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In the aerospace domain, manufacturers and 
operators constantly seek to improve their products 
and processes. Increasingly, knowledge-based 
applications are developed to support or automate 
knowledge-intensive engineering tasks, saving 
time and money. However, engineering knowledge 
changes over time, which has implications 
for the usability and maintainability of 
knowledge-based applications. 

The research presented in this thesis contributes to 
the development of theory regarding knowledge 
change in engineering tasks. A conceptual
knowledge lifecycle model to characterise and 
quantify knowledge change is presented. 
Additionally, this  thesis  proposes  a methodology 
and an ontology-based approach to support 
the development of robust knowledge-based 
applications that can cope with knowledge change. 
These research contributions are validated 
in three case studies that consider engineering 
tasks in the aircraft design, manufacturing and 
maintenance lifecycle phases. The case studies 
demonstrate the utility of knowledge lifecycle 
management as usability and maintainability 
of knowledge-based applications are improved.

A
n O

ntology-Based Approach for K
now

ledge Lifecycle M
anagem

ent w
ithin A

ircraft Lifecycle Phases      W
.J.C

. Verhagen

Proefschrift omslag WJC Verhagen.indd   1 6/11/2013   7:28:58 PM

An O
ntology-Based Approach for Knowledge Lifecycle M

anagem
ent w

ithin Aircraft Lifecycle Phases

You are cordially 
invited to attend the 

defense of my PhD thesis 
on  Thursday 

18 July 2013 
at 10:00 a.m.

in the Senaatszaal of 
the Auditorium (Aula) 

of TU Delft, 
Mekelweg 5, Delft. 

Prior to the defense, 

at 9:30 a.m., I will 
give a short 

presentation outlining 
my research work. 

The defense is 
followed by a 

reception in the 
Frans van Hasseltzaal, 
Auditorium TU Delft.

Wim Verhagen
W.J.C.Verhagen@tudelft.nl

Invitation

uitnodiging.indd   1 6/11/2013   7:34:04 PM



 

 

An Ontology-Based Approach for 
Knowledge Lifecycle Management within 

Aircraft Lifecycle Phases 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
  



 

 
 

  



 

 
 

An Ontology-Based Approach for 
Knowledge Lifecycle Management within 

Aircraft Lifecycle Phases 
 

 
 
 
 
 

Proefschrift 
 
 

ter verkrijging van de graad van doctor 
aan de Technische Universiteit Delft, 

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben, 
voorzitter van het College voor Promoties, 

in het openbaar te verdedigen 
op donderdag 18 juli 2013 om 10:00 uur 

 
door  

 
 

Wilhelmus Johannes Cornelis VERHAGEN 
ingenieur in de luchtvaart en ruimtevaart 

geboren te Moergestel 

  



 

 
 

Dit proefschrift is goedgekeurd door de promotor: 
 
Prof.dr. R. Curran 
 
Samenstelling promotiecommissie: 
 
Rector Magnificus, voorzitter 
Prof.dr. R. Curran, Technische Universiteit Delft, promotor 
Prof.dr. J. Scanlan University of Southampton, United Kingdom 
Prof.dr. T. Tomiyama Cranfield University, United Kingdom 
Prof.dr. G. Lodewijks Technische Universiteit Delft 
Dr. J-P. Clarke  Georgia Institute of Technology 
Dr. G. La Rocca  Technische Universiteit Delft 
Dr. P. Bermell-Garcia EADS Innovation Works 
Prof. dr. D.G. Simons Technische Universiteit Delft, reservelid 
 
 
 
 
 
 
 
 
ISBN 978-90-8891-659-5 
 
Keywords: Knowledge Lifecycle, Knowledge Based Engineering, Knowledge Based 
Applications, Ontology 
 
Copyright © 2013 by W.J.C. Verhagen 
 
All rights reserved. No part of the material protected by this copyright notice may 
be reproduced or utilized in any form or by any means, electronic or mechanical, 
including photocopying, recording or by any information storage and retrieval 
system, without the prior written permission of the author. 
 
Published by Uitgeverij BOXPress, 's-Hertogenbosch.  



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Dedicated to my mother Christine, in loving memory. 

  



 

 
 

 



 

vii 
 

Table of Contents 
 

Acknowledgements ......................................................................................................... xi 
 
Summary ....................................................................................................................... xiii 
 
List of Figures................................................................................................................ xvii 
 
List of Tables .................................................................................................................. xxi 
 
Nomenclature.............................................................................................................. xxiii 
 
1 Introduction ............................................................................................................... 1 

1.1 Challenges in Knowledge Engineering for the Aircraft Lifecycle .............................. 1 
1.2 Research Approach ................................................................................................... 2 

1.2.1 Research Framework ....................................................................................... 3 
1.2.2 Research Design ............................................................................................... 6 

1.3 Dissertation Structure............................................................................................... 8 
 
2 Exploration of the Research Context ........................................................................ 11 

2.1 Perspectives on Knowledge and Knowledge Change ............................................. 11 
2.2 State of the Art and Challenges for Knowledge Perspectives along the 

Product Lifecycle ..................................................................................................... 20 
2.2.1 Data through Product Life: Product Data Management ................................ 23 
2.2.2 Information through Product Life: Product Lifecycle Management .............. 25 
2.2.3 Knowledge through Product Life: Knowledge Management & 

Knowledge Engineering .................................................................................. 29 
2.3 Identification of Research Challenges .................................................................... 36 

 
3 Theory Development ............................................................................................... 41 

3.1 A Conceptual Model for the Lifecycle of Knowledge .............................................. 42 
3.1.1 State of the Art and Shortcomings of Knowledge Lifecycle research ............ 42 
3.1.2 Requirements on Definition of a Knowledge Lifecycle Model ....................... 45 
3.1.3 Research Contribution 1: Conceptual Knowledge Lifecycle Model ............... 47 
3.1.4 Concluding Remarks ...................................................................................... 49 

3.2 A Model-Based Approach to Support Knowledge Change: the Knowledge 
Lifecycle Ontology ................................................................................................... 51 

3.2.1 The Role of Ontologies in Supporting Knowledge-Based Applications 
through Knowledge Life: State of the Art and Shortcomings ........................ 51 

3.2.2 Main Elements for the Development of the Knowledge Life Cycle 
Ontology     ..................................................................................................... 58 

3.2.3 Research Contribution 2: Knowledge Life Cycle Ontology ............................. 70 
3.2.4 Concluding Remarks ...................................................................................... 77 

3.3 The KNOMAD Methodology for Supporting KBS Development incorporating 
Knowledge Change ................................................................................................. 80 



 

viii 
 

3.3.1 State of the Art in Methodologies for KBS development .............................. 80 
3.3.2 Shortcomings of Existing Methodologies and Associated Research 

Requirements ................................................................................................. 85 
3.3.3 Research Contribution 3: KNOMAD Methodology ........................................ 86 
3.3.4 Concluding Remarks ...................................................................................... 90 

3.4 Discussion of Contributions .................................................................................... 91 
3.4.1 Discussion of the Knowledge Lifecycle Model ............................................... 91 
3.4.2 Discussion of the Knowledge Lifecycle Ontology ........................................... 92 
3.4.3 Discussion of the KNOMAD methodology ..................................................... 93 

3.5 Proposing a Case Study approach .......................................................................... 94 
 
4 Design Case Study: Ply Stacking Sequence Optimization for Composite Wing 

Panels ...................................................................................................................... 99 
4.1 Case Study Context and Challenges ........................................................................ 99 
4.2 Application of Theory to Design Case Study ......................................................... 104 

4.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 
Change      ..................................................................................................... 105 

4.2.2 Application of KLC Ontology: Task Analysis ................................................. 107 
4.2.3 Application of KNOMAD: Solution Approach ............................................... 109 

4.3 Results .................................................................................................................. 110 
4.3.1 Knowledge Capture & Identification of Knowledge Change ........................ 110 
4.3.2 Normalization .............................................................................................. 112 
4.3.3 Organisation ................................................................................................. 113 
4.3.4 Modelling & Implementation ...................................................................... 117 
4.3.5 Analysis & Delivery....................................................................................... 127 

4.4 Discussion of Results ............................................................................................ 128 
 
5 Manufacturing Case Study: Composite Wing Cost Modelling & Estimation ............ 129 

5.1 Case Study Context and Challenges ...................................................................... 130 
5.2 Application of Theory to Manufacturing Case Study ............................................ 136 

5.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 
Change     ...................................................................................................... 136 

5.2.2 Application of KLC Ontology: Task Analysis ................................................. 138 
5.2.3 Application of KNOMAD: Solution Approach ............................................... 140 

5.3 Results .................................................................................................................. 141 
5.3.1 Knowledge Identification & Capture ............................................................ 142 
5.3.2 Normalization .............................................................................................. 144 
5.3.3 Organisation ................................................................................................. 146 
5.3.4 Modelling & Implementation ...................................................................... 150 
5.3.5 Analysis & Delivery....................................................................................... 158 

5.4 Discussion of Results ............................................................................................ 159 
 
6 Maintenance Case Study: Supporting Wing Maintenance – B737 Leading Edge 

Slat Downstop Assembly Modification & Inspection .............................................. 161 
6.1 Case Study Context and Challenges ...................................................................... 161 



 

ix 
 

6.2 Application of Theory to Maintenance Case Study .............................................. 165 
6.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 

Change     ...................................................................................................... 166 
6.2.2 Application of Knowledge Lifecycle Model: Quantifying Knowledge 

Change     ...................................................................................................... 168 
6.2.3 Application of KLC Ontology: Task Analysis ................................................. 182 
6.2.4 Application of KNOMAD: Solution Approach ............................................... 183 

6.3 Results .................................................................................................................. 184 
6.3.1 Knowledge Identification & Capture ............................................................ 185 
6.3.2 Normalization .............................................................................................. 188 
6.3.3 Organisation ................................................................................................. 188 
6.3.4 Modelling & Implementation ...................................................................... 191 
6.3.5 Analysis & Delivery....................................................................................... 202 

6.4 Discussion of Results ............................................................................................ 202 
 
7 Conclusion ............................................................................................................. 205 

7.1 Research Synthesis ............................................................................................... 205 
7.1.1 Synthesizing a Vision for Knowledge Engineering ....................................... 205 
7.1.2 Synthesizing the Case Study Results relative to Research Objectives and 

Challenges .................................................................................................... 208 
7.2 Research Conclusions ........................................................................................... 210 

7.2.1 Theory Development: Knowledge Lifecycle Modelling ................................ 211 
7.2.2 Theory Development: Ontology-based Approach to Support Knowledge 

Change ......................................................................................................... 212 
7.2.3 Theory Development: Methodology Development ..................................... 213 

7.3 Research Limitations & Recommendations .......................................................... 214 
 
References .................................................................................................................... 219 
 
Appendix A: Complexity Estimation.............................................................................. 229 
 
Samenvatting ............................................................................................................... 233 
 
Curriculum Vitae ........................................................................................................... 237 
 
List of Publications........................................................................................................ 238 
 
 
 

  



 

x 
 

  



 

xi 
 

Acknowledgements 

Obtaining a PhD is often seen as an individual achievement. While in the end the 
responsibility falls upon the shoulders of the PhD candidate, the journey towards 
the PhD is most emphatically a shared one. It is the people you meet and interact 
with during the PhD journey that make it such a memorable and worthwhile 
experience. I wish to thank several people who have made the journey so much 
easier to complete.  
 
First, I wish to express my deep gratitude to my promotor Ricky Curran for his 
guidance and unwavering support, both research-related and personal. Ricky, I 
very much enjoyed working together on research and deeply appreciate the 
opportunities you have given me to broaden my horizon through educational and 
international activities. I am looking forward with great anticipation towards 
building upon our joint ambitions for the Air Transport & Operations chair. 
 
I also wish to extend my gratitude to my colleagues from industry. Christian, thank 
you for that vital first push. Working together with the Ardans colleagues (Jean-
Pierre, Alain and above all Pierre) has been a pleasure. I very much appreciate the 
hospitality, expertise and support extended by the members of the EADS IW team 
involved in parts of the research: Domingo, Simon, Kiran, Jean-Luc, Gary, Alistair, 
Romaric and Jean-Baptiste. Pablo must be singled out in his vital role as industrial 
advisor-of-sorts during the critical stage of the research process. Pablo, your 
professional and personal character is of the highest quality. It was an honour and 
pleasure to work with you and the EADS team.  
 
Thanks to the members of the ATO staff for making the daily work environment so 
pleasant. The regular and irregular members of the 'lunch club' make for 
stimulating lunch time conversation, ranging from aerospace to distinctly non-
aerospace related topics. A warm thanks to Liza, Geeta and Vera for being the 
unsung yet vital heroines of the group. 
 
I am deeply indebted to my friends from Jochvipelisawi and my family for their 
unconditional support. Special thanks to Marieke for her fantastic cover design! It 
is however three persons that deserve a very special mention. Lisette, you are the 
love of my life – I couldn’t have done the PhD without you. Finally, the support of 
my father Jan and mother Christine is and has been the best source of motivation 
during these and previous years. 
 

  



 

xii 
 

  



 

xiii 
 

Summary 

An Ontology-Based Approach for Knowledge Lifecycle 
Management within Aircraft Lifecycle Phases 

 
In the aerospace domain, manufacturers and operators constantly seek to 
improve their products and processes. Increasingly, knowledge-based applications 
are developed to support or automate knowledge-intensive engineering tasks, 
saving time and money. However, engineering knowledge is likely to change over 
time, which has implications for knowledge-based applications. 

A central challenge to consider is related to the nature of knowledge and its 
behaviour over time. Does knowledge change and therefore, does it have a 
lifecycle of its own? With respect to the issue of knowledge change, current 
research is rather limited. Various authors (e.g. Schorlemmer et al. (2002), Alavi 
and Leidner (2001), Stokes (2001), Nonaka et al. (2000) and Schreiber et al. 
(1999)) indicate that knowledge changes, but these authors do not accurately 
define their concepts, most do not back up their assertions, and none go beyond a 
qualitative assessment of knowledge change.  

This has major ramifications from a practical perspective. If knowledge 
changes, existing knowledge-based applications risk becoming rapidly obsolete. 
Coenen and Bench-Capon (1993) offer an indication of the magnitude of the 
problem of knowledge change: the knowledge-based system that was studied 
incorporated an estimated 50% change in rules on a yearly basis, while the overall 
knowledge base expanded about fourfold in the first 3 years of operation. Van 
Dijk et al. (2012) offers an indication of the costs associated with maintaining a 
knowledge-based application to keep functionality and knowledge up to date, 
which are estimated to be 25% of non-recurring software development cost on a 
yearly basis. 

How can knowledge-based applications cope with knowledge change? It is 
necessary to develop models and methods to enable the development of more 
robust engineering applications:  usability and maintainability of knowledge and 
knowledge-based applications must be facilitated. The following high-level 
research goal is consequently identified: 
 

Support consistent formalization, use and maintenance of changing 
knowledge within aircraft lifecycle phases to improve domain-specific 
modelling, execution and control of engineering tasks 

 
Knowledge change is defined here as a change in knowledge over time, where 
knowledge is defined as processed information with a capability for effective 



 

xiv 
 

action. Consequently, the following types of change may be discerned in a 
knowledge-based application: changes in values (data change), changes in the 
structured context of a knowledge element (information change) and changes to 
the capability for effective action associated with a knowledge element 
(knowledge change), where the latter can be caused by changes in rules, logic 
structures or attribute sets.  

To achieve the high-level research goal, several contributions to theory have 
been developed which involved addressing associated research challenges, as 
shown in Table S.1.  
 

Table S.1: Contributions to theory related to research challenges 
Research contribution Associated research challenge(s) 
Knowledge Lifecycle Model Characterise, model and quantify the 

behaviour of knowledge within product life 
Ontology-based approach to support 
knowledge change: Knowledge Lifecycle 
Ontology 

Maintainability: 
- Moving beyond black-box KBS 
applications and ensuring transparency 
Usability: 
- Task orientation 
- Expert / end user involvement 

Methodology development:  
KNOMAD methodology 

Methodological approach to facilitate 
knowledge change management 

 
The Knowledge Lifecycle model has been developed to characterize and 

model the lifecycle of knowledge elements by incorporating the concepts of 
knowledge states and actions. In particular, the actions – including create, 
formalize, use, maintain, update and retire – offer the ability to meaningfully 
quantify knowledge behaviour over time. Through offering this capability, the 
Knowledge Lifecycle model goes beyond state-of-the-art in theory. 

The developed Knowledge Lifecycle (KLC) ontology can serve in a structure-
preserving approach towards the development, use and maintenance of 
knowledge-based applications. The KLC ontology revolves around two central 
perspectives: the Enterprise Knowledge Resource (EKR) concept in combination 
with an annotation structure based on the Product-Process-Resource (PPR) 
paradigm. An EKR is a task-oriented container representation encompassing 
knowledge elements, process elements and task output in the form of case 
reports. In combination with the PPR paradigm, 'white-box' knowledge-based 
applications with increased transparency can be developed. The KLC ontology 
moves beyond state-of-the-art through four ways: enabling structure-preserving 
modelling and implementation, representing knowledge related to individual task 
level, offering consistent annotation through PPR classes related to individual 
tasks and offering systematic storage of task outputs. 
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The third and final contribution to theory is the KNOMAD methodology. 
KNOMAD has been introduced as a methodology for the development of 
knowledge-based applications that can cope with changing knowledge. This 
methodology consists of six steps: Knowledge Capture & Identification of 
Knowledge Change, Normalisation, Organisation, Modelling & Implementation, 
Analysis and Delivery. The critical aspect of knowledge change (and associated 
maintenance) is accounted for by the characterisation and analysis of knowledge 
change at the start of the KNOMAD process. Furthermore, the organisation step 
emphasizes modelling of the domain knowledge layer which can subsequently be 
used in the Modelling & Implementation step for annotation of engineering tasks. 
This step also advises the use of the KLC ontology. As such, domain and task 
ontologies are developed and implemented as the backbone of the developed 
knowledge-based solutions. Consequently, the KNOMAD steps realize an 
ontology-based approach that addresses the research challenges of moving 
beyond black-box applications and ensuring transparency, task orientation and 
end user/expert involvement. It goes beyond existing theory by offering explicit 
support for knowledge change, by incorporating usability and maintainability 
considerations and through explicit support for assessment of knowledge-based 
application performance. 

For validation, the ontology-based approach and the associated models and 
methodology have been applied in three case studies considering engineering 
tasks for specific aircraft life cycle phases – design, manufacturing and 
maintenance.  

The Knowledge Lifecycle model has been successfully applied to characterise 
knowledge change in the design and manufacturing domains. Furthermore, the 
model has been applied in the maintenance domain to quantify knowledge 
change. 

The KLC ontology has been applied in all case studies. The associated 
maintainability challenge – moving beyond black-box and ensuring transparency – 
has been addressed through the KLC ontology concepts. Through the EKR 
concept, traceability is ensured. In particular, the Case class and the associated 
case reports enable tracing the outputs of knowledge application for a specific 
task, as well as tracing the knowledge and processes used to perform a task. The 
metadata that is associated with knowledge and process elements (authorship, 
lifecycle state, status, etc.) also aids traceability in terms of knowledge ownership, 
validity and reliability. Through the PPR paradigm, visibility of key concepts is 
ensured. It has been shown in the three case studies how development of a 
domain-specific extension of the PPR classes facilitates semantic annotation of 
implemented EKRs, making it easy to find, inspect and use knowledge-based 
applications and their components. The usability challenges – task orientation and 
expert/end user involvement – are met through the EKR concept and the use of a 
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web-based knowledge management solution. In each case study, one or more 
EKRs have been developed to represent and support the execution of specific 
engineering tasks. The chosen web-based architecture facilitates user interaction 
with EKRs and their constituent elements (knowledge elements, process 
elements, cases).  

The KNOMAD methodology has been applied in all three case studies. All 
steps of the methodology have been successfully applied to develop and 
implement knowledge-based applications that can handle knowledge change. 

The contributions of this dissertation – Knowledge Lifecycle model, KLC 
ontology, KNOMAD methodology – can be expanded and refined in various ways. 
Most notably, the Knowledge Lifecycle model has to be quantitatively validated 
across more domains. Ideally, it would also be given a formal mathematical 
foundation. Furthermore, modelling of task complexity and hierarchies has not 
been performed as part of this dissertation. Finally, adding formal expressions to 
the KLC ontology would facilitate the use of reasoning capabilities in the 
development and maintenance of knowledge-based applications. 
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1 Introduction 

This dissertation aims to improve understanding of knowledge change and will 
offer ways to cope with such change in the development of knowledge-based 
applications. The motivation for this work will be discussed first, followed by 
formulation of a research approach.   

1.1 Challenges in Knowledge Engineering for the Aircraft 
Lifecycle  

The study of knowledge has been practiced since Classical times and is known as 
epistemology. With the advent of the personal computer and associated 
information technology, the study of knowledge activities such as creation, 
capture, formalization and implementation has taken flight. Gradually, the field of 
knowledge engineering has crystallized. This field originated in the early 1980s 
(Studer et al., 1998) with the specific focus of “integrating knowledge into 
computer systems in order to solve complex problems normally requiring a high 
level of human expertise” (Feigenbaum and McCorduck, 1983). The use of 
knowledge engineering for any product lifecycle can be considered by using two 
perspectives: a theoretical perspective and a practical perspective. 

From the theoretical perspective, a central challenge to consider is related to 
the nature of knowledge and its behaviour over time. What is knowledge and 
what are its characteristics? How does it behave over time; is it static or does it 
change? In other words, does knowledge have a lifecycle of its own?  

With respect to the issue of knowledge change, current research is rather 
limited. Schorlemmer et al. (2002) discuss the dynamic nature of knowledge: “The 
dynamic nature of knowledge has long been realised: knowledge evolves over 
time as experiences accumulate; it is revised and augmented in light of deeper 
comprehension; entirely new bodies of knowledge are created while at the same 
time others pass into obsolescence”. A similar notion is expressed in Alavi and 
Leidner (2001) and Nonaka et al. (2000). Schreiber et al. (1999) state that 
“…knowledge is not static but changes over time…” and “…knowledge tends to 
evolve over time” (pg. 184). Stokes (2001) maintains that “knowledge changes 
rapidly (some talk of a half-life for knowledge of only 20 years)” (pg. 279).  

Unfortunately, most authors do not accurately define their concepts, most do 
not back up their assertions, and none of the mentioned authors go beyond a 
qualitative assessment of the differences between static (unchanging) and 
dynamic (changing) knowledge. It seems that our understanding of knowledge is 
still lacking.  

This has major ramifications from a practical perspective. If knowledge 
changes, existing knowledge-based applications risk becoming rapidly obsolete. 
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Coenen and Bench-Capon (1993) offer an indication of the magnitude of the 
problem of knowledge change: the KBS that was studied incorporated an 
estimated 50% change in rules on a yearly basis, while the overall knowledge base 
expanded about fourfold in the first 3 years of operation. Van Dijk et al. (2012) 
offers an indication of the costs associated with maintaining a knowledge-based 
application to keep functionality and knowledge up to date, which are estimated 
to be 25% of non-recurring software development cost on a yearly basis.   

So, if understanding of the change of knowledge during its life is lacking, how 
can existing or to-be-developed knowledge-based applications for engineering 
tasks cope with knowledge change? All too often, the answer is to (partly) 
redevelop, to invest in extensive and expensive maintenance, or to abandon the 
effort altogether. As such, besides achieving a better understanding of the change 
of knowledge through life, it is necessary to carry through the implications of 
knowledge change in models and methods to enable the development of more 
robust engineering applications. 

These considerations are of particular interest for the aircraft engineering 
domain. The development and operation of aircraft are highly complex and 
collaborative endeavours in which knowledge from numerous stakeholders and 
disciplines must be integrated to achieve the intended objectives. This holds for 
the various stages of the aircraft lifecycle, including design, manufacturing and 
operation support. In tandem with the introduction of new materials (e.g. 
composites) and production techniques, the continuous development of methods 
and applications for the various aircraft life cycle stages is a must. The use of 
knowledge engineering may be employed to support these developments. 
Knowledge engineering offers methods and models to streamline or even 
automate engineering processes while retaining the requisite knowledge 
(Schreiber et al., 1999). This may reduce process time significantly while 
improving the quality of analysis, decisions and output. However, quite a few 
challenges remain for the application of knowledge engineering within aircraft 
engineering (Bermell-Garcia et al., 2012; Verhagen et al., 2012).  These challenges 
focus on usability and maintainability of knowledge and knowledge-based 
applications. Knowledge must be geared towards the end user(s), which must be 
able to retrieve, understand, use and manage the knowledge used in knowledge-
based applications. Existing knowledge must be able to be updated following new 
insights. In other words, knowledge change must be taken into account, allowing 
for life-cycle management of knowledge and the associated knowledge-based 
applications. 

1.2 Research Approach 

Does knowledge change and if so, how is this coped with? These general 
questions inform the vision and consequently the direction of the research. The 
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vision of this research is to show that knowledge changes and has a lifecycle 
which can be modelled and quantified, and to carry through the implications of 
knowledge change into a set of models and a method to consistently formalize, 
use and maintain knowledge for engineering tasks within the aircraft lifecycle. To 
consolidate the stated vision, the following high-level research goal is identified: 
 

Support consistent formalization, use and maintenance of changing 
knowledge within aircraft lifecycle phases to improve domain-specific 
modelling, execution and control of engineering tasks 

 
To address the general research challenges discussed in the previous section, a 
research framework is formulated. This approach consists of the research scope, 
objectives and research questions (the what – Section 1.2.1), as well as the 
specific research design that outlines the modelling, analysis and validation 
approach (the how – Section 1.2.2).  In applying the research design, the 
theoretical contributions (Chapter 3) and practical contributions (Chapters 4-6) of 
this dissertation are developed. 

1.2.1 Research Framework  

The first step in addressing the aforementioned research challenges is to pick up 
on the general research vision and address exactly what it is that is being 
researched, i.e. the research objectives, scope and questions. These elements are 
the focus of the following sections.  

1.2.1.1 Research Objectives 
To achieve the high-level research goal, several research objectives must be met: 

 
1) Knowledge life cycle modelling: it is necessary to understand and model 

knowledge through time. Therefore, a model for the lifecycle of 
knowledge must be developed. This model must enable quantification of 
knowledge change. 

2) Ontology-based approach to support knowledge change: to support the 
consistent formalization, use and maintenance of changing aircraft 
knowledge in its various lifecycles, an ontology-based approach must be 
developed. The ontology supports the knowledge lifecycle and can be 
applied during any aircraft lifecycle phase to construct knowledge-based 
applications that support changing knowledge. The resulting applications 
must have improved maintainability and usability. 

3) Methodology development: to support application of the ontology-based 
approach, a methodology must be developed. This should employ the 
knowledge life cycle model and associated ontology-based approach to 



 

4 
 

support the development of 'white-box' knowledge-based applications 
that can handle knowledge change and offer improved maintainability 
and usability.  
 

To ground the research, the state of the art in related domains is to be explored 
(see Chapter 2). This review will support the assertions made as part of the 
research objectives. Furthermore, the proposed models and methodology must 
be validated. The associated approach is discussed in more detail in Section 3.5.  

1.2.1.2 Research Scope 
The research is scoped with respect to three aspects.  

First, the current research will primarily consider explicit knowledge, i.e. 
knowledge that has been codified and is available in documents and other 
formalized forms (see also Section 2.1). This choice has been made in order to 
enable the modelling and quantification of knowledge change. Tacit knowledge – 
and its conversion into explicit knowledge – is considered as part of the case 
studies (see also Chapters 4-6).  

Second, instead of considering a generic product lifecycle, the research 
focuses on the aerospace domain; the aircraft lifecycle will be studied. In 
particular, the design, manufacturing and maintenance phases of the aircraft 
lifecycle are considered. These phases are most directly associated with the 
generation, formalization and (re-)use of explicit knowledge in knowledge-based 
applications. Therefore, they are the most suitable phases for further research.  A 
final note regarding these phases is that the emphasis lies on case study research 
of engineering tasks as encountered in the design, manufacturing and 
maintenance phases of the lifecycle.  

Two of three case studies will be concerned with thermoset composite 
products. This is an area of considerable interest in both the research and the 
business communities, given the introduction of the Boeing B787 and Airbus 
A350XWB and the associated required developments in design, manufacturing 
and maintenance processes.  

To summarize, the research has been scoped to address knowledge within 
aircraft lifecycle phases (design, manufacturing, maintenance) with a particular 
interest in thermoset composite products.  
 
The following aspects will not be included into the research scope: 

• Knowledge exchange across aircraft lifecycle stages: knowledge is 
generated during various stages of the aircraft lifecycle. Some 
knowledge may originate in early lifecycle stages (e.g. design) and 
move through subsequent stages (e.g. manufacturing, maintenance). 
The change of knowledge over these stages will not be addressed in 
this dissertation. 
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• Application interoperability across the aircraft lifecycle: the 
aforementioned use case research focuses on knowledge-based 
application development for individual life cycle stages. The 
interoperability of applications across life cycle stages (e.g. a design 
tool interacting with a maintenance tool) will not be considered.  

• Organizational factors: knowledge-based applications do not exist in 
a vacuum.  Organizational factors play an important role in the 
development, implementation and maintenance of knowledge bases 
and applications, but these factors are not considered in detail in the 
current research. 

• Automatic translation between informal and formal knowledge 
representations: knowledge can be collected using informal and 
formal representations (see Section 2.2.3), which are related to each 
other. Typically, an informal representation of knowledge is the first 
step in a process leading to formalization of knowledge, which 
consists of the modelling and implementation of knowledge in 
knowledge-based applications. One of the most appealing research 
challenges in knowledge engineering is to make it possible to 
automatically link and convert informal to formal knowledge. 
Automatic translation models and mechanisms need to be 
developed. This would open up the path to rapid knowledge-based 
application development, while improving maintainability and 
usability of knowledge. However, this challenge is not addressed in 
the current research. 

• Task automation: while developing and implementing knowledge-
based systems, it is typical to automate repetitive tasks, especially in 
KBE development. Though it may feature in some case studies, 
automation is in itself not a research objective for this dissertation.  

1.2.1.3 Research Questions 
A number of research questions are formulated to direct the research. With 
respect to the theoretical challenge and the related research objective – 
knowledge lifecycle modelling – the following questions are considered: 

 
• Which concepts and relationships are required to characterise the change of 

explicit knowledge within and throughout the aircraft lifecycle phases?  
• How does explicit knowledge change within specific phases of the aircraft 

lifecycle?  
• Is change of explicit knowledge quantifiable? 
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These questions will be partially answered in Section 3.1, where a knowledge life 
cycle model is proposed. Relative to the model, two general hypotheses (and 
associated null hypotheses) are introduced here. 

 
H1: The frequency of knowledge actions decreases along the knowledge lifecycle 
H0,1: The frequency of knowledge actions remains equal or increases along the knowledge 
lifecycle 
H2: Number of knowledge actions per year increases during the aircraft lifecycle 
H0,2: Number of knowledge actions per year remains equal or increases during the aircraft 
lifecycle  

 
These hypotheses are further explained and tested in Section 6.2.2, along 

with a set of case-specific hypotheses. The mentioned Section also answers the 
remaining research questions regarding knowledge lifecycle modelling.  

 
With respect to the practical challenges and the related research objectives – 

the development of an ontology-based approach and supporting methodology – 
the following questions are considered: 
 
• Which concepts and mechanisms support the consistent formalization, use 

and maintenance of changing knowledge throughout the aircraft lifecycle? 
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 
o Which steps are required?  

1.2.2 Research Design 

To find answers to the research questions and meet the research objectives, a 
three-stage research design has been adopted. Figure 1.1 presents the resulting 
research framework, which consists of identification of state-of-the-art and 
shortcomings through literature review, development of contributions through 
theory, which are validated through practical application in three case studies. 
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Figure 1.1: Research framework  

 
The two-stage research design is further explained below. 

1.2.2.1 Theory Development: Research Contributions 
Theory development consists of three specific contributions that tie in with the 
research objectives: 

• The first contribution is an effort to conceptualize and model the 
behaviour of knowledge over the aircraft lifecycle (Chapter 3.1).  

• The second contribution to theory is the development of an ontology for 
the support of knowledge change in knowledge-based applications 
(Chapter 3.2). It combines elements of the knowledge lifecycle model with 
previous work in the PLM and KBE research domains. The ontology can be 
applied in the development of knowledge-based applications. 

• The third contribution is the development of the KNOMAD methodology, 
supporting the application of an ontology-based approach in the 
development of knowledge-based applications that have to cope with 
knowledge change (Chapter 3.3).  

 

1.2.2.2 Practical application: Implementation and Validation 
The developed models and methodology are put to the test in three case studies 
for specific aircraft life cycle phases – design, manufacturing and maintenance. 
For each case study, the research context and challenges are indicated. The 
theory contributions are then applied to the particular case: knowledge change is 
characterised using the knowledge lifecycle model, task analysis is performed to 
support ontology application, and the KNOMAD methodology is applied to the 
case to produce a development flow chart.  This results in development of a 
knowledge-based solution for the research problem. The three case studies are 
presented in Chapters 4-6. 

For the maintenance phase, the knowledge lifecycle model is additionally 
tested and validated by quantitative, statistical analysis of the behaviour of 
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knowledge. The model concepts are operationalized and an appropriate 
representation of knowledge is selected. Following this, general and case-specific 
hypotheses are posited and two separate research samples are gathered, 
processed and statistically analysed.  

1.3 Dissertation Structure 

The structure of this dissertation is informed by the research design. Figure 1.2 
gives the research roadmap. It shows that the research context will be explored 
first; this includes a discussion of the state-of-the-art in relevant research 
domains. This is followed by the development of theoretical and practical 
contributions. Finally, conclusions are drawn and the research is discussed. The 
individual chapters are discussed in more detail below.  

 
Chapter 2 (Exploration of the Research Context) gives an overview of research in 
various fields that are related to the problem statement as given in this 
introduction. First, accurate definitions of knowledge and knowledge change are 
sought, particularly in relation with data and information. The product lifecycle 
concept is introduced next. The concepts of data, information and knowledge are 
then extended across the product lifecycle, which leads to review of state-of-the-
art and shortcomings in the fields of Product Data Management, Product Lifecycle 
Management and Knowledge Management and Engineering. After discussion of 
these research fields, a number of research challenges are defined.   
 
Chapter 3 (Theory Development) presents the three major contributions to 
theory of this dissertation. The first section introduces a conceptual knowledge 
lifecycle model that aims to enable the characterisation and quantification of 
knowledge change. The second section of Chapter 3 introduces the model that 
can be used to support the consistent formalization, use and maintenance of 
knowledge within aircraft lifecycle phases. This model is an ontology, a 
representation of the concepts and relationships in a domain (Uschold and 
Gruninger, 1996; Noy and McGuinness, 2009), and combines the knowledge life 
cycle concept and its attributes with elements from research on lifecycle 
ontologies and functional modelling. The third section establishes a methodology 
that can be used to support consistent formalization, use and maintenance of 
knowledge over the aircraft lifecycle. It contains a number of distinct steps that 
can be used to develop knowledge-based applications that can cope with 
knowledge change. The contributions are discussed in Section 3.4. The final 
section of Chapter 3 outlines the approach to validate the contributions to theory 
by introducing the case study approach. 
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Figure 1.2: Research roadmap 

 
Chapter 4 (Case Study 1: Aircraft Design for Manufacturing) discusses the 
development of a knowledge-based application to optimize the design of a 
thermoset composite wing panel for ply continuity, which enables better 
manufacturability. The theoretical contributions introduced in Chapter 3 are 
applied to the case study by identification of knowledge change, engineering task 
analysis and application of the methodology. Subsequently, a knowledge-based 
application is developed through application of the methodology steps and the 
knowledge lifecycle ontology. The knowledge-based application meets 
requirements with respect to usability and maintainability, as well as specific case 
study requirements.  
 
Chapter 5 (Case Study 2: Aircraft Manufacturing Cost Modelling) details the 
development of a knowledge-based application for cost modelling and estimation 
for the manufacturing of a thermoset composite wing. As in Chapter 4, the 
theoretical contributions introduced in Chapter 3 are applied to the case study by 
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identification of knowledge change, engineering task analysis and application of 
the methodology. Subsequently, a knowledge-based application is developed 
through application of the methodology steps and the knowledge lifecycle 
ontology. The knowledge-based application meets requirements with respect to 
usability and maintainability, as well as specific case study requirements, though 
the application for this use case is semi-automatic and requires user interaction to 
function.  
 
Chapter 6 (Case Study 3: Aircraft Maintenance Modelling) discusses the 
development of a maintenance knowledge base that captures and formalizes 
knowledge for a specific maintenance function: the inspection and modification of 
a Boeing B737 slat main track downstop assembly. As such, it includes lifecycle 
knowledge coming from external sources (e.g. the Original Equipment 
Manufacturer, Boeing, and the regulator, the Federal Aviation Authority). As 
before, the theoretical contributions introduced in Chapter 3 are applied to the 
case study by identification and quantification of knowledge change, as well as 
engineering task analysis and application of the methodology. Subsequently, a 
knowledge-based application is developed through application of the 
methodology steps and the knowledge lifecycle ontology. The knowledge-based 
application meets requirements with respect to usability and maintainability, as 
well as specific case study requirements.  
 
Chapter 7 (Conclusions & Discussion) first synthesizes the contributions from the 
case studies in light of the developed theory. The research objectives and 
questions of this dissertation are then revisited; appropriate conclusions are 
drawn. In the Discussion section, the contributions and limitations of the 
performed research are discussed. Furthermore, recommendations for future 
research are given. 
 
Appendix A (Complexity Estimation) includes a brief discussion of complexity 
estimation for the development of knowledge-based applications consisting of 
modular elements. 
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2 Exploration of the Research Context 

To gain a better perspective on the aspects of the expressed research vision, the 
state-of-the-art of the related research fields is described. Furthermore, the high-
level research challenges identified in the introduction will be refined. This will 
result in specific, motivated research challenges as a basis for further research. 

The first aspects that will be explored are the definitions of knowledge and 
knowledge change. Which perspectives exist and which definitions are adopted in 
this dissertation? Following the definition of these concepts, generic 
representations of the product lifecycle are discussed, with further specification in 
terms of the aircraft lifecycle. Applying a knowledge perspective to the product 
lifecycle gives rise to discussion of the research fields of Product Data 
Management (PDM), Product Lifecycle Management (PLM), Knowledge 
Management (KM) and Knowledge Engineering (KE).  

2.1 Perspectives on Knowledge and Knowledge Change 

What is knowledge? What is its nature; how can it be defined? And does it 
change, and if so, how can this be defined?  

From the perspective of this dissertation, it would go too far to consider all 
philosophical angles on knowledge. Rather, the focus will be on two major and 
often used perspectives to define knowledge, as discussed at length by Alavi and 
Leidner (2001): 

 
1) The notion of a hierarchy from data to information to knowledge. 
2) Knowledge taxonomies, in particular the distinction between explicit and 

tacit knowledge. 
 
As Hicks et al. (2002) note, the words data, information and knowledge are often 
used in an interchangeable manner by practitioners, which “complicates the 
identification and development of mechanisms for the capture, storage and reuse 
of each resource”. As the interchangeable use by practitioners indicates, the 
notions of data, information and knowledge are closely related. This realisation 
has brought forth a major and often used perspective on knowledge: the notion 
of a hierarchy from data to information to knowledge (Wiig, 1997; Nonaka et al., 
2000; Alavi and Leidner, 2001; Bufardi et al., 2005; Ouertani et al., 2011), where 
data precedes information, which in turn precedes knowledge. It is implicitly 
assumed that value increases intrinsically from data to information to knowledge. 
In contrast, researchers such as Tuomi (1999) argue for a reversed hierarchy, 
where the existence of knowledge precedes the existence of information and 
data. In this dissertation, no judgement will be given with regards to the inherent 
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value and supposed 'progress' from data to information and to knowledge, or vice 
versa. Instead, the focus lies on obtaining definitions of these three related 
concepts that are as clear as possible. The three central concepts of data, 
information and knowledge are discussed below: 
 

• Data: data can be considered as “raw numbers and facts” (Alavi and 
Leidner, 2001), “simple facts” (Tuomi, 1999), “symbols which have not yet 
been interpreted” (Van der Spek and Spijkervet, 1997), “simple 
observations of states of the world” (Davenport and Prusak, 1998), or 
“unorganized and unprocessed facts” (Ameri and Dutta, 2005). Hicks et al. 
(2002) offer a slightly more involved discussion of the concept of data, 
including a look at the difference between structured and unstructured 
data, and noting that the 'facts' alluded to in the definitions of others 
indicate occurrences of a measure or inference of some quantity or 
quality. Finally it should be noted that some authors (e.g. Simon et al. 
(2001)) make a distinction between static data (specification of the 
product, i.e. data that is created once and stays intact during the product 
lifecycle) and dynamic data (data collected during the use of a product).  

• Information: like data, information is defined in different ways. For 
instance, Tuomi (1999) defines information as structured simple facts. 
Van der Spek and Spijkervet (1997) define information as data with 
meaning, whereas Alavi and Leidner (2001) and Tuomi (1999) maintain 
that information is meaningless in itself; for them, meaning is the defining 
characteristic that transforms information into knowledge. Tuomi (1999) 
adds that “the general accepted view sees data as simple facts that 
become information as data is combined into meaningful structures”. 
Davenport and Prusak (1998) sees information as “data endowed with 
relevance”. Wiig (1997) states that information “consists of facts and data 
that are organised to describe a particular situation or condition”. Hicks et 
al. (2002) and Ouertani et al. (2011) combine some of the previous 
perspectives by expressing information as having two aspects: “…a subject 
or descriptor, which provides the meaning, and a predicate or value that 
holds the measure, typically a data element” (Hicks et al., 2002). From this 
perspective, information can be expressed as data within a context. 
Furthermore, Hicks et al. (2002) consider the difference between informal 
and formal information. Informal information is seen as unstructured 
information; information possessed by individuals where subjects and 
predicates are not clearly defined and may change dynamically. Formal 
information is an element of information possessing a specific context and 
measure; its must be structured and sufficiently decomposed to act as a 
platform to infer knowledge from.  
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• Knowledge: the concepts of information and knowledge are often used 
interchangeably. However, it is possible to establish some essential 
differences between these two concepts. A number of authors focus on 
the inclusion of (personalized) meaning as the defining difference. For 
instance, Van der Spek and Spijkervet (1997) state that “knowledge is 
what enables people to assign meaning and thereby generate 
information”. Tuomi (1999) maintains that “information, in turn, becomes 
knowledge when it is interpreted, put into context, or when meaning is 
added to it”. Wiig (1997) defines knowledge as follows: “knowledge 
consists of truths and beliefs, perspectives and concepts, judgments and 
expectations, methodologies and know-how”. Finally, Alavi and Leidner 
(2001) state that “what is key to effectively distinguishing between 
information and knowledge is not found in the content, structure, 
accuracy or utility of the supposed information or knowledge. Rather, 
knowledge is information possessed in the mind of individuals”.  Alavi and 
Leidner (2001) furthermore maintain that only information that is actively 
processed in the mind of an individual or individual(s) is useful.  

The aspects of usability and applicability inform another dominant 
stream of definitions for knowledge. For instance, a hint of these aspects 
is included in the definition from Tuomi (1999) who states that “the 
general accepted view sees data as simple facts that become information 
as data is combined into meaningful structures, which subsequently 
become knowledge as meaningful information is put into a context and 
when it can be used to make predictions”. Usability and applicability are 
much more explicitly considered in the following definitions. First, 
Ouertani et al. (2011) focus solely on usability and applicability as defining 
aspects of knowledge over information: “Knowledge on the other hand is 
information with added details relating how it should be used or applied”. 
Nonaka (1994) uses the classic epistemological definition of knowledge 
and adds a consideration regarding usability by defining knowledge as “a 
justified true belief that increases an entity's capacity for effective 
action”. Ameri and Dutta (2005) see knowledge as “evaluated and 
organized information that can be used purposefully in a problem solving 
process”. Gielingh (2005) maintains that “Knowledge is a structure of 
associations between memorized experiences that enables a human being 
to perform a task”. Schreiber et al. (1999) state that “knowledge is the 
whole body of data and information that people bring to bear to practical 
use in action”, where “knowledge adds two distinct aspects: first a sense 
of purpose…second, a generative capability”.  
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Besides defining the concepts and hierarchical interpretation of data, information 
and knowledge, there is another major perspective on knowledge that will be 
considered within the context of this thesis: knowledge taxonomies. A significant 
number of knowledge taxonomies exist (Alavi and Leidner, 2001); the most 
relevant of these are discussed.  

Hicks et al. (2002) distinguish between two fundamental elements of 
knowledge: the object and the process. The view of knowledge as an object is 
relatively common-place and sees knowledge as a thing that can be stored and 
manipulated (McQueen, 1998; Alavi and Leidner, 2001). Knowledge elements are 
inferred from information elements using knowledge processes. A knowledge 
process is “the procedure(s) utilised by the individual to infer the knowledge 
element from information, other knowledge elements or a combination of each. 
These knowledge processes are generally within-person processes”. The concept 
of a knowledge process  is further deepened by Nonaka et al. (2000), who posit 
the SECI (Socialisation, Externalisation, Combination, Internalization) model to 
describe the creation of knowledge. The SECI model is built upon the realization 
that knowledge can be created and transferred by the interaction between two 
types of knowledge: tacit and explicit knowledge. 

