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Abstract

The large amounts of observational data available nowadays have sparked considerable
interest in learning causal relations from such data using machine learning methods. One
recent method for doing this, which provided promising results, is the DragonNet (Shi
et al., 2019), which utilises neural networks in order to estimate average treatment effects
in populations. The performance of the model, however, was not tested on datasets which
contain low amounts of overlap between the treated and non-treated subpopulations, which
makes it harder to accurately estimate treatment effects. Therefore, the goal of this paper is
to investigate the performance of the DragonNet when used on datasets with (near) overlap
violations. This has been done by looking at the mean absolute errors and variances of the
estimated treatment effects and comparing these to other models. The results showed that
the performance of the DragonNet becomes significantly worse compared to other models
when large portions of the population suffer from low overlap. Additionally, the variance of
the results also increases in these cases, making the results less reliable. From the obtained
results, it can be concluded that it is best to choose another model for treatment effect
estimation if relatively large amounts of overlap violations are suspected.

1 Introduction
Understanding the causal effects of actions is a key task in many fields of research. Examples
of such domains are medicine, where the effect of some treatment is being investigated, or
economics, where the effects of various policies on the economy may be of interest. Ran-
domised controlled trials can be used in order to properly estimate causal effects (Shadish
et al., 2001), but they are not always feasible or ethical. Therefore, machine learning meth-
ods have become increasingly popular for estimating causal effects from the large amounts
of observational data that are available nowadays.

Traditional machine learning methods mainly focus on predictive or descriptive tasks. In
order to perform these tasks, associations between actions and outcomes within the datasets
are used in order to predict new outcomes. Such associations, though, may (often) not reflect
the true causations within the data. A correlation between two variables may be due to both
of them having a common cause which drives their values. Such a variable that affects both
the actions and the outcomes is known as a confounding variable. For example, from some
observational data it may be concluded that patients receiving some treatment tend to have
a longer life expectancy. However, it could be the case that only wealthy individuals were
able to afford the treatment. Such wealthier people are also more likely to live a healthier
lifestyle in general, leading to a higher life expectancy. Therefore, in order to properly study
the effect of the treatment on the life expectancy, confounding variables such as wealth must
be taken into account.

Guo et al. (2020) have provided a comprehensive survey on the current state-of-the-art
models for estimating causal effects which take into account such confounding variables.
Many of these models seem to make use of neural networks or tree structures. Within the
group of neural networks for causal effect estimation, a number of them have focused on
learning alternative representations of the confounding variables, which may lead to better
causal effect estimations than using the original features in the datasets. One such method
which has achieved good causal estimation results is the TARnet (Shalit et al., 2017).
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A recent extension to the TARnet, which was not discussed in the survey, is the Drag-
onNet (Shi et al., 2019). DragonNet tries to improve upon the original TARnet by including
the estimation of the propensity score P [T = 1|x] within the model, which is the probability
of receiving treatment T given a set of features. By including this estimation within the
model, the goal is for only the confounding variables, which affect both the treatment and
outcome, to be used while discarding the other irrelevant features. Additionally, a targeted
regularisation procedure is applied to the model which will transform the estimator of the
average treatment effect into a robust and efficient estimator. These desirable properties
are expected to improve the finite-sample performance of the model.

In order for the DragonNet to be able to estimate the treatment effects, two important
assumptions have to be made. The first assumption says that there are no hidden con-
founders, i.e., the data contains all possible confounding variables. Such hidden confounders
which affect the outcomes can lead to incorrect conclusions about the treatment effects. The
second assumption is that of overlap, which says that 0 < P [T = 1|x] < 1 must hold, where
T = 1 represents a binary treatment assignment. This is required, since it is impossible to
estimate the treatment effect for some group of individuals with features x if either none or
all of them have received treatment. This assumption is especially of interest when look-
ing at the DragonNet, as they extended the TARnet model by including propensity score
estimation within the model and also used propensity scores in the targeted regularisation
procedure.

