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A Data Protection Method for Short-term Traffic Prediction with
Applications to Network Active Mode Operations

Xiamei Wen1, Panchamy Krishnakumari1, Serge Hoogendoorn1

Abstract— Accurate prediction of active mode traffic is im-
perative for optimizing traffic operations in Intelligent Trans-
portation Systems. However, existing data-driven approaches
heavily rely on extensive datasets to achieve reliable traffic
prediction. This dependence poses a challenge when it comes
to data sharing, particularly when collecting information from
multiple local clients, such as institutions, organizations, and
mobile devices, and transmitting it to a central server for
model training and application. To overcome this challenge and
enhance data security, we introduce the FedASTGNN model
for active mode traffic prediction. This approach combines the
federated averaging (FedAvg) algorithm with an attention-based
spatial-temporal graph neural network (ASTGNN) model.
Subsequently, we conduct an evaluation to determine the
performance gap between the centralized ASTGNN model and
the proposed distributed FedASTGNN model. This evaluation
takes into account the model’s performance across different
time aggregation intervals and prediction horizons. Moreover,
considering the unique attributes and intricacies of active mode
data, we create three scenarios to demonstrate the influence of
diverse active mode data from different local clients (subnet-
works) on the FedASTGNN model. The findings of our study
illustrate that the FedASTGNN model effectively preserves
the advantages of the ASTGNN model while ensuring data
confidentiality in active mode traffic prediction. Furthermore,
we observe that the performance of the FedASTGNN model
is significantly affected by the varying degrees of imbalanced
data distribution among subnetworks. The insights shed light
on the potential and challenges presented by the FedASTGNN
model as an efficient and secure solution for predicting active
mode traffic in Intelligent Transportation Systems.

Keywords: Traffic prediction, Data security, Federated learning,
Graph neural network

I. INTRODUCTION

Intelligent Transportation Systems (ITS) have enabled the
collection of vast amounts of valuable traffic data using
sensors [1]. These data contain rich features that are crucial
for accurate traffic prediction [2]. The precise prediction
of traffic conditions holds the potential to greatly reduce
travel time, emissions, and energy consumption, making
it an area of substantial interest and research within the
field of artificial intelligence [3]. Recently, Advanced tools
are being developed, with a particular focus on leveraging
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deep learning techniques. These methods have proven to be
highly effective in handling large amounts of traffic data
and generating reliable and accurate traffic prediction results
[4].However, the majority of current deep learning methods
for traffic prediction that consider the spatial-temporal rela-
tionships of traffic data mainly concentrate on vehicular traf-
fic modes and predicting bicycle-sharing demand. Predicting
active-mode traffic operations, such as cycling and walking,
is more challenging due to their complex features, which
include irregular travel routes, varying speeds, and position
instability.

Centralized traffic prediction models require the exchange
of large amounts of traffic data, often owned by different
(private or public) organizations or compagnies [5] to central
server. However, these data can contain valuable information
that may give a competitive edge to companies. Even within
the same company, sharing such data across different de-
partments can be challenging due to their sensitive nature.
Also, the exchange of massive traffic data between different
organizations or departments can result in a significant
computational cost, and the lack of security safeguards
during this process can pose a threat to the interests of
the companies involved [6]. Additionally, integrating data
can be challenging and may involve complex administrative
procedures [7].

Federated learning, originally proposed by Google in
2016, is an emerging method that enables the training of
high-quality global models using multiple devices without
the need to share their local data [8]. The field of traffic
prediction has seen the emergence of federated learning
as a promising framework that addresses the challenge of
protecting traffic raw data from different organizations during
the training of deep learning models [9]. To investigate
the opportunities and challenges associated with federated
learning in active mode traffic prediction, we integrate a
federated learning framework with an attention-based spatial-
temporal graph neural network model called FedASTGNN
for active mode traffic prediction, and evaluate the perfor-
mance gap between the centralized ASTGNN model and the
proposed distributed FedASTGNN model. Furthermore, we
examine the impact of data heterogeneity among different
subnetworks on the FedASTGNN model through the analysis
of three distinct scenarios.

