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Abstract

Relevance: To enhance our understanding of motor impairments (e.g. post-stroke
or due to Parkinson’s Disease), objective measures for communication in the ner-
vous system are required. By applying system identification techniques to oscilla-
tions in brain and muscle activity, we can objectively quantify the coupling between
these areas.

Gap: Unfortunately, none of the existing techniques combine the ability to assess
nonlinear behaviour and to detect causality in a closed-loop, which is necessary to
fully characterize communication in the nervous system.

Methods: In this study, a new connectivity measure, the Nonlinear Directed Trans-
fer Function (NDTF) is introduced. The NDTF is derived by mapping a nonlinear
autoregressive model (i.e. NARX model) to the frequency domain, and provides an
approximation of the linear and nonlinear causal influences on the output spectrum.

Results: The NDTF was validated using simulated data of a bidirectional, nonlinear
system. Additionally, NDTF was applied to simultaneously recorded EEG-EMG of
a wrist flexion task. For the experimental data, the NDTF results were dominated
by linear interactions.

Conclusions: The NDTF has proven advantages above existing connectivity mea-
sures. However, it is sensitive to changes in the sampling frequency and segmen-
tation, making interpretation difficult. The mainly linear interaction found in the
EEG-EMG data implies limited sensory feedback, since the ascending pathways are
known to act nonlinear.

I. Introduction

Synchronization of neural oscillations is key
to communication in the central nervous sys-
tem. Neural populations oscillate together, and

these oscillations can be transferred to spatially dis-
tant groups of neurons [1], [2]. During muscle con-
traction, activity in the contralateral sensorimotor
cortex is coupled with activity in the muscles. These
synchronization patterns encode information trans-
fer between brain and muscles. By applying system
identification techniques, such as coherence, to brain
and muscle oscillations (i.e. corticomuscular coher-
ence, CMC), it is possible to quantify corticomuscu-

lar coupling [3], [4], [5].

The importance of corticomuscular coupling be-
comes clear when looking at individuals with mo-
tor impairments. Stroke survivors with poor mo-
tor recovery show a significantly lower CMC than
healthy individuals [6]. Furthermore, individuals
with Parkinson’s Disease (PD) off medication show
CMC in a lower frequency range than controls and
PD patients on medication [7], [8]. By quantifying
and studying corticomuscular coupling in healthy
individuals, we gain insight in the pathophysiology
behind neurological movement disorders, like stroke
or PD. In the long run, these insights might improve
diagnosis and treatment.
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Figure 1: (Adapted from Yang et al. [15]) The linear compo-
nents of a system result in isofrequency coupling at
f1 and f2 (blue). The nonlinear part of the system
results in cross-frequency coupling at harmonic (2 f1)
and intermodulation ( f1 + f2) frequencies (red).

Unfortunately, identifying corticomuscular cou-
pling is challenging. Communication during motor
control is bidirectional (i.e. closed-loop): the brain
transmits motor commands to muscles and the mus-
cle spindles and Golgi Tendon Organs (GTO’s) send
sensory feedback in return [9], [10]. Additionally,
the nervous system acts highly nonlinear. Vlaar et
al. quantified the nonlinear contribution to sensory
evoked potentials (SSEPs), and found that nearly 80
percent of the response was caused by nonlinear pro-
cesses [11]. The nonlinear behavior likely originates
from the muscle spindles which are known to intro-
duce second-order nonlinearities [12].

Although CMC is the most commonly used con-
nectivity measure, it has two shortcomings: it is not
able to describe causality within a loop [9] and it is a
strictly linear measure [13]. Thus, to fully assess cor-
ticomuscular coupling, an alternative connectivity
metric is needed that combines the ability to detect
causality in a bidirectional system with the ability to
describe both linear and non-linear interactions.

Yang et al. developed multi-spectral coherence
(MSC) and multi-spectral phase coherence (MSPC)
to cope with nonlinear coupling [14], [15]. Linear
interactions are characterized by isofrequency cou-
pling (i.e. coupling at the same frequency). In a
nonlinear system (e.g. y(t) = x2(t)) cross-frequency
coupling occurs (Figure 1). MSPC and MSC are ex-
tensions of linear coherence and phase coherence
that can capture cross-frequency coupling too. How-
ever, they are still not able to fully detect causality
between signals.

Campfens et al. proposed to apply mechanical
perturbations to the joint to deal with the closed-
loop structure [16]. Since the perturbation signal
is not part of the loop, coupling between the per-
turbation signal and brain activity mainly describes
the dynamics of the ascending pathways. Choosing
smart periodic perturbations can drastically improve
the signal-to-noise ratio because it becomes possi-

ble to average over epochs of one perturbation pe-
riod. However, this approach has three clear disad-
vantages. Firstly, the coupling can only be quanti-
fied on the perturbed frequencies and combinations
or harmonics of those frequencies, making quantifi-
cation dependent on the chosen perturbation signal.
Furthermore, the perturbation signal pushes the ner-
vous system in a certain artificial state. Therefore, it
is hard to generalize the results to daily life activi-
ties. Lastly, the perturbation introduces an indepen-
dent source for both the EEG and EMG signal, which
makes simultaneously studying the ascending and
descending pathways difficult [17].

Directed measures, such as the Directed Transfer
Function (DTF) [18] and Partial Directed Coherence
(PDC) [19], rely on linear autoregressive models in-
stead of perturbations to separate ascending and de-
scending information flow. This is a promising ap-
proach as it requires no perturbations to distinguish
direction of information flow.

