
W.J.C. Verhagen

A n O n t o l o g y - B a s e d A p p r o a c h f o r
K n o w l e d g e L i f e c y c l e M a n a g e m e n t
w i t h i n A i r c r a f t L i f e c y c l e P h a s e s

In the aerospace domain, manufacturers and
operators constantly seek to improve their products
and processes. Increasingly, knowledge-based
applications are developed to support or automate
knowledge-intensive engineering tasks, saving
time and money. However, engineering knowledge
changes over time, which has implications
for the usability and maintainability of
knowledge-based applications.

The research presented in this thesis contributes to
the development of theory regarding knowledge
change in engineering tasks. A conceptual
knowledge lifecycle model to characterise and
quantify knowledge change is presented.
Additionally, this thesis proposes a methodology
and an ontology-based approach to support
the development of robust knowledge-based
applications that can cope with knowledge change.
These research contributions are validated
in three case studies that consider engineering
tasks in the aircraft design, manufacturing and
maintenance lifecycle phases. The case studies
demonstrate the utility of knowledge lifecycle
management as usability and maintainability
of knowledge-based applications are improved.

A
n O

ntology-Based Approach for K
now

ledge Lifecycle M
anagem

ent w
ithin A

ircraft Lifecycle Phases W
.J.C

. Verhagen

Proefschrift omslag WJC Verhagen.indd 1 6/11/2013 7:28:58 PM

An O
ntology-Based Approach for Knowledge Lifecycle M

anagem
ent w

ithin Aircraft Lifecycle Phases

You are cordially
invited to attend the

defense of my PhD thesis
on Thursday

18 July 2013
at 10:00 a.m.

in the Senaatszaal of
the Auditorium (Aula)

of TU Delft,
Mekelweg 5, Delft.

Prior to the defense,

at 9:30 a.m., I will
give a short

presentation outlining
my research work.

The defense is
followed by a

reception in the
Frans van Hasseltzaal,
Auditorium TU Delft.

Wim Verhagen
W.J.C.Verhagen@tudelft.nl

Invitation

uitnodiging.indd 1 6/11/2013 7:34:04 PM

An Ontology-Based Approach for
Knowledge Lifecycle Management within

Aircraft Lifecycle Phases

An Ontology-Based Approach for
Knowledge Lifecycle Management within

Aircraft Lifecycle Phases

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op donderdag 18 juli 2013 om 10:00 uur

door

Wilhelmus Johannes Cornelis VERHAGEN
ingenieur in de luchtvaart en ruimtevaart

geboren te Moergestel

Dit proefschrift is goedgekeurd door de promotor:

Prof.dr. R. Curran

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr. R. Curran, Technische Universiteit Delft, promotor
Prof.dr. J. Scanlan University of Southampton, United Kingdom
Prof.dr. T. Tomiyama Cranfield University, United Kingdom
Prof.dr. G. Lodewijks Technische Universiteit Delft
Dr. J-P. Clarke Georgia Institute of Technology
Dr. G. La Rocca Technische Universiteit Delft
Dr. P. Bermell-Garcia EADS Innovation Works
Prof. dr. D.G. Simons Technische Universiteit Delft, reservelid

ISBN 978-90-8891-659-5

Keywords: Knowledge Lifecycle, Knowledge Based Engineering, Knowledge Based
Applications, Ontology

Copyright © 2013 by W.J.C. Verhagen

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval
system, without the prior written permission of the author.

Published by Uitgeverij BOXPress, 's-Hertogenbosch.

Dedicated to my mother Christine, in loving memory.

vii

Table of Contents

Acknowledgements ... xi

Summary ... xiii

List of Figures.. xvii

List of Tables .. xxi

Nomenclature.. xxiii

1 Introduction ... 1

1.1 Challenges in Knowledge Engineering for the Aircraft Lifecycle 1
1.2 Research Approach ... 2

1.2.1 Research Framework ... 3
1.2.2 Research Design ... 6

1.3 Dissertation Structure... 8

2 Exploration of the Research Context .. 11

2.1 Perspectives on Knowledge and Knowledge Change ... 11
2.2 State of the Art and Challenges for Knowledge Perspectives along the

Product Lifecycle ... 20
2.2.1 Data through Product Life: Product Data Management 23
2.2.2 Information through Product Life: Product Lifecycle Management 25
2.2.3 Knowledge through Product Life: Knowledge Management &

Knowledge Engineering .. 29
2.3 Identification of Research Challenges .. 36

3 Theory Development ... 41

3.1 A Conceptual Model for the Lifecycle of Knowledge .. 42
3.1.1 State of the Art and Shortcomings of Knowledge Lifecycle research 42
3.1.2 Requirements on Definition of a Knowledge Lifecycle Model 45
3.1.3 Research Contribution 1: Conceptual Knowledge Lifecycle Model 47
3.1.4 Concluding Remarks .. 49

3.2 A Model-Based Approach to Support Knowledge Change: the Knowledge
Lifecycle Ontology ... 51

3.2.1 The Role of Ontologies in Supporting Knowledge-Based Applications
through Knowledge Life: State of the Art and Shortcomings 51

3.2.2 Main Elements for the Development of the Knowledge Life Cycle
Ontology ... 58

3.2.3 Research Contribution 2: Knowledge Life Cycle Ontology 70
3.2.4 Concluding Remarks .. 77

3.3 The KNOMAD Methodology for Supporting KBS Development incorporating
Knowledge Change ... 80

viii

3.3.1 State of the Art in Methodologies for KBS development 80
3.3.2 Shortcomings of Existing Methodologies and Associated Research

Requirements ... 85
3.3.3 Research Contribution 3: KNOMAD Methodology .. 86
3.3.4 Concluding Remarks .. 90

3.4 Discussion of Contributions .. 91
3.4.1 Discussion of the Knowledge Lifecycle Model ... 91
3.4.2 Discussion of the Knowledge Lifecycle Ontology ... 92
3.4.3 Discussion of the KNOMAD methodology ... 93

3.5 Proposing a Case Study approach .. 94

4 Design Case Study: Ply Stacking Sequence Optimization for Composite Wing

Panels .. 99
4.1 Case Study Context and Challenges .. 99
4.2 Application of Theory to Design Case Study ... 104

4.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge
Change ... 105

4.2.2 Application of KLC Ontology: Task Analysis ... 107
4.2.3 Application of KNOMAD: Solution Approach ... 109

4.3 Results .. 110
4.3.1 Knowledge Capture & Identification of Knowledge Change 110
4.3.2 Normalization .. 112
4.3.3 Organisation ... 113
4.3.4 Modelling & Implementation .. 117
4.3.5 Analysis & Delivery... 127

4.4 Discussion of Results .. 128

5 Manufacturing Case Study: Composite Wing Cost Modelling & Estimation 129

5.1 Case Study Context and Challenges .. 130
5.2 Application of Theory to Manufacturing Case Study .. 136

5.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge
Change .. 136

5.2.2 Application of KLC Ontology: Task Analysis ... 138
5.2.3 Application of KNOMAD: Solution Approach ... 140

5.3 Results .. 141
5.3.1 Knowledge Identification & Capture .. 142
5.3.2 Normalization .. 144
5.3.3 Organisation ... 146
5.3.4 Modelling & Implementation .. 150
5.3.5 Analysis & Delivery... 158

5.4 Discussion of Results .. 159

6 Maintenance Case Study: Supporting Wing Maintenance – B737 Leading Edge

Slat Downstop Assembly Modification & Inspection .. 161
6.1 Case Study Context and Challenges .. 161

ix

6.2 Application of Theory to Maintenance Case Study .. 165
6.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge

Change .. 166
6.2.2 Application of Knowledge Lifecycle Model: Quantifying Knowledge

Change .. 168
6.2.3 Application of KLC Ontology: Task Analysis ... 182
6.2.4 Application of KNOMAD: Solution Approach ... 183

6.3 Results .. 184
6.3.1 Knowledge Identification & Capture .. 185
6.3.2 Normalization .. 188
6.3.3 Organisation ... 188
6.3.4 Modelling & Implementation .. 191
6.3.5 Analysis & Delivery... 202

6.4 Discussion of Results .. 202

7 Conclusion ... 205

7.1 Research Synthesis ... 205
7.1.1 Synthesizing a Vision for Knowledge Engineering 205
7.1.2 Synthesizing the Case Study Results relative to Research Objectives and

Challenges .. 208
7.2 Research Conclusions ... 210

7.2.1 Theory Development: Knowledge Lifecycle Modelling 211
7.2.2 Theory Development: Ontology-based Approach to Support Knowledge

Change ... 212
7.2.3 Theory Development: Methodology Development 213

7.3 Research Limitations & Recommendations .. 214

References .. 219

Appendix A: Complexity Estimation.. 229

Samenvatting ... 233

Curriculum Vitae ... 237

List of Publications.. 238

x

xi

Acknowledgements

Obtaining a PhD is often seen as an individual achievement. While in the end the
responsibility falls upon the shoulders of the PhD candidate, the journey towards
the PhD is most emphatically a shared one. It is the people you meet and interact
with during the PhD journey that make it such a memorable and worthwhile
experience. I wish to thank several people who have made the journey so much
easier to complete.

First, I wish to express my deep gratitude to my promotor Ricky Curran for his
guidance and unwavering support, both research-related and personal. Ricky, I
very much enjoyed working together on research and deeply appreciate the
opportunities you have given me to broaden my horizon through educational and
international activities. I am looking forward with great anticipation towards
building upon our joint ambitions for the Air Transport & Operations chair.

I also wish to extend my gratitude to my colleagues from industry. Christian, thank
you for that vital first push. Working together with the Ardans colleagues (Jean-
Pierre, Alain and above all Pierre) has been a pleasure. I very much appreciate the
hospitality, expertise and support extended by the members of the EADS IW team
involved in parts of the research: Domingo, Simon, Kiran, Jean-Luc, Gary, Alistair,
Romaric and Jean-Baptiste. Pablo must be singled out in his vital role as industrial
advisor-of-sorts during the critical stage of the research process. Pablo, your
professional and personal character is of the highest quality. It was an honour and
pleasure to work with you and the EADS team.

Thanks to the members of the ATO staff for making the daily work environment so
pleasant. The regular and irregular members of the 'lunch club' make for
stimulating lunch time conversation, ranging from aerospace to distinctly non-
aerospace related topics. A warm thanks to Liza, Geeta and Vera for being the
unsung yet vital heroines of the group.

I am deeply indebted to my friends from Jochvipelisawi and my family for their
unconditional support. Special thanks to Marieke for her fantastic cover design! It
is however three persons that deserve a very special mention. Lisette, you are the
love of my life – I couldn’t have done the PhD without you. Finally, the support of
my father Jan and mother Christine is and has been the best source of motivation
during these and previous years.

xii

xiii

Summary

An Ontology-Based Approach for Knowledge Lifecycle
Management within Aircraft Lifecycle Phases

In the aerospace domain, manufacturers and operators constantly seek to
improve their products and processes. Increasingly, knowledge-based applications
are developed to support or automate knowledge-intensive engineering tasks,
saving time and money. However, engineering knowledge is likely to change over
time, which has implications for knowledge-based applications.

A central challenge to consider is related to the nature of knowledge and its
behaviour over time. Does knowledge change and therefore, does it have a
lifecycle of its own? With respect to the issue of knowledge change, current
research is rather limited. Various authors (e.g. Schorlemmer et al. (2002), Alavi
and Leidner (2001), Stokes (2001), Nonaka et al. (2000) and Schreiber et al.
(1999)) indicate that knowledge changes, but these authors do not accurately
define their concepts, most do not back up their assertions, and none go beyond a
qualitative assessment of knowledge change.

This has major ramifications from a practical perspective. If knowledge
changes, existing knowledge-based applications risk becoming rapidly obsolete.
Coenen and Bench-Capon (1993) offer an indication of the magnitude of the
problem of knowledge change: the knowledge-based system that was studied
incorporated an estimated 50% change in rules on a yearly basis, while the overall
knowledge base expanded about fourfold in the first 3 years of operation. Van
Dijk et al. (2012) offers an indication of the costs associated with maintaining a
knowledge-based application to keep functionality and knowledge up to date,
which are estimated to be 25% of non-recurring software development cost on a
yearly basis.

How can knowledge-based applications cope with knowledge change? It is
necessary to develop models and methods to enable the development of more
robust engineering applications: usability and maintainability of knowledge and
knowledge-based applications must be facilitated. The following high-level
research goal is consequently identified:

Support consistent formalization, use and maintenance of changing
knowledge within aircraft lifecycle phases to improve domain-specific
modelling, execution and control of engineering tasks

Knowledge change is defined here as a change in knowledge over time, where
knowledge is defined as processed information with a capability for effective

xiv

action. Consequently, the following types of change may be discerned in a
knowledge-based application: changes in values (data change), changes in the
structured context of a knowledge element (information change) and changes to
the capability for effective action associated with a knowledge element
(knowledge change), where the latter can be caused by changes in rules, logic
structures or attribute sets.

To achieve the high-level research goal, several contributions to theory have
been developed which involved addressing associated research challenges, as
shown in Table S.1.

Table S.1: Contributions to theory related to research challenges
Research contribution Associated research challenge(s)
Knowledge Lifecycle Model Characterise, model and quantify the

behaviour of knowledge within product life
Ontology-based approach to support
knowledge change: Knowledge Lifecycle
Ontology

Maintainability:
- Moving beyond black-box KBS
applications and ensuring transparency
Usability:
- Task orientation
- Expert / end user involvement

Methodology development:
KNOMAD methodology

Methodological approach to facilitate
knowledge change management

The Knowledge Lifecycle model has been developed to characterize and

model the lifecycle of knowledge elements by incorporating the concepts of
knowledge states and actions. In particular, the actions – including create,
formalize, use, maintain, update and retire – offer the ability to meaningfully
quantify knowledge behaviour over time. Through offering this capability, the
Knowledge Lifecycle model goes beyond state-of-the-art in theory.

The developed Knowledge Lifecycle (KLC) ontology can serve in a structure-
preserving approach towards the development, use and maintenance of
knowledge-based applications. The KLC ontology revolves around two central
perspectives: the Enterprise Knowledge Resource (EKR) concept in combination
with an annotation structure based on the Product-Process-Resource (PPR)
paradigm. An EKR is a task-oriented container representation encompassing
knowledge elements, process elements and task output in the form of case
reports. In combination with the PPR paradigm, 'white-box' knowledge-based
applications with increased transparency can be developed. The KLC ontology
moves beyond state-of-the-art through four ways: enabling structure-preserving
modelling and implementation, representing knowledge related to individual task
level, offering consistent annotation through PPR classes related to individual
tasks and offering systematic storage of task outputs.

xv

The third and final contribution to theory is the KNOMAD methodology.
KNOMAD has been introduced as a methodology for the development of
knowledge-based applications that can cope with changing knowledge. This
methodology consists of six steps: Knowledge Capture & Identification of
Knowledge Change, Normalisation, Organisation, Modelling & Implementation,
Analysis and Delivery. The critical aspect of knowledge change (and associated
maintenance) is accounted for by the characterisation and analysis of knowledge
change at the start of the KNOMAD process. Furthermore, the organisation step
emphasizes modelling of the domain knowledge layer which can subsequently be
used in the Modelling & Implementation step for annotation of engineering tasks.
This step also advises the use of the KLC ontology. As such, domain and task
ontologies are developed and implemented as the backbone of the developed
knowledge-based solutions. Consequently, the KNOMAD steps realize an
ontology-based approach that addresses the research challenges of moving
beyond black-box applications and ensuring transparency, task orientation and
end user/expert involvement. It goes beyond existing theory by offering explicit
support for knowledge change, by incorporating usability and maintainability
considerations and through explicit support for assessment of knowledge-based
application performance.

For validation, the ontology-based approach and the associated models and
methodology have been applied in three case studies considering engineering
tasks for specific aircraft life cycle phases – design, manufacturing and
maintenance.

The Knowledge Lifecycle model has been successfully applied to characterise
knowledge change in the design and manufacturing domains. Furthermore, the
model has been applied in the maintenance domain to quantify knowledge
change.

The KLC ontology has been applied in all case studies. The associated
maintainability challenge – moving beyond black-box and ensuring transparency –
has been addressed through the KLC ontology concepts. Through the EKR
concept, traceability is ensured. In particular, the Case class and the associated
case reports enable tracing the outputs of knowledge application for a specific
task, as well as tracing the knowledge and processes used to perform a task. The
metadata that is associated with knowledge and process elements (authorship,
lifecycle state, status, etc.) also aids traceability in terms of knowledge ownership,
validity and reliability. Through the PPR paradigm, visibility of key concepts is
ensured. It has been shown in the three case studies how development of a
domain-specific extension of the PPR classes facilitates semantic annotation of
implemented EKRs, making it easy to find, inspect and use knowledge-based
applications and their components. The usability challenges – task orientation and
expert/end user involvement – are met through the EKR concept and the use of a

xvi

web-based knowledge management solution. In each case study, one or more
EKRs have been developed to represent and support the execution of specific
engineering tasks. The chosen web-based architecture facilitates user interaction
with EKRs and their constituent elements (knowledge elements, process
elements, cases).

The KNOMAD methodology has been applied in all three case studies. All
steps of the methodology have been successfully applied to develop and
implement knowledge-based applications that can handle knowledge change.

The contributions of this dissertation – Knowledge Lifecycle model, KLC
ontology, KNOMAD methodology – can be expanded and refined in various ways.
Most notably, the Knowledge Lifecycle model has to be quantitatively validated
across more domains. Ideally, it would also be given a formal mathematical
foundation. Furthermore, modelling of task complexity and hierarchies has not
been performed as part of this dissertation. Finally, adding formal expressions to
the KLC ontology would facilitate the use of reasoning capabilities in the
development and maintenance of knowledge-based applications.

xvii

List of Figures

Figure 1.1: Research framework .. 7
Figure 1.2: Research roadmap ... 9
Figure 2.1: Data, information and knowledge transformation processes (adapted from
Hicks et al. (2002)) ... 15
Figure 2.2: Selection of a material – baseline state ... 17
Figure 2.3: Selection of a material – changed state... 17
Figure 2.4: Product lifecycle stages (adapted from Jun et al. (2007)) 22
Figure 2.5: Research domains of interest .. 23
Figure 2.6: Information flows through product life (Jun et al., 2007) 27
Figure 2.7: Use of PDM and PLM throughout the product lifecycle (Lee et al., 2008) 28
Figure 2.8: Positioning of knowledge disciplines (La Rocca, 2012) 30
Figure 2.9: Selection, classification and review process .. 34
Figure 3.1: Knowledge Lifecycle Model with knowledge states and actions 49
Figure 3.2: PROMISE Semantic Object Model (Tomasella et al., 2006) 60
Figure 3.3: PDW Core Ontology (Brandt et al., 2008) .. 61
Figure 3.4: Generic IDEF0 diagram (National Institute of Standards and Technology, 1993)
 ... 64
Figure 3.5: UML class diagram of Enterprise Knowledge Resource (Bermell-Garcia et al.,
2012) .. 65
Figure 3.6: High-level concepts and relationships of the KLC ontology 71
Figure 3.7: UML class diagram of KLC ontology ... 74
Figure 3.8: UML class diagram of Enterprise Knowledge Resource as implemented in the
KLC ontology .. 77
Figure 3.9: CommonKADS methodology overview .. 81
Figure 3.10: KBE System Lifecycle (adapted from Oldham et al. (1998)) 83
Figure 3.11: MOKA methodology elements .. 84
Figure 3.12: KNOMAD methodology overview .. 87
Figure 4.1: Cross-sectional view of ply stacking sequences for two adjacent grid cells 101
Figure 4.2: Interleaved plies across cell boundary... 102
Figure 4.3: Adding manufacturing considerations into a structural view of the design 102
Figure 4.4: Grid representation of a wing cover skin panel ... 103
Figure 4.5: Possible production issues arising from minimum course length (Blom, 2010)
 ... 106
Figure 4.6: IDEF0 A-0 diagram for composite wing cover optimization task 108
Figure 4.7: IDEF0 A0 diagram for optimization subtasks ... 109
Figure 4.8: Application of KNOMAD to design case study – flow chart 110
Figure 4.9: Example of manufacturing constraint stored in AKM...................................... 113
Figure 4.10: Domain-specific hierarchy for Product class.. 114
Figure 4.11: Domain-specific hierarchy for Process class .. 115
Figure 4.12: Domain-specific hierarchy for Resource class ... 116
Figure 4.13: EKR class diagram (UML) for design case study ... 119

xviii

Figure 4.14: Knowledge framework containing the eLBD and xLBD elements (Bermell-
Garcia et al., 2012) ... 121
Figure 4.15: AKM model for Enterprise_Knowledge_Resource class 122
Figure 4.16: Partial overview of implemented design and manufacturing constraints
(Bermell-Garcia et al., 2012) .. 123
Figure 4.17: Case reports (left) and their relation with design inputs and underlying
knowledge (Bermell-Garcia et al., 2012) ... 125
Figure 4.18: Annotation of the ply continuity optimization EKR 126
Figure 5.1: Standard cost modelling approach .. 133
Figure 5.2: Cost model evolution ... 137
Figure 5.3: IDEF0 A-0 diagram for cost modelling and estimation task 139
Figure 5.4: IDEF0 A0 diagram for cost modelling and estimation subtasks 140
Figure 5.5: Application of KNOMAD to manufacturing case study – flow chart 141
Figure 5.6: Example of imported geometry data for a composite wing top cover 143
Figure 5.7: Example of process parameters .. 144
Figure 5.8: Cost estimation output format .. 144
Figure 5.9: Example of cost model element stored in AKM .. 145
Figure 5.10: extended Product class hierarchy for the manufacturing domain 147
Figure 5.11: extended Process class hierarchy for the manufacturing domain................. 149
Figure 5.12: extended Resource class hierarchy for the manufacturing domain 150
Figure 5.13: Managed cost model evolution ... 151
Figure 5.14: Process model for CFRP T-stringer production EKR 152
Figure 5.15: EKR class diagram (UML) for manufacturing case study................................ 153
Figure 5.16: Semantic annotation of a cost model EKR ... 154
Figure 5.17: Implementation architecture .. 155
Figure 5.18: User process for cost model composition using proof-of-concept solution . 157
Figure 5.19: Annotation of the CFRP T-stringer EKR .. 157
Figure 6.1: Adoption of PLM in the MRO domain (adapted from Lee et al. (2008)) 162
Figure 6.2: The aircraft MRO environment (adapted from Lampe et al. (2004)) 163
Figure 6.3: Frequency of knowledge actions (A320) ... 172
Figure 6.4: Knowledge actions per year versus the A320 lifetime (years)......................... 173
Figure 6.5: Knowledge change versus lifetime (A320) ... 174
Figure 6.6: Frequency of knowledge actions (B737) .. 175
Figure 6.7: Knowledge actions per year versus the B737 lifetime (years) 176
Figure 6.8: Knowledge change versus the B737 lifetime (years) 177
Figure 6.9: Through-life implications of knowledge change (A320 sample) 180
Figure 6.10: Through-life implications of knowledge change (B737 sample) 180
Figure 6.11: IDEF0 A-0 diagram for B737 slat track main downstop modification and
inspection task ... 182
Figure 6.12: IDEF0 A0 diagram for B737 slat track main downstop subtasks.................... 183
Figure 6.13: Application of KNOMAD to maintenance case study – flow chart 184
Figure 6.14: Slat main track downstop assembly (FAA, 2011) ... 185
Figure 6.15: Aft side guide bolts (Boeing, 2010) .. 186
Figure 6.16: Maintenance process for modification and inspection (based on Boeing
(2010)) ... 187

xix

Figure 6.17: extended Product class hierarchy for the maintenance domain 189
Figure 6.18: extended Process class hierarchy for the maintenance domain 190
Figure 6.19: extended Resource class hierarchy for the maintenance domain................. 191
Figure 6.20: EKR class diagram (UML) for maintenance case study 193
Figure 6.21: AKM model for the Knowledge_Element class for maintenance case study 194
Figure 6.22: Example of EKR article for maintenance case study 196
Figure 6.23: Example of knowledge element article ... 197
Figure 6.24: Example of process element article ... 198
Figure 6.25: Example of case report article ... 199
Figure 6.26: Semantic annotation of EKR .. 200
Figure 6.27: Tagging an EKR in Ardans Knowledge Maker... 201
Figure 7.1: Two streams of knowledge engineering related to knowledge change 207
Figure A.1: Element interactions in constrained (left) and unconstrained (right) form 229
Figure A.2: Plot of element interactions for functions g and h, where n=1..10, m=1..10 . 230
Figure A.3: Number of element interactions for g and h, where n = 1..10, m = 1..10 230

xx

xxi

List of Tables

Table S.1: Contributions to theory related to research challenges xiv
Table 2.1: Examples of data, information and knowledge change and implications 19
Table 2.2: Summary of selected KBE development efforts ... 33
Table 2.3: Research objectives related to research challenges ... 39
Table 3.1: Research challenges related to research contributions 41
Table 3.2: Process-oriented (organisational) knowledge lifecycle models (adapted from
Maksimovic et al. (2011)) .. 43
Table 3.3: Potential knowledge states ... 45
Table 3.4: Challenges and associated requirements on the model-based approach 52
Table 3.5: Ontology requirements ... 57
Table 3.6: KLC ontology requirements in relation with building blocks 67
Table 3.7: Relationships between main concepts of KLC ontology 76
Table 3-8: KLC ontology requirements versus functionality .. 78
Table 4.1: Captured design and manufacturing constraints .. 112
Table 4.2: Relationships in the design domain ontology ... 117
Table 5.1: Product cost modelling and estimation techniques (adapted from Niazi et al.
(2006)) ... 130
Table 5.2: Assessment matrix for traditional cost estimation methods (Curran et al., 2004)
 ... 131
Table 5.3: Disciplines versus fidelity (adapted from Price et al. (2006)) 132
Table 5.4: Example cost modelling approach: T-stringer Production 142
Table 6.1: Bivariate correlation - knowledge actions per year versus lifetime (A320) 173
Table 6.2: Bivariate correlation - knowledge change versus lifetime (A320) 174
Table 6.3: Bivariate correlation - knowledge actions per year versus lifetime (B737) 176
Table 6.4: Bivariate correlation for knowledge change versus lifetime (B737) 177
Table 6.5: Correlation results for knowledge action ‘create’ versus lifetime (B737) 178
Table 6.6: Correlation results for knowledge action ‘maintain’ versus lifetime (B737) 178
Table 6.7: Correlation results for knowledge action ‘update’ versus lifetime (B737) 178
Table 7.1: Research objectives related to research challenges ... 208
Tabel S.1: Bijdrages aan theorie en geassocieerde onderzoeksuitdagingen 234

xxii

xxiii

Nomenclature

AI Artificial Intelligence
BOL Beginning Of Life
CAD Computer Aided Design
CAE Computer Aided Engineering
CAM Computer Aided Manufacturing
CommonKADS Common Knowledge Acquisition and Documentation Structuring
CPACS Common Parametric Aircraft Configuration Schema
DFM Design for Manufacturing
EBOM Engineering Bill of Materials
EDM Engineering Data Management
EKR Enterprise Knowledge Resource
EOL End Of Life
GTO General Technology Ontology
ICARE Illustrations, Constraints, Activities, Rules, Entities
KBE Knowledge Based Engineering
KBS Knowledge Based Systems
KE Knowledge Engineering
KIF Knowledge Interchange Format
KLC Knowledge Lifecycle Ontology
KNOMAD (K)nowledge Capture & Identification of Knowledge Change,

(N)ormalisation, (O)rganisation, (M)odelling & Implementation,
(A)nalysis and (D)elivery.

KM Knowledge Management
MANDATE MANufacturing DATa Exchange
MBOM Manufacturing Bill Of Materials
MIKE Model-based and Incremental Knowledge Engineering
MOKA Methodology and software tools Oriented to Knowledge-based

engineering Applications
MOL Middle Of Life
OCL Object Constraint Language
OWL Web Ontology Language
PBS Product Breakdown Structure
PDM Product Data Management
PDW Product Data Warehouse
PIM Product Information System
PLCS Product Life Cycle Support
PLM Product Lifecycle Management
PPR Product Process Resource
PROMISE PROduct lifecycle Management and Information tracking using

Smart Embedded Systems
SOM Semantic Object Model
STEP Standard for the Exchange of Product model data

xxiv

TDM Technical Data Management
UML Unified Modelling Language
XML eXtensible Markup Language

1

1 Introduction

This dissertation aims to improve understanding of knowledge change and will
offer ways to cope with such change in the development of knowledge-based
applications. The motivation for this work will be discussed first, followed by
formulation of a research approach.

1.1 Challenges in Knowledge Engineering for the Aircraft
Lifecycle

The study of knowledge has been practiced since Classical times and is known as
epistemology. With the advent of the personal computer and associated
information technology, the study of knowledge activities such as creation,
capture, formalization and implementation has taken flight. Gradually, the field of
knowledge engineering has crystallized. This field originated in the early 1980s
(Studer et al., 1998) with the specific focus of “integrating knowledge into
computer systems in order to solve complex problems normally requiring a high
level of human expertise” (Feigenbaum and McCorduck, 1983). The use of
knowledge engineering for any product lifecycle can be considered by using two
perspectives: a theoretical perspective and a practical perspective.

From the theoretical perspective, a central challenge to consider is related to
the nature of knowledge and its behaviour over time. What is knowledge and
what are its characteristics? How does it behave over time; is it static or does it
change? In other words, does knowledge have a lifecycle of its own?

With respect to the issue of knowledge change, current research is rather
limited. Schorlemmer et al. (2002) discuss the dynamic nature of knowledge: “The
dynamic nature of knowledge has long been realised: knowledge evolves over
time as experiences accumulate; it is revised and augmented in light of deeper
comprehension; entirely new bodies of knowledge are created while at the same
time others pass into obsolescence”. A similar notion is expressed in Alavi and
Leidner (2001) and Nonaka et al. (2000). Schreiber et al. (1999) state that
“…knowledge is not static but changes over time…” and “…knowledge tends to
evolve over time” (pg. 184). Stokes (2001) maintains that “knowledge changes
rapidly (some talk of a half-life for knowledge of only 20 years)” (pg. 279).

Unfortunately, most authors do not accurately define their concepts, most do
not back up their assertions, and none of the mentioned authors go beyond a
qualitative assessment of the differences between static (unchanging) and
dynamic (changing) knowledge. It seems that our understanding of knowledge is
still lacking.

This has major ramifications from a practical perspective. If knowledge
changes, existing knowledge-based applications risk becoming rapidly obsolete.

2

Coenen and Bench-Capon (1993) offer an indication of the magnitude of the
problem of knowledge change: the KBS that was studied incorporated an
estimated 50% change in rules on a yearly basis, while the overall knowledge base
expanded about fourfold in the first 3 years of operation. Van Dijk et al. (2012)
offers an indication of the costs associated with maintaining a knowledge-based
application to keep functionality and knowledge up to date, which are estimated
to be 25% of non-recurring software development cost on a yearly basis.

So, if understanding of the change of knowledge during its life is lacking, how
can existing or to-be-developed knowledge-based applications for engineering
tasks cope with knowledge change? All too often, the answer is to (partly)
redevelop, to invest in extensive and expensive maintenance, or to abandon the
effort altogether. As such, besides achieving a better understanding of the change
of knowledge through life, it is necessary to carry through the implications of
knowledge change in models and methods to enable the development of more
robust engineering applications.

These considerations are of particular interest for the aircraft engineering
domain. The development and operation of aircraft are highly complex and
collaborative endeavours in which knowledge from numerous stakeholders and
disciplines must be integrated to achieve the intended objectives. This holds for
the various stages of the aircraft lifecycle, including design, manufacturing and
operation support. In tandem with the introduction of new materials (e.g.
composites) and production techniques, the continuous development of methods
and applications for the various aircraft life cycle stages is a must. The use of
knowledge engineering may be employed to support these developments.
Knowledge engineering offers methods and models to streamline or even
automate engineering processes while retaining the requisite knowledge
(Schreiber et al., 1999). This may reduce process time significantly while
improving the quality of analysis, decisions and output. However, quite a few
challenges remain for the application of knowledge engineering within aircraft
engineering (Bermell-Garcia et al., 2012; Verhagen et al., 2012). These challenges
focus on usability and maintainability of knowledge and knowledge-based
applications. Knowledge must be geared towards the end user(s), which must be
able to retrieve, understand, use and manage the knowledge used in knowledge-
based applications. Existing knowledge must be able to be updated following new
insights. In other words, knowledge change must be taken into account, allowing
for life-cycle management of knowledge and the associated knowledge-based
applications.

1.2 Research Approach

Does knowledge change and if so, how is this coped with? These general
questions inform the vision and consequently the direction of the research. The

3

vision of this research is to show that knowledge changes and has a lifecycle
which can be modelled and quantified, and to carry through the implications of
knowledge change into a set of models and a method to consistently formalize,
use and maintain knowledge for engineering tasks within the aircraft lifecycle. To
consolidate the stated vision, the following high-level research goal is identified:

Support consistent formalization, use and maintenance of changing
knowledge within aircraft lifecycle phases to improve domain-specific
modelling, execution and control of engineering tasks

To address the general research challenges discussed in the previous section, a
research framework is formulated. This approach consists of the research scope,
objectives and research questions (the what – Section 1.2.1), as well as the
specific research design that outlines the modelling, analysis and validation
approach (the how – Section 1.2.2). In applying the research design, the
theoretical contributions (Chapter 3) and practical contributions (Chapters 4-6) of
this dissertation are developed.

1.2.1 Research Framework

The first step in addressing the aforementioned research challenges is to pick up
on the general research vision and address exactly what it is that is being
researched, i.e. the research objectives, scope and questions. These elements are
the focus of the following sections.

1.2.1.1 Research Objectives
To achieve the high-level research goal, several research objectives must be met:

1) Knowledge life cycle modelling: it is necessary to understand and model

knowledge through time. Therefore, a model for the lifecycle of
knowledge must be developed. This model must enable quantification of
knowledge change.

2) Ontology-based approach to support knowledge change: to support the
consistent formalization, use and maintenance of changing aircraft
knowledge in its various lifecycles, an ontology-based approach must be
developed. The ontology supports the knowledge lifecycle and can be
applied during any aircraft lifecycle phase to construct knowledge-based
applications that support changing knowledge. The resulting applications
must have improved maintainability and usability.

3) Methodology development: to support application of the ontology-based
approach, a methodology must be developed. This should employ the
knowledge life cycle model and associated ontology-based approach to

4

support the development of 'white-box' knowledge-based applications
that can handle knowledge change and offer improved maintainability
and usability.

To ground the research, the state of the art in related domains is to be explored
(see Chapter 2). This review will support the assertions made as part of the
research objectives. Furthermore, the proposed models and methodology must
be validated. The associated approach is discussed in more detail in Section 3.5.

1.2.1.2 Research Scope
The research is scoped with respect to three aspects.

First, the current research will primarily consider explicit knowledge, i.e.
knowledge that has been codified and is available in documents and other
formalized forms (see also Section 2.1). This choice has been made in order to
enable the modelling and quantification of knowledge change. Tacit knowledge –
and its conversion into explicit knowledge – is considered as part of the case
studies (see also Chapters 4-6).

Second, instead of considering a generic product lifecycle, the research
focuses on the aerospace domain; the aircraft lifecycle will be studied. In
particular, the design, manufacturing and maintenance phases of the aircraft
lifecycle are considered. These phases are most directly associated with the
generation, formalization and (re-)use of explicit knowledge in knowledge-based
applications. Therefore, they are the most suitable phases for further research. A
final note regarding these phases is that the emphasis lies on case study research
of engineering tasks as encountered in the design, manufacturing and
maintenance phases of the lifecycle.

Two of three case studies will be concerned with thermoset composite
products. This is an area of considerable interest in both the research and the
business communities, given the introduction of the Boeing B787 and Airbus
A350XWB and the associated required developments in design, manufacturing
and maintenance processes.

To summarize, the research has been scoped to address knowledge within
aircraft lifecycle phases (design, manufacturing, maintenance) with a particular
interest in thermoset composite products.

The following aspects will not be included into the research scope:

• Knowledge exchange across aircraft lifecycle stages: knowledge is
generated during various stages of the aircraft lifecycle. Some
knowledge may originate in early lifecycle stages (e.g. design) and
move through subsequent stages (e.g. manufacturing, maintenance).
The change of knowledge over these stages will not be addressed in
this dissertation.

5

• Application interoperability across the aircraft lifecycle: the
aforementioned use case research focuses on knowledge-based
application development for individual life cycle stages. The
interoperability of applications across life cycle stages (e.g. a design
tool interacting with a maintenance tool) will not be considered.

• Organizational factors: knowledge-based applications do not exist in
a vacuum. Organizational factors play an important role in the
development, implementation and maintenance of knowledge bases
and applications, but these factors are not considered in detail in the
current research.

• Automatic translation between informal and formal knowledge
representations: knowledge can be collected using informal and
formal representations (see Section 2.2.3), which are related to each
other. Typically, an informal representation of knowledge is the first
step in a process leading to formalization of knowledge, which
consists of the modelling and implementation of knowledge in
knowledge-based applications. One of the most appealing research
challenges in knowledge engineering is to make it possible to
automatically link and convert informal to formal knowledge.
Automatic translation models and mechanisms need to be
developed. This would open up the path to rapid knowledge-based
application development, while improving maintainability and
usability of knowledge. However, this challenge is not addressed in
the current research.

• Task automation: while developing and implementing knowledge-
based systems, it is typical to automate repetitive tasks, especially in
KBE development. Though it may feature in some case studies,
automation is in itself not a research objective for this dissertation.

1.2.1.3 Research Questions
A number of research questions are formulated to direct the research. With
respect to the theoretical challenge and the related research objective –
knowledge lifecycle modelling – the following questions are considered:

• Which concepts and relationships are required to characterise the change of

explicit knowledge within and throughout the aircraft lifecycle phases?
• How does explicit knowledge change within specific phases of the aircraft

lifecycle?
• Is change of explicit knowledge quantifiable?

6

These questions will be partially answered in Section 3.1, where a knowledge life
cycle model is proposed. Relative to the model, two general hypotheses (and
associated null hypotheses) are introduced here.

H1: The frequency of knowledge actions decreases along the knowledge lifecycle
H0,1: The frequency of knowledge actions remains equal or increases along the knowledge
lifecycle
H2: Number of knowledge actions per year increases during the aircraft lifecycle
H0,2: Number of knowledge actions per year remains equal or increases during the aircraft
lifecycle

These hypotheses are further explained and tested in Section 6.2.2, along

with a set of case-specific hypotheses. The mentioned Section also answers the
remaining research questions regarding knowledge lifecycle modelling.

With respect to the practical challenges and the related research objectives –

the development of an ontology-based approach and supporting methodology –
the following questions are considered:

• Which concepts and mechanisms support the consistent formalization, use

and maintenance of changing knowledge throughout the aircraft lifecycle?
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?
o Which steps are required?

1.2.2 Research Design

To find answers to the research questions and meet the research objectives, a
three-stage research design has been adopted. Figure 1.1 presents the resulting
research framework, which consists of identification of state-of-the-art and
shortcomings through literature review, development of contributions through
theory, which are validated through practical application in three case studies.

7

Figure 1.1: Research framework

The two-stage research design is further explained below.

1.2.2.1 Theory Development: Research Contributions
Theory development consists of three specific contributions that tie in with the
research objectives:

• The first contribution is an effort to conceptualize and model the
behaviour of knowledge over the aircraft lifecycle (Chapter 3.1).

• The second contribution to theory is the development of an ontology for
the support of knowledge change in knowledge-based applications
(Chapter 3.2). It combines elements of the knowledge lifecycle model with
previous work in the PLM and KBE research domains. The ontology can be
applied in the development of knowledge-based applications.

• The third contribution is the development of the KNOMAD methodology,
supporting the application of an ontology-based approach in the
development of knowledge-based applications that have to cope with
knowledge change (Chapter 3.3).

1.2.2.2 Practical application: Implementation and Validation
The developed models and methodology are put to the test in three case studies
for specific aircraft life cycle phases – design, manufacturing and maintenance.
For each case study, the research context and challenges are indicated. The
theory contributions are then applied to the particular case: knowledge change is
characterised using the knowledge lifecycle model, task analysis is performed to
support ontology application, and the KNOMAD methodology is applied to the
case to produce a development flow chart. This results in development of a
knowledge-based solution for the research problem. The three case studies are
presented in Chapters 4-6.

For the maintenance phase, the knowledge lifecycle model is additionally
tested and validated by quantitative, statistical analysis of the behaviour of

8

knowledge. The model concepts are operationalized and an appropriate
representation of knowledge is selected. Following this, general and case-specific
hypotheses are posited and two separate research samples are gathered,
processed and statistically analysed.

1.3 Dissertation Structure

The structure of this dissertation is informed by the research design. Figure 1.2
gives the research roadmap. It shows that the research context will be explored
first; this includes a discussion of the state-of-the-art in relevant research
domains. This is followed by the development of theoretical and practical
contributions. Finally, conclusions are drawn and the research is discussed. The
individual chapters are discussed in more detail below.

Chapter 2 (Exploration of the Research Context) gives an overview of research in
various fields that are related to the problem statement as given in this
introduction. First, accurate definitions of knowledge and knowledge change are
sought, particularly in relation with data and information. The product lifecycle
concept is introduced next. The concepts of data, information and knowledge are
then extended across the product lifecycle, which leads to review of state-of-the-
art and shortcomings in the fields of Product Data Management, Product Lifecycle
Management and Knowledge Management and Engineering. After discussion of
these research fields, a number of research challenges are defined.

Chapter 3 (Theory Development) presents the three major contributions to
theory of this dissertation. The first section introduces a conceptual knowledge
lifecycle model that aims to enable the characterisation and quantification of
knowledge change. The second section of Chapter 3 introduces the model that
can be used to support the consistent formalization, use and maintenance of
knowledge within aircraft lifecycle phases. This model is an ontology, a
representation of the concepts and relationships in a domain (Uschold and
Gruninger, 1996; Noy and McGuinness, 2009), and combines the knowledge life
cycle concept and its attributes with elements from research on lifecycle
ontologies and functional modelling. The third section establishes a methodology
that can be used to support consistent formalization, use and maintenance of
knowledge over the aircraft lifecycle. It contains a number of distinct steps that
can be used to develop knowledge-based applications that can cope with
knowledge change. The contributions are discussed in Section 3.4. The final
section of Chapter 3 outlines the approach to validate the contributions to theory
by introducing the case study approach.

9

Figure 1.2: Research roadmap

Chapter 4 (Case Study 1: Aircraft Design for Manufacturing) discusses the
development of a knowledge-based application to optimize the design of a
thermoset composite wing panel for ply continuity, which enables better
manufacturability. The theoretical contributions introduced in Chapter 3 are
applied to the case study by identification of knowledge change, engineering task
analysis and application of the methodology. Subsequently, a knowledge-based
application is developed through application of the methodology steps and the
knowledge lifecycle ontology. The knowledge-based application meets
requirements with respect to usability and maintainability, as well as specific case
study requirements.

Chapter 5 (Case Study 2: Aircraft Manufacturing Cost Modelling) details the
development of a knowledge-based application for cost modelling and estimation
for the manufacturing of a thermoset composite wing. As in Chapter 4, the
theoretical contributions introduced in Chapter 3 are applied to the case study by

10

identification of knowledge change, engineering task analysis and application of
the methodology. Subsequently, a knowledge-based application is developed
through application of the methodology steps and the knowledge lifecycle
ontology. The knowledge-based application meets requirements with respect to
usability and maintainability, as well as specific case study requirements, though
the application for this use case is semi-automatic and requires user interaction to
function.

Chapter 6 (Case Study 3: Aircraft Maintenance Modelling) discusses the
development of a maintenance knowledge base that captures and formalizes
knowledge for a specific maintenance function: the inspection and modification of
a Boeing B737 slat main track downstop assembly. As such, it includes lifecycle
knowledge coming from external sources (e.g. the Original Equipment
Manufacturer, Boeing, and the regulator, the Federal Aviation Authority). As
before, the theoretical contributions introduced in Chapter 3 are applied to the
case study by identification and quantification of knowledge change, as well as
engineering task analysis and application of the methodology. Subsequently, a
knowledge-based application is developed through application of the
methodology steps and the knowledge lifecycle ontology. The knowledge-based
application meets requirements with respect to usability and maintainability, as
well as specific case study requirements.

Chapter 7 (Conclusions & Discussion) first synthesizes the contributions from the
case studies in light of the developed theory. The research objectives and
questions of this dissertation are then revisited; appropriate conclusions are
drawn. In the Discussion section, the contributions and limitations of the
performed research are discussed. Furthermore, recommendations for future
research are given.

Appendix A (Complexity Estimation) includes a brief discussion of complexity
estimation for the development of knowledge-based applications consisting of
modular elements.

11

2 Exploration of the Research Context

To gain a better perspective on the aspects of the expressed research vision, the
state-of-the-art of the related research fields is described. Furthermore, the high-
level research challenges identified in the introduction will be refined. This will
result in specific, motivated research challenges as a basis for further research.

The first aspects that will be explored are the definitions of knowledge and
knowledge change. Which perspectives exist and which definitions are adopted in
this dissertation? Following the definition of these concepts, generic
representations of the product lifecycle are discussed, with further specification in
terms of the aircraft lifecycle. Applying a knowledge perspective to the product
lifecycle gives rise to discussion of the research fields of Product Data
Management (PDM), Product Lifecycle Management (PLM), Knowledge
Management (KM) and Knowledge Engineering (KE).

2.1 Perspectives on Knowledge and Knowledge Change

What is knowledge? What is its nature; how can it be defined? And does it
change, and if so, how can this be defined?

From the perspective of this dissertation, it would go too far to consider all
philosophical angles on knowledge. Rather, the focus will be on two major and
often used perspectives to define knowledge, as discussed at length by Alavi and
Leidner (2001):

1) The notion of a hierarchy from data to information to knowledge.
2) Knowledge taxonomies, in particular the distinction between explicit and

tacit knowledge.

As Hicks et al. (2002) note, the words data, information and knowledge are often
used in an interchangeable manner by practitioners, which “complicates the
identification and development of mechanisms for the capture, storage and reuse
of each resource”. As the interchangeable use by practitioners indicates, the
notions of data, information and knowledge are closely related. This realisation
has brought forth a major and often used perspective on knowledge: the notion
of a hierarchy from data to information to knowledge (Wiig, 1997; Nonaka et al.,
2000; Alavi and Leidner, 2001; Bufardi et al., 2005; Ouertani et al., 2011), where
data precedes information, which in turn precedes knowledge. It is implicitly
assumed that value increases intrinsically from data to information to knowledge.
In contrast, researchers such as Tuomi (1999) argue for a reversed hierarchy,
where the existence of knowledge precedes the existence of information and
data. In this dissertation, no judgement will be given with regards to the inherent

12

value and supposed 'progress' from data to information and to knowledge, or vice
versa. Instead, the focus lies on obtaining definitions of these three related
concepts that are as clear as possible. The three central concepts of data,
information and knowledge are discussed below:

• Data: data can be considered as “raw numbers and facts” (Alavi and
Leidner, 2001), “simple facts” (Tuomi, 1999), “symbols which have not yet
been interpreted” (Van der Spek and Spijkervet, 1997), “simple
observations of states of the world” (Davenport and Prusak, 1998), or
“unorganized and unprocessed facts” (Ameri and Dutta, 2005). Hicks et al.
(2002) offer a slightly more involved discussion of the concept of data,
including a look at the difference between structured and unstructured
data, and noting that the 'facts' alluded to in the definitions of others
indicate occurrences of a measure or inference of some quantity or
quality. Finally it should be noted that some authors (e.g. Simon et al.
(2001)) make a distinction between static data (specification of the
product, i.e. data that is created once and stays intact during the product
lifecycle) and dynamic data (data collected during the use of a product).

• Information: like data, information is defined in different ways. For
instance, Tuomi (1999) defines information as structured simple facts.
Van der Spek and Spijkervet (1997) define information as data with
meaning, whereas Alavi and Leidner (2001) and Tuomi (1999) maintain
that information is meaningless in itself; for them, meaning is the defining
characteristic that transforms information into knowledge. Tuomi (1999)
adds that “the general accepted view sees data as simple facts that
become information as data is combined into meaningful structures”.
Davenport and Prusak (1998) sees information as “data endowed with
relevance”. Wiig (1997) states that information “consists of facts and data
that are organised to describe a particular situation or condition”. Hicks et
al. (2002) and Ouertani et al. (2011) combine some of the previous
perspectives by expressing information as having two aspects: “…a subject
or descriptor, which provides the meaning, and a predicate or value that
holds the measure, typically a data element” (Hicks et al., 2002). From this
perspective, information can be expressed as data within a context.
Furthermore, Hicks et al. (2002) consider the difference between informal
and formal information. Informal information is seen as unstructured
information; information possessed by individuals where subjects and
predicates are not clearly defined and may change dynamically. Formal
information is an element of information possessing a specific context and
measure; its must be structured and sufficiently decomposed to act as a
platform to infer knowledge from.

