
Journal Title Here, 2024, pp. 1–6

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

ZygosDB: An efficient read-only database for
Genome-Wide Association Studies (GWAS)

Nick van Luijk1,∗

Supervisors: Marcel Reinders1, Niccolo Tesi1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor

of Computer Science and Engineering

June 23, 2024

Name of the student: Nick van Luijk

Final project course: CSE3000 Research Project

Thesis committee: Marcel Reinders, Niccolo Tesi, Andy Zaidman

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This paper describes ZygosDB, a novel and efficient read-only database designed specifically for querying positional
genomic data required for Genome-Wide Association Studies (GWAS). ZygosDB addresses limitations of existing
solutions like Tabix by offering optimized data structures, compression techniques, and parallel query execution.

Our evaluation shows that ZygosDB achieves a significant speedup of 2-5 times in query throughput compared to
Tabix. This improvement comes from our focus on efficient data storage and retrieval tailored to the specific needs of
GWAS.

The paper also explores the impact of multi-threading on query performance and the role of compression algorithms in
optimizing query throughput. We identify a decrease in performance beyond a certain number of threads and discuss the
influence of compression algorithms like Gzip and LZ4.

While ZygosDB offers substantial performance gains, future work should explore avenues for further optimization,
such as measuring query latency, refining memory usage, and investigating specialized column support. Overall, ZygosDB
establishes itself as a powerful tool for efficient querying of large genomic datasets, facilitating more effective GWAS.

Key words: database, bioinformatics, genome, gwas

Introduction

Unless you have an identical twin, your DNA differs from

everyone else’s DNA. This molecule, which you can find in

the nucleus of all cells of an organism, contains all genetic

information required to develop an organism, keep it alive

and allow it to reproduce. DNA can be represented as a long

string of nucleotides, the set of A, C, T and G bases. When

comparing your DNA with a reference genome, you will discover

genetic variations between you and the reference. When a

single base in a row has been substituted with a different

base, we call this a Single Nucleotide Polymorphism (SNP).

Structural Variants (SVs) are larger variations in the genomic

structure, where multiple consecutive bases have been deleted,

duplicated or rearranged. Genome-wide association studies

(GWAS) are studies that try to find associations between

SNPs, SVs and genetic traits. To help researchers find more of

such associations, visualisation tools such as snpXplorer have

been created [1] Accessing and querying the vast amounts of

data required by these visualisation tools, however, takes a

significant amount of time.

The data to be queried consists of millions of rows. Each

row belongs to a specific chromosome and a positive integer

indicating the position, relative to the start of the chromosome.

For some datasets, it is possible for multiple rows to exist at

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1



2 Nick van Luijk

the same position in the same chromosome. The position can

therefore not be used to uniquely identify rows. Along with the

position, rows can store an arbitrary amount of columns storing

integers, floating point numbers and strings. Some strings,

such as ”NA”, can occur very frequently within the datasets.

Common queries consist of a chromosome, a start position and

an end position. These queries then return all rows with a

position that lies in this interval. Rows could consist of the

names of SNPs as strings and the probabilities (P-values) of

the corresponding SNPs occuring as floating point numbers.

The current implementation of snpXplorer uses Tabix to query

the datasets. Tabix is a ”generic tool that indexes position

sorted files in TAB-delimited formats such as GFF, BED,

PSL, SAM and SQL export, and quickly retrieves features

overlapping specified regions” [2] It generates indexing files

that can later be used to quickly query data from tab-separated

value files.

Despite its relatively fast and flexible nature, Tabix supports

querying only one file at the time. After parsing Tabix’s query

results, snpXplorer joins the query results. Additionally, Tabix

requires the full tab-separated value file, which can be gigabytes

in size, to be present on the computer, even if not all columns

are queried. Furthermore, as Tabix provides no official Python

module, and the third-party Python module pytabix1 has not

received updates since 2015, snpXplorer currently uses the

Tabix command-line interface as a child process and parses the

output, the overhead of which could be significant.