These dimensions are the constituent parts of another fundamental 
knowledge taxonomy, which distinguishes between the tacit and explicit 
dimensions of knowledge (Polanyi, 1966; Nonaka, 1994). The tacit dimension of 
knowledge, also called tacit knowledge in short, is comprised of a cognitive 
element, which refers to an “individual’s mental models consisting of mental 
maps, beliefs, paradigms, and viewpoints” (Nonaka, 1994; Alavi and Leidner, 
2001) and a technical element, consisting of “concrete know-how, crafts, and 
skills that apply to a specific context”(Nonaka, 1994; Alavi and Leidner, 2001).  The 
explicit dimension of knowledge, also simply termed explicit knowledge, is 
defined as being “articulated, codified, and communicated in symbolic form 
and/or natural language” (Nonaka, 1994; Alavi and Leidner, 2001). The explicit 
dimension is much more suitable for storing and manipulating of knowledge, and 
as such relates closely to the view of knowledge as an object. Explicit knowledge is 
an essential part of the scope of this dissertation (see Section 1.2.1.1), whereas 
tacit knowledge plays a secondary role in the case studies. 
 
Based on the preceding discussion, throughout this dissertation the following 
definitions for data, information and knowledge are used: 

• Data: data is considered to represent an occurrence of a measure, such as 
a quantity, which represents an observation and/or fact. 

• Information: data within a structured context: a combination of 
predicate(s) or value(s) that hold the measure(s), and contextual 
descriptor(s) that enable structural representation. 
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• Knowledge: processed information resulting in a capability for effective 
action. 

 
Figure 2.1 illustrates these concepts and their interactions. The transformations 
from data to information to knowledge and vice versa are shown, as well as the 
ultimate result of the application of knowledge: an action. Actions can in turn 
generate new data, information and knowledge. 

 

 
Figure 2.1: Data, information and knowledge transformation processes (adapted from 

Hicks et al. (2002))  
 
This definition of knowledge can be extended to define knowledge change: 
 
Knowledge change: change in knowledge over time, where knowledge is defined 
as processed information with a capability for effective action.  
 
Change as a concept incorporates not only an alternation of an existing element, 
but also includes addition or exclusion of an element and its constituent parts.  
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Change of knowledge can be typified from simple to complex, associated with the 
data-information-knowledge hierarchy. For simple change (data change), the 
values associated with knowledge elements alter from time t1 to time t2. Attribute 
values may change as well as values used in rules or predicates. A more involved 
form of change is associated with information (information change): the 
structured context of a knowledge element changes. The type, number and 
applicability of relations for a specific knowledge element may vary over time. 
Finally, on a knowledge level, the capability for effective action associated with a 
knowledge element can change (knowledge change). This can be caused by 
changes in rules (change, addition or exclusion of antecedents and/or 
consequents), logic (change / revision, addition or invalidation / exclusion of 
propositions or predicates) or attribute sets (change, addition or exclusion of 
attributes), depending on the formalism chosen to represent knowledge. 
Knowledge change may close or open options to achieve effective actions.  
To illustrate the various types of change, a short example is discussed. The 
example considers a simple engineering task: selection of a material based on 
requirements relative to material properties and cost. A diagram is shown in 
Figure 2.2 to explain this task and the constituent data, information and 
knowledge. In this Figure, one sees three classes: Material, Metal_Material and 
Material_Requirements. The first class (Material) has attributes* E_modulus, 
G_modulus and Cost, representing Young’s modulus E (in GigaPascal, GPa), the 
shear modulus G (GPa) and a hypothetical cost C in dollars per m3 of material. The 
Metal_Material class is a subclass of Material and inherits the attributes. The 
Material_Requirements class has attributes to express the requirements on the 
material attributes: Required_E_modulus, Required_G_modulus, Required_Cost. In 
addition to the classes, two objects have been instantiated to represent two 
different metal alloys: Al2024T3 (aluminium alloy) and Ti6A14V (titanium alloy). 
The mechanical properties are taken from Baker et al. (2004). The cost figures are 
hypothetical. Another object has been instantiated to represent requirements for 
the material selection. A final element, which is not represented in the Figure, is 
the rule (set) that can be used to select a material that meets the requirements. In 
natural language, this can be expressed in the following way: if the E_modulus of 
a material is larger than the required E_modulus and if the G_modulus is larger 
than the required G_modulus and if the material cost is lower than the required 
material cost, then select the material with the lowest cost. If any of the 
requirements is violated, the material is rejected for selection outright. If multiple 
materials meet the requirements, a simple method can be written to select the 

                                                           
* Note that the class attributes can be considered to be highly incomplete for a true 
representation of material properties; a limited number of properties is included as the 
objective of the example is to illustrate the types of knowledge change that may occur. 
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material with the lowest cost. A more formal notation of the selection rule is 
given in Table 2.1. 

 

 
Figure 2.2: Selection of a material – baseline state  

 
Consider Figure 2.3, which shows a change in state with respect to the baseline. 
Numerous changes have been incorporated; these are highlighted in red.  

 

 
Figure 2.3: Selection of a material – changed state 
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Table 2.1 summarizes the type of changes that have been incorporated. These 
changes are consistent with the definitions for the types of change given above:  

 
• Data change is represented by a change in attribute value for an object 

(CTi6A14V): the outcome of selection  may change entirely, but the change 
itself is simple; 

• Information change is represented by a change in structured context 
(additional class Composite_Material and associated parent-child 
relation, as well as an additional boolean property isotropic_material as 
this drives material properties), leading to a new option for a material 
that can meet the given requirements; 

• Knowledge change is represented by a change in the E_modulus 
attribute, which has been split up into a longitudinal E-modulus E1 and 
transversal E-modulus E2 to enable the representation of the anisotropic 
material properties of composite materials – the knowledge is revised. 
The rule associated with the selection of a material has changed 
accordingly to include antecedent criteria with respect to E1 and E2. In 
addition, a rule is added to decompose the properties of isotropic 
materials into longitudinal and transversal representation – knowledge is 
expanded. 
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Table 2.1: Examples of data, information and knowledge change and implications 

Type of 
change 

Original state Changed state Outcome 

Data 
change 

CTi6A14V = 200 CTi6A14V = 80 Ti6A14V† 

Information 
change 

Al2024-T3 
Ti6A14V 

Al2024-T3 
Ti6A14V 

High-Modulus (HM) Carbon Fibre 
composite 

HM CF 

Knowledge 
change 

(revision) 

IF 

 )()( reqGmatGreqEmatE ≥∧≥  

)( reqCmatC ≤∧  

THEN 

))min(( CMatSelect  

ELSE IF 

)()( reqGmatGreqEmatE ≤∨≤  

)( reqCmatC ≥∨  

THEN 
)(Matreject  

 

IF 

),2,2(),1,1( reqEmatEreqEmatE ≥∧≥

 

)(),12,12( reqCmatCreqGmatG ≤∧≥∧

 
THEN 

))min(( CMatSelect  

ELSE IF 

),2,2(),1,1( reqEmatEreqEmatE ≤∧≤

 

)(),12,12( reqCmatCreqGmatG ≥∧≤∧

 
THEN 

)(Matreject  

HM CF 

Knowledge 
change 

(expansion) 
- 

IF 
TruematerialIsotropic =_  

THEN 

mat
E

mat
EmatE

,2,1
==  

 

EAl2024T3 = 
E1,Al2024T3 = 
E2,Al2024T3 = 
 
ETi6A14V = 
E1,Ti6A14V = 
E2,Ti6A14V 

 
The use of the terms revision and expansion for knowledge change is not 
coincidental. These terms are co-opted from literature on belief revision (Doyle, 
1979; Martins and Shapiro, 1988; Kern-Isberner, 2004), which uses logic as a basis 
to specify theorems and proofs for revising knowledge base content given the 
introduction of new and possibly contradicting beliefs (Martins and Shapiro, 
1988). In the case of conventional reasoning, monotonicity applies: 'beliefs are 
true, truths never change, so the only action of reasoning is to augment the set of 

                                                           
† If data change is the only change that occurs, selection of Ti6A14V is the logical outcome 
as only the two metals are considered. If information and/or knowledge change occurs, 
the selection outcome will of course be different. 
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beliefs with more beliefs' (Doyle, 1979). To enable revision of beliefs, non-
monotonic logic must be considered. Non-monotological systems are 'logics in 
which the introduction of new axioms can invalidate old theorems' (McDermott 
and Doyle, 1980). To enable belief revision, several types of truth maintenance 
systems or TMS (also referred to as belief revision systems) have been developed 
(Doyle, 1979; de Kleer, 1986; Martins, 1990).  

TMS incorporating non-monotonic logic are typically expressed using 
propositional or predicate logic formalisms (Martins and Shapiro, 1988; Katsuno 
and Mendelzon, 1991). As such, with respect to the issue of knowledge change, 
any knowledge base that uses such formalisms might be evaluated for change. 
This could conceivably be achieved by using propositional or predicate logic to 
represent knowledge elements in a knowledge base application, and subsequently 
test knowledge base use over time. However, to the best of the author’s 
knowledge, empirical studies to perform quantification of knowledge change 
using truth maintenance systems have never been performed. A possible 
explanation is that knowledge bases tend to be expressed either in informal, rule-
based (IF-THEN) or frame-based ways (La Rocca, 2012).  
 
To summarize, the concept of knowledge has been defined using the data-
information-knowledge hierarchy. Subsequently, various modes of change have 
been discussed, culminating in knowledge change. With respect to the latter, a 
shortcoming of current literature is a lack of quantification of knowledge change. 
This finding is further considered in Sections 2.2.3.1 and 2.3. 

As a result of this consideration of knowledge change, a contribution to 
theory is developed in Section 3.1 relative to conceptual modelling of the lifecycle 
of knowledge. This enables characterisation and quantification of knowledge 
change. In the case studies (Sections 4-6), this contribution to theory is validated 
through qualitative and quantitative means, which is explained in more detail in 
Section 3.5. 

2.2 State of the Art and Challenges for Knowledge 
Perspectives along the Product Lifecycle 

As noted in the introduction, the product lifecycle – and more specifically, the 
aircraft lifecycle – is an essential part of the scope of this thesis. As such, this 
concept will first be briefly defined. The product lifecycle has been discussed 
extensively in literature (e.g. Aitken et al. (2003), Brissaud and Tichkiewitch 
(2001), Krozer (2008) and Thimm et al. (2006)). Broadly speaking, two notions 
regarding the product lifecycle exist: a market-oriented, commodity view of the 
product lifecycle (Aitken et al., 2003) and a more process-oriented lifecycle view 
(Brissaud and Tichkiewitch, 2001; Thimm et al., 2006; Krozer, 2008). The first 
notion of a product lifecycle typically contains product introduction, growth, 
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maturity, saturation and decline as major stages, with some minor variants. The 
second conceptualization of the product lifecycle is process-oriented. This view is 
of primary interest within the scope of this thesis and can be defined as follows: 

 
• Product design: the first phase in the product lifecycle, product design is 

about the development of a product that has to meet desired needs. As 
such, it encompasses the creation and analysis of the (geometric) 
description of a thing to be built (Raymer, 2006), based upon the inputs of 
customers in the form of requirements, physical or stakeholder 
constraints and supported by analysis of performance and functionality. 
Product design typically relies on and synthesizes knowledge from various 
analytical disciplines. For instance, in aerospace design, disciplines such as 
aerodynamics, structures, controls and propulsion all feed into the design 
process. In aerospace, the product design phase is typically broken down 
in three major phases (Raymer, 2006): conceptual design (characterised 
by a large number of design alternatives and trade studies, and a 
continuous change to the aircraft concepts under consideration), 
preliminary design (characterized by a maturation of the selected design 
approach) and detail design (characterized by a large number of designers 
preparing detailed drawings with actual fabrication geometries and 
dimensions). The design phase can encompass the production of 
prototypes and subsequent testing. 

• Product manufacturing: following the finalized design of the product, it 
will have to be produced. Manufacturing is about the transformation of 
raw materials into a finished product (Mazumdar, 2002), based on the 
product design specifications. Typically, production or manufacturing of a 
product is preceded by the design of the manufacturing system, followed 
by production planning, pilot-scale production, full-scale production, 
inspection of completed products, and finally distribution towards the 
customer. Manufacturing processes can be characterised in multiple 
ways, for instance by production rate, cost, performance, size and shape 
(Mazumdar, 2002). 

• Product operation: Product operation refers to the actual use of a 
product. In the aerospace sector, this essentially comes down to flying an 
aircraft for its intended purpose, be it passenger or cargo transport, or 
military operations, or any other function. Though aircraft operators are 
often identified with large airline companies such as Air France-KLM, 
operators can be individuals, government branches, charter companies, 
and others.  

• Product support: to ensure the proper functioning of a product, it is often 
necessary to support it during its operational life. This can include 
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maintenance and repair of a product to prevent or fix any operational 
issues and to keep it in regular working order (i.e. a state in which it can 
perform its required function (European Federation of National 
Maintenance Societies, 2011)). In the aerospace sector, product support is 
typically known as Maintenance, Repair and Overhaul (MRO) and can be 
considered as a subsidiary stage in aircraft operations. MRO encompasses 
all forms of maintenance (corrective, preventive and predictive (Jun et al., 
2007)), consequently encapsulating both scheduled and unscheduled 
forms of maintenance and repair.  

• Product disposal: at end of life, a product enters the disposal stage in 
which it can either be (partially) re-used, remanufactured or recycled (Jun 
et al., 2007) – for instance by adherence with the Cradle-to-Cradle 
philosophy (McDonough and Braungart, 2002) – or in which it is reduced 
to waste. In the aerospace sector, aircraft disposal comes in different 
guises: selling an aircraft to another operator (frequently in developing 
countries), handing the aircraft back to the lease company, storing an 
aircraft for future use  or dismantling an aircraft while retaining useful 
parts for future use as part of the spare parts pool.  

 
A number of minor variants for this process-oriented lifecycle perspective can 

be identified, such as the separation of market requirements and 
conceptualization prior to the product design stage (Thimm et al., 2006), and raw 
materials supply as a separate stage rather than contributing elements in the 
manufacturing stage (Thimm et al., 2006; Krozer, 2008).  

 

 
Figure 2.4: Product lifecycle stages (adapted from Jun et al. (2007)) 

 
Figure 2.4 shows an alternative classification frequently used in research, 

which identifies a beginning-of-life (BOL) stage including design and production, a 
middle-of-life (MOL) stage including logistics, use, service and maintenance, and 
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an end-of-life (EOL) stage, including reverse logistics, remanufacturing, reuse, 
recycle and disposal (Jun et al., 2007).  

For the remainder of this section, the specific focus is on knowledge 
engineering through product life. The previously introduced data-information-
knowledge hierarchy will be extended across the product lifecycle as a structure 
or guide for the subsequent discussion of three specific research domains: 
Product Data Management (PDM), Product Lifecycle Management (PLM) and 
Knowledge Management, the latter of which comprises several knowledge-
related fields of study. Figure 2.5 shows the application of this thought. First, data 
through product life is encapsulated in Product Data Management (PDM). 
Information through product life is considered within the field of Product Lifecycle 
Management (PLM) and knowledge through product life is connected with 
Knowledge Management. Each of these domains is discussed in terms of the 
state-of-the-art (historical roots, definition, functionality and benefits) and 
shortcomings.  

 

 
Figure 2.5: Research domains of interest 

2.2.1 Data through Product Life: Product Data Management 

With the advent of computer-based engineering tools such as Computer Aided 
Design (CAD), Computer Aided Manufacturing (CAM) and Computer Aided 
Engineering (CAE) in the early 1980s, large corporations were faced with some 
pressing issues: how would they manage their data digitally instead of on paper? 
How would data from many – often disparate – sources be managed? And given 
the contention that data can change dynamically over the lifecycle (Simon et al., 
2001), how should data be managed over the lifecycle of a product? To tackle 
these challenges, large corporations in the early 1980s developed their own data 
management solutions (Liu and Xu, 2001). In the meantime, a research 
community coalesced around the extension of existing techniques such as 
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engineering data management (EDM), document management, product 
information management (PIM) and technical data management (TDM) into a 
new field of research: Product Data Management (PDM), a “common term, 
encompassing all systems that are used to manage product information” 
(Philpotts, 1996). In the late 1980s, the first generation of commercial PDM 
systems had arrived (Liu and Xu, 2001).  

PDM can be defined as a set of tools that help engineers in managing the 
data and the processes related to the product development life cycle (Philpotts, 
1996; Bilgic and Rock, 1997). As such, its main focus is on the design and 
manufacturing stages of the product life cycle. However, as Liu and Xu (2001) 
note, PDM can also be extended to end-user support, in effect increasing its range 
towards the operation and product support stages of the product lifecycle. A 
number of substantial benefits are claimed for PDM systems, including 
interdisciplinary collaboration, reduced product development time, reduced 
complexity of accessing information, improved project management and 
improved lifecycle design (Liu and Xu, 2001), as well as access to the most up to 
date information and productivity gains (Philpotts, 1996).  

To achieve the promised functionality and benefits, PDM systems are 
typically comprised of three elements: an electronic vault or data repository, a set 
of user functions and a set of utility functions (Philpotts, 1996). The electronic 
vault contains product data (such as specifications, CAD models, CAE data, and 
maintenance records) and meta-data to support PDM system functionality. Meta-
data is included to store information about product data by descriptive attributes 
such that changes, release levels, authorizations and other data controls can be 
tracked and audited. Furthermore, the inclusion of meta-data (i.e., data about 
data, such as authorship, time of creation, etc.) can also be used to create 
relationships among product data such that data context can be created, which is 
an important step towards the creation of information. The user functions provide 
the interface to PDM functionalities such as data storage, retrieval and 
management. Important user functions are document management, product 
structure management (in which product data is organized and stored), workflow 
and process management (which assists in sending the right available data at the 
right time to the right user), classification of data by attributes, and programme 
management (Philpotts, 1996; Eynard et al., 2006). Finally, utility functions are the 
third essential part of PDM systems: these provide the interface with the 
operating environment. Examples include communication and notification, data 
transport and translation, and image services. A more involved discussion of PDM, 
as well as a comparison of commercial PDM systems on a range of functionalities, 
is available in Bilgic and Rock (1997).  

Years of research work and commercial use have brought to light a number of 
shortcomings and associated research issues. A number of significant issues flow 
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from the roots from which PDM systems grew: representation on 'only' a data 
level for engineering information (Ameri and Dutta, 2005), limited to the 
management of engineering documents for the design and manufacturing 
domains. As Bilgic and Rock (1997) note, PDM systems suffer from ambiguous 
product representation. These systems are adept at representing the engineering 
bill of materials (EBOM) and manufacturing bill of materials (MBOM), but typically 
lack the facilities to represent context and usability; in particular, function, 
behaviour, requirements and geometric representations are buried within the 
documents that are managed in the electronic vault. As Philpotts (1996) as well as 
Bilgic and Rock (1997) note, in the middle of the 1990’s PDM systems were 
typically not compliant with the emerging ISO 10303 Standard for the Exchange of 
Product model data (STEP), so though life cycle functionality was promised, a 
standard mechanism to achieve lifecycle functionality was lacking. According to 
Bilgic and Rock (1997), the ambiguity in product representation resulted in more 
shortcomings of PDM systems: the lack of a possibility to perform analysis on the 
impact of proposed design changes, a deficiency in representing and classifying 
function and behaviour (what the components in the product breakdown 
structure are actually for and how they are used and reasoned upon) and a lack of 
reuse of design knowledge. Similar points are made by Maropoulos (2003), who 
notes that “current [PDM] systems offer good capabilities in data management 
and workflow coordination, whilst they offer very little support in the critical area 
of knowledge management and representation”; in particular, the management 
of process knowledge is marked as an area requiring intensive research.  

To summarize, PDM faces the following shortcomings: 
• Representation limited to the data level; very little support for knowledge 

management and representation 
• Representation lacks context and usability 
• Lack of engineering analysis due to proposed design changes, lack of 

representation and classification of function and behaviour and a lack of 
reuse of design knowledge 
 

During the late 1990s and early 2000s (Liu and Xu, 2001), the combination of 
these research challenges and the natural evolution of PDM systems led towards 
the subsequent development of the field of Product Lifecycle Management, or 
PLM (Abramovici, 2007; Brandt et al., 2008). PLM aims at defining a holistic, 
contextualised view of the product and associated processes, and thus takes a 
step up from the data level towards the information level.  

2.2.2 Information through Product Life: Product Lifecycle Management 

The concept of Product Life Cycle Management (PLM) appeared in the 1990s with 
the “aim of moving beyond engineering aspects of a product and providing a 
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shared platform for the creation, organization and dissemination of product 
related information across the extended enterprise” (Ameri and Dutta, 2005). It is 
generally noted that PLM has its roots in PDM and CAD technology (Ameri and 
Dutta, 2005; Lee et al., 2008), but PLM broadens the scope to include elements of 
the extended enterprise such as the supply chain, sales and marketing and 
eventually customers. As such, another root branch of technologies for PLM 
(Amodio et al., 2008; Brandt et al., 2008; Lee et al., 2008) comes from enterprise 
management systems (e.g. systems for Enterprise Resource Planning (ERP), Supply 
Chain Management (SCM), Customer Relationship Management (CRM)).  

Based on existing PLM literature (Kiritsis et al., 2003; Ameri and Dutta, 2005; 
Främling and Rabe, 2005; Thimm et al., 2006; Abramovici, 2007; Jun et al., 2007; 
Bermell-Garcia and Fan, 2008; Wognum and Trappey, 2008)), the following PLM 
definition can be aggregated: an integrated approach using a consistent set of 
methods, models and IT tools to connect product stakeholders for management of 
product information, engineering processes and applications over the entire 
lifecycle of a product, from concept to retirement. As such, PLM sets itself apart 
from its progenitors, and in particular PDM, by focusing on the entire lifecycle of a  
product (Ameri and Dutta, 2005; Abramovici, 2007; Jun et al., 2007), 
“commencing with market requirements through to disposal and recycling” 
(Thimm et al., 2006). As a consequence, PLM also aims at connecting various 
stakeholders over the product lifecycle (Ameri and Dutta, 2005; Bermell-Garcia 
and Fan, 2008; Lee et al., 2008). PLM promises benefits with regard to product 
information dissemination and sharing along the lifecycle of a product, including 
the maintenance and end-of-life phases, where employees and organisations can 
benefit from more complete, up-to-date information. This is particularly 
important for industries where products have a long life span, such as the 
aerospace industry, where it is important to “compile a complete record of 
maintenance events involving each part, for safety, warranty, especially given 
multiple owners and upgrades/repairs” (Främling and Rabe, 2005) given the role 
of these records in airworthiness compliance. Under the guise of 'closed-loop 
PLM', multiple feedback loops are envisioned from the later stages of a product’s 
life towards designers and producers, who can for instance derive information 
about modes of use and conditions for retirement (Kiritsis et al., 2003).  Figure 2.6 
shows the information flows that can occur through product life. Feed-forward 
relations can be distinguished between beginning-of-life stages, middle-of-life 
stages and end-of-life stages. To give a practical example for aircraft, product 
specifications (design stage) are compiled into maintenance manuals (product 
support stage). There are also feedback information flows, such as product usage 
and failure information being shared with the Original Equipment Manufacturer 
(OEM). Often, these feedback flows are indirect in nature – information passes 
through various stakeholders and platforms before ending up at the OEM.  
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Figure 2.6: Information flows through product life (Jun et al., 2007) 

 
 Through the facilitation of information flows between various stages of the 

product life (e.g. from maintenance to design) , PLM is an enabler for the 'Design 
for X' approach (Van der Laan, 2008). Other beneficial effects are claimed for PLM, 
for instance reduced time to market, improved communication among 
departments and increased success rate of newly introduced products (Lee et al., 
2008), but these claims are not substantiated. 

Given its wide definition and scope, it is difficult to accurately identify the 
common functional elements in PLM systems. In practice, PLM often contains a 
database management system with a centrally controlled data vault in which 
product information, including models and supporting documentation, can be 
accessed, managed, maintained and used (Abramovici, 2007; Amodio et al., 
2008). Typically, PLM includes an integrated data and process metamodel 
(Abramovici, 2007) that allows for persistent definition and integrity of product 
information through product life (Lee and Suh, 2008). It is through this 
contextualization, as expressed in the integrated data and process metamodel, 
that PLM moves beyond the data level and towards the information level. To get 
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there, PLM requires a solid understanding of the semantic (meaningful) and 
structural characteristics of product lifecycle information, enabling a classification 
of concepts and relationships which in turn results in a contextual information 
model or set of models. A critical part of this effort is the identification of the 
correct product lifecycle metadata for storage during product life. To 
subsequently use this metadata, methods for the retrieval and analysis of 
information from lifecycle metadata are in development (Sudarsan et al., 2005; 
Tomasella et al., 2006; Jun et al., 2007; Matsokis, 2010; Matsokis and Kiritsis, 
2010).  

Despite progress made over the last decade, PLM still faces significant 
research challenges. First, contrary to the intended scope of PLM, its adoption is 
still mainly limited to the product design lifecycle phase, as indicated by 
Abramovici (2007). This is backed up by Figure 2.7, which shows the use of PDM 
and PLM throughout the product lifecycle, normalized at 100% for the product 
design phase. In particular, adoption in the production (18%), delivery (8%) and 
service (11%) phases is quite low.  

 

 
Figure 2.7: Use of PDM and PLM throughout the product lifecycle (Lee et al., 2008)  

 
One can speculate that the limited adoption is due to the PDM and CAD roots 

of PLM: these technologies originated in and are primarily used in product design, 
leading to low adoption in the later lifecycle phases. Another factor in the lack of 
PLM adoption may be a lack of formal modelling techniques and supporting 
computer languages, as identified by a 2006 survey under PLM experts (Thimm et 
al., 2006). To alleviate this, research is being undertaken to explore the 
applicability of different formal modelling techniques and languages as contained 
in ISO10303 STEP AP 239 - Life Cycle Support (Peak et al., 2004), the Unified 
Modelling Language (UML) and extensions thereof (Peak et al., 2004; Thimm et 
al., 2006; Tomasella et al., 2006), as well as ontological modelling (Amodio et al., 
2008; Usman et al., 2011), for instance using the Web Ontology Language 
(OWL)(Matsokis and Kiritsis, 2010). Other authors mention a lack of (model) 
interoperability (Amodio et al., 2008; Matsokis and Kiritsis, 2010; Ouertani et al., 
2011) and a lack of attention to (semantic) structuring of lifecycle information (Jun 
et al., 2007); a “lack of explicit semantics and context in the information content 
to be shared across PLM is a major problem” (Ouertani et al., 2011), and “much of 
the knowledge [sic] is available only in non-structured form” (Amodio et al., 
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2008). As a result, the traceability of information across different lifecycle phases 
is limited, where traceability can be defined as 'the ability to describe and follow 
the life of a conceptual or physical artefact' (Mohan and Ramesh, 2007). Limited 
traceability leads to limited visibility of product information in middle- and end-of-
life lifecycle phases, which makes it more difficult to close the PLM loop from 
those phases back to the design of new products. Finally, a significant challenge 
for PLM is to move towards 'smart' systems instead of 'dumb' systems. Currently, 
information is stored in PLM systems, but the aspect of usability (offering a 
capability for effective action) is often not addressed.    

To summarize, shortcomings with respect to PLM state-of-the-art are: 
• Limited adoption beyond the design lifecycle phase 
• Lack of formal modelling techniques and supporting computer languages 
• Lack of interoperability, explicit semantics and context, and consequently 

traceability 
• Lack of consideration of usability of information  
 
In recent years, research work on PLM has considered the integration of 

knowledge within PLM systems, for instance as a direct part of PLM systems (as 
expressed in the European PROMISE project (Bufardi et al., 2005; Främling and 
Rabe, 2005; Tomasella et al., 2006)), or by integration of Knowledge-Based 
Engineering (KBE) and PLM (Bermell-Garcia and Fan, 2008). In the following 
section, the state of the art regarding knowledge (systems) and product life will be 
considered.  

2.2.3 Knowledge through Product Life: Knowledge Management & 
Knowledge Engineering 

The study of knowledge through product life can be positioned in various ways. 
Here, the characterisation by La Rocca (2012) is adopted, as shown in Figure 2.8. 
This Figure shows the relative positioning of knowledge management (KM), 
knowledge engineering (KE) and knowledge-based engineering (KBE) together 
with associated knowledge technologies, as bullet-listed. KM is shown as the 
encompassing area, where 'the attention is on the overall goal of nurturing and 
supporting initiatives that can enable a more efficient and effective use of 
knowledge assets in the organisation' (La Rocca, 2012). KE is positioned as part of 
this area, where 'the emphasis is on the acquisition and codification of knowledge' 
(La Rocca, 2012). KBE focuses on 'the technical development of the KBE 
application' and can be seen as an extension of Knowledge-Based Systems (KBS) 
into the engineering design domain (La Rocca, 2012). 
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Figure 2.8: Positioning of knowledge disciplines (La Rocca, 2012) 

 
The following discussion follows this positioning. The field of Knowledge 
Management is discussed first, followed by Knowledge Engineering and 
Knowledge-Based Engineering. 

2.2.3.1 Knowledge Management 
From an organizational perspective, handling knowledge throughout product life 
falls within the scope of Knowledge Management (KM). Literature on KM is 
varied, but one can distil the following definition for KM: “a discipline that seeks 
to improve the performance of individuals and organizations by maintaining and 
leveraging the present and future value of knowledge assets” (Newman and 
Conrad, 2000). The objectives of KM are  to make knowledge visible and usable, to 
develop a 'knowledge-intensive culture' where knowledge is proactively shared, 
and to build a supporting knowledge infrastructure, including systems and people 
(Davenport and Prusak, 1998; Alavi and Leidner, 2001). Knowledge management 
can help organizations in various ways, such as retaining knowledge after loss of 
key staff and ensuring effective use of structured knowledge, which enables 
quicker identification, retrieval and leverage of existing company knowledge (Alavi 
and Leidner, 2001). According to Alavi and Leidner (2001), the basic processes 
involved in KM are creating, storing/retrieving, transferring and applying 
knowledge, though alternatives are posited, such as the “Building Blocks for KM” 
as discussed in Främling and Rabe (2005). 

An essential basic KM process is knowledge application, or utilisation, which 
relates to the “productive effort of organisational knowledge for the 
organization’s sake” (Främling and Rabe, 2005). In order for organizations to 
derive a capability for effective action – one of the hallmarks of knowledge – it is 
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vital to know how knowledge behaves and/or changes over time, so that this can 
be accommodated for in any subsequent knowledge-based application 
development for deployment in and across organizations, especially for product 
life cycle-oriented systems. In other words, a proper theoretical understanding of 
knowledge behaviour through life is required before one can consider 
management and application of knowledge in knowledge-based applications.  

Definitions of knowledge and knowledge change have been discussed at 
some length in Section 2.1. With respect to the product lifecycle, it is a 
straightforwardly accepted viewpoint in research that knowledge is created and 
used during a product lifecycle. This is embodied in the concept of lifecycle 
knowledge (Ameri and Dutta, 2005) and has been conceptualized into a 
knowledge lifecycle model based on the technology S-curve (Birkinshaw and 
Sheehan, 2002), in which knowledge is seen as a resource that is created, 
mobilized, diffused and subsequently commoditized. In particular, the creation of 
knowledge has received much attention (see e.g. Nonaka (1994), Nonaka et al. 
(2000), Davenport and Prusak (1998), Alavi and Leidner (2001)), as have the 
subsequent steps of knowledge capture and formalization (Oldham et al., 1998; Er 
and Dias, 2000; Stokes, 2001; Preston et al., 2005).  

Nevertheless, the aforementioned research efforts do not recognize that 
knowledge, as a self-contained element, has a lifecycle of its own. Knowledge can 
be created, used, maintained and retired (Siemieniuch and Sinclair, 2004). 
Knowledge change throughout product life as experience accumulates has been 
acknowledged – but no more than that – in knowledge management literature 
(Geddes and Armstrong, 1991; Nonaka, 1994; Schreiber et al., 1999; Alavi and 
Leidner, 2001; Simon et al., 2001; Stokes, 2001; Schorlemmer et al., 2002). The 
same phenomenon is also acknowledged and formally modelled in belief revision 
literature (Doyle, 1979; Katsuno and Mendelzon, 1991).  

However, none of these authors go beyond a qualitative assessment of the 
differences between static and dynamic knowledge. KM literature lacks a 
comprehensive model to understand the nature of knowledge and the behaviour 
of knowledge through life, i.e. knowledge change, is consequently not quantified. 
Siemieniuch and Sinclair (2004) and Newman and Conrad (2000) discuss some of 
the possible stages of knowledge. However, they fail to discuss explicit provisions 
for certain stages of the life cycle of knowledge, for instance formalization, 
maintenance and retirement, and do not consider transformations between 
lifecycle stages of knowledge. Theorems for reasoning about knowledge change 
have been posited as part of literature on belief revision and truth-maintenance 
systems (Doyle, 1979; de Kleer, 1986; Katsuno and Mendelzon, 1991), but to the 
best of the author’s knowledge the behaviour of knowledge over time has never 
been quantified using these theorems.  
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To conclude, one dominant shortcoming in KM literature can be identified: no 
single consistent model exists to characterise and measure knowledge change 
over its lifecycle, and consequently there are currently no means to quantify the 
behaviour of knowledge during product life.  

2.2.3.2 Knowledge Engineering: KBS & KBE 
The discipline of Knowledge Engineering (KE) focuses on the acquisition and 
codification of knowledge to support the development, implementation and 
maintenance of Knowledge-Based Systems (KBS) (Studer et al., 1998). KBS are 
systems that use an acquired and codified set of knowledge to offer problem-
solving advice (Expert Systems) or to solve problems directly. KBS are typically 
comprised of a structured knowledge base containing a body of domain 
knowledge next to acquisition mechanisms and reasoning mechanisms to solve 
the problems at hand (Studer et al., 1998). A user interface is provided to allow 
interaction with users.  

Over the past decades, a number of methodologies have been proposed to 
support the development of KBS, for instance CommonKADS (Common 
Knowledge Acquisition and Documentation Structuring) (Schreiber et al., 1999), 
MIKE (Model-based and Incremental Knowledge Engineering), and Protégé-II 
(Studer et al., 1998; Kuhn, 2010). Perhaps the most well-known of the 
development methodologies is CommonKADS (Schreiber et al., 1999), a 
methodology that aims to cover the entire life cycle of knowledge-based systems. 
CommonKADS comprises a set of models that capture the functional aspects of 
the KBS as well as the environment in which the KBS will operate (Studer et al., 
1998). In particular, the Knowledge Model is a core contribution of CommonKADS 
with respect to the formal modelling of KBS, as it offers a way of structuring and 
modelling the domain knowledge, inference structure and actions, and task 
decomposition (see also Chapter 3.3). 

Most knowledge-based systems using knowledge engineering methods and 
techniques are confronted by a number of challenges. From a design engineering 
perspective, the most notable shortcomings of KBS are that they lack a capability 
for geometry manipulation and data handling (La Rocca, 2011; La Rocca, 2012). 
Ideally, the KBS capabilities regarding knowledge capture, knowledge 
representation and reasoning would be merged with Computer-Aided Design 
(CAD) and Computer-Aided Analysis (CAA) capabilities to provide engineers with 
automated assistance in geometry manipulation and data processing. To achieve 
just this, Knowledge-Based Engineering (KBE) initiatives originated in the early 
1980’s.  

Knowledge-Based Engineering (KBE) can be seen as an extension of KBS into 
the design engineering domain, adding facilities for geometry manipulation and 
data handling capabilities (La Rocca, 2012). KBE is characterised by its language-
based, object-oriented approach. KBE systems are used as general purpose tools 
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to develop KBE applications through a programming approach using KBE 
programming languages. The defining characteristics of these languages are 
discussed in Cooper and La Rocca (2007) and La Rocca (2012). An important issue 
to note is that 'KBE applications show no crisp separation between knowledge and 
inference mechanism' (La Rocca, 2012), meaning that 'expanding, updating and 
maintaining a KBE application is not just adding or deleting rules from a list' (La 
Rocca, 2012). Consequently, proper documentation of KBE application code is 
paramount to avoid a black-box effect (also see below).  

 The objective of KBE is to reduce time and cost of product development, 
which is primarily achieved through automation of repetitive design tasks while 
capturing, retaining and re-using design knowledge (La Rocca and van Tooren, 
2009). Table 2.2 summarizes some KBE development efforts as an indication of 
the potential of KBE.  

 
Table 2.2: Summary of selected KBE development efforts 

 
 
To identify the research challenges currently faced by KBE, a critical review of 

existing KBE literature has been performed. For a detailed discussion, please refer 
to the associated publication (Verhagen et al., 2012).  Figure 2.9 summarizes the 
selection, classification and review process. The selection process has resulted in a 
consolidated review sample consisting of fifty research contributions. That sample 
has been reviewed once for the identification and classification of review criteria. 
These review criteria have been applied during a second review round. 
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Figure 2.9: Selection, classification and review process 

 
Five major shortcomings of KBE have been distilled from application of the review 
criteria to the review sample.  
 

1. Case-based, ad-hoc development of KBE applications: Development of 
KBE applications is still very much case based and happens on an ad-hoc 
basis (Sainter et al., 2000). This is confirmed by the wide-spread non-
adherence to KBE design methodologies. From the 37 papers within the 
sample describing case studies, 81 % (30 papers) did not explicitly adhere 
to a specific methodology. The practical impact of existing methodologies 
seems to be limited. The resulting case-based nature of KBE development 
is a significant problem. It can lead to knowledge loss due to poor 
modelling of the application and inadequacies in the used development 
language; it can cause knowledge misuse if the wrong kind of applications 
are developed; knowledge runs a danger of being under-utilized, due to 
an inability to share and re-use it at computer and human levels, and 
finally, maintenance costs will be higher due to non-standard 
development (Sainter et al., 2000). 

2. A tendency toward development of 'black-box' applications: Another 
finding of the review is that current KBE development has a tendency 
towards ‘black-box’ applications  – many applications (e.g. Choi et al. 
(2005); Kulon et al. (2006); Ko et al. (2007)) at best represent captured 
knowledge as context-less data and formulas. There is no explication of 
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formulas and the actual meaning and context of the captured knowledge, 
let alone provisions for capturing design intent.  

3. A lack of knowledge re-use: The previous review findings tie in closely 
with the difficulty of re-using knowledge in KBE applications.  Case-based 
black-box KBE applications do not particularly invite knowledge re-use. 
Knowledge re-use is further complicated by the difficulty of sharing 
knowledge across (KBE) applications and platforms; as Bermell-Garcia and 
Fan (2008) note, “using current data exchange standards, it is only 
possible to transfer an instance of the design (one state of the design), 
and not the knowledge embodied to generate it”.  

4. A failure to include a quantitative assessment of KBE costs and benefits: 
Most KBE research fails to quantitatively illustrate the advantages and 
costs of KBE. 25 out of 37 case studies (67%) do not mention the resulting 
time or cost advantages associated with KBE adoption, let alone the more 
sensitive information about KBE development cost. An example of a more 
systematic approach towards KBE quantification has been performed by 
Corallo et al. (2009), who use Activity Based Performance Measurement 
(ABPM) for cost-benefit assessment of KBE in new product development. 
Unfortunately, this quantification effort has been performed on a single 
case study, so validity, reliability and generalizability of the ABPM 
approach for KBE quantification are not known. 

5. A lack of a (quantitative) framework to identify and justify KBE 
development: A final KBE aspect that has not received much attention in 
literature is the assessment of KBE development opportunities. The 
MOKA handbook (Stokes, 2001) presents some qualitative criteria for 
identification and justification of KBE opportunities. Emberey et al. (2007) 
and Van der Elst (2007) use these and more criteria to assess whether a 
design task is suitable for KBE application development. The Adaptable 
Methodology for Automated Application Development (AMAAD) of Van 
der Velden et al. (2012) proposes a complexity analysis to ascertain the 
required level of automation for engineering tasks and associates this 
level with automation features. However, as the authors themselves note, 
this approach has significant room for improvement, both for the 
complexity analysis itself as for the addition of a quantitative analysis 
aspect (Van der Velden et al., 2012). Despite the mentioned initiatives, no 
solid framework or method using both qualitative and quantitative 
aspects is available to determine whether a design task, product or 
process is suitable to develop a KBE application for. This shortcoming 
reflects the point made in the previous section regarding the lack of a 
knowledge life cycle model, and associated quantification.  
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In the following section, the discussed research issues for data, information and 
knowledge through product life will be synthesized into a coherent set of research 
challenges that are subsequently related to the research objectives. 

2.3 Identification of Research Challenges 

Based on the discussion of related literature presented in Section 2.2, a number of 
research challenges can be identified from the shortcomings of the current state-
of-the-art. These challenges can be subdivided into a theoretical and a practical 
perspective. 
 
From the theoretical perspective, the central challenge to consider is related to 
the behaviour of knowledge over time. Is it static or does it change? In other 
words, does knowledge have a lifecycle of its own? As explained in Section 2.2.3, 
no existing literature goes beyond a qualitative assessment of the differences 
between static and dynamic knowledge. A comprehensive model to understand 
the nature of knowledge through life is lacking, and the behaviour of knowledge is 
consequently not quantified. To summarize, from the theoretical perspective a 
first challenge materialises with respect to knowledge:  

 
• Theoretical challenge: it is necessary to find out what knowledge 

precisely means in the context of the product lifecycle and to 
consequently model and quantify the behaviour of knowledge within 
product lifecycle stages. 

 
From a practical perspective, knowledge engineering approaches have 

primarily been adopted in the design phase of the product lifecycle, as embodied 
in the field of Knowledge-based Engineering (KBE) – see also Section 2.2.3.2. With 
respect to the product lifecycle, it is possible to discern a practical challenge for 
knowledge engineering that focuses on the role of knowledge within the 
development and implementation of knowledge-based applications:   

 
• Practical challenge: knowledge use and lifecycle management 

Knowledge, information and data are contained within knowledge-based 
applications, but these are very often difficult to access, study, directly 
use and maintain (McMahon et al., 2005). This would be no problem if 
knowledge is static, but too often knowledge is simply assumed to be 
static. For most knowledge-based applications, the usability and 
maintainability of knowledge is not guaranteed, which can lead to rapid 
obsolescence of these applications as knowledge and functionality 
become out-dated. As such, the following elements and associated issues 
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must be addressed to move towards more transparent, useable and life 
cycle-ready knowledge-based applications: 

• Maintainability of knowledge in knowledge-based applications: 
moving beyond black-box applications and ensuring 
transparency: As mentioned, a current drawback of many KBE 
applications is that they are ‘black-box’: the knowledge contained 
in the KBE applications is difficult to access and inspect, and is 
often embedded in the application code (Verhagen et al., 2012). 
To improve it is necessary to move beyond black-box processes 
and applications by supporting categorization, accessibility and 
traceability of knowledge, which opens up the potential for 
knowledge (re-)use (Markus, 2001; Verhagen et al., 2012). The 
associated necessity for increased transparency in knowledge-
based applications in general is a well-noted research issue 
(Sunnersjo et al., 2006; Fan and Bermell-Garcia, 2008; Elgh and 
Cederfeldt, 2010). To achieve transparency, knowledge included 
into knowledge-based applications should be substantiated: the 
underlying knowledge and supporting documentation for the 
knowledge-based application should be categorized and be 
directly accessible. Direct interfacing with knowledge 
management applications (Fan et al., 2002; Verhagen and Curran, 
2011) or PLM solutions (Ma and Liu, 2007; Bermell-Garcia and 
Fan, 2008; Fan and Bermell-Garcia, 2008) can be used to achieve 
this, and open up the opportunity to utilize knowledge-based 
applications from an enterprise context. To enable effective use 
and update of knowledge, the knowledge element(s) in 
applications should be formally structured using knowledge 
model(s) and metadata.  

• Usability of knowledge in knowledge-based applications: the 
following issues should be addressed to improve usability of 
knowledge in knowledge-based applications:  
 Task orientation: knowledge involves a capability for 

effective action. This capability can be met by explicitly 
associating sets of knowledge with functional tasks. 
Following from the shortcomings of PDM and PLM, 
representation of knowledge should allow for context and 
semantics. Effective action is determined by the 
completeness of the end result, and the time and 
resources necessary for achievement of that result. It is 
here that a knowledge-based approach may produce 
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benefits by reducing time and resources through 
automation of repetitive steps.  

 Expert / end user involvement: assuming that knowledge 
entities are often not static over time but are subject to 
change, it is necessary that experts and / or end users – 
the knowledge owners and “intrinsic components of the 
knowledge creation and utilization process” (Siemieniuch 
and Sinclair, 1999) – are actively involved in the 
management of knowledge embedded in knowledge-
based applications. The knowledge owners should not 
just serve as remote knowledge sources for the 
knowledge engineers to call upon when necessary. To be 
actively involved in knowledge management and 
application maintenance, users should derive a direct 
benefit from this effort without being burdened with too 
many tasks. From this perspective, effective and efficient 
personalization and codification of knowledge must be 
supported (McMahon et al., 2004): context and semantics 
of knowledge must be provided to guide users towards 
knowledge useful to them. End users must be able to 
identify, use, interact with and if necessary, update the 
relevant knowledge that they use in their daily workflow 
and specific context (Merali and Davies, 2001). This 
requires that a) knowledge is tied to engineering tasks, as 
noted in the previous point; b) knowledge is visible and 
directly accessible for end users to enable interaction – 
context and semantics must be provided. 