However, the effects of propensity scores very close to 0 or 1 have not been thoroughly in-
vestigated in the DragonNet paper. Datasets containing large amounts of overlap violations
have been ignored when testing the model. Additionally, for the datasets which were used
for testing, individual points with predicted propensity scores close to 0 or 1 were discarded
when estimating the final treatment effect. Understanding the behaviour of the model under
such overlap violating conditions is still important, since the assumption does not always
hold in real-world data. It can provide insights into whether the DragonNet seems like
a suitable model for causal effect estimation in real-world applications, or whether other
models may prove to be better alternatives.

Therefore, the main goal of this paper will be to answer the following question: “What
is the effect of overlap violations within datasets on the estimation performance of the
DragonNet model?". In order to answer to this question, the DragonNet model will be
tested on synthetic data with various amounts of overlap violations. Additionally, it will
be tested on some synthetic real-world benchmark datasets which contain overlap violations
and the results will be compared to those from a number of alternative models.

The remainder of this paper will be structured as follows. Section 2 provides a more
detailed explanation of the DragonNet model and the methods used to analyse its perfor-
mance. After that, Section 3 describes the specific experiments performed in more detail.
Next, Section 4 presents the results from performing the experiments described in the pre-
vious section and draws some conclusions based on these results. Section 5 then continues
by reflecting on the obtained results in a broader context and comparing it to results ob-
tained from previous experiments. In Section 6, the ethical aspects of this research and the
reproducibility of the experiments are discussed. Finally, Section 7 concludes this paper by
providing a brief summary of work and presenting the main conclusions. Additionally, it
discusses potential topics for further research.
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2 Methodology
In this section the DragonNet model and the experimental methods which were used to
understand the DragonNet model’s behaviour under overlap violations will be described.
The first subsection will provide a brief overview of the DragonNet model. After that, the
second subsection will focus on how structural causal models have been used to generate
synthetic data and how this data is then used for analysing the DragonNet model.

2.1 DragonNet
The goal of the DragonNet model (Shi et al., 2019) is to estimate the average treatment effect
(ATE) of some binary treatment from observational data using neural networks. It aims to
do this by first predicting what the outcomes of all individuals would be under treatment and
no treatment, and then subtracting and averaging these two outcomes to estimate the ATE.
The model tries to exploit Theorem 3 from Rosenbaum and Rubin (1983), which essentially
states that, when estimating the ATE, it is sufficient to only use the features from the data
which are required for predicting the propensity scores. Therefore, the model should discard
other, irrelevant features, as they are simply considered as noise, which does not help with
estimating the treatment effect. It tries to achieve this by combining the estimation of the
outcomes and the propensity scores in the objective function, such that the neural network
will be trained to discard the irrelevant features.

The architecture of the DragonNet can be seen in Figure 1. It takes an input X and puts
it through a three-layered neural network to obtain the new, shared representation Z. This
shared representation is then used to estimate the propensity scores ĝ and the conditional
outcomes under treatment (Q̂(1, ·)) and under no treatment (Q̂(0, ·)), all at once. This
architecture is very similar to the TARnet (Shalit et al., 2017), but with the additional ĝ
head.

Figure 1: The DragonNet Architecture. Transform input X to an alternative representation
Z using neural networks and train to predict outcomes with (Q̂(1, ·)) and without (Q̂(0, ·))
treatment, and the propensity scores ĝ at once. The grey layers represent layers which
produce some form of output (Z, Q̂(·, ·), or ĝ). From: Shi, C., Blei, D., and Veitch, V.
(2019). “Adapting neural networks for the estimation of treatment effects”.