As an alternative to tab-delimited text-based formats, binary

formats specialized for storing biological data have been

created, such as BigWig and BigBed [3] These formats can

however not be used for storing the datasets snpXplorer

requires, as the formats only support a predefined set of

columns with dedicated roles, rather than an arbitrary amount

of columns with arbitrary types. For example, P-values cannot

be stored in BigWig and BigBed, as they do include a column

dedicated to storing P-values. [3, Supplementary Table 1]

To implement a custom read-only database, we looked at

existing implementations of SQLite [4] and Tabix. SQLite is a

general-purpose SQL database engine that uses a single process

to interact with a database file saved locally the device [5]

Tabix is a tool that creates index files to quickly query TAB-

delimited files that contain data with chromosomal positions

[2] Examining how SQLite and Tabix operate under the hood

provided an understanding of the mechanics of efficient data

storage and retrieval.

We created ZygosDB to more efficiently query data required

for finding and visualising interactions between SNPs and SVs.

The main question to be answered is as follows:

How can an efficient read-only database be designed and

implemented for querying chromosomal, positional data?

This comes with a list of related sub-questions that aim to help

answer the main question:

1. What binary database format exist and what can we learn

from them?

2. How can positional, genomic data be stored and queried in

a custom binary database format?

1 https://github.com/slowkow/pytabix

3. How can query throughput be increased by compressing the

data?

4. In what ways can querying data be parallelized?

The main contribution of this research is a new and

efficient read-only database for querying all data required by

snpXplorer.

Methodology

Implementation
The Rust programming language was chosen as the language

to implement the database in, because of its efficiency,

memory-safety and lack of garbage collector[6] To allow

bioinformaticians to more easily use our database, a python

wrapper was created using PyO32. Rust supports most popular

platforms, including x86 64 Windows, x86 64 Linux and

ARM64 Linux and x86 64 macOS. Additionally, Rust programs

can also be compiled to WebAssembly [7] allowing the database

to be queried directly in web browsers.

Optimisations
After implementing my read-only database, the next steps

were to optimise it. Two main ways of optimising for query

throughput were looked at; compression and parallelisation.

By compressing the database when it is written to disk, the aim

is to reduce the amount of bytes the program has to read while

querying. The hypothesis is that the overhead of decompressing

the data is smaller than the time gained by reading less

bytes while querying. An additional benefit of compressing the

database is that the database takes up less storage space. The

input datasets can be tens of gigabytes in size, so any reduction

of required storage size is nice. Support for using compression

algorithms Gzip and LZ4 has been implemented.

Another way to optimise the querying is by reading the

database in parallel. As SNPs and SVs are stored in different

tables, queries that require searching through multiple tables

can be done in parallel. Additionally, decompression and

deserialisation of entries can be divided over multiple threads

for queries that return a range of entries. Both of these

parallelisations should increase the query throughput, but to

discover if this is actually true and by how much, the query

throughput should be measured.

Bridging Tabix and Python
To accurately measure real-world performance, all benchmark

tests require the query results to be readable using Python. As

there is no up-to-date Python package to interface with Tabix,

we resorted to running Tabix as a child process. This is how the

snpXplorer currently integrates Tabix too. The output of the

Tabix process is then converted to a Python string object and

passed to the pandas.read csv function of the Pandas library3.

The resulting DataFrame then contains the queried data to be

used in other parts of a program.

2 https://pyo3.rs/
3 https://pandas.pydata.org/docs/reference/api/pandas.

read_csv.html

https://github.com/slowkow/pytabix
https://pyo3.rs/
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html


ZygosDB 3

Benchmarking
To measure how the optimisations affect the query throughput,

test have been run on a dataset of approximately 570 megabytes

provided by our supervisor, containing SNPs of over a million

people with Alzheimer’s disease[8] The database and the Tabix

index files were built prior to running the tests.

For the first test, the goal was to measure how many rows

can be read per second for different interval windows. We’ve

measured the sustained query throughputs for a duration of 60

seconds with window sizes increasing exponentially. The sizes

of the windows were 1, 10, 100, 1000, 10 000, 100 000 and

1 000 000. In an attempt to eliminate CPU instruction cache

misses and branch prediction rollbacks, all tests had a 60 second

”warmup” period, where queries were being executed, without

their results counting towards the benchmark. Only after this

warmup, the actual query throughput was being measured.

These measurements were done for Tabix and our database,

with multiple configurations of our database; no compression,

Gzip compression, Zlib compression, LZ4 compression and

Zstandard compression. For all configurations, Tabix and our

database used a single thread.