• Practical challenge: methodological approach to facilitate knowledge 
change management 
Assuming that knowledge change occurs, development of a methodology 
that takes this change into account is required. Given the previously 
mentioned lack of methodology adherence in knowledge-based 
application development, it is a questionable idea to develop a complex, 
full-fledged new methodology. To defuse this problem, any new 
methodology must be compatible to existing methodologies and keep 
complexity to a minimum.  

 
In a nutshell, the research challenges stem from the realization that it is currently 
impossible to straightforwardly characterize and measure knowledge change. If 
knowledge does change, from a practical perspective this must be managed –
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utilization and maintainability of knowledge take centre stage. A methodological 
approach to facilitate knowledge change management must be developed. 
 
The presented research challenges can be used in conjunction with the research 
objectives to present a well-founded rationale for research. In Table 2.3, the 
research objectives are revisited and related to specific research challenges. 
 

Table 2.3: Research objectives related to research challenges 
Research objective Associated research challenge(s) 
Knowledge lifecycle modelling Characterise, model and quantify the 

behaviour of knowledge within product life 
Ontology-based approach to support 
knowledge change 

Maintainability: 
- Moving beyond black-box KBS 
applications and ensuring transparency 
Usability: 
- Task orientation 
- Expert / end user involvement 

Methodology development Methodological approach to facilitate 
knowledge change management  

 
In the following Chapter, three contributions to theory are developed. These 
contributions address the introduced research challenges. 
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3 Theory Development 

This chapter is comprised of three parts that address the characterisation, 
quantification and implementation of knowledge change in knowledge-based 
applications. In this chapter, the three main research objectives are addressed: 

 
1) Knowledge life cycle modelling: Section 3.1 addresses the first research 

objective by focusing on the development of a conceptual model for the 
lifecycle of knowledge. 

2) Ontology-based approach to support knowledge change: The knowledge 
lifecycle model is an input for Section 3.2, in which an ontology is 
developed to facilitate knowledge change (management) in the 
development and use of knowledge-based applications. This ontology 
takes into account usability and maintainability aspects. 

3) Methodology development: Finally, Section 3.3 introduces a 
methodology to guide the development of knowledge-based applications 
that must cope with knowledge change. In doing so, the third research 
objective is accounted for. 

 
By addressing these research objectives and the associated research challenges, 
three main contributions to theory are realized. Table 3.1 relates the research 
challenges defined at the end of Chapter 2 with the research contributions made 
in this dissertation.  

 
Table 3.1: Research challenges related to research contributions 

Research challenge Research contribution 
Characterise, model and quantify the 
behaviour of knowledge within product life 

Conceptual knowledge lifecycle model 
(Section 3.1) 

Maintainability: 
- Moving beyond black-box KBS applications 
and ensuring transparency 
Usability: 
- Task orientation 
- Expert / end user involvement 

Ontology-based approach to support 
knowledge change: the Knowledge 
Lifecycle ontology (Section 3.2) 

Methodological approach to facilitate 
knowledge change management  

KNOMAD methodology (Section 3.3) 

 
The research contributions are discussed in Section 3.4. Subsequently, a case 

study approach is proposed to validate the research contributions.   
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3.1 A Conceptual Model for the Lifecycle of Knowledge 

This section describes an initial effort at modelling knowledge as a concept with 
its own lifecycle. It addresses the following questions within the context of the 
first research objective – knowledge life cycle modelling:  

• Which concepts and relationships are required to characterise the change 
of explicit knowledge within and throughout the aircraft lifecycle phases?  

3.1.1 State of the Art and Shortcomings of Knowledge Lifecycle 
research 

In Section 2.3, a challenge regarding knowledge within the context of the product 
lifecycle has been defined. After application of the research scope, the following 
challenge can be identified:  
 

• Theoretical challenge: it is necessary to find out what knowledge 
precisely means in the context of the aircraft lifecycle, and how the 
dynamic behaviour of knowledge within aircraft life can be modelled and 
quantified. 

 
As noted before, a comprehensive model to understand and quantify the 

behaviour of knowledge over time has not been developed before. There is not a 
lot of understanding regarding the 'life' of knowledge: When and how does it 
change? What are the states and transformations that are involved? To address 
these questions, relevant insights from literature are combined with original 
research to come up with a conceptual model of the knowledge life cycle. 

Most literature regarding the knowledge lifecycle focuses on the creation, 
sharing and application of knowledge from an organisational perspective; a 
knowledge lifecycle is seen as “a methodology or process that produces 
knowledge” (McElroy, 2003) or as a process of “how organisations generate, 
maintain and deploy a strategically correct stock of knowledge in order to create 
value” (Buckowitz and Williams, 1999). 

Some examples of these process-oriented (organisational) 'knowledge 
lifecycle' models are given in Table 3.2. Please note that the model stages are not 
horizontally equivalent.  
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Table 3.2: Process-oriented (organisational) knowledge lifecycle models (adapted from 

Maksimovic et al. (2011)) 

 KLCs in KM KLCs in KBE 

Models Buckowitz and 
Williams (1999) 

McElroy (2003) Stokes (2001) Rodriguez and Al-
Ashaab (2007) 

Stages Get Individual and 
group learning 

Identify 
 

Identify 
 

Use Knowledge 
claim 
formulation 

Justify 
 

Capture and 
standardize 
 

Learn Information 
acquisition 

Capture 
 

Represent 
 

Contribute Knowledge 
validation 

Formalise 
 

Implement 
 

Assess Knowledge 
integration 

Package 
 

Use 

Build & Sustain 
 

 Analyse  

Divest    

 
A significant drawback of these models is that they do not consider 

knowledge as an independent element that has a life of its own. However, some 
research efforts describe the conceptual elements of knowledge through life. In 
particular, Siemieniuch and Sinclair (2004) identify basic states of knowledge: it 
can be created, used, maintained and retired. Similarly, the General Knowledge 
Model devised by Newman and Conrad (2000) includes knowledge creation, 
knowledge retention and knowledge utilisation as key stages.  

Knowledge creation relates to “activities associated with the entry of new 
knowledge into the system, including knowledge development, discovery and 
capture” (Newman and Conrad, 2000). Knowledge retention covers “all activities 
that preserve knowledge and allow it to remain in the system once introduced, 
including maintaining the viability of knowledge within the system”. This point is 
strongly related to expansion, revision and reduction of belief sets, which is part 
of belief revision literature (Doyle, 1979; de Kleer, 1986; Martins and Shapiro, 
1988). Knowledge utilisation concerns the “activities and events connected with 
application of knowledge to business processes”.  

Most research into knowledge states has focused on the 'Create' state – how 
is knowledge created by individuals and organisations? In particular, the work of 
Nonaka (1994) on the SECI model has had a major influence on the research area. 
Nonaka (1994) maintains that knowledge is created through the conversion 
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between tacit and explicit knowledge. The SECI model describes the four modes 
of conversion between tacit and explicit knowledge: socialisation (from tacit to 
tacit knowledge – creating tacit knowledge through shared experience or 
interaction between individuals), externalisation (from tacit to explicit 
knowledge), commoditisation (creating explicit knowledge from explicit 
knowledge, for instance through sorting, adding, recategorizing or 
recontextualizing ) and internalisation (explicit knowledge into tacit knowledge).  

As an additional potential input for a knowledge lifecycle model, the MOKA 
methodology (Stokes, 2001) includes 'Capture' and 'Formalize' as steps within its 
KBE life cycle. Both steps are useful in conceptualizing the life of knowledge. The 
'Capture' step encapsulates the gathering of domain knowledge – both tacit and 
explicit knowledge – and structuring it by means of MOKA’s ICARE forms 
(Illustrations, Constraints, Activities, Rules, Entities). The relationships between 
these various forms of knowledge are modelled. The structured raw information 
forms the basis of MOKA’s Informal Model, which intends to make domain 
knowledge understandable for both the domain expert and the knowledge 
engineer. The subsequent step ('Formalize') uses the Informal Model to create a 
Formal Model: Unified Modelling Language (UML)-based product and process 
models of the domain knowledge that together are ready for implementation into 
a knowledge-based application. MOKA is supported by a few knowledge 
engineering tools, including PC-PACK (Epistemics). 

The exploration of knowledge lifecycle concepts can be further supplemented 
by looking at documentation management literature. This type of literature gives 
an idea of the progressive actions that can be taken with respect to codified, 
explicit knowledge. To enable the use, management and maintenance of 
documents, the possible statuses of a document can be categorized and 
described. Eynard et al. (2004) identify four possible document statuses in the 
context of an engineering process within a PDM implementation. The four are 'In 
progress', where data is currently modified and not useable for other activities; 
'Shared', where data is deemed sufficiently mature to be used as input for other 
activities; 'Released', where data is frozen and not further modified; and 
'Obsolete', where data cannot be used as input for an activity. A similar but 
slightly different categorization exists in the work of Gielingh (2005), who 
identifies the four categories of 'In work' (draft), 'Restricted' (review), 'Final' (use) 
and 'Revise' (maintenance).  

A final addition to the exploration of knowledge lifecycle concepts is found in 
belief revision literature. Three main kinds of belief kinds can be distinguished: 
expansion, revision and contraction (Gärdenfors, 2003). Expansion considers the 
inclusion of a new belief into a belief system. Revision deals with the inclusion of a 
new belief into a belief system, leading to deletion of some old beliefs in the 
system to retain consistency. Contraction considers the retraction of an old belief 
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from a system, which may lead to further retraction to maintain consistency in the 
belief system. 

Summarizing, Table 3.3 gives an overview of potential knowledge lifecycle 
states that can be used in defining a conceptual model for the knowledge 
lifecycle. Note that the model stages are not horizontally equivalent. These states 
will be revisited in Section 3.1.3. 

 
Table 3.3: Potential knowledge states 

 Knowledge literature Documentation management 
literature 

Belief revision 
literature 

Models Siemieniuch 
and Sinclair 

(2004) 

Newman and 
Conrad 
(2000) 

Eynard et al. 
(2004) 

Gielingh 
(2005) 

(Gärdenfors, 
2003) 

Stages Create Creation In progress In work (draft) 
 

Expansion 
 

Use Retention Shared Restricted 
(review) 
 

Revision 

Maintain Utilisation Released Final (use) 
 

Contraction 

Retire  Obsolete Revise 
(maintenance) 
 

 

 
Following upon the definition of knowledge change in Section 2.1, a number 

of knowledge lifecycle models and stages have been introduced in this section. 
The organisational lifecycle models do not consider knowledge as an element with 
a lifecycle of its own. Various authors from knowledge, documentation 
management and belief revision literature do offer stages to characterise 
knowledge change.     

However, a major shortcoming is that the state of the art does not go beyond 
a qualitative characterisation of knowledge change. The aim of the next sections is 
to identify requirements for a knowledge lifecycle model for quantification of 
knowledge change and subsequently define this model. 

3.1.2 Requirements on Definition of a Knowledge Lifecycle Model 

In positing a model for the lifecycle of knowledge itself, the shortcomings of 
previous models should ideally be avoided. Based on the discussion of existing 
research, the key guideline towards conceptualization of a knowledge lifecycle 
model is that knowledge should be viewed as an independent element that has a 
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lifecycle of its own and which must be measured. This is reflected in the following 
derived requirements for definition of a knowledge lifecycle model: 

 
Types of change (data, information and knowledge change): values associated 

with knowledge elements must be able to change, as well the structured context 
(type, number and applicability of relations), plus capability for effective action 
(identify and measure change in rules, logic or attributes) 

 
1) The model should reflect the nature of knowledge and 

knowledge change: in Section 2.1, knowledge and knowledge 
change have been defined. To reiterate, the definition of 
knowledge adopted here is processed information resulting in 
a capability for effective action. The associated types of 
change (data, information and knowledge change) must be 
able to be identified and measured. 

2) The model should centre on knowledge as an independent 
concept: it should be as free as possible of confounding 
factors. Organizational processes (e.g. justification of 
knowledge-based development) or implementation factors 
(e.g. technical specification of the knowledge base) are 
important from both academic and practical perspectives, but 
as the previous Section has shown, research has already 
performed into these issues. The main focus of the knowledge 
lifecycle model should be on knowledge itself. 

3) The model should be unambiguous: the concepts used in the 
model should be clearly and unambiguously defined. This is a 
necessary condition to enable understanding and application 
of the model. 

 
The ultimate objective of the model is to enable the measurement of 

knowledge change (see Section 2.3 and the introduction of Section 3.1). This is 
reflected in the following derived requirements: 

 
1) Be able to operationalize concepts into measures: to 

measure something, directly observable measures must 
either be defined directly in the model, or be definable from 
the concepts used in the model. In the latter case, the 
required operationalization must be straightforward and 
error-proof. This reflects on requirement 3) – the 
unambiguous definition of model concepts. 
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2) Be able to apply it across research domains and lifecycle 
phases: the model concepts must ideally be generalizable 
across research domains and lifecycle phases. This improves 
the power and applicability of the model.  The concepts must 
be sufficiently abstract to enable wide application.    

3.1.3 Research Contribution 1: Conceptual Knowledge Lifecycle Model 

To meet the stated requirements, the following concepts are used to construct a 
Knowledge Lifecycle Model: knowledge states and knowledge actions. States are 
an 'instantaneous description of an entity' (Umeda et al., 1990) and actions 
represent one or more (sequential) changes of states. In this, actions are 
analogous to behaviour as defined by Umeda et al. (1990). The use of states and 
actions can be seen as a potential starting point towards more involved modelling 
following the Function-Behaviour-State (FBS) framework. For now however, states 
and actions are sufficient to address the objectives of knowledge lifecycle 
definition and measurement, as embodied in the requirements posed previously.  
 

1. Knowledge states: the concept of knowledge states is a familiar feature in 
existing knowledge models, as shown in Table 3.3. Knowledge can be in 
several states along its lifecycle. From start to end of knowledge life, the 
states conceptualized here are creation, formalization, utilization, 
maintenance or update, and retirement. In the creation state, knowledge 
is being formed and has not been released for application. In the 
formalization state, the knowledge is codified and made ready for 
(shared) use. It encapsulates capture, structuring and modelling of 
knowledge, followed by implementation into a (knowledge-based) 
application. The formalization state addresses the processing of 
information inherent in the definition of knowledge. In the utilization 
state, knowledge is actively being used, for instance to solve design 
problems. The utilization state directly addresses the 'actionability' 
criterion for knowledge. During the utilization state of knowledge users 
may realise that the current iteration of the knowledge is insufficient, i.e. 
previous experience, new insights or additional learning may reveal that 
knowledge needs to be adjusted. In the maintenance state, data and 
information change are incorporated – values or context associated with 
knowledge elements may change. In the update state, knowledge change 
as well as data and information change is incorporated: values, context 
and rules, logic or attributes of a knowledge element may change: the 
capability for effective action is adjusted. This may also lead to renewed 
insights: new knowledge is created during the update stage. Finally, 
knowledge may become obsolete, out of date or superfluous. It then 



 

48 
 

enters its final state – retirement. This can for instance mean that 
knowledge is archived and stored for future reference, but it can also 
mean that knowledge is straightforwardly discarded.  

 
2. Knowledge actions: knowledge actions apply to situations where the 

element as a whole or its content and/or context is being acted upon. 
Actions can be used to describe the transitions between knowledge 
states. The following actions are present during the lifecycle, either as 
intermediates between consecutive knowledge states or as feedback 
loops: 

a. Create: during the 'create' action, an original idea or synthesis of 
existing ideas and associated data is formed into a new element 
of knowledge, with attendant context and content.  

b. Formalize: the 'formalize' action represents the codification of 
tacit and/or explicit knowledge into a formal structure and 
representation, e.g. in an application. 

c. Use: during the 'use' action, the knowledge element is deployed 
to for instance solve problems. This action can be identified, 
tracked and measured in knowledge-based applications. Through 
a check whether a knowledge element has been successfully 
applied, the effectiveness of knowledge application can be 
checked. Note that this does not reflect on the validity and 
reliability of knowledge application and the ensuing results. 

d. Maintain: as stated before, a knowledge element holds both 
context as well as content. As a consequence, two separate 
actions are identified in the lifecycle of a knowledge element that 
relate to this observation: 'maintain' and 'update'. The 'maintain' 
action relates to data and information changes: simple value 
changes and changes in context (relations) apply. For examples, 
see Table 2.1. The 'maintain' action moves a knowledge element 
into the 'Maintenance' state – it is of course possible for an 
element to again be used after this action.   

e. Update: the 'update' action is present when knowledge change 
applies, possibly in combination with data and information 
change. Rules, logic or attributes may change, possibly leading to 
a change in outcomes upon application of the updated knowledge 
element. The 'update' action moves a knowledge element into 
the 'Update' state, after which the element can feed back into 
use.   
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f. Retire: knowledge is declared invalid or out of date, and is 
subsequently removed from active use. It is possible for retired 
knowledge to become active again and be used. 

When operationalized, these knowledge actions leave 'fingerprints' during 
the actual life of a knowledge element. This makes it possible to identify 
and measure changes in knowledge. For instance, when a knowledge 
element is maintained in a knowledge base, its descriptors will be 
modified. Such changes can theoretically be tracked and measured.   

 
The resulting Knowledge Lifecycle Model is shown in Figure 3.1. This figure 
highlights the knowledge states and actions that map the transitions from one 
state to another.  

 
Figure 3.1: Knowledge Lifecycle Model with knowledge states and actions  

 
Given this dissertation’s definition of scope (Section 1.2.1.2), the conceptual 
model will not be tested in its entirety. Instead, the focus is on change in explicit 
knowledge during the aircraft lifecycle. Within this scope, priorities are to assess 
identification of knowledge change using the knowledge states and using the 
concept of knowledge actions to measure knowledge change. With the focus on 
explicit knowledge, the 'Creation' stage is left out of consideration in the 
dissertation. The result of this application of scope onto the Knowledge Lifecycle 
Model is shown through the bounded area in Figure 3.1. 

3.1.4 Concluding Remarks 

The requirements on the knowledge lifecycle model are addressed by knowledge 
states and actions in the following manner: 

 
1) The model should reflect the nature of knowledge and 

knowledge change:  
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The knowledge states Update and Maintain as well as the 
associated update and maintain actions explicitly 
acknowledge and are able to represent knowledge change. 

2) The model should centre on knowledge as an independent 
concept: the knowledge lifecycle model focuses on 
knowledge as the central conceptual element, with states and 
actions to describe its various representations. 

3) The model should be unambiguous: most of the knowledge 
states and actions are straightforward. A formal 
(mathematical) foundation for the model is to be developed. 

 
Knowledge actions enable the measurement of knowledge change, as 

addressed with respect to the following requirements: 
 

1) Be able to operationalize concepts into measures: 
knowledge actions can fairly easily be operationalised into 
measures, as evidenced in Section 6.2.2. 

2) Be able to apply it across research domains and lifecycle 
phases: The state and action concepts are sufficiently abstract 
to enable application in various aircraft lifecycle phases. 
Evidence for this is given in Chapters 4-6, where knowledge 
change is discussed for different lifecycle phases.  

 
The Knowledge Lifecycle Model uses the knowledge state and action concepts and 
relationships to characterise the change of explicit knowledge. This partly answers 
the research question as given in the introduction of Section 3.1. However, further 
questions remain regarding the change of knowledge within specific aircraft 
lifecycle phases and regarding the quantification of knowledge change. This is 
discussed in more detail in Section 3.4.1. 
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3.2 A Model-Based Approach to Support Knowledge Change: 
the Knowledge Lifecycle Ontology  

The Knowledge Lifecycle Model provides a means to characterise and quantify 
knowledge change. However, this is not enough. If knowledge does indeed 
change, what can be done to accommodate for this in knowledge-based 
applications? 

This Section addresses the second research objective expressed in Section 1.2 
by describing the development of a model-based approach for the support of 
knowledge change within knowledge-based applications for specific aircraft 
lifecycle phases. First, challenges related to knowledge-based application 
development are associated with requirements on the model-based approach. 
This approach must support the consistent formalization, use and maintenance of 
changing aircraft knowledge in its various lifecycles. To achieve this, the ontology 
concept is selected as the primary means to express the approach, as discussed in 
Section 3.2.1. Following this, three main elements are considered as inputs for the 
design of the ontology. These elements are synthesized in Section 3.2.3, where 
the ontology is designed and implemented. 

The following research questions are addressed throughout this section:  
• Which concepts support the consistent formalization, use and maintenance 

of changing knowledge throughout the aircraft lifecycle? 
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 

3.2.1 The Role of Ontologies in Supporting Knowledge-Based 
Applications through Knowledge Life: State of the Art and 
Shortcomings 

When assuming that knowledge is dynamic both in and over the aircraft lifecycle 
phases, a primary consequence is that knowledge-based applications must be 
able to cope with changing knowledge in and over multiple lifecycle phases. As 
mentioned in Section 2.3, practical challenges regarding usability and 
maintainability result from this. Applications must have a 

1) Capability to represent a usable function (usability) 
2) Capability to annotate a function in order to be able to find, 

access, inspect and maintain this function (usability & 
maintainability) 
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The maintainability and usability challenges are converted into requirements 
for the model-based approach. These are derived from the discussion in Section 
2.3 and from various literature sources. Table 3.4 presents the conversion from 
challenges to requirements, with references where appropriate. 

 
Table 3.4: Challenges and associated requirements on the model-based approach 

Challenge Associated requirements 

Maintainability of knowledge in 
knowledge-based applications: 

 
Moving beyond black-box 
applications and ensuring 
transparency 

 
 

 

 
1) Traceability (Ouertani et al., 2011) 

i. Visibility: experts / end users should 
have the possibility to see knowledge 
that feeds into KBS.  

ii. Accessibility: experts / end users 
should be able to access and 
maintain knowledge. 

iii. Retrievability: experts / end users 
should be able to effectively search 
for and find relevant knowledge 
(given that up to 70% of engineers’ 
time is spent searching for 
knowledge (Lee and Suh, 2008).  
 

2) Functionality (Bermell-Garcia et al., 
2012): experts / end users should be 
able to inspect and verify the 
objectives and functions that a 
knowledge-base application 
addresses. The required knowledge 
and processes for achieving 
functionality must be retrievable and 
verifiable.  

 
Usability of changing knowledge in 
knowledge based applications: 
 

1) Task orientation 
 
 
 
 
 
 
 
 

 
1) Separation of task and domain 

knowledge (Mizoguchi et al., 1995): 
making domain knowledge independent 
from an engineering task offers the 
ability to maintain, update and reuse the 
knowledge. In other words, a modular 
approach may be beneficial. It must be 
stressed that even when task and 
knowledge are separated, they can still 
be explicitly associated with each other 
through modelling of relations. For KBE, 
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2) Expert / 
 end user involvement 

 

a modular approach separating task and 
domain knowledge has been researched 
by La Rocca (2011) through the concepts 
of High-Level Primitives and Capability 
Modules.  

 
2) Knowledge management 

i. Across domains: users and tools 
from different domains should work 
on the basis of consistent data, 
information and knowledge – a 
unified model must be developed. 
Several research initiatives have 
made progress towards a unified 
model for the product lifecycle, for 
instance the PROMISE consortium 
(Kiritsis et al., 2003; Tomasella et al., 
2006). In the aerospace domain, DLR 
has developed the Common 
Parametric Aircraft  
Configuration Schema (CPACS), 
which is a data definition schema for 
describing the characteristics of 
aircraft, rotorcraft, engines, climate 
impact, fleets and mission (Rizzi et 
al., 2012). The iPROD project (iProd, 
2013) aims to integrate management 
of product heterogeneous data.  In 
summary, a sufficiently generalized 
model that can be consistently 
applied in multiple lifecycle phases 
makes it possible to work on the 
basis of consistent representation of 
data, information and knowledge.  

ii. Across users / actors from different 
perspectives (Gielingh, 2005): 
experts from different lifecycle 
phases may have different views and 
priorities when regarding a single 
reality. Gielingh (2005) maintains 
that knowledge objects must be 
recognizable throughout life. 
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There are some common elements throughout the requirements for the model-
based approach. Each of them – traceability (incorporating visibility, accessibility, 
retrievability), functionality, separation of tasks and domain knowledge, and 
knowledge management across domains and users – requires that knowledge is 
structured and made explicit, is kept consistent within and throughout the various 
aircraft lifecycle phases, and is represented such that users from different 
domains can find, use and add to their specific knowledge. To meet these 
requirements, an ontology will be used to realize the model-based approach. 
 
An ontology can be defined as 'a definition of a common vocabulary for 
researchers who need to share information in a domain. It includes machine-
interpretable definitions of basic concepts in the domain and the relations among 
them' (Noy and McGuinness, 2009). Key elements in this definition are the 
common vocabulary and basic concepts and relations. An ontology necessarily 
includes a common vocabulary of terms and a specification of their meaning 
(Uschold, 1996). Without specification, the set of ontology concepts would be 
variously interpretable by different sets of users. With specification, different 
users (e.g. experts in different lifecycle phases) with different views on a single 
reality can be accommodated. 

A similar but more complete definition has been proposed by Gruber (1993): 
ontologies are 'explicit (formal) specifications of a conceptualization'. The 
'specification' element has already been discussed. The other three elements in 
this definition need further clarification. As Uschold (1996) notes, a 
conceptualization can be seen as 'a world view, a way of thinking about a domain 
that is typically conceived and/or expressed as a set of concepts, their definitions 
and their inter-relationships'. An ontology is explicit when it is or can be 
articulated, coded and stored in certain media, and readily transmitted to others. 
Finally, the formality of the ontology indicates the level of expression in an 
artificial, formally defined language, which extends to the possible ontology 
property of being machine-interpretable. This property is desirable from a 
functional viewpoint, as being machine-interpretable offers potential for re-use 
and automation of functionality. Ontologies can be expressed along a range of 
formality degrees; this is one of the three key dimensions along which ontologies 
vary, as mentioned by Uschold (1996): 
 

• Formality: the degree of formality by which a vocabulary is created and 
meaning is specified. Uschold (1996) posits a formality continuum that 
moves from highly informal (loose expressions in natural language) via 
structured informal (restricted and structured form of natural language) 
and semi-formal (expressed in an artificial formally defined language) to 
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rigorously formal (meticulous definition of terms with formal semantics, 
theorems and proofs of properties such as soundness and completeness).  

• Purpose: Uschold and Gruninger (1996) identify three main categories of 
use for ontologies: communication, interoperability and achieving system 
engineering benefits.  

• Subject matter: Uschold (1996) identifies three main categories, namely 
domain ontologies, task/problem solving ontologies, and meta-ontologies. 
The latter are also called foundational ontologies (Borgo and Leitão, 
2007).  

 
To develop an ontology, a number of ontology construction methodologies are 
available. Examples include the methodologies by Uschold (1996), Noy and 
McGuinness (2009), Uschold and Gruninger (1996) and the METHONTOLOGY 
methodology (Fernandes Lopez et al., 1997). All these methodologies share 
common steps, though the exact representations may vary from methodology to 
methodology. The common steps have been summarized by Pinto and Martins 
(2004): 
 

1. Specification: identification of the purpose and scope of the ontology.  
2. Conceptualization: identification of the domain concepts and the 

relationships between concepts. 
3. Formalization: organizing the concepts into class hierarchies and 

subsequent construction of axioms to formally model the relationships 
between concepts.  

4. Implementation: codification of the class hierarchies and axioms into a 
formal knowledge representation language.  

5. Maintenance: updating and correcting the implemented ontology. 
 
A number of languages have been developed specifically to express ontologies, 
such as the Knowledge Interchange Format (KIF) (Cranefield and Purvis, 1999) and 
the Web Ontology Language (OWL). The latter is an example of a language where 
description logic (DL) can be employed to express predicates that define a concept 
or a relationship. These predicates allow for inferences to be made on the 
knowledge base by automatic reasoning. Cranefield and Purvis (1999) give 
examples of such inferences, including subsumption (generality of concepts 
relative to each other), coherence (logical coherence of a concept), identity 
(checking whether two or more concepts are actually expressing the same 
concept) and compatibility (checking whether two concepts can have common 
instances). These reasoning capabilities are potentially powerful when 
constructing an ontology: the integrity and consistency of the ontology can be 
checked automatically and the use of DL predicates can be used to integrate 
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different views on a subject through the equivalency of classes (Matsokis and 
Kiritsis, 2010). Furthermore, querying of an ontology can be assisted by these 
inferences. In short, languages such as OWL are very suitable for the construction 
of formal ontologies.  

However, a drawback of these specific ontology languages is that they 'are 
usually defined in terms of an abstract (text-based) syntax and most care is spent 
on the formal semantics' (Brockmans et al., 2004). There are only limited means 
to visually model ontologies. Furthermore, the languages and associated tools 
such as Ontolingua and Protégé are reportedly not very well known outside of the 
Artificial Intelligence and Knowledge Engineering communities (Cranefield and 
Purvis, 1999).          

In light of these disadvantages, the Object Management Group’s Unified 
Modelling Language (UML) (Object Management Group) is increasingly used to 
express ontologies. UML is a general-purpose modelling language for object-
oriented software-intensive systems. UML can be used to model the static view 
(structure) of a system (objects, attributes, operations, relationships) as well as 
the dynamic view (behaviour), which encompasses collaborations between 
objects as well as changes to the internal state of objects. There are some 
fundamental and some subtle differences between UML and ontology languages 
such as OWL. However, distinct advantages of UML with respect to specific 
ontology languages are: 

1) UML is widely known and used throughout industry and academia; 
2) UML has a standard graphical notation; 
3) UML (and adapted variants) are used in the CommonKADS and MOKA 

methodologies (see Section 3.3.1); knowledge engineers are familiar with 
the language and it has proven to be effective in modelling and 
developing knowledge-based systems. 

A significant disadvantage of UML is that it does not support reasoning on its 
own. To remedy this, an ontology expressed in UML can be extended with 
predicates using the Object Constraint Language (OCL), which therefore allows for 
the definition of formal ontologies. However, the UML-OCL combination has some 
drawbacks in terms of reasoning capability, such as computational complexity.  
 
When properly developed and implemented, ontologies can serve as the 
backbone for knowledge-based applications. They offer the possibility to structure 
the knowledge base by modelling the context in which knowledge is viewed. 
Domain (meta)models are made explicit and knowledge (re-)use is made possible 
(Matsokis and Kiritsis, 2010). Furthermore, as mentioned, ontologies can 
incorporate the use of predicates and an inference capability, which offers the 
potential to execute automated reasoning upon the knowledge base. Finally, 
ontologies are flexible and can be extended (Brandt et al., 2008). As such, 
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ontologies not only support multiple viewpoints on the same knowledge, but also 
offer critical functionality for knowledge-based applications.  

Therefore, the model-based approach will be realized through the 
development of an ontology: the Knowledge Life Cycle (KLC) ontology. Based on 
the requirements as discussed in Table 3.4, the following associated ontology 
requirements can be identified (see Table 3.5).  

 
Table 3.5: Ontology requirements 

General requirements Associated ontology requirements 

1. Traceability 
i. Visibility: experts / end users 

should have the possibility to 
see knowledge that feeds into 
KBS.  

ii. Accessibility: experts / end 
users should be able to access 
and work with knowledge. 

iii. Retrievability: experts / end 
users should be able to 
effectively search for and find 
relevant knowledge.  

 
• Development of metamodel: 

Explicit representation of semantic 
(i.e., meaningful) context allows for 
identification and 'smart' search of 
information and knowledge 

2. Functionality & Separation of tasks 
and domain knowledge 

• Separation into functions and 
associated task class(es) and 
extension possibilities for domain 
ontologies 

3. Knowledge management 
i. Across domains: users and tools 

from different domains should 
work on the basis of consistent 
data, information and 
knowledge.  

ii. Across users / actors from 
different perspectives: the 
model should accommodate the 
perspectives from different 
users (e.g. production engineer 
and machine operator in the 
manufacturing domain),  for the 
different lifecycle stages. 

 
• Provide common, unified and 

consistent understanding of 
knowledge structure.  

• Accommodate multiple views 

 
To meet these requirements, a number of possible building blocks for the KLC 
ontology are inspected in the following section. The common steps of the 
ontology development methodologies (Pinto and Martins, 2004) will be applied 
together with these building blocks in Section 3.2.3 to develop the KLC ontology. 
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3.2.2 Main Elements for the Development of the Knowledge Life Cycle 
Ontology 

In this Section, the main building blocks for the development of the ontology are 
discussed. In the first part, existing lifecycle paradigms and ontologies are 
discussed. These models provide inspiration for meeting the maintainability 
requirements associated with the KLC ontology, in particular with respect to the 
development of a metamodel for traceability and knowledge management. In the 
next subsection, a number of models are introduced that can be used to address 
the usability requirements, mainly through the consideration of functionality. 
Finally, the Knowledge Lifecycle Model from Section 3.1 is introduced as a building 
block for the KLC ontology. Inputs from the various models are combined in the 
design and implementation of the KLC ontology (Section 3.2.3). 

3.2.2.1 Existing Lifecycle Ontologies‡ 
Most of the recent work into lifecycle models is performed as part of Product 
Lifecycle Management (PLM) research. For instance, Lee and Suh (2008) propose 
an ontology-based multi-layered knowledge framework for PLM. Their work first 
describes previous research regarding this subject, where it is noted that the 
proposed knowledge frameworks do not include explicit semantics (e.g. Xue et al. 
(1999); Roy et al. (2001); Sudarsan et al. (2005)) or do not consider the full 
lifecycle (e.g. Borst et al. (1997); Kitamura et al. (2004)). Similarly, the multi-
layered knowledge framework of Lee and Suh (2008) covers the design and 
manufacturing domains, but is not extended to the product support and disposal 
domains. In a similar vein, the ONTO-PDM (Product-driven ONTOlogy for Product 
Data Management) effort by Panetto et al. (2012) proposes an ontological model 
of a product based on ISO and IEC standards to facilitate the interoperation of 
application software that share information during the physical product lifecycle, 
but this model is based in a manufacturing environment and not designed and 
employed to take into account a lifecycle perspective. 

More complete lifecycle modeling efforts have been produced by the 
PROMISE consortium (short for PROduct lifecycle Management and Information 
tracking using Smart Embedded systems). PROMISE is a European Framework Six 
(FP6) research project conducted from 2004-2008.  The results of PROMISE 
(Bufardi et al., 2005; Främling and Rabe, 2005; Tomasella et al., 2006) are 
considered state-of-the-art in the context of the current research. 

PROMISE focused on researching closed-loop PLM: a perspective on PLM 
where information of the whole product lifecycle is tracked and managed.  Flows 
of information can feed forward and backward between different lifecycle stages 
                                                           
‡ Note: In this Section and consecutive section, ontology classes are expressed in the 
following format: Nameofclass, Nameofclass_Addition. When other conventions have 
been used in sources, the original formats are translated to the bold class format. 
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(BOL, MOL, EOL). As part of the initial results of PROMISE, Jun et al. (2007) have 
summarized research issues on closed-loop PLM per lifecycle phase. This has 
informed the research direction of PROMISE: high focus was given on the 
development of a Semantic Object Model (Tomasella et al., 2006) or SOM. The 
SOM takes inspiration from a number of pre-existing standards, including 
ISO10303 – STEP (Standard for the Exchange of Product model data), ISO 14649 – 
STEP NC (STEP Numerical Control), ISO 10303-239:2005 – PLCS (Product Life Cycle 
Support), ISO 15531 – MANDATE (MANufacturing DATa Exchange) and PLM XML, 
amongst others.  The SOM is object-oriented and expressed in UML. The UML 
SOM model has been converted into a OWL-DL (Web Ontology Language – 
Description Logic) ontology, with the benefit of adding reasoning capabilities 
(Matsokis and Kiritsis, 2010).  

The SOM is shown in Figure 3.2. Here, one can distinguish two main areas of 
interest (Tomasella et al., 2006): the area bounded by the continuous line 
comprising information on product instances and product type, and the area 
bounded by the dotted line comprising information connected to the different 
lifecycle phases. The PROMISE SOM is particularly interesting from the viewpoint 
of the KLC ontology as it contains a high number of relevant classes, properties 
and relationships that can be used in a metamodel, in particular the 
Physical_Product, Life_Cycle_Phase, Resource (Document_Resource, 
Personnel_Resource, Equipment_Resource, Material_Resource), Event and 
Activity classes and their properties and relationships. Furthermore, industry and 
academia are familiar with its contents, making (part of) its content suitable as a 
building block for the KLC ontology. 
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Figure 3.2: PROMISE Semantic Object Model (Tomasella et al., 2006) 

 
Another model with some similarities to PROMISE SOM is the Core Ontology 

for Process Data Warehouse  (Brandt et al., 2008). This model supports “creative, 
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non-deterministic design processes” by including semantic mechanisms to 
retrieve and represent knowledge (content), as well as providing “capture and 
archival of work processes” (Brandt et al., 2008) (i.e. process rationale). The Core 
Ontology for PDW is given in Figure 3.3. The ontology’s central aspect is an Object 
class which can be extended to represent four main areas: process, product, 
description and storage. Within these areas, similar classes as in the PROMISE 
SOM appear, for example Activity, Product, Document, and User. These and 
other classes can be extended using ontology modules, represented by the yellow 
'folder' representations in the figure (e.g., a document management ontology 
module can extend the Store class).  

A novel addition of the Core Ontology with respect to PROMISE SOM is the 
inclusion of an explicit Process_Trace class, which expresses the design rationale 
by “describing the concrete actions performed in a project by User or Tool” 
(Brandt et al., 2008). Furthermore, the Core Ontology makes the storage of 
documents explicit by including a Store class. Both are useful potential additions 
to the PROMISE SOM as well as potential contributions to the KLC ontology.  

 

 
Figure 3.3: PDW Core Ontology (Brandt et al., 2008)  

 
Finally, when considering commercial models, various engineering 

applications developed by Dassault Systèmes (e.g. Catia™ (Dassault Systemes, 
2012)  and Delmia™) use the Product – Process – Resource (PPR) model. As 
Butterfield et al. (2012) note, this model separates product development into the 
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three domains of Product, Process and Resource (PPR), enabling the construction 
of object-oriented tree structures capable of modeling the hierarchies of and all 
logical relationships between the process, product and resource data (Curran et 
al., 2010). Through the creation of “links between nodes embedded in the PPR 
structure, e.g. linking a component in Product to a method in Process and a tool in 
Resource, it becomes possible to generate active, and importantly interrogable, 
definitions and quantifiable parameters for design decisions within a virtual 
environment” (Butterfield et al., 2012). 

Together, the PPR paradigm, PROMISE SOM and PDW Core Ontology offer a 
range of classes and relationships that can serve to fulfil the KLC ontology 
requirement of having a semantic metamodel. This metamodel can fulfil the 
traceability and knowledge management requirements, as it can be used to 
annotate engineering functions or tasks and make them traceable, retrievable, 
accessible and subject to change for users from different domains.  

3.2.2.2 Existing Models for the Representation of Functionality 
In this section, existing models for the representation of functions and/or tasks 
are inspected. Before doing this, it is necessary to define 'function' and 'task'. 
Interestingly, as noted by Erden et al. (2008) in their review of functional 
modelling, Umeda et al. (1995) state that “there is no clear and uniform definition 
of a function, and moreover, it seems impossible to describe function objectively”. 
In defining the Function-Behavior-State model, Umeda et al. (1990; 1995; 1996) 
have attempted to define function including subjectivity. Other models have been 
developed (as reviewed by Erden et al. (2008)) that also include subjectivity into 
function. In these views, function is considered as “a subjective category that links 
the human intentions/purposes residing in the subjective realm to the behaviours 
and structures in the objective realm” (Erden et al., 2008). Other definitions of 
function do not incorporate subjectivity; for instance, function can also be defined 
as “a relationship between input and output of energy, material, and information” 
or as “to do something, a combination of verb and noun” (Erden et al., 2008). 

The latter definitions overlap somewhat with the concept of tasks as defined 
by Wood (1986). Tasks can be defined starting from at least four theoretical 
frameworks: task qua task, task as behaviour requirements, task as behaviour 
description and task as ability requirements. Wood (1986) selects an approach 
from these frameworks and arrives at the postulate that all tasks contain three 
essential components: products, acts, and information cues. Products are “entities 
created or produced by behaviors which can be observed and described 
independently of the behaviors or acts that produce them” (Wood, 1986); they 
are the outputs associated with a task. Acts are either a specific activity or a 
“complex pattern of behaviour with an identifiable purpose” (Wood, 1986). Wood 
(1986) considers acts to be an input to a task, but acts are similar to the 
transformation between input and output mentioned in Erden et al. (2008) and 
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also conceptually close to the Function-Behaviour relationship introduced by 
Umeda et al. (1990). Finally, information cues are pieces of information about 
object (attributes) that can be used by individuals in the judgements required for 
carrying out a task. As such, information cues are inputs for a task. Schreiber et al. 
(1999) posit a different definition for a task: in their view, a task is “a subpart of a 
business process that represents a goal-oriented activity adding value to the 
organization; handles inputs and delivers desired outputs in a structured and 
controlled way; consumes resources; requires knowledge and other competences; 
is carried out according to given quality and performance criteria; and is 
performed by responsible and accountable agents”.  

No uniform and universally accepted definitions of function and task relative 
to modelling exist; views on the two can be quite similar. To make matters more 
confusing, the terms task, activity and process are often used interchangeably. A 
more involved discussion of functions and tasks can be found in Erden et al. 
(2008) and Wood (1986). Given the ambiguity regarding 'definite definitions' for 
these concepts, prescriptive definitions for function and task are avoided. 
However, to register as either function or task, a concept must include the central 
aspects of input, activity / process, output and goal. 

With the preceding discussion in mind, the first representation of functions 
and tasks discussed here is the IDEF0 modelling method. The IDEF0 modelling 
method was adopted as a standard in 1993 by the National Institute of Standards 
& Technology (NIST) in 1993 (National Institute of Standards and Technology, 
1993). Even though it has been withdrawn in 2008 as a federal US standard, it is 
still commonly applied in academia and industry. The objectives of IDEF0 are to 
provide “a means for completely and consistently modelling the functions 
(activities, actions, processes, operations) required by a system or enterprise, and 
the functional relationships and data (information or objects) that support the 
integration of those functions” and to provide “a modelling technique which is 
independent of Computer-Aided Software Engineering (CASE) methods or tools, 
but which can be used in conjunction with those methods or tools”. IDEF0 uses 
function boxes and inputs, controls, outputs and mechanisms (ICOM) arrows for 
the representation and modelling of functions – see Figure 3.4 for a generic IDEF0 
diagram. In IDEF0 diagrams, functions are defined as “an activity, process, or 
transformation identified by a verb or verb phrase that describes what must be 
accomplished”. Input are “the data or objects that are transformed by the 
function into output”, Control are “conditions required to produce correct 
output”, such as directions or constraints, Output are “the data or objects 
produced by a function” and Mechanism are “the means used to perform a 
function”, such as people or machines (National Institute of Standards and 
Technology, 1993). 
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Figure 3.4: Generic IDEF0 diagram (National Institute of Standards and Technology, 

1993)  
 
IDEF0 can be used to identify and model functions. Activities can concisely be 

described by their inputs, outputs, controls, and mechanisms, or ICOMs 
(Integrated Definition Methods, 2012). Furthermore, IDEF0 can be used to 
produce hierarchical and increasingly detailed models of functions, activities and 
tasks. Drawbacks of IDEF0 are that the resulting models can become so concise 
that non-experts cannot understand them, and that IDEF0 models are commonly 
interpreted as a sequence of activities, whereas the time dimension is actually not 
modelled within IDEF0.  

The second representation of tasks can be found within the CommonKADS 
methodology for knowledge engineering (Schreiber et al., 1999). This 
methodology contains an approach to knowledge modelling that recognizes task 
knowledge and inference knowledge as specific knowledge categories. Task 
knowledge is used to describe what goal(s) an application pursues, and how these 
goals can be realized through decomposition into subtasks and inferences. The 
inference knowledge represents the lowest level of functional decomposition; it 
describes the inference steps that are applied to domain knowledge to achieve a 
reasoning capability.  

The General Technology Ontology (GTO), developed by Milton (2007) as an 
extension to MOKA, can similarly be used to represent tasks. Besides the concept 
of tasks, the ontology holds 16 other concepts (including resource concepts such 
as people, software, information, and process concepts such as events, triggers 
and decision points) that together provide a generic ontology for the construction 
of knowledge bases. The GTO has been used in the PEGASUS project (PEGASUS, 
2013).    

An ontological representation of tasks is currently being developed in the 
iPROD research project (Chan, 2013; iProd, 2013). Here, task ontologies are 
developed for general, high-level activities: for instance, the design task is 
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associated with concepts such as requirements, processing and optimization, 
amongst others. Besides task ontologies, problem-specific domain ontologies are 
built as a supplement to the task ontology to provide a sufficiently modelled 
overview of the domain to base subsequent development on. The problem-
specific ontologies can be mapped into the higher-level task ontologies. 

The final representation of interest for the KLC ontology is formed by the 
concept of an Enterprise Knowledge Resource. This concept has its roots in the 
work by Bermell-Garcia (2007), who has advocated the annotation of KBE code, 
applications and/or models (or eXecutable Knowledge Models – XKMs) with 
metadata, enabling knowledge to be indexed and retrieved in data repositories, 
PDM and PLM systems. The resulting annotated knowledge models are known as 
Enterprise Knowledge Resources or EKR: a 'specialized type of data resource that 
automates engineering tasks'. In Bermell-Garcia (2007)’s work, an EKR was 
represented by “a file containing the code of the XKM and an instance of the 
metamodel [annotation metamodel] as its blueprint within and [sic] enterprise 
repository”. The proposed metamodel consists of a structure metamodel and an 
operation metamodel. The structure metamodel can be used to describe the 
composition of a KBE resource. The operation metamodel can be used to describe 
how the KBE resource operates. 