Only recently, the model-based directed approach
has been extended to nonlinear interactions by us-
ing a nonlinear autoregressive (NARX) model [20]
instead of its linear brother, the ARX model. He et
al. derived a nonlinear variant of the PDC based
on the NARX model, the NPDC, and applied it to
EEG data to study corticocortical coupling [21]. The
NPDC quantifies the (non)linear coupling for each
output frequency. But, in an attempt to mimic the
matrix formulation of the linear PDC, the nonlinear
coupling at output frequency fi was divided by the
input spectrum at fi. This is incorrect: for nonlinear
interactions, the output at fi is independent of the
input at fi (Figure 1). Therefore, until today the holy
grail, a method that can correctly separate direction
and detect nonlinearities, was not found.

The aim of this study was to develop a new non-
linear connectivity measure that would meet both
criteria. Based on the NARX-model, the Nonlin-
ear Directed Transfer Function (NDTF) was derived,
which is a measure for the input-output connectivity
at each output frequency per order of nonlinearity.
In contrast to the NPDC, the nonlinear part of the
NDTF at fi is independent of the input at fi. Simu-
lated data was used to demonstrate the robustness
of NDTF as a first step.

Subsequently, NDTF was used to quantify and
compare sensory feedback during a wrist flexion po-
sition task and a wrist flexion force task as a proof
of concept. The NDTF was determined for EEG and
EMG data that was simultaneously recorded during
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both tasks. Based on previous studies, we assumed
that the position task required more position feed-
back from the muscle spindles [22], [23], which show
second-order nonlinearities [12]. Therefore, we ex-
pected a stronger second-order nonlinear coupling
in the ascending pathways for the position task com-
pared to the force task.

The remainder of the paper is outlined as follows.
The methodology is divided in three sections. The
theoretical derivation of the NDTF is explained in
Section II. Subsequently, in Section III and Sec-
tion IV, the application on simulated data and ex-
perimental data is described. Afterwards, both the
simulation results and experimental results are pre-
sented in Section V. Interpretation of these results is
described in the Discussion (Section VI). Finally, the
most important outcomes of this study are summa-
rized in the Conclusion (Section VII).

II. Nonlinear Directed Transfer

Function (NDTF)

In this section the Nonlinear Directed Transfer Func-
tion (NDTF) is derived. NDTF is a model-based con-
nectivity measure, meaning that it quantifies infor-
mation flow in two steps:

1. a parametric model is fitted to the data to de-
scribe the system, and

2. information flow is quantified by evaluating the
fitted model.

The first two subsections describe the modeling
procedure step-by-step (Subsection II.A-B). Eventu-
ally, the quantification step that results in the NDTF
is explained in the last subsection (Subsection II.C).

II.A. NARX model for nonlinear bidirectional
systems

Modeling the human nervous system is challenging
for two main reasons: information flows in two di-
rections (i.e. cortex ⇄ muscles), and the interactions
are both linear and nonlinear. This subsection ex-
plains how the NARX modeling structure addresses
both problems by fitting a time-domain model to the
data.

a. Causality in a bidirectional system

Model-based connectivity measures rely on the con-
cept of Granger causality to detect direction of infor-
mation flow in a closed-loop system. Granger basi-

cally stated that if signal x1 causes signal x2, x2 can
be (partially) predicted based on signal x1 [24]. Vice
versa, if it is possible to model signal x2 using signal
x1, there must be a causal influence from x1 on x2.

For example, let x1 and x2 be two signals with dis-
crete time recordings at t = 1, 2, 3, ..., N. The system
linking signal x1 and x2 with can be described with
a linear ARX model (i.e. AutoRegressive model with
eXogenous input):

x1(t) =
q

∑
k=1

a11,kx1(t− k) +
p

∑
k=1

a12,kx2(t− k) + ex1(t) (1)

x2(t) =
q

∑
k=1

a21,kx1(t− k) +
p

∑
k=1

a22,kx2(t− k) + ex2(t) (2)

where p and q are the maximum time lags (i.e. the
memory) of signals x1 and x2, ex(t) and ex2(t) are the
model prediction errors and a11, a12, a21 and a22 are
the parameters fitted to minimize ex1(t) and ex2(t).
The influence of signal x2 on signal x1 is reflected
in parameter a12. The other direction of information
flow, signal x1 influencing signal x2, is represented
by parameter a21. Hence, the ARX model structure
separated pathways x1 → x2 and x2 → x1.

b. Nonlinear terms

To quantify both linear and nonlinear coupling, non-
linear terms should be added to the model. Billings
et al. extended the linear ARX structure with non-
linear terms, resulting in the NARX model [20].
Most common is the polynomial NARX model. Be-
sides past input and output variables, the polyno-
mial NARX model contains combinations of vari-
ables, representing nonlinearities in the system. The
structure of a second-order nonlinear NARX model
is as follows [25]:

x2(k) = θ0 +
n

∑
i1=1

θi1 xi1(k)︸ ︷︷ ︸
1st order terms

+
n

∑
i1=1

n

∑
i2=1

θi1i2 xi1(k)xi2(k)︸ ︷︷ ︸
2nd order terms

+e(k) (3)

with

xim =

{
x2(k−m) 1 ≤ m ≤ nx2

x1(k− (m− nx2)) nx2 + 1 ≤ m ≤ nx2 + nx1

(4)

3
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where n is the total time lag n = nx1 + nx2 ; θim and
θimim contain the first- and second-order model pa-
rameters, respectively; xim contains lagged input and
output terms as described by equation (4) and e(k) is
the prediction error. θ in this equation is equivalent
to a in equations (1) and (2).

c. Model term selection

ARX models are generally full models: they contain
all possible terms up to a specified time lag. The im-
pact of each term is controlled by the fitted param-
eters. Parameters of spurious terms will approach
zero, which essentially eliminates these terms from
the model.