II. LITERATURE REVIEW

The increasing number of vehicles and the diverse modes
of transportation have led to common challenges in trans-
portation systems, including traffic congestion, delays, and
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air pollution [10]. Accurate traffic predictions play a crucial
role in the analysis of traffic conditions, as they are essential
for effective traffic management and control strategies. For
instance, based on the prediction results, traffic operators can
provide guidance to drivers, suggesting suitable routes to take
before they embark on their journey [11]. In this context,
various advanced approaches have been developed to achieve
accurate and reliable traffic predictions [12]. In addition to
motor vehicle prediction, there has been an increasing focus
on active modes, such as bicycle-sharing traffic prediction,
within the field of Intelligent Transportation Systems (ITS).
This attention is driven by the recognition of the importance
of active modes in addressing issues related to the first-
last mile connectivity, traffic-related air pollution and traffic
congestion [13]. However, the current body of research in
the field has primarily emphasized the prediction of bicycle
sharing mode while neglecting the prediction of private
bicycle mode.

In the era of big data, data collection, sharing, and ana-
lytics have become commonplace. These practices provide
researchers with the opportunity to extract valuable insights
from large-scale datasets. However, the process of handling
data from diverse devices can be time-consuming and com-
plex. Moreover, sharing data with others can potentially
compromise the competitiveness of companies and raise
concerns about data security [14] [15]. For example, Zhang
et al. [16] realized that data sharing is vulnerable to illegal
attacks and can lead to data being lost and destroyed; To
ensure data sharing safely in the application of Industrial
Internet of Things (IIoT) technology, they proposed a data
sharing model based on privacy protection. However, the
aforementioned solutions focus on protecting data during
the transfer process, while the data itself still needs to be
accessed and leave its local storage.

Distributed learning, an emerging paradigm in machine
learning, allows for efficient training of a high-quality cen-
tralized model by leveraging decentralized training data [7].
However, it should be noted that distributed learning is
typically designed for data that follows an independent and
identically distributed (IID) pattern. Allowing communica-
tion among devices may introduce potential security risks
to the data stored on these devices [17]. Federated learning
(FL) is one of the distributed learning frameworks introduced
by McMahan et al. [18] in 2016 with raw data stored
locally and not transferred to any device, which provides
an effective data protection mechanism [19]. However, in
the FL framework, datasets across different clients may
follow different distributions. While McMahan et al. [18]
claimed that their proposed Federated Averaging (FedAvg)
algorithm can achieve acceptable accuracy even on non-
IID data, several studies have found that the accuracy of
FedAvg may deteriorate when dealing with non-IID data.
Zhao et al. [20] observed a significant drop in accuracy (over
55%) in federated learning when training neural networks
using highly imbalanced non-IID local data. Furthermore,
it has been observed by several researchers that the im-
balanced data distribution among clients can also impact

the performance of the model [21]. Existing studies have
primarily focused on the imbalance data distribution within
the federated learning framework. However, they often over-
look the influence of specific situations or contexts on the
performance of the models. In particular, in the context of
active mode prediction.

III. METHODOLOGY

Transportation networks are typically depicted as graphs,
and for traffic prediction, graph neural networks (GNNs)
have emerged as cutting-edge deep learning models. In
contrast to earlier machine learning models like convolu-
tional neural networks (CNNs), GNNs excel at capturing
the non-Euclidean graph structure, making them well-suited
for modeling irregular network architectures and effectively
learning traffic network information in transportation sys-
tems. GNNs are mainly categorized into Recurrent Graph
Neural Networks (RecGNNs), Convolutional Graph Neural
Networks (ConvGNNs), Graph Autoencoders (GAEs), and
Spatial–Temporal Graph Neural Networks (STGNNs) [22].
STGNNs are widely applied to traffic prediction due to
their ability to simultaneously consider spatial and temporal
correlations [23], which is essential to get a well-performed
prediction model.