 

 
Figure 3.5: UML class diagram of Enterprise Knowledge Resource (Bermell-Garcia et al., 

2012) 
 
In research performed jointly by Bermell-Garcia and the dissertation author, 

the concept of an Enterprise Knowledge Resource has been further researched 
(Bermell-Garcia et al., 2012; Verhagen et al., 2012). The concept has been 
reformulated and now expresses a task-oriented container for knowledge, process 
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and cases. A Unified Modelling Language (UML) class diagram of an EKR as used in 
Bermell-Garcia et al. (2012) is given in Figure 3.5.  

The most important aspects of Figure 3.5 are the EKR class itself and the 
knowledge, process and case classes. The EKR container class represents the task 
that needs to be fulfilled, with the attendant attributes such as the task objective. 
As such, it resembles the task knowledge category of the CommonKADS 
methodology. Tasks / functions can be identified using functional decomposition 
(e.g. with IDEF0 or using systems engineering techniques such as functional flow 
diagrams or functional breakdown structures). The EKR container class 
incorporates the EKR_Knowledge, EKR_Process and EKR_Case classes. 

The EKR_Knowledge class of an EKR contains the knowledge elements that 
are used to perform the specific task associated with an EKR; this can pertain to 
full KBE applications or to modular knowledge elements that can be combined to 
fulfil a task. The role of the EKR_Knowledge class is therefore to represent and 
deliver the knowledge that is subsequentially called via the EKR_Process class to 
execute a design or analysis task. In this, the EKR_Knowledge class is quite similar 
to the domain knowledge category of CommonKADS (Schreiber et al., 1999), 
which represents the main static information and knowledge objects in an 
application domain.  

The EKR_Process class contains the workflow of the specific task for which 
the EKR is set up; it is composed of process elements. In this, it bears some 
similarity to the task method and inference knowledge categories of the 
CommonKADS methodology, which are used to control and carry out a sequenced 
reasoning process on the domain knowledge elements.  

The EKR_Case class is used to gather and present the design or analysis 
results that flow out of the use of an EKR (i.e. the execution of a task using a 
combination of process and knowledge elements). As such, it embodies the 
generative capability of knowledge.   

 
In summary, the various models presented in this section can be used to fulfil the 
KLC ontology requirement of functionality. In particular, the EKR approach is 
suitable for this as it enables the representation of a function and its attributes 
together with its constituent elements (inputs, activities, outputs).  

3.2.2.3 Knowledge Lifecycle Model 
The final building block for the KLC ontology is the Knowledge Lifecycle Model as 
introduced in Section 3.1.  

Its most important contributions to the KLC ontology are the concepts of 
knowledge state and knowledge action. Both have the potential to be 
incorporated into the lifecycle model as class properties. When included and 
managed – either by users or by applications – the behaviour of knowledge can be 
quantified directly from the knowledge-based applications. 
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3.2.2.4 Summary of KLC ontology building blocks 
To recap, the following elements are considered as building blocks for the 
Knowledge Life Cycle (KLC) ontology: 

• Lifecycle elements: 
o PROMISE Semantic Object Model 
o PDW Core Ontology 
o PPR paradigm 

• Functional elements: 
o Functional decomposition (IDEF0/CommonKADS) 
o Enterprise Knowledge Resource concept 

• Knowledge life cycle model 
 
In Table 3.6, the previously introduced requirements regarding the KLC 

ontology are related to the building blocks. Which potential contributions from 
which building blocks address specific KLC ontology requirements? 

 
Table 3.6: KLC ontology requirements in relation with building blocks 

KLC ontology  – requirements Building block potential contributions 

 
1. Traceability 

i. Visibility: experts / end users 
should have the possibility to see 
the knowledge that feeds into 
KBS.  

ii. Accessibility: experts / end users 
should be able to access and 
work with knowledge. 

iii. Retrievability: experts / end 
users should be able to effectively 
search for and find relevant 
knowledge.  

 
• PROMISE SOM: as a semantic 

object model, the SOM is very 
adept at facilitating retrievability. 
Furthermore, the SOM 
incorporates several classes and 
properties that aid visibility of 
knowledge, though its not clear if 
other classes (e.g. Resource and its 
subclasses) facilitate accessibility of 
knowledge. 

• PDW Core Ontology: the Core 
Ontology facilitates traceability of 
knowledge through its 
Design_Traces, Description_Object 
and  Storage_Object classes. The 
latter two are particularly suitable 
for accessibility of knowledge. The 
Core Ontology seems less strong in 
semantic terms, with 
corresponding doubts regarding 
the retrievability of knowledge. 

• PPR paradigm: through annotation 
with Product, Process and 
Resource classes, concepts can 
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theoretically be retrieved and 
accessed effectively. 

• Enterprise Knowledge Resource: 
through the EKR_Knowledge class 
of an EKR, knowledge is easy to 
inspect, use and maintain. An EKR 
should be annotated to enable 
retrievability in an enterprise 
knowledge system. 

• IDEF0: the input and output 
elements in IDEF0 as well as the 
resulting hierarchical models of 
functionality enable traceability, 
though operationalization of these 
constructs must be performed.  

• Knowledge Lifecycle Model: the 
concept of knowledge states can 
be used to characterize the 
maturity of knowledge. 
Furthermore, when earlier versions 
of knowledge elements are 
archived, users can inspect the 
changes in knowledge and learn 
from the progression. 

 
2. Functionality & Separation of tasks 

and domain knowledge 

 
• PROMISE SOM: the SOM includes 

separate classes that can be used 
to express tasks (Activity) and 
knowledge (Resource, 
Physical_Product).  

• PDW Core Ontology: similar to the 
SOM, the Core Ontology includes 
separate classes that can be used 
to express tasks (Process_Object 
and its subclasses) and knowledge 
(Description_Object and its 
subclasses).  

• IDEF0: IDEF0 models can be used 
to represent and decompose 
functionality, but it is not clear how 
tasks and domain knowledge are 
separated. 

• CommonKADS: CommonKADS calls 
for separation of task, inference 
and domain knowledge when 
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composing a knowledge model. In 
particular, CommonKADS offers 
templates for task methods and 
inference knowledge that improve 
task knowledge re-use. 

• Enterprise Knowledge Resource: 
the EKR concept supports the 
explicit separation of tasks and 
domain knowledge through its 
concepts of the EKR class itself, 
EKR_Knowledge and EKR_Process. 

 
3. Knowledge management 

i. Across domains: users and tools 
from different domains should 
work on the basis of consistent 
data, information and knowledge.  

ii. Across users / actors from 
different perspectives: the KLC 
ontology should accommodate 
the perspectives from different 
users (e.g. production engineer 
and machine operator in the 
manufacturing domain),  for the 
different lifecycle stages. 

 
• PROMISE SOM: the SOM supports 

all lifecycle domains and users 
through its classes and associated 
properties, in particular the 
Resource, Life_Cycle_Phase and 
Event classes. 

• PDW Core Ontology: similar to the 
PROMISE SOM, the Core Ontology 
contains classes that support 
multiple perspectives on 
knowledge, e.g. the User class. 

• PPR paradigm: the Product, 
Process and Resource classes are 
useful generic classes that can be 
used across domains and across 
users, as shown in Dassault 
Systemes’ commercial systems. 
However, these classes require 
more detailed representation to 
facilitate actual use in a semantic 
metamodel. 

• Enterprise Knowledge Resource: 
the EKR concept does not directly 
support different perspectives on 
knowledge. This may be achieved 
indirectly through semantic 
annotation. 

 
Similar to the research approach adopted in the iPROD project (iProd, 2013), 

the building blocks have the potential to address the fundamental requirements 
of having a 

a. Capability to represent a usable function (usability) 
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b. Capability to semantically annotate a function in order to be able 
to find, access, inspect and maintain this function (usability & 
maintainability) 

 
Not all building blocks are fully usable for the development and 

implementation of the KLC ontology. Though all are considered, the most 
influential building blocks are the Enterprise Knowledge Resource concept and the 
PPR paradigm. This will be shown in the following Section. 

3.2.3 Research Contribution 2: Knowledge Life Cycle Ontology 

The purpose of this Section is to combine the previously introduced building 
blocks to develop the Knowledge Life Cycle ontology. This Section follows the 
ontology development methodology steps as identified by Pinto and Martins 
(2004): specification of the purpose and scope of the ontology in Section 3.2.3.1, 
followed by conceptualization of the concepts and relationships in Section 3.2.3.2. 
These concepts and relationships are formalized and implemented into UML in 
Section 3.2.3.3.  

3.2.3.1 Specification: Purpose and Scope of the KLC Ontology 
The purpose of the KLC ontology is to enable consistent development of 
knowledge-based applications that can cope with knowledge change through 
product life. To achieve this, the model should support the traceability of 
knowledge through life, such that knowledge and knowledge-based applications 
can be formalized, used, maintained, reused and retired through life. The model 
must accommodate users with different perspectives while remaining consistent. 
Furthermore, it must separate task representation from domain knowledge. 

The ontology will be developed to a semi-formal stage: it will be expressed in 
an artificial formally defined language, but does not incorporate formal semantics, 
development of predicates, theorems and proofs of properties such as soundness 
and completeness (Uschold, 1996). Developing the KLC ontology at a semi-formal 
level is sufficient for the purposes of this dissertation: the case studies that 
validate the KLC ontology are developed to a proof-of-concept stage and do not 
require the functionality of a fully formal ontology (see also Section 3.5).  

The language adopted for expressing the KLC ontology is the Unified 
Modeling Language (UML). UML is preferred over OWL and other ontology 
languages. This choice is backed up by a number of arguments. First, in contrast to 
most ontology languages, UML modeling supports graphical notation, making it 
easier to develop, interpret and implement. Furthermore, UML correlates with 
the desired level of formality of the KLC ontology – the formality and functionality 
of ontology languages (e.g. predicates and automated reasoning) are not 
necessary for a semi-formal ontology. Finally, UML is widely adopted and used in 
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both academia and industry; interpretation and dissemination of the KLC ontology 
is best supported by UML.  

The scope of the KLC ontology is a generic product lifecycle. For practical 
purposes, its use throughout the remainder of this dissertation will be confined to 
the aircraft engineering domain, as discussed in Section 1.2.1.1.  

3.2.3.2 Conceptualization: Definition of High-Level Concepts and 
Relationships  

To conceptualize the KLC ontology, high-level concepts and relationships from the 
building blocks have been combined into a single conceptual model. A high-level 
overview of this model is shown in Figure 3.6. This figure shows that there are two 
central perspectives in the model. The first is the Product - Process - Resource 
(PPR) paradigm, as introduced before. The second perspective sees the Enterprise 
Knowledge Resource as a central concept. Both perspectives are described in 
more detail below. As an additional note, the EKR itself and the knowledge 
elements will have the knowledge states and actions from the Knowledge 
Lifecycle Model as attributes. This enables the quantification of knowledge change 
over its life. 

 

 
Figure 3.6: High-level concepts and relationships of the KLC ontology  

 
The generic role of an EKR is to provide the capability for a usable function: the 
ability to (automatically) execute a task, to enable the inspection, review and 
(possible) revision of the associated knowledge and process elements, and to 
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enable users to inspect and learn from the outputs of previous runs of the EKR 
through the collected case reports. The KLC ontology has a similar representation 
of the EKR container class as introduced in (Bermell-Garcia et al., 2012). However, 
several changes have been made relative to that incarnation of the EKR concept: 

 
• Knowledge: Knowledge contains knowledge elements, which can be seen 

as a type of Resource. A set of knowledge elements can together 
constitute the required knowledge for an EKR (task). This relates to 
explicit, codified knowledge which can include both informal and formal 
representations of concepts, relationships, assumptions, rules, 
constraints, rich text descriptions, illustrations, drawings, etc. These 
elements contain a capability for effective action (and are therefore 
compliant with the definition of knowledge as adopted in this research), 
but to harness this capability for action, it is necessary to have a provision 
in place to further organize and actively use the knowledge elements.  
This provision is provided through the Process concept.  

• Process: The Process concept consists of process elements. In a similar 
manner to the knowledge concept, a set of process elements (e.g. 
activities) can be combined to form the process that is required for an 
EKR. In other words, the Process concept contains the workflow of the 
specific task for which the EKR is set up.. In the EKR concept, the Process 
class can contain a sequence of process elements (activities), such as 
importing an input file, calling a knowledge element or a self-contained 
knowledge application, executing the knowledge application, collecting 
and passing on the outputs, calling another knowledge application, 
executing this knowledge application, and so on. The workflow can be 
automated, though this of course depends on the implementation. The 
role of the Process concepts is to represent and enable an “end-to-end” 
engineering task, preferably in an automated fashion (i.e. without the 
requirement of user intervention). In combination with knowledge 
elements, the process elements can be used to create a fully automated, 
white-box design or analysis process. Users can inspect the steps in the 
design or analysis process, and can see the associated knowledge through 
the related knowledge element(s).  

• Case: The Case concept is used to gather and present the design or 
analysis results that flow out of the use of an EKR (i.e. the execution of a 
task using a combination of process and knowledge elements). As such, it 
embodies the generative capability of knowledge. Every time a specific 
EKR is executed, a case report can be generated. This report includes an 
overview of the inputs that were used for the analysis, such as CAD 
drawings or Excel files. Furthermore, the knowledge elements that were 
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used when running an EKR instance can be listed. Finally, the output files 
generated by the analysis (e.g. stress distribution graphs or cost 
estimations) can be listed. All of these elements are directly accessible 
through the case report; for instance, a user can directly go to and inspect 
the knowledge that was used for a specific analysis run. When an EKR is 
run multiple times, for instance with multiple sets of different inputs, the 
results are gathered in a set of case reports. This enables the subsequent 
inspection of analysis results, but also opens up the opportunity to further 
analyze the results themselves. Case metadata can also be automatically 
assigned, which enables consistent categorization and easier search and 
retrieval of historical analysis results.   

 
To support the use of EKRs in practice, the aforementioned PPR paradigm is the 
guiding principle in the development of a semantic metamodel that can be used 
to annotate EKRs for systematic storing and indexing into a digital enterprise 
repository. This facilitates the reuse, sharing and maintenance of EKRs, as well as 
the knowledge upon which EKRs operate. The PPR paradigm is met by including 
Process, Resource and Product concepts, as shown in Figure 3.6. The Resource 
concept encapsulates a relatively large number of subconcepts, for instance User 
and Tool. Finally, the Product concept can be used to represent individual parts 
and, when joined, assemblies. This is of importance to represent the Product 
Breakdown Structures often used in aircraft engineering. 

With respect to the relationships between the various concepts, Figure 3.6 
shows only the most important relations between high-level concepts, such that 
the figure retains some clarity. At lower levels, concepts may also share relations, 
though most are not depicted here (e.g. Knowledge_Element will be related to a 
User_Resource and Document_Resource). 

3.2.3.3 Formalization and Implementation: Transformation of 
Conceptual Model into a Semi-Formal UML Ontology  

The next step towards a Knowledge Life Cycle ontology is the transformation of 
the conceptual model into a semi-formal ontology. As mentioned, the chosen 
language for expressing the semi-formal model is UML. The following activities 
have been performed: 

• Transformation of concepts into classes with their most important 
attributes 

• Formalization of class relationships, including aspects such as multiplicity 
and type 

• Implementation of classes and relationships in UML 
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Figure 3.7: UML class diagram of KLC ontology  

 
The resulting UML model of the KLC ontology is presented in Figure 3.7. The 

following main classes and attributes are further explained: 
• Enterprise_Knowledge_Resource: this class is the central way of 

representing functionality into the KLC ontology. It contains the 
EKR_Knowledge, EKR_Process and EKR_Case classes. Its attributes 
include basic metadata (e.g. author, version) and a 
knowledge_lifecycle_state attribute. This attribute can be used to 
describe the instantaneous state of an EKR. For instance, if a user makes a 
change to the semantic annotation of an EKR, the state jumps to 
'Maintain'. When a user has finished making changes (possibly subject to a 
validation process), the state changes back to 'Use'. The possible states 
are taken from the knowledge lifecycle model and include 'Create' (initate 
instance), 'Use' (completed/validated instance), 'Maintain' (context of 
instance is changed), 'Update' (content of instance is changed), 'Retire' 
(instance is binned or deleted). To quantify knowledge change, operations 
that count changes in state (i.e. knowledge actions) are added to the EKR 
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class. A UML class diagram for Enterprise Knowledge Resource as 
implemented within the KLC ontology is given in Figure 3.8. 

• EKR_Knowledge: the EKR_Knowledge class contributes to the EKR class. 
Its main attribute is knowledge_list, which can serve to collect knowledge 
elements that are used for a particular EKR. The EKR_Knowledge class has 
one main subclass: Knowledge_Element. Instances of 
Knowledge_Element can be combined with Process_Element instances to 
configure a knowledge-based application. Like the EKR class, the 
Knowledge_Element class has an attribute to keep track of the knowledge 
lifecycle state as well as operations that can count changes in state (i.e. 
knowledge actions). The Knowledge class (and its subclass) can be 
annotated by Product, Process and Resource, and their respective 
subclasses. 

• EKR_Process: the EKR_Process class contributes to the EKR class. It has a 
number of attributes, for instance for objective and description. Notably, 
the level of process automation can be expressed using the relevant 
attribute. EKR_Process has one main subclass: Process_Element. One or 
more process elements can be combined to form a process. Like the EKR 
class, the Process_Element class has an attribute to keep track of the 
knowledge lifecycle state as well as operations that can count changes in 
state (i.e. knowledge actions). Further operations are added to model the 
potential use of knowledge elements in a process (callKnowledge()) and 
to write the results of process execution into a case report 
(writeCase_Report()). In contrast to Figure 3.6, the process 
representation of the EKR (EKR_Process) has been separated relative to 
the generic Process class (see below).  

• EKR_Case: the EKR_Case class contains the case history of EKR use. Every 
time an EKR is run, an instance of the subclass Case_Report is generated 
and populated within the EKR_Case class. Instances of Case_Report 
contain an overview of the knowledge and process elements that were 
used in that particular EKR run. This enables backward traceability of the 
results of an EKR run.   

• Product: the Product class can be used to generate product-oriented 
views and can be used to annotate EKRs and its subclasses. An association 
has been made between the Product and 
Enterprise_Knowledge_Resource classes; similar associations exist 
between Product and the EKR subclasses, but these are not shown. To 
annotate effectively, the Product class can be extended into domain-
specific class hierarchies. This will be done in Chapters 4-6, where relevant 
Product Breakdown Structures (PBS) are developed for the design, 
manufacturing and maintenance domains. 
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• Process: The Process class is part of the PPR semantic metamodel that can 
be used to annotate EKRs. An association has consequently been made 
between the Process and Enterprise_Knowledge_Resource classes. To 
achieve annotation, Process can be extended into a domain-specific class 
hierarchy – this will be shown in Chapters 4-6.  

• Resource: the Resource class can be seen as the superclass of the 
Enterprise_Knowledge_Resource class, though this relation is not given in 
Figure 3.7. Besides this, the class contains users, tools, equipment, 
materials and documents as subclasses. It can be extended into domain-
specific class hierarchies for annotation of EKRs. As before, this will be 
shown in Chapters 4-6.  

 
The main concept relationships can be seen in Figure 3.7; for completeness’ sake 
they are also given in Table 3.7. 
  

Table 3.7: Relationships between main concepts of KLC ontology 
Class 1 Class 2 Relation (name) Relation 

(type) 
Process Product generates Association 
Process Resource uses Association 
Product Resource uses Association 
Enterprise_Knowledge_Resource  Product is_annotated_by Association 
Enterprise_Knowledge_Resource  Process is_annotated_by Association 
Enterprise_Knowledge_Resource  Resource is_annotated_by  Association 
Assembly Product is-a Generalization 
Part Product is-a Generalization 
Part_Joint Product is-a Generalization 
Assembly Part contains Aggregation 
Assembly Part_Joint contains Aggregation 
User_Resource Resource is-a Generalization 
Tool_Resource Resource is-a Generalization 
Equipment_Resource Resource is-a Generalization 
Material_Resource Resource is-a Generalization 
Document_Resource Resource is-a Generalization 
Enterprise_Knowledge_Resource  EKR_Process contains Aggregation 
Enterprise_Knowledge_Resource  EKR_Knowledge contains Aggregation 
Enterprise_Knowledge_Resource  EKR_Case contains Aggregation 
EKR_Knowledge Knowledge_Element contains Aggregation 
EKR_Process Process_Element Contains Aggregation 
EKR_Case Case_Report contains Aggregation 

 
The Enterprise Knowledge Resource concept remains the central part of the 

KLC ontology. It is represented separately in Figure 3.8 and contains the 
Enterprise_Knowledge_Resource class and its subclasses. 
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Figure 3.8: UML class diagram of Enterprise Knowledge Resource as implemented in the 

KLC ontology  
 
The EKR concept allows for the representation of tasks / functions and the 

inputs (knowledge elements), transformations (process elements) and outputs 
(case reports) that are associated with a task. Through association with the PPR 
classes of the KLC ontology, EKRs can be semantically annotated to allow 
traceability (including visibility, accessability, retrievability) and knowledge 
management. Practical examples of this are given in Chapters 4-6.  

3.2.4 Concluding Remarks 

The ontology requirements as introduced in Section 3.2.1 have been met by 
development of the KLC ontology. This is further explained in Table 3-8, which 
outlines the requirements and characteristics of the developed ontology.  

The KLC ontology has been developed to a semi-formal level and has been 
implemented in UML. Conversion into a dedicated ontology language (e.g. OWL) 
is possible – see for instance Verhagen and Curran (2011) – but not necessary for 
the purposes of this dissertation. 
To summarize, the research questions mentioned in the introduction of Section 
3.2 have been addressed by introducing the EKR and PPR concepts and 
relationships and formalizing them into the KLC ontology. Though strongly rooted 
in earlier research, the ontology is a novel contribution to theory. It can be used 
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to fulfil the usability and maintainability requirements associated with knowledge 
change in knowledge-based applications. 

 
Table 3-8: KLC ontology requirements versus functionality 

KLC ontology – requirements KLC ontology - characteristics 

 
1. Traceability 

i. Visibility: experts / end users 
should have the possibility to 
see the knowledge that feeds 
into KBS.  

ii. Accessibility: experts / end 
users should be able to 
access and work with 
knowledge. 

iii. Retrievability: experts / end 
users should be able to 
effectively search for and 
find relevant knowledge.  

 
• Enterprise Knowledge Resource: 

through the “Knowledge” element of 
an EKR, knowledge is easy to inspect, 
use and maintain. An EKR can be 
annotated by Product, Process and 
Resource (and their subclass 
hierarchies) to enable retrievability in 
an enterprise knowledge system. 

• Case: the Case class offers the 
possibility to inspect historical results of 
running an EKR, including the 
knowledge elements and process 
models that were used in a particular 
EKR execution run.  

• Knowledge Lifecycle Model attributes: 
the concept of knowledge states can be 
used to characterize the maturity of 
knowledge. Furthermore, when earlier 
versions of knowledge elements are 
archived, users can inspect the changes 
in knowledge and learn from the 
progression. 

 
2. Functionality & Separation of 

tasks and domain knowledge 

  
• Enterprise Knowledge Resource: 

through the Process and Knowledge 
classes, tasks and domain knowledge 
can be separated, while remaining part 
of a functional whole.  

o Process: the Process class 
includes subclasses and 
attributes to model tasks. To 
achieve tasks, knowledge can 
be called from the Knowledge 
class. 

o Knowledge: the Knowledge 
class contains individual 
knowledge elements and 
knowledge applications that 
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can be called via the Process 
class to perform a task. 

 
3. Knowledge management 

i. Across domains: users and 
tools from different domains 
should work on the basis of 
consistent data, information 
and knowledge.  

ii. Across users / actors from 
different perspectives: the 
KLC ontology should 
accommodate the 
perspectives from different 
users (e.g. production 
engineer and machine 
operator in the 
manufacturing domain),  for 
the different lifecycle stages. 

 
• Enterprise Knowledge Resource: 

through annotation with Product, 
Process, Resource and its subclasses, 
an EKR can be accessible across 
domains and across users. When 
expressed in the OWL-DL format, a 
common vocabulary – including 
equivalent terms – can be declared to 
accommodate different domain and 
user perspectives. 

• Resource_User: this class can be used 
specifically to represent the various 
users along the product lifecycle.  

• Knowledge Lifecycle Model attributes: 
the knowledge state and action 
attributes associated with 
Enterprise_Knowledge_Resource, 
Knowledge and Knowledge_Element 
can be used to express the status and 
maturity of knowledge, making it 
possible to work on the basis of 
consistent knowledge. 
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3.3 The KNOMAD Methodology for Supporting KBS 
Development incorporating Knowledge Change 

The preceding Sections have discussed the models necessary for characterising, 
measuring and facilitating knowledge change. However, these models must be 
accompanied by a 'how-to': how can the models be applied for the development 
of knowledge-based applications? This is reflected in the third research objective 
expressed in Section 1.2: methodology development. The following research 
questions are associated with this objective:  

• How can knowledge change be accommodated during knowledge-based 
application development?  

o Which steps are required?  
 
To answer these research questions, existing methodologies will be reviewed for 
their strengths and weaknesses. The identified shortcomings are the basis for 
proposing a methodology for the development of knowledge-based application 
that offer better usability and maintainability through incorporation of knowledge 
change.  

3.3.1 State of the Art in Methodologies for KBS development 

A number of methodologies have been developed over the years to guide the 
development of knowledge-based systems. Here, two prominent methodologies 
are discussed: CommonKADS (Common Knowledge Acquisition and 
Documentation Structuring) and MOKA (Methodology and software tools 
Oriented to Knowledge-based engineering Applications). 

CommonKADS focuses on the development of Knowledge-based Systems 
(KBS). It consists of steps, guidelines, models and templates. The main elements of 
CommonKADS are given in Figure 3.9. Three layers can be distinguished. The top 
layer incorporates the organisation, task and agent models and is preparatory in 
nature. In this layer, opportunities for KBS development are identified, a KBS 
project is scoped and initial analysis is performed to map the available knowledge 
and knowledge users. Potential solution directions are distinguished. The middle 
layer uses the inputs from the top layers models and takes the project further by 
detailed analysis of knowledge, resulting in the knowledge model. This model 
encompasses task, inference and domain knowledge and preferably uses 
knowledge and task templates to promote re-use. The communication model 
complements the knowledge model by considering the use of knowledge and 
information within the organisation and between users. Finally, the bottom layer 
comprises the design model: the KBS is designed and implemented. The focus is 
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on the technological aspects of KBS development. Schreiber et al. (1999) further 
detail the CommonKADS layers and associated models. 

 

 
Figure 3.9: CommonKADS methodology overview 

 
From a design engineering perspective, a number of methodologies are 

available to support the development of KBE applications (Lovett et al., 2000; 
Stokes, 2001; Curran et al., 2010; Verhagen et al., 2012). By far the most well-
known of these is the Methodology and software tools Oriented to Knowledge-
based engineering Applications, or MOKA. This methodology, based on eight KBE 
life-cycle steps, is designed to take a project from inception towards 
industrialization and actual use (Stokes, 2001). The KBE System Lifecycle is given in 
Figure 3.10 and is a process view of the lifecycle stages of a KBE system. The first 
stages (Identify; Justify) are similar to the Organisation model of CommonKADS; 
the purpose of these stages is to identify, analyse and scope opportunities for KBE 
development. The next stages are Capture and Formalise; these stages are similar 
to the Task and Knowledge models of the CommonKADS methodology. Their 
purpose is to capture and model the knowledge and activities that are associated 
with the KBE project. The remaining stages are Package, Distribute, Introduce and 
Use: these are similar to the Design Model of CommonKADS, but with added 
emphasis on the actual use of the KBE system. Another difference with 
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CommonKADS is the explicit consideration of KBE system maintenance as an 
alternative to a new system after the Justify step, and the acknowledgement 
through a feedback loop that the Use stage may trigger a cycle of maintenance. 
However, though maintenance is explicitly identified, MOKA does not offer 
guidelines for maintenance of knowledge-based engineering systems other than 
to repeat the whole KBE System Lifecycle process when changes in knowledge 
occur. MOKA does not incorporate a method to characterise the quantity and 
frequency of knowledge change. Also, for which types and at what quantity of 
change is any threshold to trigger maintenance to be fired? Furthermore, it is not 
clear how existing models built in the Capture and Formalise stages are to be 
adapted given new or changed knowledge. Moreover, it is not clear how these 
changes are to be propagated into the packaged KBE system while maintaining 
knowledge base consistency and reliability.  
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Figure 3.10: KBE System Lifecycle (adapted from Oldham et al. (1998)) 

 
 The Capture and Formalise stages are the central contribution of the MOKA 

methodology. The centrepieces of these stages are the Informal and Formal 
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MOKA models. The informal model consists of so-called ICARE forms, where the 
acronym stands for Illustrations, Constraints, Activities, Rules and Entities. These 
forms can be used to decompose and store individual knowledge elements. 
Subsequently, these elements can be linked to create a structured web of 
knowledge elements that together make up a representation of the problem 
domain to which users from multiple viewpoints can relate. When the problem 
knowledge has been converted into a structured representation, the next step is 
to formalize this knowledge in order to represent knowledge in a form that is 
acceptable to knowledge and software engineers and suitable for subsequent 
development of a KBE application. The formal model uses MML (Moka Modelling 
Language, an adaptation of Unified Modelling Language (UML)) to classify and 
structure the ICARE informal model elements, which are translated into formal 
Product and Process models. The main elements of the MOKA methodology are 
illustrated in Figure 3.11: the KBE system lifecycle, the Informal model (as 
illustrated by an ICARE form) and the Formal model (as represented by an MML 
structure). A more in-depth discussion of MOKA can be found in Stokes (2001).  
 

 
Figure 3.11: MOKA methodology elements 
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3.3.2 Shortcomings of Existing Methodologies and Associated Research 
Requirements 

Both CommonKADS and MOKA acknowledge the change of knowledge over time 
and the associated need for application maintenance to ensure usability. 
Schreiber et al. (1999) mention that “the basic idea underlying the CommonKADS 
model suite is that it provides a correct and full view of the status of application 
development…Because knowledge is not static but changes over time, the process 
is best seen as continuous development. Maintenance of the knowledge model is 
thus not essentially different from its development. The main difference is that … 
it is often done by other people… If the knowledge model of an application is good 
and the domain is stable, one can expect the majority of maintenance to be 
concerned with activity 'complete the knowledge bases'. Typically, sets of rule 
instances will need to be updated, because knowledge tends to evolve over time” 
(page 184). Similarly, the MOKA handbook mentions that “many companies that 
use KBE are faced with a dilemma. Existing applications need to be updated or 
improved. … Generally, it is recommended that you should introduce any changes 
in the form of new or modified ICARE forms and then adjust the MOKA Formal 
Models before changing the KBE application files” (page 263). Note that the 
change or 'evolution' of knowledge is stated as a given. A major and essential 
drawback of these methodologies is that they do not investigate the nature and 
consequences of knowledge change in any depth. Instead of enabling the 
development of change-compliant solutions, both methodologies advise to go 
through all steps of the methodology again – a potentially costly exercise without 
many guidelines regarding how to deal with and/or change the existing 
application. Through their steps and models, both major methodologies are not 
able to directly cope with knowledge change in knowledge-based applications. 
When this situation occurs, rework is necessary.  

The MOKA and CommonKADS methodologies can further be compared to 
methodology requirements such as flexibility, scalability, extendibility (Colledani 
et al., 2008), completeness and applicability. As a result, other shortcomings of 
these methodologies can be identified. CommonKADS is fit for complex cases with 
requirements on formal specification and re-use. Fairly prescriptive and detailed 
guidelines and templates are available to support knowledge engineers, which 
improves completeness and replicability, but decreases flexibility. Moreover, the 
CommonKADS methodology as described by Schreiber et al. (1999) lacks 
specificity for the engineering domain: there are very few knowledge and task 
templates for engineering tasks.  

The main focus of MOKA lies with the ‘Capture’ and ‘Formalize’ steps of the 
KBE life-cycle. Curran et al. (2010) have identified that MOKA has the following 
drawbacks as a result: a focus on knowledge engineering support rather than end 
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user support, and a lack of provisions for knowledge transparency and 
accessibility.  

Another major shortcoming of existing methodologies is a lack of 
methodology adherence (Curran et al., 2010; Verhagen et al., 2012). In particular, 
a review of the KBE domain (Verhagen et al., 2012) has shown that 81% of the 
sample papers did not adhere to or even mention any specific methodology when 
developing a KBE application. Methodology adherence cannot be forced, but 
existing methodologies have seemingly failed to make a large impact. 

A final shortcoming is the lack of quantitative evaluation of knowledge-based 
application development. The MOKA and CommonKADS methodologies do 
recommend considerable attention for the identification, evaluation and 
justification of a business case for the development of a knowledge-based system. 
This is an activity carried out before the development of KBS. Both methodologies 
do not follow this up with quantitative evaluation of the KBS development after 
completion of projects. Such (quantitative) evaluation is necessary to draw 
lessons from KBS projects.   

 
Given these shortcomings, a research challenge can be distilled: develop an 
improved methodology for the development of knowledge-based applications 
which must cope with changing knowledge. Such a methodology would have to 
meet the following requirements: 

 
• Be able to facilitate knowledge change. 
• Include an approach for knowledge capture, formalization, use and 

maintenance.  
• Be sufficiently simple and straightforward to 'invite' use. 
• Include steps / guidelines for the assessment of KBS performance.  

3.3.3 Research Contribution 3: KNOMAD Methodology 

To meet the improved methodology research challenge, the KNOMAD 
methodology Curran et al. (2010) is introduced. KNOMAD consists of the following 
main steps: (K)nowledge Capture & Identification of Knowledge Change, 
(N)ormalisation, (O)rganisation, (M)odelling & Implementation, (A)nalysis and 
(D)elivery.  
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Figure 3.12: KNOMAD methodology overview 

 
The main steps are given in Figure 3.12. As can be observed, the first activity 

before initiating the main steps is to justify the business case. This is similar to the 
Identify & Justify steps of MOKA, which have the objective to identify, analyse and 
scope opportunities for KBE development. In the justification of the business case, 
it can be judged whether the process / task is suitable for a knowledge-based 
approach; as mentioned before, Van der Velden et al. (2012) provide a first 
attempt in this direction by considering process complexity. The scope, objectives 
and context of the project can be established. Furthermore, business metrics (e.g. 
ROI) can be identified and analysed to judge the business case (Van Dijk et al., 
2012). Some first forays into knowledge capture may be necessary to back up the 
justification effort, as indicated by the dotted line in Figure 3.12. 

When a development effort is warranted, the main steps of the KNOMAD 
methodology can be applied. They are explained in the following sections. 
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3.3.3.1 Knowledge Capture & Identification of Knowledge Change 
This first step comprises two substeps: 1) capturing 'raw' knowledge involved in 
the project, and 2) characterising and identifying any knowledge change. 

Knowledge acquisition techniques can be applied to capture the knowledge. 
A wide range of knowledge acquisition techniques is available; interviews, process 
mapping, laddering, state diagram mapping, concept mapping, observation and 
commentating are some examples (Schreiber et al., 1999; Stokes, 2001; Milton, 
2007). The captured knowledge has to be documented to support its use in the 
following steps. 

Following capture of the knowledge, the Knowledge Lifecycle Model can be 
applied to characterise and quantify knowledge change. The knowledge actions 
can be operationalised and measured for the specific project under consideration. 
Based upon the observed behaviour of the knowledge, an assessment of stability 
over time can be made, which informs a choice for a specific development 
method. If knowledge is found to be changing, the development process can be 
based on the further steps of the KNOMAD methodology and use the KLC 
ontology to enable an ontology-based approach towards knowledge lifecycle 
management. 

3.3.3.2 Normalisation 
In the Normalisation phase, the raw knowledge obtained in the knowledge 
capture phase is subjected to quality control and normalization. The objective of 
the normalization phase is to achieve a sufficiently high quality level of knowledge 
content to enable the seamless use of knowledge in subsequent organization, 
modelling and analysis. To achieve this, two distinct activities are performed. First, 
the knowledge is checked against applicable quality criteria. The following general 
quality criteria are recognized: 
 
• Traceability: knowledge must be traceable to its source and must be 

traceable over various iterations. The knowledge state and any performed 
knowledge actions on the knowledge element must be recorded.  

• Ownership: a knowledge element has to be tied to an owner. This owner 
takes responsibility for the accuracy and reliability of the knowledge. This is a 
prerequisite for efficient knowledge management, especially when tacit 
knowledge is involved. It can have significant benefits in later stages 
(organization, modelling, analysis) if necessary knowledge needs further 
explanation, as the owner can easily be contacted. 

• Accuracy: is the captured knowledge accurate enough for subsequent use in 
modeling and analysis? The modelling and analysis of parameters puts 
requirements on accuracy, as significant variation or uncertainty in design 
parameters may prevent model and analysis resolution.  



 

89 
 

• Reliability: how reliable is the captured knowledge? Particularly during early 
stage design, parameters have a tendency of being ‘guesstimates’, or they are 
founded on unchecked assumptions.  If knowledge is highly dynamic, this 
should be taken into account during subsequent development steps. In fact, 
the speed of change may be so high that the knowledge in question is 
deemed too immature for further modelling and analysis. 

 
The second activity is normalization according to standards. The range of 

available standards to normalize against is considerable; the applicable standards 
for normalization depend on the context. Standards that must be set and/or 
adhered to are for instance programming language, units and regulations. 

3.3.3.3 Organization 
The organization of knowledge is an essential step towards knowledge utilization 
in knowledge-based applications. Its purpose is to provide a knowledge structure 
to organize the captured knowledge. Furthermore, it can serve as a semantic 
backbone for the knowledge-based application. To achieve this, it is necessary to 
construct a domain-specific set of concepts and relationships: a domain ontology.  
The ontology forms the semantic knowledge structure that can be used to 
annotate the knowledge-based application and/or enterprise knowledge 
resources (see also step 4: Modelling). The domain ontology can be linked with 
the KLC ontology by extending the Product, Process and Resource classes into 
domain-specific class hierarchies that include all relevant domain concepts. 
Practical examples of this are given in Chapters 4-6. Furthermore, the domain 
ontology is a way to represent multiple viewpoints of domain experts on the same 
domain. It can be used to facilitate end user understanding of the knowledge-
based application, by offering 'entry points' into the application through familiar 
concepts rather than high-level abstractions such as Process and Resource. 
Additional domain understanding gained during this organization step can be fed 
back into the knowledge identification step. 

3.3.3.4 Modelling & Implementation 
The next step in the revised KNOMAD methodology is the modelling of 
knowledge-intensive processes. To achieve this, the CommonKADS Knowledge 
and Design models or the MOKA informal and formal models can be used. 
However, to facilitate knowledge change in knowledge-based applications, it is 
advised to apply the KLC ontology and in particular the Enterprise Knowledge 
Resource concept to model tasks and associated inputs and outputs in the form of 
knowledge, process models and cases. The modelled EKR(s) can be annotated 
using the domain ontology, as mentioned above. Annotation enables stakeholders 
from various disciplines to (automatically) access and retrieve the necessary 
knowledge for use and maintenance. Again, practical examples of this are given in 
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Chapters 4-6. The modelling step can also give rise to revised understanding of 
knowledge, which may lead back to the knowledge identification step. 

After modelling, the next step is to implement the models and develop the 
knowledge-based application. Rather than reinventing the wheel, adherence to 
the guidelines for implementation described by the CommonKADS methodology is 
recommended. Schreiber et al. (1999) describe these guidelines in chapter 11: 
Designing Knowledge Systems (page 271-294). The main steps for implementation 
are to design a system architecture, identify the target implementation platform, 
specify architectural components and specify the application within the 
architecture. It must be noted that the EKR concept should be incorporated in the 
implementation too, such that structure-preserving design principles are obeyed. 
This improves system maintainability (Schreiber et al., 1999). The Knowledge and 
Knowledge_Element classes of the EKR concept can subsequently be employed to 
incorporate knowledge change through the use and maintenance of knowledge.  

3.3.3.5 Analysis 
As part of the implementation step, proof-of-concept versions of Enterprise 
Knowledge Resources (EKRs) can be developed to test and analyze the 
functionality of the individual EKRs and the overall system. This analysis can 
comprise qualitative and quantitative aspects. For instance, requirements 
compliance would be a qualitative check on the performance of the system. 
Quantitative analysis can be performed by defining and measuring Key 
Performance Indicators (KPIs) for the developed system, for instance computing 
time or the time taken to find and access an EKR.  
Furthermore, once an EKR is used in an operational setting, the resulting body of 
case reports can be subjected to analysis approaches such as Design of 
Experiments (DoE).  

3.3.3.6 Delivery 
As a final step, the developed application is delivered to the stakeholders and 
resource implications are evaluated. A review and acceptance check should be 
performed in which the developed solution is compared with the requirements to 
determine the solution validity and suitability.  

3.3.4 Concluding Remarks 

KNOMAD has been introduced as a methodology for the development of 
knowledge-based applications that must cope with changing knowledge. The 
requirements for an improved methodology are briefly revisited. KNOMAD 
answers to these requirements by including steps and guidelines to capture, 
formalize, use and maintain knowledge. Furthermore, the critical aspect of 
knowledge change (and associated maintenance) is accounted for by the 
characterisation and analysis of knowledge change at the start of the KNOMAD 
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process. Furthermore, inclusion of the KLC ontology within the modelling step of 
the KNOMAD methodology and development of a domain ontology in the 
organization step are specifically advised to ensure usability and maintainability. 
The domain ontology can be used to semantically annotate the knowledge-based 
application, so that it can be searched for and retrieved easily. The KLC ontology 
can be used to model and implement task-specific knowledge, such that this can 
be maintained when it changes. 

The KNOMAD steps have been substantiated to a limited degree in the 
preceding section. In Chapters 4-6, case studies are presented that use the 
KNOMAD methodology as a guide for development. These case studies provide 
additional insight into the application of KNOMAD in multiple engineering 
disciplines. 

3.4 Discussion of Contributions 

To summarize, the following three contributions to theory have been developed: 
 
1) Knowledge Life Cycle model: a model for the characterisation and 

quantification of knowledge change has been developed. The model is 
centred on the concepts of knowledge state and knowledge action. 

2) KLC ontology: an ontology has been developed that can be used to model 
and implement knowledge-based applications, while addressing usability 
and maintainability requirements. The ontology uses the Enterprise 
Knowledge Resource concept to represent tasks and associated 
knowledge, processes and cases. The Product-Process-Resource paradigm 
is used as the basis for a generic semantic metamodel. This metamodel 
can serve as a starting point for further development of domain-specific 
semantic metamodels. 

3) KNOMAD: a methodology has been proposed to support the 
development of knowledge-based applications that must cope with 
knowledge change. The methodology consists of six steps. It advises the 
use of the Knowledge Lifecycle model and KLC ontology to characterise, 
model, implement and analyse knowledge-based applications.  

3.4.1 Discussion of the Knowledge Lifecycle Model 

The Knowledge Lifecycle Model aims to address the following questions within 
the context of the first research objective – knowledge life cycle modelling:  

• Which concepts and relationships are required to characterise the change 
of explicit knowledge within and throughout the aircraft lifecycle phases?  

 
It uses the knowledge state and action concepts to characterise the change of 
explicit knowledge. However, further questions remain regarding the change of 
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knowledge within specific aircraft lifecycle phases and regarding the 
quantification of knowledge change: 

• How does explicit knowledge change within specific phases of the aircraft 
lifecycle?  

• Is change of explicit knowledge quantifiable? 
 

These research questions are still open at this point. Empirical study regarding the 
characterisation and quantification of knowledge change is not performed in this 
theory-oriented Chapter. Until the case study results have been presented, the 
following assumptions will apply: 

1) Knowledge changes throughout aircraft life.  
2) Knowledge changes while in individual aircraft life phases. 

 
With respect to the characterisation of knowledge change, the case studies 
(Chapters 4-6) will each include a short discussion of knowledge change for the 
specific case. With respect to the quantification of knowledge change, the 
maintenance case study (Chapter 6) will include an analysis of Airworthiness 
Directives to see whether the Knowledge Lifecycle Model’s concepts can be 
applied to meaningfully quantify knowledge change in practice.  

3.4.2 Discussion of the Knowledge Lifecycle Ontology 

The Knowledge Lifecycle Ontology aims to address the second research objective 
expressed in Section 1.2 by providing a model-based approach for the support of 
knowledge change within knowledge-based applications for specific aircraft 
lifecycle phases. The following research questions are addressed:  
• Which concepts support the consistent formalization, use and maintenance 

of changing knowledge throughout the aircraft lifecycle? 
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 
 
The answer to these questions is partially contained in Table 3-8, which 

outlines the requirements and characteristics of the KLC ontology. The main 
concepts used in the KLC ontology for consistent formalization, use and 
maintenance of changing knowledge are the Enterprise Knowledge Resource 
concept and the Product-Process-Resource paradigm. In combination, these two 
elements provide a means to ensure usability and maintainability of knowledge in 
knowledge-based systems.   