In case of the NARX model, the number of terms
increases exponentially with increasing time lags,
since combinations of all terms are also taken into
account. Parameter estimation of that many terms
becomes computationally challenging. Therefore,
a sparse model is more suitable: only meaningful
terms are added to the model before parameter esti-
mation. Model term selection was performed using
the Forward Regression Orthogonal Least Squares
algorithm based on the error-reduction-ratio (ERR)
[26]. An elaborate explanation of this algorithm and
the subsequent parameter estimation can be found
in Appendix A.

To model both pathways in a closed-loop, two
polynomial NARX model should be fitted separately
(i.e. similar to equation (1) and (2), one for each di-
rection).

II.B. NARX models in the frequency domain

Although neural communication can be studied in
the time domain (e.g. using event-related potentials),
most studies focus on describing communication in
the frequency domain. Fortunately, the NARX mod-
els identified in Subsection II.A can be mapped to
the frequency domain.

A linear transfer function is simply expressed as
X2( f ) = H( f )X1( f ), where H( f ) is the transfer
function. Linear interactions in the frequency do-
main are characterized by isofrequency coupling: in-
put at frequency f1 results in output at frequency
f1 (Figure 1). For nonlinear processes, input at
frequency f1 results in output at different frequen-
cies. Here, we can distinguish between harmonic
responses (e.g. f1 → 2 f1) and intermodulations (e.g.
f1, f2 → f1 + f2).

Therefore, the second-order transfer function

Figure 2: The two-dimensional frequency space of a second or-
der system. For each combination of frequencies,
there is a complex number in H2( f1, f2) that defines
the transfer from the input frequencies to the output
frequency. The output frequency is the sum of the
input frequencies. The red dashed line represents har-
monic coupling, where f1 = f2 and thus fout = 2 f1.

H2( f1, f2) depends on two input frequencies and can
be visualized as a 2D-surface. The output frequency
at each point of the surface is the sum of its input
frequencies (Figure 2).

Billings et al. developed a recursive method to
compute H1( f1) and H2( f1, f2) using the estimated
parameters and terms from the NARX time-domain
model [27], which is summarized in Appendix B.

II.C. From NARX model to NDTF

While the implications of a first-order transfer func-
tion are easy to interpret, this becomes more dif-
ficult for the second order. Furthermore, based
on the separate transfer functions H1 and H2, it is
not possible to see the combined effect of the first
and second order terms. The last step, turning the
frequency-domain NARX model into the new con-
nectivity measure, NDTF, is meant to make inter-
pretation and visualization of the modeling results
easier.

H1,x1←x2 and H2,x1←x2 both reflect a part of the
coupling from X2( f ) to X1( f ). By calculating the
result of H2 for each output frequency, the transfer
is reduced to a 1D function.

The recorded physiological signals (i.e. EEG and
EMG) contain a broad spectrum of frequencies. Dif-
ferent combinations of these frequencies will cer-
tainly overlap in output frequency (e.g. f1 = 3, f2 =
1 → fout = 4 and f1 = 2, f2 = 2 → fout = 4). The
influence of each of these frequency combinations

4
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depends on the input spectrum at f1 and f2 and on
the coupling strength defined in H2( f1, f2) [25]. To
determine the total influence on fout, all frequency
combinations that add up to fout can be summed.
The NDTF is simply this sum of contributions:

NDTF1,x1←x2( f ) = |H1( f )X2( f )| (5)

NDTF2,x1←x2( f ) =∣∣∣∣∣ ∑
f= f1+ f2

H2( f1, f2)X2( f1)X2( f2)

∣∣∣∣∣ ,

(6)

where f is the output frequency, H1 and H2 are
the transfer functions for the first and second or-
der nonlinearities, and X2( f ) is the input spectrum.
The second-order NDTF is a discrete approximation,
since only the terms that are available in vector x1
are taken into account. The discretization inevitably
causes a loss of combinations and, therefore, a lower
NDTF. We assumed that the loss would be similar
across conditions and across the frequency spectrum.
A visual example of the consequences of discretiza-
tion on NDTF2 is given in Appendix C.

Finally, the contributions of the first and second
order can be summed, such that the combined effect
can be studied.

NDTF = NDTF1 + NDTF2 (7)

If the system is linear, or if we are only interested
in the linear part of a system, the second term of the
summation can be left out.

III. Simulations

To prove that our NARX-based framework is valid,
simulations were performed on a system that glob-
ally mimicked the dynamics of the corticomuscular
loop. The simulated system (i.e. Data Generating
System (DGS)) that was used is described in Subsec-
tion III.A. Subsequently, the data analysis protocol
is outlined in Subsection III.B. The metrics used to
quantify the performance of NDTF as a connectiv-
ity measure are discussed in Subsection III.C. To
identify and address potential problems in the use
of NDTF for EEG/EMG data, some simulation ex-
periments were performed. These are described in
Subsection III.D.

Figure 3: Block scheme of the simulated system as described in
He et al. [21]. It is a bidirectional system with output
signals u and y and white noise sources eu and ey that
excite the system. The transfer u ← y is linear; the
transfer y ← u is nonlinear. The default simulation
settings for the system are provided in Table 1

III.A. Data Generating Systems

There were two main requirements for the Data Gen-
erating System (DGS):

1. the system had to be bidirectional, and

2. the system had to contain nonlinearities.