In this study, we construct our traffic networks as an undi-
rected graph Gt = (µ, xt, ε, A), where µ is the set of nodes
representing sensors; xt represents the traffic flow or density
at time t, The historical traffic data of the k time steps is x =
(xt−k+1, xt−k+2, ..., xt), which would be used to predict the
following T time steps x̂ = (x̂t+1, x̂t+2, ..., x̂t+T ); The set of
edges is denoted as ε; and A ∈ RN×N is the adjacency matrix
of G recorded as a binary matrix, which means that if ∀µi, µj

connect to each other A[i, j] = 1, otherwise A[i, j] = 0; N
is the number of nodes. To ensure data security, we apply
the FL framework with the traffic prediction model to predict
traffic flow and density. The entire transportation network is
represented as a global network G. The global network is
manually divided into sub-networks G̃ = {G̃1, G̃2, ..., G̃s}
based on the size of the graph data of each sensor, where s is
the number of sub-networks or clients. It is assumed that the
sub-networks exhibit distinct structures and non-overlapping
data.

A. Traffic Prediction Method under data security Constraints

In this study, we integrated the federated averaging al-
gorithm (FedAvg) [18] with ASTGNN [24] to explore the
performance of the traffic prediction method without com-
promising data security.

1) The FedAvg algorithm offers a promising approach for
local clients to collectively learn a global machine learning
model, denoted as Mr, without the need to exchange their
raw data. Here, r represents the communication round. In
FedAvg, the training process unfolds as follows.

Step 1 Global model initialization: The central server de-
termines the hyperparameters of the global model, including
training strategies like the communication round and learning
rate. Additionally, the central server selects the required
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number of clients for the ongoing communication round
and broadcasts the initialized global model, denoted as M0,
to the chosen clients. G̃ = {G̃1, G̃2, ..., G̃s}. Our study
encompasses all the clients we have.

Step 2 Client model training and parameter update: The
clients engage in training the global model, denoted as Mr,
using their local data, resulting in the update of respective
parameters wr and s. Subsequently, the clients upload these
updated parameters to the central server.

Step 3 Global model parameter aggregation and up-
date: The central server gathers the parameters w =
wr,1, wr,2, ..., wr,s from the clients and aggregates them
using the following formulation. The model is then updated
based on the aggregated results.

wr+1 =

S∑
s=1

ns

n
ws

r+1 (1)

Where S represents the total number of selected clients,
while s denotes the label of an individual client. wr+1 corre-
sponds to the updated parameter of round r. Additionally, ns

stands for the number of client-specific data, n represents the
total number of training data, and ws

r+1 signifies the updated
parameter of client s.

2) FedASTGNN algorithm: The FedASTGNN model is
an amalgamation of the federated averaging (FedAvg) algo-
rithm [18] and the ASTGNN model. The ASTGNN model,
initially introduced by Guo et al. [24], is designed for traffic
prediction and effectively captures the temporal dynamics of
traffic data while incorporating spatial correlations through
the use of self-attention mechanisms and graph convolution
networks. The training procedures of FedASTGNN are out-
lined in Figure 1. Initially, the central server aggregates
the sub-networks from the clients, disregarding their connec-
tions, to construct the global ASTGNN model. This means
that the global network does not include any connection
information between the sub-networks. Subsequently, the
central server broadcasts the initialized global ASTGNN
model to the clients. The local clients then train the global
ASTGNN model using their respective networks and data,
obtaining updated parameters that are subsequently uploaded
to the central server. The central server employs the FedAvg
algorithm to aggregate the updated parameters from the local
clients, thereby updating the global ASTGNN model. The
latest global model is then transmitted back to the local
clients for the next communication round, and this process
continues until convergence is achieved.