The KLC ontology draws inspiration from many existing models, including the 
PROMISE Semantic Object Model, the PDW Core Ontology, CommonKADS’ 
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Knowledge Model, Bermell-Garcia’s concept of Enterprise Knowledge Resources 
and the Product-Process-Resource paradigm. The KLC ontology sets itself apart 
from these models in four major ways: 

• The ontology’s central concept of EKRs can be used as central element in 
modelling and implementation (in contrast to CommonKADS, where the 
knowledge and communication model is preparation for the 
implementation-oriented design model). EKRs are a means to achieve 
structure-preserving implementation, which is beneficial for 
maintainability; 

• The KLC ontology uses the EKR concept to represent individual tasks; this 
allows for modular and contained development of knowledge-based 
systems, but requires attention to functional decomposition and interface 
management. Knowledge associated with specific tasks can be inspected, 
used and maintained when necessary; 

• EKRs can be consistently annotated using the PPR classes, allowing for 
improved traceability and accessibility; 

• Outputs are systematically stored (using the EKR_Case class). 
 
The KLC ontology allows for consistent formalization, use and maintenance of 

knowledge and knowledge-based applications. To validate this assertion and the 
KLC ontology itself, the ontology will be applied to the development of three 
knowledge-based applications. This is described in more detail in Chapters 4-6, 
where three case studies are developed for the design, manufacturing and 
maintenance phases of the aircraft lifecycle. 

3.4.3 Discussion of the KNOMAD methodology 

The KNOMAD methodology addresses the process of developing knowledge-based 
applications that have to cope with knowledge change. The following research 
questions are associated with the research objective of methodology 
development:  
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which steps are required?  

 
KNOMAD has been introduced as a methodology for the development of 

knowledge-based applications that can cope with changing knowledge. The 
critical aspect of knowledge change (and associated maintenance) is accounted 
for by the characterisation and analysis of knowledge change at the start of the 
KNOMAD process. Furthermore, inclusion of the KLC ontology within the 
modelling step of the KNOMAD methodology and development of a domain 
ontology in the organization step are specifically advised to ensure usability and 
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maintainability. Furthermore, KNOMAD adds an Analysis step to be able to assess 
knowledge-based application performance after completion of a project.  

KNOMAD shares similarities with other KBS methodologies such as 
CommonKADS (Schreiber et al., 1999) and MOKA (Stokes, 2001), such as 
justification for the business case, knowledge capture, knowledge organisation 
and delivery. It sets itself apart in the following ways: 
• Explicit support for the identification of knowledge change in the Knowledge 

Capture & Identification of Knowledge Change step. 
• Accounting for usability and maintainability aspects through the Organization 

and Modelling & Implementation steps. 
• Explicit support for assessment of knowledge-based application performance. 

 
Despite these differences, it must be stressed that these methodologies (and 

the associated models) are not mutually exclusive. Methodology steps and models 
can be used in conjunction with KNOMAD and the KLC ontology. For instance, the 
CommonKADS task and inference models can be used to develop the 
Enterprise_Knowledge_Resource and Process classes and the domain knowledge 
model can be used for the Knowledge class of the KLC ontology.  

The KNOMAD steps have been substantiated to a limited degree in Section 
3.3. In Chapters 4-6, case studies are presented that use the KNOMAD 
methodology as a guide for development. These case studies provide additional 
insight into the application of KNOMAD in multiple aircraft lifecycle phases. 

3.5 Proposing a Case Study approach 

Three case studies will be performed to validate the contributions to theory 
developed in Chapter 3. In each of the cases, a knowledge-based application is 
developed to perform an engineering task in which knowledge is liable to change. 
To position these applications, the following must be taken into consideration: 
they include a knowledge base, include capabilities for document and 
configuration management, feature (partial) automation of engineering tasks and 
feature analysis and/or optimisation capabilities. However, the applications have 
not been built using KBE systems and do not include geometric handling 
capabilities. Consequently, the developed solutions cannot be seen as KBE 
applications, but are simply labelled as knowledge-based applications.    

To validate knowledge change for the engineering tasks associated with the 
specific cases, change will be characterised for each case study (Chapters 4-6). To 
validate the Knowledge Lifecycle Model, the maintenance case study (Chapter 6) 
will include a quantitative analysis of Airworthiness Directives to see whether the 
Knowledge Lifecycle Model’s concepts can be applied to meaningfully quantify 
knowledge change in practice. 
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To facilitate knowledge change, the KNOMAD methodology and KLC ontology 
are used in the development of the knowledge-based applications. The 
applications have been developed to a proof-of-concept stage; though the 
knowledge lifecycle attributes have been implemented in the relevant models, 
the proof-of-concept status has meant that the applications have not been used 
structurally and for a longer period of time. As a result, the knowledge lifecycle 
concepts of state and action have not been actively used to quantify knowledge 
change relative to the developed knowledge-based applications.  

Furthermore, the proof-of-concept status of the applications has had 
implications for the formality of the KLC ontology. Formal modelling of axioms, 
theorems and proofs thereof has not been required, leading to the selection of 
UML for development of the KLC ontology and consequently also for use in the 
case studies. As part of applying the KLC ontology, case-specific task and domain 
ontologies are developed and expressed in UML. These are subsequently 
implemented in a tool called Ardans Knowledge Maker (AKM). Consequently, the 
ontologies serve as the backbone of the knowledge base and knowledge-based 
application code maintained in AKM – an ontology-based approach to knowledge 
lifecycle management has been followed. It should be noted that for all case 
studies, the presented UML ontologies have been implemented in AKM.  

AKM functions as single point of access to systematically store, access and 
manage the lifecycle of EKRs, knowledge and knowledge elements. It consists of a 
web-based interface on top of a knowledge base implemented in MySQL. 
Knowledge base elements are represented through AKM articles. AKM supports 
XPATH query language to identify and fill article fields by retrieving node 
information from the XML data that comes from MySQL. For instance, XPATH 
expressions can be used to let knowledge, knowledge element, process and 
process element models inherit common metadata and attributes. The interface 
allows users to set up an environment to directly access articles (e.g. EKRs) or 
users can employ a search environment to find specific articles using search 
spaces, context tags (metadata / class hierarchies) and search text. 

 
Each of the case studies is structured in a similar way. The approach is as 

follows: 
 
• Case study context: for each lifecycle stage, the context and specific 

engineering task for which a knowledge-based solution has to be 
developed are briefly introduced. The case study objective and 
requirements are explicitly stated.  

• Application of theory contributions to case study: 
o Application of Knowledge Lifecycle model: the Knowledge 

Lifecycle model is used to identify and characterise knowledge 
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change for the case study engineering task. For the maintenance 
domain, the model is also applied to quantify knowledge change. 

o Application of KLC ontology: in preparation of application of the 
KLC ontology in solution development, the case study engineering 
task is analysed. 

o Application of KNOMAD: to prepare the solution development, 
application of the steps of KNOMAD is planned.  

• Solution development: the KNOMAD methodology and the KLC ontology 
are used in the development of a knowledge-based application for the 
case study. The KNOMAD steps are adhered to in the following manner.  

o Knowledge Capture & Identification of Change: the objectives 
and scope of the case study are identified and the prerequisite 
knowledge is captured, presented and analysed for knowledge 
change; 

o Normalization: the captured knowledge is checked against pre-
set criteria; 

o Organisation: a domain ontology is (partially) developed for the 
case study domain. The domain ontology is developed as an 
extension of the KLC ontology. The domain ontologies as 
represented here are developed to support the solution. As such, 
only those classes, attributes and relations that are relevant for 
the case study are implemented within the domain ontology. This 
prohibits the design and implementation of cumbersome, 
extremely large domain ontologies of which only a few concepts 
would be used; 

o Modelling & Implementation: the KLC ontology principles and 
classes are applied to the case, with specific attention to the 
development and implementation of a task ontology (through the 
Enterprise Knowledge Resource concept) for the engineering task 
at hand. The domain and task ontologies are subsequently 
implemented in AKM and the solution is built; 

o Analysis & Delivery: a proof-of-concept application is analysed; 
performance and functionality is validated relative to the case 
study objectives. 

• Discussion: case study results are discussed in the context of the research 
objectives and contributions.  

 
Note that two types of contribution and validation occur! Each case study can 

be seen as a contribution in its own right: a specific engineering problem is solved; 
an improved solution is implemented. As such, performance of the case study 
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solution is discussed in the Analysis & Delivery step to validate the case study 
contribution. 

Furthermore, each case study acts as validation towards the overall research 
contributions. For each case study, the Discussion of Results section is used to 
discuss the case study in light of the contributions to theory. Furthermore, the 
case study results are synthesized in Section 7.1 as part of a wider view on the 
overall contribution with respect to theory. This leads in to the overall research 
conclusions, followed by a consideration on the limitations and recommendations 
associated with the performed research.  
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4 Design Case Study: Ply Stacking Sequence 
Optimization for Composite Wing Panels 

This chapter describes the development of a knowledge-based application that 
automates blending of ply stacking sequences in the design of composite wing 
panels.  

This case study belongs to a set of three case studies, with this case focusing 
on the design domain of the aircraft lifecycle. Together, the case studies will shed 
light on how the overall research objective can be achieved, with emphasis on the 
latter part of the objective: “Support consistent formalization, use and 
maintenance of changing knowledge within aircraft lifecycle phases to improve 
domain-specific modelling, execution and control of engineering tasks”. The case 
studies also offer a practical perspective on the following research questions:  
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 
 
The following section introduces the problem statement for this specific case 
study in the aircraft design domain. After this, the developed theory of Chapter 3 
is applied to the case study. Subsequently, results are discussed in Section 4.3. A 
solution has been developed for the case study problem; development and 
implementation are discussed in detail. Validation of performance with respect to 
the case study objective(s) and requirements is briefly indicated in Section 4.3.5: 
Analysis & Delivery. The case study concludes with a discussion of the results 
within the context of the dissertation objectives and contributions to theory.  

4.1 Case Study Context and Challenges 

This case study research has been carried out in the context of the development 
of a new generation narrow-body civil aircraft, the Airbus A30X, pitched as an 
eventual successor to the A320 family of narrow-body aircraft. According to 
Airbus, A30X is to enter the market in the late 2020s (Airbus, 2011). 
Although the market availability of the A30X aircraft is at least 15 years ahead 
from today, the complexity of an aircraft program forces research and technology 
development efforts to be started well in advance. Broadly speaking, the two 
main work streams to develop the A30X program are:  
 

• Conceptual design studies to identify the optimum configuration of 
the aircraft to satisfy the forecasted market needs. In this work 
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stream, Airbus is evaluating novel aircraft configurations including 
forward-swept wings, rear-mounted turbofans and vertical tail planes 
among others (Aviation-Week, 2011). 

• Engineering capabilities to effectively address technological challenges 
emerging from the new program. While the previous work stream 
focuses on design, this one aims to realize the necessary technology 
innovations that will achieve the market claims of the new aircraft (i.e. 
high fuel efficiency, low production cost and others). Examples in this 
direction include the development of new generation engines and the 
development of new design and manufacturing technologies to 
support the use of thermoplastic-based composites (Compositesworld, 
2011). Tools and methods are concurrently developed to support the 
development of these engineering capabilities. These new 
technologies, tools and methods have a learning curve: to support 
engineers, fast and accurate access to up-to-date knowledge is 
necessary. 

 
Contemporary industrial policy aims to encompass these two aerospace product 
development work streams through collaborative research projects. In the United 
Kingdom, an example of such a project is the Next Generation Composite Wing 
(NGCW) project (Northwest-Aerospace-Alliance, 2010), in which Airbus UK and 
EADS Innovation Works work with several major industrial and academic partners 
to research materials, technologies and tools to support the design and 
manufacturing of composite wing structures. As part of the NGCW work package, 
the Multi-Disciplinary Optimization of Wing (MDOW) research project has been 
initiated to research and develop design tools for the multidisciplinary analysis 
and optimization of wing structures. The work reported in this case study has 
been carried out as part of the MDOW project. 

The focus of the case study is on the optimization of a composite wing cover 
conceptual design for ply continuity through the blending of stacking sequences. 
The optimization of composite airframe (part) design using stacking sequence 
blending is an area of research in its own right (Soremekun et al., 2002; Gunawan 
et al., 2003; IJsselmuiden et al., 2009). It must be emphasized that the focus of 
this case study is on the application of the Knowledge Lifecycle Model (Section 
3.1), KLC ontology (Section 3.2) and KNOMAD methodology (Section 3.3) to 
develop a knowledge-based solution that can cope with knowledge change. The 
technical details associated with the stacking sequence optimization routine 
embedded in this knowledge-based solution are not discussed. An example of a 
in-depth research project that addresses both stacking sequence optimization and 
the development of a knowledge-based engineering application for this problem 
is described in Cooper (2011). 
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The optimization of ply continuity in aircraft composite wing conceptual 
design is an example of addressing manufacturing considerations in an early stage 
of design. The industrial partner that participated in the case study used a grid 
representation in the conceptual design of a carbon fibre reinforced plastic (CFRP) 
wing. In each of the grid cells, the amount of carbon fibre plies and their 
orientation is specified, based on structural requirements (minimum thickness 
and load cases). This single-cell specification, known as “ply stacking sequence”, 
describes a particular sequence of composite layers, each of which has a specific 
fibre orientation (see Figure 4.1, where green layers denote a 0° fibre orientation, 
red and pink layers denote +45°/-45° fibre orientation, and blue denotes a 90° 
fibre orientation).  

 

 
Figure 4.1: Cross-sectional view of ply stacking sequences for two adjacent grid cells  

 
The out-take in Figure 4.1 shows that there can be mismatches between adjacent 
cell fibre orientations: in the out-take, the top three layers are consistent, but the 
remainder of the layers is not. For example, consider the fourth layer from the 
top. The left grid cell has a 90° fibre orientation (blue) and the right grid cell has a 
0° fibre orientation (green): the orientations are discontinuous.  

However, in composite manufacturing, material is not deposited in discrete 
cells but in continuous layers. The manufacturing of laminate plies is most cost-
effective when continuous surfaces can be laid down, as machine start-up times, 
repositioning and material waste are kept to a minimum. Therefore, 
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discontinuities between individual cell stacking sequences must be kept to a 
minimum.  

When manufacturing a product, discontinuities can be solved by introducing 
overlap and interleaving the adjacent layers (Figure 4.2). This figure shows that 
plies are extended over the rib area and 'stacked' on top of each other, which 
introduces additional thickness (and mass) at the rib area, and consequently a 
ramp gradient from the rib to the cell.   

 

 
Figure 4.2: Interleaved plies across cell boundary  

 
This ramp gradient must be kept within a specified limit depending on maximum 
tool deflection to ensure manufacturability. The result of adding interleaved plies 
at cell boundaries is shown in Figure 4.3. 

 

 
Figure 4.3: Adding manufacturing considerations into a structural view of the design  
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However, this solution adds mass. The full size of the problem becomes 

intuitively apparent when considering a set of adjacent stacking sequences for a 
complete panel such as the one in Figure 4.4. The wing cover skin panel shown in 
this Figure consists of many individual grid cells (as represented by the various 
coloured cells containing cell names), which bounds are formed by ribs and 
stringers.   

 

 
Figure 4.4: Grid representation of a wing cover skin panel  

 
Instead of introducing additional mass through overlap and interleaving during 
manufacturing, it is preferable to reconfigure adjacent stacking sequences 
beforehand such that ply continuity is optimal and mass addition is minimal, while 
respecting the structural design requirements (see also Section 4.3.1). In other 
words, if manufacturing considerations could be integrated into structural design 
and sizing, the material and therefore mass which is added later for 
manufacturing purposes can be reduced. The preferred solution for the ply 
continuity problem comes down to re-sequencing and optimizing a set of stacking 
sequences such that ply continuity is maximized and minimum addition of mass is 
achieved, while obeying structural design requirements. 
Achieving a satisfactory design solution requires a high amount of manufacturing 
knowledge together with a high degree of automation in order to cope with 
hundreds of interfaces between cells and their stacking sequences. This problem 
can be tackled through a 'traditional' KBE approach where the knowledge is 
directly encoded into a software application. Such an approach would however 
disregard that many current aircraft design projects, in their switch towards the 
use of composite materials, are having to gain knowledge about design while 
designing: designers are “learning by doing” (Siemieniuch and Sinclair, 1999), and 
knowledge is subject to change.  

 
The consolidated objective of the case study is to develop and implement a 

proof-of-concept knowledge-based solution for ply continuity optimization in 
composite wing panel design. The following requirements must be met:  

 
1) The solution must be able to optimize a composite wing cover conceptual 

design for ply continuity through blending of stacking sequences; 
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2) The solution must give the possibility to trade off wing panel concepts on 
weight, cost and manufacturability; 

3) The solution must be automated. 
 

Validation with respect to these requirements is performed in Section 4.3.5: 
Analysis & Delivery.  

The introduced problem is related to knowledge change and consequently to 
research challenges regarding knowledge usability and maintainability. The 
following issues will be taken into account in the case study: 
 

• Moving beyond black-box applications and ensuring transparency: As 
mentioned before, a current drawback of many knowledge-based 
applications is that they are ‘black-box’: the knowledge contained in the 
these applications is difficult to access and inspect, and is often 
embedded in the application code (Verhagen et al., 2012). To support 
knowledge maintenance, it is necessary to move beyond black-box 
processes and applications by supporting categorization, accessibility, 
traceability and subsequent sourcing of knowledge, which opens up the 
potential for knowledge reuse (Markus, 2001; Verhagen et al., 2012). In 
order to allow users to inspect, use and maintain knowledge, it is 
necessary that the knowledge solution is transparent. I.e., it should be 
clear which knowledge is involved within a process, which further inputs 
are required, which steps are taken within a process and which outputs 
are generated. 

• Task orientation: knowledge involves a ‘capability for effective action’. 
The capability for action can be met by explicitly associating sets of 
knowledge with functional tasks, i.e. the optimization for ply continuity 
for this case study. 

• Expert / end user involvement: End users must be able to identify, use, 
interact with and if necessary, maintain or update the relevant knowledge 
that they use in their daily work and specific context (Merali and Davies, 
2001). For this case study, the design and manufacturing rules and 
constraints are of primary interest. 

 
Through these considerations, the case study contributes to validation of the 
overall research contributions to theory. This is discussed in Section 4.4: 
Discussion of Results. 

4.2 Application of Theory to Design Case Study 

Before developing a solution, this section acts as an intermediate step by applying 
the developed theory to the case. First, the Knowledge Lifecycle Model is applied 
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to identify knowledge change for the ply continuity optimization task. This task is 
subsequently analysed in support of further application of the KLC ontology to 
solution development in the Results section. Finally, it will be shown how the 
KNOMAD steps will be applied to this case to guide the subsequent solution 
development in Section 4.3: Results.  

4.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 
Change  

For this Design for Manufacturing (DFM) problem, some of the required design 
knowledge is not subject to change. For instance, the design rule with respect to 
tension or compression loads (see Section 4.3.1) which states that the percentage 
of 0° fibres can be increased to improve tension and compression laminate 
properties will remain valid as the basic physics underlying this rule do not 
change. 

However, there are a number of examples in which changes in knowledge 
and associated specifications would have a dramatic impact on the optimization 
of design solutions. A number of qualitative examples are given below: 
 

• Design methods: maintaining ply continuity between adjacent cells (or 
panels) of laminates, also known as blending, is a research area in its own 
right. Various methods and improvements have been proposed, as 
analysed by Liu et al. (2010); in the period of 2000-2009, at least 16 
papers (including high-impact journal publications, e.g. Liu et al. (2000); 
Kristinsdottir et al. (2001); Soremekun et al. (2002); Liu and Haftka (2004); 
IJsselmuiden et al. (2009)) have been written to report on new, improved 
or successfully applied methods for blended design  of composite 
structures. Or, to use Knowledge Lifecycle model terminology, design 
methods have been created, updated and maintained over the years. A 
search in Elsevier’s Scopus search engine on 'composite blending 
optimization' adds a further eight recent journal papers reporting on 
advances in this field (Gillet et al., 2010; Liu et al., 2010; Bruyneel, 2011; 
Jin et al., 2011; Liu et al., 2011; Bruyneel et al., 2012; Panesar and 
Weaver, 2012; Zein et al., 2012). This shows that existing methods for 
blending are subject to change, which indicates that design knowledge for 
this specific area is subject to change. Ideally, any design process that is 
encapsulated within a knowledge-based solution should be able to change 
to reflect current best practice and/or extend applicability. 

• Tooling specifications: the intended layup process to produce the 
conceptual wing designs uses Automated Tape Laying (ATL) or Automated 
Fibre Placement (AFP) techniques. If the specifications of the ATL / AFP 
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machines are updated, the associated optimization constraints can be 
relaxed. Two examples constituting data and information change are: 

o Ramp gradients: ramps can occur between cells (representing 
stringer and rib bays), dependent on the required thicknesses to 
satisfy structural requirements. The designed ramp geometry 
should not exceed roller deflection, such that the roller remains in 
contact with the material when performing lay-up. If ATL/AFP 
maximum roller deflection is increased, the associated ramp 
gradient requirement can be relaxed.  

o Minimum course (cut) lengths: ATL and AFP machines cannot cut 
tape shorter than a specified minimum course (or cut) length. This 
has the potential to cause production issues – see Figure 4-5. This 
Figure shows a scenario in which the minimum cut length exceeds 
the required tape lengths at the boundaries of the rectangular 
part. In practice, this will result in additional ply material at those 
boundaries, either leading to increased mass and (potential) 
overlaps with neighbouring parts, or to additional machining and 
material waste involved in cutting off the excess material at the 
edges.   
 

 
Figure 4.5: Possible production issues arising from minimum course length (Blom, 2010) 

 
If the minimum course length is decreased, the manufacturing of 
smaller, more varied and more precise layer geometry is feasible. 

• Material specifications: changes with respect to material behaviour (e.g. 
'update' actions that introduce revised knowledge regarding lay-up or 
curing behaviour, or 'maintain' actions that extend the applicability of a 
material) can influence design and manufacturing requirements. Consider 
the two following examples: 
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o Maximum ply drop: a current constraint is that no more than 4 
plies can be laid down sequentially without introducing a covering 
ply. This prevents delamination at the ply edges. Improved 
material specifications can increase the number of plies for 
sequential ply drops. 

o Stringer ramping: a current constraint dictates that the rate of 
change of thickness of the laminate beneath stringers is restricted 
to reduce defects forming in the stringer blade. Improved 
material specifications can reduce this restriction. 

 
The preceding examples qualitatively show that knowledge related to the ply 

optimization problem can indeed be subject to change and can loosely be 
characterised using Knowledge Lifecycle model concepts. However, given the 
proof-of-concept status of the developed solution (see Section 4.3), it has proven 
impossible to use the solution to quantify changes in the underlying knowledge.  

4.2.2 Application of KLC Ontology: Task Analysis 

The case study objective is to achieve ply continuity optimization in composite 
wing panel design. This design task incorporates design and manufacturing 
constraints that are applied to the wing panel structure in order to optimize it for 
weight, cost and manufacturability. In this section, the task is analysed into more 
depth in preparation of the actual use of the KLC ontology in solution 
development (see Section 4.3). 

The existing process for solving the problem at hand is contained within a 
solution known as mPDA (manufacturable Ply Design and Analysis). mPDA is a 
solution developed in-house at the industrial partner. It has been implemented 
using Microsoft Excel and VBA. It requires the input of a specification file from the 
structural engineering department that specifies the wing cover grid, grid cell 
thicknesses and associated stacking sequences (a so-called fishtail plot).  The exact 
content of the existing process itself is considered proprietary and cannot be fully 
reproduced here: only the general activities of the task are analysed below. 

The top-level task is modelled in Figure 4.6 using an IDEF0 representation. 
The figure highlights the central task: optimize wing cover for ply continuity (A-0). 
This task requires input from the structures department in the form of a ply 
specification file. This input is processed by the ply optimizer tool (mPDA; see also 
Section 4.3.1) to generate an optimized ply specification. The ply optimizer takes 
into account various design and manufacturing constraints.  
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Figure 4.6: IDEF0 A-0 diagram for composite wing cover optimization task 

 
The top-level task can be split up into four subtasks (see Figure 4.7). The 

preparation task (A1) takes panel sizing information (minimum required thickness 
and thickness law per grid cell) from the ply specification file to generate a 
catalogue of stacking sequences. This catalogue is used in the processing task 
(A2), which uses the ply specification file as an input for the generation of ply 
fishtail plots – a set of fishtail plots is generated to indicate grid coverage per ply, 
instead of one specification file containing thickness and/or stacking sequence per 
grid cell. In effect, the specification file is decomposed into a set of (virtual) fishtail 
plots indicating the grid coverage per ply layer. The optimization task (A3) applies 
the design and manufacturing requirements and constraints to the ply fishtail 
plots to configure optimized ply fishtail plots. Finally, the post-processing task (A4) 
uses these plots to put together an optimized ply specification file, where the 
wing cover has been optimized for ply continuity.  
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Figure 4.7: IDEF0 A0 diagram for optimization subtasks 

 

4.2.3 Application of KNOMAD: Solution Approach 

The KNOMAD methodology as discussed in Section 3.3 is adopted to develop a 
knowledge-based system for the case study problem. The KNOMAD steps relative 
to this case study are shown in Figure 4.8. This figure shows the main KNOMAD 
steps (Knowledge Capture & Identification of Knowledge Change; Normalisation; 
Organisation; Modelling & Implementation; Analysis & Delivery) with the 
associated activities that are required for this particular case study.  

In the first step (Knowledge Capture & Identification of Knowledge Change), 
the justification for and scope of the knowledge-based system is established, 
followed by capture of the knowledge and process elements. The design and 
manufacturing constraints as well as the inputs to the problem are of particular 
interest. As knowledge change for this case study has already been considered in 
Section 4.2.1, this activity is not repeated. For the second step (Normalisation), 
the focus is on checking data quality and establishing input and output formats.  
The third step (Organisation) considers development of a domain ontology that 
holds the relevant concepts and relationships for this particular case study. It is 
split up into three parts: generation of product, process and resource class 
diagrams. The fourth step (Modelling & Implementation) concerns the 
development of models (in the Modelling sub-step), architecture and solution (in 
the Implementation step). The developed task and domain ontologies are 
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implemented in AKM to support the developed solution, making the solution 
ontology-based. Finally, the Analysis and Delivery steps are combined into one: 
performance of the solution is assessed relative to the requirements, and the 
costs and benefits of the solution are explored. 

 

 
Figure 4.8: Application of KNOMAD to design case study – flow chart 

 

4.3 Results 

The next section describes the development of a knowledge-based application for 
the ply continuity optimization problem. The proof-of-concept solution can cope 
with knowledge change and addresses the associated issues of knowledge 
usability and maintainability. The development of the solution is based upon 
application of the revised KNOMAD methodology. Furthermore, the principles and 
concepts of the KLC ontology are used. The following sections are compliant with 
the KNOMAD steps.  

4.3.1 Knowledge Capture & Identification of Knowledge Change 

The composite wing cover ply continuity optimization task has been identified in 
Section 4.1 and further fleshed out in Section 4.2. With respect to justification of 
the business opportunity, the current process requires significant manual 
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intervention. Furthermore, part of the current solution is automated but this has 
been implemented in Excel and VBA macros, which leads to time-intensive 
optimization. Most significantly, the current solution is black-box: the knowledge 
used to optimize ply stacking sequences for continuity is not visible at all, but 
embedded in the mPDA application. It was decided to resolve these issues by 
developing a proof-of-concept knowledge-based solution.  

The first step in the development of the knowledge-based solution is to 
capture the required knowledge elements. This knowledge can be extracted by 
considering two elements: the current process for solving the problem, and the 
set of inputs necessary for executing the process. 

The existing process for solving the problem at hand is contained within a 
pre-existing solution known as mPDA (manufacturable Ply Design and Analysis); it 
has been discussed in Section 4.2.2, together with the high-level task and subtasks 
that are associated with solving the problem. 

The second vital element of knowledge considers the set of inputs necessary 
for executing the process. In the current context, this pertains to the set of design 
and manufacturing constraints that must be complied with when solving the 
stacking sequence optimization problem. This set has been elicited from 
composite manufacturing experts. In total, 30 design and manufacturing 
constraints have been made explicit; a simplified overview of 30 of these 
constraints is given in Table 4.1. 

Besides the constraints, the process requires a specification file to run. This 
specification file comes from the structural design department and contains a grid 
plot of the designed wing cover, with specific stacking sequences for each grid 
cell. 

Knowledge change for this case study has been described in Section 4.2.1 and 
is not further analysed here. 
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Table 4.1: Captured design and manufacturing constraints  

 
 

4.3.2 Normalization 

To ensure knowledge quality and compliance to a standard, measures have been 
performed on the captured knowledge: 
 
• Traceability & Ownership: the captured knowledge has been recorded using a 

pre-defined format that has been designed and agreed upon during the 
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research process. The format is implemented in a knowledge management 
tool (Ardans Knowledge Maker, or AKM) and has two main components. First, 
an informal representation of a constraint is recorded; it consists of a natural 
language description explaining its applicability and properties and is 
accompanied by any relevant illustrations. It also includes metadata (data 
about data) such as ownership, authorship and date of creation. Secondly, a 
formal description of the constraint includes software code that can be 
accessed by the mPDA application. An example of a single manufacturing 
constraint is illustrated in Figure 4.9. 
 

 
Figure 4.9: Example of manufacturing constraint stored in AKM  

 
• Accuracy & reliability: the pre-existing process (mPDA) has been used as a 

baseline for construction of a knowledge-based application. The required 
design parameters (input, process and output) have been identified and 
captured. The resulting standardized formats are further explained in Section 
4.3.4: Modelling and Implementation.  

4.3.3 Organisation 

The next step is to provide a knowledge structure that can be used to store the 
captured knowledge and can serve as the semantic backbone for the knowledge-
based application. To achieve this, it is necessary to construct a domain- and case 
study-specific set of concepts and relationships: a domain ontology.  For each of 
the case study domains, the high-level concepts and relationships of the KLC 
ontology (as given in Section 3.2) have been extended into domain-specific class 
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hierarchies. Based on the shared inheritance from the KLC ontology and the 
resulting use of the same high-level classes, many concepts and relations in the 
design, manufacturing and maintenance domain ontologies (as shown in Sections 
5.3.3and 6.3.3) are the same. This consistency is desirable from a through-life 
perspective. 

In this section, relevant excerpts of the domain-specific class hierarchies are 
given to explain how the design domain ontology is composed. Furthermore, 
these excerpts are specifically geared towards the classes, attributes and 
relationships that are necessary to develop a proof-of-concept solution for this 
case study. The domain ontology development is not exhaustive and can be 
extended using considerably more detailed concept representations, but it is 
considered sufficiently complete for the purposes of this case study, i.e., for use in 
annotation of the solution (elements).  

 

 
Figure 4.10: Domain-specific hierarchy for Product class  
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First of all, the domain-specific class hierarchy for the Product class is 
represented in Figure 4.10. The Product class hierarchy extends across a variety of 
composite products. For this use case, only composite wing covers are considered. 
However, though blending optimization is often considered for composite wings, 
the ontology must accommodate a suitable range of composites to which 
blending could be applied and must represent the context in which wing covers 
are designed. The Assembly and Part classes each contain several subclasses, 
including the wing box assembly, which consists of the cover, spar and rib 
assemblies. These assemblies contain one or more parts, which can be skin, spars, 
ribs or stringers. Figure 4.10 contains one example of assembly-part relations: the 
Top_Cover_Assembly class is composed of Skin and Stringer parts. Other 
assembly-part relations can be modelled, but to maintain figure clarity these are 
not included. The represented class hierarchies are not exhaustive and can be 
extended considerably, but are sufficiently complete for the purposes of this case 
study, i.e., for use in annotation using the PPR paradigm (see Section 4.3.4).  

A number of example attributes have been added to the classes. For example, 
the Stringer class has an attribute stringer_type which can be used to express the 
general type of stringer, e.g. Z-stringer, L-stringer, T-stringer, Ω (omega)-stringer. 
Similar to the class hierarchies, the class attributes are not to be considered as 
complete, but rather as a representation of the most important attributes – many 
attributes have been omitted from the representation in Figure 4.10.  

 

 
Figure 4.11: Domain-specific hierarchy for Process class  
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The domain-specific class hierarchy for the Process class is represented in 

Figure 4.11. For this domain-specific hierarchy, the focus is on Process subclasses 
that can be used for structuring and annotating domain knowledge. The task 
activities analysed in Figure 4.7 are used as subclasses of the Process class: 
Preparation, Processing, Optimization and Post_Processing have been modelled. 
These classes are fairly generic and can be used for many design tasks that 
incorporate optimization. The Activity hierarchy can be further extended to 
include the activities that make up the Preparation, Processing, Optimization and 
Post_Processing classes, but given the confidentiality of these activities (as 
indicated in 4.3.1), this is not shown here.   

 

 
Figure 4.12: Domain-specific hierarchy for Resource class 

 
The domain-specific class hierarchy for the Resource class is represented in 

Figure 4.12. The focus is on subclasses that can be used to structure and annotate 
domain knowledge. The resource classes include Material_Resource, 
Tool_Resource, User_Resource and Document_Resource. For each of these 
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classes, a few examples of subclasses are given to better illustrate the class 
hierarchy content. Instances of these subclasses can be related to the task 
analysis performed in Section 4.2.2 (Figure 4.7): for instance, mPDA is an instance 
of Software_Application, whereas DFM requirements and constraints, thickness 
laws and ply specification file(s) are examples of Document_Resource or even 
Technical_Report.  

In order to keep the preceding domain class hierarchy figures clear, the 
relationships between classes and subclasses of the Product, Process and 
Resource trees, e.g. between Part and Material_Resource, have been omitted 
from the figures. The main relationships are given in Table 4.2, which can be seen 
as an addition to the high-level relationships identified in Table 3.7, Section 
3.2.3.3. The is-a relationships have not been included into this overview, but these 
are given in the Figures using the broad-headed arrow UML format. Through 
inheritance, these is-a relationships allow for subclasses to inherit relations.   

 
Table 4.2: Relationships in the design domain ontology 

Class 1 Class 2 Relation 
(name) 

Relation 
(type) 

Part Material_Resource hasResource Aggregation 
Part_Joint Material_Resource hasResource Aggregation 
Part Document_Resource hasResource Aggregation 
Process Document_Resource hasResource Aggregation 
Design_Process Document_Resource hasResource Aggregation 
Design_Process Tool_Resource hasResource Aggregation 
Enterprise_Knowledge_Resource Tool_Resource hasResource Aggregation 
Enterprise_Knowledge_Resource User_Resource hasResource Aggregation 
Composite Matrix_Material contains Composition 
Composite Fibre_Reinforcements contains Composition 

 
The domain ontology as presented here has been used to structure the 

captured knowledge and will be used in the subsequent step to annotate 
(elements of) the knowledge-based application. This is further explained in the 
following Section.  

4.3.4 Modelling & Implementation 

This step consists of two highly related activities: modeling of an Enterprise 
Knowledge Resource for ply continuity optimization and implementation of the 
models into a functioning solution.  

4.3.4.1 Solution Development: EKR Modeling  
The first step in the development of a solution for the ply continuity optimization 
problem is to adopt the Enterprise Knowledge Resource approach, the 
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cornerstone of the KLC ontology. Based on this approach, models are required to 
represent and store: 

1) A set of knowledge articles containing design and manufacturing 
constraints relevant to the design of a manufacturing-compliant ply 
stacking sequence. These constraints have been presented in Section 
4.3.1. 

2) A process model that models the activities (process elements) of the 
design and analysis process and combines knowledge articles, elements 
and code of the mPDA tool, and an input specification file of the wing 
cover to automatically execute the optimization problem. 

3) A set of case reports storing the history of ply stacking sequence 
optimization results, as well as keeping traceability between the results 
obtained, the knowledge used to derive them and the inputs of the 
process. 

 
Using the preceding considerations, an EKR class diagram has been modelled 

for this specific case study and associated task. The UML class diagram is shown in 
Figure 4.13. 
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Figure 4.13: EKR class diagram (UML) for design case study 

 

4.3.4.2 Solution Development: EKR Implementation  
An architecture for the implementation, use and maintenance of EKRS for the 
design domain has been developed, with AKM as a major contributor. Two main 
architectural elements are used to deploy an EKR in practice: 
 

• EKR Environment for Learning by Doing (eLBD): The environment for 
learning by doing (eLBD) is a web solution aimed at supporting end users. 
eLBD is based on AKM. The domain ontology as introduced before and 
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specific AKM models for the representation of knowledge and process 
elements (see further on in this section) have been implemented within 
AKM to enable the construction of EKRs which package the process and 
knowledge elements and the cases. The role of eLBD is not to store 
concept data but the collective thought behind the data (assumptions, 
constraints, rules, procedures and tools).  

• Executable environment for Learning by Doing (xLBD): The executable 
environment for learning by doing (xLBD) is a solution to enable the 
remote execution of EKRs through a web service approach. xLBD uses 
several software applications and languages (Apache Tomcat web server, 
Java, AKM web services and Phoenix Integration Model Center®)  to 
deploy the EKRs as web services. Users can access and execute the 
software remotely, so they do not require a dedicated installation of 
software on their desktops. Once the user is in the system, he or she is 
given an overview of EKRs that are available for use. This overview is 
based upon the user’s security credentials, function and organizational 
position: for instance, a wing box designer for a specific aircraft 
programme will only be able to access EKRs that are related to the design 
and analysis of the wing box for that specific programme. Each EKR stands 
for a single design or analysis task that can be executed by the user. 
Depending on the task, the EKR can be executed automatically (i.e. the 
user presses a ‘run’ button and there is no subsequent user intervention; 
all software is run automatically in the correct order, and relevant inputs 
and outputs are passed on between process stages and eventually 
presented to the user), or the user is involved in the execution of the EKR 
(e.g. by selecting the right input files for a specific analysis task). Given the 
proper security permissions, the user can also inspect, retrieve and 
manage the knowledge contained in the EKR(s). Every time an EKR is 
executed, a case report is automatically populated. This report (based on 
the Case_Report class) registers the inputs supplied, the outputs 
generated and the knowledge used in the case.  

 
The knowledge framework, with the eLBD and xLBD environments at its core, is 
shown in Figure 4.14. The eLBD environment allows users to access EKRs and their 
constituent elements, whereas the xLBD environment allows (remote) execution 
of an EKR. 
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Figure 4.14: Knowledge framework containing the eLBD and xLBD elements (Bermell-

Garcia et al., 2012) 
 

To implement the knowledge framework, models for the knowledge and process 
elements have been developed based upon the presented UML class diagram 
(Figure 4.13) and have been introduced in the Ardans Knowledge Maker (AKM) 
tool. The models are presented below.  

First of all, a generic model for the representation of EKRs has been 
developed. This model is given in Figure 4.15.     
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Figure 4.15: AKM model for Enterprise_Knowledge_Resource class  

 
The EKR model lists metadata regarding authorship, date, version and status. 

The EKR model represents the three main elements of an EKR: EKR_Knowledge, 
EKR_Process and EKR_Case. The latter two classes are represented into the EKR 
model directly, instead of having separate models. Attributes such as objective, 
description and level of automation of the process model are represented. 
Furthermore, the EKR model part concerned with the process model links towards 
a process file: this file is used in the implementation to express the process 
activities and automate the execution of the process. Furthermore, the EKR model 
gives a list of cases: outputs of performing the EKR task. The individual cases are 
represented using their own model. 

Two models have been used to represent knowledge elements for this case 
study. The first model reflects the EKR_Knowledge class of the EKR UML model 
and acts as a container for the set of individual knowledge elements. The 
Knowledge_Element class of the EKR UML model has been given a separate 
model. This has two main parts: first, an informal description of the knowledge 
element is given. This contains attributes for category, (extended) description, 
impact, criticality and type of the knowledge element. The second main part is the 
formal representation of the knowledge element: here, code metadata and actual 
code can be represented into the knowledge element.  

Finally, a model has been created to represent the output of a design task. It 
is used for instantiation of the individual case reports. Its main elements are 
process input, execution process, key parameters and process output fields. The 
process input contains a list of the used knowledge elements and any 
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supplementary input files. The execution process field contains an overview of the 
used process elements. The key parameters field lists the main parameters used 
while executing the process. The process output field contains or links towards 
the output files that were generated after executing the process.  

Using these models, a single EKR for the ply continuity optimization task has 
actually been implemented. 

 

 
Figure 4.16: Partial overview of implemented design and manufacturing constraints 

(Bermell-Garcia et al., 2012) 
 
Figure 4.16 shows a partial overview of the implemented design and 

manufacturing constraints. For the individual knowledge elements (i.e. design and 
manufacturing constraints regarding ply continuity optimization), the AKM model 
supports informal and formal representation. Both representations of the 
constraint are stored in a single knowledge article associated to the EKR. An 
example of a single manufacturing constraint for eLBD users has been shown in 
Figure 4.9. 

Using a combination of the specification file, the applied constraints and the 
knowledge-based application (mPDA), the blending optimization is performed. In 
the implemented version of the architecture, the process is modelled within 
Phoenix Model Center and uses mPDA as its main element to perform the 
blending optimization. The process is executed through the xLBD environment; a 
local or remote user can select the relevant input and constraints to apply for the 
stacking sequence blending and optimization. The user can then execute the 
process, which runs and completes automatically using the process model. The 
result is a composite wing cover design that takes into account design and 
manufacturing constraints. The access to this process is managed by the eLBD 
environment which points the user to the stacking sequence blending 
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optimization EKR, and consequently the related knowledge and outputs (in the 
form of case reports) can be inspected. 

As introduced in Section 4.3.1, mPDA needs two main inputs to run: firstly, it 
takes a design specification file where the wing cover design is represented as a 
set of adjacent discrete cells, each having a specific stacking sequence. After 
importing this data, the different modules of mPDA place requests to the eLBD 
knowledge repository to retrieve the code of relevant design and manufacturing 
constraints to be evaluated. This is achieved at runtime by the use of AKM’s data 
retrieval web service.  
 
The final part of the implemented EKR for ply continuity optimization is embodied 
by the case reports. These reports store the optimized process results, as well as 
the used inputs, knowledge elements and process file. The case reports have been 
implemented in AKM and are stored as separate articles. When an EKR is run 
multiple times, for instance with multiple sets of different inputs, the results are 
gathered in a set of case reports that is listed under the EKR_Case element of an 
EKR. This enables the subsequent inspection of analysis results, but also opens up 
the opportunity to further analyze the results themselves. Case metadata is also 
automatically assigned, which enables consistent categorization and easier search 
and retrieval of historical analysis results. 

As such, AKM is the central point for initiating analysis (accessing eLBD and 
initiating mPDA through the relevant EKR), inspecting the underlying knowledge 
(constraints), and inspecting and /or analyzing the results (case reports). The 
relations between the case reports and the associated content (design inputs; 
design and manufacturing constraints knowledge) have been illustrated in Figure 
4.17, which shows some generic wing cover design input data, a few 
manufacturing constraints and an excerpt of a case report that outlines the results 
of the optimisation effort. 
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Figure 4.17: Case reports (left) and their relation with design inputs and underlying 

knowledge (Bermell-Garcia et al., 2012) 
 
The ply continuity optimization EKR has been annotated using the domain 
ontology and its constituent hierarchies, as introduced in Section 4.3.3.  
 



 

126 
 

 
Figure 4.18: Annotation of the ply continuity optimization EKR  

 
Figure 4.18 shows that a combination of product-, process- and resource-related 
tags can be used to annotate an EKR. The ply continuity optimization EKR has 
been tagged in AKM using the Carbon_Fibre_Reinforced_Plastic class (itself a 
subclass of Material_Resource), the Skin class (subclass of Part), Cover_Assembly 
(subclass of Assembly) and an mPDA object (instance of Tool_Resource class). 
 
To summarize, the outcome of the development effort is a software architecture 
and an implemented solution, containing an EKR for ply continuity optimization. 
The central KLC ontology concept of Enterprise Knowledge Resource serves as an 
instrument to package an automated process with an associated knowledge-
based tool (mPDA), knowledge (design and manufacturing constraints) and the 
history of cases generated using the knowledge and the tools.  
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4.3.5 Analysis & Delivery 

The developed knowledge-based solution is able to optimize a composite wing 
cover conceptual design for ply continuity through blending of stacking 
sequences. The solution is automated. Furthermore, estimates of weight, 
manufacturability and cost are delivered as output of the solution. Pareto fronts 
can be plotted to visualize solution performance. As these results are confidential, 
they are not represented here. 

A rough-order-of-magnitude estimate can be given regarding the non-
recurring and recurring costs that have been necessary to a) develop and 
implement the ply continuity optimization EKR, including design and 
implementation of the software architecture, and b) will be necessary to maintain 
and/or expand the EKR approach. Roughly 6 man-months of development effort 
were spent on the non-recurring development effort. This has focused mostly on 
knowledge model construction, architecture design, building web services, server 
infrastructure and Model Center wrappers, and subsequent implementation of 
the EKR. A rough estimate of effort required to include existing application(s) as a 
new EKR within the eLBD/xLBD framework would be 1-4 man-weeks, depending 
on the state of maturity of knowledge, processes and application code. On the 
recurring cost side, the effort required to introduce new knowledge is fairly 
limited: up to 5 minutes for a knowledge base entry (including relations), up to 5 
minutes to include application code if available beforehand, up to a few hours to 
develop application code if not available beforehand (though this is dependent on 
many factors and can increase significantly based on the language used, the 
experience of the developer, etc).  