13

• Knowledge: the concepts of information and knowledge are often used
interchangeably. However, it is possible to establish some essential
differences between these two concepts. A number of authors focus on
the inclusion of (personalized) meaning as the defining difference. For
instance, Van der Spek and Spijkervet (1997) state that “knowledge is
what enables people to assign meaning and thereby generate
information”. Tuomi (1999) maintains that “information, in turn, becomes
knowledge when it is interpreted, put into context, or when meaning is
added to it”. Wiig (1997) defines knowledge as follows: “knowledge
consists of truths and beliefs, perspectives and concepts, judgments and
expectations, methodologies and know-how”. Finally, Alavi and Leidner
(2001) state that “what is key to effectively distinguishing between
information and knowledge is not found in the content, structure,
accuracy or utility of the supposed information or knowledge. Rather,
knowledge is information possessed in the mind of individuals”. Alavi and
Leidner (2001) furthermore maintain that only information that is actively
processed in the mind of an individual or individual(s) is useful.

The aspects of usability and applicability inform another dominant
stream of definitions for knowledge. For instance, a hint of these aspects
is included in the definition from Tuomi (1999) who states that “the
general accepted view sees data as simple facts that become information
as data is combined into meaningful structures, which subsequently
become knowledge as meaningful information is put into a context and
when it can be used to make predictions”. Usability and applicability are
much more explicitly considered in the following definitions. First,
Ouertani et al. (2011) focus solely on usability and applicability as defining
aspects of knowledge over information: “Knowledge on the other hand is
information with added details relating how it should be used or applied”.
Nonaka (1994) uses the classic epistemological definition of knowledge
and adds a consideration regarding usability by defining knowledge as “a
justified true belief that increases an entity's capacity for effective
action”. Ameri and Dutta (2005) see knowledge as “evaluated and
organized information that can be used purposefully in a problem solving
process”. Gielingh (2005) maintains that “Knowledge is a structure of
associations between memorized experiences that enables a human being
to perform a task”. Schreiber et al. (1999) state that “knowledge is the
whole body of data and information that people bring to bear to practical
use in action”, where “knowledge adds two distinct aspects: first a sense
of purpose…second, a generative capability”.

14

Besides defining the concepts and hierarchical interpretation of data, information
and knowledge, there is another major perspective on knowledge that will be
considered within the context of this thesis: knowledge taxonomies. A significant
number of knowledge taxonomies exist (Alavi and Leidner, 2001); the most
relevant of these are discussed.

Hicks et al. (2002) distinguish between two fundamental elements of
knowledge: the object and the process. The view of knowledge as an object is
relatively common-place and sees knowledge as a thing that can be stored and
manipulated (McQueen, 1998; Alavi and Leidner, 2001). Knowledge elements are
inferred from information elements using knowledge processes. A knowledge
process is “the procedure(s) utilised by the individual to infer the knowledge
element from information, other knowledge elements or a combination of each.
These knowledge processes are generally within-person processes”. The concept
of a knowledge process is further deepened by Nonaka et al. (2000), who posit
the SECI (Socialisation, Externalisation, Combination, Internalization) model to
describe the creation of knowledge. The SECI model is built upon the realization
that knowledge can be created and transferred by the interaction between two
types of knowledge: tacit and explicit knowledge.

These dimensions are the constituent parts of another fundamental
knowledge taxonomy, which distinguishes between the tacit and explicit
dimensions of knowledge (Polanyi, 1966; Nonaka, 1994). The tacit dimension of
knowledge, also called tacit knowledge in short, is comprised of a cognitive
element, which refers to an “individual’s mental models consisting of mental
maps, beliefs, paradigms, and viewpoints” (Nonaka, 1994; Alavi and Leidner,
2001) and a technical element, consisting of “concrete know-how, crafts, and
skills that apply to a specific context”(Nonaka, 1994; Alavi and Leidner, 2001). The
explicit dimension of knowledge, also simply termed explicit knowledge, is
defined as being “articulated, codified, and communicated in symbolic form
and/or natural language” (Nonaka, 1994; Alavi and Leidner, 2001). The explicit
dimension is much more suitable for storing and manipulating of knowledge, and
as such relates closely to the view of knowledge as an object. Explicit knowledge is
an essential part of the scope of this dissertation (see Section 1.2.1.1), whereas
tacit knowledge plays a secondary role in the case studies.

Based on the preceding discussion, throughout this dissertation the following
definitions for data, information and knowledge are used:

• Data: data is considered to represent an occurrence of a measure, such as
a quantity, which represents an observation and/or fact.

• Information: data within a structured context: a combination of
predicate(s) or value(s) that hold the measure(s), and contextual
descriptor(s) that enable structural representation.

15

• Knowledge: processed information resulting in a capability for effective
action.

Figure 2.1 illustrates these concepts and their interactions. The transformations
from data to information to knowledge and vice versa are shown, as well as the
ultimate result of the application of knowledge: an action. Actions can in turn
generate new data, information and knowledge.

Figure 2.1: Data, information and knowledge transformation processes (adapted from

Hicks et al. (2002))

This definition of knowledge can be extended to define knowledge change:

Knowledge change: change in knowledge over time, where knowledge is defined
as processed information with a capability for effective action.

Change as a concept incorporates not only an alternation of an existing element,
but also includes addition or exclusion of an element and its constituent parts.

16

Change of knowledge can be typified from simple to complex, associated with the
data-information-knowledge hierarchy. For simple change (data change), the
values associated with knowledge elements alter from time t1 to time t2. Attribute
values may change as well as values used in rules or predicates. A more involved
form of change is associated with information (information change): the
structured context of a knowledge element changes. The type, number and
applicability of relations for a specific knowledge element may vary over time.
Finally, on a knowledge level, the capability for effective action associated with a
knowledge element can change (knowledge change). This can be caused by
changes in rules (change, addition or exclusion of antecedents and/or
consequents), logic (change / revision, addition or invalidation / exclusion of
propositions or predicates) or attribute sets (change, addition or exclusion of
attributes), depending on the formalism chosen to represent knowledge.
Knowledge change may close or open options to achieve effective actions.
To illustrate the various types of change, a short example is discussed. The
example considers a simple engineering task: selection of a material based on
requirements relative to material properties and cost. A diagram is shown in
Figure 2.2 to explain this task and the constituent data, information and
knowledge. In this Figure, one sees three classes: Material, Metal_Material and
Material_Requirements. The first class (Material) has attributes* E_modulus,
G_modulus and Cost, representing Young’s modulus E (in GigaPascal, GPa), the
shear modulus G (GPa) and a hypothetical cost C in dollars per m3 of material. The
Metal_Material class is a subclass of Material and inherits the attributes. The
Material_Requirements class has attributes to express the requirements on the
material attributes: Required_E_modulus, Required_G_modulus, Required_Cost. In
addition to the classes, two objects have been instantiated to represent two
different metal alloys: Al2024T3 (aluminium alloy) and Ti6A14V (titanium alloy).
The mechanical properties are taken from Baker et al. (2004). The cost figures are
hypothetical. Another object has been instantiated to represent requirements for
the material selection. A final element, which is not represented in the Figure, is
the rule (set) that can be used to select a material that meets the requirements. In
natural language, this can be expressed in the following way: if the E_modulus of
a material is larger than the required E_modulus and if the G_modulus is larger
than the required G_modulus and if the material cost is lower than the required
material cost, then select the material with the lowest cost. If any of the
requirements is violated, the material is rejected for selection outright. If multiple
materials meet the requirements, a simple method can be written to select the

* Note that the class attributes can be considered to be highly incomplete for a true
representation of material properties; a limited number of properties is included as the
objective of the example is to illustrate the types of knowledge change that may occur.

17

material with the lowest cost. A more formal notation of the selection rule is
given in Table 2.1.

Figure 2.2: Selection of a material – baseline state

Consider Figure 2.3, which shows a change in state with respect to the baseline.
Numerous changes have been incorporated; these are highlighted in red.

Figure 2.3: Selection of a material – changed state

18

Table 2.1 summarizes the type of changes that have been incorporated. These
changes are consistent with the definitions for the types of change given above:

• Data change is represented by a change in attribute value for an object

(CTi6A14V): the outcome of selection may change entirely, but the change
itself is simple;

• Information change is represented by a change in structured context
(additional class Composite_Material and associated parent-child
relation, as well as an additional boolean property isotropic_material as
this drives material properties), leading to a new option for a material
that can meet the given requirements;

• Knowledge change is represented by a change in the E_modulus
attribute, which has been split up into a longitudinal E-modulus E1 and
transversal E-modulus E2 to enable the representation of the anisotropic
material properties of composite materials – the knowledge is revised.
The rule associated with the selection of a material has changed
accordingly to include antecedent criteria with respect to E1 and E2. In
addition, a rule is added to decompose the properties of isotropic
materials into longitudinal and transversal representation – knowledge is
expanded.

19

Table 2.1: Examples of data, information and knowledge change and implications

Type of
change

Original state Changed state Outcome

Data
change

CTi6A14V = 200 CTi6A14V = 80 Ti6A14V†

Information
change

Al2024-T3
Ti6A14V

Al2024-T3
Ti6A14V

High-Modulus (HM) Carbon Fibre
composite

HM CF

Knowledge
change

(revision)

IF

)()(reqGmatGreqEmatE ≥∧≥

)(reqCmatC ≤∧

THEN

))min((CMatSelect

ELSE IF

)()(reqGmatGreqEmatE ≤∨≤

)(reqCmatC ≥∨

THEN
)(Matreject

IF

),2,2(),1,1(reqEmatEreqEmatE ≥∧≥

)(),12,12(reqCmatCreqGmatG ≤∧≥∧

THEN

))min((CMatSelect

ELSE IF

),2,2(),1,1(reqEmatEreqEmatE ≤∧≤

)(),12,12(reqCmatCreqGmatG ≥∧≤∧

THEN

)(Matreject

HM CF

Knowledge
change

(expansion)
-

IF
TruematerialIsotropic =_

THEN

mat
E

mat
EmatE

,2,1
==

EAl2024T3 =
E1,Al2024T3 =
E2,Al2024T3 =

ETi6A14V =
E1,Ti6A14V =
E2,Ti6A14V

The use of the terms revision and expansion for knowledge change is not
coincidental. These terms are co-opted from literature on belief revision (Doyle,
1979; Martins and Shapiro, 1988; Kern-Isberner, 2004), which uses logic as a basis
to specify theorems and proofs for revising knowledge base content given the
introduction of new and possibly contradicting beliefs (Martins and Shapiro,
1988). In the case of conventional reasoning, monotonicity applies: 'beliefs are
true, truths never change, so the only action of reasoning is to augment the set of

† If data change is the only change that occurs, selection of Ti6A14V is the logical outcome
as only the two metals are considered. If information and/or knowledge change occurs,
the selection outcome will of course be different.

20

beliefs with more beliefs' (Doyle, 1979). To enable revision of beliefs, non-
monotonic logic must be considered. Non-monotological systems are 'logics in
which the introduction of new axioms can invalidate old theorems' (McDermott
and Doyle, 1980). To enable belief revision, several types of truth maintenance
systems or TMS (also referred to as belief revision systems) have been developed
(Doyle, 1979; de Kleer, 1986; Martins, 1990).

TMS incorporating non-monotonic logic are typically expressed using
propositional or predicate logic formalisms (Martins and Shapiro, 1988; Katsuno
and Mendelzon, 1991). As such, with respect to the issue of knowledge change,
any knowledge base that uses such formalisms might be evaluated for change.
This could conceivably be achieved by using propositional or predicate logic to
represent knowledge elements in a knowledge base application, and subsequently
test knowledge base use over time. However, to the best of the author’s
knowledge, empirical studies to perform quantification of knowledge change
using truth maintenance systems have never been performed. A possible
explanation is that knowledge bases tend to be expressed either in informal, rule-
based (IF-THEN) or frame-based ways (La Rocca, 2012).

To summarize, the concept of knowledge has been defined using the data-
information-knowledge hierarchy. Subsequently, various modes of change have
been discussed, culminating in knowledge change. With respect to the latter, a
shortcoming of current literature is a lack of quantification of knowledge change.
This finding is further considered in Sections 2.2.3.1 and 2.3.

As a result of this consideration of knowledge change, a contribution to
theory is developed in Section 3.1 relative to conceptual modelling of the lifecycle
of knowledge. This enables characterisation and quantification of knowledge
change. In the case studies (Sections 4-6), this contribution to theory is validated
through qualitative and quantitative means, which is explained in more detail in
Section 3.5.

2.2 State of the Art and Challenges for Knowledge
Perspectives along the Product Lifecycle

As noted in the introduction, the product lifecycle – and more specifically, the
aircraft lifecycle – is an essential part of the scope of this thesis. As such, this
concept will first be briefly defined. The product lifecycle has been discussed
extensively in literature (e.g. Aitken et al. (2003), Brissaud and Tichkiewitch
(2001), Krozer (2008) and Thimm et al. (2006)). Broadly speaking, two notions
regarding the product lifecycle exist: a market-oriented, commodity view of the
product lifecycle (Aitken et al., 2003) and a more process-oriented lifecycle view
(Brissaud and Tichkiewitch, 2001; Thimm et al., 2006; Krozer, 2008). The first
notion of a product lifecycle typically contains product introduction, growth,

21

maturity, saturation and decline as major stages, with some minor variants. The
second conceptualization of the product lifecycle is process-oriented. This view is
of primary interest within the scope of this thesis and can be defined as follows:

• Product design: the first phase in the product lifecycle, product design is

about the development of a product that has to meet desired needs. As
such, it encompasses the creation and analysis of the (geometric)
description of a thing to be built (Raymer, 2006), based upon the inputs of
customers in the form of requirements, physical or stakeholder
constraints and supported by analysis of performance and functionality.
Product design typically relies on and synthesizes knowledge from various
analytical disciplines. For instance, in aerospace design, disciplines such as
aerodynamics, structures, controls and propulsion all feed into the design
process. In aerospace, the product design phase is typically broken down
in three major phases (Raymer, 2006): conceptual design (characterised
by a large number of design alternatives and trade studies, and a
continuous change to the aircraft concepts under consideration),
preliminary design (characterized by a maturation of the selected design
approach) and detail design (characterized by a large number of designers
preparing detailed drawings with actual fabrication geometries and
dimensions). The design phase can encompass the production of
prototypes and subsequent testing.

• Product manufacturing: following the finalized design of the product, it
will have to be produced. Manufacturing is about the transformation of
raw materials into a finished product (Mazumdar, 2002), based on the
product design specifications. Typically, production or manufacturing of a
product is preceded by the design of the manufacturing system, followed
by production planning, pilot-scale production, full-scale production,
inspection of completed products, and finally distribution towards the
customer. Manufacturing processes can be characterised in multiple
ways, for instance by production rate, cost, performance, size and shape
(Mazumdar, 2002).

• Product operation: Product operation refers to the actual use of a
product. In the aerospace sector, this essentially comes down to flying an
aircraft for its intended purpose, be it passenger or cargo transport, or
military operations, or any other function. Though aircraft operators are
often identified with large airline companies such as Air France-KLM,
operators can be individuals, government branches, charter companies,
and others.

• Product support: to ensure the proper functioning of a product, it is often
necessary to support it during its operational life. This can include

22

maintenance and repair of a product to prevent or fix any operational
issues and to keep it in regular working order (i.e. a state in which it can
perform its required function (European Federation of National
Maintenance Societies, 2011)). In the aerospace sector, product support is
typically known as Maintenance, Repair and Overhaul (MRO) and can be
considered as a subsidiary stage in aircraft operations. MRO encompasses
all forms of maintenance (corrective, preventive and predictive (Jun et al.,
2007)), consequently encapsulating both scheduled and unscheduled
forms of maintenance and repair.

• Product disposal: at end of life, a product enters the disposal stage in
which it can either be (partially) re-used, remanufactured or recycled (Jun
et al., 2007) – for instance by adherence with the Cradle-to-Cradle
philosophy (McDonough and Braungart, 2002) – or in which it is reduced
to waste. In the aerospace sector, aircraft disposal comes in different
guises: selling an aircraft to another operator (frequently in developing
countries), handing the aircraft back to the lease company, storing an
aircraft for future use or dismantling an aircraft while retaining useful
parts for future use as part of the spare parts pool.

A number of minor variants for this process-oriented lifecycle perspective can

be identified, such as the separation of market requirements and
conceptualization prior to the product design stage (Thimm et al., 2006), and raw
materials supply as a separate stage rather than contributing elements in the
manufacturing stage (Thimm et al., 2006; Krozer, 2008).

Figure 2.4: Product lifecycle stages (adapted from Jun et al. (2007))

Figure 2.4 shows an alternative classification frequently used in research,

which identifies a beginning-of-life (BOL) stage including design and production, a
middle-of-life (MOL) stage including logistics, use, service and maintenance, and

23

an end-of-life (EOL) stage, including reverse logistics, remanufacturing, reuse,
recycle and disposal (Jun et al., 2007).

For the remainder of this section, the specific focus is on knowledge
engineering through product life. The previously introduced data-information-
knowledge hierarchy will be extended across the product lifecycle as a structure
or guide for the subsequent discussion of three specific research domains:
Product Data Management (PDM), Product Lifecycle Management (PLM) and
Knowledge Management, the latter of which comprises several knowledge-
related fields of study. Figure 2.5 shows the application of this thought. First, data
through product life is encapsulated in Product Data Management (PDM).
Information through product life is considered within the field of Product Lifecycle
Management (PLM) and knowledge through product life is connected with
Knowledge Management. Each of these domains is discussed in terms of the
state-of-the-art (historical roots, definition, functionality and benefits) and
shortcomings.

Figure 2.5: Research domains of interest

2.2.1 Data through Product Life: Product Data Management

With the advent of computer-based engineering tools such as Computer Aided
Design (CAD), Computer Aided Manufacturing (CAM) and Computer Aided
Engineering (CAE) in the early 1980s, large corporations were faced with some
pressing issues: how would they manage their data digitally instead of on paper?
How would data from many – often disparate – sources be managed? And given
the contention that data can change dynamically over the lifecycle (Simon et al.,
2001), how should data be managed over the lifecycle of a product? To tackle
these challenges, large corporations in the early 1980s developed their own data
management solutions (Liu and Xu, 2001). In the meantime, a research
community coalesced around the extension of existing techniques such as

24

engineering data management (EDM), document management, product
information management (PIM) and technical data management (TDM) into a
new field of research: Product Data Management (PDM), a “common term,
encompassing all systems that are used to manage product information”
(Philpotts, 1996). In the late 1980s, the first generation of commercial PDM
systems had arrived (Liu and Xu, 2001).

PDM can be defined as a set of tools that help engineers in managing the
data and the processes related to the product development life cycle (Philpotts,
1996; Bilgic and Rock, 1997). As such, its main focus is on the design and
manufacturing stages of the product life cycle. However, as Liu and Xu (2001)
note, PDM can also be extended to end-user support, in effect increasing its range
towards the operation and product support stages of the product lifecycle. A
number of substantial benefits are claimed for PDM systems, including
interdisciplinary collaboration, reduced product development time, reduced
complexity of accessing information, improved project management and
improved lifecycle design (Liu and Xu, 2001), as well as access to the most up to
date information and productivity gains (Philpotts, 1996).

To achieve the promised functionality and benefits, PDM systems are
typically comprised of three elements: an electronic vault or data repository, a set
of user functions and a set of utility functions (Philpotts, 1996). The electronic
vault contains product data (such as specifications, CAD models, CAE data, and
maintenance records) and meta-data to support PDM system functionality. Meta-
data is included to store information about product data by descriptive attributes
such that changes, release levels, authorizations and other data controls can be
tracked and audited. Furthermore, the inclusion of meta-data (i.e., data about
data, such as authorship, time of creation, etc.) can also be used to create
relationships among product data such that data context can be created, which is
an important step towards the creation of information. The user functions provide
the interface to PDM functionalities such as data storage, retrieval and
management. Important user functions are document management, product
structure management (in which product data is organized and stored), workflow
and process management (which assists in sending the right available data at the
right time to the right user), classification of data by attributes, and programme
management (Philpotts, 1996; Eynard et al., 2006). Finally, utility functions are the
third essential part of PDM systems: these provide the interface with the
operating environment. Examples include communication and notification, data
transport and translation, and image services. A more involved discussion of PDM,
as well as a comparison of commercial PDM systems on a range of functionalities,
is available in Bilgic and Rock (1997).

Years of research work and commercial use have brought to light a number of
shortcomings and associated research issues. A number of significant issues flow

25

from the roots from which PDM systems grew: representation on 'only' a data
level for engineering information (Ameri and Dutta, 2005), limited to the
management of engineering documents for the design and manufacturing
domains. As Bilgic and Rock (1997) note, PDM systems suffer from ambiguous
product representation. These systems are adept at representing the engineering
bill of materials (EBOM) and manufacturing bill of materials (MBOM), but typically
lack the facilities to represent context and usability; in particular, function,
behaviour, requirements and geometric representations are buried within the
documents that are managed in the electronic vault. As Philpotts (1996) as well as
Bilgic and Rock (1997) note, in the middle of the 1990’s PDM systems were
typically not compliant with the emerging ISO 10303 Standard for the Exchange of
Product model data (STEP), so though life cycle functionality was promised, a
standard mechanism to achieve lifecycle functionality was lacking. According to
Bilgic and Rock (1997), the ambiguity in product representation resulted in more
shortcomings of PDM systems: the lack of a possibility to perform analysis on the
impact of proposed design changes, a deficiency in representing and classifying
function and behaviour (what the components in the product breakdown
structure are actually for and how they are used and reasoned upon) and a lack of
reuse of design knowledge. Similar points are made by Maropoulos (2003), who
notes that “current [PDM] systems offer good capabilities in data management
and workflow coordination, whilst they offer very little support in the critical area
of knowledge management and representation”; in particular, the management
of process knowledge is marked as an area requiring intensive research.

To summarize, PDM faces the following shortcomings:
• Representation limited to the data level; very little support for knowledge

management and representation
• Representation lacks context and usability
• Lack of engineering analysis due to proposed design changes, lack of

representation and classification of function and behaviour and a lack of
reuse of design knowledge

During the late 1990s and early 2000s (Liu and Xu, 2001), the combination of
these research challenges and the natural evolution of PDM systems led towards
the subsequent development of the field of Product Lifecycle Management, or
PLM (Abramovici, 2007; Brandt et al., 2008). PLM aims at defining a holistic,
contextualised view of the product and associated processes, and thus takes a
step up from the data level towards the information level.

2.2.2 Information through Product Life: Product Lifecycle Management

The concept of Product Life Cycle Management (PLM) appeared in the 1990s with
the “aim of moving beyond engineering aspects of a product and providing a

26

shared platform for the creation, organization and dissemination of product
related information across the extended enterprise” (Ameri and Dutta, 2005). It is
generally noted that PLM has its roots in PDM and CAD technology (Ameri and
Dutta, 2005; Lee et al., 2008), but PLM broadens the scope to include elements of
the extended enterprise such as the supply chain, sales and marketing and
eventually customers. As such, another root branch of technologies for PLM
(Amodio et al., 2008; Brandt et al., 2008; Lee et al., 2008) comes from enterprise
management systems (e.g. systems for Enterprise Resource Planning (ERP), Supply
Chain Management (SCM), Customer Relationship Management (CRM)).

Based on existing PLM literature (Kiritsis et al., 2003; Ameri and Dutta, 2005;
Främling and Rabe, 2005; Thimm et al., 2006; Abramovici, 2007; Jun et al., 2007;
Bermell-Garcia and Fan, 2008; Wognum and Trappey, 2008)), the following PLM
definition can be aggregated: an integrated approach using a consistent set of
methods, models and IT tools to connect product stakeholders for management of
product information, engineering processes and applications over the entire
lifecycle of a product, from concept to retirement. As such, PLM sets itself apart
from its progenitors, and in particular PDM, by focusing on the entire lifecycle of a
product (Ameri and Dutta, 2005; Abramovici, 2007; Jun et al., 2007),
“commencing with market requirements through to disposal and recycling”
(Thimm et al., 2006). As a consequence, PLM also aims at connecting various
stakeholders over the product lifecycle (Ameri and Dutta, 2005; Bermell-Garcia
and Fan, 2008; Lee et al., 2008). PLM promises benefits with regard to product
information dissemination and sharing along the lifecycle of a product, including
the maintenance and end-of-life phases, where employees and organisations can
benefit from more complete, up-to-date information. This is particularly
important for industries where products have a long life span, such as the
aerospace industry, where it is important to “compile a complete record of
maintenance events involving each part, for safety, warranty, especially given
multiple owners and upgrades/repairs” (Främling and Rabe, 2005) given the role
of these records in airworthiness compliance. Under the guise of 'closed-loop
PLM', multiple feedback loops are envisioned from the later stages of a product’s
life towards designers and producers, who can for instance derive information
about modes of use and conditions for retirement (Kiritsis et al., 2003). Figure 2.6
shows the information flows that can occur through product life. Feed-forward
relations can be distinguished between beginning-of-life stages, middle-of-life
stages and end-of-life stages. To give a practical example for aircraft, product
specifications (design stage) are compiled into maintenance manuals (product
support stage). There are also feedback information flows, such as product usage
and failure information being shared with the Original Equipment Manufacturer
(OEM). Often, these feedback flows are indirect in nature – information passes
through various stakeholders and platforms before ending up at the OEM.

27

Figure 2.6: Information flows through product life (Jun et al., 2007)

 Through the facilitation of information flows between various stages of the

product life (e.g. from maintenance to design) , PLM is an enabler for the 'Design
for X' approach (Van der Laan, 2008). Other beneficial effects are claimed for PLM,
for instance reduced time to market, improved communication among
departments and increased success rate of newly introduced products (Lee et al.,
2008), but these claims are not substantiated.

Given its wide definition and scope, it is difficult to accurately identify the
common functional elements in PLM systems. In practice, PLM often contains a
database management system with a centrally controlled data vault in which
product information, including models and supporting documentation, can be
accessed, managed, maintained and used (Abramovici, 2007; Amodio et al.,
2008). Typically, PLM includes an integrated data and process metamodel
(Abramovici, 2007) that allows for persistent definition and integrity of product
information through product life (Lee and Suh, 2008). It is through this
contextualization, as expressed in the integrated data and process metamodel,
that PLM moves beyond the data level and towards the information level. To get

28

there, PLM requires a solid understanding of the semantic (meaningful) and
structural characteristics of product lifecycle information, enabling a classification
of concepts and relationships which in turn results in a contextual information
model or set of models. A critical part of this effort is the identification of the
correct product lifecycle metadata for storage during product life. To
subsequently use this metadata, methods for the retrieval and analysis of
information from lifecycle metadata are in development (Sudarsan et al., 2005;
Tomasella et al., 2006; Jun et al., 2007; Matsokis, 2010; Matsokis and Kiritsis,
2010).

Despite progress made over the last decade, PLM still faces significant
research challenges. First, contrary to the intended scope of PLM, its adoption is
still mainly limited to the product design lifecycle phase, as indicated by
Abramovici (2007). This is backed up by Figure 2.7, which shows the use of PDM
and PLM throughout the product lifecycle, normalized at 100% for the product
design phase. In particular, adoption in the production (18%), delivery (8%) and
service (11%) phases is quite low.

Figure 2.7: Use of PDM and PLM throughout the product lifecycle (Lee et al., 2008)

One can speculate that the limited adoption is due to the PDM and CAD roots

of PLM: these technologies originated in and are primarily used in product design,
leading to low adoption in the later lifecycle phases. Another factor in the lack of
PLM adoption may be a lack of formal modelling techniques and supporting
computer languages, as identified by a 2006 survey under PLM experts (Thimm et
al., 2006). To alleviate this, research is being undertaken to explore the
applicability of different formal modelling techniques and languages as contained
in ISO10303 STEP AP 239 - Life Cycle Support (Peak et al., 2004), the Unified
Modelling Language (UML) and extensions thereof (Peak et al., 2004; Thimm et
al., 2006; Tomasella et al., 2006), as well as ontological modelling (Amodio et al.,
2008; Usman et al., 2011), for instance using the Web Ontology Language
(OWL)(Matsokis and Kiritsis, 2010). Other authors mention a lack of (model)
interoperability (Amodio et al., 2008; Matsokis and Kiritsis, 2010; Ouertani et al.,
2011) and a lack of attention to (semantic) structuring of lifecycle information (Jun
et al., 2007); a “lack of explicit semantics and context in the information content
to be shared across PLM is a major problem” (Ouertani et al., 2011), and “much of
the knowledge [sic] is available only in non-structured form” (Amodio et al.,

29

2008). As a result, the traceability of information across different lifecycle phases
is limited, where traceability can be defined as 'the ability to describe and follow
the life of a conceptual or physical artefact' (Mohan and Ramesh, 2007). Limited
traceability leads to limited visibility of product information in middle- and end-of-
life lifecycle phases, which makes it more difficult to close the PLM loop from
those phases back to the design of new products. Finally, a significant challenge
for PLM is to move towards 'smart' systems instead of 'dumb' systems. Currently,
information is stored in PLM systems, but the aspect of usability (offering a
capability for effective action) is often not addressed.

To summarize, shortcomings with respect to PLM state-of-the-art are:
• Limited adoption beyond the design lifecycle phase
• Lack of formal modelling techniques and supporting computer languages
• Lack of interoperability, explicit semantics and context, and consequently

traceability
• Lack of consideration of usability of information

In recent years, research work on PLM has considered the integration of

knowledge within PLM systems, for instance as a direct part of PLM systems (as
expressed in the European PROMISE project (Bufardi et al., 2005; Främling and
Rabe, 2005; Tomasella et al., 2006)), or by integration of Knowledge-Based
Engineering (KBE) and PLM (Bermell-Garcia and Fan, 2008). In the following
section, the state of the art regarding knowledge (systems) and product life will be
considered.

2.2.3 Knowledge through Product Life: Knowledge Management &
Knowledge Engineering

The study of knowledge through product life can be positioned in various ways.
Here, the characterisation by La Rocca (2012) is adopted, as shown in Figure 2.8.
This Figure shows the relative positioning of knowledge management (KM),
knowledge engineering (KE) and knowledge-based engineering (KBE) together
with associated knowledge technologies, as bullet-listed. KM is shown as the
encompassing area, where 'the attention is on the overall goal of nurturing and
supporting initiatives that can enable a more efficient and effective use of
knowledge assets in the organisation' (La Rocca, 2012). KE is positioned as part of
this area, where 'the emphasis is on the acquisition and codification of knowledge'
(La Rocca, 2012). KBE focuses on 'the technical development of the KBE
application' and can be seen as an extension of Knowledge-Based Systems (KBS)
into the engineering design domain (La Rocca, 2012).

30

Figure 2.8: Positioning of knowledge disciplines (La Rocca, 2012)

The following discussion follows this positioning. The field of Knowledge
Management is discussed first, followed by Knowledge Engineering and
Knowledge-Based Engineering.

2.2.3.1 Knowledge Management
From an organizational perspective, handling knowledge throughout product life
falls within the scope of Knowledge Management (KM). Literature on KM is
varied, but one can distil the following definition for KM: “a discipline that seeks
to improve the performance of individuals and organizations by maintaining and
leveraging the present and future value of knowledge assets” (Newman and
Conrad, 2000). The objectives of KM are to make knowledge visible and usable, to
develop a 'knowledge-intensive culture' where knowledge is proactively shared,
and to build a supporting knowledge infrastructure, including systems and people
(Davenport and Prusak, 1998; Alavi and Leidner, 2001). Knowledge management
can help organizations in various ways, such as retaining knowledge after loss of
key staff and ensuring effective use of structured knowledge, which enables
quicker identification, retrieval and leverage of existing company knowledge (Alavi
and Leidner, 2001). According to Alavi and Leidner (2001), the basic processes
involved in KM are creating, storing/retrieving, transferring and applying
knowledge, though alternatives are posited, such as the “Building Blocks for KM”
as discussed in Främling and Rabe (2005).

An essential basic KM process is knowledge application, or utilisation, which
relates to the “productive effort of organisational knowledge for the
organization’s sake” (Främling and Rabe, 2005). In order for organizations to
derive a capability for effective action – one of the hallmarks of knowledge – it is

31

vital to know how knowledge behaves and/or changes over time, so that this can
be accommodated for in any subsequent knowledge-based application
development for deployment in and across organizations, especially for product
life cycle-oriented systems. In other words, a proper theoretical understanding of
knowledge behaviour through life is required before one can consider
management and application of knowledge in knowledge-based applications.

Definitions of knowledge and knowledge change have been discussed at
some length in Section 2.1. With respect to the product lifecycle, it is a
straightforwardly accepted viewpoint in research that knowledge is created and
used during a product lifecycle. This is embodied in the concept of lifecycle
knowledge (Ameri and Dutta, 2005) and has been conceptualized into a
knowledge lifecycle model based on the technology S-curve (Birkinshaw and
Sheehan, 2002), in which knowledge is seen as a resource that is created,
mobilized, diffused and subsequently commoditized. In particular, the creation of
knowledge has received much attention (see e.g. Nonaka (1994), Nonaka et al.
(2000), Davenport and Prusak (1998), Alavi and Leidner (2001)), as have the
subsequent steps of knowledge capture and formalization (Oldham et al., 1998; Er
and Dias, 2000; Stokes, 2001; Preston et al., 2005).

Nevertheless, the aforementioned research efforts do not recognize that
knowledge, as a self-contained element, has a lifecycle of its own. Knowledge can
be created, used, maintained and retired (Siemieniuch and Sinclair, 2004).
Knowledge change throughout product life as experience accumulates has been
acknowledged – but no more than that – in knowledge management literature
(Geddes and Armstrong, 1991; Nonaka, 1994; Schreiber et al., 1999; Alavi and
Leidner, 2001; Simon et al., 2001; Stokes, 2001; Schorlemmer et al., 2002). The
same phenomenon is also acknowledged and formally modelled in belief revision
literature (Doyle, 1979; Katsuno and Mendelzon, 1991).

However, none of these authors go beyond a qualitative assessment of the
differences between static and dynamic knowledge. KM literature lacks a
comprehensive model to understand the nature of knowledge and the behaviour
of knowledge through life, i.e. knowledge change, is consequently not quantified.
Siemieniuch and Sinclair (2004) and Newman and Conrad (2000) discuss some of
the possible stages of knowledge. However, they fail to discuss explicit provisions
for certain stages of the life cycle of knowledge, for instance formalization,
maintenance and retirement, and do not consider transformations between
lifecycle stages of knowledge. Theorems for reasoning about knowledge change
have been posited as part of literature on belief revision and truth-maintenance
systems (Doyle, 1979; de Kleer, 1986; Katsuno and Mendelzon, 1991), but to the
best of the author’s knowledge the behaviour of knowledge over time has never
been quantified using these theorems.

32

To conclude, one dominant shortcoming in KM literature can be identified: no
single consistent model exists to characterise and measure knowledge change
over its lifecycle, and consequently there are currently no means to quantify the
behaviour of knowledge during product life.

2.2.3.2 Knowledge Engineering: KBS & KBE
The discipline of Knowledge Engineering (KE) focuses on the acquisition and
codification of knowledge to support the development, implementation and
maintenance of Knowledge-Based Systems (KBS) (Studer et al., 1998). KBS are
systems that use an acquired and codified set of knowledge to offer problem-
solving advice (Expert Systems) or to solve problems directly. KBS are typically
comprised of a structured knowledge base containing a body of domain
knowledge next to acquisition mechanisms and reasoning mechanisms to solve
the problems at hand (Studer et al., 1998). A user interface is provided to allow
interaction with users.

Over the past decades, a number of methodologies have been proposed to
support the development of KBS, for instance CommonKADS (Common
Knowledge Acquisition and Documentation Structuring) (Schreiber et al., 1999),
MIKE (Model-based and Incremental Knowledge Engineering), and Protégé-II
(Studer et al., 1998; Kuhn, 2010). Perhaps the most well-known of the
development methodologies is CommonKADS (Schreiber et al., 1999), a
methodology that aims to cover the entire life cycle of knowledge-based systems.
CommonKADS comprises a set of models that capture the functional aspects of
the KBS as well as the environment in which the KBS will operate (Studer et al.,
1998). In particular, the Knowledge Model is a core contribution of CommonKADS
with respect to the formal modelling of KBS, as it offers a way of structuring and
modelling the domain knowledge, inference structure and actions, and task
decomposition (see also Chapter 3.3).

Most knowledge-based systems using knowledge engineering methods and
techniques are confronted by a number of challenges. From a design engineering
perspective, the most notable shortcomings of KBS are that they lack a capability
for geometry manipulation and data handling (La Rocca, 2011; La Rocca, 2012).
Ideally, the KBS capabilities regarding knowledge capture, knowledge
representation and reasoning would be merged with Computer-Aided Design
(CAD) and Computer-Aided Analysis (CAA) capabilities to provide engineers with
automated assistance in geometry manipulation and data processing. To achieve
just this, Knowledge-Based Engineering (KBE) initiatives originated in the early
1980’s.

Knowledge-Based Engineering (KBE) can be seen as an extension of KBS into
the design engineering domain, adding facilities for geometry manipulation and
data handling capabilities (La Rocca, 2012). KBE is characterised by its language-
based, object-oriented approach. KBE systems are used as general purpose tools

33

to develop KBE applications through a programming approach using KBE
programming languages. The defining characteristics of these languages are
discussed in Cooper and La Rocca (2007) and La Rocca (2012). An important issue
to note is that 'KBE applications show no crisp separation between knowledge and
inference mechanism' (La Rocca, 2012), meaning that 'expanding, updating and
maintaining a KBE application is not just adding or deleting rules from a list' (La
Rocca, 2012). Consequently, proper documentation of KBE application code is
paramount to avoid a black-box effect (also see below).

 The objective of KBE is to reduce time and cost of product development,
which is primarily achieved through automation of repetitive design tasks while
capturing, retaining and re-using design knowledge (La Rocca and van Tooren,
2009). Table 2.2 summarizes some KBE development efforts as an indication of
the potential of KBE.

Table 2.2: Summary of selected KBE development efforts

To identify the research challenges currently faced by KBE, a critical review of

existing KBE literature has been performed. For a detailed discussion, please refer
to the associated publication (Verhagen et al., 2012). Figure 2.9 summarizes the
selection, classification and review process. The selection process has resulted in a
consolidated review sample consisting of fifty research contributions. That sample
has been reviewed once for the identification and classification of review criteria.
These review criteria have been applied during a second review round.

34

Figure 2.9: Selection, classification and review process

Five major shortcomings of KBE have been distilled from application of the review
criteria to the review sample.

1. Case-based, ad-hoc development of KBE applications: Development of
KBE applications is still very much case based and happens on an ad-hoc
basis (Sainter et al., 2000). This is confirmed by the wide-spread non-
adherence to KBE design methodologies. From the 37 papers within the
sample describing case studies, 81 % (30 papers) did not explicitly adhere
to a specific methodology. The practical impact of existing methodologies
seems to be limited. The resulting case-based nature of KBE development
is a significant problem. It can lead to knowledge loss due to poor
modelling of the application and inadequacies in the used development
language; it can cause knowledge misuse if the wrong kind of applications
are developed; knowledge runs a danger of being under-utilized, due to
an inability to share and re-use it at computer and human levels, and
finally, maintenance costs will be higher due to non-standard
development (Sainter et al., 2000).

2. A tendency toward development of 'black-box' applications: Another
finding of the review is that current KBE development has a tendency
towards ‘black-box’ applications – many applications (e.g. Choi et al.
(2005); Kulon et al. (2006); Ko et al. (2007)) at best represent captured
knowledge as context-less data and formulas. There is no explication of

35

formulas and the actual meaning and context of the captured knowledge,
let alone provisions for capturing design intent.

3. A lack of knowledge re-use: The previous review findings tie in closely
with the difficulty of re-using knowledge in KBE applications. Case-based
black-box KBE applications do not particularly invite knowledge re-use.
Knowledge re-use is further complicated by the difficulty of sharing
knowledge across (KBE) applications and platforms; as Bermell-Garcia and
Fan (2008) note, “using current data exchange standards, it is only
possible to transfer an instance of the design (one state of the design),
and not the knowledge embodied to generate it”.

4. A failure to include a quantitative assessment of KBE costs and benefits:
Most KBE research fails to quantitatively illustrate the advantages and
costs of KBE. 25 out of 37 case studies (67%) do not mention the resulting
time or cost advantages associated with KBE adoption, let alone the more
sensitive information about KBE development cost. An example of a more
systematic approach towards KBE quantification has been performed by
Corallo et al. (2009), who use Activity Based Performance Measurement
(ABPM) for cost-benefit assessment of KBE in new product development.
Unfortunately, this quantification effort has been performed on a single
case study, so validity, reliability and generalizability of the ABPM
approach for KBE quantification are not known.

5. A lack of a (quantitative) framework to identify and justify KBE
development: A final KBE aspect that has not received much attention in
literature is the assessment of KBE development opportunities. The
MOKA handbook (Stokes, 2001) presents some qualitative criteria for
identification and justification of KBE opportunities. Emberey et al. (2007)
and Van der Elst (2007) use these and more criteria to assess whether a
design task is suitable for KBE application development. The Adaptable
Methodology for Automated Application Development (AMAAD) of Van
der Velden et al. (2012) proposes a complexity analysis to ascertain the
required level of automation for engineering tasks and associates this
level with automation features. However, as the authors themselves note,
this approach has significant room for improvement, both for the
complexity analysis itself as for the addition of a quantitative analysis
aspect (Van der Velden et al., 2012). Despite the mentioned initiatives, no
solid framework or method using both qualitative and quantitative
aspects is available to determine whether a design task, product or
process is suitable to develop a KBE application for. This shortcoming
reflects the point made in the previous section regarding the lack of a
knowledge life cycle model, and associated quantification.

36

In the following section, the discussed research issues for data, information and
knowledge through product life will be synthesized into a coherent set of research
challenges that are subsequently related to the research objectives.

2.3 Identification of Research Challenges

Based on the discussion of related literature presented in Section 2.2, a number of
research challenges can be identified from the shortcomings of the current state-
of-the-art. These challenges can be subdivided into a theoretical and a practical
perspective.

From the theoretical perspective, the central challenge to consider is related to
the behaviour of knowledge over time. Is it static or does it change? In other
words, does knowledge have a lifecycle of its own? As explained in Section 2.2.3,
no existing literature goes beyond a qualitative assessment of the differences
between static and dynamic knowledge. A comprehensive model to understand
the nature of knowledge through life is lacking, and the behaviour of knowledge is
consequently not quantified. To summarize, from the theoretical perspective a
first challenge materialises with respect to knowledge:

• Theoretical challenge: it is necessary to find out what knowledge

precisely means in the context of the product lifecycle and to
consequently model and quantify the behaviour of knowledge within
product lifecycle stages.

From a practical perspective, knowledge engineering approaches have

primarily been adopted in the design phase of the product lifecycle, as embodied
in the field of Knowledge-based Engineering (KBE) – see also Section 2.2.3.2. With
respect to the product lifecycle, it is possible to discern a practical challenge for
knowledge engineering that focuses on the role of knowledge within the
development and implementation of knowledge-based applications:

• Practical challenge: knowledge use and lifecycle management

Knowledge, information and data are contained within knowledge-based
applications, but these are very often difficult to access, study, directly
use and maintain (McMahon et al., 2005). This would be no problem if
knowledge is static, but too often knowledge is simply assumed to be
static. For most knowledge-based applications, the usability and
maintainability of knowledge is not guaranteed, which can lead to rapid
obsolescence of these applications as knowledge and functionality
become out-dated. As such, the following elements and associated issues

37

must be addressed to move towards more transparent, useable and life
cycle-ready knowledge-based applications:

• Maintainability of knowledge in knowledge-based applications:
moving beyond black-box applications and ensuring
transparency: As mentioned, a current drawback of many KBE
applications is that they are ‘black-box’: the knowledge contained
in the KBE applications is difficult to access and inspect, and is
often embedded in the application code (Verhagen et al., 2012).
To improve it is necessary to move beyond black-box processes
and applications by supporting categorization, accessibility and
traceability of knowledge, which opens up the potential for
knowledge (re-)use (Markus, 2001; Verhagen et al., 2012). The
associated necessity for increased transparency in knowledge-
based applications in general is a well-noted research issue
(Sunnersjo et al., 2006; Fan and Bermell-Garcia, 2008; Elgh and
Cederfeldt, 2010). To achieve transparency, knowledge included
into knowledge-based applications should be substantiated: the
underlying knowledge and supporting documentation for the
knowledge-based application should be categorized and be
directly accessible. Direct interfacing with knowledge
management applications (Fan et al., 2002; Verhagen and Curran,
2011) or PLM solutions (Ma and Liu, 2007; Bermell-Garcia and
Fan, 2008; Fan and Bermell-Garcia, 2008) can be used to achieve
this, and open up the opportunity to utilize knowledge-based
applications from an enterprise context. To enable effective use
and update of knowledge, the knowledge element(s) in
applications should be formally structured using knowledge
model(s) and metadata.

• Usability of knowledge in knowledge-based applications: the
following issues should be addressed to improve usability of
knowledge in knowledge-based applications:
 Task orientation: knowledge involves a capability for

effective action. This capability can be met by explicitly
associating sets of knowledge with functional tasks.
Following from the shortcomings of PDM and PLM,
representation of knowledge should allow for context and
semantics. Effective action is determined by the
completeness of the end result, and the time and
resources necessary for achievement of that result. It is
here that a knowledge-based approach may produce

38

benefits by reducing time and resources through
automation of repetitive steps.

 Expert / end user involvement: assuming that knowledge
entities are often not static over time but are subject to
change, it is necessary that experts and / or end users –
the knowledge owners and “intrinsic components of the
knowledge creation and utilization process” (Siemieniuch
and Sinclair, 1999) – are actively involved in the
management of knowledge embedded in knowledge-
based applications. The knowledge owners should not
just serve as remote knowledge sources for the
knowledge engineers to call upon when necessary. To be
actively involved in knowledge management and
application maintenance, users should derive a direct
benefit from this effort without being burdened with too
many tasks. From this perspective, effective and efficient
personalization and codification of knowledge must be
supported (McMahon et al., 2004): context and semantics
of knowledge must be provided to guide users towards
knowledge useful to them. End users must be able to
identify, use, interact with and if necessary, update the
relevant knowledge that they use in their daily workflow
and specific context (Merali and Davies, 2001). This
requires that a) knowledge is tied to engineering tasks, as
noted in the previous point; b) knowledge is visible and
directly accessible for end users to enable interaction –
context and semantics must be provided.

• Practical challenge: methodological approach to facilitate knowledge
change management
Assuming that knowledge change occurs, development of a methodology
that takes this change into account is required. Given the previously
mentioned lack of methodology adherence in knowledge-based
application development, it is a questionable idea to develop a complex,
full-fledged new methodology. To defuse this problem, any new
methodology must be compatible to existing methodologies and keep
complexity to a minimum.

In a nutshell, the research challenges stem from the realization that it is currently
impossible to straightforwardly characterize and measure knowledge change. If
knowledge does change, from a practical perspective this must be managed –

39

utilization and maintainability of knowledge take centre stage. A methodological
approach to facilitate knowledge change management must be developed.

The presented research challenges can be used in conjunction with the research
objectives to present a well-founded rationale for research. In Table 2.3, the
research objectives are revisited and related to specific research challenges.

Table 2.3: Research objectives related to research challenges
Research objective Associated research challenge(s)
Knowledge lifecycle modelling Characterise, model and quantify the

behaviour of knowledge within product life
Ontology-based approach to support
knowledge change

Maintainability:
- Moving beyond black-box KBS
applications and ensuring transparency
Usability:
- Task orientation
- Expert / end user involvement

Methodology development Methodological approach to facilitate
knowledge change management

In the following Chapter, three contributions to theory are developed. These
contributions address the introduced research challenges.

40

41

3 Theory Development

This chapter is comprised of three parts that address the characterisation,
quantification and implementation of knowledge change in knowledge-based
applications. In this chapter, the three main research objectives are addressed:

1) Knowledge life cycle modelling: Section 3.1 addresses the first research

objective by focusing on the development of a conceptual model for the
lifecycle of knowledge.

2) Ontology-based approach to support knowledge change: The knowledge
lifecycle model is an input for Section 3.2, in which an ontology is
developed to facilitate knowledge change (management) in the
development and use of knowledge-based applications. This ontology
takes into account usability and maintainability aspects.

3) Methodology development: Finally, Section 3.3 introduces a
methodology to guide the development of knowledge-based applications
that must cope with knowledge change. In doing so, the third research
objective is accounted for.

By addressing these research objectives and the associated research challenges,
three main contributions to theory are realized. Table 3.1 relates the research
challenges defined at the end of Chapter 2 with the research contributions made
in this dissertation.

Table 3.1: Research challenges related to research contributions

Research challenge Research contribution
Characterise, model and quantify the
behaviour of knowledge within product life

Conceptual knowledge lifecycle model
(Section 3.1)

Maintainability:
- Moving beyond black-box KBS applications
and ensuring transparency
Usability:
- Task orientation
- Expert / end user involvement

Ontology-based approach to support
knowledge change: the Knowledge
Lifecycle ontology (Section 3.2)

Methodological approach to facilitate
knowledge change management

KNOMAD methodology (Section 3.3)

The research contributions are discussed in Section 3.4. Subsequently, a case

study approach is proposed to validate the research contributions.