He et al. developed a numeric example of a sys-
tem that meets both requirements (Figure 3). The
system has two outputs, y and u. The processes that
connect u and y can be described with the following
two difference equations:

y(k) = 0.5y(k− 1)− 0.3y(k− 2) + 0.1u(k− 2)

+ 0.4u(k− 1)u(k− 2) + ey(k) + wy(k) (8)

u(k) = 0.3u(k− 1)− u(k− 2)

− 0.1y(k− 2) + eu(k) + wu(k) (9)

where u and y are the outputs of the system; ey
and eu are zero-mean Gaussian white noise sources
(var(e) = 0.01) that excite the system, and k is the
discrete time-step. Signal u depends linearly on the
past of signal y. On the other hand, signal y depends
non-linearly on the past of signal u due to a second-
order nonlinear input term (0.4u(k− 1)u(k− 2)).

III.B. Data analysis

For the every condition in the simulation experi-
ments, the system was simulated 10 times. The data
analysis was performed separately on each of these
repetitions to be able to estimate the standard devia-
tion over repetitions afterwards.

5
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Parameter Default settings
recording time T 1000 [s]
sampling frequency fs 20 [Hz]
variance eu 0.01
variance ey 0.01
variance wu 0
variance wy 0
number of segments L 100

Table 1: Default settings for the DGS depicted in Figure 3.
1000 [s] recording time at 20 Hz results in 20000
samples. These are split up in 100 segments of 2000
samples. There is no measurement noise added in the
default simulations. Therefore, the variance of wy and
wu is zero.

First, the acceptable residual prediction error was
determined based on a grid search across differ-
ent thresholds. Multiple second-order nonlinear
NARX models (equation (3)) were fitted with vary-
ing thresholds for the residual prediction error. The
residual prediction error was expressed as the error-
to-signal ratio (ESR) [25],

ESR = 1−
M

∑
i=1

ERRi, (10)

where ERRi is the error-reduction-ratio for model
term i and M is total number of terms added to the
model. The calculation of the ERR is explained in
further detail in Appendix A. The correct value for
ESR depends on the amount of noise in the system,
which is often unknown. The different models were
evaluated based on their fit (i.e. VAF, see Subsec-
tion III.C) on a separate part of the data, that was
not used during fitting. The ESR that resulted in the
best model, was picked. This resulted in ESR = 0.03
for linear system u ← y and in ESR = 0.3 for non-
linear system y← u.

The maximum time lags (p and q in equation (3))
were higher than what would be necessary based on
our knowledge of the system (nu = 10 and ny = 10).
However, this creates an opportunity to demonstrate
that the NARX model converges to correct terms,
even when there is an extensive library of other
terms available.

III.C. Performance metrics

To characterize the algorithms performance, four
performance metrics were used.

1. Variance-accounted-for (VAF)

The VAF represents the variance explained by
the time-domain model expressed as a percent-
age of the total variance in the output signal. It
was used to asses the fit in the time domain. A
high VAF corresponds to a low prediction error.
The generated data was divided in two parts.
80 percent of the data was used to fit the model.
The other twenty percent was used to calculate
the VAF. Therefore, the VAF does not increase
when the model fits noise in the training data.
The VAF can be calculated as follows:

VAF =

(
1− var(y− ŷ)

var(y)

)
· 100% (11)

where vector y is an epoch of the output sig-
nal in the validation data, and ŷ is the modeled
signal for the same epoch.

2. Quality metric (Q)
The linear part of each pathway in the DGS
acts as a narrow passband filter, which primar-
ily passes components around 4.5 Hz (for a 20
Hz sampling frequency). Therefore, we expect
the NDTF to find coupling at 4.5 Hz for both
systems. Additionally, we expect a peak at the
second-order harmonic: 9 Hz (2× 4.5 Hz) for
the interaction y ← u. Quality metric Q is
the ratio between output on frequencies where
output is expected and output on frequencies
where there is not. It is expressed as follows
(adapted from Potgieter et al. [28]):

Q =
NDTF

fexp
µ

NDTF
funexp
µ

(12)

The NDTF is averaged over the range of either
expected or unexpected frequencies. The ex-
pected frequency range is 4-5 Hz for u← y and
4-5 and 8.5-9.5 Hz for y ← u; the unexpected
frequency range includes all other frequencies.
A high Q value means that the NDTF accurately
describes the system in the frequency domain.
Bear in mind that Q can only be calculated for
simulated systems where the fexp and funexp are
known beforehand.

3. Peak-value of NDTF
The third performance measure is simply the
peak-value of the NDTF in the 4-5 Hz and 8.5-
9.5 Hz region.

4. Standard error of the mean (SEM)
The standard error of the mean reflects the ac-
curacy of the estimated parameters. For correct

6
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model terms in a time-invariant system, the pa-
rameters should be approximately constant for
each sample, resulting in a low SEM. The SEM
for each variable can be found on the diagonal
of the covarance matrix Covθ̂ , which is deter-
mined as follows [13]:

Covθ̂ =
1
N

ϵTϵ
(

PT P
)−1

, (13)

Here, N is the total number of samples, vector
ϵ contains the prediction error for each sample,
and each column in matrix P contains the sam-
ples of one of the selected model terms

III.D. Simulation experiments

The simulation experiments are used to evaluate
how the following parameters influence the effective-
ness of NDTF: 1) variations in data segmenting, 2)
variations in coupling strength, and 3) additive mea-
surment noise.

1. Data segmenting
By default, the system is simulated for 1000 sec-
onds at 20 Hz, resulting in N = 20000 sam-
ples. The data is then segmented into L non-
overlapping epochs, a part of which is used for
fitting and a part of which is used for valida-
tion. Data segmenting influences the frequency
resolution.