The recurring benefits of using a knowledge-based application are dependent 
on the selected application, but for the use case they are consistent with 
experience from other KBE research (Verhagen et al., 2012): a reduction of design 
time from hours to a few minutes – roughly 95-99% – can be achieved. The 
benefits of using the EKR approach are hard to quantify, but can be qualified. First 
of all, using an EKR enables knowledge lifecycle management – knowledge can be 
kept up to date. Furthermore, the supporting framework enables availability of 
knowledge-based applications to a community of end users through the ‘one-
stop’ EKR implementation, which in effect offers a service that is remotely 
accessible and remains traceable. The automatically generated case reports 
enable increased visibility and traceability of the analysis inputs, process and 
results. They enable subsequent analysis, for instance using case-based reasoning 
when multiple case reports are available. The knowledge necessary for 
optimization of ply continuity is gathered, classified and stored in the knowledge 
management tool (AKM) so that when a process is executed in an automated 
environment, the manufacturing decisions are available in the knowledge 
management tool. This moves the manufacturing input requirements outside of 



 

128 
 

the automated process execution loop, allowing the loop to run without any 
human interfaces. At the same time it enables the update of knowledge and tools 
as technology progresses. 

4.4 Discussion of Results 

A knowledge-based solution has been developed for the ply continuity 
optimization problem. It meets the case study requirements by being able to 
optimize ply stacking sequences for a full wing panel and delivering weight, 
manufacturability and cost estimates for conceptual wing panel designs. The 
solution uses knowledge and an automated process approach to deliver 
advantages traditionally associated with knowledge-based engineering 
applications. However, through the use of the EKR approach (as the cornerstone 
of the KLC ontology, and with its attendant models for the included classes), the 
developed KBS can cope with changing knowledge. As a result, knowledge can be 
effectively utilized and maintained. 

With respect to the challenges related to knowledge usability and 
maintainability, the following issues have been addressed in the following 
manner: 
 

• Moving beyond black-box applications and ensuring transparency: 
Knowledge is accessible and traceable through the use of the annotation 
metamodel, and through the use of case reports. Engineering tasks that 
use this knowledge and the resultant outputs are traceable and recorded 
systematically, so that the black-box phenomenon is avoided as much as 
possible. Through the use of the Enterprise Knowledge Resource 
approach, the process model and the associated inputs (the knowledge – 
design and manufacturing constraints – involved within the optimization 
process) and outputs (case reports) are made transparent. In particular, 
the knowledge elements can be accessed, used, maintained and updated 
throughout their life. 

• Task orientation: knowledge involves a ‘capability for effective action’. 
The capability for action is met by constructing an EKR that uses (sets of) 
constraint knowledge to execute a process. Effectiveness of the action is 
realized through task automation – through the use of Model Center, the 
EKR process model is automated, enabling faster optimization and 
evaluation of alternatives for composite wing covers.  

• Expert / end user involvement: Through the EKR approach – and in 
particular the Knowledge class – end users can identify, use, interact with 
and if necessary, maintain or update the relevant knowledge that is used 
to design manufacturable composite wing covers.  
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5 Manufacturing Case Study: Composite Wing Cost 
Modelling & Estimation 

This chapter describes the development of a knowledge-based application that 
supports manufacturing cost evaluation of composite wing covers.  

This case study is the second of a set of three case studies. This case study 
focuses on the manufacturing domain of the aircraft lifecycle. Together, the three 
case studies will shed light on how the overall research objective can be achieved, 
with emphasis on the latter part of the objective: “Support consistent 
formalization, use and maintenance of changing knowledge within aircraft 
lifecycle phases to improve domain-specific modelling, execution and control of 
engineering tasks”. The case studies also offer a practical perspective on the 
following research questions:  
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 
 
The following section introduces the problem for this specific case study in the 
aircraft manufacturing domain. After this, the theory contributions are applied to 
the case study: the Knowledge Lifecycle model is used to identify knowledge 
change, the engineering task is analysed and the KNOMAD methodology steps are 
planned out.  A solution has been developed for the case study problem; 
development and implementation are discussed in detail in Section 5.3. Validation 
of performance with respect to the case study objective(s) and requirements is 
briefly indicated in Section 5.3.5: Analysis & Delivery. The case study concludes 
with a discussion of the results within the context of the dissertation objectives 
and contributions to theory.  

This case study presents an approach to support manufacturing cost 
modelling and estimation for composite wing components.  A solution has been 
developed on the basis of the KLC ontology, using the KNOMAD methodology. As 
in the previous case study, the solution supports the deployment and use of 
knowledge as an element in modular knowledge packages (the previously 
introduced Enterprise Knowledge Resources) that are managed in a central 
knowledge repository. These EKRs can be deployed to support the manufacturing 
cost modelling and estimation task. The developed solution supports 
manufacturing cost evaluation of product concepts at early stages of the design 
process, while offering the opportunity for through-life knowledge support - a 
vital requirement given that the manufacturing knowledge underlying the cost 
model(s) is subject to change. 
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5.1 Case Study Context and Challenges 

The case study concerns a legacy cost model that has been developed at a large 
aerospace OEM to address current issues on cost estimation of conceptual 
designs of composite wing cover parts and assemblies.  

In literature, research on cost modelling is rich and varied. A number of 
authors discuss and categorize current approaches to cost estimation. Niazi et al. 
(2006) give an overview of cost modelling and estimation techniques. Though the 
categorization may be disputed, the overview is fairly comprehensive. 
 

Table 5.1: Product cost modelling and estimation techniques (adapted from Niazi et al. 
(2006)) 

Product cost estimation techniques 
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Intuitive cost 
estimation techniques 

Case-based systems 

 
Decision support 
systems 

Rule-based 
systems 

 
Fuzzy logic 
systems 

 Expert systems 
Analogical cost 
estimation techniques 

Regression analysis model 

 Back propagation neural network model 
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Parametric cost 
estimation techniques 

  

Analytical cost 
estimation techniques 

Operation-based cost models 
Break-down cost models 
Cost tolerance models 
Feature-based cost models 
Activity-based cost models 

 
Another perspective on cost modelling (Curran et al., 2004; Feldman and Shtub, 
2006; Price et al., 2006; Newnes et al., 2008) highlights three approaches, namely 
analogous, parametric and bottom-up cost modelling. Curran et al. (2004) present 
a matrix of comparative assessment for these methods, which is given here in 
Table 5.2. Notably, one of the subsets of bottom-up modelling is physical process 
modelling, which focuses on the time required to carry out work (Curran et al., 
2004). This principle is used in the cost modelling approach outlined in this case 
study. The physical process modelling technique as discussed by Curran et al. 
(2004) bears great similarity to the operation-based cost modelling technique 
identified by Niazi et al. (2006). 
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Table 5.2: Assessment matrix for traditional cost estimation methods (Curran et al., 
2004) 

Approach Advantages Disadvantages 
Bottom-up costing Cause and effect understood 

Very detailed estimate 
Difficult to develop and 
implement 
Substantial, detailed expert data 
are required 
Requires expert knowledge 

Analogous costing Cause and effect understood 
More easily applied than 
bottom-up method 

Appropriate baseline must exist 
Substantial, detailed data are 
required 
Requires expert knowledge 

Parametric costing Easiest to implement 
Non-technical experts can 
apply method 
Uncertainty of the forecast is 
generated 
Allows scope for quantifying 
risk 

Can be difficult to develop 
Factors might be associative but 
not causative 
Extrapolation of existing data to 
forecast future products 
including new developments 
might be unwarranted 

 
Curran et al. (2004) also distinguish between 'traditional' and 'advanced' 

estimating approaches. The three approaches mentioned in Table 5.2 are deemed 
to be traditional, whereas advanced estimating approaches include the use of 
feature-based modelling, fuzzy logic, neural networks, uncertainty modelling, and 
data mining. Curran et al. (2004) also introduce the genetic causal cost modelling 
approach to address the need for a more scientifically based methodology for cost 
estimation. 

Newnes et al. (2008) add to this perspective by considering cost estimation 
approaches as being 'generative' or 'parametric'. In the generative process, the 
cost estimation builds upon the data that is gathered during the design process. 
Consequently, the accuracy of the costing estimate depends on the level of data 
detail. In parametric approaches, estimates are “achieved based on past 
experience, using findings from past products and estimating the expected cost” 
(Newnes et al., 2008). Parametric approaches distinguish themselves by the use of 
cost-estimating relationships (CER).  

Newnes et al. (2008)’s categorization relates closely to the level of fidelity of 
the cost estimation approaches; as Price et al. (2006) indicate, “analysis fidelity 
relates to the degree of detail and accuracy contained in a given analysis model”. 
Price et al. (2006) distinguish three levels of fidelity. Low fidelity models use 
simple equations and look-up tables, and frequently do not have associations with 
geometric models. Medium fidelity models use some form of linear analysis in 
combination with geometric model information and high fidelity models contain a 
lot of detail while modelling non-linear behaviour. When looking at the issue of 
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fidelity from a more multidisciplinary perspective, a number of research gaps can 
be identified (adapted from Price et al. (2006)) – see Table 5.3.  

 
Table 5.3: Disciplines versus fidelity (adapted from Price et al. (2006)) 

 
 
The modelling approach used in this case study moves from low to medium 

fidelity: it combines relatively detailed geometric model information with linear 
analysis and look-up tables. The resulting cost model can be classified as bottom-
up, as it uses a physical process modelling approach to estimate costs. In its legacy 
form, the cost model is spreadsheet-based. For a given product with adjustable 
characteristics (e.g. material and geometry), it allows for the estimation of time 
and cost associated with manufacturing process options. The model has been 
developed for a range of composite materials and manufacturing processes. 

The core cost modelling approach is to use geometry input, manufacturing 
parameters and rules representing manufacturing processes and underlying sub-
processes to arrive at estimates for process times and costs, which are 
subsequently added to arrive at totals for time and cost. The approach can be 
schematically summarized into a calculation process with a number of standard 
elements, as illustrated in Figure 5.1.  
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Figure 5.1: Standard cost modelling approach 

 
When analysing the full cost model, the standard model elements can be 
generalised and more properly classified. The following basic cost model elements 
are identified: 
 

• Cost model parameters: 
o Process parameters: These are single values associated to 

process parameters expressing processes with constant time 
requirements for a given product and process combination 
(e.g. autoclave time) or production rates for a given product 
and process combination (e.g. cut rate). In most cases, they 
come from existing manufacturing cost estimation data and 
tools. For the remaining cases, cost estimators have identified 
the best possible parameter values based on expert 
assumptions and estimation.  

o Geometric parameters: these parameters express the 
product geometry. This geometry can be added to the model 
in two ways. The first and preferred option is to import the 
geometry into the spreadsheet from CATIA using a conversion 
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from XML data into so-called 'fishtail' plots of product 
geometry in Excel. In this way, up to date product geometry is 
imported into the cost model. The alternative is to manually 
enter product geometry values, but entering this data 
requires more effort, the process is prone to error and data 
can become out of date. 

• User inputs: Users can choose some inputs to the cost model to 
reflect choices in manufacturing processes (e.g. automated tape 
laying or hot roll forming, or the applied amount of non-destructive 
testing) and product design (e.g. the number and position of spar 
caps). User inputs are usually implemented as value choices that 
modify the behaviour of cost model formulas through the use of “IF-
THEN” rules.  

• Model equations: These are formulas that use process parameters, 
geometric parameters and/or user inputs to compute time and cost 
estimates for each manufacturing process. 

 
The cost model is discussed in more detail in section 5.3.1: Knowledge 

capture, which includes examples for geometric input, a full sub-process and 
estimation output.  

 
The legacy cost model has a number of drawbacks. First of all, the development of 
the cost model has made it very difficult to manage its complexity, as the evolved 
model consists of many interrelated formulas and inputs that are insufficiently 
classified. An associated drawback is that the inputs used for the model are not 
maintained on a shared base, but are instantiated for each version of the model: 
each user has a 'unique' spreadsheet model. If a user makes changes to 
parameter values to adjust for new knowledge, these changes are not shared with 
other cost model instances in the business. Maintainability of cost model 
knowledge is a significant problem. 

Another drawback of the legacy cost model is its rather inflexible, monolithic 
nature: the current spreadsheet implementation is focused on certain process-
product combinations and does not allow for easy mixing of different materials or 
sub-processes. A possible route to address this would be to enable the assembly 
of cost model elements that are stored in a managed environment. Also, the cost 
model is maintained principally by only two persons, as the complexity of the 
model precludes more direct governability by the end users (even though the 
latter can still configure user inputs, variation in the process parameters and 
equations is discouraged). This is a business risk, as the full set of required 
modelling knowledge resides with only two persons in the organization. Both the 
inflexible nature of the cost model and the lack of more direct control by the end 
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user provide significant challenges for user involvement and transparency of 
knowledge. Also, in its evolved form, the cost model can be typified as a ‘black-
box’ application. Because of its complexity and its distribution over multiple 
spreadsheets and spreadsheet tabs, a user effectively has no other option than to 
trust the model output. The user must go to considerable lengths to retrieve the 
original knowledge sources behind the implemented formulas and parameters; 
the supporting informal knowledge is also very hard to find.  

The assumptions, inputs, operations and outputs of the cost model are not 
managed from a life-cycle perspective. There are currently little to no provisions 
for explanation of the rationale behind assumptions. Furthermore, the cost model 
knowledge, embodied in model inputs, rules and outputs, changes during the 
lifetime of the cost model (see Section 5.2.1), but these changes are not stored, 
let alone tracked. This lack of knowledge maintainability is a significant stumbling 
block in the learning process towards composite component production and its 
associated cost estimation.   

 
The consolidated objective of the case study is to develop and implement a proof-
of-concept knowledge-based solution for cost modelling and estimation of 
composite wing cover manufacturing processes. The following requirements must 
be met:  

 
1) The solution must be able to support end users in composition, use and 

control of a cost model; 
2) The solution must give the possibility to quickly estimate cost for 

composite wing covers; 
3) The solution must be automated to the fullest extent possible. 
 
Validation with respect to these requirements is performed in Section 5.3.5: 

Analysis & Delivery.  
The introduced problem is related to knowledge change and consequently to 

research challenges regarding knowledge usability and maintainability. The 
following issues will be taken into account in the case study: 
 

• Moving beyond black-box applications and ensuring transparency: As 
mentioned before, the cost model can be typified as a 'black-box' model: 
the knowledge is difficult to access, inspect and maintain. To support 
knowledge maintenance, it is necessary to move beyond the current 
black-box implementation by supporting categorization, accessibility, 
traceability and subsequent sourcing of knowledge. The solution must 
enable the storing, justifying and updating of cost model knowledge 
elements and must support recording of previous versions of the cost 
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model. To ensure transparency, it should be clear which knowledge is 
involved within the cost modelling and estimation solution, which inputs 
are necessary, which steps are taken within a process and which outputs 
are generated. The solution must enable a standard approach of costing 
parts.  

• Task orientation: knowledge implies a ‘capability for effective action’. The 
capability for action can be met by explicitly associating sets of knowledge 
with functional tasks, i.e. the estimation of costs related to specific 
products and/or manufacturing processes. The solution will be designed 
to improve upon the legacy black-box implementation of the cost 
modelling and estimation capability. To achieve this, the solution will not 
replace the use of spreadsheets to compute the cost of components. 
However, it manages the knowledge driving the cost model and deploys it 
to a working spreadsheet from which users can understand the rationale 
of the computed cost and access the underlying knowledge. 

• Expert / end user involvement: End users must be able to identify, use, 
interact with and if necessary, maintain or update the cost model. The 
primary aim of the resulting capability is to be able to estimate costs by 
'running' cost models using trustworthy and up-to-date knowledge.  

 
Through these considerations, the case study contributes to validation of the 
overall research contributions to theory. This is discussed in Section 5.4: 
Discussion of Results. 

5.2 Application of Theory to Manufacturing Case Study 

Before developing a solution, this section acts as an intermediate step by applying 
the developed theory to the case. First, the Knowledge Lifecycle Model is applied 
to identify knowledge change for the cost modelling and estimation task. This task 
is subsequently analysed in support of further application of the KLC ontology to 
solution development in the Results section. Finally, it will be shown how the 
KNOMAD steps will be applied to this case to guide the subsequent solution 
development in Section 4.3: Results.  

5.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 
Change  

The research problem addressed in this use case emerges from the difficulties of 
coping with the complexity added to the cost model during its evolution. This 
increase in complexity is illustrated in Figure 5.2. 
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Figure 5.2: Cost model evolution 

 
From this Figure, the following cost model stages can be observed:  
 

• Cost model creation: An initial cost model using manufacturing process 
aspects that influence the cost of composite wing covers was captured 
within a spreadsheet. The information used was not completely new since 
some of the parameters and their values came from existing cost 
estimation data and tools.  

• Cost model growth: The cost model gained enough relevance and trust 
among cost engineers, resulting in an expansion of scope. Further 
developments on the cost model allowed users to consider costs for 
various product-process combinations using up to 5 different composite 
materials / material types (only three are shown in Figure 5.2). The 
necessary knowledge was distributed across spreadsheet tabs. In this 
growing process, new knowledge was added to the model. However, 
existing pieces of knowledge were reused across the material tabs. At that 
stage, over 400 process-related parameters were at the basis of the 
model, augmented with some 30 parameters for which the values were 
chosen by the user (see Section 5.3.1 for more detail). These parameters 
were driving hundreds if not thousands intermediate calculations, 
frequently with unique formulas to take into account user configurations, 
to arrive at process time and cost estimates.  The model had become a 
very complex web of knowledge interactions, in which most knowledge 
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elements had become tacit in nature as these elements would require the 
explanation of an expert to make sense to outsiders.  

• Cost model decomposition: Further enrichment of the cost model 
(addition of materials, products and processes) forced its developers to 
split it into pieces. Other reasons to decompose the model could be found 
in the need to distribute it to different users responsible for the cost 
estimation for different composite materials and material types. In this 
process, some of the knowledge was classified and distributed to its 
consumers. However, a significant risk of inconsistency and duplication of 
data, information and knowledge emerged, as well as difficulties with 
consistency in data fidelity. Furthermore, the complexity of the 
spreadsheet made it difficult for management and advanced use by 
anyone other than the creators.  

 
As can be seen from these stages, knowledge change for this case study is 

embodied in cost model change with respect to data, information and knowledge. 
Data changes when parameter values, for instance for manufacturing process 
(steps) such as bagging, curing, cutting or non-destructive testing, are changed to 
reflect updated process specifications (i.e. update). The data context also changes 
(i.e. maintain), as more material types and manufacturing processes are added 
when the cost model is expanded. This constitutes an information change in the 
cost model. Knowledge contained in the model changes in a number of ways. First 
of all, the equations and rules expressing the core knowledge about a 
manufacturing process may be updated as processes change over time. 
Furthermore, the context of the knowledge changes (maintain). Finally, the 
capability for effective action - cost estimation, in this case - at first grows, but 
later reduces due to model complexity.  

Similar to the design case study, the preceding discussion qualitatively shows 
that knowledge is subject to change with respect to the cost modelling and 
estimation task. Quantification of this change using the Knowledge Lifecycle 
Model concepts of knowledge actions has not been performed due to the 
historical nature of the cost model. 

5.2.2 Application of KLC Ontology: Task Analysis 

The cost modelling and estimation task is given in Figure 5.3 as an A-0 IDEF0 
diagram. For the legacy process, the cost model is implemented in Excel. A cost 
engineer can use the cost model in conjunction with geometry and process 
parameters to produce cost estimates for specific combinations of manufacturing 
processes and products. To do so, design choices have to be indicated in the 
model by the user. 
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Figure 5.3: IDEF0 A-0 diagram for cost modelling and estimation task 

 
The task is split up into several subtasks, which are represented in Figure 5.4 

as an A0 IDEF0 diagram. The first subtask is preparation: the cost engineer 
retrieves a generic cost model from the company repository – a project hard-drive 
for the legacy process. The engineer then manipulates the model by specifying or 
importing product geometry and making design choices (e.g. which manufacturing 
process for production of a specific part). The output of this subtask is a specified 
cost model for a particular product-process combination. The final subtask is the 
generation of a cost estimation report, which typically consists of the construction 
of tables and/or graphs based on the cost model output for use in company 
reports.  
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Figure 5.4: IDEF0 A0 diagram for cost modelling and estimation subtasks 

 
The actual estimation of cost relies on cost functions for manufacturing 

process-product combinations that are implemented in the cost model. This is 
explained further in Section 5.3.1. 

5.2.3 Application of KNOMAD: Solution Approach 

The KNOMAD methodology as discussed in Section 3.3 is adopted to develop a 
knowledge-based application for the case study problem. The KNOMAD steps 
relative to this case study are shown in Figure 5.5. This figure shows the main 
KNOMAD steps (Knowledge Capture & Identification of Knowledge Change; 
Normalisation; Organisation; Modelling & Implementation; Analysis & Delivery) 
with the associated activities that are required for this particular case study.  

In the first step (Knowledge Capture & Identification of Knowledge Change), 
the justification for and scope of the knowledge-based application is established, 
followed by capture of the knowledge and process elements. The cost model 
parameters and equations as well as the inputs to the problem are of particular 
interest. As knowledge change for this case study has already been considered in 
Section 5.2.1, this activity is not repeated. For the second step (Normalisation), 
the focus is on checking data quality and establishing input and output formats.  
The third step (Organisation) considers development of a domain ontology that 
holds the relevant concepts and relationships for this particular case study. It is 
split up into three parts: generation of product, process and resource class 
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diagrams. The fourth step (Modelling & Implementation) concerns the 
development of models (in the Modelling step), architecture and solution (in the 
Implementation step). As part of the ontology-based approach, the task and 
domain ontologies are implemented in AKM to support the developed solution. 
Finally, the Analysis and Delivery steps are combined into one: performance of the 
solution is assessed relative to the requirements, and the costs and benefits of the 
solution are explored. 

 

 
Figure 5.5: Application of KNOMAD to manufacturing case study – flow chart 

 

5.3 Results  

The next section describes the development of a knowledge-based application for 
the cost modelling and estimation problem. The proof-of-concept solution can 
cope with data, information and knowledge change and addresses associated 
issues related to knowledge usability and maintainability. The development of the 
solution is based upon application of the revised KNOMAD methodology. 
Furthermore, the principles and concepts of the Knowledge Lifecycle ontology are 
used. The following sections are compliant with the KNOMAD steps.  
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5.3.1 Knowledge Identification & Capture 

In this Section, an analysis will be performed on part of the full cost model 
focusing on carbon fibre-reinforced plastic (CFRP) wing top cover manufacturing. 
As introduced before, the core cost modelling approach uses geometry input, 
manufacturing parameters and rules representing manufacturing processes and 
underlying sub-processes to arrive at estimates for process times and costs.  

 
Table 5.4: Example cost modelling approach: T-stringer Production  

 
 
A straightforward example of the general cost modelling approach is shown 

in Table 5.4. This table shows the basic steps involved at estimating the costs for 
the production of CFRP T-stringers, which are parts (potentially) involved in 
composite wing cover manufacturing. This example shows the main steps in 
arriving at process time estimates. At the left-hand side, the overall process (T-
stringer production) is subdivided into sub-processes, which are subdivided 
themselves into two to three detailed processes. To initiate the analysis, a set of 
geometry parameters (e.g. weight, slab perimeter, number of stringer (N 
stringers), length) are derived from geometric models that are coupled with the 
cost model spreadsheets. An example of imported geometry data for a composite 
wing top cover is given in Figure 5.6, which shows wing cover geometry data on 
the right hand side and intermediate calculations for thickness, weight and 
processing time on the left hand side§. Furthermore, some typical process 
parameters are taken from a set of known or estimated parameters (e.g. set time 
for Automated Tape Laying (ATL) tool load and unload): example parameters are 
given in Figure 5.7, though values have been excluded for confidentiality. The 
initial calculation parameters derived from geometry or from known parameter 
sets are allocated per detailed process (as given in the left-most column under the 

                                                           
§ The data values are illegible on purpose, to maintain confidentiality. 
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‘Calculation’ heading)**.  They are then multiplied with or divided by applicable 
manufacturing process constants or rates, both in baseline and target forms. The 
baseline form represents process performance that is currently achieved, whereas 
the target form represents the anticipated performance by the time of production 
start. By and large, the rates and constants in the right-most ‘Calculation’ column 
(e.g. deposition rate, cut rate) are taken from parameter sets that almost 
invariably lack justification and traceability of data.  

 

 
Figure 5.6: Example of imported geometry data for a composite wing top cover  
 

                                                           
** The actual values for the calculation parameters in Table 5.4 have been excluded for 
confidentiality reasons. 
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Figure 5.7: Example of process parameters 

 
The results of this approach are time estimates for the detailed process steps. 

This is followed by a number of calculations to arrive at cost estimates (e.g. 
through the simple step of multiplication of process times with labour rates), and 
supplemented with logistical cost estimation (e.g. capital outlay for a production 
run of certain size).  

The format for cost estimation output is shown in Figure 5.8. Confidential 
information (i.e. geometry and cost estimation values) has been excluded. 

 

 
Figure 5.8: Cost estimation output format 

 

5.3.2 Normalization 

To ensure knowledge quality and compliance to a standard, measures have been 
performed on the captured knowledge: 
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• Traceability & Ownership: the captured knowledge has been recorded using a 

pre-defined format that has been designed and agreed upon during the 
research process. The format is implemented in a knowledge management 
tool (the previously introduced Ardans Knowledge Maker, or AKM – see 
Section 4.3.4.2) and has two main components. First, an informal 
representation of a cost model element is recorded; it consists of a natural 
language description explaining its applicability and properties and is 
accompanied by any relevant illustrations. It also includes metadata, i.e. data 
about data, for instance ownership, authorship, date of creation and date of 
last interaction. Secondly, a formal representation of a model element either 
records the data for a parameter or the Excel code for a model equation. An 
example of a cost model element is illustrated in Figure 5.9. 
 

 
Figure 5.9: Example of cost model element stored in AKM  

 
For this specific element the formal representation is used to contain Excel 
code for calculation of a certain stringer length. This code uses a user choice 
between manual geometry and fishtail (imported) geometry for looking up a 
geometry parameter value.  

• Accuracy & reliability: the pre-existing Excel cost model has been used as a 
baseline for the solution development. The required manufacturing 
parameters (input, process and output) have been identified and captured. 
The resulting standardized formats are further explained in Section 5.3.4: 
Modelling and Implementation.  
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5.3.3 Organisation  

The next step is to provide a knowledge structure that can be used to store and 
represent the captured knowledge.  

To achieve this, it is necessary to construct a domain-specific set of concepts 
and relationships: a domain ontology. To elicit the applicable concepts and 
relationships for the aerospace composite manufacturing ontology, various 
sources have been employed. First of all, a small number (N = 4) of experts from 
the manufacturer have been interviewed. The results have been augmented by 
analysis of company sources, including the original cost model. This model has 
been organised to conform to a very basic classification after its evolution into 
several decomposed spreadsheets. This decomposition was made on the basis of 
the composite manufacturing technology, which incorporates material type and 
material processing form: similar models exist for different materials and forms, 
e.g. carbon-fibre reinforced plastics (CFRP) prepreg, CFRP dry fibre or CFRP 
sandwich. Besides this elementary subdivision, the cost models themselves are 
organised according to a manufacturing breakdown structure and manufacturing 
processes. The breakdown structure is a hierarchical breakdown of assemblies 
and products. In the cost model, similar calculations are performed for different 
products, for instance the bottom and top covers of the wing box. Furthermore, 
similar manufacturing processes are employed for parts of these products. For 
instance, the T-stringers from Table 5.4 are used in both bottom and top cover 
production. 

In this section, excerpts of the domain-specific class hierarchies are given to 
explain how the manufacturing domain ontology is composed. The domain 
ontology development is not exhaustive and can be extended using considerably 
more detailed concept representations, but it is considered sufficiently complete 
for the purposes of this case study, i.e., for use in annotation of the solution 
(EKRs). Note that the manufacturing domain ontology is based on the PPR 
paradigm as implemented in the KLC ontology (see Section 3.2.3.3). It 
consequently shares the top-level classes and relationships given in Figure 3.7 and 
Table 3.7, which are also the basis of the top-level structures for the design and 
maintenance domain ontologies. 

The PPR paradigm as contained in the high-level concepts of the KLC ontology 
(Product, Process and Resource) is extended for this case study in the form of the 
manufacturing breakdown structure, manufacturing processes and composite 
manufacturing material resources. These concepts can be used to organise and 
annotate the cost model elements. As in the design domain, these concepts of the 
KLC ontology have been extended into domain-specific class hierarchies – in fact, 
most of the subclasses and relations from the design domain ontology have been 
maintained. Figure 4.10, Figure 4.11 and Figure 4.12 can therefore be seen as a 
baseline for the manufacturing domain ontology. However, the manufacturing 
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domain ontology is extended with a few classes and attributes when compared to 
the design domain ontology. 

The first domain-specific extension concerns the manufacturing breakdown 
structure as captured in the Product class hierarchy (Figure 5.10). It retains a large 
number of classes previously introduced as part of the design domain ontology 
(Section 4.3.3), including the Assembly class and its subclasses (with the Wing Box 
Assembly being a particularly important example) and the Part class (including 
Spar, Rib, Skin and Stringer). Only a few additions were made to these classes to 
incorporate case study-specific concepts: classes for the front and rear spar 
assemblies, and the Boom and Supports parts.  

 

 
Figure 5.10: extended Product class hierarchy for the manufacturing domain 
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The domain-specific class hierarchy for the Process class is represented in 
Figure 5.11. For this domain-specific hierarchy, the focus is again on Process 
subclasses that can be used for structuring and annotating domain knowledge. 
Two subclasses are of particular interest: Manufacturing_Process and 
Cost_Modelling_Process. The former contains classes for the preparation, 
processing and post-processing steps that are also used to organise the cost 
model. Examples are given for each of these steps: Preparation_Process for 
instance contains a Tool_Drying class, Processing for instance contains 
Automated_Tape_Laying, and Post_Processing contains for instance 
Non_Destructive_Testing. To keep the figure clear, only two examples have been 
given per step; the domain ontology implemented in the solution has many more 
subclasses. The Cost_Modelling_Process class is inspired by the IDEF0 
representation of the cost modelling task, as modelled in Section 5.2.2 (Figure 
5.4). Its constituent activities are not included into the Figure.  
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Figure 5.11: extended Process class hierarchy for the manufacturing domain 

 
The Resource class hierarchy for the manufacturing domain is also largely 

similar to the design domain class hierarchy – see Figure 4.12. Some changes have 
been made to the Material_Resource class (Figure 5.12). An attribute specifying 
the fibre processing type (e.g. prepreg, dry fibre) has been added to the 
Fibre_reinforcements class. Similarly, an attribute specifying the matrix material 
type has been added to the Matrix_Material class. Furthermore, an 
Equipment_Resource class has been added to represent manufacturing 
equipment into the domain ontology. 



 

150 
 

 

 
Figure 5.12: extended Resource class hierarchy for the manufacturing domain 

 
The manufacturing domain ontology consists of the combined Product, 

Process and Resource class hierarchies and associated relations. It has been used 
to structure the captured knowledge and will be used in the subsequent step to 
annotate (elements of) the developed solution. This is further explained in the 
following Section. 

5.3.4 Modelling & Implementation 

This step consists of two activities: modelling of Enterprise Knowledge Resources 
(EKRs) for composite manufacturing cost modelling and estimation, and 
implementation of the EKRs into a functioning solution.  

5.3.4.1 Solution Development: EKR Modelling 
In modelling EKRs for the cost modelling and estimation problem, the focus is on a 
solution that enables knowledge change to be managed, while offering improved 
knowledge utilization and maintainability. This is indicated in Figure 5.13. This 
Figure expresses that modular cost model 'building blocks' can be stored in a 
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shared and managed knowledge base. From this knowledge base, users can 
assemble cost models using specific building blocks. Users can then make changes 
to the knowledge contained in the cost models: these changes are communicated 
to the knowledge base, where the changes can be incorporated after validation of 
correctness and reliability. 

 

 
Figure 5.13: Managed cost model evolution 

 
To realize the vision expressed in Figure 5.13, the Enterprise Knowledge Resource 
concept from the KLC ontology is employed. The following EKR classes have been 
modelled: 
 

• Enterprise Knowledge Resource: A set of EKRs have been modelled to 
enable a modular approach for flexible assembly of unique cost models. 
To achieve this, the existing cost model has been reverse-engineered to 
define 'building blocks' that contain all the geometry inputs, process 
inputs, user inputs and model formulas belonging to a specific Product-
Process-Resource combination. A single EKR formalizes a single building 
block and represents a single cost estimation task for manufacturing of a 
specific Product-Process-Resource combination. An EKR uses a semi-
automated process to combine knowledge input parameters and formulas 
into a functioning, self-contained cost model in an Excel spreadsheet. 



 

152 
 

Several EKRs or building blocks can be put together to define a complete 
cost model. The use of building blocks in this manner has the desired 
effect of achieving central management of the inputs and formulas, 
instead of having multiple spreadsheet instances of the cost model.   

• EKR_Knowledge: the EKR uses knowledge elements which are kept in 
individual knowledge articles. Some examples have been presented in 
Section 5.3.1. The knowledge articles capture the main cost model 
entities: process parameters, manual geometry parameters, user inputs 
and model equations. These elements are modelled and implemented on 
an individual basis to allow knowledge change to be managed in the 
knowledge base: if a user changes a single parameter in the spreadsheet 
cost model, this change can be back-propagated to the knowledge base, 
where only a single knowledge element is changed.  

• EKR_Process: the EKR uses a process model for combining the individual 
knowledge elements (process parameters, user inputs, model equations 
and geometry – either from manual entry or imported from CATIA) and 
outputs them in a pre-configured Excel worksheet. For each EKR, the 
subprocesses and detailed steps/activities are modelled in the EKR. 
Consider the example from Section 5.3.1, T-stringer production (Table 
5.4). The process model consists of the overall process, subprocesses and 
detailed processes as given on the left-hand side of Table 5.4; it is given in 
process form in Figure 5.14.   

 

 
Figure 5.14: Process model for CFRP T-stringer production EKR 

 
• EKR_Case: Spreadsheet results from generated cost models and 

subsequent user manipulations are not yet stored into a central case 
repository. Instead, parameter changes are tracked within the 
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spreadsheet while being used. Upon changes in the worksheet, parameter 
and/or formula changes are fed back into the knowledge base.  

 
Using the preceding considerations, an EKR class diagram has been modelled 

for this specific case study and associated task. The UML class diagram is shown in 
Figure 5.15 and includes the EKR_Knowledge, EKR_Process and EKR_Case classes. 
Note in particular the Knowledge_Element class, which contains the specific 
attributes necessary for the manufacturing case study, including the excel_name, 
baseline_value and target_value attributes.  

 

 
Figure 5.15: EKR class diagram (UML) for manufacturing case study 

 
The EKRs and constituent classes such as Knowledge_Element are annotated 
using the previously introduced domain ontology. The composite manufacturing 
material resource, product breakdown structure and manufacturing process class 
hierarchies together offer the necessary classification richness to annotate all 
possible EKRs that can be used to compose a cost model for this case study. Using 
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these classification hierarchies allows for unique combinations of semantic tags 
for annotation of a specific building block, supporting search and retrieval by end 
users. An example of this is given in Figure 5.16, where PPR classes 
(Equipment_Resource, Material_Resource, Manufacturing_Process, Part, 
Assembly) taken from the domain ontology class hierarchies as given in Section 
5.3.3 are associated with the Enterprise_Knowledge_Resource class. Similarly, 
the other EKR classes (such as Knowledge_Element and Process_Element) can be 
annotated using the same PPR annotation tags. A specific annotation example is 
given in the next Section. 

 

 
Figure 5.16: Semantic annotation of a cost model EKR  
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The EKRs can be used to construct an integrated cost model. The proposed 

solution must be able to manage duplicated knowledge elements when multiple 
EKRs with similar knowledge inputs are selected and exported. Also, the solution 
must have the capability of coping with changes in the spreadsheet environment 
and feeding back these changes into the knowledge base. This process must be 
subjected to a validation process: updates in the knowledge base must be shared 
and agreed upon before acceptance of knowledge base changes. These issues are 
addressed in the EKR implementation section of the solution development. 
 

5.3.4.2 Solution Development: EKR Implementation 
 
To implement the EKR / building block approach and associated models, an 
implementation architecture has been devised (Figure 5.17). 

 

 
Figure 5.17: Implementation architecture 

 
The architecture consists of the following main elements: 
 

• Knowledge Base: this repository holds the EKRs (cost model building 
blocks), including the knowledge elements and process models that are 
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used to compose the cost model building blocks. The knowledge base has 
been built in Ardans Knowledge Maker (AKM). Each EKR element is 
represented by a knowledge base instantiation, i.e., an AKM knowledge 
article. An example of a knowledge element implemented in AKM has 
been given in Figure 5.9.  When the knowledge in an article is updated, a 
new version is made. The old version is stored, but the new version 
becomes the 'default' representation and is used in cost model 
composition. 

• Knowledge Reuse Engine: this architectural element drives the querying 
of the knowledge base and retrieval of knowledge elements for the cost 
model building blocks. It consists of a web services query module and a 
spreadsheet composition module. The latter has been composed using a 
VBA macro in Microsoft Excel.  

• Excel Spreadsheet: the spreadsheet application receives the building 
blocks from the web service. The spreadsheet composition module 
automatically builds the resultant cost model, with all inputs, formulas 
and outputs in place. Any double entries are checked and only one 
representation is maintained within the model. The cost model inherits 
default values from the knowledge base for the user inputs, but these and 
the other parameters can be changed to suit the user needs. A function is 
included to compare the cost model elements with the knowledge 
contained in the knowledge base; if the user makes changes in the open 
spreadsheet, they can then compare the resulting changes with the 
original values and subsequently choose to update the knowledge base 
based on the outcome. Minor and major changes to the cost model (e.g. 
changes in formulas or changes in building blocks) can be performed by 
updating the relevant knowledge articles. Through the modularised 
approach, the changes are automatically incorporated into the building 
blocks and subsequently into any generated spreadsheet-based cost 
model. 
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Figure 5.18: User process for cost model composition using proof-of-concept solution  

 
The user process for using the knowledge-based solution is given in Figure 5.18. 
To illustrate how the process works in practice, an example is presented here that 
was used as part of a validation exercise. The example concerns the production of 
CFRP T-stringers for a wing top cover, as presented before in Section 5.3.1. This 
EKR has been annotated using the classes shown in Figure 5.19. These are part of 
the manufacturing domain ontology introduced in Section 5.3.3. 

 

 
Figure 5.19: Annotation of the CFRP T-stringer EKR 
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The user now follows the following process to produce a cost model for this 

engineering task, as illustrated in Figure 5.18. The Figure shows that after opening 
a spreadsheet-integrated Visual Basic macro (step 1) and calling the AKM 
environment, the user employs the semantic labels as shown in Figure 5.19 to 
search for the EKR.  The corresponding search result displays the suitable EKR(s) 
(step 2). The relevant EKR is subsequently selected (step 3) and exported to the 
spreadsheet application using a web service. The supporting Visual Basic macro 
automatically generates the cost model (step 4) that belongs to the building 
block(s). After this, the user is free to make choices and changes in the 
spreadsheet environment to arrive at customised process time and cost estimates 
(step 5). The changes can be checked against the existing knowledge base as a 
'live link' is maintained between the two applications. If necessary, the knowledge 
base can be updated to support data, information or knowledge change (step 6).    

5.3.5 Analysis & Delivery 

The Knowledge Lifecycle Model, the KLC ontology and the KNOMAD methodology 
have been applied to construct a proof-of-concept solution for knowledge-based 
cost modelling and estimation of composite wing cover manufacturing processes. 
The solution meets the following case study requirements: 
 
• It supports end users in the composition, use and control of cost models: 

through the EKRs, cost models can be composed. They can be used within a 
spreadsheet environment. Storing and managing the EKRs in a knowledge 
base means that the knowledge and process elements that make up an EKR 
are controlled: any changes can be validated and shared using AKM’s 
functionality.  

• The solution allows for flexible and fast estimation of cost for composite wing 
covers using the EKRs. 

 
The implemented proof-of-concept solution consists of three independent EKRs – 
with respect to the full cost model, the functionality is limited. The functionality 
has been validated through successful application in practice, for which a 
representative example has been presented in the preceding Sections. The 
associated user process has been validated at the OEM company through expert 
opinion and user feedback. The involved experts have intimated that efforts 
related to cost model composition and maintenance would be reduced 
significantly when using the developed solution. However, as the functional 
solution has been developed to a proof-of-concept stage (at Technology 
Readiness Level 3, or TRL3), quantification of costs and benefits of the tool was 
not considered. The following qualitative observations can however be made. 
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Firstly, the solution to the case study provides knowledge life-cycle 
management through the inherent capabilities of the AKM tool and through the 
EKR approach. In particular, the provisions for explicating the justification behind 
knowledge elements, the ‘live link’ between the knowledge base and the 
spreadsheet application, and the possibility to track the change of knowledge 
through the retention of historical knowledge articles contribute to a significant 
improvement with respect to the legacy cost model.  

Secondly, the solution also facilitates knowledge utilization through the 
retention and exploitation of existing and legacy models, i.e., spreadsheet models, 
which has ensured that users keep using familiar and trusted tools and processes. 
Furthermore, the use of a dedicated knowledge base, with the associated 
provisions to ensure the availability of trustworthy knowledge, assures users that 
the right knowledge is available at the right time.  

Thirdly, the solution addressed knowledge transparency by including 
semantic annotation and provision for knowledge explication. The difficulty with 
actually understanding complicated or dense legacy tools has been highlighted so 
that visibility is interpreted primarily in terms of the user being able to understand 
the rationale embedded into the tool.  
 
In its current proof-of-concept incarnation, the knowledge-based cost modelling 
solution is limited in several aspects. First, the whole process is only semi-
automatic. Composition of a cost model still requires non-productive steps that 
do not add value, though the overall time spent on model composition is reduced. 
Another limitation is the fact that the spreadsheet results from generated cost 
models and subsequent user manipulations are not yet stored into a central 
repository for the company, as indicated in Section 5.3.4.2. Implementing this 
would amount to better adherence to the 'Case' part of the EKR approach. A final 
limitation of the research is that the overall cost modelling capacity has not yet 
been fully addressed in informal terms: whereas the individual knowledge articles 
do feature informal knowledge, the higher-level process does not. 

5.4 Discussion of Results 

With respect to the usability and maintainability challenges that are associated 
with the contributions of this dissertation, the following can be observed: 

 
• Moving beyond black-box applications and ensuring transparency: The 

developed solution is designed to improve upon the current black-box 
implementation of the cost modelling capability. To achieve this, the 
solution does not replace the natural use of spreadsheets to compute the 
cost of components. However, it manages the knowledge driving the cost 
model and deploys it to a working spreadsheet from which users can 
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understand the rationale of the computed cost. Knowledge is categorized, 
easily accessible and usable, and can be maintained and/or updated over 
life. Previous versions of the cost model (elements) are stored. 
Furthermore, the use of the EKR approach makes the cost model solution 
transparent. A cost modelling and estimation EKR makes it clear which 
knowledge is involved within the cost modelling and estimation solution, 
which inputs are necessary, which steps are taken within the process and 
which outputs are generated. The knowledge base enables storing, 
justifying and updating cost model knowledge elements and records 
previous versions of the cost model. 

• Task orientation: The EKRs represent specific engineering tasks in the 
form of modular cost modelling elements. They offer the possibility to 
compose a cost model using modular building blocks. The resulting tailor-
made cost model can be used to estimate cost. It can also be configured 
according to user choice, allowing cost performance investigation for 
competing solutions.  

• Expert / end user involvement: The solution uses the EKR approach, but 
does not replace the use of spreadsheets to compute the cost of 
components. It manages the knowledge driving the cost model and 
deploys it to a spreadsheet which estimates costs. Users are already 
familiar with the spreadsheet environment; its continued use may be an 
important factor in user adoption of the solution. Through the 
spreadsheet environment, users can understand the rationale of the 
computed cost and access the underlying knowledge.  
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6 Maintenance Case Study: Supporting Wing 
Maintenance – B737 Leading Edge Slat Downstop 
Assembly Modification & Inspection 

This chapter describes the development of a knowledge-based application that 
supports the digitalization and execution of maintenance tasks. As such, this case 
study focuses on the maintenance domain of the aircraft lifecycle. Together, the 
case studies will shed light on how the overall research objective can be achieved, 
with emphasis on the latter part of the objective: “Support consistent 
formalization, use and maintenance of changing knowledge within aircraft 
lifecycle phases to improve domain-specific modelling, execution and control of 
engineering tasks”.  The case studies also offer a practical perspective on the 
following research questions:  
• How can knowledge change be accommodated during KBS development?  

o Which models are required and how do these models help to 
accommodate knowledge change? 