42

3.1 A Conceptual Model for the Lifecycle of Knowledge

This section describes an initial effort at modelling knowledge as a concept with
its own lifecycle. It addresses the following questions within the context of the
first research objective – knowledge life cycle modelling:

• Which concepts and relationships are required to characterise the change
of explicit knowledge within and throughout the aircraft lifecycle phases?

3.1.1 State of the Art and Shortcomings of Knowledge Lifecycle
research

In Section 2.3, a challenge regarding knowledge within the context of the product
lifecycle has been defined. After application of the research scope, the following
challenge can be identified:

• Theoretical challenge: it is necessary to find out what knowledge
precisely means in the context of the aircraft lifecycle, and how the
dynamic behaviour of knowledge within aircraft life can be modelled and
quantified.

As noted before, a comprehensive model to understand and quantify the

behaviour of knowledge over time has not been developed before. There is not a
lot of understanding regarding the 'life' of knowledge: When and how does it
change? What are the states and transformations that are involved? To address
these questions, relevant insights from literature are combined with original
research to come up with a conceptual model of the knowledge life cycle.

Most literature regarding the knowledge lifecycle focuses on the creation,
sharing and application of knowledge from an organisational perspective; a
knowledge lifecycle is seen as “a methodology or process that produces
knowledge” (McElroy, 2003) or as a process of “how organisations generate,
maintain and deploy a strategically correct stock of knowledge in order to create
value” (Buckowitz and Williams, 1999).

Some examples of these process-oriented (organisational) 'knowledge
lifecycle' models are given in Table 3.2. Please note that the model stages are not
horizontally equivalent.

43

Table 3.2: Process-oriented (organisational) knowledge lifecycle models (adapted from

Maksimovic et al. (2011))

 KLCs in KM KLCs in KBE

Models Buckowitz and
Williams (1999)

McElroy (2003) Stokes (2001) Rodriguez and Al-
Ashaab (2007)

Stages Get Individual and
group learning

Identify

Identify

Use Knowledge
claim
formulation

Justify

Capture and
standardize

Learn Information
acquisition

Capture

Represent

Contribute Knowledge
validation

Formalise

Implement

Assess Knowledge
integration

Package

Use

Build & Sustain

 Analyse

Divest

A significant drawback of these models is that they do not consider

knowledge as an independent element that has a life of its own. However, some
research efforts describe the conceptual elements of knowledge through life. In
particular, Siemieniuch and Sinclair (2004) identify basic states of knowledge: it
can be created, used, maintained and retired. Similarly, the General Knowledge
Model devised by Newman and Conrad (2000) includes knowledge creation,
knowledge retention and knowledge utilisation as key stages.

Knowledge creation relates to “activities associated with the entry of new
knowledge into the system, including knowledge development, discovery and
capture” (Newman and Conrad, 2000). Knowledge retention covers “all activities
that preserve knowledge and allow it to remain in the system once introduced,
including maintaining the viability of knowledge within the system”. This point is
strongly related to expansion, revision and reduction of belief sets, which is part
of belief revision literature (Doyle, 1979; de Kleer, 1986; Martins and Shapiro,
1988). Knowledge utilisation concerns the “activities and events connected with
application of knowledge to business processes”.

Most research into knowledge states has focused on the 'Create' state – how
is knowledge created by individuals and organisations? In particular, the work of
Nonaka (1994) on the SECI model has had a major influence on the research area.
Nonaka (1994) maintains that knowledge is created through the conversion

44

between tacit and explicit knowledge. The SECI model describes the four modes
of conversion between tacit and explicit knowledge: socialisation (from tacit to
tacit knowledge – creating tacit knowledge through shared experience or
interaction between individuals), externalisation (from tacit to explicit
knowledge), commoditisation (creating explicit knowledge from explicit
knowledge, for instance through sorting, adding, recategorizing or
recontextualizing) and internalisation (explicit knowledge into tacit knowledge).

As an additional potential input for a knowledge lifecycle model, the MOKA
methodology (Stokes, 2001) includes 'Capture' and 'Formalize' as steps within its
KBE life cycle. Both steps are useful in conceptualizing the life of knowledge. The
'Capture' step encapsulates the gathering of domain knowledge – both tacit and
explicit knowledge – and structuring it by means of MOKA’s ICARE forms
(Illustrations, Constraints, Activities, Rules, Entities). The relationships between
these various forms of knowledge are modelled. The structured raw information
forms the basis of MOKA’s Informal Model, which intends to make domain
knowledge understandable for both the domain expert and the knowledge
engineer. The subsequent step ('Formalize') uses the Informal Model to create a
Formal Model: Unified Modelling Language (UML)-based product and process
models of the domain knowledge that together are ready for implementation into
a knowledge-based application. MOKA is supported by a few knowledge
engineering tools, including PC-PACK (Epistemics).

The exploration of knowledge lifecycle concepts can be further supplemented
by looking at documentation management literature. This type of literature gives
an idea of the progressive actions that can be taken with respect to codified,
explicit knowledge. To enable the use, management and maintenance of
documents, the possible statuses of a document can be categorized and
described. Eynard et al. (2004) identify four possible document statuses in the
context of an engineering process within a PDM implementation. The four are 'In
progress', where data is currently modified and not useable for other activities;
'Shared', where data is deemed sufficiently mature to be used as input for other
activities; 'Released', where data is frozen and not further modified; and
'Obsolete', where data cannot be used as input for an activity. A similar but
slightly different categorization exists in the work of Gielingh (2005), who
identifies the four categories of 'In work' (draft), 'Restricted' (review), 'Final' (use)
and 'Revise' (maintenance).

A final addition to the exploration of knowledge lifecycle concepts is found in
belief revision literature. Three main kinds of belief kinds can be distinguished:
expansion, revision and contraction (Gärdenfors, 2003). Expansion considers the
inclusion of a new belief into a belief system. Revision deals with the inclusion of a
new belief into a belief system, leading to deletion of some old beliefs in the
system to retain consistency. Contraction considers the retraction of an old belief

45

from a system, which may lead to further retraction to maintain consistency in the
belief system.

Summarizing, Table 3.3 gives an overview of potential knowledge lifecycle
states that can be used in defining a conceptual model for the knowledge
lifecycle. Note that the model stages are not horizontally equivalent. These states
will be revisited in Section 3.1.3.

Table 3.3: Potential knowledge states

 Knowledge literature Documentation management
literature

Belief revision
literature

Models Siemieniuch
and Sinclair

(2004)

Newman and
Conrad
(2000)

Eynard et al.
(2004)

Gielingh
(2005)

(Gärdenfors,
2003)

Stages Create Creation In progress In work (draft)

Expansion

Use Retention Shared Restricted
(review)

Revision

Maintain Utilisation Released Final (use)

Contraction

Retire Obsolete Revise
(maintenance)

Following upon the definition of knowledge change in Section 2.1, a number

of knowledge lifecycle models and stages have been introduced in this section.
The organisational lifecycle models do not consider knowledge as an element with
a lifecycle of its own. Various authors from knowledge, documentation
management and belief revision literature do offer stages to characterise
knowledge change.

However, a major shortcoming is that the state of the art does not go beyond
a qualitative characterisation of knowledge change. The aim of the next sections is
to identify requirements for a knowledge lifecycle model for quantification of
knowledge change and subsequently define this model.

3.1.2 Requirements on Definition of a Knowledge Lifecycle Model

In positing a model for the lifecycle of knowledge itself, the shortcomings of
previous models should ideally be avoided. Based on the discussion of existing
research, the key guideline towards conceptualization of a knowledge lifecycle
model is that knowledge should be viewed as an independent element that has a

46

lifecycle of its own and which must be measured. This is reflected in the following
derived requirements for definition of a knowledge lifecycle model:

Types of change (data, information and knowledge change): values associated

with knowledge elements must be able to change, as well the structured context
(type, number and applicability of relations), plus capability for effective action
(identify and measure change in rules, logic or attributes)

1) The model should reflect the nature of knowledge and

knowledge change: in Section 2.1, knowledge and knowledge
change have been defined. To reiterate, the definition of
knowledge adopted here is processed information resulting in
a capability for effective action. The associated types of
change (data, information and knowledge change) must be
able to be identified and measured.

2) The model should centre on knowledge as an independent
concept: it should be as free as possible of confounding
factors. Organizational processes (e.g. justification of
knowledge-based development) or implementation factors
(e.g. technical specification of the knowledge base) are
important from both academic and practical perspectives, but
as the previous Section has shown, research has already
performed into these issues. The main focus of the knowledge
lifecycle model should be on knowledge itself.

3) The model should be unambiguous: the concepts used in the
model should be clearly and unambiguously defined. This is a
necessary condition to enable understanding and application
of the model.

The ultimate objective of the model is to enable the measurement of

knowledge change (see Section 2.3 and the introduction of Section 3.1). This is
reflected in the following derived requirements:

1) Be able to operationalize concepts into measures: to

measure something, directly observable measures must
either be defined directly in the model, or be definable from
the concepts used in the model. In the latter case, the
required operationalization must be straightforward and
error-proof. This reflects on requirement 3) – the
unambiguous definition of model concepts.

47

2) Be able to apply it across research domains and lifecycle
phases: the model concepts must ideally be generalizable
across research domains and lifecycle phases. This improves
the power and applicability of the model. The concepts must
be sufficiently abstract to enable wide application.

3.1.3 Research Contribution 1: Conceptual Knowledge Lifecycle Model

To meet the stated requirements, the following concepts are used to construct a
Knowledge Lifecycle Model: knowledge states and knowledge actions. States are
an 'instantaneous description of an entity' (Umeda et al., 1990) and actions
represent one or more (sequential) changes of states. In this, actions are
analogous to behaviour as defined by Umeda et al. (1990). The use of states and
actions can be seen as a potential starting point towards more involved modelling
following the Function-Behaviour-State (FBS) framework. For now however, states
and actions are sufficient to address the objectives of knowledge lifecycle
definition and measurement, as embodied in the requirements posed previously.

1. Knowledge states: the concept of knowledge states is a familiar feature in
existing knowledge models, as shown in Table 3.3. Knowledge can be in
several states along its lifecycle. From start to end of knowledge life, the
states conceptualized here are creation, formalization, utilization,
maintenance or update, and retirement. In the creation state, knowledge
is being formed and has not been released for application. In the
formalization state, the knowledge is codified and made ready for
(shared) use. It encapsulates capture, structuring and modelling of
knowledge, followed by implementation into a (knowledge-based)
application. The formalization state addresses the processing of
information inherent in the definition of knowledge. In the utilization
state, knowledge is actively being used, for instance to solve design
problems. The utilization state directly addresses the 'actionability'
criterion for knowledge. During the utilization state of knowledge users
may realise that the current iteration of the knowledge is insufficient, i.e.
previous experience, new insights or additional learning may reveal that
knowledge needs to be adjusted. In the maintenance state, data and
information change are incorporated – values or context associated with
knowledge elements may change. In the update state, knowledge change
as well as data and information change is incorporated: values, context
and rules, logic or attributes of a knowledge element may change: the
capability for effective action is adjusted. This may also lead to renewed
insights: new knowledge is created during the update stage. Finally,
knowledge may become obsolete, out of date or superfluous. It then

48

enters its final state – retirement. This can for instance mean that
knowledge is archived and stored for future reference, but it can also
mean that knowledge is straightforwardly discarded.

2. Knowledge actions: knowledge actions apply to situations where the

element as a whole or its content and/or context is being acted upon.
Actions can be used to describe the transitions between knowledge
states. The following actions are present during the lifecycle, either as
intermediates between consecutive knowledge states or as feedback
loops:

a. Create: during the 'create' action, an original idea or synthesis of
existing ideas and associated data is formed into a new element
of knowledge, with attendant context and content.

b. Formalize: the 'formalize' action represents the codification of
tacit and/or explicit knowledge into a formal structure and
representation, e.g. in an application.

c. Use: during the 'use' action, the knowledge element is deployed
to for instance solve problems. This action can be identified,
tracked and measured in knowledge-based applications. Through
a check whether a knowledge element has been successfully
applied, the effectiveness of knowledge application can be
checked. Note that this does not reflect on the validity and
reliability of knowledge application and the ensuing results.

d. Maintain: as stated before, a knowledge element holds both
context as well as content. As a consequence, two separate
actions are identified in the lifecycle of a knowledge element that
relate to this observation: 'maintain' and 'update'. The 'maintain'
action relates to data and information changes: simple value
changes and changes in context (relations) apply. For examples,
see Table 2.1. The 'maintain' action moves a knowledge element
into the 'Maintenance' state – it is of course possible for an
element to again be used after this action.

e. Update: the 'update' action is present when knowledge change
applies, possibly in combination with data and information
change. Rules, logic or attributes may change, possibly leading to
a change in outcomes upon application of the updated knowledge
element. The 'update' action moves a knowledge element into
the 'Update' state, after which the element can feed back into
use.

49

f. Retire: knowledge is declared invalid or out of date, and is
subsequently removed from active use. It is possible for retired
knowledge to become active again and be used.

When operationalized, these knowledge actions leave 'fingerprints' during
the actual life of a knowledge element. This makes it possible to identify
and measure changes in knowledge. For instance, when a knowledge
element is maintained in a knowledge base, its descriptors will be
modified. Such changes can theoretically be tracked and measured.

The resulting Knowledge Lifecycle Model is shown in Figure 3.1. This figure
highlights the knowledge states and actions that map the transitions from one
state to another.

Figure 3.1: Knowledge Lifecycle Model with knowledge states and actions

Given this dissertation’s definition of scope (Section 1.2.1.2), the conceptual
model will not be tested in its entirety. Instead, the focus is on change in explicit
knowledge during the aircraft lifecycle. Within this scope, priorities are to assess
identification of knowledge change using the knowledge states and using the
concept of knowledge actions to measure knowledge change. With the focus on
explicit knowledge, the 'Creation' stage is left out of consideration in the
dissertation. The result of this application of scope onto the Knowledge Lifecycle
Model is shown through the bounded area in Figure 3.1.

3.1.4 Concluding Remarks

The requirements on the knowledge lifecycle model are addressed by knowledge
states and actions in the following manner:

1) The model should reflect the nature of knowledge and

knowledge change:

50

The knowledge states Update and Maintain as well as the
associated update and maintain actions explicitly
acknowledge and are able to represent knowledge change.

2) The model should centre on knowledge as an independent
concept: the knowledge lifecycle model focuses on
knowledge as the central conceptual element, with states and
actions to describe its various representations.

3) The model should be unambiguous: most of the knowledge
states and actions are straightforward. A formal
(mathematical) foundation for the model is to be developed.

Knowledge actions enable the measurement of knowledge change, as

addressed with respect to the following requirements:

1) Be able to operationalize concepts into measures:
knowledge actions can fairly easily be operationalised into
measures, as evidenced in Section 6.2.2.

2) Be able to apply it across research domains and lifecycle
phases: The state and action concepts are sufficiently abstract
to enable application in various aircraft lifecycle phases.
Evidence for this is given in Chapters 4-6, where knowledge
change is discussed for different lifecycle phases.

The Knowledge Lifecycle Model uses the knowledge state and action concepts and
relationships to characterise the change of explicit knowledge. This partly answers
the research question as given in the introduction of Section 3.1. However, further
questions remain regarding the change of knowledge within specific aircraft
lifecycle phases and regarding the quantification of knowledge change. This is
discussed in more detail in Section 3.4.1.

51

3.2 A Model-Based Approach to Support Knowledge Change:
the Knowledge Lifecycle Ontology

The Knowledge Lifecycle Model provides a means to characterise and quantify
knowledge change. However, this is not enough. If knowledge does indeed
change, what can be done to accommodate for this in knowledge-based
applications?

This Section addresses the second research objective expressed in Section 1.2
by describing the development of a model-based approach for the support of
knowledge change within knowledge-based applications for specific aircraft
lifecycle phases. First, challenges related to knowledge-based application
development are associated with requirements on the model-based approach.
This approach must support the consistent formalization, use and maintenance of
changing aircraft knowledge in its various lifecycles. To achieve this, the ontology
concept is selected as the primary means to express the approach, as discussed in
Section 3.2.1. Following this, three main elements are considered as inputs for the
design of the ontology. These elements are synthesized in Section 3.2.3, where
the ontology is designed and implemented.

The following research questions are addressed throughout this section:
• Which concepts support the consistent formalization, use and maintenance

of changing knowledge throughout the aircraft lifecycle?
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?

3.2.1 The Role of Ontologies in Supporting Knowledge-Based
Applications through Knowledge Life: State of the Art and
Shortcomings

When assuming that knowledge is dynamic both in and over the aircraft lifecycle
phases, a primary consequence is that knowledge-based applications must be
able to cope with changing knowledge in and over multiple lifecycle phases. As
mentioned in Section 2.3, practical challenges regarding usability and
maintainability result from this. Applications must have a

1) Capability to represent a usable function (usability)
2) Capability to annotate a function in order to be able to find,

access, inspect and maintain this function (usability &
maintainability)

52

The maintainability and usability challenges are converted into requirements
for the model-based approach. These are derived from the discussion in Section
2.3 and from various literature sources. Table 3.4 presents the conversion from
challenges to requirements, with references where appropriate.

Table 3.4: Challenges and associated requirements on the model-based approach

Challenge Associated requirements

Maintainability of knowledge in
knowledge-based applications:

Moving beyond black-box
applications and ensuring
transparency

1) Traceability (Ouertani et al., 2011)

i. Visibility: experts / end users should
have the possibility to see knowledge
that feeds into KBS.

ii. Accessibility: experts / end users
should be able to access and
maintain knowledge.

iii. Retrievability: experts / end users
should be able to effectively search
for and find relevant knowledge
(given that up to 70% of engineers’
time is spent searching for
knowledge (Lee and Suh, 2008).

2) Functionality (Bermell-Garcia et al.,
2012): experts / end users should be
able to inspect and verify the
objectives and functions that a
knowledge-base application
addresses. The required knowledge
and processes for achieving
functionality must be retrievable and
verifiable.

Usability of changing knowledge in
knowledge based applications:

1) Task orientation

1) Separation of task and domain

knowledge (Mizoguchi et al., 1995):
making domain knowledge independent
from an engineering task offers the
ability to maintain, update and reuse the
knowledge. In other words, a modular
approach may be beneficial. It must be
stressed that even when task and
knowledge are separated, they can still
be explicitly associated with each other
through modelling of relations. For KBE,

53

2) Expert /
 end user involvement

a modular approach separating task and
domain knowledge has been researched
by La Rocca (2011) through the concepts
of High-Level Primitives and Capability
Modules.

2) Knowledge management

i. Across domains: users and tools
from different domains should work
on the basis of consistent data,
information and knowledge – a
unified model must be developed.
Several research initiatives have
made progress towards a unified
model for the product lifecycle, for
instance the PROMISE consortium
(Kiritsis et al., 2003; Tomasella et al.,
2006). In the aerospace domain, DLR
has developed the Common
Parametric Aircraft
Configuration Schema (CPACS),
which is a data definition schema for
describing the characteristics of
aircraft, rotorcraft, engines, climate
impact, fleets and mission (Rizzi et
al., 2012). The iPROD project (iProd,
2013) aims to integrate management
of product heterogeneous data. In
summary, a sufficiently generalized
model that can be consistently
applied in multiple lifecycle phases
makes it possible to work on the
basis of consistent representation of
data, information and knowledge.

ii. Across users / actors from different
perspectives (Gielingh, 2005):
experts from different lifecycle
phases may have different views and
priorities when regarding a single
reality. Gielingh (2005) maintains
that knowledge objects must be
recognizable throughout life.

54

There are some common elements throughout the requirements for the model-
based approach. Each of them – traceability (incorporating visibility, accessibility,
retrievability), functionality, separation of tasks and domain knowledge, and
knowledge management across domains and users – requires that knowledge is
structured and made explicit, is kept consistent within and throughout the various
aircraft lifecycle phases, and is represented such that users from different
domains can find, use and add to their specific knowledge. To meet these
requirements, an ontology will be used to realize the model-based approach.

An ontology can be defined as 'a definition of a common vocabulary for
researchers who need to share information in a domain. It includes machine-
interpretable definitions of basic concepts in the domain and the relations among
them' (Noy and McGuinness, 2009). Key elements in this definition are the
common vocabulary and basic concepts and relations. An ontology necessarily
includes a common vocabulary of terms and a specification of their meaning
(Uschold, 1996). Without specification, the set of ontology concepts would be
variously interpretable by different sets of users. With specification, different
users (e.g. experts in different lifecycle phases) with different views on a single
reality can be accommodated.

A similar but more complete definition has been proposed by Gruber (1993):
ontologies are 'explicit (formal) specifications of a conceptualization'. The
'specification' element has already been discussed. The other three elements in
this definition need further clarification. As Uschold (1996) notes, a
conceptualization can be seen as 'a world view, a way of thinking about a domain
that is typically conceived and/or expressed as a set of concepts, their definitions
and their inter-relationships'. An ontology is explicit when it is or can be
articulated, coded and stored in certain media, and readily transmitted to others.
Finally, the formality of the ontology indicates the level of expression in an
artificial, formally defined language, which extends to the possible ontology
property of being machine-interpretable. This property is desirable from a
functional viewpoint, as being machine-interpretable offers potential for re-use
and automation of functionality. Ontologies can be expressed along a range of
formality degrees; this is one of the three key dimensions along which ontologies
vary, as mentioned by Uschold (1996):

• Formality: the degree of formality by which a vocabulary is created and
meaning is specified. Uschold (1996) posits a formality continuum that
moves from highly informal (loose expressions in natural language) via
structured informal (restricted and structured form of natural language)
and semi-formal (expressed in an artificial formally defined language) to

55

rigorously formal (meticulous definition of terms with formal semantics,
theorems and proofs of properties such as soundness and completeness).

• Purpose: Uschold and Gruninger (1996) identify three main categories of
use for ontologies: communication, interoperability and achieving system
engineering benefits.

• Subject matter: Uschold (1996) identifies three main categories, namely
domain ontologies, task/problem solving ontologies, and meta-ontologies.
The latter are also called foundational ontologies (Borgo and Leitão,
2007).

To develop an ontology, a number of ontology construction methodologies are
available. Examples include the methodologies by Uschold (1996), Noy and
McGuinness (2009), Uschold and Gruninger (1996) and the METHONTOLOGY
methodology (Fernandes Lopez et al., 1997). All these methodologies share
common steps, though the exact representations may vary from methodology to
methodology. The common steps have been summarized by Pinto and Martins
(2004):

1. Specification: identification of the purpose and scope of the ontology.
2. Conceptualization: identification of the domain concepts and the

relationships between concepts.
3. Formalization: organizing the concepts into class hierarchies and

subsequent construction of axioms to formally model the relationships
between concepts.

4. Implementation: codification of the class hierarchies and axioms into a
formal knowledge representation language.

5. Maintenance: updating and correcting the implemented ontology.

A number of languages have been developed specifically to express ontologies,
such as the Knowledge Interchange Format (KIF) (Cranefield and Purvis, 1999) and
the Web Ontology Language (OWL). The latter is an example of a language where
description logic (DL) can be employed to express predicates that define a concept
or a relationship. These predicates allow for inferences to be made on the
knowledge base by automatic reasoning. Cranefield and Purvis (1999) give
examples of such inferences, including subsumption (generality of concepts
relative to each other), coherence (logical coherence of a concept), identity
(checking whether two or more concepts are actually expressing the same
concept) and compatibility (checking whether two concepts can have common
instances). These reasoning capabilities are potentially powerful when
constructing an ontology: the integrity and consistency of the ontology can be
checked automatically and the use of DL predicates can be used to integrate

56

different views on a subject through the equivalency of classes (Matsokis and
Kiritsis, 2010). Furthermore, querying of an ontology can be assisted by these
inferences. In short, languages such as OWL are very suitable for the construction
of formal ontologies.

However, a drawback of these specific ontology languages is that they 'are
usually defined in terms of an abstract (text-based) syntax and most care is spent
on the formal semantics' (Brockmans et al., 2004). There are only limited means
to visually model ontologies. Furthermore, the languages and associated tools
such as Ontolingua and Protégé are reportedly not very well known outside of the
Artificial Intelligence and Knowledge Engineering communities (Cranefield and
Purvis, 1999).

In light of these disadvantages, the Object Management Group’s Unified
Modelling Language (UML) (Object Management Group) is increasingly used to
express ontologies. UML is a general-purpose modelling language for object-
oriented software-intensive systems. UML can be used to model the static view
(structure) of a system (objects, attributes, operations, relationships) as well as
the dynamic view (behaviour), which encompasses collaborations between
objects as well as changes to the internal state of objects. There are some
fundamental and some subtle differences between UML and ontology languages
such as OWL. However, distinct advantages of UML with respect to specific
ontology languages are:

1) UML is widely known and used throughout industry and academia;
2) UML has a standard graphical notation;
3) UML (and adapted variants) are used in the CommonKADS and MOKA

methodologies (see Section 3.3.1); knowledge engineers are familiar with
the language and it has proven to be effective in modelling and
developing knowledge-based systems.

A significant disadvantage of UML is that it does not support reasoning on its
own. To remedy this, an ontology expressed in UML can be extended with
predicates using the Object Constraint Language (OCL), which therefore allows for
the definition of formal ontologies. However, the UML-OCL combination has some
drawbacks in terms of reasoning capability, such as computational complexity.

When properly developed and implemented, ontologies can serve as the
backbone for knowledge-based applications. They offer the possibility to structure
the knowledge base by modelling the context in which knowledge is viewed.
Domain (meta)models are made explicit and knowledge (re-)use is made possible
(Matsokis and Kiritsis, 2010). Furthermore, as mentioned, ontologies can
incorporate the use of predicates and an inference capability, which offers the
potential to execute automated reasoning upon the knowledge base. Finally,
ontologies are flexible and can be extended (Brandt et al., 2008). As such,

57

ontologies not only support multiple viewpoints on the same knowledge, but also
offer critical functionality for knowledge-based applications.

Therefore, the model-based approach will be realized through the
development of an ontology: the Knowledge Life Cycle (KLC) ontology. Based on
the requirements as discussed in Table 3.4, the following associated ontology
requirements can be identified (see Table 3.5).

Table 3.5: Ontology requirements

General requirements Associated ontology requirements

1. Traceability
i. Visibility: experts / end users

should have the possibility to
see knowledge that feeds into
KBS.

ii. Accessibility: experts / end
users should be able to access
and work with knowledge.

iii. Retrievability: experts / end
users should be able to
effectively search for and find
relevant knowledge.

• Development of metamodel:

Explicit representation of semantic
(i.e., meaningful) context allows for
identification and 'smart' search of
information and knowledge

2. Functionality & Separation of tasks
and domain knowledge

• Separation into functions and
associated task class(es) and
extension possibilities for domain
ontologies

3. Knowledge management
i. Across domains: users and tools

from different domains should
work on the basis of consistent
data, information and
knowledge.

ii. Across users / actors from
different perspectives: the
model should accommodate the
perspectives from different
users (e.g. production engineer
and machine operator in the
manufacturing domain), for the
different lifecycle stages.

• Provide common, unified and

consistent understanding of
knowledge structure.

• Accommodate multiple views

To meet these requirements, a number of possible building blocks for the KLC
ontology are inspected in the following section. The common steps of the
ontology development methodologies (Pinto and Martins, 2004) will be applied
together with these building blocks in Section 3.2.3 to develop the KLC ontology.

58

3.2.2 Main Elements for the Development of the Knowledge Life Cycle
Ontology

In this Section, the main building blocks for the development of the ontology are
discussed. In the first part, existing lifecycle paradigms and ontologies are
discussed. These models provide inspiration for meeting the maintainability
requirements associated with the KLC ontology, in particular with respect to the
development of a metamodel for traceability and knowledge management. In the
next subsection, a number of models are introduced that can be used to address
the usability requirements, mainly through the consideration of functionality.
Finally, the Knowledge Lifecycle Model from Section 3.1 is introduced as a building
block for the KLC ontology. Inputs from the various models are combined in the
design and implementation of the KLC ontology (Section 3.2.3).

3.2.2.1 Existing Lifecycle Ontologies‡
Most of the recent work into lifecycle models is performed as part of Product
Lifecycle Management (PLM) research. For instance, Lee and Suh (2008) propose
an ontology-based multi-layered knowledge framework for PLM. Their work first
describes previous research regarding this subject, where it is noted that the
proposed knowledge frameworks do not include explicit semantics (e.g. Xue et al.
(1999); Roy et al. (2001); Sudarsan et al. (2005)) or do not consider the full
lifecycle (e.g. Borst et al. (1997); Kitamura et al. (2004)). Similarly, the multi-
layered knowledge framework of Lee and Suh (2008) covers the design and
manufacturing domains, but is not extended to the product support and disposal
domains. In a similar vein, the ONTO-PDM (Product-driven ONTOlogy for Product
Data Management) effort by Panetto et al. (2012) proposes an ontological model
of a product based on ISO and IEC standards to facilitate the interoperation of
application software that share information during the physical product lifecycle,
but this model is based in a manufacturing environment and not designed and
employed to take into account a lifecycle perspective.

More complete lifecycle modeling efforts have been produced by the
PROMISE consortium (short for PROduct lifecycle Management and Information
tracking using Smart Embedded systems). PROMISE is a European Framework Six
(FP6) research project conducted from 2004-2008. The results of PROMISE
(Bufardi et al., 2005; Främling and Rabe, 2005; Tomasella et al., 2006) are
considered state-of-the-art in the context of the current research.

PROMISE focused on researching closed-loop PLM: a perspective on PLM
where information of the whole product lifecycle is tracked and managed. Flows
of information can feed forward and backward between different lifecycle stages

‡ Note: In this Section and consecutive section, ontology classes are expressed in the
following format: Nameofclass, Nameofclass_Addition. When other conventions have
been used in sources, the original formats are translated to the bold class format.

59

(BOL, MOL, EOL). As part of the initial results of PROMISE, Jun et al. (2007) have
summarized research issues on closed-loop PLM per lifecycle phase. This has
informed the research direction of PROMISE: high focus was given on the
development of a Semantic Object Model (Tomasella et al., 2006) or SOM. The
SOM takes inspiration from a number of pre-existing standards, including
ISO10303 – STEP (Standard for the Exchange of Product model data), ISO 14649 –
STEP NC (STEP Numerical Control), ISO 10303-239:2005 – PLCS (Product Life Cycle
Support), ISO 15531 – MANDATE (MANufacturing DATa Exchange) and PLM XML,
amongst others. The SOM is object-oriented and expressed in UML. The UML
SOM model has been converted into a OWL-DL (Web Ontology Language –
Description Logic) ontology, with the benefit of adding reasoning capabilities
(Matsokis and Kiritsis, 2010).

The SOM is shown in Figure 3.2. Here, one can distinguish two main areas of
interest (Tomasella et al., 2006): the area bounded by the continuous line
comprising information on product instances and product type, and the area
bounded by the dotted line comprising information connected to the different
lifecycle phases. The PROMISE SOM is particularly interesting from the viewpoint
of the KLC ontology as it contains a high number of relevant classes, properties
and relationships that can be used in a metamodel, in particular the
Physical_Product, Life_Cycle_Phase, Resource (Document_Resource,
Personnel_Resource, Equipment_Resource, Material_Resource), Event and
Activity classes and their properties and relationships. Furthermore, industry and
academia are familiar with its contents, making (part of) its content suitable as a
building block for the KLC ontology.

60

Figure 3.2: PROMISE Semantic Object Model (Tomasella et al., 2006)

Another model with some similarities to PROMISE SOM is the Core Ontology

for Process Data Warehouse (Brandt et al., 2008). This model supports “creative,

61

non-deterministic design processes” by including semantic mechanisms to
retrieve and represent knowledge (content), as well as providing “capture and
archival of work processes” (Brandt et al., 2008) (i.e. process rationale). The Core
Ontology for PDW is given in Figure 3.3. The ontology’s central aspect is an Object
class which can be extended to represent four main areas: process, product,
description and storage. Within these areas, similar classes as in the PROMISE
SOM appear, for example Activity, Product, Document, and User. These and
other classes can be extended using ontology modules, represented by the yellow
'folder' representations in the figure (e.g., a document management ontology
module can extend the Store class).

A novel addition of the Core Ontology with respect to PROMISE SOM is the
inclusion of an explicit Process_Trace class, which expresses the design rationale
by “describing the concrete actions performed in a project by User or Tool”
(Brandt et al., 2008). Furthermore, the Core Ontology makes the storage of
documents explicit by including a Store class. Both are useful potential additions
to the PROMISE SOM as well as potential contributions to the KLC ontology.

Figure 3.3: PDW Core Ontology (Brandt et al., 2008)

Finally, when considering commercial models, various engineering

applications developed by Dassault Systèmes (e.g. Catia™ (Dassault Systemes,
2012) and Delmia™) use the Product – Process – Resource (PPR) model. As
Butterfield et al. (2012) note, this model separates product development into the

62

three domains of Product, Process and Resource (PPR), enabling the construction
of object-oriented tree structures capable of modeling the hierarchies of and all
logical relationships between the process, product and resource data (Curran et
al., 2010). Through the creation of “links between nodes embedded in the PPR
structure, e.g. linking a component in Product to a method in Process and a tool in
Resource, it becomes possible to generate active, and importantly interrogable,
definitions and quantifiable parameters for design decisions within a virtual
environment” (Butterfield et al., 2012).

Together, the PPR paradigm, PROMISE SOM and PDW Core Ontology offer a
range of classes and relationships that can serve to fulfil the KLC ontology
requirement of having a semantic metamodel. This metamodel can fulfil the
traceability and knowledge management requirements, as it can be used to
annotate engineering functions or tasks and make them traceable, retrievable,
accessible and subject to change for users from different domains.

3.2.2.2 Existing Models for the Representation of Functionality
In this section, existing models for the representation of functions and/or tasks
are inspected. Before doing this, it is necessary to define 'function' and 'task'.
Interestingly, as noted by Erden et al. (2008) in their review of functional
modelling, Umeda et al. (1995) state that “there is no clear and uniform definition
of a function, and moreover, it seems impossible to describe function objectively”.
In defining the Function-Behavior-State model, Umeda et al. (1990; 1995; 1996)
have attempted to define function including subjectivity. Other models have been
developed (as reviewed by Erden et al. (2008)) that also include subjectivity into
function. In these views, function is considered as “a subjective category that links
the human intentions/purposes residing in the subjective realm to the behaviours
and structures in the objective realm” (Erden et al., 2008). Other definitions of
function do not incorporate subjectivity; for instance, function can also be defined
as “a relationship between input and output of energy, material, and information”
or as “to do something, a combination of verb and noun” (Erden et al., 2008).

The latter definitions overlap somewhat with the concept of tasks as defined
by Wood (1986). Tasks can be defined starting from at least four theoretical
frameworks: task qua task, task as behaviour requirements, task as behaviour
description and task as ability requirements. Wood (1986) selects an approach
from these frameworks and arrives at the postulate that all tasks contain three
essential components: products, acts, and information cues. Products are “entities
created or produced by behaviors which can be observed and described
independently of the behaviors or acts that produce them” (Wood, 1986); they
are the outputs associated with a task. Acts are either a specific activity or a
“complex pattern of behaviour with an identifiable purpose” (Wood, 1986). Wood
(1986) considers acts to be an input to a task, but acts are similar to the
transformation between input and output mentioned in Erden et al. (2008) and

63

also conceptually close to the Function-Behaviour relationship introduced by
Umeda et al. (1990). Finally, information cues are pieces of information about
object (attributes) that can be used by individuals in the judgements required for
carrying out a task. As such, information cues are inputs for a task. Schreiber et al.
(1999) posit a different definition for a task: in their view, a task is “a subpart of a
business process that represents a goal-oriented activity adding value to the
organization; handles inputs and delivers desired outputs in a structured and
controlled way; consumes resources; requires knowledge and other competences;
is carried out according to given quality and performance criteria; and is
performed by responsible and accountable agents”.

No uniform and universally accepted definitions of function and task relative
to modelling exist; views on the two can be quite similar. To make matters more
confusing, the terms task, activity and process are often used interchangeably. A
more involved discussion of functions and tasks can be found in Erden et al.
(2008) and Wood (1986). Given the ambiguity regarding 'definite definitions' for
these concepts, prescriptive definitions for function and task are avoided.
However, to register as either function or task, a concept must include the central
aspects of input, activity / process, output and goal.

With the preceding discussion in mind, the first representation of functions
and tasks discussed here is the IDEF0 modelling method. The IDEF0 modelling
method was adopted as a standard in 1993 by the National Institute of Standards
& Technology (NIST) in 1993 (National Institute of Standards and Technology,
1993). Even though it has been withdrawn in 2008 as a federal US standard, it is
still commonly applied in academia and industry. The objectives of IDEF0 are to
provide “a means for completely and consistently modelling the functions
(activities, actions, processes, operations) required by a system or enterprise, and
the functional relationships and data (information or objects) that support the
integration of those functions” and to provide “a modelling technique which is
independent of Computer-Aided Software Engineering (CASE) methods or tools,
but which can be used in conjunction with those methods or tools”. IDEF0 uses
function boxes and inputs, controls, outputs and mechanisms (ICOM) arrows for
the representation and modelling of functions – see Figure 3.4 for a generic IDEF0
diagram. In IDEF0 diagrams, functions are defined as “an activity, process, or
transformation identified by a verb or verb phrase that describes what must be
accomplished”. Input are “the data or objects that are transformed by the
function into output”, Control are “conditions required to produce correct
output”, such as directions or constraints, Output are “the data or objects
produced by a function” and Mechanism are “the means used to perform a
function”, such as people or machines (National Institute of Standards and
Technology, 1993).

64

Figure 3.4: Generic IDEF0 diagram (National Institute of Standards and Technology,

1993)

IDEF0 can be used to identify and model functions. Activities can concisely be

described by their inputs, outputs, controls, and mechanisms, or ICOMs
(Integrated Definition Methods, 2012). Furthermore, IDEF0 can be used to
produce hierarchical and increasingly detailed models of functions, activities and
tasks. Drawbacks of IDEF0 are that the resulting models can become so concise
that non-experts cannot understand them, and that IDEF0 models are commonly
interpreted as a sequence of activities, whereas the time dimension is actually not
modelled within IDEF0.

The second representation of tasks can be found within the CommonKADS
methodology for knowledge engineering (Schreiber et al., 1999). This
methodology contains an approach to knowledge modelling that recognizes task
knowledge and inference knowledge as specific knowledge categories. Task
knowledge is used to describe what goal(s) an application pursues, and how these
goals can be realized through decomposition into subtasks and inferences. The
inference knowledge represents the lowest level of functional decomposition; it
describes the inference steps that are applied to domain knowledge to achieve a
reasoning capability.

The General Technology Ontology (GTO), developed by Milton (2007) as an
extension to MOKA, can similarly be used to represent tasks. Besides the concept
of tasks, the ontology holds 16 other concepts (including resource concepts such
as people, software, information, and process concepts such as events, triggers
and decision points) that together provide a generic ontology for the construction
of knowledge bases. The GTO has been used in the PEGASUS project (PEGASUS,
2013).

An ontological representation of tasks is currently being developed in the
iPROD research project (Chan, 2013; iProd, 2013). Here, task ontologies are
developed for general, high-level activities: for instance, the design task is

65

associated with concepts such as requirements, processing and optimization,
amongst others. Besides task ontologies, problem-specific domain ontologies are
built as a supplement to the task ontology to provide a sufficiently modelled
overview of the domain to base subsequent development on. The problem-
specific ontologies can be mapped into the higher-level task ontologies.

The final representation of interest for the KLC ontology is formed by the
concept of an Enterprise Knowledge Resource. This concept has its roots in the
work by Bermell-Garcia (2007), who has advocated the annotation of KBE code,
applications and/or models (or eXecutable Knowledge Models – XKMs) with
metadata, enabling knowledge to be indexed and retrieved in data repositories,
PDM and PLM systems. The resulting annotated knowledge models are known as
Enterprise Knowledge Resources or EKR: a 'specialized type of data resource that
automates engineering tasks'. In Bermell-Garcia (2007)’s work, an EKR was
represented by “a file containing the code of the XKM and an instance of the
metamodel [annotation metamodel] as its blueprint within and [sic] enterprise
repository”. The proposed metamodel consists of a structure metamodel and an
operation metamodel. The structure metamodel can be used to describe the
composition of a KBE resource. The operation metamodel can be used to describe
how the KBE resource operates.

Figure 3.5: UML class diagram of Enterprise Knowledge Resource (Bermell-Garcia et al.,

2012)

In research performed jointly by Bermell-Garcia and the dissertation author,

the concept of an Enterprise Knowledge Resource has been further researched
(Bermell-Garcia et al., 2012; Verhagen et al., 2012). The concept has been
reformulated and now expresses a task-oriented container for knowledge, process

66

and cases. A Unified Modelling Language (UML) class diagram of an EKR as used in
Bermell-Garcia et al. (2012) is given in Figure 3.5.

The most important aspects of Figure 3.5 are the EKR class itself and the
knowledge, process and case classes. The EKR container class represents the task
that needs to be fulfilled, with the attendant attributes such as the task objective.
As such, it resembles the task knowledge category of the CommonKADS
methodology. Tasks / functions can be identified using functional decomposition
(e.g. with IDEF0 or using systems engineering techniques such as functional flow
diagrams or functional breakdown structures). The EKR container class
incorporates the EKR_Knowledge, EKR_Process and EKR_Case classes.

The EKR_Knowledge class of an EKR contains the knowledge elements that
are used to perform the specific task associated with an EKR; this can pertain to
full KBE applications or to modular knowledge elements that can be combined to
fulfil a task. The role of the EKR_Knowledge class is therefore to represent and
deliver the knowledge that is subsequentially called via the EKR_Process class to
execute a design or analysis task. In this, the EKR_Knowledge class is quite similar
to the domain knowledge category of CommonKADS (Schreiber et al., 1999),
which represents the main static information and knowledge objects in an
application domain.

The EKR_Process class contains the workflow of the specific task for which
the EKR is set up; it is composed of process elements. In this, it bears some
similarity to the task method and inference knowledge categories of the
CommonKADS methodology, which are used to control and carry out a sequenced
reasoning process on the domain knowledge elements.

The EKR_Case class is used to gather and present the design or analysis
results that flow out of the use of an EKR (i.e. the execution of a task using a
combination of process and knowledge elements). As such, it embodies the
generative capability of knowledge.

In summary, the various models presented in this section can be used to fulfil the
KLC ontology requirement of functionality. In particular, the EKR approach is
suitable for this as it enables the representation of a function and its attributes
together with its constituent elements (inputs, activities, outputs).

3.2.2.3 Knowledge Lifecycle Model
The final building block for the KLC ontology is the Knowledge Lifecycle Model as
introduced in Section 3.1.

Its most important contributions to the KLC ontology are the concepts of
knowledge state and knowledge action. Both have the potential to be
incorporated into the lifecycle model as class properties. When included and
managed – either by users or by applications – the behaviour of knowledge can be
quantified directly from the knowledge-based applications.

67

3.2.2.4 Summary of KLC ontology building blocks
To recap, the following elements are considered as building blocks for the
Knowledge Life Cycle (KLC) ontology:

• Lifecycle elements:
o PROMISE Semantic Object Model
o PDW Core Ontology
o PPR paradigm

• Functional elements:
o Functional decomposition (IDEF0/CommonKADS)
o Enterprise Knowledge Resource concept

• Knowledge life cycle model

In Table 3.6, the previously introduced requirements regarding the KLC

ontology are related to the building blocks. Which potential contributions from
which building blocks address specific KLC ontology requirements?

Table 3.6: KLC ontology requirements in relation with building blocks

KLC ontology – requirements Building block potential contributions

1. Traceability

i. Visibility: experts / end users
should have the possibility to see
the knowledge that feeds into
KBS.

ii. Accessibility: experts / end users
should be able to access and
work with knowledge.

iii. Retrievability: experts / end
users should be able to effectively
search for and find relevant
knowledge.

• PROMISE SOM: as a semantic

object model, the SOM is very
adept at facilitating retrievability.
Furthermore, the SOM
incorporates several classes and
properties that aid visibility of
knowledge, though its not clear if
other classes (e.g. Resource and its
subclasses) facilitate accessibility of
knowledge.

• PDW Core Ontology: the Core
Ontology facilitates traceability of
knowledge through its
Design_Traces, Description_Object
and Storage_Object classes. The
latter two are particularly suitable
for accessibility of knowledge. The
Core Ontology seems less strong in
semantic terms, with
corresponding doubts regarding
the retrievability of knowledge.

• PPR paradigm: through annotation
with Product, Process and
Resource classes, concepts can

68

theoretically be retrieved and
accessed effectively.

• Enterprise Knowledge Resource:
through the EKR_Knowledge class
of an EKR, knowledge is easy to
inspect, use and maintain. An EKR
should be annotated to enable
retrievability in an enterprise
knowledge system.

• IDEF0: the input and output
elements in IDEF0 as well as the
resulting hierarchical models of
functionality enable traceability,
though operationalization of these
constructs must be performed.

• Knowledge Lifecycle Model: the
concept of knowledge states can
be used to characterize the
maturity of knowledge.
Furthermore, when earlier versions
of knowledge elements are
archived, users can inspect the
changes in knowledge and learn
from the progression.

2. Functionality & Separation of tasks

and domain knowledge

• PROMISE SOM: the SOM includes

separate classes that can be used
to express tasks (Activity) and
knowledge (Resource,
Physical_Product).

• PDW Core Ontology: similar to the
SOM, the Core Ontology includes
separate classes that can be used
to express tasks (Process_Object
and its subclasses) and knowledge
(Description_Object and its
subclasses).

• IDEF0: IDEF0 models can be used
to represent and decompose
functionality, but it is not clear how
tasks and domain knowledge are
separated.

• CommonKADS: CommonKADS calls
for separation of task, inference
and domain knowledge when

69

composing a knowledge model. In
particular, CommonKADS offers
templates for task methods and
inference knowledge that improve
task knowledge re-use.

• Enterprise Knowledge Resource:
the EKR concept supports the
explicit separation of tasks and
domain knowledge through its
concepts of the EKR class itself,
EKR_Knowledge and EKR_Process.

3. Knowledge management

i. Across domains: users and tools
from different domains should
work on the basis of consistent
data, information and knowledge.

ii. Across users / actors from
different perspectives: the KLC
ontology should accommodate
the perspectives from different
users (e.g. production engineer
and machine operator in the
manufacturing domain), for the
different lifecycle stages.

• PROMISE SOM: the SOM supports

all lifecycle domains and users
through its classes and associated
properties, in particular the
Resource, Life_Cycle_Phase and
Event classes.

• PDW Core Ontology: similar to the
PROMISE SOM, the Core Ontology
contains classes that support
multiple perspectives on
knowledge, e.g. the User class.

• PPR paradigm: the Product,
Process and Resource classes are
useful generic classes that can be
used across domains and across
users, as shown in Dassault
Systemes’ commercial systems.
However, these classes require
more detailed representation to
facilitate actual use in a semantic
metamodel.

• Enterprise Knowledge Resource:
the EKR concept does not directly
support different perspectives on
knowledge. This may be achieved
indirectly through semantic
annotation.

Similar to the research approach adopted in the iPROD project (iProd, 2013),

the building blocks have the potential to address the fundamental requirements
of having a

a. Capability to represent a usable function (usability)

70

b. Capability to semantically annotate a function in order to be able
to find, access, inspect and maintain this function (usability &
maintainability)

Not all building blocks are fully usable for the development and

implementation of the KLC ontology. Though all are considered, the most
influential building blocks are the Enterprise Knowledge Resource concept and the
PPR paradigm. This will be shown in the following Section.

3.2.3 Research Contribution 2: Knowledge Life Cycle Ontology

The purpose of this Section is to combine the previously introduced building
blocks to develop the Knowledge Life Cycle ontology. This Section follows the
ontology development methodology steps as identified by Pinto and Martins
(2004): specification of the purpose and scope of the ontology in Section 3.2.3.1,
followed by conceptualization of the concepts and relationships in Section 3.2.3.2.
These concepts and relationships are formalized and implemented into UML in
Section 3.2.3.3.

3.2.3.1 Specification: Purpose and Scope of the KLC Ontology
The purpose of the KLC ontology is to enable consistent development of
knowledge-based applications that can cope with knowledge change through
product life. To achieve this, the model should support the traceability of
knowledge through life, such that knowledge and knowledge-based applications
can be formalized, used, maintained, reused and retired through life. The model
must accommodate users with different perspectives while remaining consistent.
Furthermore, it must separate task representation from domain knowledge.

The ontology will be developed to a semi-formal stage: it will be expressed in
an artificial formally defined language, but does not incorporate formal semantics,
development of predicates, theorems and proofs of properties such as soundness
and completeness (Uschold, 1996). Developing the KLC ontology at a semi-formal
level is sufficient for the purposes of this dissertation: the case studies that
validate the KLC ontology are developed to a proof-of-concept stage and do not
require the functionality of a fully formal ontology (see also Section 3.5).