∆ f =
fs

Nepoch
=

fs · L
N

(14)

where ∆ f represents the frequency resolution;
fs is the sampling frequency; Nepoch is the num-
ber of samples per segment; L is the number of
segments and N is the total number of available
segments. During this simulation experiment,
analysis was additionally performed for L = 50,
which resulted in segments of 4000 samples.
We expected that a higher frequency resolution
will result in a higher NDTF since the discrete
approximation of the amplitude spectrum be-
comes better (i.e. more frequency combinations
are taken into account). The loss-effect as de-
scribed in Appendix C will, therefore, probably
decrease. Additionally, longer segments will re-
sult in less leakage to neighboring frequencies.

2. Coupling strength
A stronger causal coupling in one of the path-
ways should result in a higher NDTF. To test

this, the coupling strength was altered in two
ways, in separate simulations:

• the causal gain θy(t−2) in the linear system
u← y was increased from 0.1 to 0.15, and

• the gain for the nonlinear term,
θu(t−1)u(t−2), in system y ← u was
increased from 0.4 to 0.6.

The expectation is that the higher gains will in-
crease the peaks of the NDTF. The increase of
θy(t−2) will likely affect the linear peak at 4.5 Hz
in system u ← y. The increase of θu(t−1)u(t−2)
will probably affect the second-order peak at 9
Hz, for system y← u.

3. Effect of measurement noise
In the default simulations, no measurement
noise was added to the signal. However, phys-
iological systems often show high levels of
both process and measurement noise. To ver-
ify whether the algorithm still performs well in
the presence of noise, in this experiment white
Gaussian noise was added to the output sig-
nals.
The addition of noise was regulated based on
the noise-to-signal ratio (NSR):

NSRy =
var(wy)

var(y)
× 100% (15)

where wy is the additive measurement noise
and y is the actual signal. Simulations were
performed for two situations: symmetric noise
and asymmetric noise. In the symmetric
case, the NSR was kept equal for signal u
and y. Simulations were run for NSR =
0%, 10%, 20% and 50%.
In the asymmetric case, the same values for the
NSR were used. However, the measurement
noise was only added to signal y. We expected
that output noise results in a larger effect on the
NDTF than input noise.

IV. Acquisition of EEG/EMG data

This section explains the methodology for collecting
the EEG-EMG data.

IV.A. Participants

Four participants volunteered in the study (1 female;
age: 23 ± 1.4 years). All of the participants were self-
reported right-handed and had no history of neuro-
logical diagnosis or injuries to the right arm. Each
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of them provided written informed consent prior to
the start of the experiment. The experimental pro-
tocol was approved by the Human Research Ethics
Committee (HREC) of the Delft University of Tech-
nology.

IV.B. Experimental setup

An overview of the experimental setup is given in
Figure 4. The setup was located in a sound-proof
cabin with dimmed light, to avoid distraction or
overstimulation of the participant. The participant
was seated next to a haptic wrist manipulator (Wrist-
alyzer, Moog Inc., the Netherlands). The right fore-
arm was strapped to the arm rest of the manipu-
lator such that the flexion angle of the elbow was
approximately 90°. The height of the manipulator
was altered for each subject to a position where both
shoulders were relaxed. The arm rest and hand grip
were positioned such that the pivot point of the wrist
and the manipulator were aligned. The hand was
strapped to the hand grip to avoid grasping. In front
of the participants was a monitor that provided vi-
sual feedback during the tasks. Direct view of the
right hand was shielded by a black canvas.

High-density EEG was measured using a 128-
channel cap (WaveGuard cap, ANT Neuro) with
Al/AgCl electrodes. Simultaneously, EMG was mea-
sured using bipolar Al/AgCl electrodes on the ex-
tensor and flexor carpi radialis muscle belly with
a 1.5cm inter-electrode distance. The EEG signals,
EMG signals and the exerted wrist torque and angle
were recorded at 2048 Hz on a bio-signal amplifier
(ReFa, TMSi, the Netherlands). The amplifier had
a gain of 26.55 for physiological input channels and
filtered the signals with a 552 Hz low-pass filter to
prevent aliasing.

IV.C. Experimental protocol

All participants performed different two tasks: a
force task and a position task.

1. Force task
The hand grip was fixed at 0° wrist flexion. For
each trial, participants were instructed to exert
a isotonic flexion torque (1 Nm) with their right
wrist during 35 seconds. Beforehand, they had
10 seconds to build up and stabilize their wrist
torque. Visual feedback was continuously pro-
vided on the monitor. The target torque corre-
sponded to the arrow pointing upwards.

2. Position task
The hand grip was unlocked and could be
moved frictionless through the range of motion.
For each trial, participants were asked to keep
their wrist angle constant at a 0° angle during
35 seconds, while withstanding a 1 Nm torque
that was independent from the angle. Prior to
the hold period, they had 10 seconds to move to
the 0° angle and to stabilize there. Visual feed-
back was again provided on the screen, where
0° corresponded to the arrow pointing up. To
stimulate the use of sensory feedback, angular
deviations were amplified on the screen, such
that a 1° angular deviation corresponded to a
16° deviation of the arrow on the screen.

Two participants started with the force task; the
other two started with the position task. For each
task, the participant performed two training trials
followed by ten actual trials. Between trials there
was a 15 second break. In total, the experimental
protocal took approximately 30 minutes. The entire
experiment took approximately 2.5 hours, including
informed consent, instructions, setting up the EEG
and EMG and cleaning afterwards.

IV.D. Data preprocessing

For each trial, the first second of data was discarded
to remove transient behavior. Subsequently, for both
the EEG and EMG channels, the mean was sub-
tracted and the data was bandpass filtered (1-200
Hz) with a 4th order Butterworth filter. Addition-
ally, the 50 Hz noise from the power line and its
harmonics at 100 and 150 Hz were removed with a
notch filter. The data was then cut into 2 second
non-overlapping epochs, resulting in 170 epochs per
participant per condition.