 
This case study presents an approach to support maintenance task 

digitalization and execution for wing components.  First, the case study context 
and challenges are introduced. Subsequently, the theoretical contributions are 
applied to the maintenance domain: the Knowledge Lifecycle model is used to 
qualify and quantify knowledge change, task analysis is performed to prepare the 
use of the KLC ontology and the KNOMAD methodology is applied to the case, 
resulting in a flow chart for the development of a knowledge-based solution. As in 
the previous case study, the solution supports the deployment and use of 
knowledge as an element in modular knowledge packages (the previously 
introduced Enterprise Knowledge Resources) that are managed in a central 
knowledge repository. An EKR can be deployed to support a maintenance task. 
Development and implementation of the solution are discussed in detail in 
Section 6.3. Validation of performance with respect to the case study objective(s) 
and requirements is briefly indicated in Section 6.3.5: Analysis & Delivery. The 
case study concludes with a discussion of the results within the context of the 
dissertation objectives and contributions to theory. 

6.1 Case Study Context and Challenges 

Literature for the aircraft MRO domain tends to focus on performance 
measurement and optimization of maintenance processes such as planning, 
management and execution (Garg and Deshmukh, 2006) and on the relation 
between maintenance and safety (Wartan, 2010). In marked contrast to the 
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design and manufacturing domains, literature regarding the development and use 
of advanced information technology (IT) such as PLM systems or knowledge-
based (engineering) applications is very limited. This is supported by Lee et al. 
(2008), who note the low adoption of PLM technology in maintenance – see 
Figure 6.1.  

 

 
Figure 6.1: Adoption of PLM in the MRO domain (adapted from Lee et al. (2008)) 
 
Lee et al. (2008) identify a number of requirements for the adoption of 

knowledge systems within the aircraft MRO domain. In particular, automated 
information retrieval, associative inspection and maintenance procedures and 
tools, product structure information, and fault detection & isolation tools should 
be provided. Ideally, a PLM application or knowledge-based application should be 
able to record, check and manage inspection and maintenance records. Currently, 
processes are independent and largely manual (Lee et al., 2008). Furthermore, the 
adoption and impact of information systems within maintenance is low; it is also 
an area of relatively limited research interest (Garg and Deshmukh, 2006).  

This is an indication of a larger problem – the relatively low level of 
digitalization in the maintenance domain, and the reliance on legacy, paper-based 
approaches to execute and record maintenance tasks. Findings from TU Delft 
research performed at a large Dutch aircraft maintenance provider show that a 
paper-based approach is prevalent in carrying out maintenance work; processes, 
work instructions, safety instructions and maintenance reports are predominantly 
kept on paper (Wartan, 2010). The resulting records are stored in archives for the 
purposes of demonstrating airworthiness compliance during aircraft phase-out 
(Burhani, 2012). Similar findings are reported by Lampe et al. (2004), who point 
out the labour intensive manual documentation and check procedures at MRO 
providers. Lampe et al. (2004) indicate that the time associated with searching for 
appropriate documentation can amount up to 15-20% of the total work time of a 
mechanic.  

Over the last years, the situation has improved as digital tools for providing 
maintenance information and supporting maintenance tasks have been 
developed and put to use. A fairly representative illustration of current practice is 
provided by Lampe et al. (2004) – see Figure 6.2. This figure highlights that current 
maintenance work is supported by a mixture of paper and digital documentation 
as well as tools, materials and parts required for the job.  
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Figure 6.2: The aircraft MRO environment (adapted from Lampe et al. (2004)) 

 
Within MRO processes, an increasing number of supporting documentation is 

offered digitally. This includes OEM documentation such as the Airplane 
Maintenance Manual (AMM), Maintenance Planning Document (MPD), Illustrated 
Parts Catalogue (IPC), Structural Repair Manual (SRM) and Service Bulletins (SB). 
These documents can be offered through the OEM’s web portal (e.g. Baker et al. 
(2006)) or as part of OEM software (Airbus, 2012).  

However, despite recent advances, a number of major issues still remain: 
 

• Legacy work processes & systems: remaining aspects of paper-based 
approach lead workers to shortcut the process as it takes too long to collect 
the relevant documents: safety and efficiency are compromised (Wartan, 
2010). 

• Information exchange across stakeholders: various stakeholders hold 
different information necessary for the successful execution and record 
keeping of maintenance tasks. For instance, MyBoeingFleet.com can provide 
the OEM information, the FAA or EASA holds the regulatory information 
(Airworthiness Directives or ADs), the airliner holds engineering orders (EO) 
and maintenance records. This information needs to be exchanged and be 
available to the end user in an integral way.  

• Maintenance report keeping and data accuracy: some proof-of-concept 
research regarding the use of RFID tags to support automatic maintenance 
documentation has been performed (Lampe et al., 2004). However, recent 
findings (Burhani, 2012) suggest that report keeping is still a manual job that 
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has only partly transferred into digital format. The manual entry of 
maintenance data is error-prone and may cause issues with data accuracy 
and completeness. 
 
It is important to address these issues as a structured approach to data, 

information and knowledge capture, storage and use in MRO organizations has 
implications for data-driven research and improvement (Jagtap and Johnson, 
2011) from a maintenance domain perspective as well as a through-life 
perspective. For the maintenance domain, capturing and storing in-service 
information such as component life times, types of failures, rate of failures, cost of 
spares, lead-time of spares, amount of non-routine job cards, etc. may be used to 
evaluate and predict product reliability, availability and maintainability, and 
consequently help optimize maintenance processes and planning. From a 
through-life perspective, the incorporation of knowledge about the in-service 
performance of existing products can lead to improvements in the design of new 
products (Jagtap and Johnson, 2011). 

 
To summarize, the broad research problem for the maintenance domain is that 
the paper-based approach to aircraft maintenance is insufficient, as it has an 
adverse effect on process efficiency and safety. Though digital tools for 
maintenance support are increasingly being used, data capture and information 
exchange is complicated. Within MRO providers, legacy systems and insufficient 
means for maintenance data capture, storage and quality control are a problem. 
Between OEM, operators and regulators, systems are not integrated.  

To resolve these issues, a potential direction is to move towards a 'push-of-
the-button' digital solution for capturing and using aircraft maintenance task 
knowledge, processes and history to support maintenance execution and prove 
continued airworthiness compliance.  

To narrow the scope associated with the research problem, this case study 
considers a particular maintenance task related to wing maintenance for the 
Boeing B737: modification and detailed inspection of the main track downstop 
assembly of the leading edge slats (Boeing, 2010). This task is associated with an 
FAA Airworthiness Directive (FAA, 2007) and a revised Service Bulletin (SB) issued 
by the OEM, Boeing (Boeing, 2010).  

The consolidated case study objective is to construct a proof-of-concept 
solution for capturing and using aircraft maintenance task knowledge, processes 
and history relative to the modification and detailed inspection of the B737 main 
track downstop assemblies of the leading edge slats. The following requirements 
must be met: 
 



 

165 
 

1) The solution must support end users in execution of the maintenance 
task; 

2) The solution must offer a digital means of record keeping in order to 
prove continued airworthiness compliance; 

3) The solution must be automated to the fullest extent possible. 
 
Validation with respect to these requirements is performed in Section 6.3.5: 

Analysis & Delivery.  
The introduced problem is related to knowledge change and consequently to 

research challenges regarding knowledge usability and maintainability. The 
following issues will be taken into account in the case study: 
 

• Moving beyond black-box applications and ensuring transparency: as it 
dispersed within and across organisations, maintenance knowledge (e.g. 
ADs, SBs, maintenance reports) is difficult to access, inspect and maintain. 
To support knowledge maintenance, it is necessary to support 
categorization, accessibility, traceability and subsequent sourcing of 
knowledge. The solution must enable the storing, justifying and updating 
of maintenance knowledge elements and processes and must support 
maintenance record keeping. To ensure transparency, it should be clear 
which knowledge is involved for specific maintenance tasks: which inputs 
are necessary, which steps are taken within a process and which reports 
are generated with what kind of data? The solution must enable a 
standard approach of supporting maintenance tasks.  

• Task orientation: knowledge involves a ‘capability for effective action’. 
The capability for action can be met by explicitly associating sets of 
knowledge with functional tasks, i.e. performing specific maintenance 
tasks. The solution will offer support for maintenance task execution by 
offering a 'one-stop' portal for the documentation, process models and 
maintenance reports associated with that task.  

• Expert / end user involvement: End users must be able to identify, use, 
interact with and if necessary, maintain or update the data, information 
and knowledge related to a specific maintenance task.  

 
Through these considerations, the case study contributes to validation of the 
overall research contributions to theory. This is discussed in Section 5.4: 
Discussion of Results. 

6.2 Application of Theory to Maintenance Case Study 

Before developing a solution, this section acts as an intermediate step by applying 
the developed theory to the case. First, the Knowledge Lifecycle Model is applied 
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to identify knowledge change for the maintenance task. This task is subsequently 
analysed in support of further application of the KLC ontology to solution 
development in the Results section. Finally, it will be shown how the KNOMAD 
steps will be applied to this case to guide the subsequent solution development in 
Section 4.3: Results.  

6.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge 
Change  

For this use case, change of knowledge specific to the main track downstop 
assembly modification and inspection task is analysed. This is done using two 
related, formalized representations of this knowledge: Airworthiness Directives 
and Service Bulletins.  

Airworthiness Directives (ADs) are regulatory documents that are issued 
against certified aeronautical products with the purpose of notifying aircraft 
owners of 'unsafe conditions, non-conformity with the basis of certification and 
other conditions affecting the airworthiness of their aircraft' and 'the mandatory 
actions required for the continued safe operation of an aeronautical product' 
(Transport Canada, 2002). An AD is typically created in the days, weeks or even 
months after a (potentially) unsafe condition has been discovered. Following its 
effective date, an AD must be complied with by aircraft owners to maintain 
airworthiness. 

Service Bulletins are documents that are issued by the Original Equipment 
Manufacturer (OEM) to either recommend actions for the improvement of an 
aircraft or to support corrective actions, typically in relation with an associated 
AD. 

 
• Airworthiness Directives: four ADs have been issued in relation to the 

main track downstop assembly modification and inspection task. The first 
issue was Emergency AD 2007-18-51. This Emergency AD describes the 
unsafe condition, effective date, applicability, required actions and 
compliance times for this specific maintenance issue.  

o Unsafe condition: the Emergency AD was issued following reports 
of parts coming off the main slat track downstop assemblies. 
Following slat retraction, the slat track housing was punctured in 
two cases, leading to fuel leaking in one case, and fuel leaking and 
a subsequent catastrophic fire (aircraft loss) in another case.  

o Effective date: the effective date for Emergency AD 2007-18-51 
was 25 August 2007.  

o Applicability: The Emergency AD applied to all Boeing Model 737-
600, -700, -700C, -800, -900, and -900ER series airplanes, 
certificated in any category. 
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o Required actions & compliance times: Emergency AD 2007-18-51 
required a repetitive detailed inspection of the main slat track 
downstop assemblies for verification of proper installation of the 
slat track hardware (bolt, washers, downstops, stop location, and 
nut) and a one-time torquing of the nut, both within 24 days after 
reception of the AD. During inspection, if any part were to be 
missing or installed incorrectly, replacement was required as well 
as a detailed inspection of the inside of the assemblies for foreign 
object debris and damage. Removal of any debris and repair of 
any damage was required. The whole detailed inspection 
procedure was required to repeat at intervals not exceeding 3.000 
flight cycles.  

Following the detection and reporting of additional parts coming off the 
main track downstop assemblies, emergency AD 2007-18-51 has been 
superseded by Emergency AD 2007-18-52, effective date 28-08-2007. This 
AD has been issued to change the compliance time for the detailed 
inspection of the assemblies from 24 days to 10 days after receipt of the 
Emergency AD. In addition, Emergency AD 2007-18-52 determines that a 
borescope inspection of the assemblies is acceptable in lieu of detailed 
inspection. Emergency AD 2007-18-52 has been subsequently formalized 
into AD 2007-18-52, effective date 26-09-2007. This AD serves as a formal 
entry into the Federal Register, instead of the preceding emergency AD, 
which acted as a temporary measure. These subsequent issues can be 
characterised as 'maintain' and 'update' knowledge actions, respectively.  

Finally, AD 2007-18-52 has been superseded by AD 2011-06-05, 
effective date 26-04-2011. The new AD requires the replacement of 
downstop assembly hardware with new hardware while keeping the 
previous requirements with respect to performing inspections of the slat 
cans on each wing and the lower rail of the slat main tracks for debris, 
replacing the bolts of the aft side guide with new bolts, and removing any 
debris found in the slat can. Furthermore, AD 2011-06-05 removes some 
B737 models from the applicability. As this new AD changes both the 
context and content of knowledge, it can be characterised as an 'update' 
action. 

• Service Bulletin: two Service Bulletin versions have been issued by the 
OEM, Boeing, to address the modification and detailed inspection of the 
main track down stop of the leading edge slats.  

Boeing Service Bulletin 737-57A1302, dated 15 December 2008, 
describes the planning information, material information and 
accomplishment instructions necessary for the removal of existing 
downstop assemblies and installation of new ones, as well as removal of 
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existing aft side guide attach bolts and replacement with drilled head 
bolts lock-wired together on the ribs of the wing leading edge (Boeing, 
2010). It also describes the inspection process. As such, this SB is a 
response to the requirements of AD 2007-18-52 as well as precursory 
documentation for AD 2011-06-05, which actually mandates the 
replacement of downstop assembly hardware. 

Boeing Service Bulletin 737-57A1302, Revision 1, dated 18 October 
2010, changes and adds upon the previous SB by adding a borescope†† 
inspection option for the slat main track, by adding part and tooling 
information, by changing a tolerance limit for a certain repair option, by 
introducing or updating process step information, and by removing an 
aircraft from the applicability. This SB can therefore be characterised as 
an 'update' knowledge action. 

 
Based on the changes in these ADs and SBs, one can state that the knowledge 

required for the use case maintenance task is subject to change. For the 
Airworthiness Directives, both the context and content of the knowledge 
encapsulated within the ADs is subject to change: applicability and compliance 
times (context) are changed in AD 2007-18-52 and  AD 2011-06-05, whereas an 
additional inspection and assembly replacement (context) are mandated in AD 
2011-06-05. For the SBs, Revision 1 of Boeing Service Bulletin 737-57A1302 
changes context (applicability, part information) and content (process step 
descriptions, tolerance limits, inspection option).   

Similar to the previous case studies, the preceding discussion qualitatively 
shows that knowledge is subject to change with respect to the maintenance task 
(modification and detailed inspection of the main track downstop of the leading 
edge slats of most Boeing B737 types). 

6.2.2 Application of Knowledge Lifecycle Model: Quantifying 
Knowledge Change 

In the following Section, the Knowledge Lifecycle Model concepts will be tested 
using data from the maintenance stage of the aircraft lifecycle. Specifically, the 
idea of using knowledge actions will be used to quantify knowledge change in 
Airworthiness Directives (ADs). In the following sections, the research data, 
hypotheses and sample will be described, followed by analysis. 

                                                           
†† An optical device consisting of a rigid or flexible tube with an eyepiece on one end, an 
objective lens on the other end, linked together by a relay optical system. 
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6.2.2.1 Description and Operationalization of Research Data: 
Airworthiness Directives 

To quantify changes in knowledge, a sample of Airworthiness Directives has been 
gathered. As mentioned, Airworthiness Directives (ADs) are regulatory documents 
that are issued against certified aeronautical products with the purpose of 
notifying aircraft owners of 'unsafe conditions, non-conformity with the basis of 
certification and other conditions affecting the airworthiness of their aircraft' and 
'the mandatory actions required for the continued safe operation of an 
aeronautical product' (Transport Canada, 2002). More importantly, they are also a 
highly formalized form of knowledge, as they consist of knowledge context in the 
form of metadata such as AD date, type approval holder & type/model 
designations, applicability and effective date, etcetera), knowledge content 
(related technical details (sometimes expressed in associated Service Bulletins 
(SBs) provided by the Original Equipment Manufacturer (OEM), and provisions to 
maintain compliance) and a capability for effective action (required actions and 
compliance times) – see also Transport Canada (1996) and AD examples 
retrievable from the European Aviation Safety Agency (EASA, 2012). Furthermore, 
they are rigidly maintained in online regulatory knowledge bases (EASA, 2012) due 
to their critical role in ensuring aviation safety. In effect, ADS are knowledge 
elements – and they undergo changes throughout their life. An AD is typically 
created in the days, weeks or even months after a (potentially) unsafe condition 
has been discovered and is in effect from its effective date. From that point on, an 
AD must be complied with by aircraft owners to maintain airworthiness. 
Sometimes, ADs are revised to reflect changes in their knowledge context, for 
instance with respect to applicability across aircraft types. ADs can also be 
superseded, in which the content of an AD is changed, while frequently the 
context is as well. Finally, ADs can be cancelled, for instance when the aircraft 
type(s) for which the AD was issued are not operated anymore. Following this 
description, ADs can be mapped onto the Knowledge Lifecycle Model by 
operationalization of the knowledge actions in terms of the actions that are taken 
with respect to ADs: 

 
Create ↔ an original AD is created. 
Use ↔ an AD is in effect and is used by aircraft owners. This 

knowledge action is not quantified in this case study as it has 
proven impossible to track the number of use actions by 
aircraft owners relative to specific ADs. 

Maintain ↔ an AD is revised (update of context element of AD 
knowledge, for instance applicability to aircraft type). 

Update ↔ an AD is superseded (update of both context and content of 
AD knowledge). 
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Retire ↔ an AD is cancelled. 
 

6.2.2.2 Case-Specific Hypotheses 
Based on the Knowledge Lifecycle Model and the selection of ADs as the sample 
population, a number of case-specific hypotheses can be posited. The first 
hypothesis concerns the behaviour of knowledge, as operationalized in the 
knowledge actions create, maintain, update and retire. 
 

H1: The frequency of knowledge actions decreases along the knowledge lifecycle 
 
This hypothesis is motivated by the idea that most knowledge elements would not 
move beyond creation and use, i.e. the actions maintain and/or update and/or 
retire would not be applied to most knowledge elements.  
 
In contrast to the first hypothesis, which is concerned with the behaviour of 
knowledge throughout its life, the following set of hypotheses is related to the 
behaviour of knowledge over aircraft life. 

 
H2: Number of knowledge actions per year increases during the aircraft lifecycle  
H3: Use of the 'create' action per year increases during the aircraft lifecycle 
H4: Knowledge change per year increases during the aircraft lifecycle 
H5: Use of the 'maintain' action per year increases during the aircraft lifecycle 
H6: Use of the 'update' action per year increases during the aircraft lifecycle 

 
Hypothesis H2 is motivated by the idea that knowledge about maintenance in the 
form of unsafe conditions to be resolved increases during the aircraft lifecycle, 
and therefore the number of associated knowledge elements will increase. 
Hypothesis H3 is similar to the previous one, but instead of considering the total 
number of knowledge elements, the number of 'create' actions is considered.  

Hypothesis H4 is motivated by the cumulative effect expressed in the previous 
hypotheses, and particularly H1: as the yearly number of knowledge elements 
increases, the total number of knowledge elements (integrated over time) will be 
increasingly large. I.e., should hypothesis H1 be true, the total number of 
knowledge elements does not grow at a constant rate but at an increasing rate. 
Should knowledge change per year be present at a certain constant rate, the 
logical result is hypothesis H4: an increase of knowledge change during the aircraft 
lifecycle.  The remaining two hypotheses are a segregation of the preceding 
hypothesis in terms of the individual knowledge actions:  instead of aggregate 
knowledge change, the actions 'maintain' and 'update' per year are hypothesized 
to increase over time.  
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6.2.2.3 Description of Research Sample 
For this initial attempt at quantifying knowledge change, two samples of ADs have 
been taken from the EASA AD Publisher Tool (EASA, 2012) and the FAA Regulatory 
and Guidance Library (FAA, 2012). 
With respect to the EASA ADs, to limit the scope of the problem and enable 
reproducibility, only ADs with respect to the Airbus A320 aircraft have been taken 
from the Publisher Tool. The applied filter was 'Return all ADs from 1988-08-01 
until 2011-09-27, applicable to the type A320 from TC holder AIRBUS'. The full AD 
history for the Airbus A320, starting from first flight deployment in 1988 and going 
to 27 September 2011 (sample final access date) has been taken to compile the 
initial sample, which consisted of 288 publications. This sample has been 
inspected and revised to account for AD revisions: in the initial sample, a revised 
AD (e.g. AD 2007-0065R2) would count as one publication, whereas in the revised 
sample, the revised AD counts as three publications – the originally created AD 
(AD 2007-0065) and its two revisions (AD 2007-0065R2, AD 2007-0065R1). The 
final revised sample consists of 418 publications. 

With respect to the FAA ADs, a similar sample was chosen. Only ADs with 
respect to the Boeing B737 aircraft have been taken into consideration. This 
includes all subtypes of the B737 aircraft (-100, -200, -200C, -300, -400, -500, -600, 
-700, -700C, -800, -900, -900ER.). The full AD history for the B737 has been 
compiled, starting from 1968 and ending at 2012-03-20 (sample final access date). 
The final sample consisted of 493 original publications. As with the A320, the 
sample has been revised to account for AD revisions and supersedures. The final 
revised sample consists of 648 publications. 

6.2.2.4 Results 
The following two subsections describe the analysis of the A320 and B737 
samples. 

A320 Analysis  
 
To analyse the knowledge actions along the knowledge lifecycle, the sample of 
418 A320 AD publications has been analysed using a simple frequency count for 
the number of knowledge actions per category. The results are shown in Figure 
6.3. Of the 418 actions associated with the publications, 240 were 'create' actions, 
124 'maintain' actions, 47 'update' actions and 7 'retire' actions. Evidently, the 
number of knowledge actions decreases along the knowledge lifecycle, but a 
sizeable part of the A320 ADs are subject to knowledge change. 
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Figure 6.3: Frequency of knowledge actions (A320) 

 
To analyse the yearly number of knowledge actions along the aircraft 

lifecycle, the combined number of knowledge actions per year for the sample 
period 1988 – 2011 has been enumerated, followed by a linear bivariate 
correlation analysis with the total number of knowledge actions per year as 
dependent variable and time (in years) as the independent variable. The results 
are given in Figure 6.4 and Table 6.1. From the table it can be seen that there is a 
significant (p < .05) but small relation (R = .406, R2 = .165) between the total 
number of knowledge actions and the aircraft lifecycle. The effect size is heavily 
influenced by the variation over the years, especially visible in the dip for 
knowledge actions between 2007-2010.   
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Figure 6.4: Knowledge actions per year versus the A320 lifetime (years)  

 
Table 6.1: Bivariate correlation - knowledge actions per year versus lifetime (A320) 

 
 
For the relation between knowledge change and aircraft lifecycle, the aggregate 
number per year of 'maintain', 'update' and 'retire' actions have been plotted. 
Following bivariate correlation analysis of this aggregate number as dependent 
variable against the independent variable time (in years), the results can be seen 
in Figure 6.5 and Table 6.2. There is a significant relation (p < .05) of small size (R = 
.497, R2 = .247). However, variation in knowledge change per year is notable – 
knowledge does not change at a constant rate. Again, the effect size is heavily 
influenced by the variation over the years, especially the dip between 2007-2010. 
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Figure 6.5: Knowledge change versus lifetime (A320)  

 
Table 6.2: Bivariate correlation - knowledge change versus lifetime (A320) 

 
 

A final set of tests has been performed to check the frequency of individual 
knowledge actions (create, maintain, update) per year throughout the aircraft 
lifecycle. Similar to the preceding analyses, the frequency of actions per year has 
been enumerated and bivariate regression has been performed for independent 
variable ‘time’ and dependent variable ‘number of create actions’, ‘number of 
maintain actions’, and ‘number of update actions’. The graphs for the individual 
knowledge actions are shown in Figure 6.4.  For the hypothesized ‘time – create’ 
relation, correlation yields insignificant results (p = .485), similar to the ‘time – 
maintain’ relation (p = .643). Only the ‘time – update’ relation shows a strong 
significance (p < .001) with a medium effect size (R = .683, R2 = .466). The 'time-
retire' relation has not been tested, given the small set of 'Retire' instances. 
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B737 Analysis 
 
To analyse the knowledge actions along the knowledge lifecycle, the sample of 
648 B737 AD publications from the period of February 1968 until March 2012 has 
been analysed using a simple frequency count for the number of knowledge 
actions per category. The results are shown in Figure 6.6. Of the 648 publications, 
493 did not move beyond the 'create' knowledge action, whereas 57 publications 
were maintained, 95 were updated and 3 were retired. Similar to the A320 
sample, the number of knowledge actions decreases along the knowledge 
lifecycle, but a sizeable part of the B737 ADs are subject to knowledge change. 

 

 
Figure 6.6: Frequency of knowledge actions (B737) 

 
To analyse the yearly number of knowledge actions along the aircraft 

lifecycle, the combined number of knowledge actions per year for the sample 
period 1968 – 2012 has been enumerated. The results are shown in Figure 6.7. 
This data has been subjected to linear bivariate correlation analyses, with either 
the total number of knowledge actions or the number of individual knowledge 
actions (create, maintain, update) as dependent variables and time (in years) as 
the independent variable. For the total number of knowledge actions over time, 
the results are given in Table 6.3. From Table 6.3, it can be seen that there is a 
significant (p < .001) and medium-strength relation (R = .765, R2 = .585) between 
the total number of knowledge actions and the product lifecycle.  
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Figure 6.7: Knowledge actions per year versus the B737 lifetime (years) 

 
Table 6.3: Bivariate correlation - knowledge actions per year versus lifetime (B737) 

 
 
For the relation between knowledge change and aircraft lifecycle, the total 
aggregate number of 'maintain', 'update' and 'retire' actions have been plotted. 
Following bivariate regression analysis of this aggregate number as dependent 
variable against the independent variable time (in years), the results can be seen 
in Figure 6.8 and Table 6.4. There is a significant relation (p < .01) of medium size 
(R = .644, R2 = .414). Similar to the A320 sample, the variation in knowledge 
change per year indicates a non-constant rate of knowledge change, though the 
overall trend is an increasing rate of change. The variation has a reducing effect 
on the effect size.  
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Figure 6.8: Knowledge change versus the B737 lifetime (years)  

 
Table 6.4: Bivariate correlation for knowledge change versus lifetime (B737) 

 
 
A final set of tests has been performed to check the frequency of individual 

knowledge actions (create, maintain, update) per year throughout the aircraft 
lifecycle. Similar to the preceding analyses, the frequency of actions per year has 
been enumerated and bivariate regression has been performed for independent 
variable ‘time’ and dependent variable ‘number of create actions’, ‘number of 
maintain actions’, and ‘number of update actions’. The graphs for the individual 
knowledge actions are shown in Figure 6.7. Unsurprisingly – given the similar 
shapes of the 'Create' and 'Total number of knowledge actions' graphs in Figure 
6.7 - the regression analysis for the hypothesized 'time – create' relation (Table 
6.5) gives significant results (p < .001) with medium effect size (R = .711, R2 = 
0.505). The 'time – maintain' relation (Table 6.6) is not significant at the .05 level 
(p = .399). The 'time – update' relation (Table 6.7) shows a strong significance (p < 
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.001) with a medium effect size (R = .670, R2 = .449). The 'time-retire' relation was 
not tested, given the small set of 'Retire' instances. 

 
Table 6.5: Correlation results for knowledge action ‘create’ versus lifetime (B737) 

 
 

Table 6.6: Correlation results for knowledge action ‘maintain’ versus lifetime (B737) 

 
 

Table 6.7: Correlation results for knowledge action ‘update’ versus lifetime (B737) 
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Consequences of Knowledge Change through Life using A320 and B737 AD 
Samples 
 
The preceding analysis of the A320 and B737 samples suggests the occurrence of 
knowledge change in the maintenance domain – airworthiness directives are 
measurably changing during the lifetime of the respective aircraft. What, then, are 
the consequences of knowledge change? 

From a aircraft through-life perspective, each AD that is in effect already 
constitutes a knowledge change with respect to the original product (operational) 
instructions. As such, all individual ADs that are in effect (i.e., the ones that have 
not been revised, superseded or cancelled) have been analysed for both samples. 
Does knowledge change, embodied in a created, maintained or updated AD, 
engender changes in the maintenance domain only? Or does AD knowledge 
change have an impact beyond the maintenance domain? 

To answer these questions, both samples have been analysed for the 
consequences of through-life knowledge change. Each AD has been checked to 
see whether it has an impact on: 

 
• Maintenance: an AD has an effect on the maintenance domain when 

inspection and/or repair instructions are mandated. When only 
inspection requirements are mandated, the AD is simply confined to the 
maintenance domain. When repair instructions with respect to the 
affected aircraft parts or systems do not mention the incorporation of 
new, improved, redesigned, or remanufactured parts, assemblies or 
systems, the effects of the AD are also confined to the maintenance 
domain.  

• Flight operations: a number of ADs mention the update of the Aircraft 
Flight Manual (AFM) with revised operator instructions. The through-life 
effect of these ADs is primarily associated with the (flight) operations 
domain. 

• Manufacturing: for a few ADs, an unsafe condition was caused by 
deficiencies in the production processes used for the production of parts 
and/or assemblies. These ADs mandate changes in the production 
processes; they consequently have a through-life effect on the 
manufacturing domain. No part or assembly redesign was incorporated 
into these ADs. 

• Design: a few ADs mandate updating the software in flight computers. 
The associated redesign of flight control software is associated with a 
through-life effect on the design domain. The manufacturing domain is 
not involved, as the software can be updated in existing hardware. 
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• Design & manufacturing: a significant number of ADs mandates 
maintenance on an aircraft using new, improved, redesigned and 
remanufactured parts, assemblies or systems. For these ADs, the effects 
stretch through the design and manufacturing domains. 

  
The analysis has been conservative: when an individual AD contains 

ambiguity regarding the effects on design, manufacturing and/or flight 
operations, the guideline has been to count the AD as having an effect on 
maintenance only.  

The results of this analysis effort are shown in Figure 6.9 for the A320 sample, 
and Figure 6.10 for the B737 sample. The majority of knowledge change in 
maintenance has an effect that is contained to maintenance itself, but a 
significant minority of knowledge change is associated with through-life 
consequences. 

 

 
Figure 6.9: Through-life implications of knowledge change (A320 sample) 

 

 
Figure 6.10: Through-life implications of knowledge change (B737 sample) 
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6.2.2.5 Discussion  
The following hypotheses have been posited. The first hypothesis is concerned 
with the behaviour of knowledge throughout its life: 

 
H1: The frequency of knowledge actions decreases along the knowledge lifecycle 

 
The remaining set of hypotheses is related to the behaviour of knowledge over 
the aircraft operational life. 

 
H2: Number of knowledge actions per year increases during the aircraft 

operational life  
H3: Use of the 'create' action per year increases during the aircraft operational life 
H4: Knowledge change per year increases during the aircraft operational life 
H5: Use of the 'maintain' action per year increases during the aircraft operational 
life 
H6: Use of the 'update' action per year increases during the aircraft operational 
life 

 
The behaviour of ADs during aircraft life can be characterised by using the concept 
of knowledge actions from the Knowledge Lifecycle Model; all four considered 
knowledge actions (create, maintain, update, retire) can be identified and 
measured. With respect to the case-specific hypothesis within the context of the 
Knowledge Lifecycle Model, the following conclusions can be drawn: 

 
• Hypothesis 1: The frequency of knowledge actions does decrease along 

the knowledge lifecycle.  
• Hypothesis 2: The number of knowledge actions significantly increases 

during the aircraft lifecycle, both for A320 and B737, though the effect 
size for the latter aircraft sample is larger (RA320 = .406 versus RB767 = .765).  

• Hypothesis 3: Use of the knowledge action 'create' significantly increases 
during the aircraft lifecycle for the B737 sample (p < .001, R = .711, R2 = 
0.505). The A320 sample results are not significant. 

• Hypothesis 4: A significant, small-to-medium size increasing trend in 
knowledge change per year can be observed from the A320 and B737 
samples (RA320 = .497, RB767 = .644). The underlying rate of knowledge 
change is not constant. 

• Hypothesis 5: Use of the knowledge action 'maintain' shows no significant 
relation with the aircraft lifecycle for both samples. 

• Hypothesis 6: Use of the knowledge action 'update' shows an increase 
during the aircraft lifecycle for the A320 sample (p < .001 with a medium 
effect size (R = .683, R2 = .466)) and for the B737 sample  (p < .001 with a 
medium effect size (R = .670, R2 = .449)). 
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The implications of knowledge change through aircraft life have been 

quantified. For about 30 to 35% of the airworthiness directives, a through-life 
implication has been associated. 

6.2.3 Application of KLC Ontology: Task Analysis 

The modification and inspection task for the B737 slat track main downstop is 
given in Figure 6.14 as an A-0 IDEF0 diagram. This figure shows the inputs in the 
form of the Service Bulletin and Airworthiness Directive, the output – a modified 
and inspected B737 slat track main downstop assembly – and the controls 
(Airworthiness Directive) and mechanisms (mechanic, tooling). The AD serves as 
both input and control to the task: it offers input information such as aircraft type 
applicability and controls the task, for instance through the mandatory 
compliance time.  

 

 
Figure 6.11: IDEF0 A-0 diagram for B737 slat track main downstop modification and 

inspection task 
 
The subtasks are represented in Figure 6.15 as an A0 IDEF0 diagram, based 

upon the task description as included in Boeing Service Bulletin 737-57A1302. The 
first subtask is to obtain access to the assembly, with the service bulletin and wing 
assembly as inputs and access to the assembly as an output. The task is 
performed by a mechanic using specific tooling. The second step is to perform 
preventive modification using the original slat track main downstop assembly and 
the Service Bulletin, while complying with the requirements of the associated 
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Airworthiness Directive. After modification, an inspection is performed which 
results in a maintenance report, which can be used to prove compliance with the 
AD. The final step is to close access to the assembly and restore the wing to its 
proper operating conditions.  

 

 
Figure 6.12: IDEF0 A0 diagram for B737 slat track main downstop subtasks 

  
A more detailed description of these subtasks is given as part of the process 

knowledge description in Section 6.3.1.  

6.2.4 Application of KNOMAD: Solution Approach 

As for the previous case studies, the KNOMAD methodology as discussed in 
Section 3.3 is adopted. The KNOMAD steps relative to this case study are shown in 
Figure 6.13. This figure shows the main KNOMAD steps (Knowledge Capture & 
Identification of Knowledge Change; Normalisation; Organisation; Modelling & 
Implementation; Analysis & Delivery) with the associated activities that are 
required for this particular case study.  

The activities are largely similar to those performed in the previous case 
studies. In the first step (Knowledge Capture & Identification of Knowledge 
Change), the justification for and scope of the knowledge-based system is 
established, followed by capture of the knowledge and process elements. Given 
that knowledge change has been analysed at length in Sections 6.2.1 and 6.2.2, 
the associated KNOMAD activity can be considered to already having been 
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applied. For the second step (Normalisation), the focus is on checking data quality 
and establishing input and output formats.  The third step (Organisation) 
considers development of a domain ontology that holds the relevant concepts 
and relationships for this particular case study. It is split up into three parts: 
generation of product, process and resource class diagrams. The fourth step 
(Modelling & Implementation) concerns the development of models (in the 
Modelling sub-step), architecture and solution (in the Implementation step). As 
before, the developed task and domain ontologies are implemented in AKM to 
support the developed solution. Finally, the Analysis and Delivery steps are 
combined into one: performance of the solution is assessed relative to the 
requirements, and the costs and benefits of the solution are explored.  

 

 
Figure 6.13: Application of KNOMAD to maintenance case study – flow chart 

 

6.3 Results 

The next section describes the development of a knowledge-based application for 
the use case maintenance task: the modification and detailed inspection of the 
main track downstop of the leading edge slats of most Boeing B737 types. The 
proof-of-concept solution can cope with knowledge change and addresses issues 
related to knowledge usability and maintainability.  
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6.3.1 Knowledge Identification & Capture  

The first step in the development of the knowledge-based solution is to capture 
the required knowledge elements. This knowledge is contained within the 
relevant ADs and SBs, where the SBs hold the most detailed representation. The 
knowledge can be captured by considering the product, process and resource 
dimensions.  

 
• Product knowledge: the product considered for this research problem is 

the main track downstop assembly of the leading edge slats on various 
Boeing 737 types. The assembly and its main parts are shown in Figure 
6.14.  

 

 
Figure 6.14: Slat main track downstop assembly (FAA, 2011)  

 
When deploying a slat, the slat main track extends to the deployed 

position by sliding out of the surrounding structure. The main tracks travel 
through holes in the front spar web when the slat is deployed or retracted. In 
areas of the wing where fuel is stored, slat track housing (also known as a slat 
can) is installed on the fuel side of the spar to surround the main track and 
contain the fuel; this structure protects the fuel tank. Each slat main track has 
a downstop assembly attached to the aft end of the slat track assembly. The 
original downstop assembly consisted of a bolt, washer, downstop fitting, 
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sleeve, stop locator, downstop fitting, washer and nut, as shown in Figure 
6.14. The new downstop assembly – as required by AD 2011-06-05 – consists 
of a new bolt, washer, downstop fitting, another downstop fitting and washer 
on the opposite end of the hole, and a self-locking nut and pin (both new 
assembly parts).  

In addition to the slat main track downstop assembly, Boeing Service 
Bulletin 737-57A1302, Revision 1 and AD 2011-06-05 also require the 
replacement of the original aft side guide bolts with new aft side guide bolts 
that have drilled heads and are lock-wired together. This is shown in Figure 
6.15, where the 'A' indicates the location of the new guide bolts. 

 

 
Figure 6.15: Aft side guide bolts (Boeing, 2010)  

 
• Process knowledge: the required maintenance process for the 

modification and inspection of the downstop assembly and aft side guide 
bolts is described in detail in Boeing Service Bulletin 737-57A1302, 
Revision 1. It consists of four consecutive steps: obtaining access, carrying 
out preventive modification and subsequent detailed inspection, and 
closing access. As may be expected, the second step – preventive 
modification and subsequent inspection – is the most involved. A 
simplified overview of the whole process is given in Figure 6.16. 
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Figure 6.16: Maintenance process for modification and inspection (based on Boeing 

(2010)) 
  

• Resource knowledge: the modification and detailed inspection of the 
downstop assembly and aft side guide bolts requires a varied range of 
resources. 

First of all, material resources are required, including the new 
downstop assembly bolts, self-locking nuts and pins, as well as 
replacements for the downstop fittings and washers. In addition, the new 
aft side guide bolts and associated lockwires must be used. In total, 32 
down stop fittings and washers and 16 bolts, self-locking nuts and pins are 
required for 16 slat main tracks on a Boeing 737. Additionally, 64 hex 
head bolts and sufficient lockwire must be used for the aft side guide 
bolts at 64 locations. Finally, additional materials must be used to carry 
out the process: sealant, primer, paint, corrosion inhibiting material and 
corrosion preventive compound.   

In addition to these materials, manpower resources must be reserved 
for the process. The modification and inspection process requires 18 work 
hours (FAA, 2007). Obtaining and closing access adds another 17 work 
hours to the task, for a total of 35 work hours per aircraft (Boeing, 2010).  

The maintenance task does not require special tooling, but optional 
tooling is offered by Boeing to accomplish the task. Furthermore, when 
performing a borescope inspection, a borescope is required tooling.  
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The maintenance task references a number of existing documents, 
including an Engineering Change Memo, a Boeing Program Letter and the 
Standard Overhaul Practices Manual (SOPM). It also affects existing 
documents: the 737 Maintenance Manual (AMM) and Illustrated Parts 
Catalog (IPC).  

6.3.2 Normalization 

The knowledge contained within ADs and SBs is subjected to rigorous review and 
validation. Furthermore, each AD is set up to conform to a specific standard. 
Given this, no extra effort was necessary to establish traceability and ownership. 
Furthermore, the accuracy and reliability of the knowledge is assumed to be 
sufficient. 

6.3.3 Organisation 

The next step in the development of a solution is to provide a knowledge 
structure that can be used to store the captured knowledge and can serve as the 
semantic backbone for the knowledge-based application. Similar to the preceding 
case studies, a domain-specific set of concepts and relationships has been 
developed. To elicit the applicable concepts and relationships for the aerospace 
composite maintenance ontology, various sources have been employed. This 
includes the regulatory and OEM documents (FAA, 2007; Boeing, 2010; FAA, 
2011), as well as research literature (Tsang, 1995; Lampe et al., 2004; Garg and 
Deshmukh, 2006; Lee et al., 2008; Jagtap and Johnson, 2011; Burhani, 2012). 

As before, the high-level concepts of the KLC ontology (Product, Process and 
Resource) and relationships (see also Section 3.2.3 and Table 3.7) have been used 
as a starting point for domain ontology development. These concepts of the KLC 
ontology have been extended into domain-specific class hierarchies. Through the 
use of the same high-level classes, the resulting maintenance domain ontology 
shares many concepts and relations with the design and manufacturing domain 
ontologies (Sections 4.3.3 and 5.3.3). In this section, excerpts of the domain-
specific class hierarchies are given to explain how the maintenance domain 
ontology is composed.  

First of all, the domain-specific class hierarchy for the Product class is shown 
in Figure 6.17. The Assembly class in this hierarchy has been extended to include 
the slat assembly (through aggregation), including the slat track assembly and the 
slat can (track housing) assembly. The former contains the downstop assembly. 
These assemblies contain parts. To satisfy the requirements of the developed 
proof-of-concept solution, the parts that make up the downstop assembly (e.g. 
Washer, Nut, Bolt) have been added to the part hierarchy and the aggregation 
relationships are shown.  

 



 

189 
 

 
Figure 6.17: extended Product class hierarchy for the maintenance domain 

 
Second, the class hierarchy for the Process class relative to the maintenance 

case study is shown in Figure 6.18. The Process class has been extended to include 
Maintenance_Process, which in turn is a parent for the Inspection_Process, 
Modification_Process and Repair_Process classes. As these are all subclasses of 
the parent Process class, they inherit the aggregation with the Activity class (in 
other words, all of the process classes contain one or more activities). The task 
activities modelled in Section 6.2.3 can be seen as activities belonging to the 
Inspection_Process and Modification_Process classes; they have not been added 
into Figure 6.18.     
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Figure 6.18: extended Process class hierarchy for the maintenance domain 

 
The third extension has been made for the Resource class (Figure 6.19). The 

User_Resource class has been extended with the Maintenance_Engineer and 
Mechanic classes. The Equipment_Resource class has been extended with the 
Maintenance_Equipment class. The most significant extension has been made to 
the Document_Resource class. This now includes as subclasses the various 
document types from the regulator and OEM side.  
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Figure 6.19: extended Resource class hierarchy for the maintenance domain 

 
The maintenance domain ontology has been used to structure the captured 

knowledge and will be used in the subsequent step to annotate (elements of) the 
developed solution. This is further explained in the following Section. 

6.3.4 Modelling & Implementation 

This step consists of two activities: modelling of an Enterprise Knowledge 
Resource (EKR) for the downstop assembly modification and inspection 
maintenance task, and implementation of the EKR into a functioning solution.  

6.3.4.1 Solution Development: EKR Modelling  
 
Similar to the previous case studies, the Enterprise Knowledge Resource concept 
from the KLC ontology is employed to model and implement a solution. The 
following EKR classes are considered: 
 

• Enterprise Knowledge Resource: the 'container' EKR class retains most of 
the attributes that are present in the general EKR model (see Figure 3.8). 
The 'objective' and 'description' attributes have been removed from the 
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EKR class, as they would be redundant: they have been replaced by 
including specific maintenance attributes into the class, including effective 
date, applicability, subject, unsafe condition and compliance time. These 
attributes have been identified as common attributes in Airworthiness 
Directives and Service Bulletins. 

• EKR_Knowledge: the EKR uses knowledge from the related AD(s) and 
SB(s). The EKR_Knowledge class retains the attributes from the general 
EKR model, and includes the common maintenance attributes (effective 
date, applicability, subject, unsafe condition, compliance time). The same 
is true for the Knowledge_Element class. Instantiations of the latter class 
are used to capture knowledge related to the problem, mainly product 
knowledge such as drawings and specifications.  

• EKR_Process: the EKR uses a process model to represent the activities 
that must be completed to comply with the Airworthiness Directive and 
Service Bulletin. The EKR_Process class and Process_Element class do not 
change much with respect to the general EKR model. As in the previous 
classes, the common maintenance attributes are included into these 
classes. 

• EKR_Case: for this use case, a central case repository is set up that can 
hold the results from the modification and inspection task. Individual case 
reports are filled into the repository. The class for individual reports has 
been augmented from its generic representation in the general model 
(see Figure 3.8) to include maintenance-specific attributes. Besides the 
common maintenance attributes previously identified,  other report-
specific attributes such as the maintenance visit number, aircraft 
registration, flight hours and flight cycles of the aircraft, start date, 
completion date, task status, order number and order description are 
included into the class.  

 
Using the preceding considerations, an EKR class diagram has been modelled 

for this specific case study and associated task. The UML class diagram is shown in 
Figure 6.20. It incorporates the EKR classes and attributes mentioned above. 
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Figure 6.20: EKR class diagram (UML) for maintenance case study  

 
An EKR (and its subsidiary elements, such as knowledge elements) are annotated 
using the previously introduced domain ontology. The resource, product and 
process hierarchies together offer the necessary classification richness to 
annotate an EKR: using these classification hierarchies allows for unique 
combinations of semantic elements for annotation of a specific EKR, supporting 
search and retrieval by end users. It will be shown in the next section how this is 
achieved. 

6.3.4.2 Solution Development: EKR Implementation 
One EKR has been implemented for this maintenance domain case study: the 
modification and inspection of the main track downstop assembly. To implement 
the EKR and associated models presented in the previous section, a solution has 
been developed on the basis of the Ardans Knowledge Maker (AKM) knowledge 
management tool.  