Aside from adding the propensity score head ĝ to the TARnet model, Shi et al. (2019)
added an additional improvement called “targeted regularisation”. This procedure essen-
tially modifies the outcome model and objective function using non-parametric estimation
theory in order to obtain desirable asymptotic properties for the ATE estimator. These
properties are robustness in the double machine-learning sense and efficiency of the ATE
estimator. Double machine learning has been introduced by Chernozhukov et al. (2016)
and Chernozhukov et al. (2017) and states that, if certain equations are satisfied, the ATE
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estimator will converge to the true value at a fast rate as long as ĝ and Q̂(·, ·) converge.
More in-depth details about the targeted regularisation procedure can be found in Shi et al.
(2019).

An important detail about the targeted regularisation is that the modification to the
outcome model and objective function contains a term which depends on the estimated
propensity scores ĝ(·) and treatment assignments ti, namely ti

ĝ(·) −
1−ti
1−ĝ(·) . Due to the usage

of estimated propensity scores in these denominators, the expectation is that the model is
sensitive to the extreme propensity scores in datasets with low overlap. Therefore, even
though the model showed very promising results for datasets which have no (near) overlap
violations (Shi et al., 2019), it may perform significantly worse on datasets which have low
overlap.

2.2 Structural Causal Models
In order to generate data with desired causal relations, the structural causal models (SCMs)
introduced by Pearl (2009) can be used. SCMs allow for the mathematical formulation of
the causal relations between variables through the use of structural equations. The general
form of these equations used for the experiments can be seen in Equation 1.

X = fX(ϵX)

T = fT (X, ϵT )

Y = fY (X,T, ϵY )

(1)

where X denotes confounding variables, T denotes the assigned treatments (either 0 or
1), and Y denotes the outcomes. The disturbance terms ϵX , ϵT , and ϵY are assumed to
be mutually independent and arbitrarily distributed. These terms represent the effects of
unobserved, exogenous variables (Pearl, 1995). Additionally, since overlap violations are the
main interest in this work, this model operates in a “no hidden confounding” setting as the
disturbance terms are mutually independent and thus X represents all possible confounders.

Datasets generated using the above formulation, with varying propensity scores, will be
used to analyse the ATE estimator of the model. Even though synthetic data does not
capture the complexity of actual real-world problems, experiments performed using such
data can still provide valuable information about the behaviour of the model. This is due
to the fact that it is possible to repeatedly generate the same data using slightly different
settings, such as different propensity scores, which then allows for analysing the effects of
overlap violations in an isolated setting. The analysis will be performed in a number of
ways.

First, mean absolute errors (MAEs) of the estimator will be obtained for datasets which
contain different amounts of overlap violations. As propensity scores represent the probabili-
ties of receiving treatment given a set of features, the very low or high treatment probabilities
can be assigned to different sub-populations which contain individuals with similar features.
Therefore, the MAEs will be analysed by varying both the percentage of the population
that suffers from bad propensity scores and the value of the propensity scores for these
sub-populations.

Next, the convergence and rate of convergence of the ATE estimator will be obtained
under different propensity scores by varying the sample sizes of the datasets. The ATE
estimator of the DragonNet model is consistent and should converge to the true ATE value
quickly due to the targeted regularisation procedure within the model. As the model was
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originally not investigated under (near) overlap violations, performing these experiments
can provide a better understanding of how quickly these desirable properties break down.

Finally, the variance of the results will also be analysed by comparing box-plots of the
obtained MAEs for different configurations. A high variance makes it hard to trust the
results of the model when ran on a specific dataset. Therefore, understanding the effects of
bad propensity scores on the variance can help with identifying how useful the results of the
model are in such cases.

3 Experiments
This section will provide details for the experiments which were performed for analysing the
DragonNet model. The first subsection will present the specific settings used for the models
during the experiments. Next, the experiments using synthetic data are explained. Finally,
the last subsection outlines how experiments using more realistic, semi-synthetic datasets
were performed.

3.1 Model Setup
The DragonNet model will be run using the same settings as described in Shi et al. (2019).
The hyper-parameters α and β in Equations 2.2 and 3.2 in Shi et al. (2019) are set to 1.
The sizes of the hidden layers for the shared representation are 200 and for the conditional
outcomes 100.