For the second test, the goal was to research how increasing

the number of threads influences the query throughput. The

sustained query throughputs were measured for a duration of

60 seconds, again with a warmup of 60 seconds. The tests were

run with thread counts of 1 through 32, increasing by steps

of 1. Just as in the first test, these measurements were done

for Tabix and our database, with multiple configurations of our

database; no compression, Gzip compression, Zlib compression,

LZ4 compression and Zstandard compression.

Execution details
The tests were run on a desktop computer using an AMD

Ryzen™ 9 7950X3D4 with 16 cores and 32 threads, 64 gigabytes

of RAM (G.SKILL Trident Z5 Neo RGB DDR5-6000 CL30-38-

38-965) and with the datasets, databases and indices stored on

a Samsung 990 PRO PCIe 4.0 NVMe M.2 SSD6. As Tabix does

not support running on Windows, all tests were run on Ubuntu

22.04.3 LTS using Windows Subsystem for Linux (WSL 2). To

reduce the overhead of WSL, all datasets, indices and databases

were moved from /mnt/c/ to the home directory of the current

Linux user.

Database implementation

Building from a configuration file
Our database supports a variety of configurable options, which

must all be specified in a configuration file. The path to

the datasets, which chromosomes are in the dataset and the

columns with their corresponding types are required to be

declared in this configuration file.

A configuration file was chosen over specifying command

line arguments, because the large amount of command line

4 https://www.amd.com/en/products/processors/desktops/

ryzen/7000-series/amd-ryzen-9-7950x3d.html
5 https://www.gskill.com/product/165/390/1661410135/

F5-6000J3038F16GX2-TZ5NR
6 https://www.samsung.com/uk/memory-storage/nvme-ssd/

990-pro-2tb-nvme-pcie-gen-4-mz-v9p2t0bw/

arguments that would have to be specified, would make reading

and debugging the command difficult. Additionally, it is easy

to forget which command has previously been used to build a

database in case it must be rebuilt in the future.

Tom’s Obvious Minimal Language (TOML)7 was chosen

to create the configuration file in, as it is commonly used in

both the Rust and Python ecosystems. Additionally, the toml

crate natively supports showing exactly where mistakes in the

configuration file are made, which improves the usability of our

database.

Database header
At the start of the binary file, our database, the header is

placed. This header starts with a magic value of 5A 79 67 6F

73 44 42 in hexadecimal, or ”ZygosDB” when interpreted as

text. This magic value is always verified when a database is

opened, to ensure the developer using our database did not

mistakenly open the wrong file. Additionally, when opening the

built database using a hex editor, it is revealed that this is a

ZygosDB database, and not arbitrary bindary data.

After the magic value, the version number is found. This

version number is used to prevent outdated versions of the

Python wrapper trying to read future versions of the binary

database format. A version mismatch could result in reading

incorrect data or crashes.

The database header also stores general information about

the datasets, such as the names and types of columns, and the

locations of the table indices.

Sequential access
Reading sequentially is generally much faster than reading the

same data in a random order. By accessing data in a random

order, seeking to the correct position is required. This takes

more time than reading data following the current position.

While this is less of a problem for data stored on solid state

drives (SSDs), randomly reading data stored on Hard Disk

Drives (HDDs) is an order of magnitude slower due to having

to physically move the head in the drive.

Additionally, when data is read from disk, only whole pages

can be read. This means that to read a single row, an entire

page of typically 4096 bytes is read from disk and stored in

memory. While deserializing the bytes stored in memory, even

smaller sections of this data are copied to the internal cache

of the CPU. Accessing memory cached in the CPU is another

order of magnitude faster than when bytes have to be read from

memory. By deserializing a large chunk of sequentially stored

rows, the chance that this data is already stored in memory or

even the CPU cache is significantly higher than deserializing

the same rows in a randomized order.

The decision was therefore made to store all data in a

sequential order for our database. When an input dataset is

read, only the cells of columns specified in the configuration

file are deserialized. These cells are then grouped into rows,

after which the rows are sorted by their position. The sorted

dataset is then serialized and written to disk.

To query a range of rows from the database, only the

location of just the first row of the result must be known. All

following rows are namely found directly after this first row.

This means only one seek operation is required to deserialize

all resulting rows.