B. Performance Comparison in Different Scenarios

1) In order to evaluate the performance of the FedAST-
GNN model, we compare it with the ASTGNN model
[24] using balanced graph data distribution among local
sub-networks. Considering that different time aggregation
intervals of raw data and prediction horizons can impact
prediction accuracy, we conduct experiments using aggrega-
tion intervals of 5 minutes, 10 minutes, 15 minutes, and 20

Fig. 1: FedASTGNN communication process

minutes, respectively. The prediction horizons are set from 5
minutes to 60 minutes. By examining various error metrics,
we assess the predictive capabilities of both models.

2) To investigate the impact of active mode data on traffic
prediction using the FedASTGNN model, we consider three
types of graph structures with varying data distributions.
Structure1 consists of two sub-networks with approximately
balanced amounts of data. Structure2 and Structure3 also
have two sub-networks, but they exhibit imbalanced data
distributions. Notably, Structure3 exhibits a more significant
data imbalance between its sub-networks compared to Struc-
ture2.

C. Accuracy Evaluation

This paper assesses the prediction results of various sce-
narios using metrics including Mean Square Error (MSE),
Mean Absolute Error (MAE), and Root Mean Squared Error
(RMSE). The formulas for calculating these metrics are
presented below:

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (2)

MAE =
1

n

n∑
i=1

|ŷi − yi| (3)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2 (4)

Where ŷi and yi represent the predicted value and ground
truth data of the value i. n is the number of sample values.

IV. DATA DESCRIPTION AND MODELING
CONFIGURATION

The bicycle dataset utilized in this paper was obtained
from sensors installed on the campus of TU Delft
(https://micd.tudelftcampus.nl/projects/outdoor-mobility-
digital-twin/). The dataset used in this paper includes
geographic information obtained from sensors. It contains
recorded active mode flow and density data at one-minute
intervals as captured by the sensors.
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A. Dataset Pre-processing

For our experiments, we utilized a dataset collected by
seven sensors to conduct the prediction task. The sampling
data used in our study spans from March 1 to March 31,
2021. It includes data collected for 12 hours each day,
specifically from 8:00 to 20:00. The cumulative flow for
each sensor in March is as follows: 164184, 122485, 48981,
15217, 8786, 21988 and 27058, respectively. In the first sce-
nario of the Results and Discussion section, the bicycle flow
data is aggregated into 5-minute, 10-minute, 15-minute, and
20-minute intervals. This is done to determine the optimal
aggregation intervals in the dataset and assess the prediction
performance with different prediction horizons. In this paper,
the prediction is performed for different time steps: 1 step,
2 steps, and 3 steps. The prediction horizons are determined
by multiplying the time step by the data aggregation interval
(time step × aggregation interval). In the second scenario, we
construct three network structures based on the dataset size of
each sensor. Structure1 consists of two sub-networks: the first
sub-network is composed of three sensors (TUD_SBX01,
TUD_SPX04, TUD_SPXS06_IO) with a total of 206,459
trips, and the second sub-network comprises four sensors
(TUD_SBX02, TUD_SBX03, TUD_SBX05, TUD_SBX06)
with a total of 202,240 trips. The second network struc-
ture is divided into two sub-networks: one includes three
sensors (TUD_SBX01, TUD_SBX03, TUD_SPXS06_IO)
with 240,223 trips, and the other includes four sensors
(TUD_SBX02, TUD_SPX04, TUD_SBX05, TUD_SBX06)
with 168,476 trips. The last network structure also con-
sists of two sub-networks: the first sub-network includes
three sensors (TUD_SBX01, TUD_SBX02, TUD_SBX03)
with 335,650 trips, and the second sub-network includes
four sensors (TUD_SPX04, TUD_SBX05, TUD_SBX06,
TUD_SPXS06_IO) with 73,049 trips.

B. Parameters Setting

All experiments in this paper were conducted on an Apple
M1 Pro computing server. The dataset was split into 60%
for training, 20% for validation, and the remaining 20%
for testing. The FedASTGNN model was configured with
a model dimension of 64, 3 encoder and decoder layers, a
convolution kernel size of 3, and 8 attention heads. The hy-
perparameters such as learning rate, batch size, and training
epochs were determined based on the model’s performance
on the validation set.