The language adopted for expressing the KLC ontology is the Unified
Modeling Language (UML). UML is preferred over OWL and other ontology
languages. This choice is backed up by a number of arguments. First, in contrast to
most ontology languages, UML modeling supports graphical notation, making it
easier to develop, interpret and implement. Furthermore, UML correlates with
the desired level of formality of the KLC ontology – the formality and functionality
of ontology languages (e.g. predicates and automated reasoning) are not
necessary for a semi-formal ontology. Finally, UML is widely adopted and used in

71

both academia and industry; interpretation and dissemination of the KLC ontology
is best supported by UML.

The scope of the KLC ontology is a generic product lifecycle. For practical
purposes, its use throughout the remainder of this dissertation will be confined to
the aircraft engineering domain, as discussed in Section 1.2.1.1.

3.2.3.2 Conceptualization: Definition of High-Level Concepts and
Relationships

To conceptualize the KLC ontology, high-level concepts and relationships from the
building blocks have been combined into a single conceptual model. A high-level
overview of this model is shown in Figure 3.6. This figure shows that there are two
central perspectives in the model. The first is the Product - Process - Resource
(PPR) paradigm, as introduced before. The second perspective sees the Enterprise
Knowledge Resource as a central concept. Both perspectives are described in
more detail below. As an additional note, the EKR itself and the knowledge
elements will have the knowledge states and actions from the Knowledge
Lifecycle Model as attributes. This enables the quantification of knowledge change
over its life.

Figure 3.6: High-level concepts and relationships of the KLC ontology

The generic role of an EKR is to provide the capability for a usable function: the
ability to (automatically) execute a task, to enable the inspection, review and
(possible) revision of the associated knowledge and process elements, and to

72

enable users to inspect and learn from the outputs of previous runs of the EKR
through the collected case reports. The KLC ontology has a similar representation
of the EKR container class as introduced in (Bermell-Garcia et al., 2012). However,
several changes have been made relative to that incarnation of the EKR concept:

• Knowledge: Knowledge contains knowledge elements, which can be seen

as a type of Resource. A set of knowledge elements can together
constitute the required knowledge for an EKR (task). This relates to
explicit, codified knowledge which can include both informal and formal
representations of concepts, relationships, assumptions, rules,
constraints, rich text descriptions, illustrations, drawings, etc. These
elements contain a capability for effective action (and are therefore
compliant with the definition of knowledge as adopted in this research),
but to harness this capability for action, it is necessary to have a provision
in place to further organize and actively use the knowledge elements.
This provision is provided through the Process concept.

• Process: The Process concept consists of process elements. In a similar
manner to the knowledge concept, a set of process elements (e.g.
activities) can be combined to form the process that is required for an
EKR. In other words, the Process concept contains the workflow of the
specific task for which the EKR is set up.. In the EKR concept, the Process
class can contain a sequence of process elements (activities), such as
importing an input file, calling a knowledge element or a self-contained
knowledge application, executing the knowledge application, collecting
and passing on the outputs, calling another knowledge application,
executing this knowledge application, and so on. The workflow can be
automated, though this of course depends on the implementation. The
role of the Process concepts is to represent and enable an “end-to-end”
engineering task, preferably in an automated fashion (i.e. without the
requirement of user intervention). In combination with knowledge
elements, the process elements can be used to create a fully automated,
white-box design or analysis process. Users can inspect the steps in the
design or analysis process, and can see the associated knowledge through
the related knowledge element(s).

• Case: The Case concept is used to gather and present the design or
analysis results that flow out of the use of an EKR (i.e. the execution of a
task using a combination of process and knowledge elements). As such, it
embodies the generative capability of knowledge. Every time a specific
EKR is executed, a case report can be generated. This report includes an
overview of the inputs that were used for the analysis, such as CAD
drawings or Excel files. Furthermore, the knowledge elements that were

73

used when running an EKR instance can be listed. Finally, the output files
generated by the analysis (e.g. stress distribution graphs or cost
estimations) can be listed. All of these elements are directly accessible
through the case report; for instance, a user can directly go to and inspect
the knowledge that was used for a specific analysis run. When an EKR is
run multiple times, for instance with multiple sets of different inputs, the
results are gathered in a set of case reports. This enables the subsequent
inspection of analysis results, but also opens up the opportunity to further
analyze the results themselves. Case metadata can also be automatically
assigned, which enables consistent categorization and easier search and
retrieval of historical analysis results.

To support the use of EKRs in practice, the aforementioned PPR paradigm is the
guiding principle in the development of a semantic metamodel that can be used
to annotate EKRs for systematic storing and indexing into a digital enterprise
repository. This facilitates the reuse, sharing and maintenance of EKRs, as well as
the knowledge upon which EKRs operate. The PPR paradigm is met by including
Process, Resource and Product concepts, as shown in Figure 3.6. The Resource
concept encapsulates a relatively large number of subconcepts, for instance User
and Tool. Finally, the Product concept can be used to represent individual parts
and, when joined, assemblies. This is of importance to represent the Product
Breakdown Structures often used in aircraft engineering.

With respect to the relationships between the various concepts, Figure 3.6
shows only the most important relations between high-level concepts, such that
the figure retains some clarity. At lower levels, concepts may also share relations,
though most are not depicted here (e.g. Knowledge_Element will be related to a
User_Resource and Document_Resource).

3.2.3.3 Formalization and Implementation: Transformation of
Conceptual Model into a Semi-Formal UML Ontology

The next step towards a Knowledge Life Cycle ontology is the transformation of
the conceptual model into a semi-formal ontology. As mentioned, the chosen
language for expressing the semi-formal model is UML. The following activities
have been performed:

• Transformation of concepts into classes with their most important
attributes

• Formalization of class relationships, including aspects such as multiplicity
and type

• Implementation of classes and relationships in UML

74

Figure 3.7: UML class diagram of KLC ontology

The resulting UML model of the KLC ontology is presented in Figure 3.7. The

following main classes and attributes are further explained:
• Enterprise_Knowledge_Resource: this class is the central way of

representing functionality into the KLC ontology. It contains the
EKR_Knowledge, EKR_Process and EKR_Case classes. Its attributes
include basic metadata (e.g. author, version) and a
knowledge_lifecycle_state attribute. This attribute can be used to
describe the instantaneous state of an EKR. For instance, if a user makes a
change to the semantic annotation of an EKR, the state jumps to
'Maintain'. When a user has finished making changes (possibly subject to a
validation process), the state changes back to 'Use'. The possible states
are taken from the knowledge lifecycle model and include 'Create' (initate
instance), 'Use' (completed/validated instance), 'Maintain' (context of
instance is changed), 'Update' (content of instance is changed), 'Retire'
(instance is binned or deleted). To quantify knowledge change, operations
that count changes in state (i.e. knowledge actions) are added to the EKR

75

class. A UML class diagram for Enterprise Knowledge Resource as
implemented within the KLC ontology is given in Figure 3.8.

• EKR_Knowledge: the EKR_Knowledge class contributes to the EKR class.
Its main attribute is knowledge_list, which can serve to collect knowledge
elements that are used for a particular EKR. The EKR_Knowledge class has
one main subclass: Knowledge_Element. Instances of
Knowledge_Element can be combined with Process_Element instances to
configure a knowledge-based application. Like the EKR class, the
Knowledge_Element class has an attribute to keep track of the knowledge
lifecycle state as well as operations that can count changes in state (i.e.
knowledge actions). The Knowledge class (and its subclass) can be
annotated by Product, Process and Resource, and their respective
subclasses.

• EKR_Process: the EKR_Process class contributes to the EKR class. It has a
number of attributes, for instance for objective and description. Notably,
the level of process automation can be expressed using the relevant
attribute. EKR_Process has one main subclass: Process_Element. One or
more process elements can be combined to form a process. Like the EKR
class, the Process_Element class has an attribute to keep track of the
knowledge lifecycle state as well as operations that can count changes in
state (i.e. knowledge actions). Further operations are added to model the
potential use of knowledge elements in a process (callKnowledge()) and
to write the results of process execution into a case report
(writeCase_Report()). In contrast to Figure 3.6, the process
representation of the EKR (EKR_Process) has been separated relative to
the generic Process class (see below).

• EKR_Case: the EKR_Case class contains the case history of EKR use. Every
time an EKR is run, an instance of the subclass Case_Report is generated
and populated within the EKR_Case class. Instances of Case_Report
contain an overview of the knowledge and process elements that were
used in that particular EKR run. This enables backward traceability of the
results of an EKR run.

• Product: the Product class can be used to generate product-oriented
views and can be used to annotate EKRs and its subclasses. An association
has been made between the Product and
Enterprise_Knowledge_Resource classes; similar associations exist
between Product and the EKR subclasses, but these are not shown. To
annotate effectively, the Product class can be extended into domain-
specific class hierarchies. This will be done in Chapters 4-6, where relevant
Product Breakdown Structures (PBS) are developed for the design,
manufacturing and maintenance domains.

76

• Process: The Process class is part of the PPR semantic metamodel that can
be used to annotate EKRs. An association has consequently been made
between the Process and Enterprise_Knowledge_Resource classes. To
achieve annotation, Process can be extended into a domain-specific class
hierarchy – this will be shown in Chapters 4-6.

• Resource: the Resource class can be seen as the superclass of the
Enterprise_Knowledge_Resource class, though this relation is not given in
Figure 3.7. Besides this, the class contains users, tools, equipment,
materials and documents as subclasses. It can be extended into domain-
specific class hierarchies for annotation of EKRs. As before, this will be
shown in Chapters 4-6.

The main concept relationships can be seen in Figure 3.7; for completeness’ sake
they are also given in Table 3.7.

Table 3.7: Relationships between main concepts of KLC ontology
Class 1 Class 2 Relation (name) Relation

(type)
Process Product generates Association
Process Resource uses Association
Product Resource uses Association
Enterprise_Knowledge_Resource Product is_annotated_by Association
Enterprise_Knowledge_Resource Process is_annotated_by Association
Enterprise_Knowledge_Resource Resource is_annotated_by Association
Assembly Product is-a Generalization
Part Product is-a Generalization
Part_Joint Product is-a Generalization
Assembly Part contains Aggregation
Assembly Part_Joint contains Aggregation
User_Resource Resource is-a Generalization
Tool_Resource Resource is-a Generalization
Equipment_Resource Resource is-a Generalization
Material_Resource Resource is-a Generalization
Document_Resource Resource is-a Generalization
Enterprise_Knowledge_Resource EKR_Process contains Aggregation
Enterprise_Knowledge_Resource EKR_Knowledge contains Aggregation
Enterprise_Knowledge_Resource EKR_Case contains Aggregation
EKR_Knowledge Knowledge_Element contains Aggregation
EKR_Process Process_Element Contains Aggregation
EKR_Case Case_Report contains Aggregation

The Enterprise Knowledge Resource concept remains the central part of the

KLC ontology. It is represented separately in Figure 3.8 and contains the
Enterprise_Knowledge_Resource class and its subclasses.

77

Figure 3.8: UML class diagram of Enterprise Knowledge Resource as implemented in the

KLC ontology

The EKR concept allows for the representation of tasks / functions and the

inputs (knowledge elements), transformations (process elements) and outputs
(case reports) that are associated with a task. Through association with the PPR
classes of the KLC ontology, EKRs can be semantically annotated to allow
traceability (including visibility, accessability, retrievability) and knowledge
management. Practical examples of this are given in Chapters 4-6.

3.2.4 Concluding Remarks

The ontology requirements as introduced in Section 3.2.1 have been met by
development of the KLC ontology. This is further explained in Table 3-8, which
outlines the requirements and characteristics of the developed ontology.

The KLC ontology has been developed to a semi-formal level and has been
implemented in UML. Conversion into a dedicated ontology language (e.g. OWL)
is possible – see for instance Verhagen and Curran (2011) – but not necessary for
the purposes of this dissertation.
To summarize, the research questions mentioned in the introduction of Section
3.2 have been addressed by introducing the EKR and PPR concepts and
relationships and formalizing them into the KLC ontology. Though strongly rooted
in earlier research, the ontology is a novel contribution to theory. It can be used

78

to fulfil the usability and maintainability requirements associated with knowledge
change in knowledge-based applications.

Table 3-8: KLC ontology requirements versus functionality

KLC ontology – requirements KLC ontology - characteristics

1. Traceability

i. Visibility: experts / end users
should have the possibility to
see the knowledge that feeds
into KBS.

ii. Accessibility: experts / end
users should be able to
access and work with
knowledge.

iii. Retrievability: experts / end
users should be able to
effectively search for and
find relevant knowledge.

• Enterprise Knowledge Resource:

through the “Knowledge” element of
an EKR, knowledge is easy to inspect,
use and maintain. An EKR can be
annotated by Product, Process and
Resource (and their subclass
hierarchies) to enable retrievability in
an enterprise knowledge system.

• Case: the Case class offers the
possibility to inspect historical results of
running an EKR, including the
knowledge elements and process
models that were used in a particular
EKR execution run.

• Knowledge Lifecycle Model attributes:
the concept of knowledge states can be
used to characterize the maturity of
knowledge. Furthermore, when earlier
versions of knowledge elements are
archived, users can inspect the changes
in knowledge and learn from the
progression.

2. Functionality & Separation of

tasks and domain knowledge

• Enterprise Knowledge Resource:

through the Process and Knowledge
classes, tasks and domain knowledge
can be separated, while remaining part
of a functional whole.

o Process: the Process class
includes subclasses and
attributes to model tasks. To
achieve tasks, knowledge can
be called from the Knowledge
class.

o Knowledge: the Knowledge
class contains individual
knowledge elements and
knowledge applications that

79

can be called via the Process
class to perform a task.

3. Knowledge management

i. Across domains: users and
tools from different domains
should work on the basis of
consistent data, information
and knowledge.

ii. Across users / actors from
different perspectives: the
KLC ontology should
accommodate the
perspectives from different
users (e.g. production
engineer and machine
operator in the
manufacturing domain), for
the different lifecycle stages.

• Enterprise Knowledge Resource:

through annotation with Product,
Process, Resource and its subclasses,
an EKR can be accessible across
domains and across users. When
expressed in the OWL-DL format, a
common vocabulary – including
equivalent terms – can be declared to
accommodate different domain and
user perspectives.

• Resource_User: this class can be used
specifically to represent the various
users along the product lifecycle.

• Knowledge Lifecycle Model attributes:
the knowledge state and action
attributes associated with
Enterprise_Knowledge_Resource,
Knowledge and Knowledge_Element
can be used to express the status and
maturity of knowledge, making it
possible to work on the basis of
consistent knowledge.

80

3.3 The KNOMAD Methodology for Supporting KBS
Development incorporating Knowledge Change

The preceding Sections have discussed the models necessary for characterising,
measuring and facilitating knowledge change. However, these models must be
accompanied by a 'how-to': how can the models be applied for the development
of knowledge-based applications? This is reflected in the third research objective
expressed in Section 1.2: methodology development. The following research
questions are associated with this objective:

• How can knowledge change be accommodated during knowledge-based
application development?

o Which steps are required?

To answer these research questions, existing methodologies will be reviewed for
their strengths and weaknesses. The identified shortcomings are the basis for
proposing a methodology for the development of knowledge-based application
that offer better usability and maintainability through incorporation of knowledge
change.

3.3.1 State of the Art in Methodologies for KBS development

A number of methodologies have been developed over the years to guide the
development of knowledge-based systems. Here, two prominent methodologies
are discussed: CommonKADS (Common Knowledge Acquisition and
Documentation Structuring) and MOKA (Methodology and software tools
Oriented to Knowledge-based engineering Applications).

CommonKADS focuses on the development of Knowledge-based Systems
(KBS). It consists of steps, guidelines, models and templates. The main elements of
CommonKADS are given in Figure 3.9. Three layers can be distinguished. The top
layer incorporates the organisation, task and agent models and is preparatory in
nature. In this layer, opportunities for KBS development are identified, a KBS
project is scoped and initial analysis is performed to map the available knowledge
and knowledge users. Potential solution directions are distinguished. The middle
layer uses the inputs from the top layers models and takes the project further by
detailed analysis of knowledge, resulting in the knowledge model. This model
encompasses task, inference and domain knowledge and preferably uses
knowledge and task templates to promote re-use. The communication model
complements the knowledge model by considering the use of knowledge and
information within the organisation and between users. Finally, the bottom layer
comprises the design model: the KBS is designed and implemented. The focus is

81

on the technological aspects of KBS development. Schreiber et al. (1999) further
detail the CommonKADS layers and associated models.

Figure 3.9: CommonKADS methodology overview

From a design engineering perspective, a number of methodologies are

available to support the development of KBE applications (Lovett et al., 2000;
Stokes, 2001; Curran et al., 2010; Verhagen et al., 2012). By far the most well-
known of these is the Methodology and software tools Oriented to Knowledge-
based engineering Applications, or MOKA. This methodology, based on eight KBE
life-cycle steps, is designed to take a project from inception towards
industrialization and actual use (Stokes, 2001). The KBE System Lifecycle is given in
Figure 3.10 and is a process view of the lifecycle stages of a KBE system. The first
stages (Identify; Justify) are similar to the Organisation model of CommonKADS;
the purpose of these stages is to identify, analyse and scope opportunities for KBE
development. The next stages are Capture and Formalise; these stages are similar
to the Task and Knowledge models of the CommonKADS methodology. Their
purpose is to capture and model the knowledge and activities that are associated
with the KBE project. The remaining stages are Package, Distribute, Introduce and
Use: these are similar to the Design Model of CommonKADS, but with added
emphasis on the actual use of the KBE system. Another difference with

82

CommonKADS is the explicit consideration of KBE system maintenance as an
alternative to a new system after the Justify step, and the acknowledgement
through a feedback loop that the Use stage may trigger a cycle of maintenance.
However, though maintenance is explicitly identified, MOKA does not offer
guidelines for maintenance of knowledge-based engineering systems other than
to repeat the whole KBE System Lifecycle process when changes in knowledge
occur. MOKA does not incorporate a method to characterise the quantity and
frequency of knowledge change. Also, for which types and at what quantity of
change is any threshold to trigger maintenance to be fired? Furthermore, it is not
clear how existing models built in the Capture and Formalise stages are to be
adapted given new or changed knowledge. Moreover, it is not clear how these
changes are to be propagated into the packaged KBE system while maintaining
knowledge base consistency and reliability.

83

Figure 3.10: KBE System Lifecycle (adapted from Oldham et al. (1998))

 The Capture and Formalise stages are the central contribution of the MOKA

methodology. The centrepieces of these stages are the Informal and Formal

84

MOKA models. The informal model consists of so-called ICARE forms, where the
acronym stands for Illustrations, Constraints, Activities, Rules and Entities. These
forms can be used to decompose and store individual knowledge elements.
Subsequently, these elements can be linked to create a structured web of
knowledge elements that together make up a representation of the problem
domain to which users from multiple viewpoints can relate. When the problem
knowledge has been converted into a structured representation, the next step is
to formalize this knowledge in order to represent knowledge in a form that is
acceptable to knowledge and software engineers and suitable for subsequent
development of a KBE application. The formal model uses MML (Moka Modelling
Language, an adaptation of Unified Modelling Language (UML)) to classify and
structure the ICARE informal model elements, which are translated into formal
Product and Process models. The main elements of the MOKA methodology are
illustrated in Figure 3.11: the KBE system lifecycle, the Informal model (as
illustrated by an ICARE form) and the Formal model (as represented by an MML
structure). A more in-depth discussion of MOKA can be found in Stokes (2001).

Figure 3.11: MOKA methodology elements

85

3.3.2 Shortcomings of Existing Methodologies and Associated Research
Requirements

Both CommonKADS and MOKA acknowledge the change of knowledge over time
and the associated need for application maintenance to ensure usability.
Schreiber et al. (1999) mention that “the basic idea underlying the CommonKADS
model suite is that it provides a correct and full view of the status of application
development…Because knowledge is not static but changes over time, the process
is best seen as continuous development. Maintenance of the knowledge model is
thus not essentially different from its development. The main difference is that …
it is often done by other people… If the knowledge model of an application is good
and the domain is stable, one can expect the majority of maintenance to be
concerned with activity 'complete the knowledge bases'. Typically, sets of rule
instances will need to be updated, because knowledge tends to evolve over time”
(page 184). Similarly, the MOKA handbook mentions that “many companies that
use KBE are faced with a dilemma. Existing applications need to be updated or
improved. … Generally, it is recommended that you should introduce any changes
in the form of new or modified ICARE forms and then adjust the MOKA Formal
Models before changing the KBE application files” (page 263). Note that the
change or 'evolution' of knowledge is stated as a given. A major and essential
drawback of these methodologies is that they do not investigate the nature and
consequences of knowledge change in any depth. Instead of enabling the
development of change-compliant solutions, both methodologies advise to go
through all steps of the methodology again – a potentially costly exercise without
many guidelines regarding how to deal with and/or change the existing
application. Through their steps and models, both major methodologies are not
able to directly cope with knowledge change in knowledge-based applications.
When this situation occurs, rework is necessary.

The MOKA and CommonKADS methodologies can further be compared to
methodology requirements such as flexibility, scalability, extendibility (Colledani
et al., 2008), completeness and applicability. As a result, other shortcomings of
these methodologies can be identified. CommonKADS is fit for complex cases with
requirements on formal specification and re-use. Fairly prescriptive and detailed
guidelines and templates are available to support knowledge engineers, which
improves completeness and replicability, but decreases flexibility. Moreover, the
CommonKADS methodology as described by Schreiber et al. (1999) lacks
specificity for the engineering domain: there are very few knowledge and task
templates for engineering tasks.

The main focus of MOKA lies with the ‘Capture’ and ‘Formalize’ steps of the
KBE life-cycle. Curran et al. (2010) have identified that MOKA has the following
drawbacks as a result: a focus on knowledge engineering support rather than end

86

user support, and a lack of provisions for knowledge transparency and
accessibility.

Another major shortcoming of existing methodologies is a lack of
methodology adherence (Curran et al., 2010; Verhagen et al., 2012). In particular,
a review of the KBE domain (Verhagen et al., 2012) has shown that 81% of the
sample papers did not adhere to or even mention any specific methodology when
developing a KBE application. Methodology adherence cannot be forced, but
existing methodologies have seemingly failed to make a large impact.

A final shortcoming is the lack of quantitative evaluation of knowledge-based
application development. The MOKA and CommonKADS methodologies do
recommend considerable attention for the identification, evaluation and
justification of a business case for the development of a knowledge-based system.
This is an activity carried out before the development of KBS. Both methodologies
do not follow this up with quantitative evaluation of the KBS development after
completion of projects. Such (quantitative) evaluation is necessary to draw
lessons from KBS projects.

Given these shortcomings, a research challenge can be distilled: develop an
improved methodology for the development of knowledge-based applications
which must cope with changing knowledge. Such a methodology would have to
meet the following requirements:

• Be able to facilitate knowledge change.
• Include an approach for knowledge capture, formalization, use and

maintenance.
• Be sufficiently simple and straightforward to 'invite' use.
• Include steps / guidelines for the assessment of KBS performance.

3.3.3 Research Contribution 3: KNOMAD Methodology

To meet the improved methodology research challenge, the KNOMAD
methodology Curran et al. (2010) is introduced. KNOMAD consists of the following
main steps: (K)nowledge Capture & Identification of Knowledge Change,
(N)ormalisation, (O)rganisation, (M)odelling & Implementation, (A)nalysis and
(D)elivery.

87

Figure 3.12: KNOMAD methodology overview

The main steps are given in Figure 3.12. As can be observed, the first activity

before initiating the main steps is to justify the business case. This is similar to the
Identify & Justify steps of MOKA, which have the objective to identify, analyse and
scope opportunities for KBE development. In the justification of the business case,
it can be judged whether the process / task is suitable for a knowledge-based
approach; as mentioned before, Van der Velden et al. (2012) provide a first
attempt in this direction by considering process complexity. The scope, objectives
and context of the project can be established. Furthermore, business metrics (e.g.
ROI) can be identified and analysed to judge the business case (Van Dijk et al.,
2012). Some first forays into knowledge capture may be necessary to back up the
justification effort, as indicated by the dotted line in Figure 3.12.

When a development effort is warranted, the main steps of the KNOMAD
methodology can be applied. They are explained in the following sections.

88

3.3.3.1 Knowledge Capture & Identification of Knowledge Change
This first step comprises two substeps: 1) capturing 'raw' knowledge involved in
the project, and 2) characterising and identifying any knowledge change.

Knowledge acquisition techniques can be applied to capture the knowledge.
A wide range of knowledge acquisition techniques is available; interviews, process
mapping, laddering, state diagram mapping, concept mapping, observation and
commentating are some examples (Schreiber et al., 1999; Stokes, 2001; Milton,
2007). The captured knowledge has to be documented to support its use in the
following steps.

Following capture of the knowledge, the Knowledge Lifecycle Model can be
applied to characterise and quantify knowledge change. The knowledge actions
can be operationalised and measured for the specific project under consideration.
Based upon the observed behaviour of the knowledge, an assessment of stability
over time can be made, which informs a choice for a specific development
method. If knowledge is found to be changing, the development process can be
based on the further steps of the KNOMAD methodology and use the KLC
ontology to enable an ontology-based approach towards knowledge lifecycle
management.

3.3.3.2 Normalisation
In the Normalisation phase, the raw knowledge obtained in the knowledge
capture phase is subjected to quality control and normalization. The objective of
the normalization phase is to achieve a sufficiently high quality level of knowledge
content to enable the seamless use of knowledge in subsequent organization,
modelling and analysis. To achieve this, two distinct activities are performed. First,
the knowledge is checked against applicable quality criteria. The following general
quality criteria are recognized:

• Traceability: knowledge must be traceable to its source and must be

traceable over various iterations. The knowledge state and any performed
knowledge actions on the knowledge element must be recorded.

• Ownership: a knowledge element has to be tied to an owner. This owner
takes responsibility for the accuracy and reliability of the knowledge. This is a
prerequisite for efficient knowledge management, especially when tacit
knowledge is involved. It can have significant benefits in later stages
(organization, modelling, analysis) if necessary knowledge needs further
explanation, as the owner can easily be contacted.

• Accuracy: is the captured knowledge accurate enough for subsequent use in
modeling and analysis? The modelling and analysis of parameters puts
requirements on accuracy, as significant variation or uncertainty in design
parameters may prevent model and analysis resolution.

89

• Reliability: how reliable is the captured knowledge? Particularly during early
stage design, parameters have a tendency of being ‘guesstimates’, or they are
founded on unchecked assumptions. If knowledge is highly dynamic, this
should be taken into account during subsequent development steps. In fact,
the speed of change may be so high that the knowledge in question is
deemed too immature for further modelling and analysis.

The second activity is normalization according to standards. The range of

available standards to normalize against is considerable; the applicable standards
for normalization depend on the context. Standards that must be set and/or
adhered to are for instance programming language, units and regulations.

3.3.3.3 Organization
The organization of knowledge is an essential step towards knowledge utilization
in knowledge-based applications. Its purpose is to provide a knowledge structure
to organize the captured knowledge. Furthermore, it can serve as a semantic
backbone for the knowledge-based application. To achieve this, it is necessary to
construct a domain-specific set of concepts and relationships: a domain ontology.
The ontology forms the semantic knowledge structure that can be used to
annotate the knowledge-based application and/or enterprise knowledge
resources (see also step 4: Modelling). The domain ontology can be linked with
the KLC ontology by extending the Product, Process and Resource classes into
domain-specific class hierarchies that include all relevant domain concepts.
Practical examples of this are given in Chapters 4-6. Furthermore, the domain
ontology is a way to represent multiple viewpoints of domain experts on the same
domain. It can be used to facilitate end user understanding of the knowledge-
based application, by offering 'entry points' into the application through familiar
concepts rather than high-level abstractions such as Process and Resource.
Additional domain understanding gained during this organization step can be fed
back into the knowledge identification step.

3.3.3.4 Modelling & Implementation
The next step in the revised KNOMAD methodology is the modelling of
knowledge-intensive processes. To achieve this, the CommonKADS Knowledge
and Design models or the MOKA informal and formal models can be used.
However, to facilitate knowledge change in knowledge-based applications, it is
advised to apply the KLC ontology and in particular the Enterprise Knowledge
Resource concept to model tasks and associated inputs and outputs in the form of
knowledge, process models and cases. The modelled EKR(s) can be annotated
using the domain ontology, as mentioned above. Annotation enables stakeholders
from various disciplines to (automatically) access and retrieve the necessary
knowledge for use and maintenance. Again, practical examples of this are given in

90

Chapters 4-6. The modelling step can also give rise to revised understanding of
knowledge, which may lead back to the knowledge identification step.

After modelling, the next step is to implement the models and develop the
knowledge-based application. Rather than reinventing the wheel, adherence to
the guidelines for implementation described by the CommonKADS methodology is
recommended. Schreiber et al. (1999) describe these guidelines in chapter 11:
Designing Knowledge Systems (page 271-294). The main steps for implementation
are to design a system architecture, identify the target implementation platform,
specify architectural components and specify the application within the
architecture. It must be noted that the EKR concept should be incorporated in the
implementation too, such that structure-preserving design principles are obeyed.
This improves system maintainability (Schreiber et al., 1999). The Knowledge and
Knowledge_Element classes of the EKR concept can subsequently be employed to
incorporate knowledge change through the use and maintenance of knowledge.

3.3.3.5 Analysis
As part of the implementation step, proof-of-concept versions of Enterprise
Knowledge Resources (EKRs) can be developed to test and analyze the
functionality of the individual EKRs and the overall system. This analysis can
comprise qualitative and quantitative aspects. For instance, requirements
compliance would be a qualitative check on the performance of the system.
Quantitative analysis can be performed by defining and measuring Key
Performance Indicators (KPIs) for the developed system, for instance computing
time or the time taken to find and access an EKR.
Furthermore, once an EKR is used in an operational setting, the resulting body of
case reports can be subjected to analysis approaches such as Design of
Experiments (DoE).

3.3.3.6 Delivery
As a final step, the developed application is delivered to the stakeholders and
resource implications are evaluated. A review and acceptance check should be
performed in which the developed solution is compared with the requirements to
determine the solution validity and suitability.

3.3.4 Concluding Remarks

KNOMAD has been introduced as a methodology for the development of
knowledge-based applications that must cope with changing knowledge. The
requirements for an improved methodology are briefly revisited. KNOMAD
answers to these requirements by including steps and guidelines to capture,
formalize, use and maintain knowledge. Furthermore, the critical aspect of
knowledge change (and associated maintenance) is accounted for by the
characterisation and analysis of knowledge change at the start of the KNOMAD

91

process. Furthermore, inclusion of the KLC ontology within the modelling step of
the KNOMAD methodology and development of a domain ontology in the
organization step are specifically advised to ensure usability and maintainability.
The domain ontology can be used to semantically annotate the knowledge-based
application, so that it can be searched for and retrieved easily. The KLC ontology
can be used to model and implement task-specific knowledge, such that this can
be maintained when it changes.

The KNOMAD steps have been substantiated to a limited degree in the
preceding section. In Chapters 4-6, case studies are presented that use the
KNOMAD methodology as a guide for development. These case studies provide
additional insight into the application of KNOMAD in multiple engineering
disciplines.

3.4 Discussion of Contributions

To summarize, the following three contributions to theory have been developed:

1) Knowledge Life Cycle model: a model for the characterisation and

quantification of knowledge change has been developed. The model is
centred on the concepts of knowledge state and knowledge action.

2) KLC ontology: an ontology has been developed that can be used to model
and implement knowledge-based applications, while addressing usability
and maintainability requirements. The ontology uses the Enterprise
Knowledge Resource concept to represent tasks and associated
knowledge, processes and cases. The Product-Process-Resource paradigm
is used as the basis for a generic semantic metamodel. This metamodel
can serve as a starting point for further development of domain-specific
semantic metamodels.

3) KNOMAD: a methodology has been proposed to support the
development of knowledge-based applications that must cope with
knowledge change. The methodology consists of six steps. It advises the
use of the Knowledge Lifecycle model and KLC ontology to characterise,
model, implement and analyse knowledge-based applications.

3.4.1 Discussion of the Knowledge Lifecycle Model

The Knowledge Lifecycle Model aims to address the following questions within
the context of the first research objective – knowledge life cycle modelling:

• Which concepts and relationships are required to characterise the change
of explicit knowledge within and throughout the aircraft lifecycle phases?

It uses the knowledge state and action concepts to characterise the change of
explicit knowledge. However, further questions remain regarding the change of

92

knowledge within specific aircraft lifecycle phases and regarding the
quantification of knowledge change:

• How does explicit knowledge change within specific phases of the aircraft
lifecycle?

• Is change of explicit knowledge quantifiable?

These research questions are still open at this point. Empirical study regarding the
characterisation and quantification of knowledge change is not performed in this
theory-oriented Chapter. Until the case study results have been presented, the
following assumptions will apply:

1) Knowledge changes throughout aircraft life.
2) Knowledge changes while in individual aircraft life phases.

With respect to the characterisation of knowledge change, the case studies
(Chapters 4-6) will each include a short discussion of knowledge change for the
specific case. With respect to the quantification of knowledge change, the
maintenance case study (Chapter 6) will include an analysis of Airworthiness
Directives to see whether the Knowledge Lifecycle Model’s concepts can be
applied to meaningfully quantify knowledge change in practice.

3.4.2 Discussion of the Knowledge Lifecycle Ontology

The Knowledge Lifecycle Ontology aims to address the second research objective
expressed in Section 1.2 by providing a model-based approach for the support of
knowledge change within knowledge-based applications for specific aircraft
lifecycle phases. The following research questions are addressed:
• Which concepts support the consistent formalization, use and maintenance

of changing knowledge throughout the aircraft lifecycle?
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?

The answer to these questions is partially contained in Table 3-8, which

outlines the requirements and characteristics of the KLC ontology. The main
concepts used in the KLC ontology for consistent formalization, use and
maintenance of changing knowledge are the Enterprise Knowledge Resource
concept and the Product-Process-Resource paradigm. In combination, these two
elements provide a means to ensure usability and maintainability of knowledge in
knowledge-based systems.

The KLC ontology draws inspiration from many existing models, including the
PROMISE Semantic Object Model, the PDW Core Ontology, CommonKADS’

93

Knowledge Model, Bermell-Garcia’s concept of Enterprise Knowledge Resources
and the Product-Process-Resource paradigm. The KLC ontology sets itself apart
from these models in four major ways:

• The ontology’s central concept of EKRs can be used as central element in
modelling and implementation (in contrast to CommonKADS, where the
knowledge and communication model is preparation for the
implementation-oriented design model). EKRs are a means to achieve
structure-preserving implementation, which is beneficial for
maintainability;

• The KLC ontology uses the EKR concept to represent individual tasks; this
allows for modular and contained development of knowledge-based
systems, but requires attention to functional decomposition and interface
management. Knowledge associated with specific tasks can be inspected,
used and maintained when necessary;

• EKRs can be consistently annotated using the PPR classes, allowing for
improved traceability and accessibility;

• Outputs are systematically stored (using the EKR_Case class).

The KLC ontology allows for consistent formalization, use and maintenance of

knowledge and knowledge-based applications. To validate this assertion and the
KLC ontology itself, the ontology will be applied to the development of three
knowledge-based applications. This is described in more detail in Chapters 4-6,
where three case studies are developed for the design, manufacturing and
maintenance phases of the aircraft lifecycle.

3.4.3 Discussion of the KNOMAD methodology

The KNOMAD methodology addresses the process of developing knowledge-based
applications that have to cope with knowledge change. The following research
questions are associated with the research objective of methodology
development:
• How can knowledge change be accommodated during knowledge-based

application development?
o Which steps are required?

KNOMAD has been introduced as a methodology for the development of

knowledge-based applications that can cope with changing knowledge. The
critical aspect of knowledge change (and associated maintenance) is accounted
for by the characterisation and analysis of knowledge change at the start of the
KNOMAD process. Furthermore, inclusion of the KLC ontology within the
modelling step of the KNOMAD methodology and development of a domain
ontology in the organization step are specifically advised to ensure usability and

94

maintainability. Furthermore, KNOMAD adds an Analysis step to be able to assess
knowledge-based application performance after completion of a project.

KNOMAD shares similarities with other KBS methodologies such as
CommonKADS (Schreiber et al., 1999) and MOKA (Stokes, 2001), such as
justification for the business case, knowledge capture, knowledge organisation
and delivery. It sets itself apart in the following ways:
• Explicit support for the identification of knowledge change in the Knowledge

Capture & Identification of Knowledge Change step.
• Accounting for usability and maintainability aspects through the Organization

and Modelling & Implementation steps.
• Explicit support for assessment of knowledge-based application performance.

Despite these differences, it must be stressed that these methodologies (and

the associated models) are not mutually exclusive. Methodology steps and models
can be used in conjunction with KNOMAD and the KLC ontology. For instance, the
CommonKADS task and inference models can be used to develop the
Enterprise_Knowledge_Resource and Process classes and the domain knowledge
model can be used for the Knowledge class of the KLC ontology.

The KNOMAD steps have been substantiated to a limited degree in Section
3.3. In Chapters 4-6, case studies are presented that use the KNOMAD
methodology as a guide for development. These case studies provide additional
insight into the application of KNOMAD in multiple aircraft lifecycle phases.

3.5 Proposing a Case Study approach

Three case studies will be performed to validate the contributions to theory
developed in Chapter 3. In each of the cases, a knowledge-based application is
developed to perform an engineering task in which knowledge is liable to change.
To position these applications, the following must be taken into consideration:
they include a knowledge base, include capabilities for document and
configuration management, feature (partial) automation of engineering tasks and
feature analysis and/or optimisation capabilities. However, the applications have
not been built using KBE systems and do not include geometric handling
capabilities. Consequently, the developed solutions cannot be seen as KBE
applications, but are simply labelled as knowledge-based applications.

To validate knowledge change for the engineering tasks associated with the
specific cases, change will be characterised for each case study (Chapters 4-6). To
validate the Knowledge Lifecycle Model, the maintenance case study (Chapter 6)
will include a quantitative analysis of Airworthiness Directives to see whether the
Knowledge Lifecycle Model’s concepts can be applied to meaningfully quantify
knowledge change in practice.

95

To facilitate knowledge change, the KNOMAD methodology and KLC ontology
are used in the development of the knowledge-based applications. The
applications have been developed to a proof-of-concept stage; though the
knowledge lifecycle attributes have been implemented in the relevant models,
the proof-of-concept status has meant that the applications have not been used
structurally and for a longer period of time. As a result, the knowledge lifecycle
concepts of state and action have not been actively used to quantify knowledge
change relative to the developed knowledge-based applications.

Furthermore, the proof-of-concept status of the applications has had
implications for the formality of the KLC ontology. Formal modelling of axioms,
theorems and proofs thereof has not been required, leading to the selection of
UML for development of the KLC ontology and consequently also for use in the
case studies. As part of applying the KLC ontology, case-specific task and domain
ontologies are developed and expressed in UML. These are subsequently
implemented in a tool called Ardans Knowledge Maker (AKM). Consequently, the
ontologies serve as the backbone of the knowledge base and knowledge-based
application code maintained in AKM – an ontology-based approach to knowledge
lifecycle management has been followed. It should be noted that for all case
studies, the presented UML ontologies have been implemented in AKM.

AKM functions as single point of access to systematically store, access and
manage the lifecycle of EKRs, knowledge and knowledge elements. It consists of a
web-based interface on top of a knowledge base implemented in MySQL.
Knowledge base elements are represented through AKM articles. AKM supports
XPATH query language to identify and fill article fields by retrieving node
information from the XML data that comes from MySQL. For instance, XPATH
expressions can be used to let knowledge, knowledge element, process and
process element models inherit common metadata and attributes. The interface
allows users to set up an environment to directly access articles (e.g. EKRs) or
users can employ a search environment to find specific articles using search
spaces, context tags (metadata / class hierarchies) and search text.

Each of the case studies is structured in a similar way. The approach is as

follows:

• Case study context: for each lifecycle stage, the context and specific

engineering task for which a knowledge-based solution has to be
developed are briefly introduced. The case study objective and
requirements are explicitly stated.

• Application of theory contributions to case study:
o Application of Knowledge Lifecycle model: the Knowledge

Lifecycle model is used to identify and characterise knowledge

96

change for the case study engineering task. For the maintenance
domain, the model is also applied to quantify knowledge change.

o Application of KLC ontology: in preparation of application of the
KLC ontology in solution development, the case study engineering
task is analysed.

o Application of KNOMAD: to prepare the solution development,
application of the steps of KNOMAD is planned.

• Solution development: the KNOMAD methodology and the KLC ontology
are used in the development of a knowledge-based application for the
case study. The KNOMAD steps are adhered to in the following manner.

o Knowledge Capture & Identification of Change: the objectives
and scope of the case study are identified and the prerequisite
knowledge is captured, presented and analysed for knowledge
change;

o Normalization: the captured knowledge is checked against pre-
set criteria;

o Organisation: a domain ontology is (partially) developed for the
case study domain. The domain ontology is developed as an
extension of the KLC ontology. The domain ontologies as
represented here are developed to support the solution. As such,
only those classes, attributes and relations that are relevant for
the case study are implemented within the domain ontology. This
prohibits the design and implementation of cumbersome,
extremely large domain ontologies of which only a few concepts
would be used;

o Modelling & Implementation: the KLC ontology principles and
classes are applied to the case, with specific attention to the
development and implementation of a task ontology (through the
Enterprise Knowledge Resource concept) for the engineering task
at hand. The domain and task ontologies are subsequently
implemented in AKM and the solution is built;

o Analysis & Delivery: a proof-of-concept application is analysed;
performance and functionality is validated relative to the case
study objectives.

• Discussion: case study results are discussed in the context of the research
objectives and contributions.

Note that two types of contribution and validation occur! Each case study can

be seen as a contribution in its own right: a specific engineering problem is solved;
an improved solution is implemented. As such, performance of the case study

97

solution is discussed in the Analysis & Delivery step to validate the case study
contribution.

Furthermore, each case study acts as validation towards the overall research
contributions. For each case study, the Discussion of Results section is used to
discuss the case study in light of the contributions to theory. Furthermore, the
case study results are synthesized in Section 7.1 as part of a wider view on the
overall contribution with respect to theory. This leads in to the overall research
conclusions, followed by a consideration on the limitations and recommendations
associated with the performed research.

98

99

4 Design Case Study: Ply Stacking Sequence
Optimization for Composite Wing Panels

This chapter describes the development of a knowledge-based application that
automates blending of ply stacking sequences in the design of composite wing
panels.

This case study belongs to a set of three case studies, with this case focusing
on the design domain of the aircraft lifecycle. Together, the case studies will shed
light on how the overall research objective can be achieved, with emphasis on the
latter part of the objective: “Support consistent formalization, use and
maintenance of changing knowledge within aircraft lifecycle phases to improve
domain-specific modelling, execution and control of engineering tasks”. The case
studies also offer a practical perspective on the following research questions:
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?

The following section introduces the problem statement for this specific case
study in the aircraft design domain. After this, the developed theory of Chapter 3
is applied to the case study. Subsequently, results are discussed in Section 4.3. A
solution has been developed for the case study problem; development and
implementation are discussed in detail. Validation of performance with respect to
the case study objective(s) and requirements is briefly indicated in Section 4.3.5:
Analysis & Delivery. The case study concludes with a discussion of the results
within the context of the dissertation objectives and contributions to theory.

4.1 Case Study Context and Challenges

This case study research has been carried out in the context of the development
of a new generation narrow-body civil aircraft, the Airbus A30X, pitched as an
eventual successor to the A320 family of narrow-body aircraft. According to
Airbus, A30X is to enter the market in the late 2020s (Airbus, 2011).
Although the market availability of the A30X aircraft is at least 15 years ahead
from today, the complexity of an aircraft program forces research and technology
development efforts to be started well in advance. Broadly speaking, the two
main work streams to develop the A30X program are:

• Conceptual design studies to identify the optimum configuration of
the aircraft to satisfy the forecasted market needs. In this work

100

stream, Airbus is evaluating novel aircraft configurations including
forward-swept wings, rear-mounted turbofans and vertical tail planes
among others (Aviation-Week, 2011).

• Engineering capabilities to effectively address technological challenges
emerging from the new program. While the previous work stream
focuses on design, this one aims to realize the necessary technology
innovations that will achieve the market claims of the new aircraft (i.e.
high fuel efficiency, low production cost and others). Examples in this
direction include the development of new generation engines and the
development of new design and manufacturing technologies to
support the use of thermoplastic-based composites (Compositesworld,
2011). Tools and methods are concurrently developed to support the
development of these engineering capabilities. These new
technologies, tools and methods have a learning curve: to support
engineers, fast and accurate access to up-to-date knowledge is
necessary.

Contemporary industrial policy aims to encompass these two aerospace product
development work streams through collaborative research projects. In the United
Kingdom, an example of such a project is the Next Generation Composite Wing
(NGCW) project (Northwest-Aerospace-Alliance, 2010), in which Airbus UK and
EADS Innovation Works work with several major industrial and academic partners
to research materials, technologies and tools to support the design and
manufacturing of composite wing structures. As part of the NGCW work package,
the Multi-Disciplinary Optimization of Wing (MDOW) research project has been
initiated to research and develop design tools for the multidisciplinary analysis
and optimization of wing structures. The work reported in this case study has
been carried out as part of the MDOW project.

The focus of the case study is on the optimization of a composite wing cover
conceptual design for ply continuity through the blending of stacking sequences.
The optimization of composite airframe (part) design using stacking sequence
blending is an area of research in its own right (Soremekun et al., 2002; Gunawan
et al., 2003; IJsselmuiden et al., 2009). It must be emphasized that the focus of
this case study is on the application of the Knowledge Lifecycle Model (Section
3.1), KLC ontology (Section 3.2) and KNOMAD methodology (Section 3.3) to
develop a knowledge-based solution that can cope with knowledge change. The
technical details associated with the stacking sequence optimization routine
embedded in this knowledge-based solution are not discussed. An example of a
in-depth research project that addresses both stacking sequence optimization and
the development of a knowledge-based engineering application for this problem
is described in Cooper (2011).

101

The optimization of ply continuity in aircraft composite wing conceptual
design is an example of addressing manufacturing considerations in an early stage
of design. The industrial partner that participated in the case study used a grid
representation in the conceptual design of a carbon fibre reinforced plastic (CFRP)
wing. In each of the grid cells, the amount of carbon fibre plies and their
orientation is specified, based on structural requirements (minimum thickness
and load cases). This single-cell specification, known as “ply stacking sequence”,
describes a particular sequence of composite layers, each of which has a specific
fibre orientation (see Figure 4.1, where green layers denote a 0° fibre orientation,
red and pink layers denote +45°/-45° fibre orientation, and blue denotes a 90°
fibre orientation).

Figure 4.1: Cross-sectional view of ply stacking sequences for two adjacent grid cells

The out-take in Figure 4.1 shows that there can be mismatches between adjacent
cell fibre orientations: in the out-take, the top three layers are consistent, but the
remainder of the layers is not. For example, consider the fourth layer from the
top. The left grid cell has a 90° fibre orientation (blue) and the right grid cell has a
0° fibre orientation (green): the orientations are discontinuous.

However, in composite manufacturing, material is not deposited in discrete
cells but in continuous layers. The manufacturing of laminate plies is most cost-
effective when continuous surfaces can be laid down, as machine start-up times,
repositioning and material waste are kept to a minimum. Therefore,

102

discontinuities between individual cell stacking sequences must be kept to a
minimum.

When manufacturing a product, discontinuities can be solved by introducing
overlap and interleaving the adjacent layers (Figure 4.2). This figure shows that
plies are extended over the rib area and 'stacked' on top of each other, which
introduces additional thickness (and mass) at the rib area, and consequently a
ramp gradient from the rib to the cell.

Figure 4.2: Interleaved plies across cell boundary

This ramp gradient must be kept within a specified limit depending on maximum
tool deflection to ensure manufacturability. The result of adding interleaved plies
at cell boundaries is shown in Figure 4.3.

Figure 4.3: Adding manufacturing considerations into a structural view of the design

103

However, this solution adds mass. The full size of the problem becomes

intuitively apparent when considering a set of adjacent stacking sequences for a
complete panel such as the one in Figure 4.4. The wing cover skin panel shown in
this Figure consists of many individual grid cells (as represented by the various
coloured cells containing cell names), which bounds are formed by ribs and
stringers.

Figure 4.4: Grid representation of a wing cover skin panel

Instead of introducing additional mass through overlap and interleaving during
manufacturing, it is preferable to reconfigure adjacent stacking sequences
beforehand such that ply continuity is optimal and mass addition is minimal, while
respecting the structural design requirements (see also Section 4.3.1). In other
words, if manufacturing considerations could be integrated into structural design
and sizing, the material and therefore mass which is added later for
manufacturing purposes can be reduced. The preferred solution for the ply
continuity problem comes down to re-sequencing and optimizing a set of stacking
sequences such that ply continuity is maximized and minimum addition of mass is
achieved, while obeying structural design requirements.
Achieving a satisfactory design solution requires a high amount of manufacturing
knowledge together with a high degree of automation in order to cope with
hundreds of interfaces between cells and their stacking sequences. This problem
can be tackled through a 'traditional' KBE approach where the knowledge is
directly encoded into a software application. Such an approach would however
disregard that many current aircraft design projects, in their switch towards the
use of composite materials, are having to gain knowledge about design while
designing: designers are “learning by doing” (Siemieniuch and Sinclair, 1999), and
knowledge is subject to change.