Bad channels (i.e. with high variance or with
an impedance above 20 kΩ) and epochs contain-
ing clear deviations (e.g. due to eye blinks) were
removed from the EEG data based on visual in-
spection. The EEG was transformed with a spher-
ical Laplacian derivation to filter the data spatially.
The electrode that showed the strongest coherence
with the EMG signal from the flexor carpi radialis
was selected to calculate the NDTF. The coherence
was averaged between 15 and 30 Hz, which is the
frequency-range where CMC is usually highest [4],
[29]. The EMG signal from the flexor carpi radi-
alis was included as the second input for the NARX
model. Finally, both signals were downsampled
from 2048 to 512 Hz before fitting the NARX model.
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Figure 4: [Right] Overview of the participant in the setup. Participants is seated next to the haptic manipulator. Direct view of the
right wrist is shielded. [Left, top] Monitor in front of the participant, providing them with visual feedback during the
tasks. The target position/torque is the line straight upwards; the actual position/torque is shown by the dark blue arrow.
[Left, bottom] The right fore-arm strapped to the haptic device. The axis of the wrist and the manipulator are aligned.
EMG electrodes are placed at the flexor carpi radialis and the extensor carpi radialis (only one of the electrodes is visible in
the picture).

IV.E. Data analysis

Per participant, four different NARX models were
fitted (i.e. two tasks, two directions). Eighty percent
of the data was used to fit the NARX model, the
other 20 percent was used to evaluate the models
performance.

Similarly to the simulation analysis, models
were built for different values of ESR (equation
(10)). The model was computed for ESR =
[0.1, 0.15, 0.2, and 0.25]. These values were selected
based on a grid search across a broader range of ESR
values. The different models were compared based
on their VAF (equation (11)) and the best model was
selected.

The maximum output lag nout is set at 10
timesteps, which corresponds to approximately 20
ms at a 512 Hz sampling frequency. The minimum
input time lag was set at 8 steps (i.e. approximately
15 ms) to account for the conduction delay between
motor cortex and muscles. The maximum input time
lag was set at 18 timesteps (i.e. approximately 35
ms). In total, 10 input and 10 output steps were
taken into account for both pathways.

To obtain a good discrete approximation of the

NDTF, a high frequency-resolution is beneficial. The
frequency resolution depends on the length of each
segment (equation (14)). Therefore, 111 segments
(i.e. the minimum number of epochs available af-
ter preprocessing) were concatenated after fitting.
A Hann window was applied to each segment be-
fore attaching them to avoid leakage. The input
spectrum for the NDTF was obtained by taking the
Fourier transform of the long, concatenated time-
series.

A low frequency-resolution has the advantage
that the bandwidth of the resulting spectrum is
small and, thus, easy to interpret. To smoothen the
high-resolution NDTF, a moving-average filter with
a 20 step-window was applied as a final step.

V. Results

This section contains the results of the simulation
study (Subsection V.A) and the results based on the
EEG-EMG data (Subsection V.B).

9



Master Thesis - Nina van der Helm - May 2018

V.A. Simulation results

This subsection contains the results of the simula-
tion experiments done to demonstrate the feasibility
of NDTF as a connectivity measure. First, the simu-
lated output spectra |U| and |Y| are discussed. Sec-
ondly, the resulting NDTF for the default settings is
presented. Lastly, the outcomes of the simulation ex-
periments as described in Subsection III.D are listed.

a. Simulated output spectra

The amplitude spectra for signal u and y are shown
at the top row of Figure 5. Output spectrum |U|
shows a peak around 4.5 Hz. |Y| shows a peak at
the same frequency, but also shows a second peak
around 9 Hz, due to the second-order nonlinearity in
the system. The magnitude of the first peak differs
across both paths: 0.06 for system u← y versus 0.01
for system y ← u. Therefore, the process noise is
relatively larger for system y ← u, which explains
the noisy output spectrum (Figure 5).

b. NDTF for default settings

The results based on the default settings (Table 1) are
shown in the 2nd row of Figure 5. In the figure, the
first and second order NDTF are separated, to show
where the peaks originate from. The linear system
u ← y shows no peaks in the second-order NDTF
but a strong peak around 4.5 Hz in the first-order
NDTF. For the non-linear system y ← u there are
two peaks visible: one around 4.5 Hz based on the
first-order NDTF and one around 9 Hz for the sec-
ond order NDTF. The NARX algorithm selected the
correct model terms for all ten repetitions. The pa-
rameters for spurious terms approached zero, mak-
ing their contribution limited. Parameters for cor-
rect model terms were correctly and consistently es-
timated. They can be found in Table 2 and 3 for
system u ← y and y ← u, respectively. The SEM
plots on the bottom row of Figure 5 show clear dif-
ferences between correct and incorrect terms when
it comes to consistent parameter estimation. Quality
measure Q, indicating the ratio between desired and
undesired output, is substantially higher for u ← y
than for y ← u: 38.9 and 4.9, respectively. However,
these two values can’t be compared directly, since
they are calculated differently (Subsection III.C) and
describe different systems. The predictive capability
of the NARX model in the time domain can be as-
sessed based on the VAF. The VAF was 96.2 % and
57.72 % for u← y and y← u, respectively.

c. Simulation experiments

Three simulation experiments were performed to
study the effect of data segmenting, coupling
strength and measurement noise on NDTF. The per-
formance measures for these experiments are sum-
marized in Table 2 and Table 3.