7 https://toml.io/

https://www.amd.com/en/products/processors/desktops/ryzen/7000-series/amd-ryzen-9-7950x3d.html
https://www.amd.com/en/products/processors/desktops/ryzen/7000-series/amd-ryzen-9-7950x3d.html
https://www.gskill.com/product/165/390/1661410135/F5-6000J3038F16GX2-TZ5NR
https://www.gskill.com/product/165/390/1661410135/F5-6000J3038F16GX2-TZ5NR
https://www.samsung.com/uk/memory-storage/nvme-ssd/990-pro-2tb-nvme-pcie-gen-4-mz-v9p2t0bw/
https://www.samsung.com/uk/memory-storage/nvme-ssd/990-pro-2tb-nvme-pcie-gen-4-mz-v9p2t0bw/
https://toml.io/


4 Nick van Luijk

Variable length integers
All rows store an integer position relative to the start of

the chromosome. As chromosome 1, the longest human

chromosome, contains around 250 million nucleotides, all

possible values of the position column fit inside of 32 bits.

A significant portion, all rows with a position of less than

224 − 1 = 16777215 fit inside a 24-bit unsigned integer, saving

one byte per row.

To reduce the amount of bytes required per row, and

potentially increasing query throughput, integers with a

variable length are used to store the position. This is

implemented using the encoding found in the vint64 crate8.

This losslessly stores any signed or unsigned 64-bit integer in

at most 9 bytes, where the smallest amount of required bytes

is always used.

If the query throughput is actually increased is tested later

in Results.

Indexing using B-trees
SQLite uses B-trees to store pages of data and indices in a

database file[9] This data structure is very similar to a binary

search tree, but B-trees can contain more than two children

per node [10] Both binary search tries and B-trees have a time

complexity of O(logn) for lookups, where n is the amount of

nodes in the tree. In practice, however, B-trees are faster, as

they do more comparisons per node, resulting in less traversed

nodes than a binary search tree would have required.

In our database, B-trees are used in querying the index of

a table. When building the database, all rows of data are

first serialized and written to the database file. Every user-

configurable n rows, a new index is created and appended to a

list, creating ”blocks” of size n. This index stores the position

of the next row, relative to the start of the file, together with

the chromosomal position. After all rows have been written, the

list of indices is serialized and appended to the database file.

To query the database, the list of indices is read from the

database file, deserialized and stored in-memory as a B-tree.

Loading the B-tree into memory has to be performed only once,

after which any number of queries can be performed. This is

implemented using Rust’s std::collections::BTreeMap9.

In order to perform a ranged query that returns all rows with

a position between a start and end, the B-tree of the index

is used to find the block that contains the first row within

this range. To find the first row, we first deserialize the cell

containing the position. If this position is smaller than the

position of the row we’re looking for, we skip deserializing the

remaining cells of the current row. This process of deserializing

the position and skipping the remaining cells is repeated until

the correct row is found. Once this row is found, all sequential

rows are fully deserialized and appended to a list. The Python

wrapper then takes this list and converts it to a list of Python

objects, ready to be used by the developer using our database.

Compressing the data
Some datasets used by bioinformaticians can be hundreds of

gigabytes in size when not compressed. To make these datasets

8 https://crates.io/crates/vint64
9 https://doc.rust-lang.org/std/collections/struct.

BTreeMap.html

easier to handle, it is essential that the data can be compressed

before it is stored the database.

Database compression is implemented in our database

by compressing all serialized rows between two indices (a

block). While querying, any block that must be read is

first decompressed, after which the decompressed rows are

deserialized like previously described. Because the data must be

decompressed, additional overhead is introduced. The effects of

this are measured in Results

Querying in parallel
The database can be queried in parallel in two separate ways.

In the first option, multiple queries can be performed at

the same time. As our database cannot be written to, it is

impossible to get race conditions. The developer using our

database can therefore open the database multiple times in

separate threads, and perform multiple queries at the same

time.

In the second option, the work of performing a single query

is split up over multiple threads running in parallel. At the start

of a query, before rows can be deserialized, the position of the

rows must first be looked up in the index. For a range query

with a large distance between the start and the end, multiple

blocks have to be decompressed and deserialized. Because the

locations where these blocks start are all found in the index,

this work can be performed on multiple threads at the same

time. This is implemented in our database and exposed through

the Python wrapper. How this affects the query throughput is

found in the next chapter.