The consolidated objective of the case study is to develop and implement a

proof-of-concept knowledge-based solution for ply continuity optimization in
composite wing panel design. The following requirements must be met:

1) The solution must be able to optimize a composite wing cover conceptual

design for ply continuity through blending of stacking sequences;

104

2) The solution must give the possibility to trade off wing panel concepts on
weight, cost and manufacturability;

3) The solution must be automated.

Validation with respect to these requirements is performed in Section 4.3.5:
Analysis & Delivery.

The introduced problem is related to knowledge change and consequently to
research challenges regarding knowledge usability and maintainability. The
following issues will be taken into account in the case study:

• Moving beyond black-box applications and ensuring transparency: As
mentioned before, a current drawback of many knowledge-based
applications is that they are ‘black-box’: the knowledge contained in the
these applications is difficult to access and inspect, and is often
embedded in the application code (Verhagen et al., 2012). To support
knowledge maintenance, it is necessary to move beyond black-box
processes and applications by supporting categorization, accessibility,
traceability and subsequent sourcing of knowledge, which opens up the
potential for knowledge reuse (Markus, 2001; Verhagen et al., 2012). In
order to allow users to inspect, use and maintain knowledge, it is
necessary that the knowledge solution is transparent. I.e., it should be
clear which knowledge is involved within a process, which further inputs
are required, which steps are taken within a process and which outputs
are generated.

• Task orientation: knowledge involves a ‘capability for effective action’.
The capability for action can be met by explicitly associating sets of
knowledge with functional tasks, i.e. the optimization for ply continuity
for this case study.

• Expert / end user involvement: End users must be able to identify, use,
interact with and if necessary, maintain or update the relevant knowledge
that they use in their daily work and specific context (Merali and Davies,
2001). For this case study, the design and manufacturing rules and
constraints are of primary interest.

Through these considerations, the case study contributes to validation of the
overall research contributions to theory. This is discussed in Section 4.4:
Discussion of Results.

4.2 Application of Theory to Design Case Study

Before developing a solution, this section acts as an intermediate step by applying
the developed theory to the case. First, the Knowledge Lifecycle Model is applied

105

to identify knowledge change for the ply continuity optimization task. This task is
subsequently analysed in support of further application of the KLC ontology to
solution development in the Results section. Finally, it will be shown how the
KNOMAD steps will be applied to this case to guide the subsequent solution
development in Section 4.3: Results.

4.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge
Change

For this Design for Manufacturing (DFM) problem, some of the required design
knowledge is not subject to change. For instance, the design rule with respect to
tension or compression loads (see Section 4.3.1) which states that the percentage
of 0° fibres can be increased to improve tension and compression laminate
properties will remain valid as the basic physics underlying this rule do not
change.

However, there are a number of examples in which changes in knowledge
and associated specifications would have a dramatic impact on the optimization
of design solutions. A number of qualitative examples are given below:

• Design methods: maintaining ply continuity between adjacent cells (or
panels) of laminates, also known as blending, is a research area in its own
right. Various methods and improvements have been proposed, as
analysed by Liu et al. (2010); in the period of 2000-2009, at least 16
papers (including high-impact journal publications, e.g. Liu et al. (2000);
Kristinsdottir et al. (2001); Soremekun et al. (2002); Liu and Haftka (2004);
IJsselmuiden et al. (2009)) have been written to report on new, improved
or successfully applied methods for blended design of composite
structures. Or, to use Knowledge Lifecycle model terminology, design
methods have been created, updated and maintained over the years. A
search in Elsevier’s Scopus search engine on 'composite blending
optimization' adds a further eight recent journal papers reporting on
advances in this field (Gillet et al., 2010; Liu et al., 2010; Bruyneel, 2011;
Jin et al., 2011; Liu et al., 2011; Bruyneel et al., 2012; Panesar and
Weaver, 2012; Zein et al., 2012). This shows that existing methods for
blending are subject to change, which indicates that design knowledge for
this specific area is subject to change. Ideally, any design process that is
encapsulated within a knowledge-based solution should be able to change
to reflect current best practice and/or extend applicability.

• Tooling specifications: the intended layup process to produce the
conceptual wing designs uses Automated Tape Laying (ATL) or Automated
Fibre Placement (AFP) techniques. If the specifications of the ATL / AFP

106

machines are updated, the associated optimization constraints can be
relaxed. Two examples constituting data and information change are:

o Ramp gradients: ramps can occur between cells (representing
stringer and rib bays), dependent on the required thicknesses to
satisfy structural requirements. The designed ramp geometry
should not exceed roller deflection, such that the roller remains in
contact with the material when performing lay-up. If ATL/AFP
maximum roller deflection is increased, the associated ramp
gradient requirement can be relaxed.

o Minimum course (cut) lengths: ATL and AFP machines cannot cut
tape shorter than a specified minimum course (or cut) length. This
has the potential to cause production issues – see Figure 4-5. This
Figure shows a scenario in which the minimum cut length exceeds
the required tape lengths at the boundaries of the rectangular
part. In practice, this will result in additional ply material at those
boundaries, either leading to increased mass and (potential)
overlaps with neighbouring parts, or to additional machining and
material waste involved in cutting off the excess material at the
edges.

Figure 4.5: Possible production issues arising from minimum course length (Blom, 2010)

If the minimum course length is decreased, the manufacturing of
smaller, more varied and more precise layer geometry is feasible.

• Material specifications: changes with respect to material behaviour (e.g.
'update' actions that introduce revised knowledge regarding lay-up or
curing behaviour, or 'maintain' actions that extend the applicability of a
material) can influence design and manufacturing requirements. Consider
the two following examples:

107

o Maximum ply drop: a current constraint is that no more than 4
plies can be laid down sequentially without introducing a covering
ply. This prevents delamination at the ply edges. Improved
material specifications can increase the number of plies for
sequential ply drops.

o Stringer ramping: a current constraint dictates that the rate of
change of thickness of the laminate beneath stringers is restricted
to reduce defects forming in the stringer blade. Improved
material specifications can reduce this restriction.

The preceding examples qualitatively show that knowledge related to the ply

optimization problem can indeed be subject to change and can loosely be
characterised using Knowledge Lifecycle model concepts. However, given the
proof-of-concept status of the developed solution (see Section 4.3), it has proven
impossible to use the solution to quantify changes in the underlying knowledge.

4.2.2 Application of KLC Ontology: Task Analysis

The case study objective is to achieve ply continuity optimization in composite
wing panel design. This design task incorporates design and manufacturing
constraints that are applied to the wing panel structure in order to optimize it for
weight, cost and manufacturability. In this section, the task is analysed into more
depth in preparation of the actual use of the KLC ontology in solution
development (see Section 4.3).

The existing process for solving the problem at hand is contained within a
solution known as mPDA (manufacturable Ply Design and Analysis). mPDA is a
solution developed in-house at the industrial partner. It has been implemented
using Microsoft Excel and VBA. It requires the input of a specification file from the
structural engineering department that specifies the wing cover grid, grid cell
thicknesses and associated stacking sequences (a so-called fishtail plot). The exact
content of the existing process itself is considered proprietary and cannot be fully
reproduced here: only the general activities of the task are analysed below.

The top-level task is modelled in Figure 4.6 using an IDEF0 representation.
The figure highlights the central task: optimize wing cover for ply continuity (A-0).
This task requires input from the structures department in the form of a ply
specification file. This input is processed by the ply optimizer tool (mPDA; see also
Section 4.3.1) to generate an optimized ply specification. The ply optimizer takes
into account various design and manufacturing constraints.

108

Figure 4.6: IDEF0 A-0 diagram for composite wing cover optimization task

The top-level task can be split up into four subtasks (see Figure 4.7). The

preparation task (A1) takes panel sizing information (minimum required thickness
and thickness law per grid cell) from the ply specification file to generate a
catalogue of stacking sequences. This catalogue is used in the processing task
(A2), which uses the ply specification file as an input for the generation of ply
fishtail plots – a set of fishtail plots is generated to indicate grid coverage per ply,
instead of one specification file containing thickness and/or stacking sequence per
grid cell. In effect, the specification file is decomposed into a set of (virtual) fishtail
plots indicating the grid coverage per ply layer. The optimization task (A3) applies
the design and manufacturing requirements and constraints to the ply fishtail
plots to configure optimized ply fishtail plots. Finally, the post-processing task (A4)
uses these plots to put together an optimized ply specification file, where the
wing cover has been optimized for ply continuity.

109

Figure 4.7: IDEF0 A0 diagram for optimization subtasks

4.2.3 Application of KNOMAD: Solution Approach

The KNOMAD methodology as discussed in Section 3.3 is adopted to develop a
knowledge-based system for the case study problem. The KNOMAD steps relative
to this case study are shown in Figure 4.8. This figure shows the main KNOMAD
steps (Knowledge Capture & Identification of Knowledge Change; Normalisation;
Organisation; Modelling & Implementation; Analysis & Delivery) with the
associated activities that are required for this particular case study.

In the first step (Knowledge Capture & Identification of Knowledge Change),
the justification for and scope of the knowledge-based system is established,
followed by capture of the knowledge and process elements. The design and
manufacturing constraints as well as the inputs to the problem are of particular
interest. As knowledge change for this case study has already been considered in
Section 4.2.1, this activity is not repeated. For the second step (Normalisation),
the focus is on checking data quality and establishing input and output formats.
The third step (Organisation) considers development of a domain ontology that
holds the relevant concepts and relationships for this particular case study. It is
split up into three parts: generation of product, process and resource class
diagrams. The fourth step (Modelling & Implementation) concerns the
development of models (in the Modelling sub-step), architecture and solution (in
the Implementation step). The developed task and domain ontologies are

110

implemented in AKM to support the developed solution, making the solution
ontology-based. Finally, the Analysis and Delivery steps are combined into one:
performance of the solution is assessed relative to the requirements, and the
costs and benefits of the solution are explored.

Figure 4.8: Application of KNOMAD to design case study – flow chart

4.3 Results

The next section describes the development of a knowledge-based application for
the ply continuity optimization problem. The proof-of-concept solution can cope
with knowledge change and addresses the associated issues of knowledge
usability and maintainability. The development of the solution is based upon
application of the revised KNOMAD methodology. Furthermore, the principles and
concepts of the KLC ontology are used. The following sections are compliant with
the KNOMAD steps.

4.3.1 Knowledge Capture & Identification of Knowledge Change

The composite wing cover ply continuity optimization task has been identified in
Section 4.1 and further fleshed out in Section 4.2. With respect to justification of
the business opportunity, the current process requires significant manual

111

intervention. Furthermore, part of the current solution is automated but this has
been implemented in Excel and VBA macros, which leads to time-intensive
optimization. Most significantly, the current solution is black-box: the knowledge
used to optimize ply stacking sequences for continuity is not visible at all, but
embedded in the mPDA application. It was decided to resolve these issues by
developing a proof-of-concept knowledge-based solution.

The first step in the development of the knowledge-based solution is to
capture the required knowledge elements. This knowledge can be extracted by
considering two elements: the current process for solving the problem, and the
set of inputs necessary for executing the process.

The existing process for solving the problem at hand is contained within a
pre-existing solution known as mPDA (manufacturable Ply Design and Analysis); it
has been discussed in Section 4.2.2, together with the high-level task and subtasks
that are associated with solving the problem.

The second vital element of knowledge considers the set of inputs necessary
for executing the process. In the current context, this pertains to the set of design
and manufacturing constraints that must be complied with when solving the
stacking sequence optimization problem. This set has been elicited from
composite manufacturing experts. In total, 30 design and manufacturing
constraints have been made explicit; a simplified overview of 30 of these
constraints is given in Table 4.1.

Besides the constraints, the process requires a specification file to run. This
specification file comes from the structural design department and contains a grid
plot of the designed wing cover, with specific stacking sequences for each grid
cell.

Knowledge change for this case study has been described in Section 4.2.1 and
is not further analysed here.

112

Table 4.1: Captured design and manufacturing constraints

4.3.2 Normalization

To ensure knowledge quality and compliance to a standard, measures have been
performed on the captured knowledge:

• Traceability & Ownership: the captured knowledge has been recorded using a

pre-defined format that has been designed and agreed upon during the

113

research process. The format is implemented in a knowledge management
tool (Ardans Knowledge Maker, or AKM) and has two main components. First,
an informal representation of a constraint is recorded; it consists of a natural
language description explaining its applicability and properties and is
accompanied by any relevant illustrations. It also includes metadata (data
about data) such as ownership, authorship and date of creation. Secondly, a
formal description of the constraint includes software code that can be
accessed by the mPDA application. An example of a single manufacturing
constraint is illustrated in Figure 4.9.

Figure 4.9: Example of manufacturing constraint stored in AKM

• Accuracy & reliability: the pre-existing process (mPDA) has been used as a

baseline for construction of a knowledge-based application. The required
design parameters (input, process and output) have been identified and
captured. The resulting standardized formats are further explained in Section
4.3.4: Modelling and Implementation.

4.3.3 Organisation

The next step is to provide a knowledge structure that can be used to store the
captured knowledge and can serve as the semantic backbone for the knowledge-
based application. To achieve this, it is necessary to construct a domain- and case
study-specific set of concepts and relationships: a domain ontology. For each of
the case study domains, the high-level concepts and relationships of the KLC
ontology (as given in Section 3.2) have been extended into domain-specific class

114

hierarchies. Based on the shared inheritance from the KLC ontology and the
resulting use of the same high-level classes, many concepts and relations in the
design, manufacturing and maintenance domain ontologies (as shown in Sections
5.3.3and 6.3.3) are the same. This consistency is desirable from a through-life
perspective.

In this section, relevant excerpts of the domain-specific class hierarchies are
given to explain how the design domain ontology is composed. Furthermore,
these excerpts are specifically geared towards the classes, attributes and
relationships that are necessary to develop a proof-of-concept solution for this
case study. The domain ontology development is not exhaustive and can be
extended using considerably more detailed concept representations, but it is
considered sufficiently complete for the purposes of this case study, i.e., for use in
annotation of the solution (elements).

Figure 4.10: Domain-specific hierarchy for Product class

115

First of all, the domain-specific class hierarchy for the Product class is
represented in Figure 4.10. The Product class hierarchy extends across a variety of
composite products. For this use case, only composite wing covers are considered.
However, though blending optimization is often considered for composite wings,
the ontology must accommodate a suitable range of composites to which
blending could be applied and must represent the context in which wing covers
are designed. The Assembly and Part classes each contain several subclasses,
including the wing box assembly, which consists of the cover, spar and rib
assemblies. These assemblies contain one or more parts, which can be skin, spars,
ribs or stringers. Figure 4.10 contains one example of assembly-part relations: the
Top_Cover_Assembly class is composed of Skin and Stringer parts. Other
assembly-part relations can be modelled, but to maintain figure clarity these are
not included. The represented class hierarchies are not exhaustive and can be
extended considerably, but are sufficiently complete for the purposes of this case
study, i.e., for use in annotation using the PPR paradigm (see Section 4.3.4).

A number of example attributes have been added to the classes. For example,
the Stringer class has an attribute stringer_type which can be used to express the
general type of stringer, e.g. Z-stringer, L-stringer, T-stringer, Ω (omega)-stringer.
Similar to the class hierarchies, the class attributes are not to be considered as
complete, but rather as a representation of the most important attributes – many
attributes have been omitted from the representation in Figure 4.10.

Figure 4.11: Domain-specific hierarchy for Process class

116

The domain-specific class hierarchy for the Process class is represented in

Figure 4.11. For this domain-specific hierarchy, the focus is on Process subclasses
that can be used for structuring and annotating domain knowledge. The task
activities analysed in Figure 4.7 are used as subclasses of the Process class:
Preparation, Processing, Optimization and Post_Processing have been modelled.
These classes are fairly generic and can be used for many design tasks that
incorporate optimization. The Activity hierarchy can be further extended to
include the activities that make up the Preparation, Processing, Optimization and
Post_Processing classes, but given the confidentiality of these activities (as
indicated in 4.3.1), this is not shown here.

Figure 4.12: Domain-specific hierarchy for Resource class

The domain-specific class hierarchy for the Resource class is represented in

Figure 4.12. The focus is on subclasses that can be used to structure and annotate
domain knowledge. The resource classes include Material_Resource,
Tool_Resource, User_Resource and Document_Resource. For each of these

117

classes, a few examples of subclasses are given to better illustrate the class
hierarchy content. Instances of these subclasses can be related to the task
analysis performed in Section 4.2.2 (Figure 4.7): for instance, mPDA is an instance
of Software_Application, whereas DFM requirements and constraints, thickness
laws and ply specification file(s) are examples of Document_Resource or even
Technical_Report.

In order to keep the preceding domain class hierarchy figures clear, the
relationships between classes and subclasses of the Product, Process and
Resource trees, e.g. between Part and Material_Resource, have been omitted
from the figures. The main relationships are given in Table 4.2, which can be seen
as an addition to the high-level relationships identified in Table 3.7, Section
3.2.3.3. The is-a relationships have not been included into this overview, but these
are given in the Figures using the broad-headed arrow UML format. Through
inheritance, these is-a relationships allow for subclasses to inherit relations.

Table 4.2: Relationships in the design domain ontology

Class 1 Class 2 Relation
(name)

Relation
(type)

Part Material_Resource hasResource Aggregation
Part_Joint Material_Resource hasResource Aggregation
Part Document_Resource hasResource Aggregation
Process Document_Resource hasResource Aggregation
Design_Process Document_Resource hasResource Aggregation
Design_Process Tool_Resource hasResource Aggregation
Enterprise_Knowledge_Resource Tool_Resource hasResource Aggregation
Enterprise_Knowledge_Resource User_Resource hasResource Aggregation
Composite Matrix_Material contains Composition
Composite Fibre_Reinforcements contains Composition

The domain ontology as presented here has been used to structure the

captured knowledge and will be used in the subsequent step to annotate
(elements of) the knowledge-based application. This is further explained in the
following Section.

4.3.4 Modelling & Implementation

This step consists of two highly related activities: modeling of an Enterprise
Knowledge Resource for ply continuity optimization and implementation of the
models into a functioning solution.

4.3.4.1 Solution Development: EKR Modeling
The first step in the development of a solution for the ply continuity optimization
problem is to adopt the Enterprise Knowledge Resource approach, the

118

cornerstone of the KLC ontology. Based on this approach, models are required to
represent and store:

1) A set of knowledge articles containing design and manufacturing
constraints relevant to the design of a manufacturing-compliant ply
stacking sequence. These constraints have been presented in Section
4.3.1.

2) A process model that models the activities (process elements) of the
design and analysis process and combines knowledge articles, elements
and code of the mPDA tool, and an input specification file of the wing
cover to automatically execute the optimization problem.

3) A set of case reports storing the history of ply stacking sequence
optimization results, as well as keeping traceability between the results
obtained, the knowledge used to derive them and the inputs of the
process.

Using the preceding considerations, an EKR class diagram has been modelled

for this specific case study and associated task. The UML class diagram is shown in
Figure 4.13.

119

Figure 4.13: EKR class diagram (UML) for design case study

4.3.4.2 Solution Development: EKR Implementation
An architecture for the implementation, use and maintenance of EKRS for the
design domain has been developed, with AKM as a major contributor. Two main
architectural elements are used to deploy an EKR in practice:

• EKR Environment for Learning by Doing (eLBD): The environment for
learning by doing (eLBD) is a web solution aimed at supporting end users.
eLBD is based on AKM. The domain ontology as introduced before and

120

specific AKM models for the representation of knowledge and process
elements (see further on in this section) have been implemented within
AKM to enable the construction of EKRs which package the process and
knowledge elements and the cases. The role of eLBD is not to store
concept data but the collective thought behind the data (assumptions,
constraints, rules, procedures and tools).

• Executable environment for Learning by Doing (xLBD): The executable
environment for learning by doing (xLBD) is a solution to enable the
remote execution of EKRs through a web service approach. xLBD uses
several software applications and languages (Apache Tomcat web server,
Java, AKM web services and Phoenix Integration Model Center®) to
deploy the EKRs as web services. Users can access and execute the
software remotely, so they do not require a dedicated installation of
software on their desktops. Once the user is in the system, he or she is
given an overview of EKRs that are available for use. This overview is
based upon the user’s security credentials, function and organizational
position: for instance, a wing box designer for a specific aircraft
programme will only be able to access EKRs that are related to the design
and analysis of the wing box for that specific programme. Each EKR stands
for a single design or analysis task that can be executed by the user.
Depending on the task, the EKR can be executed automatically (i.e. the
user presses a ‘run’ button and there is no subsequent user intervention;
all software is run automatically in the correct order, and relevant inputs
and outputs are passed on between process stages and eventually
presented to the user), or the user is involved in the execution of the EKR
(e.g. by selecting the right input files for a specific analysis task). Given the
proper security permissions, the user can also inspect, retrieve and
manage the knowledge contained in the EKR(s). Every time an EKR is
executed, a case report is automatically populated. This report (based on
the Case_Report class) registers the inputs supplied, the outputs
generated and the knowledge used in the case.

The knowledge framework, with the eLBD and xLBD environments at its core, is
shown in Figure 4.14. The eLBD environment allows users to access EKRs and their
constituent elements, whereas the xLBD environment allows (remote) execution
of an EKR.

121

Figure 4.14: Knowledge framework containing the eLBD and xLBD elements (Bermell-

Garcia et al., 2012)

To implement the knowledge framework, models for the knowledge and process
elements have been developed based upon the presented UML class diagram
(Figure 4.13) and have been introduced in the Ardans Knowledge Maker (AKM)
tool. The models are presented below.

First of all, a generic model for the representation of EKRs has been
developed. This model is given in Figure 4.15.

122

Figure 4.15: AKM model for Enterprise_Knowledge_Resource class

The EKR model lists metadata regarding authorship, date, version and status.

The EKR model represents the three main elements of an EKR: EKR_Knowledge,
EKR_Process and EKR_Case. The latter two classes are represented into the EKR
model directly, instead of having separate models. Attributes such as objective,
description and level of automation of the process model are represented.
Furthermore, the EKR model part concerned with the process model links towards
a process file: this file is used in the implementation to express the process
activities and automate the execution of the process. Furthermore, the EKR model
gives a list of cases: outputs of performing the EKR task. The individual cases are
represented using their own model.

Two models have been used to represent knowledge elements for this case
study. The first model reflects the EKR_Knowledge class of the EKR UML model
and acts as a container for the set of individual knowledge elements. The
Knowledge_Element class of the EKR UML model has been given a separate
model. This has two main parts: first, an informal description of the knowledge
element is given. This contains attributes for category, (extended) description,
impact, criticality and type of the knowledge element. The second main part is the
formal representation of the knowledge element: here, code metadata and actual
code can be represented into the knowledge element.

Finally, a model has been created to represent the output of a design task. It
is used for instantiation of the individual case reports. Its main elements are
process input, execution process, key parameters and process output fields. The
process input contains a list of the used knowledge elements and any

123

supplementary input files. The execution process field contains an overview of the
used process elements. The key parameters field lists the main parameters used
while executing the process. The process output field contains or links towards
the output files that were generated after executing the process.

Using these models, a single EKR for the ply continuity optimization task has
actually been implemented.

Figure 4.16: Partial overview of implemented design and manufacturing constraints

(Bermell-Garcia et al., 2012)

Figure 4.16 shows a partial overview of the implemented design and

manufacturing constraints. For the individual knowledge elements (i.e. design and
manufacturing constraints regarding ply continuity optimization), the AKM model
supports informal and formal representation. Both representations of the
constraint are stored in a single knowledge article associated to the EKR. An
example of a single manufacturing constraint for eLBD users has been shown in
Figure 4.9.

Using a combination of the specification file, the applied constraints and the
knowledge-based application (mPDA), the blending optimization is performed. In
the implemented version of the architecture, the process is modelled within
Phoenix Model Center and uses mPDA as its main element to perform the
blending optimization. The process is executed through the xLBD environment; a
local or remote user can select the relevant input and constraints to apply for the
stacking sequence blending and optimization. The user can then execute the
process, which runs and completes automatically using the process model. The
result is a composite wing cover design that takes into account design and
manufacturing constraints. The access to this process is managed by the eLBD
environment which points the user to the stacking sequence blending

124

optimization EKR, and consequently the related knowledge and outputs (in the
form of case reports) can be inspected.

As introduced in Section 4.3.1, mPDA needs two main inputs to run: firstly, it
takes a design specification file where the wing cover design is represented as a
set of adjacent discrete cells, each having a specific stacking sequence. After
importing this data, the different modules of mPDA place requests to the eLBD
knowledge repository to retrieve the code of relevant design and manufacturing
constraints to be evaluated. This is achieved at runtime by the use of AKM’s data
retrieval web service.

The final part of the implemented EKR for ply continuity optimization is embodied
by the case reports. These reports store the optimized process results, as well as
the used inputs, knowledge elements and process file. The case reports have been
implemented in AKM and are stored as separate articles. When an EKR is run
multiple times, for instance with multiple sets of different inputs, the results are
gathered in a set of case reports that is listed under the EKR_Case element of an
EKR. This enables the subsequent inspection of analysis results, but also opens up
the opportunity to further analyze the results themselves. Case metadata is also
automatically assigned, which enables consistent categorization and easier search
and retrieval of historical analysis results.

As such, AKM is the central point for initiating analysis (accessing eLBD and
initiating mPDA through the relevant EKR), inspecting the underlying knowledge
(constraints), and inspecting and /or analyzing the results (case reports). The
relations between the case reports and the associated content (design inputs;
design and manufacturing constraints knowledge) have been illustrated in Figure
4.17, which shows some generic wing cover design input data, a few
manufacturing constraints and an excerpt of a case report that outlines the results
of the optimisation effort.

125

Figure 4.17: Case reports (left) and their relation with design inputs and underlying

knowledge (Bermell-Garcia et al., 2012)

The ply continuity optimization EKR has been annotated using the domain
ontology and its constituent hierarchies, as introduced in Section 4.3.3.

126

Figure 4.18: Annotation of the ply continuity optimization EKR

Figure 4.18 shows that a combination of product-, process- and resource-related
tags can be used to annotate an EKR. The ply continuity optimization EKR has
been tagged in AKM using the Carbon_Fibre_Reinforced_Plastic class (itself a
subclass of Material_Resource), the Skin class (subclass of Part), Cover_Assembly
(subclass of Assembly) and an mPDA object (instance of Tool_Resource class).

To summarize, the outcome of the development effort is a software architecture
and an implemented solution, containing an EKR for ply continuity optimization.
The central KLC ontology concept of Enterprise Knowledge Resource serves as an
instrument to package an automated process with an associated knowledge-
based tool (mPDA), knowledge (design and manufacturing constraints) and the
history of cases generated using the knowledge and the tools.

127

4.3.5 Analysis & Delivery

The developed knowledge-based solution is able to optimize a composite wing
cover conceptual design for ply continuity through blending of stacking
sequences. The solution is automated. Furthermore, estimates of weight,
manufacturability and cost are delivered as output of the solution. Pareto fronts
can be plotted to visualize solution performance. As these results are confidential,
they are not represented here.

A rough-order-of-magnitude estimate can be given regarding the non-
recurring and recurring costs that have been necessary to a) develop and
implement the ply continuity optimization EKR, including design and
implementation of the software architecture, and b) will be necessary to maintain
and/or expand the EKR approach. Roughly 6 man-months of development effort
were spent on the non-recurring development effort. This has focused mostly on
knowledge model construction, architecture design, building web services, server
infrastructure and Model Center wrappers, and subsequent implementation of
the EKR. A rough estimate of effort required to include existing application(s) as a
new EKR within the eLBD/xLBD framework would be 1-4 man-weeks, depending
on the state of maturity of knowledge, processes and application code. On the
recurring cost side, the effort required to introduce new knowledge is fairly
limited: up to 5 minutes for a knowledge base entry (including relations), up to 5
minutes to include application code if available beforehand, up to a few hours to
develop application code if not available beforehand (though this is dependent on
many factors and can increase significantly based on the language used, the
experience of the developer, etc).

The recurring benefits of using a knowledge-based application are dependent
on the selected application, but for the use case they are consistent with
experience from other KBE research (Verhagen et al., 2012): a reduction of design
time from hours to a few minutes – roughly 95-99% – can be achieved. The
benefits of using the EKR approach are hard to quantify, but can be qualified. First
of all, using an EKR enables knowledge lifecycle management – knowledge can be
kept up to date. Furthermore, the supporting framework enables availability of
knowledge-based applications to a community of end users through the ‘one-
stop’ EKR implementation, which in effect offers a service that is remotely
accessible and remains traceable. The automatically generated case reports
enable increased visibility and traceability of the analysis inputs, process and
results. They enable subsequent analysis, for instance using case-based reasoning
when multiple case reports are available. The knowledge necessary for
optimization of ply continuity is gathered, classified and stored in the knowledge
management tool (AKM) so that when a process is executed in an automated
environment, the manufacturing decisions are available in the knowledge
management tool. This moves the manufacturing input requirements outside of

128

the automated process execution loop, allowing the loop to run without any
human interfaces. At the same time it enables the update of knowledge and tools
as technology progresses.

4.4 Discussion of Results

A knowledge-based solution has been developed for the ply continuity
optimization problem. It meets the case study requirements by being able to
optimize ply stacking sequences for a full wing panel and delivering weight,
manufacturability and cost estimates for conceptual wing panel designs. The
solution uses knowledge and an automated process approach to deliver
advantages traditionally associated with knowledge-based engineering
applications. However, through the use of the EKR approach (as the cornerstone
of the KLC ontology, and with its attendant models for the included classes), the
developed KBS can cope with changing knowledge. As a result, knowledge can be
effectively utilized and maintained.

With respect to the challenges related to knowledge usability and
maintainability, the following issues have been addressed in the following
manner:

• Moving beyond black-box applications and ensuring transparency:
Knowledge is accessible and traceable through the use of the annotation
metamodel, and through the use of case reports. Engineering tasks that
use this knowledge and the resultant outputs are traceable and recorded
systematically, so that the black-box phenomenon is avoided as much as
possible. Through the use of the Enterprise Knowledge Resource
approach, the process model and the associated inputs (the knowledge –
design and manufacturing constraints – involved within the optimization
process) and outputs (case reports) are made transparent. In particular,
the knowledge elements can be accessed, used, maintained and updated
throughout their life.

• Task orientation: knowledge involves a ‘capability for effective action’.
The capability for action is met by constructing an EKR that uses (sets of)
constraint knowledge to execute a process. Effectiveness of the action is
realized through task automation – through the use of Model Center, the
EKR process model is automated, enabling faster optimization and
evaluation of alternatives for composite wing covers.

• Expert / end user involvement: Through the EKR approach – and in
particular the Knowledge class – end users can identify, use, interact with
and if necessary, maintain or update the relevant knowledge that is used
to design manufacturable composite wing covers.

129

5 Manufacturing Case Study: Composite Wing Cost
Modelling & Estimation

This chapter describes the development of a knowledge-based application that
supports manufacturing cost evaluation of composite wing covers.

This case study is the second of a set of three case studies. This case study
focuses on the manufacturing domain of the aircraft lifecycle. Together, the three
case studies will shed light on how the overall research objective can be achieved,
with emphasis on the latter part of the objective: “Support consistent
formalization, use and maintenance of changing knowledge within aircraft
lifecycle phases to improve domain-specific modelling, execution and control of
engineering tasks”. The case studies also offer a practical perspective on the
following research questions:
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?

The following section introduces the problem for this specific case study in the
aircraft manufacturing domain. After this, the theory contributions are applied to
the case study: the Knowledge Lifecycle model is used to identify knowledge
change, the engineering task is analysed and the KNOMAD methodology steps are
planned out. A solution has been developed for the case study problem;
development and implementation are discussed in detail in Section 5.3. Validation
of performance with respect to the case study objective(s) and requirements is
briefly indicated in Section 5.3.5: Analysis & Delivery. The case study concludes
with a discussion of the results within the context of the dissertation objectives
and contributions to theory.

This case study presents an approach to support manufacturing cost
modelling and estimation for composite wing components. A solution has been
developed on the basis of the KLC ontology, using the KNOMAD methodology. As
in the previous case study, the solution supports the deployment and use of
knowledge as an element in modular knowledge packages (the previously
introduced Enterprise Knowledge Resources) that are managed in a central
knowledge repository. These EKRs can be deployed to support the manufacturing
cost modelling and estimation task. The developed solution supports
manufacturing cost evaluation of product concepts at early stages of the design
process, while offering the opportunity for through-life knowledge support - a
vital requirement given that the manufacturing knowledge underlying the cost
model(s) is subject to change.

130

5.1 Case Study Context and Challenges

The case study concerns a legacy cost model that has been developed at a large
aerospace OEM to address current issues on cost estimation of conceptual
designs of composite wing cover parts and assemblies.

In literature, research on cost modelling is rich and varied. A number of
authors discuss and categorize current approaches to cost estimation. Niazi et al.
(2006) give an overview of cost modelling and estimation techniques. Though the
categorization may be disputed, the overview is fairly comprehensive.

Table 5.1: Product cost modelling and estimation techniques (adapted from Niazi et al.
(2006))

Product cost estimation techniques

Q
ua

lit
at

iv
e

co
st

 e
st

im
at

io
n

te
ch

ni
qu

es

Intuitive cost
estimation techniques

Case-based systems

Decision support
systems

Rule-based
systems

Fuzzy logic
systems

 Expert systems
Analogical cost
estimation techniques

Regression analysis model

 Back propagation neural network model

Q
ua

nt
it

at
iv

e
co

st

es
ti

m
at

io
n

te
ch

ni
qu

es

Parametric cost
estimation techniques

Analytical cost
estimation techniques

Operation-based cost models
Break-down cost models
Cost tolerance models
Feature-based cost models
Activity-based cost models

Another perspective on cost modelling (Curran et al., 2004; Feldman and Shtub,
2006; Price et al., 2006; Newnes et al., 2008) highlights three approaches, namely
analogous, parametric and bottom-up cost modelling. Curran et al. (2004) present
a matrix of comparative assessment for these methods, which is given here in
Table 5.2. Notably, one of the subsets of bottom-up modelling is physical process
modelling, which focuses on the time required to carry out work (Curran et al.,
2004). This principle is used in the cost modelling approach outlined in this case
study. The physical process modelling technique as discussed by Curran et al.
(2004) bears great similarity to the operation-based cost modelling technique
identified by Niazi et al. (2006).

131

Table 5.2: Assessment matrix for traditional cost estimation methods (Curran et al.,
2004)

Approach Advantages Disadvantages
Bottom-up costing Cause and effect understood

Very detailed estimate
Difficult to develop and
implement
Substantial, detailed expert data
are required
Requires expert knowledge

Analogous costing Cause and effect understood
More easily applied than
bottom-up method

Appropriate baseline must exist
Substantial, detailed data are
required
Requires expert knowledge

Parametric costing Easiest to implement
Non-technical experts can
apply method
Uncertainty of the forecast is
generated
Allows scope for quantifying
risk

Can be difficult to develop
Factors might be associative but
not causative
Extrapolation of existing data to
forecast future products
including new developments
might be unwarranted

Curran et al. (2004) also distinguish between 'traditional' and 'advanced'

estimating approaches. The three approaches mentioned in Table 5.2 are deemed
to be traditional, whereas advanced estimating approaches include the use of
feature-based modelling, fuzzy logic, neural networks, uncertainty modelling, and
data mining. Curran et al. (2004) also introduce the genetic causal cost modelling
approach to address the need for a more scientifically based methodology for cost
estimation.

Newnes et al. (2008) add to this perspective by considering cost estimation
approaches as being 'generative' or 'parametric'. In the generative process, the
cost estimation builds upon the data that is gathered during the design process.
Consequently, the accuracy of the costing estimate depends on the level of data
detail. In parametric approaches, estimates are “achieved based on past
experience, using findings from past products and estimating the expected cost”
(Newnes et al., 2008). Parametric approaches distinguish themselves by the use of
cost-estimating relationships (CER).

Newnes et al. (2008)’s categorization relates closely to the level of fidelity of
the cost estimation approaches; as Price et al. (2006) indicate, “analysis fidelity
relates to the degree of detail and accuracy contained in a given analysis model”.
Price et al. (2006) distinguish three levels of fidelity. Low fidelity models use
simple equations and look-up tables, and frequently do not have associations with
geometric models. Medium fidelity models use some form of linear analysis in
combination with geometric model information and high fidelity models contain a
lot of detail while modelling non-linear behaviour. When looking at the issue of

132

fidelity from a more multidisciplinary perspective, a number of research gaps can
be identified (adapted from Price et al. (2006)) – see Table 5.3.

Table 5.3: Disciplines versus fidelity (adapted from Price et al. (2006))

The modelling approach used in this case study moves from low to medium

fidelity: it combines relatively detailed geometric model information with linear
analysis and look-up tables. The resulting cost model can be classified as bottom-
up, as it uses a physical process modelling approach to estimate costs. In its legacy
form, the cost model is spreadsheet-based. For a given product with adjustable
characteristics (e.g. material and geometry), it allows for the estimation of time
and cost associated with manufacturing process options. The model has been
developed for a range of composite materials and manufacturing processes.

The core cost modelling approach is to use geometry input, manufacturing
parameters and rules representing manufacturing processes and underlying sub-
processes to arrive at estimates for process times and costs, which are
subsequently added to arrive at totals for time and cost. The approach can be
schematically summarized into a calculation process with a number of standard
elements, as illustrated in Figure 5.1.

133

Figure 5.1: Standard cost modelling approach

When analysing the full cost model, the standard model elements can be
generalised and more properly classified. The following basic cost model elements
are identified:

• Cost model parameters:
o Process parameters: These are single values associated to

process parameters expressing processes with constant time
requirements for a given product and process combination
(e.g. autoclave time) or production rates for a given product
and process combination (e.g. cut rate). In most cases, they
come from existing manufacturing cost estimation data and
tools. For the remaining cases, cost estimators have identified
the best possible parameter values based on expert
assumptions and estimation.

o Geometric parameters: these parameters express the
product geometry. This geometry can be added to the model
in two ways. The first and preferred option is to import the
geometry into the spreadsheet from CATIA using a conversion

134

from XML data into so-called 'fishtail' plots of product
geometry in Excel. In this way, up to date product geometry is
imported into the cost model. The alternative is to manually
enter product geometry values, but entering this data
requires more effort, the process is prone to error and data
can become out of date.

• User inputs: Users can choose some inputs to the cost model to
reflect choices in manufacturing processes (e.g. automated tape
laying or hot roll forming, or the applied amount of non-destructive
testing) and product design (e.g. the number and position of spar
caps). User inputs are usually implemented as value choices that
modify the behaviour of cost model formulas through the use of “IF-
THEN” rules.

• Model equations: These are formulas that use process parameters,
geometric parameters and/or user inputs to compute time and cost
estimates for each manufacturing process.

The cost model is discussed in more detail in section 5.3.1: Knowledge

capture, which includes examples for geometric input, a full sub-process and
estimation output.

The legacy cost model has a number of drawbacks. First of all, the development of
the cost model has made it very difficult to manage its complexity, as the evolved
model consists of many interrelated formulas and inputs that are insufficiently
classified. An associated drawback is that the inputs used for the model are not
maintained on a shared base, but are instantiated for each version of the model:
each user has a 'unique' spreadsheet model. If a user makes changes to
parameter values to adjust for new knowledge, these changes are not shared with
other cost model instances in the business. Maintainability of cost model
knowledge is a significant problem.

Another drawback of the legacy cost model is its rather inflexible, monolithic
nature: the current spreadsheet implementation is focused on certain process-
product combinations and does not allow for easy mixing of different materials or
sub-processes. A possible route to address this would be to enable the assembly
of cost model elements that are stored in a managed environment. Also, the cost
model is maintained principally by only two persons, as the complexity of the
model precludes more direct governability by the end users (even though the
latter can still configure user inputs, variation in the process parameters and
equations is discouraged). This is a business risk, as the full set of required
modelling knowledge resides with only two persons in the organization. Both the
inflexible nature of the cost model and the lack of more direct control by the end

135

user provide significant challenges for user involvement and transparency of
knowledge. Also, in its evolved form, the cost model can be typified as a ‘black-
box’ application. Because of its complexity and its distribution over multiple
spreadsheets and spreadsheet tabs, a user effectively has no other option than to
trust the model output. The user must go to considerable lengths to retrieve the
original knowledge sources behind the implemented formulas and parameters;
the supporting informal knowledge is also very hard to find.

The assumptions, inputs, operations and outputs of the cost model are not
managed from a life-cycle perspective. There are currently little to no provisions
for explanation of the rationale behind assumptions. Furthermore, the cost model
knowledge, embodied in model inputs, rules and outputs, changes during the
lifetime of the cost model (see Section 5.2.1), but these changes are not stored,
let alone tracked. This lack of knowledge maintainability is a significant stumbling
block in the learning process towards composite component production and its
associated cost estimation.

The consolidated objective of the case study is to develop and implement a proof-
of-concept knowledge-based solution for cost modelling and estimation of
composite wing cover manufacturing processes. The following requirements must
be met:

1) The solution must be able to support end users in composition, use and

control of a cost model;
2) The solution must give the possibility to quickly estimate cost for

composite wing covers;
3) The solution must be automated to the fullest extent possible.

Validation with respect to these requirements is performed in Section 5.3.5:

Analysis & Delivery.
The introduced problem is related to knowledge change and consequently to

research challenges regarding knowledge usability and maintainability. The
following issues will be taken into account in the case study:

• Moving beyond black-box applications and ensuring transparency: As
mentioned before, the cost model can be typified as a 'black-box' model:
the knowledge is difficult to access, inspect and maintain. To support
knowledge maintenance, it is necessary to move beyond the current
black-box implementation by supporting categorization, accessibility,
traceability and subsequent sourcing of knowledge. The solution must
enable the storing, justifying and updating of cost model knowledge
elements and must support recording of previous versions of the cost

136

model. To ensure transparency, it should be clear which knowledge is
involved within the cost modelling and estimation solution, which inputs
are necessary, which steps are taken within a process and which outputs
are generated. The solution must enable a standard approach of costing
parts.

• Task orientation: knowledge implies a ‘capability for effective action’. The
capability for action can be met by explicitly associating sets of knowledge
with functional tasks, i.e. the estimation of costs related to specific
products and/or manufacturing processes. The solution will be designed
to improve upon the legacy black-box implementation of the cost
modelling and estimation capability. To achieve this, the solution will not
replace the use of spreadsheets to compute the cost of components.
However, it manages the knowledge driving the cost model and deploys it
to a working spreadsheet from which users can understand the rationale
of the computed cost and access the underlying knowledge.

• Expert / end user involvement: End users must be able to identify, use,
interact with and if necessary, maintain or update the cost model. The
primary aim of the resulting capability is to be able to estimate costs by
'running' cost models using trustworthy and up-to-date knowledge.

Through these considerations, the case study contributes to validation of the
overall research contributions to theory. This is discussed in Section 5.4:
Discussion of Results.

5.2 Application of Theory to Manufacturing Case Study

Before developing a solution, this section acts as an intermediate step by applying
the developed theory to the case. First, the Knowledge Lifecycle Model is applied
to identify knowledge change for the cost modelling and estimation task. This task
is subsequently analysed in support of further application of the KLC ontology to
solution development in the Results section. Finally, it will be shown how the
KNOMAD steps will be applied to this case to guide the subsequent solution
development in Section 4.3: Results.

5.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge
Change

The research problem addressed in this use case emerges from the difficulties of
coping with the complexity added to the cost model during its evolution. This
increase in complexity is illustrated in Figure 5.2.

137

Figure 5.2: Cost model evolution

From this Figure, the following cost model stages can be observed:

• Cost model creation: An initial cost model using manufacturing process
aspects that influence the cost of composite wing covers was captured
within a spreadsheet. The information used was not completely new since
some of the parameters and their values came from existing cost
estimation data and tools.

• Cost model growth: The cost model gained enough relevance and trust
among cost engineers, resulting in an expansion of scope. Further
developments on the cost model allowed users to consider costs for
various product-process combinations using up to 5 different composite
materials / material types (only three are shown in Figure 5.2). The
necessary knowledge was distributed across spreadsheet tabs. In this
growing process, new knowledge was added to the model. However,
existing pieces of knowledge were reused across the material tabs. At that
stage, over 400 process-related parameters were at the basis of the
model, augmented with some 30 parameters for which the values were
chosen by the user (see Section 5.3.1 for more detail). These parameters
were driving hundreds if not thousands intermediate calculations,
frequently with unique formulas to take into account user configurations,
to arrive at process time and cost estimates. The model had become a
very complex web of knowledge interactions, in which most knowledge

138

elements had become tacit in nature as these elements would require the
explanation of an expert to make sense to outsiders.

• Cost model decomposition: Further enrichment of the cost model
(addition of materials, products and processes) forced its developers to
split it into pieces. Other reasons to decompose the model could be found
in the need to distribute it to different users responsible for the cost
estimation for different composite materials and material types. In this
process, some of the knowledge was classified and distributed to its
consumers. However, a significant risk of inconsistency and duplication of
data, information and knowledge emerged, as well as difficulties with
consistency in data fidelity. Furthermore, the complexity of the
spreadsheet made it difficult for management and advanced use by
anyone other than the creators.

As can be seen from these stages, knowledge change for this case study is

embodied in cost model change with respect to data, information and knowledge.
Data changes when parameter values, for instance for manufacturing process
(steps) such as bagging, curing, cutting or non-destructive testing, are changed to
reflect updated process specifications (i.e. update). The data context also changes
(i.e. maintain), as more material types and manufacturing processes are added
when the cost model is expanded. This constitutes an information change in the
cost model. Knowledge contained in the model changes in a number of ways. First
of all, the equations and rules expressing the core knowledge about a
manufacturing process may be updated as processes change over time.
Furthermore, the context of the knowledge changes (maintain). Finally, the
capability for effective action - cost estimation, in this case - at first grows, but
later reduces due to model complexity.

Similar to the design case study, the preceding discussion qualitatively shows
that knowledge is subject to change with respect to the cost modelling and
estimation task. Quantification of this change using the Knowledge Lifecycle
Model concepts of knowledge actions has not been performed due to the
historical nature of the cost model.

5.2.2 Application of KLC Ontology: Task Analysis

The cost modelling and estimation task is given in Figure 5.3 as an A-0 IDEF0
diagram. For the legacy process, the cost model is implemented in Excel. A cost
engineer can use the cost model in conjunction with geometry and process
parameters to produce cost estimates for specific combinations of manufacturing
processes and products. To do so, design choices have to be indicated in the
model by the user.

139

Figure 5.3: IDEF0 A-0 diagram for cost modelling and estimation task

The task is split up into several subtasks, which are represented in Figure 5.4

as an A0 IDEF0 diagram. The first subtask is preparation: the cost engineer
retrieves a generic cost model from the company repository – a project hard-drive
for the legacy process. The engineer then manipulates the model by specifying or
importing product geometry and making design choices (e.g. which manufacturing
process for production of a specific part). The output of this subtask is a specified
cost model for a particular product-process combination. The final subtask is the
generation of a cost estimation report, which typically consists of the construction
of tables and/or graphs based on the cost model output for use in company
reports.

140

Figure 5.4: IDEF0 A0 diagram for cost modelling and estimation subtasks

The actual estimation of cost relies on cost functions for manufacturing

process-product combinations that are implemented in the cost model. This is
explained further in Section 5.3.1.

5.2.3 Application of KNOMAD: Solution Approach

The KNOMAD methodology as discussed in Section 3.3 is adopted to develop a
knowledge-based application for the case study problem. The KNOMAD steps
relative to this case study are shown in Figure 5.5. This figure shows the main
KNOMAD steps (Knowledge Capture & Identification of Knowledge Change;
Normalisation; Organisation; Modelling & Implementation; Analysis & Delivery)
with the associated activities that are required for this particular case study.

In the first step (Knowledge Capture & Identification of Knowledge Change),
the justification for and scope of the knowledge-based application is established,
followed by capture of the knowledge and process elements. The cost model
parameters and equations as well as the inputs to the problem are of particular
interest. As knowledge change for this case study has already been considered in
Section 5.2.1, this activity is not repeated. For the second step (Normalisation),
the focus is on checking data quality and establishing input and output formats.
The third step (Organisation) considers development of a domain ontology that
holds the relevant concepts and relationships for this particular case study. It is
split up into three parts: generation of product, process and resource class

141

diagrams. The fourth step (Modelling & Implementation) concerns the
development of models (in the Modelling step), architecture and solution (in the
Implementation step). As part of the ontology-based approach, the task and
domain ontologies are implemented in AKM to support the developed solution.
Finally, the Analysis and Delivery steps are combined into one: performance of the
solution is assessed relative to the requirements, and the costs and benefits of the
solution are explored.