For flow prediction with different aggregation intervals
and prediction horizons using balanced data distribution
between sub-networks, the batch size ranged from 500 to
560, the learning rate was set to 0.0001, and the number
of communication rounds was 10. In the case of structure2
and structure3, the batch sizes were set to 520 and 480,
respectively, both with a learning rate of 0.0001, and a fixed
number of communication rounds of 10.

For ASTGNN, we utilized the model dimension settings
provided by the original authors and their original code.
However, we adjusted the learning rate, batch size, and

training epochs to optimize the model’s performance on our
specific dataset.

V. RESULT AND DISCUSSION

A. Performance Comparison of the ASTGNN and FedAST-
GNN model

Table I shows the comparison of active mode flow
prediction results for FedASTGNN and ASTGNN models
across various time aggregation intervals and prediction
horizons. Specifically, we employ different time aggregation
intervals (5-minute, 10-minute, 15-minute, and 20-minute) to
predict traffic flow. These intervals are paired with prediction
horizons of 1 step (5-minute, 10-minute, 15-minute, and
20-minute, respectively), 2 steps (10-minute, 20-minute, 30-
minute, and 40-minute, respectively), and 3 steps (15-minute,
30-minute, 45-minute, and 60-minute, respectively). The
findings indicate a decline in the performance of both models
as the prediction horizons increase.

For instance, in the case of a 5-minute aggregation interval,
the ASTGNN model demonstrates an increase of 0.44 in
Mean Squared Error (MSE), 0.08 in Mean Absolute Error
(MAE), and 0.14 in Root Mean Squared Error (RMSE)
when transitioning from a one-step prediction horizon to a
three-step prediction horizon. Likewise, in the FedASTGNN
model, we observe an upward trend in MSE, MAE, and
RMSE as the prediction horizons increase. Specifically, the
MAE increases from 0.95 to 1.03, 0.86 to 1.02, 0.86 to 1.09,
and 0.86 to 1.15 for the 5-minute, 10-minute, 15-minute, and
20-minute aggregation intervals, respectively.

Furthermore, it is evident that the 15-minute aggregation
interval yields the lowest prediction errors among the four
aggregation intervals when considering the one-step pre-
diction horizon for both the ASTGNN and FedASTGNN
models. When examining the ASTGNN model with a two-
step prediction horizon, we observe a decrease in Mean
Squared Error (MSE) from 2.41 for the 5-minute aggregation
interval to 2.25 for the 10-minute aggregation interval, how-
ever, the MSE subsequently rises to 2.65 for the 20-minute
aggregation interval. Additionally, when considering a two-
step prediction horizon, we find that the dataset with 10-
minute aggregation intervals exhibits the lowest prediction
errors. Hence, the 10-minute aggregation interval proves
to be the most suitable choice for the two-step prediction
horizon in this flow dataset. As for the three-step prediction
horizon, the 5-minute aggregation interval strikes a balance
by capturing the traffic flow data fluctuations adequately
while maintaining a high level of accuracy.

The findings presented in Table I also demonstrate that
the ASTGNN model exhibits lower errors compared to the
FedASTGNN model. This suggests that ASTGNN, being a
centralized model with access to all the information in the
graph network, outperforms the FedASTGNN model, where
data owners train the model locally. However, the difference
in prediction errors between the ASTGNN and FedAST-
GNN models for the 5-minute aggregation interval is not
significant, ranging from 0.87% to 3.72%. Moreover, when
considering the computational cost of each FedASTGNN
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TABLE I: The Comparison of Traffic Flow Prediction Accuracy

Aggregation
Interval (mins)

Prediction
Horizon (mins)

ASTGNN FedASTGNN
MSE MAE RMSE MSE MAE RMSE

5
5 2.19 0.94 1.48 2.27 0.95 1.51
10 2.41 0.98 1.55 2.48 0.99 1.57
15 2.63 1.02 1.62 2.73 1.03 1.65