Results

Overview of ZygosDB
We developed ZygosDB, an efficient read-only database to

query positional, genomic data. As discussed in section 3,

ZygosDB is built from a configuration file into a binary file. All

input datasets consist of multiple files, one for each chromosome

in the dataset. To store these files in the database, the contents

are parsed and converted to variable-length integers, floating

point numbers and strings of text, before they are serialized.

This serialized data is also known as a table. The tables

are then optionally compressed using Gzip, Zlib deflate, LZ4

or Zstandard, before they are written to disk. An index is

appended directly after each serialized table.

To query the database, the indices are read and converted

to B-trees. The position in the database of the start of the

serialized data can then efficiently be looked up using the B-

trees. Once this position is found, data is read from disk and

copied into memory, before it is decompressed and deserialized.

Parallelisation is achieved by distributing the work of a

single query over multiple threads. The index of a table

stores the positions of ”blocks”. Each block consists of a user-

configurable amount of rows, specified in the configuration file

used to build the database. Using the B-tree, it is possible to

look up which blocks of rows contain the query results. The

work of retrieving the blocks, decompressing and deserialising

them, is distributed over multiple threads to reduce the amount

of time a single query takes, increasing the throughput.

Benchmarking analysis
The benchmarking analysis focuses on evaluating the

performance of ZygosDB and comparing it against Tabix, the

https://crates.io/crates/vint64
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html


ZygosDB 5

tool currently in use by snpXplorer. The analysis includes two

main tests: measuring query throughput for different window

sizes and examining the impact of multi-threaded optimization

on performance.

Query throughput

Fig. 1. The query throughput, measured in the amount of rows returned

per window size, for both Tabix and our database.

As visible in Figure 1, ZygosDB is faster than Tabix for

all window sizes. As the window size increases, the query

throughput increases as well.

Fig. 2. The speedup of ZygosDB over Tabix.

From Figure 2 we can see ZygosDB is approximately 2-5

times faster than Tabix. Notable is the positive correlation

between the window size and the speedup.

An exception to this is visible in the tests without

compression and with Gzip compression. Here, in the jump

from a window size of 10 to a window size of 100, the speedup

actually decreases. The speedup does increase again when going

from a window size of 100 to a window size of 1000, but the

speedup at a window size of 1000 remains below the speedup

at a window size of 10. In the tests with LZ4 compression, the

speedup actually increases compared when going from a window

size of 10 to a window size of 100, after which it drops when

reaching a window size of 10000.

Multi-threaded optimisation

Fig. 3. The multi-threaded query throughput with a window size of

100 000, measured with thread counts of 1-32.

To measure how splitting up queries and resolving them on

multiple threads affects the throughput, tests with a varying

amount of available threads were ran. Figure 3, Shows that

initially, as the number of threads increases, the throughput

also increases.

However, at a thread count of around 4 threads, the

throughput no longer increases. With higher thread counts, the

throughput starts decreasing. With 32 threads, the throughput

is actually lower than when using only 1 thread.

Additionally, with thread counts of 7 or less, not using any

compression is faster than using Gzip or LZ4 compression. With

thread counts of 8 and above, Gzip compression is faster than

not using compression or using LZ4 compression.

Responsible Research

The repository containing the source code of our database,

the Python wrapper and the scripts used for running the

benchmarks, is publicly available on GitHub at https://github.

com/TechnologicNick/zygos_db This allows anyone to reproduce

the benchmark results, generate the graphs and verify our

findings.

Discussion

As ZygosDB is more specialised than Tabix, we expected the

query throughput to be higher. We are happy with the achieved

speedup of approximately 2-5 times.

Why the speedup of ZygosDB with Gzip compression and

without compression goes down around a window size of 100,

visible in Figure 2, is unknown to us. Queries with a window size

of 100 have a higher probability of being spread over multiple

blocks than queries with a window size of 10, because blocks

https://github.com/TechnologicNick/zygos_db
https://github.com/TechnologicNick/zygos_db


6 Nick van Luijk

of 1000 rows were used in these tests. However, this does not

explain why ZygosDB with LZ4 compression with a window size

of 100 is significantly faster than using a window size of 10, as

this theory would suggest the opposite.

The initial increase in query throughput when increasing

the amount of threads is what we expected. We expected

that the throughput would at some point me met with

diminishing returns, stagnating at a high throughput. Instead,

the throughput started dropping. This is most likely due to the

additional overhead of distributing the work across multiple

threads, waiting for them to all be done and then aggregating

the results.