Figure 5.5: Application of KNOMAD to manufacturing case study – flow chart

5.3 Results

The next section describes the development of a knowledge-based application for
the cost modelling and estimation problem. The proof-of-concept solution can
cope with data, information and knowledge change and addresses associated
issues related to knowledge usability and maintainability. The development of the
solution is based upon application of the revised KNOMAD methodology.
Furthermore, the principles and concepts of the Knowledge Lifecycle ontology are
used. The following sections are compliant with the KNOMAD steps.

142

5.3.1 Knowledge Identification & Capture

In this Section, an analysis will be performed on part of the full cost model
focusing on carbon fibre-reinforced plastic (CFRP) wing top cover manufacturing.
As introduced before, the core cost modelling approach uses geometry input,
manufacturing parameters and rules representing manufacturing processes and
underlying sub-processes to arrive at estimates for process times and costs.

Table 5.4: Example cost modelling approach: T-stringer Production

A straightforward example of the general cost modelling approach is shown

in Table 5.4. This table shows the basic steps involved at estimating the costs for
the production of CFRP T-stringers, which are parts (potentially) involved in
composite wing cover manufacturing. This example shows the main steps in
arriving at process time estimates. At the left-hand side, the overall process (T-
stringer production) is subdivided into sub-processes, which are subdivided
themselves into two to three detailed processes. To initiate the analysis, a set of
geometry parameters (e.g. weight, slab perimeter, number of stringer (N
stringers), length) are derived from geometric models that are coupled with the
cost model spreadsheets. An example of imported geometry data for a composite
wing top cover is given in Figure 5.6, which shows wing cover geometry data on
the right hand side and intermediate calculations for thickness, weight and
processing time on the left hand side§. Furthermore, some typical process
parameters are taken from a set of known or estimated parameters (e.g. set time
for Automated Tape Laying (ATL) tool load and unload): example parameters are
given in Figure 5.7, though values have been excluded for confidentiality. The
initial calculation parameters derived from geometry or from known parameter
sets are allocated per detailed process (as given in the left-most column under the

§ The data values are illegible on purpose, to maintain confidentiality.

143

‘Calculation’ heading)**. They are then multiplied with or divided by applicable
manufacturing process constants or rates, both in baseline and target forms. The
baseline form represents process performance that is currently achieved, whereas
the target form represents the anticipated performance by the time of production
start. By and large, the rates and constants in the right-most ‘Calculation’ column
(e.g. deposition rate, cut rate) are taken from parameter sets that almost
invariably lack justification and traceability of data.

Figure 5.6: Example of imported geometry data for a composite wing top cover

** The actual values for the calculation parameters in Table 5.4 have been excluded for
confidentiality reasons.

144

Figure 5.7: Example of process parameters

The results of this approach are time estimates for the detailed process steps.

This is followed by a number of calculations to arrive at cost estimates (e.g.
through the simple step of multiplication of process times with labour rates), and
supplemented with logistical cost estimation (e.g. capital outlay for a production
run of certain size).

The format for cost estimation output is shown in Figure 5.8. Confidential
information (i.e. geometry and cost estimation values) has been excluded.

Figure 5.8: Cost estimation output format

5.3.2 Normalization

To ensure knowledge quality and compliance to a standard, measures have been
performed on the captured knowledge:

145

• Traceability & Ownership: the captured knowledge has been recorded using a

pre-defined format that has been designed and agreed upon during the
research process. The format is implemented in a knowledge management
tool (the previously introduced Ardans Knowledge Maker, or AKM – see
Section 4.3.4.2) and has two main components. First, an informal
representation of a cost model element is recorded; it consists of a natural
language description explaining its applicability and properties and is
accompanied by any relevant illustrations. It also includes metadata, i.e. data
about data, for instance ownership, authorship, date of creation and date of
last interaction. Secondly, a formal representation of a model element either
records the data for a parameter or the Excel code for a model equation. An
example of a cost model element is illustrated in Figure 5.9.

Figure 5.9: Example of cost model element stored in AKM

For this specific element the formal representation is used to contain Excel
code for calculation of a certain stringer length. This code uses a user choice
between manual geometry and fishtail (imported) geometry for looking up a
geometry parameter value.

• Accuracy & reliability: the pre-existing Excel cost model has been used as a
baseline for the solution development. The required manufacturing
parameters (input, process and output) have been identified and captured.
The resulting standardized formats are further explained in Section 5.3.4:
Modelling and Implementation.

146

5.3.3 Organisation

The next step is to provide a knowledge structure that can be used to store and
represent the captured knowledge.

To achieve this, it is necessary to construct a domain-specific set of concepts
and relationships: a domain ontology. To elicit the applicable concepts and
relationships for the aerospace composite manufacturing ontology, various
sources have been employed. First of all, a small number (N = 4) of experts from
the manufacturer have been interviewed. The results have been augmented by
analysis of company sources, including the original cost model. This model has
been organised to conform to a very basic classification after its evolution into
several decomposed spreadsheets. This decomposition was made on the basis of
the composite manufacturing technology, which incorporates material type and
material processing form: similar models exist for different materials and forms,
e.g. carbon-fibre reinforced plastics (CFRP) prepreg, CFRP dry fibre or CFRP
sandwich. Besides this elementary subdivision, the cost models themselves are
organised according to a manufacturing breakdown structure and manufacturing
processes. The breakdown structure is a hierarchical breakdown of assemblies
and products. In the cost model, similar calculations are performed for different
products, for instance the bottom and top covers of the wing box. Furthermore,
similar manufacturing processes are employed for parts of these products. For
instance, the T-stringers from Table 5.4 are used in both bottom and top cover
production.

In this section, excerpts of the domain-specific class hierarchies are given to
explain how the manufacturing domain ontology is composed. The domain
ontology development is not exhaustive and can be extended using considerably
more detailed concept representations, but it is considered sufficiently complete
for the purposes of this case study, i.e., for use in annotation of the solution
(EKRs). Note that the manufacturing domain ontology is based on the PPR
paradigm as implemented in the KLC ontology (see Section 3.2.3.3). It
consequently shares the top-level classes and relationships given in Figure 3.7 and
Table 3.7, which are also the basis of the top-level structures for the design and
maintenance domain ontologies.

The PPR paradigm as contained in the high-level concepts of the KLC ontology
(Product, Process and Resource) is extended for this case study in the form of the
manufacturing breakdown structure, manufacturing processes and composite
manufacturing material resources. These concepts can be used to organise and
annotate the cost model elements. As in the design domain, these concepts of the
KLC ontology have been extended into domain-specific class hierarchies – in fact,
most of the subclasses and relations from the design domain ontology have been
maintained. Figure 4.10, Figure 4.11 and Figure 4.12 can therefore be seen as a
baseline for the manufacturing domain ontology. However, the manufacturing

147

domain ontology is extended with a few classes and attributes when compared to
the design domain ontology.

The first domain-specific extension concerns the manufacturing breakdown
structure as captured in the Product class hierarchy (Figure 5.10). It retains a large
number of classes previously introduced as part of the design domain ontology
(Section 4.3.3), including the Assembly class and its subclasses (with the Wing Box
Assembly being a particularly important example) and the Part class (including
Spar, Rib, Skin and Stringer). Only a few additions were made to these classes to
incorporate case study-specific concepts: classes for the front and rear spar
assemblies, and the Boom and Supports parts.

Figure 5.10: extended Product class hierarchy for the manufacturing domain

148

The domain-specific class hierarchy for the Process class is represented in
Figure 5.11. For this domain-specific hierarchy, the focus is again on Process
subclasses that can be used for structuring and annotating domain knowledge.
Two subclasses are of particular interest: Manufacturing_Process and
Cost_Modelling_Process. The former contains classes for the preparation,
processing and post-processing steps that are also used to organise the cost
model. Examples are given for each of these steps: Preparation_Process for
instance contains a Tool_Drying class, Processing for instance contains
Automated_Tape_Laying, and Post_Processing contains for instance
Non_Destructive_Testing. To keep the figure clear, only two examples have been
given per step; the domain ontology implemented in the solution has many more
subclasses. The Cost_Modelling_Process class is inspired by the IDEF0
representation of the cost modelling task, as modelled in Section 5.2.2 (Figure
5.4). Its constituent activities are not included into the Figure.

149

Figure 5.11: extended Process class hierarchy for the manufacturing domain

The Resource class hierarchy for the manufacturing domain is also largely

similar to the design domain class hierarchy – see Figure 4.12. Some changes have
been made to the Material_Resource class (Figure 5.12). An attribute specifying
the fibre processing type (e.g. prepreg, dry fibre) has been added to the
Fibre_reinforcements class. Similarly, an attribute specifying the matrix material
type has been added to the Matrix_Material class. Furthermore, an
Equipment_Resource class has been added to represent manufacturing
equipment into the domain ontology.

150

Figure 5.12: extended Resource class hierarchy for the manufacturing domain

The manufacturing domain ontology consists of the combined Product,

Process and Resource class hierarchies and associated relations. It has been used
to structure the captured knowledge and will be used in the subsequent step to
annotate (elements of) the developed solution. This is further explained in the
following Section.

5.3.4 Modelling & Implementation

This step consists of two activities: modelling of Enterprise Knowledge Resources
(EKRs) for composite manufacturing cost modelling and estimation, and
implementation of the EKRs into a functioning solution.

5.3.4.1 Solution Development: EKR Modelling
In modelling EKRs for the cost modelling and estimation problem, the focus is on a
solution that enables knowledge change to be managed, while offering improved
knowledge utilization and maintainability. This is indicated in Figure 5.13. This
Figure expresses that modular cost model 'building blocks' can be stored in a

151

shared and managed knowledge base. From this knowledge base, users can
assemble cost models using specific building blocks. Users can then make changes
to the knowledge contained in the cost models: these changes are communicated
to the knowledge base, where the changes can be incorporated after validation of
correctness and reliability.

Figure 5.13: Managed cost model evolution

To realize the vision expressed in Figure 5.13, the Enterprise Knowledge Resource
concept from the KLC ontology is employed. The following EKR classes have been
modelled:

• Enterprise Knowledge Resource: A set of EKRs have been modelled to
enable a modular approach for flexible assembly of unique cost models.
To achieve this, the existing cost model has been reverse-engineered to
define 'building blocks' that contain all the geometry inputs, process
inputs, user inputs and model formulas belonging to a specific Product-
Process-Resource combination. A single EKR formalizes a single building
block and represents a single cost estimation task for manufacturing of a
specific Product-Process-Resource combination. An EKR uses a semi-
automated process to combine knowledge input parameters and formulas
into a functioning, self-contained cost model in an Excel spreadsheet.

152

Several EKRs or building blocks can be put together to define a complete
cost model. The use of building blocks in this manner has the desired
effect of achieving central management of the inputs and formulas,
instead of having multiple spreadsheet instances of the cost model.

• EKR_Knowledge: the EKR uses knowledge elements which are kept in
individual knowledge articles. Some examples have been presented in
Section 5.3.1. The knowledge articles capture the main cost model
entities: process parameters, manual geometry parameters, user inputs
and model equations. These elements are modelled and implemented on
an individual basis to allow knowledge change to be managed in the
knowledge base: if a user changes a single parameter in the spreadsheet
cost model, this change can be back-propagated to the knowledge base,
where only a single knowledge element is changed.

• EKR_Process: the EKR uses a process model for combining the individual
knowledge elements (process parameters, user inputs, model equations
and geometry – either from manual entry or imported from CATIA) and
outputs them in a pre-configured Excel worksheet. For each EKR, the
subprocesses and detailed steps/activities are modelled in the EKR.
Consider the example from Section 5.3.1, T-stringer production (Table
5.4). The process model consists of the overall process, subprocesses and
detailed processes as given on the left-hand side of Table 5.4; it is given in
process form in Figure 5.14.

Figure 5.14: Process model for CFRP T-stringer production EKR

• EKR_Case: Spreadsheet results from generated cost models and

subsequent user manipulations are not yet stored into a central case
repository. Instead, parameter changes are tracked within the

153

spreadsheet while being used. Upon changes in the worksheet, parameter
and/or formula changes are fed back into the knowledge base.

Using the preceding considerations, an EKR class diagram has been modelled

for this specific case study and associated task. The UML class diagram is shown in
Figure 5.15 and includes the EKR_Knowledge, EKR_Process and EKR_Case classes.
Note in particular the Knowledge_Element class, which contains the specific
attributes necessary for the manufacturing case study, including the excel_name,
baseline_value and target_value attributes.

Figure 5.15: EKR class diagram (UML) for manufacturing case study

The EKRs and constituent classes such as Knowledge_Element are annotated
using the previously introduced domain ontology. The composite manufacturing
material resource, product breakdown structure and manufacturing process class
hierarchies together offer the necessary classification richness to annotate all
possible EKRs that can be used to compose a cost model for this case study. Using

154

these classification hierarchies allows for unique combinations of semantic tags
for annotation of a specific building block, supporting search and retrieval by end
users. An example of this is given in Figure 5.16, where PPR classes
(Equipment_Resource, Material_Resource, Manufacturing_Process, Part,
Assembly) taken from the domain ontology class hierarchies as given in Section
5.3.3 are associated with the Enterprise_Knowledge_Resource class. Similarly,
the other EKR classes (such as Knowledge_Element and Process_Element) can be
annotated using the same PPR annotation tags. A specific annotation example is
given in the next Section.

Figure 5.16: Semantic annotation of a cost model EKR

155

The EKRs can be used to construct an integrated cost model. The proposed

solution must be able to manage duplicated knowledge elements when multiple
EKRs with similar knowledge inputs are selected and exported. Also, the solution
must have the capability of coping with changes in the spreadsheet environment
and feeding back these changes into the knowledge base. This process must be
subjected to a validation process: updates in the knowledge base must be shared
and agreed upon before acceptance of knowledge base changes. These issues are
addressed in the EKR implementation section of the solution development.

5.3.4.2 Solution Development: EKR Implementation

To implement the EKR / building block approach and associated models, an
implementation architecture has been devised (Figure 5.17).

Figure 5.17: Implementation architecture

The architecture consists of the following main elements:

• Knowledge Base: this repository holds the EKRs (cost model building
blocks), including the knowledge elements and process models that are

156

used to compose the cost model building blocks. The knowledge base has
been built in Ardans Knowledge Maker (AKM). Each EKR element is
represented by a knowledge base instantiation, i.e., an AKM knowledge
article. An example of a knowledge element implemented in AKM has
been given in Figure 5.9. When the knowledge in an article is updated, a
new version is made. The old version is stored, but the new version
becomes the 'default' representation and is used in cost model
composition.

• Knowledge Reuse Engine: this architectural element drives the querying
of the knowledge base and retrieval of knowledge elements for the cost
model building blocks. It consists of a web services query module and a
spreadsheet composition module. The latter has been composed using a
VBA macro in Microsoft Excel.

• Excel Spreadsheet: the spreadsheet application receives the building
blocks from the web service. The spreadsheet composition module
automatically builds the resultant cost model, with all inputs, formulas
and outputs in place. Any double entries are checked and only one
representation is maintained within the model. The cost model inherits
default values from the knowledge base for the user inputs, but these and
the other parameters can be changed to suit the user needs. A function is
included to compare the cost model elements with the knowledge
contained in the knowledge base; if the user makes changes in the open
spreadsheet, they can then compare the resulting changes with the
original values and subsequently choose to update the knowledge base
based on the outcome. Minor and major changes to the cost model (e.g.
changes in formulas or changes in building blocks) can be performed by
updating the relevant knowledge articles. Through the modularised
approach, the changes are automatically incorporated into the building
blocks and subsequently into any generated spreadsheet-based cost
model.

157

Figure 5.18: User process for cost model composition using proof-of-concept solution

The user process for using the knowledge-based solution is given in Figure 5.18.
To illustrate how the process works in practice, an example is presented here that
was used as part of a validation exercise. The example concerns the production of
CFRP T-stringers for a wing top cover, as presented before in Section 5.3.1. This
EKR has been annotated using the classes shown in Figure 5.19. These are part of
the manufacturing domain ontology introduced in Section 5.3.3.

Figure 5.19: Annotation of the CFRP T-stringer EKR

158

The user now follows the following process to produce a cost model for this

engineering task, as illustrated in Figure 5.18. The Figure shows that after opening
a spreadsheet-integrated Visual Basic macro (step 1) and calling the AKM
environment, the user employs the semantic labels as shown in Figure 5.19 to
search for the EKR. The corresponding search result displays the suitable EKR(s)
(step 2). The relevant EKR is subsequently selected (step 3) and exported to the
spreadsheet application using a web service. The supporting Visual Basic macro
automatically generates the cost model (step 4) that belongs to the building
block(s). After this, the user is free to make choices and changes in the
spreadsheet environment to arrive at customised process time and cost estimates
(step 5). The changes can be checked against the existing knowledge base as a
'live link' is maintained between the two applications. If necessary, the knowledge
base can be updated to support data, information or knowledge change (step 6).

5.3.5 Analysis & Delivery

The Knowledge Lifecycle Model, the KLC ontology and the KNOMAD methodology
have been applied to construct a proof-of-concept solution for knowledge-based
cost modelling and estimation of composite wing cover manufacturing processes.
The solution meets the following case study requirements:

• It supports end users in the composition, use and control of cost models:

through the EKRs, cost models can be composed. They can be used within a
spreadsheet environment. Storing and managing the EKRs in a knowledge
base means that the knowledge and process elements that make up an EKR
are controlled: any changes can be validated and shared using AKM’s
functionality.

• The solution allows for flexible and fast estimation of cost for composite wing
covers using the EKRs.

The implemented proof-of-concept solution consists of three independent EKRs –
with respect to the full cost model, the functionality is limited. The functionality
has been validated through successful application in practice, for which a
representative example has been presented in the preceding Sections. The
associated user process has been validated at the OEM company through expert
opinion and user feedback. The involved experts have intimated that efforts
related to cost model composition and maintenance would be reduced
significantly when using the developed solution. However, as the functional
solution has been developed to a proof-of-concept stage (at Technology
Readiness Level 3, or TRL3), quantification of costs and benefits of the tool was
not considered. The following qualitative observations can however be made.

159

Firstly, the solution to the case study provides knowledge life-cycle
management through the inherent capabilities of the AKM tool and through the
EKR approach. In particular, the provisions for explicating the justification behind
knowledge elements, the ‘live link’ between the knowledge base and the
spreadsheet application, and the possibility to track the change of knowledge
through the retention of historical knowledge articles contribute to a significant
improvement with respect to the legacy cost model.

Secondly, the solution also facilitates knowledge utilization through the
retention and exploitation of existing and legacy models, i.e., spreadsheet models,
which has ensured that users keep using familiar and trusted tools and processes.
Furthermore, the use of a dedicated knowledge base, with the associated
provisions to ensure the availability of trustworthy knowledge, assures users that
the right knowledge is available at the right time.

Thirdly, the solution addressed knowledge transparency by including
semantic annotation and provision for knowledge explication. The difficulty with
actually understanding complicated or dense legacy tools has been highlighted so
that visibility is interpreted primarily in terms of the user being able to understand
the rationale embedded into the tool.

In its current proof-of-concept incarnation, the knowledge-based cost modelling
solution is limited in several aspects. First, the whole process is only semi-
automatic. Composition of a cost model still requires non-productive steps that
do not add value, though the overall time spent on model composition is reduced.
Another limitation is the fact that the spreadsheet results from generated cost
models and subsequent user manipulations are not yet stored into a central
repository for the company, as indicated in Section 5.3.4.2. Implementing this
would amount to better adherence to the 'Case' part of the EKR approach. A final
limitation of the research is that the overall cost modelling capacity has not yet
been fully addressed in informal terms: whereas the individual knowledge articles
do feature informal knowledge, the higher-level process does not.

5.4 Discussion of Results

With respect to the usability and maintainability challenges that are associated
with the contributions of this dissertation, the following can be observed:

• Moving beyond black-box applications and ensuring transparency: The

developed solution is designed to improve upon the current black-box
implementation of the cost modelling capability. To achieve this, the
solution does not replace the natural use of spreadsheets to compute the
cost of components. However, it manages the knowledge driving the cost
model and deploys it to a working spreadsheet from which users can

160

understand the rationale of the computed cost. Knowledge is categorized,
easily accessible and usable, and can be maintained and/or updated over
life. Previous versions of the cost model (elements) are stored.
Furthermore, the use of the EKR approach makes the cost model solution
transparent. A cost modelling and estimation EKR makes it clear which
knowledge is involved within the cost modelling and estimation solution,
which inputs are necessary, which steps are taken within the process and
which outputs are generated. The knowledge base enables storing,
justifying and updating cost model knowledge elements and records
previous versions of the cost model.

• Task orientation: The EKRs represent specific engineering tasks in the
form of modular cost modelling elements. They offer the possibility to
compose a cost model using modular building blocks. The resulting tailor-
made cost model can be used to estimate cost. It can also be configured
according to user choice, allowing cost performance investigation for
competing solutions.

• Expert / end user involvement: The solution uses the EKR approach, but
does not replace the use of spreadsheets to compute the cost of
components. It manages the knowledge driving the cost model and
deploys it to a spreadsheet which estimates costs. Users are already
familiar with the spreadsheet environment; its continued use may be an
important factor in user adoption of the solution. Through the
spreadsheet environment, users can understand the rationale of the
computed cost and access the underlying knowledge.

161

6 Maintenance Case Study: Supporting Wing
Maintenance – B737 Leading Edge Slat Downstop
Assembly Modification & Inspection

This chapter describes the development of a knowledge-based application that
supports the digitalization and execution of maintenance tasks. As such, this case
study focuses on the maintenance domain of the aircraft lifecycle. Together, the
case studies will shed light on how the overall research objective can be achieved,
with emphasis on the latter part of the objective: “Support consistent
formalization, use and maintenance of changing knowledge within aircraft
lifecycle phases to improve domain-specific modelling, execution and control of
engineering tasks”. The case studies also offer a practical perspective on the
following research questions:
• How can knowledge change be accommodated during KBS development?

o Which models are required and how do these models help to
accommodate knowledge change?

This case study presents an approach to support maintenance task

digitalization and execution for wing components. First, the case study context
and challenges are introduced. Subsequently, the theoretical contributions are
applied to the maintenance domain: the Knowledge Lifecycle model is used to
qualify and quantify knowledge change, task analysis is performed to prepare the
use of the KLC ontology and the KNOMAD methodology is applied to the case,
resulting in a flow chart for the development of a knowledge-based solution. As in
the previous case study, the solution supports the deployment and use of
knowledge as an element in modular knowledge packages (the previously
introduced Enterprise Knowledge Resources) that are managed in a central
knowledge repository. An EKR can be deployed to support a maintenance task.
Development and implementation of the solution are discussed in detail in
Section 6.3. Validation of performance with respect to the case study objective(s)
and requirements is briefly indicated in Section 6.3.5: Analysis & Delivery. The
case study concludes with a discussion of the results within the context of the
dissertation objectives and contributions to theory.

6.1 Case Study Context and Challenges

Literature for the aircraft MRO domain tends to focus on performance
measurement and optimization of maintenance processes such as planning,
management and execution (Garg and Deshmukh, 2006) and on the relation
between maintenance and safety (Wartan, 2010). In marked contrast to the

162

design and manufacturing domains, literature regarding the development and use
of advanced information technology (IT) such as PLM systems or knowledge-
based (engineering) applications is very limited. This is supported by Lee et al.
(2008), who note the low adoption of PLM technology in maintenance – see
Figure 6.1.

Figure 6.1: Adoption of PLM in the MRO domain (adapted from Lee et al. (2008))

Lee et al. (2008) identify a number of requirements for the adoption of

knowledge systems within the aircraft MRO domain. In particular, automated
information retrieval, associative inspection and maintenance procedures and
tools, product structure information, and fault detection & isolation tools should
be provided. Ideally, a PLM application or knowledge-based application should be
able to record, check and manage inspection and maintenance records. Currently,
processes are independent and largely manual (Lee et al., 2008). Furthermore, the
adoption and impact of information systems within maintenance is low; it is also
an area of relatively limited research interest (Garg and Deshmukh, 2006).

This is an indication of a larger problem – the relatively low level of
digitalization in the maintenance domain, and the reliance on legacy, paper-based
approaches to execute and record maintenance tasks. Findings from TU Delft
research performed at a large Dutch aircraft maintenance provider show that a
paper-based approach is prevalent in carrying out maintenance work; processes,
work instructions, safety instructions and maintenance reports are predominantly
kept on paper (Wartan, 2010). The resulting records are stored in archives for the
purposes of demonstrating airworthiness compliance during aircraft phase-out
(Burhani, 2012). Similar findings are reported by Lampe et al. (2004), who point
out the labour intensive manual documentation and check procedures at MRO
providers. Lampe et al. (2004) indicate that the time associated with searching for
appropriate documentation can amount up to 15-20% of the total work time of a
mechanic.

Over the last years, the situation has improved as digital tools for providing
maintenance information and supporting maintenance tasks have been
developed and put to use. A fairly representative illustration of current practice is
provided by Lampe et al. (2004) – see Figure 6.2. This figure highlights that current
maintenance work is supported by a mixture of paper and digital documentation
as well as tools, materials and parts required for the job.

163

Figure 6.2: The aircraft MRO environment (adapted from Lampe et al. (2004))

Within MRO processes, an increasing number of supporting documentation is

offered digitally. This includes OEM documentation such as the Airplane
Maintenance Manual (AMM), Maintenance Planning Document (MPD), Illustrated
Parts Catalogue (IPC), Structural Repair Manual (SRM) and Service Bulletins (SB).
These documents can be offered through the OEM’s web portal (e.g. Baker et al.
(2006)) or as part of OEM software (Airbus, 2012).

However, despite recent advances, a number of major issues still remain:

• Legacy work processes & systems: remaining aspects of paper-based
approach lead workers to shortcut the process as it takes too long to collect
the relevant documents: safety and efficiency are compromised (Wartan,
2010).

• Information exchange across stakeholders: various stakeholders hold
different information necessary for the successful execution and record
keeping of maintenance tasks. For instance, MyBoeingFleet.com can provide
the OEM information, the FAA or EASA holds the regulatory information
(Airworthiness Directives or ADs), the airliner holds engineering orders (EO)
and maintenance records. This information needs to be exchanged and be
available to the end user in an integral way.

• Maintenance report keeping and data accuracy: some proof-of-concept
research regarding the use of RFID tags to support automatic maintenance
documentation has been performed (Lampe et al., 2004). However, recent
findings (Burhani, 2012) suggest that report keeping is still a manual job that

164

has only partly transferred into digital format. The manual entry of
maintenance data is error-prone and may cause issues with data accuracy
and completeness.

It is important to address these issues as a structured approach to data,

information and knowledge capture, storage and use in MRO organizations has
implications for data-driven research and improvement (Jagtap and Johnson,
2011) from a maintenance domain perspective as well as a through-life
perspective. For the maintenance domain, capturing and storing in-service
information such as component life times, types of failures, rate of failures, cost of
spares, lead-time of spares, amount of non-routine job cards, etc. may be used to
evaluate and predict product reliability, availability and maintainability, and
consequently help optimize maintenance processes and planning. From a
through-life perspective, the incorporation of knowledge about the in-service
performance of existing products can lead to improvements in the design of new
products (Jagtap and Johnson, 2011).

To summarize, the broad research problem for the maintenance domain is that
the paper-based approach to aircraft maintenance is insufficient, as it has an
adverse effect on process efficiency and safety. Though digital tools for
maintenance support are increasingly being used, data capture and information
exchange is complicated. Within MRO providers, legacy systems and insufficient
means for maintenance data capture, storage and quality control are a problem.
Between OEM, operators and regulators, systems are not integrated.

To resolve these issues, a potential direction is to move towards a 'push-of-
the-button' digital solution for capturing and using aircraft maintenance task
knowledge, processes and history to support maintenance execution and prove
continued airworthiness compliance.

To narrow the scope associated with the research problem, this case study
considers a particular maintenance task related to wing maintenance for the
Boeing B737: modification and detailed inspection of the main track downstop
assembly of the leading edge slats (Boeing, 2010). This task is associated with an
FAA Airworthiness Directive (FAA, 2007) and a revised Service Bulletin (SB) issued
by the OEM, Boeing (Boeing, 2010).

The consolidated case study objective is to construct a proof-of-concept
solution for capturing and using aircraft maintenance task knowledge, processes
and history relative to the modification and detailed inspection of the B737 main
track downstop assemblies of the leading edge slats. The following requirements
must be met:

165

1) The solution must support end users in execution of the maintenance
task;

2) The solution must offer a digital means of record keeping in order to
prove continued airworthiness compliance;

3) The solution must be automated to the fullest extent possible.

Validation with respect to these requirements is performed in Section 6.3.5:

Analysis & Delivery.
The introduced problem is related to knowledge change and consequently to

research challenges regarding knowledge usability and maintainability. The
following issues will be taken into account in the case study:

• Moving beyond black-box applications and ensuring transparency: as it
dispersed within and across organisations, maintenance knowledge (e.g.
ADs, SBs, maintenance reports) is difficult to access, inspect and maintain.
To support knowledge maintenance, it is necessary to support
categorization, accessibility, traceability and subsequent sourcing of
knowledge. The solution must enable the storing, justifying and updating
of maintenance knowledge elements and processes and must support
maintenance record keeping. To ensure transparency, it should be clear
which knowledge is involved for specific maintenance tasks: which inputs
are necessary, which steps are taken within a process and which reports
are generated with what kind of data? The solution must enable a
standard approach of supporting maintenance tasks.

• Task orientation: knowledge involves a ‘capability for effective action’.
The capability for action can be met by explicitly associating sets of
knowledge with functional tasks, i.e. performing specific maintenance
tasks. The solution will offer support for maintenance task execution by
offering a 'one-stop' portal for the documentation, process models and
maintenance reports associated with that task.

• Expert / end user involvement: End users must be able to identify, use,
interact with and if necessary, maintain or update the data, information
and knowledge related to a specific maintenance task.

Through these considerations, the case study contributes to validation of the
overall research contributions to theory. This is discussed in Section 5.4:
Discussion of Results.

6.2 Application of Theory to Maintenance Case Study

Before developing a solution, this section acts as an intermediate step by applying
the developed theory to the case. First, the Knowledge Lifecycle Model is applied

166

to identify knowledge change for the maintenance task. This task is subsequently
analysed in support of further application of the KLC ontology to solution
development in the Results section. Finally, it will be shown how the KNOMAD
steps will be applied to this case to guide the subsequent solution development in
Section 4.3: Results.

6.2.1 Application of Knowledge Lifecycle Model: Identifying Knowledge
Change

For this use case, change of knowledge specific to the main track downstop
assembly modification and inspection task is analysed. This is done using two
related, formalized representations of this knowledge: Airworthiness Directives
and Service Bulletins.

Airworthiness Directives (ADs) are regulatory documents that are issued
against certified aeronautical products with the purpose of notifying aircraft
owners of 'unsafe conditions, non-conformity with the basis of certification and
other conditions affecting the airworthiness of their aircraft' and 'the mandatory
actions required for the continued safe operation of an aeronautical product'
(Transport Canada, 2002). An AD is typically created in the days, weeks or even
months after a (potentially) unsafe condition has been discovered. Following its
effective date, an AD must be complied with by aircraft owners to maintain
airworthiness.

Service Bulletins are documents that are issued by the Original Equipment
Manufacturer (OEM) to either recommend actions for the improvement of an
aircraft or to support corrective actions, typically in relation with an associated
AD.

• Airworthiness Directives: four ADs have been issued in relation to the

main track downstop assembly modification and inspection task. The first
issue was Emergency AD 2007-18-51. This Emergency AD describes the
unsafe condition, effective date, applicability, required actions and
compliance times for this specific maintenance issue.

o Unsafe condition: the Emergency AD was issued following reports
of parts coming off the main slat track downstop assemblies.
Following slat retraction, the slat track housing was punctured in
two cases, leading to fuel leaking in one case, and fuel leaking and
a subsequent catastrophic fire (aircraft loss) in another case.

o Effective date: the effective date for Emergency AD 2007-18-51
was 25 August 2007.

o Applicability: The Emergency AD applied to all Boeing Model 737-
600, -700, -700C, -800, -900, and -900ER series airplanes,
certificated in any category.

167

o Required actions & compliance times: Emergency AD 2007-18-51
required a repetitive detailed inspection of the main slat track
downstop assemblies for verification of proper installation of the
slat track hardware (bolt, washers, downstops, stop location, and
nut) and a one-time torquing of the nut, both within 24 days after
reception of the AD. During inspection, if any part were to be
missing or installed incorrectly, replacement was required as well
as a detailed inspection of the inside of the assemblies for foreign
object debris and damage. Removal of any debris and repair of
any damage was required. The whole detailed inspection
procedure was required to repeat at intervals not exceeding 3.000
flight cycles.

Following the detection and reporting of additional parts coming off the
main track downstop assemblies, emergency AD 2007-18-51 has been
superseded by Emergency AD 2007-18-52, effective date 28-08-2007. This
AD has been issued to change the compliance time for the detailed
inspection of the assemblies from 24 days to 10 days after receipt of the
Emergency AD. In addition, Emergency AD 2007-18-52 determines that a
borescope inspection of the assemblies is acceptable in lieu of detailed
inspection. Emergency AD 2007-18-52 has been subsequently formalized
into AD 2007-18-52, effective date 26-09-2007. This AD serves as a formal
entry into the Federal Register, instead of the preceding emergency AD,
which acted as a temporary measure. These subsequent issues can be
characterised as 'maintain' and 'update' knowledge actions, respectively.

Finally, AD 2007-18-52 has been superseded by AD 2011-06-05,
effective date 26-04-2011. The new AD requires the replacement of
downstop assembly hardware with new hardware while keeping the
previous requirements with respect to performing inspections of the slat
cans on each wing and the lower rail of the slat main tracks for debris,
replacing the bolts of the aft side guide with new bolts, and removing any
debris found in the slat can. Furthermore, AD 2011-06-05 removes some
B737 models from the applicability. As this new AD changes both the
context and content of knowledge, it can be characterised as an 'update'
action.

• Service Bulletin: two Service Bulletin versions have been issued by the
OEM, Boeing, to address the modification and detailed inspection of the
main track down stop of the leading edge slats.

Boeing Service Bulletin 737-57A1302, dated 15 December 2008,
describes the planning information, material information and
accomplishment instructions necessary for the removal of existing
downstop assemblies and installation of new ones, as well as removal of

168

existing aft side guide attach bolts and replacement with drilled head
bolts lock-wired together on the ribs of the wing leading edge (Boeing,
2010). It also describes the inspection process. As such, this SB is a
response to the requirements of AD 2007-18-52 as well as precursory
documentation for AD 2011-06-05, which actually mandates the
replacement of downstop assembly hardware.

Boeing Service Bulletin 737-57A1302, Revision 1, dated 18 October
2010, changes and adds upon the previous SB by adding a borescope††
inspection option for the slat main track, by adding part and tooling
information, by changing a tolerance limit for a certain repair option, by
introducing or updating process step information, and by removing an
aircraft from the applicability. This SB can therefore be characterised as
an 'update' knowledge action.

Based on the changes in these ADs and SBs, one can state that the knowledge

required for the use case maintenance task is subject to change. For the
Airworthiness Directives, both the context and content of the knowledge
encapsulated within the ADs is subject to change: applicability and compliance
times (context) are changed in AD 2007-18-52 and AD 2011-06-05, whereas an
additional inspection and assembly replacement (context) are mandated in AD
2011-06-05. For the SBs, Revision 1 of Boeing Service Bulletin 737-57A1302
changes context (applicability, part information) and content (process step
descriptions, tolerance limits, inspection option).

Similar to the previous case studies, the preceding discussion qualitatively
shows that knowledge is subject to change with respect to the maintenance task
(modification and detailed inspection of the main track downstop of the leading
edge slats of most Boeing B737 types).

6.2.2 Application of Knowledge Lifecycle Model: Quantifying
Knowledge Change

In the following Section, the Knowledge Lifecycle Model concepts will be tested
using data from the maintenance stage of the aircraft lifecycle. Specifically, the
idea of using knowledge actions will be used to quantify knowledge change in
Airworthiness Directives (ADs). In the following sections, the research data,
hypotheses and sample will be described, followed by analysis.

†† An optical device consisting of a rigid or flexible tube with an eyepiece on one end, an
objective lens on the other end, linked together by a relay optical system.

169

6.2.2.1 Description and Operationalization of Research Data:
Airworthiness Directives

To quantify changes in knowledge, a sample of Airworthiness Directives has been
gathered. As mentioned, Airworthiness Directives (ADs) are regulatory documents
that are issued against certified aeronautical products with the purpose of
notifying aircraft owners of 'unsafe conditions, non-conformity with the basis of
certification and other conditions affecting the airworthiness of their aircraft' and
'the mandatory actions required for the continued safe operation of an
aeronautical product' (Transport Canada, 2002). More importantly, they are also a
highly formalized form of knowledge, as they consist of knowledge context in the
form of metadata such as AD date, type approval holder & type/model
designations, applicability and effective date, etcetera), knowledge content
(related technical details (sometimes expressed in associated Service Bulletins
(SBs) provided by the Original Equipment Manufacturer (OEM), and provisions to
maintain compliance) and a capability for effective action (required actions and
compliance times) – see also Transport Canada (1996) and AD examples
retrievable from the European Aviation Safety Agency (EASA, 2012). Furthermore,
they are rigidly maintained in online regulatory knowledge bases (EASA, 2012) due
to their critical role in ensuring aviation safety. In effect, ADS are knowledge
elements – and they undergo changes throughout their life. An AD is typically
created in the days, weeks or even months after a (potentially) unsafe condition
has been discovered and is in effect from its effective date. From that point on, an
AD must be complied with by aircraft owners to maintain airworthiness.
Sometimes, ADs are revised to reflect changes in their knowledge context, for
instance with respect to applicability across aircraft types. ADs can also be
superseded, in which the content of an AD is changed, while frequently the
context is as well. Finally, ADs can be cancelled, for instance when the aircraft
type(s) for which the AD was issued are not operated anymore. Following this
description, ADs can be mapped onto the Knowledge Lifecycle Model by
operationalization of the knowledge actions in terms of the actions that are taken
with respect to ADs:

Create ↔ an original AD is created.
Use ↔ an AD is in effect and is used by aircraft owners. This

knowledge action is not quantified in this case study as it has
proven impossible to track the number of use actions by
aircraft owners relative to specific ADs.

Maintain ↔ an AD is revised (update of context element of AD
knowledge, for instance applicability to aircraft type).

Update ↔ an AD is superseded (update of both context and content of
AD knowledge).

170

Retire ↔ an AD is cancelled.

6.2.2.2 Case-Specific Hypotheses
Based on the Knowledge Lifecycle Model and the selection of ADs as the sample
population, a number of case-specific hypotheses can be posited. The first
hypothesis concerns the behaviour of knowledge, as operationalized in the
knowledge actions create, maintain, update and retire.

H1: The frequency of knowledge actions decreases along the knowledge lifecycle

This hypothesis is motivated by the idea that most knowledge elements would not
move beyond creation and use, i.e. the actions maintain and/or update and/or
retire would not be applied to most knowledge elements.

In contrast to the first hypothesis, which is concerned with the behaviour of
knowledge throughout its life, the following set of hypotheses is related to the
behaviour of knowledge over aircraft life.

H2: Number of knowledge actions per year increases during the aircraft lifecycle
H3: Use of the 'create' action per year increases during the aircraft lifecycle
H4: Knowledge change per year increases during the aircraft lifecycle
H5: Use of the 'maintain' action per year increases during the aircraft lifecycle
H6: Use of the 'update' action per year increases during the aircraft lifecycle

Hypothesis H2 is motivated by the idea that knowledge about maintenance in the
form of unsafe conditions to be resolved increases during the aircraft lifecycle,
and therefore the number of associated knowledge elements will increase.
Hypothesis H3 is similar to the previous one, but instead of considering the total
number of knowledge elements, the number of 'create' actions is considered.

Hypothesis H4 is motivated by the cumulative effect expressed in the previous
hypotheses, and particularly H1: as the yearly number of knowledge elements
increases, the total number of knowledge elements (integrated over time) will be
increasingly large. I.e., should hypothesis H1 be true, the total number of
knowledge elements does not grow at a constant rate but at an increasing rate.
Should knowledge change per year be present at a certain constant rate, the
logical result is hypothesis H4: an increase of knowledge change during the aircraft
lifecycle. The remaining two hypotheses are a segregation of the preceding
hypothesis in terms of the individual knowledge actions: instead of aggregate
knowledge change, the actions 'maintain' and 'update' per year are hypothesized
to increase over time.

171

6.2.2.3 Description of Research Sample
For this initial attempt at quantifying knowledge change, two samples of ADs have
been taken from the EASA AD Publisher Tool (EASA, 2012) and the FAA Regulatory
and Guidance Library (FAA, 2012).
With respect to the EASA ADs, to limit the scope of the problem and enable
reproducibility, only ADs with respect to the Airbus A320 aircraft have been taken
from the Publisher Tool. The applied filter was 'Return all ADs from 1988-08-01
until 2011-09-27, applicable to the type A320 from TC holder AIRBUS'. The full AD
history for the Airbus A320, starting from first flight deployment in 1988 and going
to 27 September 2011 (sample final access date) has been taken to compile the
initial sample, which consisted of 288 publications. This sample has been
inspected and revised to account for AD revisions: in the initial sample, a revised
AD (e.g. AD 2007-0065R2) would count as one publication, whereas in the revised
sample, the revised AD counts as three publications – the originally created AD
(AD 2007-0065) and its two revisions (AD 2007-0065R2, AD 2007-0065R1). The
final revised sample consists of 418 publications.

With respect to the FAA ADs, a similar sample was chosen. Only ADs with
respect to the Boeing B737 aircraft have been taken into consideration. This
includes all subtypes of the B737 aircraft (-100, -200, -200C, -300, -400, -500, -600,
-700, -700C, -800, -900, -900ER.). The full AD history for the B737 has been
compiled, starting from 1968 and ending at 2012-03-20 (sample final access date).
The final sample consisted of 493 original publications. As with the A320, the
sample has been revised to account for AD revisions and supersedures. The final
revised sample consists of 648 publications.

6.2.2.4 Results
The following two subsections describe the analysis of the A320 and B737
samples.

A320 Analysis

To analyse the knowledge actions along the knowledge lifecycle, the sample of
418 A320 AD publications has been analysed using a simple frequency count for
the number of knowledge actions per category. The results are shown in Figure
6.3. Of the 418 actions associated with the publications, 240 were 'create' actions,
124 'maintain' actions, 47 'update' actions and 7 'retire' actions. Evidently, the
number of knowledge actions decreases along the knowledge lifecycle, but a
sizeable part of the A320 ADs are subject to knowledge change.

172

Figure 6.3: Frequency of knowledge actions (A320)

To analyse the yearly number of knowledge actions along the aircraft

lifecycle, the combined number of knowledge actions per year for the sample
period 1988 – 2011 has been enumerated, followed by a linear bivariate
correlation analysis with the total number of knowledge actions per year as
dependent variable and time (in years) as the independent variable. The results
are given in Figure 6.4 and Table 6.1. From the table it can be seen that there is a
significant (p < .05) but small relation (R = .406, R2 = .165) between the total
number of knowledge actions and the aircraft lifecycle. The effect size is heavily
influenced by the variation over the years, especially visible in the dip for
knowledge actions between 2007-2010.

173

Figure 6.4: Knowledge actions per year versus the A320 lifetime (years)

Table 6.1: Bivariate correlation - knowledge actions per year versus lifetime (A320)

For the relation between knowledge change and aircraft lifecycle, the aggregate
number per year of 'maintain', 'update' and 'retire' actions have been plotted.
Following bivariate correlation analysis of this aggregate number as dependent
variable against the independent variable time (in years), the results can be seen
in Figure 6.5 and Table 6.2. There is a significant relation (p < .05) of small size (R =
.497, R2 = .247). However, variation in knowledge change per year is notable –
knowledge does not change at a constant rate. Again, the effect size is heavily
influenced by the variation over the years, especially the dip between 2007-2010.

174

Figure 6.5: Knowledge change versus lifetime (A320)

Table 6.2: Bivariate correlation - knowledge change versus lifetime (A320)

A final set of tests has been performed to check the frequency of individual
knowledge actions (create, maintain, update) per year throughout the aircraft
lifecycle. Similar to the preceding analyses, the frequency of actions per year has
been enumerated and bivariate regression has been performed for independent
variable ‘time’ and dependent variable ‘number of create actions’, ‘number of
maintain actions’, and ‘number of update actions’. The graphs for the individual
knowledge actions are shown in Figure 6.4. For the hypothesized ‘time – create’
relation, correlation yields insignificant results (p = .485), similar to the ‘time –
maintain’ relation (p = .643). Only the ‘time – update’ relation shows a strong
significance (p < .001) with a medium effect size (R = .683, R2 = .466). The 'time-
retire' relation has not been tested, given the small set of 'Retire' instances.

175

B737 Analysis

To analyse the knowledge actions along the knowledge lifecycle, the sample of
648 B737 AD publications from the period of February 1968 until March 2012 has
been analysed using a simple frequency count for the number of knowledge
actions per category. The results are shown in Figure 6.6. Of the 648 publications,
493 did not move beyond the 'create' knowledge action, whereas 57 publications
were maintained, 95 were updated and 3 were retired. Similar to the A320
sample, the number of knowledge actions decreases along the knowledge
lifecycle, but a sizeable part of the B737 ADs are subject to knowledge change.

Figure 6.6: Frequency of knowledge actions (B737)

To analyse the yearly number of knowledge actions along the aircraft

lifecycle, the combined number of knowledge actions per year for the sample
period 1968 – 2012 has been enumerated. The results are shown in Figure 6.7.
This data has been subjected to linear bivariate correlation analyses, with either
the total number of knowledge actions or the number of individual knowledge
actions (create, maintain, update) as dependent variables and time (in years) as
the independent variable. For the total number of knowledge actions over time,
the results are given in Table 6.3. From Table 6.3, it can be seen that there is a
significant (p < .001) and medium-strength relation (R = .765, R2 = .585) between
the total number of knowledge actions and the product lifecycle.

176

Figure 6.7: Knowledge actions per year versus the B737 lifetime (years)

Table 6.3: Bivariate correlation - knowledge actions per year versus lifetime (B737)

For the relation between knowledge change and aircraft lifecycle, the total
aggregate number of 'maintain', 'update' and 'retire' actions have been plotted.
Following bivariate regression analysis of this aggregate number as dependent
variable against the independent variable time (in years), the results can be seen
in Figure 6.8 and Table 6.4. There is a significant relation (p < .01) of medium size
(R = .644, R2 = .414). Similar to the A320 sample, the variation in knowledge
change per year indicates a non-constant rate of knowledge change, though the
overall trend is an increasing rate of change. The variation has a reducing effect
on the effect size.

177

Figure 6.8: Knowledge change versus the B737 lifetime (years)

Table 6.4: Bivariate correlation for knowledge change versus lifetime (B737)

A final set of tests has been performed to check the frequency of individual

knowledge actions (create, maintain, update) per year throughout the aircraft
lifecycle. Similar to the preceding analyses, the frequency of actions per year has
been enumerated and bivariate regression has been performed for independent
variable ‘time’ and dependent variable ‘number of create actions’, ‘number of
maintain actions’, and ‘number of update actions’. The graphs for the individual
knowledge actions are shown in Figure 6.7. Unsurprisingly – given the similar
shapes of the 'Create' and 'Total number of knowledge actions' graphs in Figure
6.7 - the regression analysis for the hypothesized 'time – create' relation (Table
6.5) gives significant results (p < .001) with medium effect size (R = .711, R2 =
0.505). The 'time – maintain' relation (Table 6.6) is not significant at the .05 level
(p = .399). The 'time – update' relation (Table 6.7) shows a strong significance (p <

178

.001) with a medium effect size (R = .670, R2 = .449). The 'time-retire' relation was
not tested, given the small set of 'Retire' instances.

Table 6.5: Correlation results for knowledge action ‘create’ versus lifetime (B737)

Table 6.6: Correlation results for knowledge action ‘maintain’ versus lifetime (B737)

Table 6.7: Correlation results for knowledge action ‘update’ versus lifetime (B737)

179

Consequences of Knowledge Change through Life using A320 and B737 AD
Samples

The preceding analysis of the A320 and B737 samples suggests the occurrence of
knowledge change in the maintenance domain – airworthiness directives are
measurably changing during the lifetime of the respective aircraft. What, then, are
the consequences of knowledge change?

From a aircraft through-life perspective, each AD that is in effect already
constitutes a knowledge change with respect to the original product (operational)
instructions. As such, all individual ADs that are in effect (i.e., the ones that have
not been revised, superseded or cancelled) have been analysed for both samples.
Does knowledge change, embodied in a created, maintained or updated AD,
engender changes in the maintenance domain only? Or does AD knowledge
change have an impact beyond the maintenance domain?