1. Data segmenting
The number of segments was decreased from
100 to 50, with 4000 samples per segment in-
stead of 2000. The resulting NDTF for both
pathways is depicted in Figure 5. The longer
segments resulted in a higher frequency resolu-
tion (∆ f = 0.005 instead of ∆ f = 0.01). This
has three consequences.
Firstly, the lower number of segments results in
worse performance of FROLS algorithm. The al-
gorithm overlooked the term y(t− 2) in the lin-
ear system 4 out of 10 times. Without this term,
there is no causal influence from y to u, result-
ing in a flat NDTF. Secondly, Q clearly increases
for system u← y (Q = 79.5 instead of 38.9). For
system y← u, the quality remains nearly equal
(Q = 4.17 instead of Q = 4.89. Thirdly, the
peak value of the first peak (4.5 Hz) increases
substantially for the linear system u ← y (0.16
instead of 0.06).

2. Coupling strength
For the second experiment, the gain of the
causal term in the linear system and the causal
squared term in the nonlinear system were, sep-
arately, multiplied by a factor 1.5. The new
parameters were estimated correctly for both
systems. For linear system u ← y the gain
of term y(t − 2) was increased from -0.1 to -
0.15. Its parameter was estimated at θy(t−2) =
−0.1533± 0.0095. For nonlinear system y ← u,
the gain of nonlinear term u(t− 1)u(t− 2) was
increased from 0.4 to 0.6. θu(t−1)u(t−2) was esti-
mated to be 0.5998± 0.0059.
The higher coupling strength resulted in higher
peak values for the NDTF. The peak around 4.5
for linear system u ← y increased from 0.0629
to 0.0946, which is a 50,3 % growth (i.e. very
close to the 50% increase in coupling strength).
For nonlinear system y ← u, the focus should
be on the second-peak, caused by the squared
term. This peak increases from 0.0015 to 0.0017,
which is a 13,3 % increase.

3. Measurement noise
Lastly, the effect of adding white Gaussian
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Linear system u← y Nonlinear system y← u

Figure 5: Results of simulation and data analysis of the DGS (Subsection III.A). The figures on the left reflect the outcomes for the
linear system u ← y; the figures on the right reflect nonlinear system y ← u. (1st row) Magnitude of the output spectra
|U| and |Y| for the default settings (Table 1). The linear system (left) shows a clear peak value around 4.5 Hz. The influence
of process noise eu is negligible. The nonlinear system (right) shows a peak at 4.5 Hz and a second peak at 9 Hz, which
is caused by the second order non-linearity in the system. Process noise ey causes the blurring at the other frequencies.
(2nd row), (3rd row) The 1st and 2nd order NDTF for segments of 2000 and 4000 samples, respectively. A higher number
of samples results in a higher frequency resolution, which decreases leakage and increases the 2nd order NDTF since the
discrete approximation becomes better (Appendix C). (4th row) Accuracy of the estimated parameters per model term for
the default settings represented by the standard error of the mean (SEM). The SEM is expressed in percentage of the mean
estimated θ. The dark blue line indicates significance. All correct model terms are below the line (i.e. significant); no
incorrect terms are significant. The 10 terms that are shown are the terms that were selected most often during the ten
simulation repetitions.
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Linear system u← y Nonlinear system y← u

Figure 6: Effect of white Gaussian noise on the model fit in the
time domain, expressed by VAF (11), and on the qual-
ity of the NDTF, expressed by Q (12). On the x-axis
is the noise-to-signal ratio for signal y as expressed
in equation (15), where NSR = 0 means noise-free.
The blue line indicates ’symmetric noise’ (i.e. equal
NSR for signal u and signal y); the red line indicates
’asymmetric noise’ (i.e. only additive noise on signal
y).

measurement noise to the output signals was
investigated. There were two separate noise
cases studied: symmetric noise and asymmet-
ric noise. The influence of the noise cases on the
VAF and Q for both pathways is depicted in Fig-
ure 6. The FROLS algorithm remained success-
ful in selecting the correct model terms, even
for the highest NSR. However, the parameters
are underestimated in the presence of measure-
ment noise (Table 2 and 3) and decrease with
increasing NSR.
For linear system u← y, the VAF decreases sub-
stantially in the symmetric noise case (from 96.2
% to 63.95%) and not at all in the asymmetric
noise case (96.2 % versus 96.3 %). More impor-
tant is the effect on Q and the peak value. Both
Q and the peak value decrease substantially for
both noise cases, although the decrease is larger
for the symmetric case (Table 2).
For nonlinear system y← u, the VAF decreases
for both noise cases (default: VAF = 57.7 %,
symmetric: VAF = 33.57 %, and asymmetric:
VAF = 40.9 %). The quality of the measure Q,
however, only decreases very minimally. There
is a decrease visible in the peak values for

both the first peak (0.0110 versus 0.0105 ver-
sus 0.0083) and the second peak (0.0015 ver-
sus 0.0011 versus 0.0007), where the symmetric
noise case always results in the lowest peak.

V.B. Experimental results

The results for the EEG-EMG data are divided in
two parts: results of the data preprocessing and re-
sults of the data analysis (i.e NARX modeling and
calculation of NDTF).

a. Preprocessed EEG-EMG data

After removal of bad epochs based on visual inspec-
tion, at least 111 epochs were left per participant per
task (143 epochs on average). The electrode with the
strongest coherence was in most cases, as desired,
located above the sensorimotor cortex (4x CP1, 2x
C3, 1x C1 and 1x CP1). However, for subject s03 no
clear coherence peak was located. Here, electrode
CP1 was selected since this was the most commonly
selected electrode. Topoplots of the corticomuscular
coherence between 15-30 Hz are provided in Figure
7. The selected electrode is marked with a circle.

b. NDTF applied to EEG-EMG data

The NDTF for all four participants in both directions
and for both tasks is shown in Figure 8. There is no
consistent difference between the force and the posi-
tion task visible across participants. The subsequent
paragraphs provide more detailed findings for the
EEG-EMG-data.

