi, where Ri = R(O)
Ri
∈ SO(2).

T (ξ) Transformation element constructor for identifying vector ξ = (x, y, θ) ∈ R2, where
T (ξ) ∈ SE(2).

T (t, R) Transformation element constructor for translation t ∈ R2 and rotation R ∈ SO(2),
where T (t, R) ∈ SE(2).

T (x, y, θ) Transformation element constructor for elements x, y, θ ∈ R, where T (x, y, θ) ∈ SE(2).
T 〈p〉 Dummy transformation element constructor for parameter-node p, where T 〈p〉 ∈ SE(2).
T (B)

A Relative coordinate frame transformation of A with respect to B, where T (B)
A ∈ SE(2).

xi Robot pose with index i, where xi = T (O)
Ri
∈ X ⊂ SE(2).

zI Measurement relating nodes with indices I, where zI ∈M.
Operators
� Generalised subtraction operator, � :M×M→ Rm for measurement set Z.
� Generalised addition operator, � :M× Rm →M for measurement set Z.
� Element-wise vector product.
	 Minus operator, 	 : G × G → RnG for Lie group G.
⊕ Plus operator, ⊕ : G × RnG → G for Lie group G.
Sets
I Set of node indices, where I = {i}.
M Measurement space, withM = SE(2) ∪ SO(2) ∪ R2.
N Set of Pose-Parameter Graph Optimisation (PPGO) nodes, where N = X ∪ P.
P Set of parameter-nodes, where P = {p}.
SE(n) Special Euclidean group of transformations, with dimension n.
SO(n) Special Orthogonal group of rotations, with dimension n.
X Set of robot poses, where X = {x} ⊂ SE(2).
Z Set of measurements, where Z = {z} ⊂ SE(2) ∪ SO(2) ∪ R2.
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