To answer these questions, both samples have been analysed for the
consequences of through-life knowledge change. Each AD has been checked to
see whether it has an impact on:

• Maintenance: an AD has an effect on the maintenance domain when

inspection and/or repair instructions are mandated. When only
inspection requirements are mandated, the AD is simply confined to the
maintenance domain. When repair instructions with respect to the
affected aircraft parts or systems do not mention the incorporation of
new, improved, redesigned, or remanufactured parts, assemblies or
systems, the effects of the AD are also confined to the maintenance
domain.

• Flight operations: a number of ADs mention the update of the Aircraft
Flight Manual (AFM) with revised operator instructions. The through-life
effect of these ADs is primarily associated with the (flight) operations
domain.

• Manufacturing: for a few ADs, an unsafe condition was caused by
deficiencies in the production processes used for the production of parts
and/or assemblies. These ADs mandate changes in the production
processes; they consequently have a through-life effect on the
manufacturing domain. No part or assembly redesign was incorporated
into these ADs.

• Design: a few ADs mandate updating the software in flight computers.
The associated redesign of flight control software is associated with a
through-life effect on the design domain. The manufacturing domain is
not involved, as the software can be updated in existing hardware.

180

• Design & manufacturing: a significant number of ADs mandates
maintenance on an aircraft using new, improved, redesigned and
remanufactured parts, assemblies or systems. For these ADs, the effects
stretch through the design and manufacturing domains.

The analysis has been conservative: when an individual AD contains

ambiguity regarding the effects on design, manufacturing and/or flight
operations, the guideline has been to count the AD as having an effect on
maintenance only.

The results of this analysis effort are shown in Figure 6.9 for the A320 sample,
and Figure 6.10 for the B737 sample. The majority of knowledge change in
maintenance has an effect that is contained to maintenance itself, but a
significant minority of knowledge change is associated with through-life
consequences.

Figure 6.9: Through-life implications of knowledge change (A320 sample)

Figure 6.10: Through-life implications of knowledge change (B737 sample)

181

6.2.2.5 Discussion
The following hypotheses have been posited. The first hypothesis is concerned
with the behaviour of knowledge throughout its life:

H1: The frequency of knowledge actions decreases along the knowledge lifecycle

The remaining set of hypotheses is related to the behaviour of knowledge over
the aircraft operational life.

H2: Number of knowledge actions per year increases during the aircraft

operational life
H3: Use of the 'create' action per year increases during the aircraft operational life
H4: Knowledge change per year increases during the aircraft operational life
H5: Use of the 'maintain' action per year increases during the aircraft operational
life
H6: Use of the 'update' action per year increases during the aircraft operational
life

The behaviour of ADs during aircraft life can be characterised by using the concept
of knowledge actions from the Knowledge Lifecycle Model; all four considered
knowledge actions (create, maintain, update, retire) can be identified and
measured. With respect to the case-specific hypothesis within the context of the
Knowledge Lifecycle Model, the following conclusions can be drawn:

• Hypothesis 1: The frequency of knowledge actions does decrease along

the knowledge lifecycle.
• Hypothesis 2: The number of knowledge actions significantly increases

during the aircraft lifecycle, both for A320 and B737, though the effect
size for the latter aircraft sample is larger (RA320 = .406 versus RB767 = .765).

• Hypothesis 3: Use of the knowledge action 'create' significantly increases
during the aircraft lifecycle for the B737 sample (p < .001, R = .711, R2 =
0.505). The A320 sample results are not significant.

• Hypothesis 4: A significant, small-to-medium size increasing trend in
knowledge change per year can be observed from the A320 and B737
samples (RA320 = .497, RB767 = .644). The underlying rate of knowledge
change is not constant.

• Hypothesis 5: Use of the knowledge action 'maintain' shows no significant
relation with the aircraft lifecycle for both samples.

• Hypothesis 6: Use of the knowledge action 'update' shows an increase
during the aircraft lifecycle for the A320 sample (p < .001 with a medium
effect size (R = .683, R2 = .466)) and for the B737 sample (p < .001 with a
medium effect size (R = .670, R2 = .449)).

182

The implications of knowledge change through aircraft life have been

quantified. For about 30 to 35% of the airworthiness directives, a through-life
implication has been associated.

6.2.3 Application of KLC Ontology: Task Analysis

The modification and inspection task for the B737 slat track main downstop is
given in Figure 6.14 as an A-0 IDEF0 diagram. This figure shows the inputs in the
form of the Service Bulletin and Airworthiness Directive, the output – a modified
and inspected B737 slat track main downstop assembly – and the controls
(Airworthiness Directive) and mechanisms (mechanic, tooling). The AD serves as
both input and control to the task: it offers input information such as aircraft type
applicability and controls the task, for instance through the mandatory
compliance time.

Figure 6.11: IDEF0 A-0 diagram for B737 slat track main downstop modification and

inspection task

The subtasks are represented in Figure 6.15 as an A0 IDEF0 diagram, based

upon the task description as included in Boeing Service Bulletin 737-57A1302. The
first subtask is to obtain access to the assembly, with the service bulletin and wing
assembly as inputs and access to the assembly as an output. The task is
performed by a mechanic using specific tooling. The second step is to perform
preventive modification using the original slat track main downstop assembly and
the Service Bulletin, while complying with the requirements of the associated

183

Airworthiness Directive. After modification, an inspection is performed which
results in a maintenance report, which can be used to prove compliance with the
AD. The final step is to close access to the assembly and restore the wing to its
proper operating conditions.

Figure 6.12: IDEF0 A0 diagram for B737 slat track main downstop subtasks

A more detailed description of these subtasks is given as part of the process

knowledge description in Section 6.3.1.

6.2.4 Application of KNOMAD: Solution Approach

As for the previous case studies, the KNOMAD methodology as discussed in
Section 3.3 is adopted. The KNOMAD steps relative to this case study are shown in
Figure 6.13. This figure shows the main KNOMAD steps (Knowledge Capture &
Identification of Knowledge Change; Normalisation; Organisation; Modelling &
Implementation; Analysis & Delivery) with the associated activities that are
required for this particular case study.

The activities are largely similar to those performed in the previous case
studies. In the first step (Knowledge Capture & Identification of Knowledge
Change), the justification for and scope of the knowledge-based system is
established, followed by capture of the knowledge and process elements. Given
that knowledge change has been analysed at length in Sections 6.2.1 and 6.2.2,
the associated KNOMAD activity can be considered to already having been

184

applied. For the second step (Normalisation), the focus is on checking data quality
and establishing input and output formats. The third step (Organisation)
considers development of a domain ontology that holds the relevant concepts
and relationships for this particular case study. It is split up into three parts:
generation of product, process and resource class diagrams. The fourth step
(Modelling & Implementation) concerns the development of models (in the
Modelling sub-step), architecture and solution (in the Implementation step). As
before, the developed task and domain ontologies are implemented in AKM to
support the developed solution. Finally, the Analysis and Delivery steps are
combined into one: performance of the solution is assessed relative to the
requirements, and the costs and benefits of the solution are explored.

Figure 6.13: Application of KNOMAD to maintenance case study – flow chart

6.3 Results

The next section describes the development of a knowledge-based application for
the use case maintenance task: the modification and detailed inspection of the
main track downstop of the leading edge slats of most Boeing B737 types. The
proof-of-concept solution can cope with knowledge change and addresses issues
related to knowledge usability and maintainability.

185

6.3.1 Knowledge Identification & Capture

The first step in the development of the knowledge-based solution is to capture
the required knowledge elements. This knowledge is contained within the
relevant ADs and SBs, where the SBs hold the most detailed representation. The
knowledge can be captured by considering the product, process and resource
dimensions.

• Product knowledge: the product considered for this research problem is

the main track downstop assembly of the leading edge slats on various
Boeing 737 types. The assembly and its main parts are shown in Figure
6.14.

Figure 6.14: Slat main track downstop assembly (FAA, 2011)

When deploying a slat, the slat main track extends to the deployed

position by sliding out of the surrounding structure. The main tracks travel
through holes in the front spar web when the slat is deployed or retracted. In
areas of the wing where fuel is stored, slat track housing (also known as a slat
can) is installed on the fuel side of the spar to surround the main track and
contain the fuel; this structure protects the fuel tank. Each slat main track has
a downstop assembly attached to the aft end of the slat track assembly. The
original downstop assembly consisted of a bolt, washer, downstop fitting,

186

sleeve, stop locator, downstop fitting, washer and nut, as shown in Figure
6.14. The new downstop assembly – as required by AD 2011-06-05 – consists
of a new bolt, washer, downstop fitting, another downstop fitting and washer
on the opposite end of the hole, and a self-locking nut and pin (both new
assembly parts).

In addition to the slat main track downstop assembly, Boeing Service
Bulletin 737-57A1302, Revision 1 and AD 2011-06-05 also require the
replacement of the original aft side guide bolts with new aft side guide bolts
that have drilled heads and are lock-wired together. This is shown in Figure
6.15, where the 'A' indicates the location of the new guide bolts.

Figure 6.15: Aft side guide bolts (Boeing, 2010)

• Process knowledge: the required maintenance process for the

modification and inspection of the downstop assembly and aft side guide
bolts is described in detail in Boeing Service Bulletin 737-57A1302,
Revision 1. It consists of four consecutive steps: obtaining access, carrying
out preventive modification and subsequent detailed inspection, and
closing access. As may be expected, the second step – preventive
modification and subsequent inspection – is the most involved. A
simplified overview of the whole process is given in Figure 6.16.

187

Figure 6.16: Maintenance process for modification and inspection (based on Boeing

(2010))

• Resource knowledge: the modification and detailed inspection of the
downstop assembly and aft side guide bolts requires a varied range of
resources.

First of all, material resources are required, including the new
downstop assembly bolts, self-locking nuts and pins, as well as
replacements for the downstop fittings and washers. In addition, the new
aft side guide bolts and associated lockwires must be used. In total, 32
down stop fittings and washers and 16 bolts, self-locking nuts and pins are
required for 16 slat main tracks on a Boeing 737. Additionally, 64 hex
head bolts and sufficient lockwire must be used for the aft side guide
bolts at 64 locations. Finally, additional materials must be used to carry
out the process: sealant, primer, paint, corrosion inhibiting material and
corrosion preventive compound.

In addition to these materials, manpower resources must be reserved
for the process. The modification and inspection process requires 18 work
hours (FAA, 2007). Obtaining and closing access adds another 17 work
hours to the task, for a total of 35 work hours per aircraft (Boeing, 2010).

The maintenance task does not require special tooling, but optional
tooling is offered by Boeing to accomplish the task. Furthermore, when
performing a borescope inspection, a borescope is required tooling.

188

The maintenance task references a number of existing documents,
including an Engineering Change Memo, a Boeing Program Letter and the
Standard Overhaul Practices Manual (SOPM). It also affects existing
documents: the 737 Maintenance Manual (AMM) and Illustrated Parts
Catalog (IPC).

6.3.2 Normalization

The knowledge contained within ADs and SBs is subjected to rigorous review and
validation. Furthermore, each AD is set up to conform to a specific standard.
Given this, no extra effort was necessary to establish traceability and ownership.
Furthermore, the accuracy and reliability of the knowledge is assumed to be
sufficient.

6.3.3 Organisation

The next step in the development of a solution is to provide a knowledge
structure that can be used to store the captured knowledge and can serve as the
semantic backbone for the knowledge-based application. Similar to the preceding
case studies, a domain-specific set of concepts and relationships has been
developed. To elicit the applicable concepts and relationships for the aerospace
composite maintenance ontology, various sources have been employed. This
includes the regulatory and OEM documents (FAA, 2007; Boeing, 2010; FAA,
2011), as well as research literature (Tsang, 1995; Lampe et al., 2004; Garg and
Deshmukh, 2006; Lee et al., 2008; Jagtap and Johnson, 2011; Burhani, 2012).

As before, the high-level concepts of the KLC ontology (Product, Process and
Resource) and relationships (see also Section 3.2.3 and Table 3.7) have been used
as a starting point for domain ontology development. These concepts of the KLC
ontology have been extended into domain-specific class hierarchies. Through the
use of the same high-level classes, the resulting maintenance domain ontology
shares many concepts and relations with the design and manufacturing domain
ontologies (Sections 4.3.3 and 5.3.3). In this section, excerpts of the domain-
specific class hierarchies are given to explain how the maintenance domain
ontology is composed.

First of all, the domain-specific class hierarchy for the Product class is shown
in Figure 6.17. The Assembly class in this hierarchy has been extended to include
the slat assembly (through aggregation), including the slat track assembly and the
slat can (track housing) assembly. The former contains the downstop assembly.
These assemblies contain parts. To satisfy the requirements of the developed
proof-of-concept solution, the parts that make up the downstop assembly (e.g.
Washer, Nut, Bolt) have been added to the part hierarchy and the aggregation
relationships are shown.

189

Figure 6.17: extended Product class hierarchy for the maintenance domain

Second, the class hierarchy for the Process class relative to the maintenance

case study is shown in Figure 6.18. The Process class has been extended to include
Maintenance_Process, which in turn is a parent for the Inspection_Process,
Modification_Process and Repair_Process classes. As these are all subclasses of
the parent Process class, they inherit the aggregation with the Activity class (in
other words, all of the process classes contain one or more activities). The task
activities modelled in Section 6.2.3 can be seen as activities belonging to the
Inspection_Process and Modification_Process classes; they have not been added
into Figure 6.18.

190

Figure 6.18: extended Process class hierarchy for the maintenance domain

The third extension has been made for the Resource class (Figure 6.19). The

User_Resource class has been extended with the Maintenance_Engineer and
Mechanic classes. The Equipment_Resource class has been extended with the
Maintenance_Equipment class. The most significant extension has been made to
the Document_Resource class. This now includes as subclasses the various
document types from the regulator and OEM side.

191

Figure 6.19: extended Resource class hierarchy for the maintenance domain

The maintenance domain ontology has been used to structure the captured

knowledge and will be used in the subsequent step to annotate (elements of) the
developed solution. This is further explained in the following Section.

6.3.4 Modelling & Implementation

This step consists of two activities: modelling of an Enterprise Knowledge
Resource (EKR) for the downstop assembly modification and inspection
maintenance task, and implementation of the EKR into a functioning solution.

6.3.4.1 Solution Development: EKR Modelling

Similar to the previous case studies, the Enterprise Knowledge Resource concept
from the KLC ontology is employed to model and implement a solution. The
following EKR classes are considered:

• Enterprise Knowledge Resource: the 'container' EKR class retains most of
the attributes that are present in the general EKR model (see Figure 3.8).
The 'objective' and 'description' attributes have been removed from the

192

EKR class, as they would be redundant: they have been replaced by
including specific maintenance attributes into the class, including effective
date, applicability, subject, unsafe condition and compliance time. These
attributes have been identified as common attributes in Airworthiness
Directives and Service Bulletins.

• EKR_Knowledge: the EKR uses knowledge from the related AD(s) and
SB(s). The EKR_Knowledge class retains the attributes from the general
EKR model, and includes the common maintenance attributes (effective
date, applicability, subject, unsafe condition, compliance time). The same
is true for the Knowledge_Element class. Instantiations of the latter class
are used to capture knowledge related to the problem, mainly product
knowledge such as drawings and specifications.

• EKR_Process: the EKR uses a process model to represent the activities
that must be completed to comply with the Airworthiness Directive and
Service Bulletin. The EKR_Process class and Process_Element class do not
change much with respect to the general EKR model. As in the previous
classes, the common maintenance attributes are included into these
classes.

• EKR_Case: for this use case, a central case repository is set up that can
hold the results from the modification and inspection task. Individual case
reports are filled into the repository. The class for individual reports has
been augmented from its generic representation in the general model
(see Figure 3.8) to include maintenance-specific attributes. Besides the
common maintenance attributes previously identified, other report-
specific attributes such as the maintenance visit number, aircraft
registration, flight hours and flight cycles of the aircraft, start date,
completion date, task status, order number and order description are
included into the class.

Using the preceding considerations, an EKR class diagram has been modelled

for this specific case study and associated task. The UML class diagram is shown in
Figure 6.20. It incorporates the EKR classes and attributes mentioned above.

193

Figure 6.20: EKR class diagram (UML) for maintenance case study

An EKR (and its subsidiary elements, such as knowledge elements) are annotated
using the previously introduced domain ontology. The resource, product and
process hierarchies together offer the necessary classification richness to
annotate an EKR: using these classification hierarchies allows for unique
combinations of semantic elements for annotation of a specific EKR, supporting
search and retrieval by end users. It will be shown in the next section how this is
achieved.

6.3.4.2 Solution Development: EKR Implementation
One EKR has been implemented for this maintenance domain case study: the
modification and inspection of the main track downstop assembly. To implement
the EKR and associated models presented in the previous section, a solution has
been developed on the basis of the Ardans Knowledge Maker (AKM) knowledge
management tool.

Based on the developed UML ontologies, a number of AKM models have
been developed for the EKR class and its subsidiary classes (knowledge,
knowledge element, process, process element, case and case report). For each
class, a single model is made that contains fields. These fields represent the
attributes of the classes. The relations between the classes are represented

194

through the addition of direct links between related AKM models. Some
automated functionality is added by using the XPATH query language to identify
and fill model fields by retrieving node information from the XML data that comes
from MySQL. For instance, XPATH expressions are used to let the knowledge,
knowledge element, process and process element models inherit the common
maintenance attributes (effective date, applicability, subject, unsafe condition,
compliance time) from the EKR container class. Furthermore, metadata such as
author, date and status is automatically added. XPATH is also used to facilitate the
implementation of 'templates' that guarantee a consistent representation of
model instances. An example of an AKM model (representing the
Knowledge_Element class) is given in Figure 6.21. The model in this Figure
inherits some metadata automatically (author, date, version, status, effective
date, applicability, subject (ATA), unsafe condition, compliance time, and
associated EKR; see also Figure 6.23). Other knowledge needs to be filled in
manually: description, lifecycle state and associated file(s).

 Figure 6.21: AKM model for the Knowledge_Element class for maintenance case study

195

The AKM models are used to generate knowledge articles; they are in effect
instances of the EKR classes implemented in AKM. The process of creating articles
and generating the article content is currently largely manual. The AKM models
take away much work by offering a consistent representation and inheriting
article fields related to common maintenance attributes automatically. However,
the remaining fields must be filled manually with the appropriate knowledge. The
following figures give examples of implemented EKR, knowledge element, process
element and case report articles for this case study.

196

Figure 6.22: Example of EKR article for maintenance case study

Figure 6.22 shows the EKR for the case study engineering task (i.e., the slat

track downstop assembly modification and inspection EKR). The metadata
(author, date, version, status) is filled in automatically. The common maintenance
attributes (effective date, applicability, subject (ATA), unsafe condition,
compliance time) are filled in manually. The EKR further consists of the associated
process elements (under 'EKR Process'), knowledge elements (under 'EKR

197

Knowledge') and case reports (under 'EKR Case History'). The process elements
have been associated with the relevant documentation, including the ADs and SB.

Figure 6.23: Example of knowledge element article

Figure 6.23 shows an example of a knowledge element belonging to the

maintenance task EKR: a description of the original slat main track downstop
assembly. As previously, the metadata is filled in automatically upon creation. The
common maintenance attributes are inherited from the EKR superclass. The
description, lifecycle state and associated file(s) of the knowledge element have
been filled in manually.

198

Figure 6.24: Example of process element article

Figure 6.24 shows an example for a process element belonging to the

maintenance task EKR. Similar to the knowledge element described in Figure 6.23,
the metadata is filled in automatically upon creation of the article and the
common maintenance attributes are inherited from the associated EKR. The
description, process model and associated file(s) fields have been filled in
manually.

199

Figure 6.25: Example of case report article

Finally, Figure 6.25 shows an example of a case report article for the

maintenance task. Like the knowledge and process element articles, metadata
and common maintenance attributes are inherited. Furthermore, associated
knowledge and process elements are linked to the case report using the
'Neighbour article' functionality of AKM. The case report furthermore contains

200

some report-specific attributes (under 'Case Report'), such as maintenance visit
number, aircraft registration, task time, flight hours, flight cycles, and others.

The case report model and associated articles are particularly important from
the perspective of documentation management for maintenance compliance. The
format of these case reports can easily be changed to fit company specifications.
The AKM tool includes functionality to export articles and article information into
Word or Excel directly. This makes it possible to completely digitalize the
generation, storage and management of maintenance documentation.

To enable the search and retrieval of EKRs in the maintenance domain, semantic
annotation is used. Annotation of EKRs and its subsidiary elements is achieved
through applying the PPR maintenance domain ontology concepts and
relationships to the EKR classes. An example for the slat main track downstop
assembly EKR is given in Figure 6.26. This Figure shows the Product-Process-
Resource classes that have been used to annotate the EKR. Similarly, the
knowledge elements, process elements and case reports are annotated by
Product-Process-Resource classes, but this is not shown in the Figure.

Figure 6.26: Semantic annotation of EKR

201

In implemented form, annotation is achieved through article tags in AKM,
which associate an article (be it an EKR article, a knowledge element article, a
process element article or a case report) with a number of semantic tags. An
example of tagging the downstop assembly EKR is shown in Figure 6.27, which
shows checkmarks for each tag that has been applied (e.g. Product: Slat Main
Track Assembly and Document Resource: Service Bulletin).

Figure 6.27: Tagging an EKR in Ardans Knowledge Maker

202

6.3.5 Analysis & Delivery

The Knowledge Lifecycle Model, the KLC ontology and the KNOMAD methodology
have been applied to construct a proof-of-concept knowledge-based application
to support the execution and reporting of a maintenance task: B737 leading edge
slat main track downstop assembly inspection and modification. The solution does
not include an inference capability, nor is significant automation of existing
processes achieved at this point. However, through the use of the EKR approach,
the solution supports capture, formalization, use, maintenance of knowledge –
the central aspects of the overall dissertation research objective as well as this
case study.

The solution meets the following case study requirements:
• It supports end users in the execution of a maintenance task.
• It provides a digital means of record keeping.

The implemented proof-of-concept solution consists of a single EKR. The
implementation of more EKRs has not been considered for this case study, as a)
only limited access to OEM Service Bulletins was available, b) the functional
solution has been developed to a proof-of-concept stage to meet the case study
objectives.

As such, quantification of costs and benefits of the tool has not been
considered in detail. Development of EKR models and model XPATH code has
taken approximately one working day. Capturing the illustrations and text from
the ADs and SBs for the slat main track downstop assembly modification and
inspection, followed by the development of EKR articles (EKR, knowledge and
process elements), has taken approximately half a working day. It can be
estimated that development of a full EKR will require somewhere between half a
working day and a full working day. As an indication: 16 ADs have been issued for
B737 maintenance tasks related to the aircraft wing.

 No delivery aspects are considered, given the lack of collaboration with an
industrial partner for this case study.

6.4 Discussion of Results

The combination of the ontology-based approach and use of the AKM tool
addresses the usability and maintainability requirements associated with this case
study in the following way:

• Moving beyond black-box applications and ensuring transparency: the

developed EKR brings together dispersed maintenance knowledge (ADs,
SBs, maintenance reports) into one access point. The automatically

203

included metadata as well as the semantic annotation coupled with AKM
functionality makes it straightforward to access, inspect and maintain EKR
elements. The solution enables storing, justifying and updating
maintenance knowledge elements and processes and supports
maintenance record keeping. With respect to transparency, the use of the
ontology-based EKR approach makes it clear which knowledge is involved
for specific maintenance tasks: the knowledge elements, process
elements and case reports are all gathered within the EKR 'container' and
are captured in a standard way. These elements and reports can be
straightforwardly searched and retrieved through the semantic
annotation as well as the article metadata which is automatically added
upon creation of an article.

• Task orientation: knowledge involves a ‘capability for effective action’.
The capability for action is met in two ways. Firstly the solution offers
support for maintenance task execution by offering a 'one-stop' portal for
the documentation, process models and maintenance reports associated
with that task. Secondly, end users can use the web-based tool to create
and manage maintenance reports.

• Expert / end user involvement: through the ontology-based EKR
approach, end users are able to identify, use, interact with and if
necessary, maintain or update the data, information and knowledge
related to a specific maintenance task.

There are a number of disadvantages and challenges related to the currently
implemented solution. First of all, the solution requires a relatively high amount
of manual interaction, primarily in setting up EKRs but also in completing
maintenance reports.

Despite the relatively low time needed to implement a single EKR, the sheer
amount of ADs and SBs available indicates a large investment of resources to set
up a complete knowledge base with EKRs for each maintenance task. There is
however some potential to automate knowledge article generation by linking
AKM with information retrieved from myboeingfleet.com and FAA / EASA
databases. This is because information in XML format can be imported to and
exported from AKM. The completion of case reports also requires manual input.
Similar to the previous point, case report generation is technically possible by
linking AKM with external maintenance programs. However, these options have
not explored (yet) as they are beyond the objective and scope of this case study.

Besides additional insight into the application of the ontology-based

approach, the maintenance case study has offered further insight into the
Knowledge Lifecycle model through quantification of a sample of ADs. The

204

associated analysis has shown that the Knowledge Lifecycle Model and the
concepts of knowledge states and knowledge actions can be used to characterise
and quantify the behaviour of knowledge throughout its lifecycle. With respect to
the associated analyses, a few essential limitations must be noted:
• The preceding analysis has not considered the measurement of knowledge

behaviour throughout aircraft lifecycle stages: the changes in knowledge
from design to manufacturing and maintenance have not been considered.

• Though the knowledge actions can successfully be applied to measure
knowledge behaviour, the maxim of 'correlation, not causation' still applies;
underlying causes of observed behaviour are not analysed and explained
here.

With respect to the development of the Knowledge Lifecycle Model itself, a

potential development is the further operationalization of knowledge states and
actions – it may be possible to establish quantitative indicators for the
'performance' of knowledge throughout its life. Furthermore, the influence of
knowledge types must be established. It may very well be the case that some
knowledge types are more sensitive to knowledge change than others. Both of
these developments are not considered further within the scope of this
dissertation.

205

7 Conclusion

In this final chapter, the findings from the three case studies are synthesized and
the overall contribution to theory is discussed. This leads to conclusions with
respect to the research objectives and questions, given in Section 7.2. Finally, the
limitations of the performed research will be discussed, followed by
recommendations for future research.

7.1 Research Synthesis

Three case studies have been performed in the design, manufacturing and
maintenance phases of the aircraft lifecycle to validate the theoretical
contributions and to reach the objective of supporting consistent formalization,
use and maintenance of changing knowledge. The contributions from theory
development and the case studies can be synthesized into a vision for knowledge
change in knowledge engineering and into a reflection on the results in relation to
the research objectives and challenges.

7.1.1 Synthesizing a Vision for Knowledge Engineering

When synthesizing the theoretical contributions and the case study contributions,
a vision emerges with regard to knowledge engineering for static (routine)
processes versus dynamic processes in which knowledge is subject to change. This
vision is encapsulated in Figure 7.1, which highlights two streams of knowledge
engineering with associated methodologies and models. Stream 1 concerns static
knowledge, i.e. knowledge that does not change or changes slowly and
predictably; this knowledge is associated with routine processes, can be captured,
mapped and used to automate engineering processes to a very high degree
through the use of knowledge-based systems and applications. Stream 2 concerns
dynamic knowledge, i.e. knowledge that changes. This knowledge is associated
with changing processes, can also be captured, mapped and used for knowledge-
based systems and applications, but care must be taken to account for knowledge
change: attention to maintainability and usability contribute towards continued
use. Figure 7.1 expresses that the Knowledge Lifecycle Model has the potential to
(quantitatively) assess knowledge change in engineering processes. Based on the
outcome of such an assessment, the methods, models and tools necessary for the
development of a knowledge-based system can be chosen. For routine (static)
processes, available methodologies such as MOKA and CommonKADS and
associated models (MOKA Informal & Formal models; CommonKADS’ Knowledge
Model) can be adopted to automate engineering work. In Figure 7.1, the MOKA
methodology and models are given on the left-hand side in the 'Routine
processes' box. The CommonKADS set of models is given on the right-hand side in

206

that box. For dynamic processes, the method and model proposed in this
dissertation (KNOMAD + KLC ontology) can be used – they are given in the
'Dynamic processes' box. KNOMAD and the KLC ontology can be supplemented by
models from stream 1 (e.g. the use of CommonKADS’ task and inference
templates from its Knowledge Model to support development of the KLC
ontology’s Process_Element and Process classes). The potential interfaces
between methodologies, models and tools for static and dynamic knowledge
processes have intentionally been represented with a single dotted line between
the static and dynamic process 'regions' under point 2). This dotted line is
representative for the realization that issues such as decision variables (when is a
knowledge process 'sufficiently' dynamic or static to make a choice for a certain
solution approach) and interaction between methodologies and models have not
yet been researched in detail.

207

Figure 7.1: Two streams of knowledge engineering related to knowledge change

208

7.1.2 Synthesizing the Case Study Results relative to Research
Objectives and Challenges

Seen as a whole, what insights do the case studies offer with respect to the
formalization, use and maintenance of changing knowledge? How does the use of
the Knowledge Lifecycle Model, KLC ontology and KNOMAD meet the common
research challenges identified in Section 2.3? For convenience, the research
objectives and associated challenges are summarized in Table 7.1.

Table 7.1: Research objectives related to research challenges

Research objective Associated research challenge(s)
Knowledge lifecycle modelling Characterise, model and quantify the

behaviour of knowledge within product life
Ontology-based approach to support
knowledge change

Maintainability:
- Moving beyond black-box KBS
applications and ensuring transparency
Usability:
- Task orientation
- Expert / end user involvement

Methodology development Methodological approach to facilitate
knowledge change management

With respect to the theory-oriented challenge – characterisation, modelling

and quantification of the behaviour of knowledge within aircraft life – the
following observations can be made from the case studies. The Knowledge
Lifecycle Model has been developed to characterize and model the knowledge
lifecycle by incorporating the concepts of knowledge states and actions. This
model has been incorporated in the KNOMAD methodology and has successfully
been applied to identify and characterize knowledge within three aircraft lifecycle
phases. For the design and manufacturing domains, a qualitative discussion of
knowledge change using the KLM concepts has proven possible. For the
maintenance domain, both qualification and quantification of knowledge change
have been performed.

One challenge regarding maintainability has been identified: moving beyond
black-box KBS applications and ensuring transparency. In all three case studies, it
has proven possible to set up solutions that allow knowledge and processes to be
inspected and modified by knowledge engineers and end users. Through the
Knowledge and Knowledge Element classes, users can inspect individual
knowledge elements, both in informal (e.g. maintenance task knowledge, see
Section 6.3.4.2) and combined informal – formal representation (e.g.
manufacturing constraints for ply continuity optimization, see Section 4.3.4.2 and
Figure 4.9). The Process and Process_Element classes offer the user the possibility
to inspect the task activities and inferences that are used to solve a problem. For

209

example, the manufacturing cost model has been split up into process steps that
can be individually inspected, downloaded and used to compose and run a cost
model.

 The cases have shown how a combination of inputs (knowledge), process,
and outputs (cases) may be employed. Through the EKR concept, traceability is
ensured. In particular, the Case class and the associated case reports enable
tracing the outputs of knowledge application for a specific task, as well as tracing
the knowledge and processes used to perform a task. The metadata that is
associated with knowledge and process elements (authorship, lifecycle state,
status, etc.) also aids traceability in terms of knowledge ownership, validity and
reliability. Through the PPR paradigm, visibility of key concepts is ensured. It has
been shown in the three case studies how development of a domain ontology in
combination with semantic annotation of implemented EKRs makes it easy to find
and inspect knowledge-based applications and their components. Figure 4.18,
Figure 5.16 and Figure 6.26 show how an EKR can be annotated using the PPR
classes. Furthermore, the combination of a web-based knowledge management
application with the PPR paradigm (as shown in Figure 6.27) has meant that EKRs,
the contained knowledge, processes and cases are all easily accessible. Figure 5.18
shows the user process for cost model composition, which gives insight into the
process steps that are necessary for finding and inspecting knowledge elements of
an EKR using this knowledge management application.

Besides maintainability, knowledge change poses challenges on usability. Task
orientation and expert / end user involvement are two specific challenges that the
case studies have addressed. With regard to the challenge of task orientation, the
EKR concept has been adopted as part of the KLC ontology to support the
modelling, implementation and execution of specific engineering tasks within
knowledge-based systems. EKRs contain the input, process and output for
engineering tasks in the form of knowledge elements, process elements and
cases. In Sections 4.2.2, 5.2.2 and 6.2.3, functional analysis has been performed to
break down the specific engineering tasks (ply continuity optimization, cost
modelling and estimation, slat assembly main downstop modification and
inspection) into specific process activities. In each case study, one or more EKRs
have been developed to represent and support the execution of these tasks.

The final challenge is expert / end user involvement. The case studies have
shown that the use of a web-based knowledge management solution has the
potential to involve the user in execution and control of engineering tasks. The
best examples of user involvement in task execution are given in the
manufacturing and maintenance case studies. For the manufacturing case study,
the user process as given in Figure 5.18 shows how users can compose a cost
model by inspecting, collating and downloading EKRs. Users can subsequently
interact with the cost model in Excel. For the maintenance case study, users can

210

consult documentation and enter case reports online while executing the
maintenance task. User involvement in task control has been shown in the
manufacturing case study: the Excel cost model can be cross-checked with the
knowledge base. Using the knowledge solution’s validation cycle for knowledge
elements, users can work on the basis of the most up-to-date knowledge. Finally,
the solution devised for the design case study featured the most automation of
steps. In theory, users can select the specific design and manufacturing
constraints that they want to apply for the optimization of ply continuity. In
practice, all constraints are automatically included into the analysis. In short, the
developed case study solutions have the functionality to involve users in task
execution and control. However, a clear downside of the proof-of-concept status
of the solutions developed in the case studies is that the involvement of experts
and end users has not been experimentally validated, though formal design
reviews have been held.

In summary, three main academic contributions have been made in this
dissertation:

1) Knowledge Lifecycle model: the model allows for the characterisation
and quantification of knowledge change. It has been applied successfully
for all case studies on a qualitative basis and the aircraft maintenance
case study has shown that the model has additional potential to quantify
knowledge change.

2) Knowledge Lifecycle (KLC) ontology: the KLC ontology leverages existing
ontologies, the Enterprise Knowledge Resource concept, the Knowledge
Lifecycle model and the Product-Process-Resource paradigm into one
consistent model for supporting the development of knowledge-based
applications that can cope with knowledge change. It has been applied in
multiple aircraft lifecycle stages.

3) Development of KNOMAD methodology: the KNOMAD methodology has
been introduced to support the development of knowledge-based
applications for engineering tasks that are subject to knowledge change.

These academic contributions have been validated through a case study

approach. It has been shown that the Knowledge Lifecycle Model, KNOMAD
methodology and KLC ontology can successfully be applied in each aircraft
lifecycle phase.

7.2 Research Conclusions

The vision of this research has been to show that knowledge changes and has a
lifecycle which can be modelled and quantified, and to carry through the

211

implications of knowledge change into an ontology-based approach and a
methodology to consistently formalize, use and maintain knowledge within the
aircraft lifecycle. The following associated high-level research goal has been
identified:

Support consistent formalization, use and maintenance of changing
knowledge within aircraft lifecycle phases to improve domain-specific
modelling, execution and control of engineering tasks

This statement can be broken down into four main elements:
• Support consistent formalization, use and maintenance [of]: the KNOMAD

methodology provides a consistent approach towards the formalization of
knowledge. The KLC ontology has been set up to enable consistent use and
maintenance of knowledge through use of the Enterprise Knowledge
Resource concept and the Product-Process-Resource paradigm.

• Changing knowledge: the Knowledge Lifecycle Model has been developed to
enable characterisation and measurement of knowledge change over time.

• Within aircraft lifecycle phases: case studies have been performed in the
aircraft design, manufacturing and maintenance domains.

• To improve domain-specific modelling, execution and control of engineering
tasks: the solutions developed for the case studies have improved modelling,
execution and control of specific engineering tasks, as discussed in Sections
4.4, 5.4, 6.4 and the research synthesis (Section 7.1.2).

7.2.1 Theory Development: Knowledge Lifecycle Modelling

The first research objective is knowledge lifecycle modelling. The associated
research questions are
• Which concepts and relationships are required to characterise the change of

explicit knowledge within and throughout the aircraft lifecycle phases?
• How does explicit knowledge change within specific phases of the aircraft

lifecycle?
• Is change of explicit knowledge quantifiable?

With respect to the first research question, the Knowledge Lifecycle model

has been developed in Section 3.1 to allow for the characterisation and
quantification of knowledge change. The model uses the concepts of knowledge
states and knowledge actions to achieve this. In particular, knowledge actions
(create, formalize, use, maintain, update, retire) can be used to quantify
knowledge change.

212

 With respect to the second research question, the model has been
qualitatively applied for three specific phases of the aircraft lifecycle: design,
manufacturing and maintenance. The knowledge states have been used to
characterise knowledge change relative to each case study for these lifecycle
phases.

The third research question has been addressed by quantifying the change of
explicit knowledge for the aircraft maintenance domain on the subject of
Airworthiness Directives (ADs) for two aircraft types: the Airbus A320 and the
Boeing B737. The knowledge actions create, maintain, update and retire have
been quantified for these samples. Within these boundaries, the knowledge
lifecycle model has provided an adequate way of quantifying knowledge change
over the lifecycle of an aircraft. From the samples, it has been possible to
conclude that the frequency of knowledge actions decreases along the knowledge
lifecycle. With respect to case-specific hypotheses, the main finding has been that
a significant, small-to-medium size increasing trend in knowledge change per year
can be observed from the A320 and B737 samples (RA320 = .497, pA320 < .05, RB767 =
.644, pB737 < .01).

7.2.2 Theory Development: Ontology-based Approach to Support
Knowledge Change

The second research objective is to develop an ontology-based approach to
support knowledge change in knowledge-based applications, with a view to
improved usability and maintainability of these applications. The associated
research questions are
• Which concepts and mechanisms support the consistent formalization, use

and maintenance of changing knowledge throughout the aircraft lifecycle?
• How can knowledge change be accommodated during knowledge-based

application development?
o Which models are required and how do these models help to

accommodate knowledge change?

An ontology has been developed to support knowledge change in knowledge-

based applications. This Knowledge Life Cycle (KLC) Ontology has been built using
a number of contributing elements, which together address the first research
question. The Product-Process-Resource paradigm used in Dassaults Systemes’
PLM software is a main contribution and is used to represent the context in which
engineering tasks are performed. The Enterprise Knowledge Resource concept is
another essential contribution. EKRs are used to represent engineering tasks. An
EKR is built up in a modular way and contains inputs, process and outputs in the
form of knowledge elements, process elements and cases. Concepts and
relationships included in previous ontologies such as the PROMISE Semantic

213

Object Model and the Core Ontology for Process Data Warehouse have been
added into the KLC ontology. Finally, the knowledge lifecycle model introduced in
Chapter 4 has been used to identify attributes that help in identifying and
measuring knowledge change.

All contributions have been incorporated into a single ontology. The ontology
has been modelled in Unified Modelling Language (UML) and is given in Figure
3.7. The ontology can be used to model and implement engineering tasks through
the EKR concept; this contains the knowledge and process elements necessary for
an engineering task and stores the output of the engineering task as case reports.
The engineering task (as embodied in an EKR) can be semantically annotated
through the Product, Process and Resource classes and subclasses, as shown in
Figure 4.18, Figure 5.16, Figure 5.19 and Figure 6.26. The task and domain
ontologies encompassed in the KLC ontology have been implemented in the AKM
tool in the case studies, serving as the backbone for solution development and
substantiating the ontology-based approach.

To answer the pair of research questions related to the accommodation of
knowledge change, the ontology-based approach has been successfully employed
in three case studies, addressing the design, manufacturing and maintenance
aircraft lifecycle phases. In conjunction with the KNOMAD methodology, the KLC
ontology has proven viable for KBS development in each lifecycle phase. For each
phase, a knowledge-based application has been developed that addresses
challenges related to the usability and maintainability of knowledge. In particular,
the issues of transparency, 'black-box' applications, task orientation and user
involvement have been addressed, as discussed in the research synthesis (Section
7.1) and the individual case study discussions (Sections 4.4, 5.4 and 6.4).

7.2.3 Theory Development: Methodology Development

The third research objective has been to develop a methodology for supporting
the development of 'white-box' knowledge-based applications that can cope with
knowledge change. The associated research questions are
• How can knowledge change be accommodated during knowledge-based

application development?
o Which steps are required?

To support the ontology-based approach towards knowledge-based

application development, the KNOMAD methodology has been proposed in this
dissertation. After justification of the business case for knowledge-based
application development, the KNOMAD methodology contains steps for the
capture of knowledge and subsequent identification of knowledge change. To this
end, the Knowledge Lifecycle can be used to characterise and quantify knowledge
change. Capture of knowledge is followed by normalization to comply with

214

(quality) standards. The methodology furthermore advises to develop domain-
specific ontologies for the structuring and annotation of knowledge-based
applications. These applications have to be modelled and implemented, followed
by performance analysis and deployment into engineering practice. As such, the
KNOMAD methodology answers the research questions mentioned above.

As mentioned before, the KNOMAD methodology has been successfully
applied in conjunction with the KLC ontology in the development of knowledge-
based applications for the design, manufacturing and maintenance domains.
Usability and maintainability challenges have been addressed, as mentioned at
the end of the previous section.

7.3 Research Limitations & Recommendations

In this Section, two sets of limitations are discussed: foreseen limitations due to
the formulated research objectives, scope and design, and unforeseen limitations
that have come up while performing research.

Most of the pre-existing limitations have been discussed in the research setup
(Section 1.2.1.2) at some length. Interoperability of applications through aircraft
life, knowledge exchange across aircraft lifecycle stages, organizational factors,
automatic translation between informal and formal knowledge representation
and automation are all considered as outside of scope, which translates to
limitations on the breadth and implications of the performed research. With
respect to the interoperability and organizational limitations, the research papers
referenced in Sections 2.1, 2.2.2, 3.1.1 and 3.2.1 are good starting points for
further research. The most potential for future research is related to the
automatic translation between informal and formal knowledge representations.
A potentially much more elegant solution to account for knowledge change would
be to have coupled informal and formal models, including code generation &
implementation (Verhagen et al., 2012). Knowledge can be represented in
informal terms (for end users) in the knowledge base and this can be translated
automatically into detailed, KBE application-specific language. End users can work
directly on the basis of informal knowledge – any changes made by them are
incorporated automatically into the code. Vice versa, any changes to the KBE
application can be incorporated in the knowledge base – the knowledge base and
KBE application are fully synchronized. The iPROD European Seventh Framework
Programme project (iProd, 2013) is working towards this goal, as is research in the
Flight Performance and Propulsion chair at Delft University of Technology (Van
Dijk et al., 2012; Chan, 2013).

Another research limitation derives from the research design. The choice for
practice-oriented case study research means that results from these case studies
cannot be straightforwardly generalized. The generalization of the ontology-based

215

approach to KBS development must be validated through more case studies and
in industrial settings (use 'in anger').

The following research limitations and associated recommendations have
emerged during and from the research performed and discussed in this
dissertation.

1) Knowledge lifecycle modelling & validation
Limitation: as mentioned before, no quantification of knowledge
change has been performed for the aircraft design and
manufacturing domains. Knowledge change has been discussed
on a case study basis. However, the Knowledge Lifecycle Model
evidently has to be quantitatively validated across more domains
and (potentially) products to note its strengths, shortcomings and
implications and thereby to gain acceptance in the scientific
community.
Recommendation: establishing a formal foundation for the
Knowledge Lifecycle model would aid quantification, analysis and
replication of results. Investigation and application of TMS (Doyle,
1979; Katsuno and Mendelzon, 1991) to quantify knowledge
change in propositional knowledge bases is of particular promise.
The Knowledge Lifecycle model has to be validated across more
domains and product types.

2) Task complexity due to multiple element interactions
Limitation: The modular approach to development of KBS as
expressed in the KLC ontology (e.g. reflected in the use of
Knowledge_Element and Process_Element classes) poses a
potential problem: the number of (potential) interfaces between
these elements grow quickly, leading to increasingly complex
systems. Is there a natural limit; how many elements should an
EKR consist of? The complexity resulting from system element
interactions is briefly explored in Appendix A: Complexity
Estimation.
Recommendation: It is necessary to further investigate this issue
and if possible, empirically assess whether and where limits on
the use of modular elements can be found. This can result in
guidelines for the use of a modular approach to KBS
development.

3) Verification and validation
Limitation: Verification can be defined by considering the
question: “Are we building the product right?” (Boehm, 1981).
Alternatively, it can be seen as the 'process of testing that a
product meets its specification' (Coenen and Bench-Capon, 1993).

216

Validation refers to “Are we building the right product?” (Boehm,
1981) and can be seen as 'the process of testing that a product
satisfies the requirements of the customer' (Coenen and Bench-
Capon, 1993). The three case studies provide validation of the
ontology-based approach towards KBS development. However,
verification is not explicitly taken into account: there is no proof
to the claim that the ontology-based approach of building KBS
using KNOMAD and the KLC ontology is the 'right' approach. In
fact, alternative approaches may be just as good or even better:
see also the point made previously with respect to automatic
translation between informal and formal representations of
knowledge. However, the simplicity, low conceptual entry barrier
and wide applicability of the ontology-based approach are
potential advantages.
Recommendation: it is recommended to conduct a case study
using multiple approaches and evaluate the results using
predetermined indicators. Confounding variables such as a
learning effect and case study team composition must be taken
into account and neutralized.

4) Process maturity evaluation
Limitation: evaluating the maturity and stability of a process may
inform decision-making about following a 'static' or 'dynamic'
approach (see also Figure 7.1).
Recommendation: The Knowledge Lifecycle model can potentially
be part of the maturity assessment. Research must establish how
the concepts from this model can be fruitfully applied in a process
maturity assessment.

5) Beyond the current ontology-based approach to knowledge
change in knowledge-based applications:
i. Task hierarchy: how does the ontology-based approach scale

up when a hierarchy of tasks must be modelled and
represented? Can EKRs be stacked onto each other? This issue
is not investigated here; a more formal in-depth study on task
modelling and implementation is necessary, for instance
building upon the research related to the IDEF modelling
technique (Integrated Definition Methods, 2012) and the
Function-Behaviour-State theory (Umeda et al., 1990; Umeda
et al., 1995) and translating that towards the ontology-based
approach.

i. Making use of ontology capabilities: the KLC ontology is
currently not expressed in a formal way, e.g. through the use

217

of first order logic (FOL) predicates. Doing so would aid
academically and practically: from an academic perspective, it
becomes easier to validate the semantics of the ontology.
With that, reproducibility and criticism of the ontology is
facilitated. From a practical perspective, the reasoning
capabilities associated with a formal ontology – e.g.
subsumption, coherence, identity, compatability – can be
facilitated and used in the development and maintenance of
knowledge-based systems.

This research may serve as the starting point for several avenues of further
research, such as recommended above. It is hoped that the consideration of a
broad scope – including three quite different phases of the aircraft lifecycle – may
lead to follow-up research regarding the issues surrounding knowledge change.
Other scholars are invited to refine, revise, refute and/or expand the insights that
have been developed in this dissertation.

218

219

References

Abramovici, M. (2007). "Future Trends in Product Lifecycle Management (PLM): The Future of
Product Development". F.-L. Krause (eds.), Springer Berlin Heidelberg, pp. 665-674.

Airbus. (2011). "Global Market Forecast 2010 - 2029." Retrieved 16-08-2011, from
http://www.airbus.com/company/market/gmf2010/.

Airbus. (2012). "AIRMAN." Retrieved 13-11-2012, from http://www.airbus.com/innovation/proven-
concepts/in-fleet-support/airman/.

Aitken, J., P. Childerhouse and D. Towill (2003). "The impact of product life cycle on supply chain
strategy". International Journal of Production Economics, 85(2): pp. 127-140.

Alavi, M. and D. E. Leidner (2001). "Review: Knowledge management and knowledge management
systems: Conceptual foundations and research issues". Mis Quarterly, 25(1): pp. 107-136.

Ameri, F. and D. Dutta (2005). "Product lifecycle management: Closing the knowledge loops".
Computer-Aided Design and Applications, 2(5): pp. 577-590.

Amodio, C. C., C. Cziulik, C. Ugaya, E. Fernandes, F. Siqueira, H. Rozenfeld, . . . S. Branício (2008).
"Ontologia PLM Project: Development and Preliminary Results". R. Curran, S.-Y. Chou and
A. Trappey (eds.), Collaborative Product and Service Life Cycle Management for a
Sustainable World. London, Springer, pp. 503-511.

Aviation-Week. (2011). "Airbus Refines A30X Design." Retrieved 15-08-2011, from
http://www.aviationweek.com/aw/generic/story_generic.jsp?channel=awst&id=news/aw
020909p3.xml&headline=null&next=0.

Baker, A., S. Dutton and D. Kelly (2004). Composite Materials for Aircraft Structures, Reston, Virginia,
American Institute of Aeronautics and Astronautics.

Baker, M., T. Dowling, W. Martinez, T. Medejski, D. Pedersen and D. Rockwell (2006). "New
Enhanced Service Bulletins". Aero Quarterly, 4(6): pp. 12-15.