10
10 1.84 0.85 1.36 1.88 0.86 1.37
20 2.25 0.93 1.50 2.33 0.94 1.53
30 2.66 1.01 1.63 2.80 1.02 1.67

15
15 1.70 0.83 1.30 1.86 0.86 1.36
30 2.36 0.95 1.54 2.54 0.98 1.59
45 3.03 1.05 1.74 3.33 1.09 1.83

20
20 1.77 0.84 1.33 1.93 0.86 1.39
40 2.65 0.99 1.63 2.89 1.01 1.70
60 3.58 1.11 1.89 3.91 1.15 1.98

TABLE II: The Prediction Accuracy of Structures with Different Data Distribution

Structures Sub-network1 Sub-network2
Error

MSE MAE RMSE
Structure1 206459 202240 1.86 0.86 1.36
Structure2 240223 168476 1.87 0.86 1.37
Structure3 335650 73049 1.98 0.88 1.41

communication round compared to ASTGNN, the training
time consumption is nearly identical. Therefore, FedAST-
GNN, which shares a similar main structure with ASTGNN,
can provide a trade-off between prediction accuracy and data
security without compromising significantly on the accuracy
of predictions.

B. Performance Comparison of FedASTGNN with Imbal-
anced Networks

Within this section, we propose three network structures
that exhibit varying degrees of imbalanced data distributions
among sub-networks for the purpose of traffic flow prediction
using the FedASTGNN model. The prediction errors are
shown in Table II. The performance metrics (MSE, MAE,
and RMSE) for three different network structures are as
follows:

Structure1: This structure exhibits approximately bal-
anced data distribution between sub-networks, with one sub-
network having 206,459 trips and the other sub-network
having 202,240 trips. The corresponding MSE, MAE, and
RMSE values are 1.86, 0.86, and 1.36, respectively.

Structure2: In this structure, the data distribution between
the two sub-networks is slightly unbalanced, but not signif-
icantly. The MSE, MAE, and RMSE for this structure are
1.87, 0.86, and 1.37, respectively, which are slightly larger
than those of the structure with a balanced data distribution.

Structure3: The number of trips in Subnetwork1 is more
than four times the number of trips in Subnetwork2 in this

Fig. 2: Loss of Traffic flow prediction

structure, resulting in an imbalanced data distribution. With
this configuration, the MSE, MAE, and RMSE values for
Structure3 are 1.98, 0.88, and 1.41, respectively.

These results indicate that Structure1 with a balanced
data distribution yields the lowest prediction errors, while
Structure3 with an imbalanced data distribution leads to
slightly higher errors. Furthermore, depicted in Figure 2,
the loss convergence speed of Structure1, which possesses a
balanced data distribution, is considerably faster compared
to Structure2 and Structure3. This highlights the influence
of graph data distribution among local sub-networks on
the performance of FedASTGNN in the situation of active
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mode traffic prediction. The presence of an unbalanced
graph data distribution negatively impacts the performance
of FedASTGNN, leading to a degradation in its active mode
traffic predictive capabilities.

VI. CONCLUSION

In this study, we examine the performance of the FedAST-
GNN model for active mode traffic prediction while adhering
to data sharing constraints. Additionally, we investigate the
impact of imbalanced data distribution among sub-networks
on the FedASTGNN model. This research is crucial for the
development of highly effective prediction models that can
be regularly updated in real-time using extensive traffic data
while requiring minimal data storage space.

After conducting the analysis mentioned above, it has
been determined that the FedASTGNN model shows great
promise for predicting active mode traffic. However, there
are certain challenges associated with the characteristics
of active mode data, specifically the heterogeneous data
distribution among local organizations, as well as the need
to ensure data security. Moving forward, our focus will be
on developing a federated learning approach to address these
challenges in active mode traffic prediction. This method will
take into account the varying data distributions among local
organizations while enhancing the scalability and robustness
of the model. By doing so, we aim to create an effective
solution that can handle the complexities of active mode
traffic prediction while maintaining data security.
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