The DragonNet model without data trimming will be compared to the DragonNet model
with data trimming and the TARnet model. The DragonNet model with data trimming will
discard any data point with an estimated propensity score outside of [0.05, 0.95] when calcu-
lating the ATE. The TARnet model from Shalit et al. (2017) has the same implementation
and settings as the DragonNet, but with the propensity score head removed from the model
and without the targeted regularisation procedure.

All the results are obtained using 200 replications of the datasets for each different
configuration of parameters. Additionally, the data is not split into train and test sets, but
all of the data is used for both training the model and estimating the ATE. This approach
is also used in Shi et al. (2019). This can be considered a valid approach in this case, as the
main goal of the model is to simply estimate the ATE value for the specific dataset at hand
without the goal of generalising the model to new datapoints. Overfitting is, therefore, not
as much of an issue in this setting. However, it is possible to overfit on the observed data
to some degree, as the model should still generalise to newly observed outcomes from the
same populations used in the datasets.

3.2 Synthetic Data Experiments
The synthetic data is created using an SCM which allows for splitting the population in 2
parts; one which has a perfectly balanced probability of treatment (0.5) and one which has
low probabilities of treatment. Three covariates Xi ∼ U(0, 1) are generated. Then, T ∼
Ber(0.5) if X3 is above some threshold and T ∼ Ber(p) if X3 is below the threshold, where
p is some (low) probability of receiving treatment in order to generate subpopulations with
bad propensity scores. The size of the subpopulation suffering from these bad propensity
scores can be varied depending on the threshold dividing X3. Finally, the outcome model is
Y = 1+T +X1 +2X2 +0.5X3 + ϵY , where ϵY ∼ N(0, 1) represents the effects of exogenous
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random variables which are not of interest. The causal relations between the variables are
visualised in Figure 2.

Figure 2: Graph shows the causal relations between the variables. X3 has an effect on the
probability of receiving binary treatment T (propensity score) and on the outcome Y, while
X1 and X2 only affect Y. The arrow from T to Y indicates the treatment effect.

The number of covariates used here, namely three, was arbitrarily chosen. Any small
number of covariates, such as two, should also work in this simplistic setting and lead to
similar results in the end. The default model settings described in Section 3.1 are used for
all experiments.

3.3 Semi-Synthetic Data Experiments
As ground truth values of treatment effects are generally not available for real-world data,
synthetic real-world datasets will be used in order to test the model in a more realistic
setting compared to the synthetic data setting from above. A widely used semi-synthetic
dataset is the IHDP dataset originally provided by Hill (2011), which is based on the Infant
Health and Development Program (IHDP). The dataset consists of 747 datapoints, of which
139 are treated, and has 25 covariates. This dataset has the underlying treatment effects
used during the data generation available and the covariates are representative of those from
a real observational study, which allows for testing the DragonNet in a more realistic setting
compared to the simple synthetic one.

One issue with such datasets is the fact that it is harder to test the model for different
propensity scores, as it is based on observed real-world data. Shalit et al. (2017) found a
way to still create artificial imbalances between the control and treated groups in order to
still be able to test their model in such imbalanced scenarios. They did this by randomly
removing observations with the highest estimated propensity scores from the control group
with a probability of q and removing random control observations with a probability of 1−q.
This was done until 400 observations remained in each IHDP sample dataset.

A similar approach will be used here in order to test the DragonNet under extreme
propensity scores with the IHDP datasets. The degree of overlap violations can be modified
by choosing different values of q when randomly removing observations. A higher q will
cause an increased imbalance between the treated and control groups, thus leading to a
lower propensity score. This will allow for performing similar tests as before by calculating
the MAE and variance of the estimator in these more realistic cases.