Based on the developed UML ontologies, a number of AKM models have 
been developed for the EKR class and its subsidiary classes (knowledge, 
knowledge element, process, process element, case and case report). For each 
class, a single model is made that contains fields. These fields represent the 
attributes of the classes. The relations between the classes are represented 
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through the addition of direct links between related AKM models. Some 
automated functionality is added by using the XPATH query language to identify 
and fill model fields by retrieving node information from the XML data that comes 
from MySQL. For instance, XPATH expressions are used to let the knowledge, 
knowledge element, process and process element models inherit the common 
maintenance attributes (effective date, applicability, subject, unsafe condition, 
compliance time) from the EKR container class. Furthermore, metadata such as 
author, date and status is automatically added. XPATH is also used to facilitate the 
implementation of 'templates' that guarantee a consistent representation of 
model instances. An example of an AKM model (representing the 
Knowledge_Element class) is given in Figure 6.21. The model in this Figure 
inherits some metadata automatically (author, date, version, status, effective 
date, applicability, subject (ATA), unsafe condition, compliance time, and 
associated EKR; see also Figure 6.23). Other knowledge needs to be filled in 
manually: description, lifecycle state and associated file(s).  

 

 
 Figure 6.21: AKM model for the Knowledge_Element class for maintenance case study 
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The AKM models are used to generate knowledge articles; they are in effect 
instances of the EKR classes implemented in AKM. The process of creating articles 
and generating the article content is currently largely manual. The AKM models 
take away much work by offering a consistent representation and inheriting 
article fields related to common maintenance attributes automatically. However, 
the remaining fields must be filled manually with the appropriate knowledge. The 
following figures give examples of implemented EKR, knowledge element, process 
element and case report articles for this case study. 
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Figure 6.22: Example of EKR article for maintenance case study  

 
Figure 6.22 shows the EKR for the case study engineering task (i.e., the slat 

track downstop assembly modification and inspection EKR). The metadata 
(author, date, version, status) is filled in automatically. The common maintenance 
attributes (effective date, applicability, subject (ATA), unsafe condition, 
compliance time) are filled in manually. The EKR further consists of the associated 
process elements (under 'EKR Process'), knowledge elements (under 'EKR 



 

197 
 

Knowledge') and case reports (under 'EKR Case History'). The process elements 
have been associated with the relevant documentation, including the ADs and SB. 

 

 
Figure 6.23: Example of knowledge element article 

 
Figure 6.23 shows an example of a knowledge element belonging to the 

maintenance task EKR: a description of the original slat main track downstop 
assembly. As previously, the metadata is filled in automatically upon creation. The 
common maintenance attributes are inherited from the EKR superclass. The 
description, lifecycle state and associated file(s) of the knowledge element have 
been filled in manually.  
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Figure 6.24: Example of process element article 

 
Figure 6.24 shows an example for a process element belonging to the 

maintenance task EKR. Similar to the knowledge element described in Figure 6.23, 
the metadata is filled in automatically upon creation of the article and the 
common maintenance attributes are inherited from the associated EKR. The 
description, process model and associated file(s) fields have been filled in 
manually. 



 

199 
 

 

 
Figure 6.25: Example of case report article  

 
Finally, Figure 6.25 shows an example of a case report article for the 

maintenance task. Like the knowledge and process element articles, metadata 
and common maintenance attributes are inherited. Furthermore, associated 
knowledge and process elements are linked to the case report using the 
'Neighbour article' functionality of AKM. The case report furthermore contains 
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some report-specific attributes (under 'Case Report'), such as maintenance visit 
number, aircraft registration, task time, flight hours, flight cycles, and others. 

The case report model and associated articles are particularly important from 
the perspective of documentation management for maintenance compliance. The 
format of these case reports can easily be changed to fit company specifications. 
The AKM tool includes functionality to export articles and article information into 
Word or Excel directly. This makes it possible to completely digitalize the 
generation, storage and management of maintenance documentation.  

 
To enable the search and retrieval of EKRs in the maintenance domain, semantic 
annotation is used. Annotation of EKRs and its subsidiary elements is achieved 
through applying the PPR maintenance domain ontology concepts and 
relationships to the EKR classes. An example for the slat main track downstop 
assembly EKR is given in Figure 6.26. This Figure shows the Product-Process-
Resource classes that have been used to annotate the EKR. Similarly, the 
knowledge elements, process elements and case reports are annotated by 
Product-Process-Resource classes, but this is not shown in the Figure. 

 

 
Figure 6.26: Semantic annotation of EKR  
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In implemented form, annotation is achieved through article tags in AKM, 
which associate an article (be it an EKR article, a knowledge element article, a 
process element article or a case report) with a number of semantic tags. An 
example of tagging the downstop assembly EKR is shown in Figure 6.27, which 
shows checkmarks for each tag that has been applied (e.g. Product: Slat Main 
Track Assembly and Document Resource: Service Bulletin). 

 

 
Figure 6.27: Tagging an EKR in Ardans Knowledge Maker 
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6.3.5 Analysis & Delivery 

The Knowledge Lifecycle Model, the KLC ontology and the KNOMAD methodology 
have been applied to construct a proof-of-concept knowledge-based application 
to support the execution and reporting of a maintenance task: B737 leading edge 
slat main track downstop assembly inspection and modification. The solution does 
not include an inference capability, nor is significant automation of existing 
processes achieved at this point. However, through the use of the EKR approach, 
the solution supports capture, formalization, use, maintenance of knowledge – 
the central aspects of the overall dissertation research objective as well as this 
case study. 

The solution meets the following case study requirements: 
• It supports end users in the execution of a maintenance task. 
• It provides a digital means of record keeping. 

 
The implemented proof-of-concept solution consists of a single EKR. The 
implementation of more EKRs has not been considered for this case study, as a) 
only limited access to OEM Service Bulletins was available, b) the functional 
solution has been developed to a proof-of-concept stage to meet the case study 
objectives.  

As such, quantification of costs and benefits of the tool has not been 
considered in detail. Development of EKR models and model XPATH code has 
taken approximately one working day. Capturing the illustrations and text from 
the ADs and SBs for the slat main track downstop assembly modification and 
inspection, followed by the development of EKR articles (EKR, knowledge and 
process elements), has taken approximately half a working day. It can be 
estimated that development of a full EKR will require somewhere between half a 
working day and a full working day. As an indication: 16 ADs have been issued for 
B737 maintenance tasks related to the aircraft wing. 

 No delivery aspects are considered, given the lack of collaboration with an 
industrial partner for this case study.  

6.4 Discussion of Results 

The combination of the ontology-based approach and use of the AKM tool 
addresses the usability and maintainability requirements associated with this case 
study in the following way: 

 
• Moving beyond black-box applications and ensuring transparency: the 

developed EKR brings together dispersed maintenance knowledge (ADs, 
SBs, maintenance reports) into one access point. The automatically 
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included metadata as well as the semantic annotation coupled with AKM 
functionality makes it straightforward to access, inspect and maintain EKR 
elements. The solution enables storing, justifying and updating 
maintenance knowledge elements and processes and supports 
maintenance record keeping. With respect to transparency, the use of the 
ontology-based EKR approach makes it clear which knowledge is involved 
for specific maintenance tasks: the knowledge elements, process 
elements and case reports are all gathered within the EKR 'container' and 
are captured in a standard way. These elements and reports can be 
straightforwardly searched and retrieved through the semantic 
annotation as well as the article metadata which is automatically added 
upon creation of an article.  

• Task orientation: knowledge involves a ‘capability for effective action’. 
The capability for action is met in two ways. Firstly the solution offers 
support for maintenance task execution by offering a 'one-stop' portal for 
the documentation, process models and maintenance reports associated 
with that task. Secondly, end users can use the web-based tool to create 
and manage maintenance reports.   

• Expert / end user involvement: through the ontology-based EKR 
approach, end users are able to identify, use, interact with and if 
necessary, maintain or update the data, information and knowledge 
related to a specific maintenance task. 

 
There are a number of disadvantages and challenges related to the currently 
implemented solution. First of all, the solution requires a relatively high amount 
of manual interaction, primarily in setting up EKRs but also in completing 
maintenance reports.  

Despite the relatively low time needed to implement a single EKR, the sheer 
amount of ADs and SBs available indicates a large investment of resources to set 
up a complete knowledge base with EKRs for each maintenance task. There is 
however some potential to automate knowledge article generation by linking 
AKM with information retrieved from myboeingfleet.com and FAA / EASA 
databases. This is because information in XML format can be imported to and 
exported from AKM. The completion of case reports also requires manual input. 
Similar to the previous point, case report generation is technically possible by 
linking AKM with external maintenance programs. However, these options have 
not explored (yet) as they are beyond the objective and scope of this case study.  

 
Besides additional insight into the application of the ontology-based 

approach, the maintenance case study has offered further insight into the 
Knowledge Lifecycle model through quantification of a sample of ADs. The 
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associated analysis has shown that the Knowledge Lifecycle Model and the 
concepts of knowledge states and knowledge actions can be used to characterise 
and quantify the behaviour of knowledge throughout its lifecycle. With respect to 
the associated analyses, a few essential limitations must be noted:  
• The preceding analysis has not considered the measurement of knowledge 

behaviour throughout aircraft lifecycle stages: the changes in knowledge 
from design to manufacturing and maintenance have not been considered. 

• Though the knowledge actions can successfully be applied to measure 
knowledge behaviour, the maxim of 'correlation, not causation' still applies; 
underlying causes of observed behaviour are not analysed and explained 
here.  

 
With respect to the development of the Knowledge Lifecycle Model itself, a 

potential development is the further operationalization of knowledge states and 
actions – it may be possible to establish quantitative indicators for the 
'performance' of knowledge throughout its life. Furthermore, the influence of 
knowledge types must be established. It may very well be the case that some 
knowledge types are more sensitive to knowledge change than others. Both of 
these developments are not considered further within the scope of this 
dissertation. 
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7 Conclusion  

In this final chapter, the findings from the three case studies are synthesized and 
the overall contribution to theory is discussed. This leads to conclusions with 
respect to the research objectives and questions, given in Section 7.2. Finally, the 
limitations of the performed research will be discussed, followed by 
recommendations for future research.  

7.1 Research Synthesis 

Three case studies have been performed in the design, manufacturing and 
maintenance phases of the aircraft lifecycle to validate the theoretical 
contributions and to reach the objective of supporting consistent formalization, 
use and maintenance of changing knowledge. The contributions from theory 
development and the case studies can be synthesized into a vision for knowledge 
change in knowledge engineering and into a reflection on the results in relation to 
the research objectives and challenges. 

7.1.1 Synthesizing a Vision for Knowledge Engineering 

When synthesizing the theoretical contributions and the case study contributions, 
a vision emerges with regard to knowledge engineering for static (routine) 
processes versus dynamic processes in which knowledge is subject to change. This 
vision is encapsulated in Figure 7.1, which highlights two streams of knowledge 
engineering with associated methodologies and models. Stream 1 concerns static 
knowledge, i.e. knowledge that does not change or changes slowly and 
predictably; this knowledge is associated with routine processes, can be captured, 
mapped and used to automate engineering processes to a very high degree 
through the use of knowledge-based systems and applications. Stream 2 concerns 
dynamic knowledge, i.e. knowledge that changes. This knowledge is associated 
with changing processes, can also be captured, mapped and used for knowledge-
based systems and applications, but care must be taken to account for knowledge 
change: attention to maintainability and usability contribute towards continued 
use. Figure 7.1 expresses that the Knowledge Lifecycle Model has the potential to 
(quantitatively) assess knowledge change in engineering processes. Based on the 
outcome of such an assessment, the methods, models and tools necessary for the 
development of a knowledge-based system can be chosen. For routine (static) 
processes, available methodologies such as MOKA and CommonKADS and 
associated models (MOKA Informal & Formal models; CommonKADS’ Knowledge 
Model) can be adopted to automate engineering work. In Figure 7.1, the MOKA 
methodology and models are given on the left-hand side in the 'Routine 
processes' box. The CommonKADS set of models is given on the right-hand side in 
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that box. For dynamic processes, the method and model proposed in this 
dissertation (KNOMAD + KLC ontology) can be used – they are given in the 
'Dynamic processes' box. KNOMAD and the KLC ontology can be supplemented by 
models from stream 1 (e.g. the use of CommonKADS’ task and inference 
templates from its Knowledge Model to support development of the KLC 
ontology’s Process_Element and Process classes). The potential interfaces 
between methodologies, models and tools for static and dynamic knowledge 
processes have intentionally been represented with a single dotted line between 
the static and dynamic process 'regions' under point 2). This dotted line is 
representative for the realization that issues such as decision variables (when is a 
knowledge process 'sufficiently' dynamic or static to make a choice for a certain 
solution approach) and interaction between methodologies and models have not 
yet been researched in detail.   
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Figure 7.1: Two streams of knowledge engineering related to knowledge change 
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7.1.2 Synthesizing the Case Study Results relative to Research 
Objectives and Challenges 

Seen as a whole, what insights do the case studies offer with respect to the 
formalization, use and maintenance of changing knowledge? How does the use of 
the Knowledge Lifecycle Model, KLC ontology and KNOMAD meet the common 
research challenges identified in Section 2.3? For convenience, the research 
objectives and associated challenges are summarized in Table 7.1.  

 
Table 7.1: Research objectives related to research challenges 

Research objective Associated research challenge(s) 
Knowledge lifecycle modelling Characterise, model and quantify the 

behaviour of knowledge within product life 
Ontology-based approach to support 
knowledge change 

Maintainability: 
- Moving beyond black-box KBS 
applications and ensuring transparency 
Usability: 
- Task orientation 
- Expert / end user involvement 

Methodology development Methodological approach to facilitate 
knowledge change management 

 
With respect to the theory-oriented challenge – characterisation, modelling 

and quantification of the behaviour of knowledge within aircraft life – the 
following observations can be made from the case studies. The Knowledge 
Lifecycle Model has been developed to characterize and model the knowledge 
lifecycle by incorporating the concepts of knowledge states and actions. This 
model has been incorporated in the KNOMAD methodology and has successfully 
been applied to identify and characterize knowledge within three aircraft lifecycle 
phases. For the design and manufacturing domains, a qualitative discussion of 
knowledge change using the KLM concepts has proven possible. For the 
maintenance domain, both qualification and quantification of knowledge change 
have been performed.  

One challenge regarding maintainability has been identified: moving beyond 
black-box KBS applications and ensuring transparency. In all three case studies, it 
has proven possible to set up solutions that allow knowledge and processes to be 
inspected and modified by knowledge engineers and end users. Through the 
Knowledge and Knowledge Element classes, users can inspect individual 
knowledge elements, both in informal (e.g. maintenance task knowledge, see 
Section 6.3.4.2) and combined informal – formal representation (e.g. 
manufacturing constraints for ply continuity optimization, see Section 4.3.4.2 and 
Figure 4.9). The Process and Process_Element classes offer the user the possibility 
to inspect the task activities and inferences that are used to solve a problem. For 
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example, the manufacturing cost model has been split up into process steps that 
can be individually inspected, downloaded and used to compose and run a cost 
model. 

 The cases have shown how a combination of inputs (knowledge), process, 
and outputs (cases) may be employed. Through the EKR concept, traceability is 
ensured. In particular, the Case class and the associated case reports enable 
tracing the outputs of knowledge application for a specific task, as well as tracing 
the knowledge and processes used to perform a task. The metadata that is 
associated with knowledge and process elements (authorship, lifecycle state, 
status, etc.) also aids traceability in terms of knowledge ownership, validity and 
reliability. Through the PPR paradigm, visibility of key concepts is ensured. It has 
been shown in the three case studies how development of a domain ontology in 
combination with semantic annotation of implemented EKRs makes it easy to find 
and inspect knowledge-based applications and their components.  Figure 4.18, 
Figure 5.16 and Figure 6.26 show how an EKR can be annotated using the PPR 
classes. Furthermore, the combination of a web-based knowledge management 
application with the PPR paradigm (as shown in Figure 6.27) has meant that EKRs, 
the contained knowledge, processes and cases are all easily accessible. Figure 5.18 
shows the user process for cost model composition, which gives insight into the 
process steps that are necessary for finding and inspecting knowledge elements of 
an EKR using this knowledge management application.  

Besides maintainability, knowledge change poses challenges on usability. Task 
orientation and expert / end user involvement are two specific challenges that the 
case studies have addressed. With regard to the challenge of task orientation, the 
EKR concept has been adopted as part of the KLC ontology to support the 
modelling, implementation and execution of specific engineering tasks within 
knowledge-based systems. EKRs contain the input, process and output for 
engineering tasks in the form of knowledge elements, process elements and 
cases. In Sections 4.2.2, 5.2.2 and 6.2.3, functional analysis has been performed to 
break down the specific engineering tasks (ply continuity optimization, cost 
modelling and estimation, slat assembly main downstop modification and 
inspection) into specific process activities. In each case study, one or more EKRs 
have been developed to represent and support the execution of these tasks.  

The final challenge is expert / end user involvement. The case studies have 
shown that the use of a web-based knowledge management solution has the 
potential to involve the user in execution and control of engineering tasks. The 
best examples of user involvement in task execution are given in the 
manufacturing and maintenance case studies. For the manufacturing case study, 
the user process as given in Figure 5.18 shows how users can compose a cost 
model by inspecting, collating and downloading EKRs. Users can subsequently 
interact with the cost model in Excel. For the maintenance case study, users can 



 

210 
 

consult documentation and enter case reports online while executing the 
maintenance task. User involvement in task control has been shown in the 
manufacturing case study: the Excel cost model can be cross-checked with the 
knowledge base. Using the knowledge solution’s validation cycle for knowledge 
elements, users can work on the basis of the most up-to-date knowledge. Finally, 
the solution devised for the design case study featured the most automation of 
steps. In theory, users can select the specific design and manufacturing 
constraints that they want to apply for the optimization of ply continuity. In 
practice, all constraints are automatically included into the analysis. In short, the 
developed case study solutions have the functionality to involve users in task 
execution and control. However, a clear downside of the proof-of-concept status 
of the solutions developed in the case studies is that the involvement of experts 
and end users has not been experimentally validated, though formal design 
reviews have been held. 

 
In summary, three main academic contributions have been made in this 
dissertation: 
  

1) Knowledge Lifecycle model: the model allows for the characterisation 
and quantification of knowledge change. It has been applied successfully 
for all case studies on a qualitative basis and the aircraft maintenance 
case study has shown that the model has additional potential to quantify 
knowledge change. 

2) Knowledge Lifecycle (KLC) ontology: the KLC ontology leverages existing 
ontologies, the Enterprise Knowledge Resource concept, the Knowledge 
Lifecycle model and the Product-Process-Resource paradigm into one 
consistent model for supporting the development of knowledge-based 
applications that can cope with knowledge change. It has been applied in 
multiple aircraft lifecycle stages.  

3) Development of KNOMAD methodology: the KNOMAD methodology has 
been introduced to support the development of knowledge-based 
applications for engineering tasks that are subject to knowledge change. 

 
These academic contributions have been validated through a case study 

approach. It has been shown that the Knowledge Lifecycle Model, KNOMAD 
methodology and KLC ontology can successfully be applied in each aircraft 
lifecycle phase.  

7.2 Research Conclusions 

The vision of this research has been to show that knowledge changes and has a 
lifecycle which can be modelled and quantified, and to carry through the 
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implications of knowledge change into an ontology-based approach and a 
methodology to consistently formalize, use and maintain knowledge within the 
aircraft lifecycle. The following associated high-level research goal has been 
identified: 
 

Support consistent formalization, use and maintenance of changing 
knowledge within aircraft lifecycle phases to improve domain-specific 
modelling, execution and control of engineering tasks 

 
This statement can be broken down into four main elements: 
• Support consistent formalization, use and maintenance [of]: the KNOMAD 

methodology provides a consistent approach towards the formalization of 
knowledge. The KLC ontology has been set up to enable consistent use and 
maintenance of knowledge through use of the Enterprise Knowledge 
Resource concept and the Product-Process-Resource paradigm.  

• Changing knowledge: the Knowledge Lifecycle Model has been developed to 
enable characterisation and measurement of knowledge change over time.  

• Within aircraft lifecycle phases: case studies have been performed in the 
aircraft design, manufacturing and maintenance domains. 

• To improve domain-specific modelling, execution and control of engineering 
tasks: the solutions developed for the case studies have improved modelling, 
execution and control of specific engineering tasks, as discussed in Sections 
4.4, 5.4, 6.4 and the research synthesis (Section 7.1.2). 

 

7.2.1 Theory Development: Knowledge Lifecycle Modelling 

The first research objective is knowledge lifecycle modelling. The associated 
research questions are  
• Which concepts and relationships are required to characterise the change of 

explicit knowledge within and throughout the aircraft lifecycle phases?  
• How does explicit knowledge change within specific phases of the aircraft 

lifecycle?  
• Is change of explicit knowledge quantifiable? 

 
With respect to the first research question, the Knowledge Lifecycle model 

has been developed in Section 3.1 to allow for the characterisation and 
quantification of knowledge change. The model uses the concepts of knowledge 
states and knowledge actions to achieve this. In particular, knowledge actions 
(create, formalize, use, maintain, update, retire) can be used to quantify 
knowledge change. 



 

212 
 

 With respect to the second research question, the model has been 
qualitatively applied for three specific phases of the aircraft lifecycle: design, 
manufacturing and maintenance. The knowledge states have been used to 
characterise knowledge change relative to each case study for these lifecycle 
phases.   

The third research question has been addressed by quantifying the change of 
explicit knowledge for the aircraft maintenance domain on the subject of 
Airworthiness Directives (ADs) for two aircraft types: the Airbus A320 and the 
Boeing B737. The knowledge actions create, maintain, update and retire have 
been quantified for these samples. Within these boundaries, the knowledge 
lifecycle model has provided an adequate way of quantifying knowledge change 
over the lifecycle of an aircraft. From the samples, it has been possible to 
conclude that the frequency of knowledge actions decreases along the knowledge 
lifecycle. With respect to case-specific hypotheses, the main finding has been that 
a significant, small-to-medium size increasing trend in knowledge change per year 
can be observed from the A320 and B737 samples (RA320 = .497, pA320 < .05, RB767 = 
.644, pB737 < .01).  

7.2.2 Theory Development: Ontology-based Approach to Support 
Knowledge Change 

The second research objective is to develop an ontology-based approach to 
support knowledge change in knowledge-based applications, with a view to 
improved usability and maintainability of these applications. The associated 
research questions are 
• Which concepts and mechanisms support the consistent formalization, use 

and maintenance of changing knowledge throughout the aircraft lifecycle? 
• How can knowledge change be accommodated during knowledge-based 

application development?  
o Which models are required and how do these models help to 

accommodate knowledge change? 
 
An ontology has been developed to support knowledge change in knowledge-

based applications. This Knowledge Life Cycle (KLC) Ontology has been built using 
a number of contributing elements, which together address the first research 
question. The Product-Process-Resource paradigm used in Dassaults Systemes’ 
PLM software is a main contribution and is used to represent the context in which 
engineering tasks are performed. The Enterprise Knowledge Resource concept is 
another essential contribution.  EKRs are used to represent engineering tasks. An 
EKR is built up in a modular way and contains inputs, process and outputs in the 
form of knowledge elements, process elements and cases. Concepts and 
relationships included in previous ontologies such as the PROMISE Semantic 
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Object Model and the Core Ontology for Process Data Warehouse have been 
added into the KLC ontology. Finally, the knowledge lifecycle model introduced in 
Chapter 4 has been used to identify attributes that help in identifying and 
measuring knowledge change.  

All contributions have been incorporated into a single ontology. The ontology 
has been modelled in Unified Modelling Language (UML) and is given in Figure 
3.7. The ontology can be used to model and implement engineering tasks through 
the EKR concept; this contains the knowledge and process elements necessary for 
an engineering task and stores the output of the engineering task as case reports. 
The engineering task (as embodied in an EKR) can be semantically annotated 
through the Product, Process and Resource classes and subclasses, as shown in 
Figure 4.18, Figure 5.16, Figure 5.19 and Figure 6.26. The task and domain 
ontologies encompassed in the KLC ontology have been implemented in the AKM 
tool in the case studies, serving as the backbone for solution development and 
substantiating the ontology-based approach.   

To answer the pair of research questions related to the accommodation of 
knowledge change, the ontology-based approach has been successfully employed 
in three case studies, addressing the design, manufacturing and maintenance 
aircraft lifecycle phases. In conjunction with the KNOMAD methodology, the KLC 
ontology has proven viable for KBS development in each lifecycle phase. For each 
phase, a knowledge-based application has been developed that addresses 
challenges related to the usability and maintainability of knowledge. In particular, 
the issues of transparency, 'black-box' applications, task orientation and user 
involvement have been addressed, as discussed in the research synthesis (Section 
7.1) and the individual case study discussions (Sections 4.4, 5.4 and 6.4).  

7.2.3 Theory Development: Methodology Development 

The third research objective has been to develop a methodology for supporting 
the development of 'white-box' knowledge-based applications that can cope with 
knowledge change. The associated research questions are 
•  How can knowledge change be accommodated during knowledge-based 

application development?  
o Which steps are required?  

 
To support the ontology-based approach towards knowledge-based 

application development, the KNOMAD methodology has been proposed in this 
dissertation. After justification of the business case for knowledge-based 
application development, the KNOMAD methodology contains steps for the 
capture of knowledge and subsequent identification of knowledge change. To this 
end, the Knowledge Lifecycle can be used to characterise and quantify knowledge 
change. Capture of knowledge is followed by normalization to comply with 



 

214 
 

(quality) standards. The methodology furthermore advises to develop domain-
specific ontologies for the structuring and annotation of knowledge-based 
applications. These applications have to be modelled and implemented, followed 
by performance analysis and deployment into engineering practice. As such, the 
KNOMAD methodology answers the research questions mentioned above. 

As mentioned before, the KNOMAD methodology has been successfully 
applied in conjunction with the KLC ontology in the development of knowledge-
based applications for the design, manufacturing and maintenance domains. 
Usability and maintainability challenges have been addressed, as mentioned at 
the end of the previous section. 

7.3 Research Limitations & Recommendations 

In this Section, two sets of limitations are discussed: foreseen limitations due to 
the formulated research objectives, scope and design, and unforeseen limitations 
that have come up while performing research.  

Most of the pre-existing limitations have been discussed in the research setup 
(Section 1.2.1.2) at some length. Interoperability of applications through aircraft 
life, knowledge exchange across aircraft lifecycle stages, organizational factors, 
automatic translation between informal and formal knowledge representation 
and automation are all considered as outside of scope, which translates to 
limitations on the breadth and implications of the performed research. With 
respect to the interoperability and organizational limitations, the research papers 
referenced in Sections 2.1, 2.2.2, 3.1.1 and 3.2.1 are good starting points for 
further research. The most potential for future research is related to the 
automatic translation between informal and formal knowledge representations.  
A potentially much more elegant solution to account for knowledge change would 
be to have coupled informal and formal models, including code generation & 
implementation (Verhagen et al., 2012). Knowledge can be represented in 
informal terms (for end users) in the knowledge base and this can be translated 
automatically into detailed, KBE application-specific language. End users can work 
directly on the basis of informal knowledge – any changes made by them are 
incorporated automatically into the code. Vice versa, any changes to the KBE 
application can be incorporated in the knowledge base – the knowledge base and 
KBE application are fully synchronized. The iPROD European Seventh Framework 
Programme project (iProd, 2013) is working towards this goal, as is research in the 
Flight Performance and Propulsion chair at Delft University of Technology (Van 
Dijk et al., 2012; Chan, 2013). 

Another research limitation derives from the research design. The choice for 
practice-oriented case study research means that results from these case studies 
cannot be straightforwardly generalized. The generalization of the ontology-based 
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approach to KBS development must be validated through more case studies and 
in industrial settings (use 'in anger'). 

The following research limitations and associated recommendations have 
emerged during and from the research performed and discussed in this 
dissertation.  

1) Knowledge lifecycle modelling & validation 
Limitation: as mentioned before, no quantification of knowledge 
change has been performed for the aircraft design and 
manufacturing domains. Knowledge change has been discussed 
on a case study basis. However, the Knowledge Lifecycle Model 
evidently has to be quantitatively validated across more domains 
and (potentially) products to note its strengths, shortcomings and 
implications and thereby to gain acceptance in the scientific 
community.  
Recommendation: establishing a formal foundation for the 
Knowledge Lifecycle model would aid quantification, analysis and 
replication of results. Investigation and application of TMS (Doyle, 
1979; Katsuno and Mendelzon, 1991) to quantify knowledge 
change in propositional knowledge bases is of particular promise. 
The Knowledge Lifecycle model has to be validated across more 
domains and product types. 

2) Task complexity due to multiple element interactions 
Limitation: The modular approach to development of KBS as 
expressed in the KLC ontology (e.g. reflected in the use of 
Knowledge_Element and Process_Element classes) poses a 
potential problem: the number of (potential) interfaces between 
these elements grow quickly, leading to increasingly complex 
systems. Is there a natural limit; how many elements should an 
EKR consist of? The complexity resulting from system element 
interactions is briefly explored in Appendix A: Complexity 
Estimation.  
Recommendation: It is necessary to further investigate this issue 
and if possible, empirically assess whether and where limits on 
the use of modular elements can be found. This can result in 
guidelines for the use of a modular approach to KBS 
development. 

3) Verification and validation 
Limitation: Verification can be defined by considering the 
question: “Are we building the product right?” (Boehm, 1981). 
Alternatively, it can be seen as the 'process of testing that a 
product meets its specification' (Coenen and Bench-Capon, 1993). 
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Validation refers to “Are we building the right product?” (Boehm, 
1981) and can be seen as 'the process of testing that a product 
satisfies the requirements of the customer' (Coenen and Bench-
Capon, 1993). The three case studies provide validation of the 
ontology-based approach towards KBS development. However, 
verification is not explicitly taken into account: there is no proof 
to the claim that the ontology-based approach of building KBS 
using KNOMAD and the KLC ontology is the 'right' approach. In 
fact, alternative approaches may be just as good or even better: 
see also the point made previously with respect to automatic 
translation between informal and formal representations of 
knowledge. However, the simplicity, low conceptual entry barrier 
and wide applicability of the ontology-based approach are 
potential advantages.  
Recommendation: it is recommended to conduct a case study 
using multiple approaches and evaluate the results using 
predetermined indicators. Confounding variables such as a 
learning effect and case study team composition must be taken 
into account and neutralized.  

4) Process maturity evaluation 
Limitation: evaluating the maturity and stability of a process may 
inform decision-making about following a 'static' or 'dynamic' 
approach (see also Figure 7.1).  
Recommendation: The Knowledge Lifecycle model can potentially 
be part of the maturity assessment. Research must establish how 
the concepts from this model can be fruitfully applied in a process 
maturity assessment.   

5) Beyond the current ontology-based approach to knowledge 
change in knowledge-based applications:  
i. Task hierarchy: how does the ontology-based approach scale 

up when a hierarchy of tasks must be modelled and 
represented? Can EKRs be stacked onto each other? This issue 
is not investigated here; a more formal in-depth study on task 
modelling and implementation is necessary, for instance 
building upon the research related to the IDEF modelling 
technique (Integrated Definition Methods, 2012) and the 
Function-Behaviour-State theory (Umeda et al., 1990; Umeda 
et al., 1995) and translating that towards the ontology-based 
approach.  

i. Making use of ontology capabilities: the KLC ontology is 
currently not expressed in a formal way, e.g. through the use 
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of first order logic (FOL) predicates. Doing so would aid 
academically and practically: from an academic perspective, it 
becomes easier to validate the semantics of the ontology. 
With that, reproducibility and criticism of the ontology is 
facilitated. From a practical perspective, the reasoning 
capabilities associated with a formal ontology – e.g. 
subsumption, coherence, identity, compatability – can be 
facilitated and used in the development and maintenance of 
knowledge-based systems.  

 
This research may serve as the starting point for several avenues of further 
research, such as recommended above. It is hoped that the consideration of a 
broad scope – including three quite different phases of the aircraft lifecycle – may 
lead to follow-up research regarding the issues surrounding knowledge change. 
Other scholars are invited to refine, revise, refute and/or expand the insights that 
have been developed in this dissertation. 
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Appendix A: Complexity Estimation 

The modular approach to development of KBS as expressed in the KLC ontology of 
Section 3.2 (e.g. reflected in the use of Knowledge_Element and Process_Element 
classes) poses a potential problem: the number of (potential) interfaces between 
these elements grows quickly, leading to increasingly complex systems. A similar 
issue is mentioned by Erden et al. (2008), who note that systems are evolvable if 
complexity does not increase in unmanageable amounts when new functionalities 
are introduced. Can this complexity be formulated?  

The number of potential interactions between EKR elements can be either 
constrained or unconstrained. In the former case, constraints are applied to limit 
the number of element interactions: intra-class interactions are not allowed (e.g., 
a knowledge element cannot interact directly with another knowledge element). 
Figure A.1 shows the constrained case on the left-hand side.  

 

 
Figure A.1: Element interactions in constrained (left) and unconstrained (right) form 

 
The constrained interaction form can be expressed using Equation 1: 

 

 
where g is the function expressing the total number of element interactions, 

n is the number of knowledge elements and m is the number of process elements.  
In the unconstrained case, each knowledge or process element can interact 

with any other element. This is shown on the right-hand side of Figure A.1.  This 
situation can be expressed using Equation A-2.:  

 

 𝑔(𝑛,𝑚) = 𝑛 ∙ 𝑚 (A-1) 
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ℎ(𝑛,𝑚) = �(𝑖 − 1) + �(𝑗 − 1) + 𝑛 ∙ 𝑚

𝑚

𝑗=1

𝑛

𝑖=1

 (A-2) 

 
where h is the function expressing the total number of element interactions, 

without constraints. The number of resulting interactions for the unconstrained 
and constrained cases can be expressed by plotting functions g and h for any 
number of knowledge elements n and process elements m. In matrix notation, the 
following applies for these functions (where h can be substituted for g): 

   
 

�
𝑔(1,1) ⋯ 𝑔(1,𝑚)

⋮ ⋱ ⋮
𝑔(𝑛, 1) ⋯ 𝑔(𝑛,𝑚)

� (A-3) 

 
Which results in the following plot for g and h (Figure A.2) when considering 

10 knowledge and process elements (n = 1…10, m = 1..10). Figure A.3 shows the 
corresponding matrices.  

 

 
Figure A.2: Plot of element interactions for functions g and h, where n=1..10, m=1..10 

 

 
Figure A.3: Number of element interactions for g and h, where n = 1..10, m = 1..10 
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Evidently, the total number of unconstrained interactions is dependent on the 
total number of elements; the mix is not important (e.g. when 8 elements are 
present, it can be 4 knowledge and 4 process, or 7 knowledge and 1 process – the 
total number of interactions are the same). However, when considering 
constrained interactions, the mix does make a difference.  

Summarizing, the approach highlighted in this appendix allows for 
formulating an initial complexity estimate for modular system element 
interactions. The approach can be improved by a) grounding it more deeply in 
mathematical formulation; b) establishing a link with practice by researching 
hypothesized relations between the number of modular elements, system 
complexity and key performance indicators for implemented modular systems in 
industry. 
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Samenvatting 

Een Ontologische Benadering voor Management van de 
Kenniscyclus binnen Fases van de Vliegtuiglevenscyclus 

 
In het aircraft engineering domein zoeken producenten en operators constant 
naar verbetering van hun producten en processen. Knowledge-based applicaties 
worden in toenemende mate ontwikkeld om kennisintensieve engineering taken 
te ondersteunen of te automatiseren, wat leidt tot besparingen in tijd en geld. 

Een primaire uitdaging hangt samen met het karakter en gedrag van kennis in 
de tijd. Verandert kennis en heeft het een levenscyclus? Huidig onderzoek met 
betrekking tot het onderwerp kennisverandering is echter vrij schaars. 
Verscheidene onderzoekers (bijvoorbeeld Schorlemmer et al. (2002), Alavi and 
Leidner (2001), Stokes (2001), Nonaka et al. (2000) en Schreiber et al. (1999)) 
geven aan dat kennis verandert, maar deze onderzoekers geven geen accurate 
definitie van hun concepten. Een aantal van hen geeft geen onderbouwing voor 
hun stellingen. Niemand gaat verder dan een kwalitatieve inschatting van 
kennisverandering. 

Dit heeft aanzienlijke implicaties vanuit een praktisch perspectief. Bij 
verandering van kennis ontstaat een risico dat knowledge-based applicaties snel 
overbodig worden. Coenen and Bench-Capon (1993) geven een indicatie van de 
grootte van het probleem: het bestudeerde knowledge-based systeem was 
onderhevig aan 50% verandering van de bestaande regels per jaar, terwijl de 
gehele knowledge base met een factor vier groeide in de eerste drie jaar. Van Dijk 
et al. (2012) geven een indicatie van de kosten die onderhoud van een 
knowledge-based applicatie met zich meebrengt. Deze kosten worden geschat op 
25% van de initiële investering op jaarlijkse basis.   

Hoe kunnen knowledge-based applicaties dan omgaan met 
kennisverandering? Het is vereist dat modellen en methodes worden ontwikkeld 
voor het ontwerpen van meer robuuste engineering applicaties: bruikbaarheid en 
onderhoud van kennis en applicaties moet worden gefaciliteerd. Gezien deze 
overwegingen is het volgende algemene onderzoeksdoel gedefinieerd: 
 

Ondersteuning van het consistent formaliseren, gebruiken en onderhouden 
van veranderende kennis binnen fases van de levenscyclus van vliegtuigen ter 
einde domein-specifiek modelleren, uitvoering en controle van engineering 
taken te verbeteren 

 
Kennisverandering wordt hier gedefinieerd als een verandering in kennis over tijd, 
waar kennis is gedefinieerd als verwerkte informatie met een capabiliteit voor 
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effectieve actie. De volgende types van verandering kunnen worden 
onderscheiden in een knowledge-based applicatie: verandering in waardes (data 
change), verandering in de gestructureerde context van een kennis-element 
(information change) en verandering in de capabiliteit voor effectieve actie 
geassocieerd met een kenniselement (knowledge change), wat kan worden 
veroorzaakt door veranderingen in regels, logische structuren of attribuut-sets. 

Om het algemene onderzoeksdoel te realiseren zijn een aantal specifieke 
bijdrages aan de academische theorie ontwikkeld, wat tevens het beantwoorden 
van specifieke onderzoeksuitdagingen met zich meebracht – zie Tabel S.1.  
 

Tabel S.1: Bijdrages aan theorie en geassocieerde onderzoeksuitdagingen 
Onderzoeksbijdrage Geassocieerde uitdaging 
Knowledge Lifecycle Model Karakteriseren, modelleren en 

kwantificeren van het gedrag van kennis 
binnen de levenscyclus van het vliegtuig 

Ontologie-gebaseerde benadering voor het 
ondersteunen van kennisverandering: 
Knowledge Lifecycle ontology 

Onderhoud: 
- 'black-box' KBS applicaties vermijden met 
behulp van transparantie 
Bruikbaarheid: 
- Taakoriëntatie 
- Betrokkenheid expert / eindgebruiker  

Ontwikkeling van methodologie: KNOMAD 
methodologie 

Methodologische benadering voor het 
faciliteren van 
kennisveranderingsmanagement 

 
Het Knowledge Lifecycle Model is ontwikkeld om de levenscyclus van 
kenniselementen met behulp van twee concepten te karakteriseren en 
modelleren: kennis-staat en kennis-acties. De acties – creëren, formalizeren, 
gebruiken, onderhouden, updaten en archiveren – bieden de mogelijkheid om het 
gedrag van kennis in de tijd betekenisvol te kwantificeren. Deze mogelijkheid gaat 
voorbij de huidige state-of-the-art. 

De ontwikkelde Knowledge Lifecycle (KLC) ontologie kan dienen als een 
structuur-behoudende benadering voor het ontwikkelen, gebruiken en 
onderhouden van knowledge-based applicaties.De KLC ontologie omvat twee 
centrale perspectieven: het Enterprise Knowledge Resource (EKR) concept 
gecombineerd met een annotatie-structuur gebaseerd op het Product-Process-
Resource (PPR) paradigma. Een EKR is een taak-georienteerde representatie die 
kenniselementen, proceselementen en taak-output in de vorm van case 
rapportages bevat. In combinatie met het PPR paradigma kunnen 'white-box' 
knowledge-based applicaties worden ontwikkeld met verbeterde transparantie. 
De KLC ontologie gaat op vier manieren voorbij de huidige state-of-the-art: het 
maakt structuur-behoudend modelleren en implementeren mogelijk, het 
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representeert kennis in relatie met individuele taken, het biedt consistente 
annotatie via de PPR classes in relatie met individuele taken en het biedt 
systematische opslag van resultaten. 

De derde en laatste bijdrage is de KNOMAD methodologie. Deze 
methodologie ondersteunt het ontwikkelen van knowledge-based applicaties die 
kunnen omgaan met kennisverandering. De methodologie bestaat uit zes 
stappen: Kennisacquisitie en Identificatie van Kennisverandering, Normalisatie, 
Organisatie, Modelleren en Implementatie, Analyse en Delivery. Het kritieke 
aspect van kennisverandering (en bijbehorend onderhoud) wordt ondervangen 
door het karakteriseren en analyseren van kennisverandering bij de start van het 
KNOMAD-proces. De organisatie-stap benadrukt het modelleren van het domein. 
Deze kennis kan in de volgende stap (Modelleren en Implementatie) worden 
gebruikt voor het annoteren van engineering taken. Het gebruik van de KLC 
ontologie wordt aanbevolen in de Modellering en Implementatie-stap. Derhalve 
worden domein en taakontologiën ontwikkeld en geïmplementeerd als de 
ruggegraat voor de ontwikkelde knowledge-based oplossingen. Als gevolg hiervan 
realiseren de verschillende KNOMAD-stappen een ontologie-gebaseerde 
benadering welke de onderzoeksuitdagingen met betrekking tot black-box 
applicaties en transparantie, taak-oriëntatie en betrokkenheid van de 
eindgebruiker/expert beantwoordt. 

De ontologie-gebaseerde benadering en de geassocieerde modellen en 
methodologie zijn ter validering toegepast in drie case studies betreffende 
specifieke fases uit de vliegtuiglevenscyclus – ontwerp, productie en onderhoud.  

Met betrekking tot de theoretisch georienteerde uitdaging - karakteriseren, 
modelleren en kwantificeren van het gedrag van kennis binnen een product 
levenscyclus – kan worden gesteld dat het Knowledge Lifecycle model succesvol is 
toegepast om kennisverandering in de ontwerp- en productiefases te 
karakteriseren. Het model is daarnaast succesvol toegepast in het 
onderhoudsdomein om kennisverandering te kwantificeren.  

De uitdagingen met betrekking tot onderhoud – voorbij 'black-box' KBS 
applicaties bewegen en transparantie – zijn beantwoord door middel van de 
concepten van de KLC ontologie. Traceerbaarheid van kennis is bewerkstelligd via 
het EKR concept, met name door de Case class en de geassocieerde case 
rapporten. Deze maken het mogelijk om de uitkomsten van kennistoepassing voor 
een specifieke taak te traceren. Tevens kunnen de kennis en processes die zijn 
gebruikt voor uitoefening van de taak worden getraceerd. De metadata die is 
verbonden aan de kennis- en proceselementen (zoals auteurschap, levenscyclus-
fase, status, etc.) helpen tevens met traceerbaarheid en betrouwbaarheid, 
validiteit en ownership van kennis. Het PPR paradigma helpt de zichtbaarheid van 
centrale concepten te bewerkstelligen. De drie case studies laten zien hoe een 
domein-specifieke extensie van de PPR classes semantische annotatie van 
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geimplementeerde EKRs mogelijk maakt. Dit maakt het makkelijker om 
knowledge-based applicaties en componenten te vinden, inspecteren en 
gebruiken. De uitdagingen met betrekking tot bruikbaarheid – taakoriëntatie en 
betrokkenheid van de expert / eindgebruiker – worden beantwoord door het EKR 
concept en het gebruik van een web-based kennismanagement systeem. In elke 
case study is een of meer EKRs ontwikkeld voor het representeren en uitvoeren 
van specifieke engineering taken. De gekozen web-based architectuur faciliteert 
interactie van de gebruiker met EKRs en de bijbehorende componenten 
(kenniselementen, proceselementen, cases).  

De KNOMAD methodologie is in alle case studies toegepast. Alle stappen van 
de methodologie zijn succesvol toegepast voor het ontwikkelen en 
implementeren van knowledge-based applicaties die met kennisveranderingen 
kunnen omgaan. 

De bijdrages van deze dissertatie – Knowledge Lifecycle model, KLC ontologie, 
KNOMAD methodologie – kunnen op verscheidene manieren worden uitgebreid 
en verbeterd. Voor het Knowledge Lifecycle is met name van belang dat het 
kwantitatief wordt gevalideerd voor meerdere domeinen. Ideaal gesproken wordt 
dit model ook voorzien van een formele mathematische onderbouwing. 
Daarnaast is taakcomplexiteit en –hierarchie niet gemodelleerd en bestudeerd in 
deze dissertatie. Als laatste moet worden genoteerd dat de KLC ontologie kan 
worden uitgebreid met formele expressies, wat het gebruik van reasoning 
technieken in het ontwerp en onderhoud van knowledge-based applicaties zou 
faciliteren. 
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