Bermell-Garcia, P. (2007). "A metamodel to annotate knowledge based engineering codes as
enterprise knowledge resources". Cranfield University, Ph.D. dissertation.

Bermell-Garcia, P. and I. S. Fan (2008). "Practitioner requirements for integrated Knowledge-Based
Engineering in Product Lifecycle Management". International Journal of Product Lifecycle
Management, 3(1): pp. 3-20.

Bermell-Garcia, P., W. J. C. Verhagen, S. Astwood, K. Krishnamurthy, J. L. Johnson, D. Ruiz, . . . R.
Curran (2012). "A framework for management of Knowledge-Based Engineering
applications as software services: Enabling personalization and codification". Advanced
Engineering Informatics, 26(2): pp. 219-230.

Bilgic, T. and D. Rock (1997). "Product Data Management Systems: State of the Art and the Future".
DETC '97; 1997 ASME Design Engineering Technical Conferences, Sacramento, California,
ASME.

Birkinshaw, J. and T. Sheehan (2002). "Managing the knowledge life cycle". MIT Sloan Management
Review, 44(1): pp. 75-83.

Blom, A. W. (2010). "Structural Performance of Fiber-Placed, Variable-Stiffness Composite Conical
and Cylindrical Shells". Delft University of Technology, Ph.D. dissertation.

Boehm, B. W. (1981). Software Engineering Economics, Prentice-Hall.
Boeing (2010). Boeing Service Bulletin 737-57A1302, Revision 1.
Borgo, S. and P. Leitão (2007). "Foundations for a Core Ontology of Manufacturing Ontologies". R.

Sharman, R. Kishore and R. Ramesh (eds.), Ontologies: A Handbook of Principles, Concepts
and Applications in Information Systems, Springer, pp. 751-775.

Borst, P., H. Akkermans and J. Top (1997). "Engineering ontologies". International Journal of Human
Computer Studies, 46(2-3): pp. 365-406.

220

Brandt, S. C., J. Morbach, M. Miatidis, M. Theißen, M. Jarke and W. Marquardt (2008). "An ontology-
based approach to knowledge management in design processes". Computers and Chemical
Engineering, 32(1-2): pp. 320-342.

Brissaud, D. and S. Tichkiewitch (2001). "Product Models for Life-Cycle". CIRP Annals -
Manufacturing Technology, 50(1): pp. 105-108.

Brockmans, S., R. Volz, A. Eberhart and P. Löffler (2004). "Visual modeling of OWL DL ontologies
using UML". The Semantic Web–ISWC 2004: pp. 198-213.

Bruyneel, M. (2011). "SFP-a new parameterization based on shape functions for optimal material
selection: Application to conventional composite plies". Structural and Multidisciplinary
Optimization, 43(1): pp. 17-27.

Bruyneel, M., C. Beghin, G. Craveur and F. Colsoul (2012). "Topology optimization of composite
structures with continuous design variables". 2012 SAMPE International Symposium and
Exhibition - Emerging Opportunities: Materials and Process Solutions, Baltimore, MD.

Buckowitz, W. R. and R. L. Williams (1999). Knowledge management fieldbook, London, Prentice-
Hall.

Bufardi, A., P. Folan and K. Cormican (2005) "DR7.1: Concepts for translation and transformation of
information to knowledge". PROMISE Consortium 2004 - 2008. 507100 PROMISE; A
Project of the 6th Framework Programme Information Society Technologies (IST).

Burhani, S. (2012). "Compliance during Aircraft (Component) Redeliveries". Delft University of
Technology, M.Sc. thesis.

Butterfield, J., W. McEwan, P. Han, M. Price, D. Soban and A. Murphy (2012). "Digital Methods for
Process Development in Manufacturing and Their Relevance to Value Driven Design". Air
Transport and Operations - Proceedings of the Second International Air Transport and
Operations Symposium 2011, Delft, The Netherlands, IOS Press.

Chan, P. K. M. (2013). "A New Methodology for the Development of Simulation Workflows". Delft
University of Technology, M.Sc. thesis.

Choi, J. W., D. Kelly, J. Raju and C. Reidsema (2005). "Knowledge-based engineering system to
estimate manufacturing cost for composite structures". Journal of Aircraft, 42(6): pp.
1396-1402.

Coenen, F. and T. Bench-Capon (1993). Maintenance of Knowledge-Based Systems: Theory,
Techniques and Tools, London, Academic Press.

Colledani, M., W. Terkaj, T. Tollio and M. Tomasella (2008). "Development of a conceptual reference
framework to manage manufacturing knowledge related to products, processes and
production systems". A. Bernard and S. Tichkiewitch (eds.), Methods and tools for effective
knowledge life-cycle management. Berlin, Springer, pp. 3-21.

Compositesworld. (2011). "Thermoplastic composites on tap for the A30X, new process in testing "
Retrieved 15-08-2011, from http://www.compositesworld.com/news/afp-demonstrator-
produces-thermoplastic-composite-parts-for-airbus-a30x.

Cooper, C. A. (2011). "Development of a Methodology to Support Design of Complex Aircraft
Wings". Delft University of Technology, Ph.D. dissertation.

Cooper, D. and G. La Rocca (2007). "Knowledge-based Techniques for Developing Engineering
Applications in the 21st Century". 7th AIAA ATIO Conference, Belfast, Northern Ireland,
AIAA 2007-7711.

Corallo, A., R. Laubacher, A. Margherita and G. Turrisi (2009). "Enhancing product development
through knowledge-based engineering (KBE): A case study in the aerospace industry".
Journal of Manufacturing Technology Management, 20(8): pp. 1070 - 1083.

Cranefield, S. and M. Purvis (1999). "UML as an Ontology Modeling Language". Proceedings of the
Workshop on Intelligent Information Integration, 16th International Joint Conference on AI
(IJCAI-99), Stockholm.

221

Curran, R., J. Butterfield, Y. Jin, R. Collins and R. Burke (2010). "Value-Driven Manufacture: Digital
Lean Manufacture". R. Blockley and W. Shyy (eds.), Encyclopedia of Aerospace
Engineering, John Wiley & Sons, Ltd.

Curran, R., S. Raghunathan and M. Price (2004). "Review of aerospace engineering cost modelling:
The genetic causal approach". Progress in Aerospace Sciences, 40(8): pp. 487-534.

Curran, R., W. J. C. Verhagen, M. J. L. Van Tooren and A. H. Van der Laan (2010). "A multidisciplinary
implementation methodology for knowledge based engineering: KNOMAD". Expert
Systems with Applications, 37(11): pp. 7336-7350.

Dassault Systemes. (2012). "CATIA V5R16 - Fact Sheet." Retrieved 16-12-2012, from
http://www.3ds.com/fileadmin/V5R16/CATIA_V5R16_Factsheets_final.pdf.

Davenport, T. H. and L. Prusak (1998). Working Knowledge: How Organisations Manage What They
Know, Boston, Harvard Business Press.

de Kleer, J. (1986). "An assumption-based TMS". Artificial Intelligence, 28(2): pp. 127-162.
Doyle, J. (1979). "A truth maintenance system". Artificial Intelligence, 12(3): pp. 231-272.
EASA. (2012). "EASA Airworthiness Directives Publishing Tool." Retrieved 14th February, from

http://ad.easa.europa.eu/.
Elgh, F. and M. Cederfeldt (2010). "Documentation and Management of Product Knowledge in a

System for Automated Variant Design: A Case Study". J. Pokojski, S. Fukuda and J. Salwiński
(eds.), New World Situation: New Directions in Concurrent Engineering, Springer London,
pp. 237-245.

Emberey, C. L., N. Milton, J. P. T. J. Berends, M. J. L. Van Tooren, S. W. G. Van der Elst and B.
Vermeulen (2007). "Application of Knowledge Engineering Methodologies to Support
Engineering Design Application Development in Aerospace". 7th AIAA Aviation Technology,
Integration and Operations Conference (ATIO), Belfast, Northern Ireland.

Epistemics. "PCPACK." Retrieved 17-01-2011, from http://www.epistemics.co.uk/Notes/55-0-0.htm.
Er, A. and R. Dias (2000). "A rule-based expert system approach to process selection for cast

components". Knowledge-Based Systems, 13(4): pp. 225-234.
Erden, M., H. Komoto, T. Van Beek, V. D'amelio, E. Echavarria and T. Tomiyama (2008). "A review of

function modeling: Approaches and applications". Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 22(02): pp. 147-169.

European Federation of National Maintenance Societies. (2011). "What does EFNMS stand for?"
Retrieved 15 December, from http://www.efnms.org/What-EFNMS-stands-
for/m13l2/What-EFNMS-stands-for.html.

Eynard, B., T. Gallet, P. Nowak and L. Roucoules (2004). "UML based specifications of PDM product
structure and workflow". Computers in Industry, 55(3): pp. 301-316.

Eynard, B., T. Gallet, L. Roucoules and G. Ducellier (2006). "PDM system implementation based on
UML". Mathematics and Computers in Simulation, 70(5-6): pp. 330-342.

FAA (2007). Airworthiness Directive FAA AD 2007-18-52.
FAA (2011). Airworthiness Directive FAA AD 2011-06-05.
FAA. (2012). "RGL - Airworthiness Directives." Retrieved 13-06-2012, from

http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgAD.nsf/MainFrame?Ope
nFrameSet

Fan, I. S. and P. Bermell-Garcia (2008). "International Standard Development for Knowledge Based
Engineering Services for Product Lifecycle Management". Concurrent Engineering-
Research and Applications, 16(4): pp. 271-277.

Fan, I. S., G. Li, M. Lagos-Hernandez, P. Bermell-Garcia and M. Twelves (2002). "A Rule Level
Knowledge Management System for Knowledge Based Engineering Applications". ASME
2002 International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference (IDETC/CIE2002), Montreal, Quebec, Canada ASME.

Feigenbaum, E. A. and P. McCorduck (1983). The fifth generation : artificial intelligence and Japan's
computer challenge to the world, Reading, Mass., USA, Addison-Wesley.

222

Feldman, P. and A. Shtub (2006). "Model for cost estimation in a finite-capacity environment".
International Journal of Production Research, 44(2): pp. 305 - 327.

Fernandes Lopez, M., A. Gomez Perez and N. Juristo (1997). "METHONTOLOGY: From Ontological Art
Towards Ontological Engineering". AAAI-97 Spring Symposium Series, Stanford.

Främling, K. and L. Rabe (2005) "DR 7.2: Concept and methods for information enrichment".
PROMISE Consortium 2004 - 2008. 507100 PROMISE; A Project of the 6th Framework
Programme Information Society Technologies (IST).

Gärdenfors, P. (2003). Belief revision, Cambridge University Press.
Garg, A. and S. G. Deshmukh (2006). "Maintenance management: literature review and directions".

Journal of Quality in Maintenance Engineering, 12(3): pp. 205 - 238.
Geddes, N. and R. Armstrong (1991). "Knowledge maintenance in an evolving system using a deep

structure representation". AIAA Computing in Aerospace Conference, Baltimore, MD, USA.
Gielingh, W. F. (2005). "Improving the Performance of Construction by Acquisition, Organisation and

Use of Knowledge". Delft University of Technology, Ph.D. dissertation.
Gillet, A., P. Francescato and P. Saffre (2010). "Single- and multi-objective optimization of composite

structures: The influence of design variables". Journal of Composite Materials, 44(4): pp.
457-480.

Gruber, T. R. (1993). "A translation approach to portable ontology specifications". Knowledge
Acquisition, 5(2): pp. 199-220.

Gunawan, S., S. Azarm, J. Wu and A. Boyars (2003). "Quality-assisted multi-objective
multidisciplinary genetic algorithms". Aiaa Journal, 41(9): pp. 1752-1762.

Hicks, B. J., S. J. Culley, R. D. Allen and G. Mullineux (2002). "A framework for the requirements of
capturing, storing and reusing information and knowledge in engineering design".
International Journal of Information Management, 22(4): pp. 263-280.

IJsselmuiden, S. T., M. M. Abdalla, O. Seresta and Z. Gürdal (2009). "Multi-step blended stacking
sequence design of panel assemblies with buckling constraints". Composites Part B:
Engineering, 40(4): pp. 329-336.

Integrated Definition Methods. (2012). "IDEF0 - Function Modeling Method." Retrieved 16-12-2012,
from http://www.idef.com/IDEF0.htm.

iProd. (2013). "Improving the Product Development Process (PDP - iPROD project)." Retrieved 20-03-
2013, from http://www.iprod-project.eu/index.

Jagtap, S. and A. Johnson (2011). "In-service information required by engineering designers".
Research in Engineering Design, 22(4): pp. 207-221.

Jin, P., B. Song and X. Zhong (2011). "Structure optimization of large composite wing box with
parallel genetic algorithm". Journal of Aircraft, 48(6): pp. 2145-2148.

Jun, H. B., D. Kiritsis and P. Xirouchakis (2007). "Research issues on closed-loop PLM". Computers in
Industry, 58(8-9): pp. 855-868.

Katsuno, H. and A. O. Mendelzon (1991). "Propositional knowledge base revision and minimal
change". Artificial Intelligence, 52(3): pp. 263-294.

Kern-Isberner, G. (2004). "A Thorough Axiomatization of a Principle of Conditional Preservation in
Belief Revision". Annals of Mathematics and Artificial Intelligence, 40(1-2): pp. 127-164.

Kiritsis, D., A. Bufardi and P. Xirouchakis (2003). "Research issues on product lifecycle management
and information tracking using smart embedded systems". Advanced Engineering
Informatics, 17(3-4): pp. 189-202.

Kitamura, Y., M. Kashiwase, M. Fuse and R. Mizoguchi (2004). "Deployment of an ontological
framework of functional design knowledge". Advanced Engineering Informatics, 18(2): pp.
115-127.

Ko, K. H., K. Pochiraju and S. Manoochehri (2007). "An embedded system for knowledge-based cost
evaluation of molded parts". Knowledge-Based Systems, 20(3): pp. 291-299.

Kristinsdottir, B. P., Z. B. Zabinsky, M. E. Tuttle and S. Neogi (2001). "Optimal design of large
composite panels with varying loads". Composite Structures, 51(1): pp. 93-102.

223

Krozer, Y. (2008). "Life cycle costing for innovations in product chains". Journal of Cleaner
Production, 16(3): pp. 310-321.

Kuhn, O. (2010). "Methodology for Knowledge-Based Engineering Update". L’Université Claude
Bernard Lyon, Ph.D. dissertation.

Kulon, J., D. J. Mynors and P. Broomhead (2006). "A knowledge-based engineering design tool for
metal forging". Journal of Materials Processing Technology, 177(1-3): pp. 331-335.

La Rocca, G. (2011). "Knowledge Based Engineering Techniques to Support Aircraft Design and
Optimization". Delft University of Technology, Ph.D. dissertation.

La Rocca, G. (2011). "Knowledge Based Engineering Techniques to Support Aircraft Design and
Optimization". Delft University of Technology, Ph.D. dissertation.

La Rocca, G. (2012). "Knowledge based engineering: Between AI and CAD. Review of a language
based technology to support engineering design". Advanced Engineering Informatics,
26(2): pp. 159-179.

La Rocca, G. and M. J. L. van Tooren (2009). "Knowledge-Based Engineering Approach to Support
Aircraft Multidisciplinary Design and Optimization". Journal of Aircraft, 46(6): pp. 1875-
1885.

Lampe, M., M. Strassner and E. Fleisch (2004). "A Ubiquitous Computing environment for aircraft
maintenance". Proceedings of the 2004 ACM symposium on Applied computing, Nicosia,
Cyprus, ACM.

Lee, J. H. and H. W. Suh (2008). "Ontology-based multi-layered knowledge framework for product
lifecycle management". Concurrent Engineering Research and Applications, 16(4): pp. 301-
311.

Lee, S. G., Y. S. Ma, G. L. Thimm and J. Verstraeten (2008). "Product lifecycle management in aviation
maintenance, repair and overhaul". Computers in Industry, 59(2-3): pp. 296-303.

Liu, B. and R. T. Haftka (2004). "Single-level composite wing optimization based on flexural
lamination parameters". Structural and Multidisciplinary Optimization, 26(1-2): pp. 111-
120.

Liu, B., R. T. Haftka and M. A. Akgün (2000). "Two-level composite wing structural optimization using
response surfaces". Structural and Multidisciplinary Optimization, 20(2): pp. 87-96.

Liu, D., V. V. Toropov, O. M. Querin and D. C. Barton (2011). "Bilevel optimization of blended
composite wing panels". Journal of Aircraft, 48(1): pp. 107-118.

Liu, D., V. V. Toropov, M. Zhou, D. C. Barton and O. M. Querin (2010). "Optimization of blended
composite wing panels using smeared stiffness technique and lamination parameters".

Liu, T. D. and W. X. Xu (2001). "A review of web-based product data management systems".
Computers in Industry, 44(3): pp. 251-262.

Lovett, P. J., A. Ingram and C. N. Bancroft (2000). "Knowledge-based engineering for SMEs -- a
methodology". Journal of Materials Processing Technology, 107(1-3): pp. 384-389.

Ma, Q. C. and X. W. Liu (2007). "Review of Knowledge Based Engineering with PLM". Applied
Mechanics and Materials, 10-12(-): pp. 127-131.

Maksimovic, M., A. Al-Ashaab, E. Shehab and R. Sulowski (2011). "A Lean Knowledge Lifecycle
Methodology in Product Development". 8th International Conference on Intellectual
Capital, Knowledge Management & Organisational Learning, Bangkok, Thailand, Academic
Publishing Limited.

Markus, M. L. (2001). "Toward a theory of knowledge reuse: Types of knowledge reuse situations
and factors in reuse success". Journal of Management Information Systems, 18(1): pp. 57-
93.

Maropoulos, P. (2003). "Digital enterprise technology--defining perspectives and research
priorities". International Journal of Computer Integrated Manufacturing, 16(7-8): pp. 467-
478.

Martins, J. P. (1990). "The truth, the whole truth, and nothing but the truth". AI Magazine, 11(4): pp.
7.

224

Martins, J. P. and S. C. Shapiro (1988). "A model for belief revision". Artificial Intelligence, 35(1): pp.
25-79.

Matsokis, A. (2010). "An Ontology-Based Approach for Closed-Loop Product Lifecycle Management".
École Polytechnique Federale de Lausanne, Ph.D. dissertation.

Matsokis, A. and D. Kiritsis (2010). "An ontology-based approach for Product Lifecycle
Management". Computers in Industry, 61(8): pp. 787-797.

Mazumdar, S. K. (2002). Composites Manufacturing: Materials, Product, and Process Engineering,
Boca Raton, Florida, CRC Press.

McDermott, D. and J. Doyle (1980). "Non-monotonic logic I". Artificial Intelligence, 13(1-2): pp. 41-
72.

McDonough, W. and M. Braungart (2002). Cradle to Cradle: Remaking The Way We Make Things,
New York, North Point Press.

McElroy, M. W. (2003). The new knowledge management, Boston, MA, KMCI Press, Butterworth-
Heinemann.

McMahon, C., M. Giess and S. Culley (2005). "Information management for through life product
support: The curation of digital engineering data". International Journal of Product
Lifecycle Management, 1(1): pp. 26-42.

McMahon, C., A. Lowe and S. Culley (2004). "Knowledge management in engineering design:
Personalization and codification". Journal of Engineering Design, 15(4): pp. 307-325.

McQueen, R. (1998). "Four Views of Knowledge and Knowledge Management". Proceedings of the
Fourth Americas Conference on Information Systems.

Merali, Y. and J. Davies (2001). "Knowledge capture and utilization in virtual communities".
Proceedings of the 1st International Conference on Knowledge Capture (K-CAP), Victoria,
BC, Canada, ACM.

Milton, N. R. (2007). Knowledge acquisition in practice: a step-by-step guide, Springer-Verlag London
Limited.

Mizoguchi, R., Y. Tijerino and M. Ikeda (1995). "Task analysis interview based on task ontology".
Expert Systems with Applications, 9(1): pp. 15-25.

Mohan, K. and B. Ramesh (2007). "Traceability-based knowledge integration in group decision and
negotiation activities". Decision Support Systems, 43(3): pp. 968-989.

National Institute of Standards and Technology (1993). Integration Definition for Function Modelling
(IDEF0), Federal Information Processing Standards Publication 183.

Newman, B. D. and K. W. Conrad (2000). "A Framework for Characterizing Knowledge Management
Methods, Practices, and Technologies". Proceedings of PAKM.

Newnes, L. B., A. R. Mileham, W. M. Cheung, R. Marsh, J. D. Lanham, M. E. Saravi and R. W. Bradbery
(2008). "Predicting the whole-life cost of a product at the conceptual design stage".
Journal of Engineering Design, 19(2): pp. 99 - 112.

Niazi, A., J. S. Dai, S. Balabani and L. Seneviratne (2006). "Product Cost Estimation: Technique
Classification and Methodology Review". Journal of Manufacturing Science and
Engineering, 128(2): pp. 563-575.

Nonaka, I. (1994). "A Dynamic Theory of Organizational Knowledge Creation". Organization Science,
5(1): pp. 14-37.

Nonaka, I., R. Toyama and N. Konno (2000). "SECI, Ba and Leadership: A Unified Model of Dynamic
Knowledge Creation". Long Range Planning, 33(1): pp. 5-34.

Northwest-Aerospace-Alliance. (2010). "Airbus Next Generation Composite Wing." Retrieved 02
February, from http://www.aerospace.co.uk/technologies/ngcw.php.

Noy, N. F. and D. L. McGuinness (2009) "Ontology development 101: a guide to creating your first
ontology". Stanford University.

Object Management Group. "UML." Retrieved 03-03-2013, from http://www.uml.org/.

225

Oldham, K., S. Kneebone, M. Callot, A. Murton and R. Brimble (1998). "MOKA - A methodology and
tools oriented to knowledge-based engineering applications". Changing the Ways We
Work, 8: pp. 198-207.

Ouertani, M. Z., S. Baïna, L. Gzara and G. Morel (2011). "Traceability and management of dispersed
product knowledge during design and manufacturing". CAD Computer Aided Design, 43(5):
pp. 546-562.

Panesar, A. S. and P. M. Weaver (2012). "Optimisation of blended bistable laminates for a morphing
flap". Composite Structures, 94(10): pp. 3092-3105.

Panetto, H., M. Dassisti and A. Tursi (2012). "ONTO-PDM: Product-driven ONTOlogy for Product Data
Management interoperability within manufacturing process environment". Advanced
Engineering Informatics, 26(2): pp. 334-348.

Peak, R. S., J. Lubell, V. Srinivasan and S. C. Waterbury (2004). "STEP, XML, and UML:
Complementary Technologies". Journal of Computing and Information Science in
Engineering, 4(4): pp. 379-390.

PEGASUS. (2013). "PEGASUS Project: Integrated engineering processing & materials technologies for
the European sector." Retrieved 29-04-2013, from www.pegasus-eu.net.

Philpotts, M. (1996). "Introduction to the concepts, benefits and terminology of product data
management". Industrial Management and Data Systems, 96(4): pp. 11-17.

Pinto, H. S. and J. P. Martins (2004). "Ontologies: How can they be built?". Knowledge and
Information Systems, 6(4): pp. 441-464.

Polanyi, M. (1966). The Tacit Dimension, London, Routledge & Kegan Paul.
Preston, S., C. Chapman, M. Pinfold and G. Smith (2005). "Knowledge acquisition for knowledge-

based engineering systems". International Journal of Information Technology and
Management, 4(1): pp. 1-11.

Price, M., S. Raghunathan and R. Curran (2006). "An integrated systems engineering approach to
aircraft design". Progress in Aerospace Sciences, 42(4): pp. 331-376.

Raymer, D. P. (2006). Aircraft Design: A Conceptual Approach. 4th, Reston, Virginia, American
Institute of Aeronautics and Astronautics, Inc.

Rizzi, A., M. Zhang, B. Nagel, D. Boehnke and P. Saquet (2012). "Towards a unified framework using
CPACS for geometry management in aircraft design".

Rodriguez, K. and A. Al-Ashaab (2007). "Knowledge web-based system to support e-manufacturing
of injection moulded products". International Journal of Manufacturing Technology and
Management, 10(4): pp. 400-418.

Roy, U., N. Pramanik, R. Sudarsan, R. D. Sriram and K. W. Lyons (2001). "Function-to-form mapping:
Model, representation and applications in design synthesis". CAD Computer Aided Design,
33(10): pp. 699-719.

Sainter, P., K. Oldham and A. Larkin (2000). "Achieving benefits from Knowledge-Based Engineering
systems in the longer term as well as in the short term". Proceedings International
Conference on Concurrent Enterprising, Toulouse, France.

Schorlemmer, M., S. Potter, D. Robertson and D. Sleeman (2002). "Knowledge Life Cycle
Management over a Distributed Architecture". Expert Update, 5(3): pp. 2-19.

Schreiber, G., H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de Velde and B.
Wielinga (1999). Knowledge engineering and management: the CommonKADS
methodology, Cambridge, MA, MIT Press.

Siemieniuch, C. E. and M. A. Sinclair (1999). "Organizational aspects of knowledge lifecycle
management in manufacturing". International Journal of Human-Computer Studies, 51(3):
pp. 517-547.

Siemieniuch, C. E. and M. A. Sinclair (2004). "CLEVER: A process framework for knowledge lifecycle
management". International Journal of Operations and Production Management, 24(11):
pp. 1104-1125.

226

Simon, M., G. Bee, P. Moore, J. S. Pu and C. Xie (2001). "Modelling of the life cycle of products with
data acquisition features". Computers in Industry, 45(2): pp. 111-122.

Soremekun, G., Z. Gürdal, C. Kassapoglou and D. Toni (2002). "Stacking sequence blending of
multiple composite laminates using genetic algorithms". Composite Structures, 56(1): pp.
53-62.

Stokes, M. (2001). Managing Engineering Knowledge – MOKA: Methodology for Knowledge Based
Engineering Applications, London, Professional Engineering Publishing Limited.

Studer, R., V. R. Benjamins and D. Fensel (1998). "Knowledge Engineering: Principles and methods".
Data and Knowledge Engineering, 25(1-2): pp. 161-197.

Sudarsan, R., S. J. Fenves, R. D. Sriram and F. Wang (2005). "A product information modeling
framework for product lifecycle management". CAD Computer Aided Design, 37(13): pp.
1399-1411.

Sudarsan, R., S. J. Fenves, R. D. Sriram and F. Wang (2005). "A product information modeling
framework for product lifecycle management". Computer-Aided Design, 37(13): pp. 1399-
1411.

Sunnersjo, S., M. Cederfeldt, F. Elgh and I. Rask (2006). "A Transparent Design System for Iterative
Product Development". Journal of Computing and Information Science in Engineering, 6(3):
pp. 300-307.

Thimm, G., S. G. Lee and Y. S. Ma (2006). "Towards unified modelling of product life-cycles".
Computers in Industry, 57(4): pp. 331-341.

Tomasella, M., J. Cassina, A. Metin and M. Marquard (2006) "DR9.2: Specification of the System
Object Model". PROMISE Consortium 2004 - 2008. 507100 PROMISE; A Project of the 6th
Framework Programme Information Society Technologies (IST).

Transport Canada. (1996). "Canadian Aviation Regulations - Part V - Standard 593 Appendix A -
Airworthiness Directive Format." Retrieved 27th February, from
http://www.tc.gc.ca/eng/civilaviation/regserv/cars/part5-standards-a593sa-255.htm.

Transport Canada. (2002). "Canadian Aviation Regulations - Part V - Standard 593 - Airworthiness
Directives." Retrieved 27th February, from
http://www.tc.gc.ca/eng/civilaviation/regserv/cars/part5-standards-593s-1829.htm

Tsang, A. H. C. (1995). "Condition-based maintenance: Tools and decision making". Journal of Quality
in Maintenance Engineering, 1(3): pp. 3-17.

Tuomi, I. (1999). "Data is more than knowledge: implications of the reversed knowledge hierarchy
for knowledge management and organizational memory". HICSS-32. Proceedings of the
32nd Annual Hawaii International Conference on System Sciences, Hawaii, USA.

Umeda, Y., M. Ishii, M. Yoshioka, Y. Shimomura and T. Tomiyama (1996). "Supporting conceptual
design based on the function-behavior-state modeler". Artificial Intelligence for
Engineering Design, Analysis and Manufacturing: AIEDAM, 10(4): pp. 275-288.

Umeda, Y., H. Takeda, T. Tomiyama and H. Yoshikawa (1990). "Function, behaviour, and structure".
Applications of artificial intelligence in engineering V, 1: pp. 177-194.

Umeda, Y., T. Tomiyama and H. Yoshikawa (1995). "FBS modeling: modeling scheme of function for
conceptual design". Proceedings of the 9th International Workshop on Qualitative
Reasoning, Amsterdam.

Uschold, M. (1996). "Building Ontologies: Towards a Unified Methodology". 16th Annual Conf. of the
British Computer Society Specialist Group on Expert Systems, Cambridge, UK.

Uschold, M. and M. Gruninger (1996). "Ontologies: Principles, methods and applications".
Knowledge Engineering Review, 11(2): pp. 93-136.

Usman, Z., R. Young, N. Chungoora, C. Palmer, K. Case and J. Harding (2011). "A Manufacturing Core
Concepts Ontology for Product Lifecycle Interoperability". M. Sinderen and P. Johnson
(eds.), Enterprise Interoperability, Springer Berlin Heidelberg, pp. 5-18.

Van der Elst, S. W. G. (2007). "Design of a Knowledge Based Prepreg Sub-Division Process". Delft
University of Technology, M.Sc. thesis.

227

Van der Laan, A. H. (2008). "Knowledge based engineering support for aircraft component design".
Delft University of Technology, Ph.D. dissertation.

Van der Spek, R. and A. Spijkervet (1997). Knowledge management: dealing intelligently with
knowledge, New York, CRC Press.

Van der Velden, C., C. Bil and X. Xu (2012). "Adaptable methodology for automation application
development". Advanced Engineering Informatics, 26(2): pp. 231-250.

Van Dijk, R., X. Zhao, H. Wang and F. Van Dalen (2012). "Multidisciplinary Design and Optimization
Framework for Aircraft Box Structures". 3rd Aircraft Structural Design Conference, Delft.

Verhagen, W. J. C., P. Bermell-Garcia, P. Mariot, J.-P. Cotton, D. Ruiz, R. Redon and R. Curran (2012).
"Knowledge-based cost modelling of composite wing structures". International Journal of
Computer Integrated Manufacturing, 25(4-5): pp. 368-383.

Verhagen, W. J. C., P. Bermell-Garcia, R. E. C. Van Dijk and R. Curran (2012). "A critical review of
Knowledge-Based Engineering: An identification of research challenges". Advanced
Engineering Informatics, 26(1): pp. 5-15.

Verhagen, W. J. C. and R. Curran (2011). "Ontological Modelling of the Aerospace Composite
Manufacturing Domain". D. D. Frey, S. Fukuda and G. Rock (eds.), Improving Complex
Systems Today. London, Springer pp. 215-222.

Wartan, S. (2010). "Sharing Safety Knowledge for Aircraft Maintenance". Delft University of
Technology, M.Sc. thesis.

Wiig, K. M. (1997). "Knowledge management: Where did it come from and where will it go?". Expert
Systems with Applications, 13(1): pp. 1-14.

Wognum, N. and A. Trappey (2008). "PLM challenges". Advanced Engineering Informatics, 22(4): pp.
419-420.

Wood, R. E. (1986). "Task complexity: Definition of the construct". Organizational Behavior and
Human Decision Processes, 37(1): pp. 60-82.

Xue, D., S. Yadav and D. H. Norrie (1999). "Knowledge base and database representation for
intelligent concurrent design". CAD Computer Aided Design, 31(2): pp. 131-145.

Zein, S., B. Colson and S. Grihon (2012). "A primal-dual backtracking optimization method for
blended composite structures". Structural and Multidisciplinary Optimization, 45(5): pp.
669-680.

228

229

Appendix A: Complexity Estimation

The modular approach to development of KBS as expressed in the KLC ontology of
Section 3.2 (e.g. reflected in the use of Knowledge_Element and Process_Element
classes) poses a potential problem: the number of (potential) interfaces between
these elements grows quickly, leading to increasingly complex systems. A similar
issue is mentioned by Erden et al. (2008), who note that systems are evolvable if
complexity does not increase in unmanageable amounts when new functionalities
are introduced. Can this complexity be formulated?

The number of potential interactions between EKR elements can be either
constrained or unconstrained. In the former case, constraints are applied to limit
the number of element interactions: intra-class interactions are not allowed (e.g.,
a knowledge element cannot interact directly with another knowledge element).
Figure A.1 shows the constrained case on the left-hand side.

Figure A.1: Element interactions in constrained (left) and unconstrained (right) form

The constrained interaction form can be expressed using Equation 1:

where g is the function expressing the total number of element interactions,

n is the number of knowledge elements and m is the number of process elements.
In the unconstrained case, each knowledge or process element can interact

with any other element. This is shown on the right-hand side of Figure A.1. This
situation can be expressed using Equation A-2.:

 𝑔(𝑛,𝑚) = 𝑛 ∙ 𝑚 (A-1)

230

ℎ(𝑛,𝑚) = �(𝑖 − 1) + �(𝑗 − 1) + 𝑛 ∙ 𝑚

𝑚

𝑗=1

𝑛

𝑖=1

 (A-2)

where h is the function expressing the total number of element interactions,

without constraints. The number of resulting interactions for the unconstrained
and constrained cases can be expressed by plotting functions g and h for any
number of knowledge elements n and process elements m. In matrix notation, the
following applies for these functions (where h can be substituted for g):

�
𝑔(1,1) ⋯ 𝑔(1,𝑚)

⋮ ⋱ ⋮
𝑔(𝑛, 1) ⋯ 𝑔(𝑛,𝑚)

� (A-3)

Which results in the following plot for g and h (Figure A.2) when considering

10 knowledge and process elements (n = 1…10, m = 1..10). Figure A.3 shows the
corresponding matrices.

Figure A.2: Plot of element interactions for functions g and h, where n=1..10, m=1..10

Figure A.3: Number of element interactions for g and h, where n = 1..10, m = 1..10

231

Evidently, the total number of unconstrained interactions is dependent on the
total number of elements; the mix is not important (e.g. when 8 elements are
present, it can be 4 knowledge and 4 process, or 7 knowledge and 1 process – the
total number of interactions are the same). However, when considering
constrained interactions, the mix does make a difference.

Summarizing, the approach highlighted in this appendix allows for
formulating an initial complexity estimate for modular system element
interactions. The approach can be improved by a) grounding it more deeply in
mathematical formulation; b) establishing a link with practice by researching
hypothesized relations between the number of modular elements, system
complexity and key performance indicators for implemented modular systems in
industry.

232

233

Samenvatting

Een Ontologische Benadering voor Management van de
Kenniscyclus binnen Fases van de Vliegtuiglevenscyclus

In het aircraft engineering domein zoeken producenten en operators constant
naar verbetering van hun producten en processen. Knowledge-based applicaties
worden in toenemende mate ontwikkeld om kennisintensieve engineering taken
te ondersteunen of te automatiseren, wat leidt tot besparingen in tijd en geld.

Een primaire uitdaging hangt samen met het karakter en gedrag van kennis in
de tijd. Verandert kennis en heeft het een levenscyclus? Huidig onderzoek met
betrekking tot het onderwerp kennisverandering is echter vrij schaars.
Verscheidene onderzoekers (bijvoorbeeld Schorlemmer et al. (2002), Alavi and
Leidner (2001), Stokes (2001), Nonaka et al. (2000) en Schreiber et al. (1999))
geven aan dat kennis verandert, maar deze onderzoekers geven geen accurate
definitie van hun concepten. Een aantal van hen geeft geen onderbouwing voor
hun stellingen. Niemand gaat verder dan een kwalitatieve inschatting van
kennisverandering.

Dit heeft aanzienlijke implicaties vanuit een praktisch perspectief. Bij
verandering van kennis ontstaat een risico dat knowledge-based applicaties snel
overbodig worden. Coenen and Bench-Capon (1993) geven een indicatie van de
grootte van het probleem: het bestudeerde knowledge-based systeem was
onderhevig aan 50% verandering van de bestaande regels per jaar, terwijl de
gehele knowledge base met een factor vier groeide in de eerste drie jaar. Van Dijk
et al. (2012) geven een indicatie van de kosten die onderhoud van een
knowledge-based applicatie met zich meebrengt. Deze kosten worden geschat op
25% van de initiële investering op jaarlijkse basis.

Hoe kunnen knowledge-based applicaties dan omgaan met
kennisverandering? Het is vereist dat modellen en methodes worden ontwikkeld
voor het ontwerpen van meer robuuste engineering applicaties: bruikbaarheid en
onderhoud van kennis en applicaties moet worden gefaciliteerd. Gezien deze
overwegingen is het volgende algemene onderzoeksdoel gedefinieerd:

Ondersteuning van het consistent formaliseren, gebruiken en onderhouden
van veranderende kennis binnen fases van de levenscyclus van vliegtuigen ter
einde domein-specifiek modelleren, uitvoering en controle van engineering
taken te verbeteren

Kennisverandering wordt hier gedefinieerd als een verandering in kennis over tijd,
waar kennis is gedefinieerd als verwerkte informatie met een capabiliteit voor

234

effectieve actie. De volgende types van verandering kunnen worden
onderscheiden in een knowledge-based applicatie: verandering in waardes (data
change), verandering in de gestructureerde context van een kennis-element
(information change) en verandering in de capabiliteit voor effectieve actie
geassocieerd met een kenniselement (knowledge change), wat kan worden
veroorzaakt door veranderingen in regels, logische structuren of attribuut-sets.

Om het algemene onderzoeksdoel te realiseren zijn een aantal specifieke
bijdrages aan de academische theorie ontwikkeld, wat tevens het beantwoorden
van specifieke onderzoeksuitdagingen met zich meebracht – zie Tabel S.1.

Tabel S.1: Bijdrages aan theorie en geassocieerde onderzoeksuitdagingen
Onderzoeksbijdrage Geassocieerde uitdaging
Knowledge Lifecycle Model Karakteriseren, modelleren en

kwantificeren van het gedrag van kennis
binnen de levenscyclus van het vliegtuig

Ontologie-gebaseerde benadering voor het
ondersteunen van kennisverandering:
Knowledge Lifecycle ontology

Onderhoud:
- 'black-box' KBS applicaties vermijden met
behulp van transparantie
Bruikbaarheid:
- Taakoriëntatie
- Betrokkenheid expert / eindgebruiker

Ontwikkeling van methodologie: KNOMAD
methodologie

Methodologische benadering voor het
faciliteren van
kennisveranderingsmanagement

Het Knowledge Lifecycle Model is ontwikkeld om de levenscyclus van
kenniselementen met behulp van twee concepten te karakteriseren en
modelleren: kennis-staat en kennis-acties. De acties – creëren, formalizeren,
gebruiken, onderhouden, updaten en archiveren – bieden de mogelijkheid om het
gedrag van kennis in de tijd betekenisvol te kwantificeren. Deze mogelijkheid gaat
voorbij de huidige state-of-the-art.

De ontwikkelde Knowledge Lifecycle (KLC) ontologie kan dienen als een
structuur-behoudende benadering voor het ontwikkelen, gebruiken en
onderhouden van knowledge-based applicaties.De KLC ontologie omvat twee
centrale perspectieven: het Enterprise Knowledge Resource (EKR) concept
gecombineerd met een annotatie-structuur gebaseerd op het Product-Process-
Resource (PPR) paradigma. Een EKR is een taak-georienteerde representatie die
kenniselementen, proceselementen en taak-output in de vorm van case
rapportages bevat. In combinatie met het PPR paradigma kunnen 'white-box'
knowledge-based applicaties worden ontwikkeld met verbeterde transparantie.
De KLC ontologie gaat op vier manieren voorbij de huidige state-of-the-art: het
maakt structuur-behoudend modelleren en implementeren mogelijk, het

235

representeert kennis in relatie met individuele taken, het biedt consistente
annotatie via de PPR classes in relatie met individuele taken en het biedt
systematische opslag van resultaten.

De derde en laatste bijdrage is de KNOMAD methodologie. Deze
methodologie ondersteunt het ontwikkelen van knowledge-based applicaties die
kunnen omgaan met kennisverandering. De methodologie bestaat uit zes
stappen: Kennisacquisitie en Identificatie van Kennisverandering, Normalisatie,
Organisatie, Modelleren en Implementatie, Analyse en Delivery. Het kritieke
aspect van kennisverandering (en bijbehorend onderhoud) wordt ondervangen
door het karakteriseren en analyseren van kennisverandering bij de start van het
KNOMAD-proces. De organisatie-stap benadrukt het modelleren van het domein.
Deze kennis kan in de volgende stap (Modelleren en Implementatie) worden
gebruikt voor het annoteren van engineering taken. Het gebruik van de KLC
ontologie wordt aanbevolen in de Modellering en Implementatie-stap. Derhalve
worden domein en taakontologiën ontwikkeld en geïmplementeerd als de
ruggegraat voor de ontwikkelde knowledge-based oplossingen. Als gevolg hiervan
realiseren de verschillende KNOMAD-stappen een ontologie-gebaseerde
benadering welke de onderzoeksuitdagingen met betrekking tot black-box
applicaties en transparantie, taak-oriëntatie en betrokkenheid van de
eindgebruiker/expert beantwoordt.

De ontologie-gebaseerde benadering en de geassocieerde modellen en
methodologie zijn ter validering toegepast in drie case studies betreffende
specifieke fases uit de vliegtuiglevenscyclus – ontwerp, productie en onderhoud.

Met betrekking tot de theoretisch georienteerde uitdaging - karakteriseren,
modelleren en kwantificeren van het gedrag van kennis binnen een product
levenscyclus – kan worden gesteld dat het Knowledge Lifecycle model succesvol is
toegepast om kennisverandering in de ontwerp- en productiefases te
karakteriseren. Het model is daarnaast succesvol toegepast in het
onderhoudsdomein om kennisverandering te kwantificeren.

De uitdagingen met betrekking tot onderhoud – voorbij 'black-box' KBS
applicaties bewegen en transparantie – zijn beantwoord door middel van de
concepten van de KLC ontologie. Traceerbaarheid van kennis is bewerkstelligd via
het EKR concept, met name door de Case class en de geassocieerde case
rapporten. Deze maken het mogelijk om de uitkomsten van kennistoepassing voor
een specifieke taak te traceren. Tevens kunnen de kennis en processes die zijn
gebruikt voor uitoefening van de taak worden getraceerd. De metadata die is
verbonden aan de kennis- en proceselementen (zoals auteurschap, levenscyclus-
fase, status, etc.) helpen tevens met traceerbaarheid en betrouwbaarheid,
validiteit en ownership van kennis. Het PPR paradigma helpt de zichtbaarheid van
centrale concepten te bewerkstelligen. De drie case studies laten zien hoe een
domein-specifieke extensie van de PPR classes semantische annotatie van

236

geimplementeerde EKRs mogelijk maakt. Dit maakt het makkelijker om
knowledge-based applicaties en componenten te vinden, inspecteren en
gebruiken. De uitdagingen met betrekking tot bruikbaarheid – taakoriëntatie en
betrokkenheid van de expert / eindgebruiker – worden beantwoord door het EKR
concept en het gebruik van een web-based kennismanagement systeem. In elke
case study is een of meer EKRs ontwikkeld voor het representeren en uitvoeren
van specifieke engineering taken. De gekozen web-based architectuur faciliteert
interactie van de gebruiker met EKRs en de bijbehorende componenten
(kenniselementen, proceselementen, cases).

De KNOMAD methodologie is in alle case studies toegepast. Alle stappen van
de methodologie zijn succesvol toegepast voor het ontwikkelen en
implementeren van knowledge-based applicaties die met kennisveranderingen
kunnen omgaan.

De bijdrages van deze dissertatie – Knowledge Lifecycle model, KLC ontologie,
KNOMAD methodologie – kunnen op verscheidene manieren worden uitgebreid
en verbeterd. Voor het Knowledge Lifecycle is met name van belang dat het
kwantitatief wordt gevalideerd voor meerdere domeinen. Ideaal gesproken wordt
dit model ook voorzien van een formele mathematische onderbouwing.
Daarnaast is taakcomplexiteit en –hierarchie niet gemodelleerd en bestudeerd in
deze dissertatie. Als laatste moet worden genoteerd dat de KLC ontologie kan
worden uitgebreid met formele expressies, wat het gebruik van reasoning
technieken in het ontwerp en onderhoud van knowledge-based applicaties zou
faciliteren.

237

Curriculum Vitae

Wilhelmus (Wim) Johannes Cornelis Verhagen was born in Moergestel, The
Netherlands on 29 September 1984. Wim attended high school at the Onze Lieve
Vrouwe Lyceum in Breda, graduating cum laude in 2002. He subsequently elected
to pursue a degree in Aerospace Engineering at Delft University of Technology.
Wim completed his B.Sc. in 2006 and joined the erstwhile department of
Aerospace Management & Operations (AMO), attaining his M.Sc. (cum laude) in
2008 in the renewed Air Transport & Operations (ATO) chair under supervision of
prof. Curran and dr. Beelaerts van Blokland.

Following his graduation, Wim was pointed towards an opportunity to research
manufacturing knowledge management in cooperation with Airbus UK, and later
EADS Innovation Works. This initial project grew into his Ph.D. research, under
supervision of Prof. Curran, where a life-cycle focus (both for knowledge and for
aircraft) was determined as research progressed. Over the past four years, Wim
(co-)authored four journal publications and four conference papers directly
related to the topic of his dissertation, besides authoring various other
publications. Wim has also reviewed for such journals as Advanced Engineering
Informatics, Expert Systems with Applications and the Journal of Systems Science
and Systems Engineering. He continues to explore the various fields related to the
research domains addressed in the dissertation. During Ph.D. employment, Wim
supervised 4 M.Sc. students and lectured in the faculty’s third year Systems
Engineering course. He gladly supported the international activities of the ATO
group through involvement in the International Society of Productivity
Enhancement (ISPE) and the Air Transport and Operations Symposium series.

Outside of his immediate research exploits, Wim takes an interest in research in
general, ranging from research methods to specific domain research, ranging from
evolutionary biology to astronomy, from history to economics. His hobbies,
outside of stuffing his nose into books and papers, are sports such as running,
mountainbiking and squash, and outdoors activities such as mountain hiking and
exploring countries. Since a few years, Wim is an active supporter of cancer
research in the Netherlands, participating in Alpe d’HuZes 2012 and Relay for Life
2013.

238

List of Publications

Bermell-Garcia, P., W. J. C. Verhagen, S. Astwood, K. Krishnamurthy, J. L. Johnson, D. Ruiz, . . . R.
Curran (2012). "A framework for management of Knowledge-Based Engineering applications as
software services: Enabling personalization and codification". Advanced Engineering Informatics,
26(2): pp. 219-230.

Verhagen, W. J. C., P. Bermell-Garcia, R. E. C. Van Dijk and R. Curran (2012). "A critical review of
Knowledge-Based Engineering: An identification of research challenges". Advanced Engineering
Informatics, 26(1): pp. 5-15.

Verhagen, W. J. C., P. Bermell-Garcia, P. Mariot, J.-P. Cotton, D. Ruiz, R. Redon and R. Curran (2012).
"Knowledge-based cost modelling of composite wing structures". International Journal of Computer
Integrated Manufacturing, 25(4-5): pp. 368-383.

Curran, R., W. J. C. Verhagen, M. J. L. Van Tooren and A. H. Van der Laan (2010). "A multidisciplinary
implementation methodology for knowledge based engineering: KNOMAD". Expert Systems with
Applications, 37(11): pp. 7336-7350.

Verhagen, W. J. C. and R. Curran (2013). "A Knowledge Lifecycle Model for Measurement of
Knowledge Change". J. Stjepandić, G. Rock and C. Bil (eds.), Concurrent Engineering Approaches for
Sustainable Product Development in a Multi-Disciplinary Environment. London, Springer, pp. 279-
290.

Verhagen, W. J. C. and R. Curran (2011). "Ontological Modelling of the Aerospace Composite
Manufacturing Domain". D. D. Frey, S. Fukuda and G. Rock (eds.), Improving Complex Systems Today.
London, Springer pp. 215-222.

Verhagen, W. J. C. and R. Curran (2010). "Knowledge-Based Engineering Review: Conceptual
Foundations and Research Issues". J. Pokojski, S. Fukuda and J. Salwiński (eds.), New World
Situation: New Directions in Concurrent Engineering, London, Springer, pp. 267-276.

Curran, R., W. J. C. Verhagen and M. J. L. Van Tooren (2010). "The KNOMAD methodology for
integration of multi-disciplinary engineering knowledge within aerospace production". 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando,
Florida.

Curran, R., W. J. C. Verhagen, A. H. Van der Laan and M. J. L. Van Tooren (2009). "KBE and
Manufacturing Constraints Management". S.-Y. Chou, A. Trappey, J. Pokojski and S. Smith (eds.),
Global Perspective for Competitive Enterprise, Economy and Ecology, Springer London, pp. 783-791.