The IHDP samples used here are 200 samples randomly taken from the 1000 generated
replications used by Shalit et al. (2017) 1. These samples were generated using the NPCI

1All datasets can be found at: https://www.fredjo.com/
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package (Dorie, 2016) with setting “A”, which corresponds to setting (or “response surface”)
“B” in Hill (2011).

4 Results
This section will present the results for the DragonNet model under overlap violations. The
first subsection will present the results using synthetic data. The next subsection will then
show the results when using semi-synthetic datasets.

4.1 Synthetic results
First, the MAEs are obtained for increasingly lower propensity scores P [T = 1|X3 < w] ∈
[0.5, 0.3, 0.1, 0.05, 0.02, 0.01, 0.001], where w ∈ [0.1, 0.25, 0.5] represents the fraction of the
population affected by the worsening propensity scores. Worse propensity scores should
make it harder to estimate the true ATE. Therefore, it is expected that for the extremely low
propensity scores (, e.g., 1 % or less) the MAE should rise compared to the higher propensity
scores. However, since the goal is to calculate the average treatment effect, it is expected
that such bad propensity scores should not have a significant effect when only a small
fraction (10%) of the population is affected, as the remaining 90% of the population could
be sufficient to accurately calculate the ATE. If 25% or 50% of the population is affected,
then there should be a significant increase in MAEs as a smaller part of the population
remains with sufficient propensity scores to estimate the ATE.

The results of the DragonNet with and without data trimming and the TARnet can
be found in Figure 3. From the results of the DragonNet with and without trimming, it
can be seen that they perform almost identically when 10% or 25% of the subpopulation is
affected by extreme propensity scores. This is even the case for where the propensity scores
drop below 0.05, which is when the data trimming might start to happen depending on
the final estimated propensity scores for each point. The overall estimation performance of
both models for extremely low propensity scores still seems to be relatively accurate when
comparing it to the initial case where the propensity scores are still 0.5. Compared to the
TARnet, both DragonNet versions seem outperform it, even when propensity scores are very
low.

However, the performances of the three models start to differ somewhat significantly
when a large portion (50%) of the population is affected. The MAE of the DragonNet
without trimming starts to increase sharply for propensity scores lower than 0.1. When
including the data trimming for the final ATE estimation, the MAE still seems to increase
significantly, but the trimming actually manages to improve the MAE by a small margin
for these smaller propensities. Both DragonNet versions, however, perform worse than the
TARnet for these extreme propensity scores. The TARnet also has a consistently increasing
MAE for these lower values, but the values are considerably lower than for the DragonNet
models. The worse performance of the DragonNet is expected to be due to the targeted reg-
ularisation procedure, which modifies the outcome model and objective function by adding a
term which contains estimated propensity scores in two denominators. Extreme propensity
values could then lead to issues within the model’s objective function and ATE estimation.

Next, the convergence results of the MAEs of the three models are obtained by increasing
the sample size from 100 to 2000 while using different values for the propensity scores. As
the convergence and convergence rate of the ATE estimator of the DragonNet depends on
the convergence of the propensity score and outcome estimators, the expectation is that
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(a) MAEs for DragonNet without trimming of
datapoints with low estimated propensity.

(b) MAEs for DragonNet including trimming of
datapoints with low estimated propensity.

(c) MAEs for default TARnet.

Figure 3: Graphs show effect of increasingly lower propensity scores on the MAE of the
ATE estimators for the three different models using a sample size of 1000. The effects are
visualised for when 10%, 25%, and 50% of the population is affected by the increasingly
lower propensity scores, while the other portion has a 50% probability of treatment.

the convergence rate should become significantly worse when a large part of the population
suffers from extremely low propensity scores. This should lead to a noticeable difference
between the convergence rates when the propensity scores are 50% or very low (, e.g., 1%
or less).