Conclusions and Future Work

In this research, we aimed to design and implement an efficient

read-only database tailored for Genome-Wide Association

Studies (GWAS). Our primary objectives were to evaluate

existing binary database formats, explore methods for storing

and querying positional genomic data, and enhance query

throughput through data compression and parallelization.

We developed ZygosDB, a specialized database that

outperforms the widely-used Tabix tool, achieving a query

throughput speedup of approximately 2-5 times. This

significant improvement is attributed to our implementation of

efficient data structures, compression techniques, and multi-

threaded query execution.

Our findings reveal that while increasing the number of

threads initially boosts query throughput, it also introduces

overhead that leads to diminished returns beyond a certain

point. Additionally, compression algorithms such as Gzip and

LZ4 can play a role in optimizing query performance.

Despite these advancements, several open questions and

potential improvements remain. Future work should focus

on measuring query latency, optimizing memory usage, and

further refining the database using profiling tools. Additionally,

exploring more specialized columns and enhancing support

for rows with start and end positions could yield further

performance gains.

Overall, ZygosDB is a solution for efficiently querying large

genomic datasets, helping with more effective GWAS.

References

[1]N Tesi, S van der Lee, M Hulsman, H Holstege, and

M J T Reinders, “snpXplorer: A web application to explore

human snp-associations and annotate snp-sets,” Nucleic

Acids Research vol. 49, W603–W612, 2021.

[2]H Li, “Tabix: Fast retrieval of sequence features from

generic TAB-delimited files,” en, Bioinformatics vol. 27,

no. 5, pp. 718–719, Jan. 2011.

[3]W J Kent, A S Zweig, G Barber, A S Hinrichs, and D

Karolchik, “BigWig and BigBed: Enabling browsing of large

distributed datasets,” en, Bioinformatics vol. 26, no. 17,

pp. 2204–2207, Jul. 2010.

[4]K P Gaffney, M Prammer, L Brasfield, D R Hipp, D

Kennedy, and J M Patel, “Sqlite: Past, present, and future,”

Proc. VLDB Endow. vol. 15, no. 12, pp. 3535–3547, Aug.

2022, issn: 2150-8097. doi: 10.14778/3554821.3554842. [On-

line]. Available: https : / / doi . org / 10 . 14778 / 3554821 .

3554842.

[5]D R Hipp. “Sqlite is serverless.” (n.d.) [Online]. Avail-

able: https : / / www . sqlite . org / serverless . html (visited

on 05/24/2024)

[6]“Rust.” (n.d.) [Online]. Available: https://www.rust-lang.

org/ (visited on 05/24/2024)

[7]“Webassembly.” (n.d.) [Online]. Available: https://www.

rust-lang.org/what/wasm (visited on 05/24/2024)

[8]D P Wightman, I E Jansen, J E Savage, et al., “A genome-

wide association study with 1,126,563 individuals identifies

new risk loci for alzheimer’s disease,” en, Nat Genet vol. 53,

no. 9, pp. 1276–1282, Sep. 2021.

[9]D Kennedy. “Database file format.” (n.d.) [Online]. Avail-

able: https://www.sqlite.org/fileformat.html#b_tree_

pages (visited on 06/12/2024)

[10]D Knuth, Sorting and Searching (The Art of Computer

Programming) Second. Addison-Wesley, 1998, vol. 3,

pp. 471–479, isbn: 0-201-89685-0.

https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://doi.org/10.14778/3554821.3554842
https://www.sqlite.org/serverless.html
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.rust-lang.org/what/wasm
https://www.rust-lang.org/what/wasm
https://www.sqlite.org/fileformat.html#b_tree_pages
https://www.sqlite.org/fileformat.html#b_tree_pages

	Introduction
	Methodology
	Implementation
	Optimisations
	Bridging Tabix and Python
	Benchmarking
	Execution details

	Database implementation
	Building from a configuration file
	Database header
	Sequential access
	Variable length integers
	Indexing using B-trees
	Compressing the data
	Querying in parallel

	Results
	Overview of ZygosDB
	Benchmarking analysis
	Query throughput
	Multi-threaded optimisation


	Responsible Research
	Discussion
	Conclusions and Future Work