The results for when 50% of the population is affected can be found in Figure 4. It can
be seen that the MAEs of both DragonNet versions still seem to drop significantly as the
sample size increases. When there is no data trimming, however, the rate at which the MAE
decreases seems to drop as the propensity score decreases compared to the case of a 50%
propensity score. This is especially noticeable for when the propensity drops below 5%. If
data trimming is performed, the MAEs seem to drop at a similar rate as 50% propensity
again, although they still converge to a much higher MAE in the end, as is expected. The
results for the TARnet, though, show that the model still has quickly decreasing MAEs in
the case of low propensity scores, even faster than for the DragonNet with data trimming.
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So, these results again show that the TARnet is able to handle worse propensity scores better
than the DragonNet, likely due to the potential issues with the targeted regularisation in
these extreme propensity cases.

One final interesting observation which can be made from the convergence graphs of the
DragonNet with and without trimming is that the MAEs of both models seem to converge to
similar values, even though the trimming should lead to a biased estimate of the ATE. This
result is due to the fact that the synthetic data has constant, homogeneous treatment effects.
So, the ATE of any subpopulation is the same as the ATE of the overall population, which
leads to the same results for the two models. If the treatment effects were not homogeneous,
then the ATEs of the subpopulations would likely be different compared to the overall ATE
and, thus, the results with and without trimming would also not converge to the same values
anymore.

(a) MAEs for DragonNet without trimming of
datapoints with low estimated propensity.

(b) MAEs for DragonNet including trimming of
datapoints with low estimated propensity.

(c) MAEs for default TARnet.

Figure 4: Graphs show convergence of the MAE of the three models for different propensity
scores when increasing the sample size. 50% of the population is affected by these decreas-
ing propensity scores, while the rest of the population has a constant 50% probability of
treatment.

Finally, the variability of the results over the 200 replications is obtained for the three
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models. A lack of overlap in larger subpopulations makes it nearly impossible to estimate
the treatment effect for that subpopulation, which should add additional uncertainty to the
overall ATE estimate for the entire population. Therefore, when significant portions of the
population suffer from extreme propensity scores, it is expected that the variance in the
ATE estimations, and therefore MAEs, also increases.

Figure 5 shows the box-plots of the results of the three models when 50% of the pop-
ulation is affected by bad propensity scores. When the subpopulation has a balanced 50%
propensity score, the variance in the results between the three models seems to be almost
identical. If the propensity score is reduced to 5%, some differences between the models
appear. The DragonNet models now seem to have a larger spread in the results compared
to before. The TARnet also has more variance in the results, but it is already less than for
the DragonNet. Finally, in the most extreme case of 0.1% propensity, significant differences
can be be observed between the models. The TARnet clearly has the least amount of vari-
ance in the results, roughly similar to the previous case of 5% propensity. The DragonNet
without data trimming has almost twice the spread in its results compared to the TARnet.
In case data trimming is added, it is slightly less, but still significantly more than TARnet.
So, it seems that the TARnet can produce results with much less variance in the case of
extreme propensity scores, which indicates that its results are not only more accurate than
the DragonNet in these cases, but also more reliable.

4.2 Semi-synthetic results
First, the results from running the three models on the increasingly imbalanced IHDP
datasets are gathered. The imbalancing procedure affects the propensity scores of the entire
population and not just a certain part of the population, as was the case in the synthetic
data experiments (e.g., only 25% or 50% of the population). Therefore, it is expected that
the performance of the DragonNet compared to the TARnet will be even worse on these
datasets.

Figure 6 shows the results from using the IHDP datasets. Figure 6a shows that the
DragonNet without trimming performs well at first, but as q becomes larger than 0.5, the
performance becomes significantly worse. The effect of trimming the bad propensity data-
points also seems to be quite significant, as the MAEs stay relatively close to those of the
TARnet. As mentioned in the previous section, it is expected that this is due to the trim-
ming of datapoints with low estimated propensity scores in the targeted regularisation term.
The variation in the results, as shown in Figure 6b, also seem to reflect the performance
differences. The variance of the results of the DragonNet without trimming is substantially
higher compared to that of the DragonNet with trimming or the TARnet, and some large
outliers can also be observed. It seems to be the case that if the entire population starts to
suffer from poor overlap, the performance of the DragonNet quickly becomes unacceptable.
Therefore, either trimming must be performed or another model, such as TARnet, should
be used. The latter seems to be the best option, as even the DragonNet with trimming still
performs worse than TARnet.

In order to support the claim that the poor performance of the DragonNet is largely
due to the targeted regularisation term which uses the estimate propensity scores, Figure 7
shows the values of the term for all of the datapoints used with and without trimming for
some random IHDP sample. From the results without trimming it can be observed that the
term seems to be rather unstable when there is low overlap, as it attains very big positive or
negative values. Trimming seems to completely remove all these large values from the data,
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(a) Box-plots for when propensity is 50%. (b) Box-plots for when propensity is 5%.

(c) Box-plots for when propensity is 0.1%.

Figure 5: The Box-plots show the variance in the MAEs of the three models for propensity
scores of 50%, 5%, and 0.1%. 50% of the population is affected by the decreasing propensity
scores. MAEs obtained over 200 replications with samples of size 1000.

which explains why it managed to obtain the significantly better results shown in Figure 6.
So, from this experiment it does seem likely that the targeted regularisation procedure is
one of the main causes of the poor DragonNet performance when there are (near) overlap
violations.

5 Discussion
The results of the synthetic and semi-synthetic experiments showed that the DragonNet is
not able to properly deal with datasets where significant portions of the population suffer
from extreme propensity scores, especially compared to the TARnet. The data trimming
based on estimated propensity scores when calculating the final ATE estimates seems to
slightly improve the results in the simpler case where only a part of the population suffers
from poor overlap. If the entire population starts to suffer, as was the case for the imbalanced
IHDP datasets, the trimming starts to significantly improve the results. The TARnet,
however, still produces much better and more reliable results in both situations. Therefore,
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(a) MAEs of the three models with increasing
amounts of imbalance.

(b) Box-plots of MAEs of the three models when
imbalance parameter q is set to 1.

Figure 6: Results of the DragonNet with and without trimming and the TARnet when
ran on IHDP datasets with increasing amounts of imbalance. Overlap between treated and
control populations is decreased as q increases.

it seems to be better in most cases to use a different model than the DragonNet in case
extreme propensity scores are observed for large portions of the population. However, in case
only smaller portions suffer from bad propensity, for example about 25% of the population
or less, the DragonNet still seems to be a suitable choice for estimating the ATE without
requiring any trimming of data.

The poor performance of the DragonNet was expected to be due to the targeted regu-
larisation procedure used by the model. Using a random IHDP sample to investigate the
values of the specific term which uses estimated propensity scores, indicated that this may
indeed be the cause of the poor performance, as very large positive and negative values were
observed in the low overlap setting. Data trimming got rid of all these big outliers, and the
DragonNet with trimming also managed to achieve significantly better results. Therefore,
while targeted regularisation manages to increase performance in samples with (almost) no
overlap issues (Shi et al., 2019), it also significantly hurts the performance in poor overlap
situations.

One interesting observation from the results is the fact that the variance of the Drag-
onNet results without data trimming is larger than when data trimming is applied in the
extreme propensity cases. Petersen et al. (2010) suggested data trimming as a possible so-
lution to deal with overlap violations, but noted that the trimming may lead to additional
variance due to the resulting smaller sample size. In the experiments, however, it seems that
the additional variability of the results due to extreme propensity scores heavily outweighs
the extra variability resulting from a smaller sample, but with a lower degree of overlap
violations. So, it seems that the DragonNet is more sensitive to extreme propensity scores
than to smaller sample sizes.

However, even though data trimming seems to improve the result to some degree, it
is important to note that applying this trimming changes the meaning of the final ATE
estimate. Subpopulations with extreme propensity scores are now ignored in the final calcu-
lation. Therefore, the final ATE does not reflect the effect for the whole population anymore,
but only for the portion with sufficient overlap. This might make the final result less inter-
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Figure 7: Box-plots of the values of the targeted regularisation terms which depend on the
estimated propensity scores. Results shown for DragonNet with and without trimming on
a random IHDP sample with imbalance parameter q set to 1.

esting or useful in certain cases, especially when there are heterogeneous treatment effects in
the population. Additionally, the performance of the DragonNet even with trimming might
still not be good enough to warrant this change in the interpretation of the final results,
especially considering that the results under overlap violations are still notably worse when
compared to the TARnet.

While the results in this paper were obtained using one synthetic dataset and one semi-
synthetic dataset (IHDP), the results can most likely still be generalised to many other
scenarios. This is due to the fact that the poor performance of the DragonNet model under
overlap violations seems to mainly be caused by the usage of estimated propensity scores
in the targeted regularisation procedure. Even if other datasets have, for example, vastly
different features or outcome models, they will still contain extreme propensity scores in the
case of low overlap. Therefore, the DragonNet should still perform relatively badly in these
other settings, as it will still obtain and use low estimates for the propensity scores.

6 Responsible Research
In order to help with the reproducibility of the results presented in this paper, the GitHub
page with all functions used is publicly available 2. The page also includes the 200 IHDP
samples used, such that the results can be obtained again from the exact same datasets.
Additionally, the functions used for generating synthetic datasets with different propensity
scores and sizes are also provided. The settings used for obtaining the results were described
in Section 3 and these can also be found in the code as the default settings used.

The ethical aspects of this work are related to groups of the population which may be
underrepresented. Extreme propensity scores in data reflect the fact that some subpopula-
tions with certain characteristics do not have enough overlap between treated and untreated
individuals. It is therefore very difficult, or impossible, to accurately estimate the treatment

2Code can be found at: https://github.com/Marco-Murv/ResearchProject
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effects for those subpopulations. This may lead to these underrepresented subpopulations
either being ignored, in the case of data trimming, or possibly being assigned incorrect treat-
ment effect estimations. Both of these cases are undesirable and can even potentially be
dangerous if wrong treatment effects are assumed and then used. Therefore, understanding
how the DragonNet performs under extreme propensity scores can be beneficial for avoiding
these negative effects when estimating treatment effects by, for example, choosing other,
more suitable methods in such cases.

7 Conclusion
The main question of this paper was about the performance of the DragonNet model under
(near) overlap violations. It is clear that the model performs very poorly when large portions
of the population suffer from low overlap, especially compared to other models, such as the
TARnet. The poor performance seems to largely be due to estimated propensity scores being
used in the targeted regularisation procedure. This also indicates that the results in this
work can be generalised to many other low overlap settings, as those samples should always
have low propensity scores in the data in those cases, no matter what other characteristics
the samples have. Trimming the data by discarding the points with low estimated propensity
scores seems to help, especially when the whole population suffers from overlap issues, but
this leads to biased results which is not desirable, especially since the TARnet still performs
better without any trimming. Overall, the best choice seems to be to use another model for
estimating treatment effects, such as the TARnet, when it is suspected that large portions
of the population suffer from low propensity.

Due to long computation times and limited available time overall, it was not possible to
actually test the claimed generalisability of the results using other datasets or to test the
performance against models which use completely different approaches to treatment effect
estimation, instead of only using the TARnet which is somewhat similar to DragonNet.
Therefore, it could be beneficial to extend the the experiments using a larger variety of
datasets and models. This may also provide additional insights on the performance, and
therefore usefulness, of other current state-of-the-art methods in the harder case of low
overlap situations, as poor treatment effect estimations are undesirable and can potentially
even be dangerous if used in practice. Besides simply testing more datasets and models, it
could also be beneficial to investigate whether some metrics or procedures can be designed
to indicate whether it is appropriate to use the DragonNet in a specific setting, as the model
performs rather well under regular conditions when compared to other models.
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