In the time-domain, the predictive capability of
the model can be described with the VAF (equa-
tion (11)). There was a substantially higher VAF
found for the ascending pathways compared to the
descending pathways (75.9 ± 5.6 versus 48.9 ± 5.3).
This difference is similar for both the position task
and the force task. Additionally, the descending and
ascending pathways differed substantially in their
peak values and average values for the NDTF. For
the descending pathways (i.e. EMG ← EEG), these
peaks lay between 0.002 and 0.05 (Figure 8). The as-
cending pathways, on the other hand, show substan-
tially lower peak values between 10−7 and 10−6.

Figure 9 shows the NDTF for the first and second
order combined, and the NDTF for only the first or-
der (i.e. linear). The figure shows data for subject
s01 on the force-task. The linear component of the
NDTF clearly dominates the nonlinear component.
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θu(t−1) θu(t−2) θy(t−2) Peak-value VAF Q

True system 0.3 -1 -0.1
Default settings 0.3107 -1.0035 -0.0982 0.0629 96.2309 38.9278

±0.0612 ±0.0261 ±0.0085 ±0.0202 ±0.7092 ±9.1791
Longer segments 0.3229 -1.0040 -0.1017 0.1642 96.7607 79.5557

±0.0359 ±0.0162 ±0.0074 ±0.2193 ±0.4634 ±45.6505
Symmetric noise 0.0871 -0.3462 0.0663 0.0159 63.9590 10.9252

±0.0344 ±0.0296 ±0.0199 ±0.0086 ±3.9081 ±3.2818
Asymmetric noise 0.3197 -1.0183 -0.0639 0.0391 96.3022 32.6883

±0.0836 ±0.0415 ±0.0067 ±0.0163 ±0.5521 ±10.3402
True system 0.3 -1 -0.15
Linear coupling u← y ↑ 0.3379 -1.0214 -0.1533 0.0946 95.2372 31.4040

±0.0423 ±0.0197 ±0.0095 ±0.0620 ±0.5959 ±13.3016

Table 2: Overview parameter estimates and performance metrics (Subsection III.C) for linear system u← y (µ± σd).
(Default settings)The default settings are provided in Table 1. The other systems all deviate from the default settings
at one point. (Longer segments) Less segments with more samples per segments: L = 50, N = 4000 instead of L =
1000, N = 2000. (Symmetric noise) Additive measurement noise (w in Figure 3) on both output signal u and input
signal y such that NSRu = NSRy = 50%. (Asymmetric noise) Additive measurement noise solely on input signal y
such that NSRy = 50%. (Linear coupling u← y ↑) Increase in the gain of causal term y(t− 2), θy(t−2) = 0.15 instead
of 0.1.

θy(t−1) θy(t−2) θu(t−2) θu(t−1)u(t−2) 1st peak 2nd peak VAF Q

True system 0.5 -0.3 0.1 0.4
Default settings 0.5113 -0.3154 0.0980 0.3979 0.0110 0.0015 57.7296 4.8928

±0.0334 ±0.0315 ±0.0052 ±0.0222 ±0.0037 ±0.0008 ±4.9476 ±0.5587
Longer segments 0.5185 -0.2998 0.1041 0.4106 0.0092 0.0015 59.5046 4.1742

±0.0670 ±0.0251 ±0.0089 ±0.0128 ±0.0037 ±0.0010 ±3.6592 ±0.5075
Symmetric noise 0.0985 -0.0342 0.0307 0.0333 0.0083 0.0007 33.5750 4.6173

±0.0659 ±0.0533 ±0.0031 ±0.0074 ±0.0042 ±0.0004 ±4.0813 ±0.8191
Asymmetric noise 0.2525 -0.1143 0.1034 0.3711 0.0105 0.0011 40.9341 4.7755

±0.0729 ±0.0600 ±0.0101 ±0.0534 ±0.0051 ±0.0008 ±4.2076 ±0.6623
True system 0.5 -0.3 0.1 0.6
Nonlinear coupling ↑ 0.4998 -0.3001 0.1000 0.5998 0.0093 0.0017 65.6716 4.0622
y← u ±0.0090 ±0.0120 ±0.0030 ±0.0059 ±0.0028 ±0.0011 ±4.6950 ±0.5501

Table 3: Overview parameter estimates and performance metrics (Subsection III.C) for nonlinear system y← u (µ± σd).
(Default settings)The default settings are provided in Table 1. The other systems all deviate from the default settings at one
point. (Longer segments) Less segments with more samples per segments: L = 50, N = 4000 instead of L = 1000, N =
2000. (Symmetric noise) Additive measurement noise (w in Figure 3) on both input signal u and output signal y such
that NSRu = NSRy = 50%. (Asymmetric noise) Additive measurement noise solely on output signal y such that
NSRy = 50%. (Nonlinear coupling y← u ↑) Increase in the gain of causal term u(t− 1)u(t− 2), θu(t−1)u(t−2) = 0.6
instead of 0.6.
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Subject 01

Position Force

Subject 02

Position Force

Subject 03

Position Force

Subject 04

Position Force

Figure 7: Topoplots showing the coherence with the EMG sig-
nal for the carpi radialis flexor, averaged between 15
and 30 Hz. The electrode showing the strongest co-
herence was selected for further analysis. These elec-
trodes are marked with a circle.

The results for this participant were representative
for all four participants during both tasks in terms
of the ratio between linear and nonlinear contribu-
tions.

Lastly, to confirm our hypothesis, we focus on the
second-order nonlinearities in the ascending path-
ways. The ascending pathways carry sensory feed-
back, and presumably contain second-order nonlin-
ear dynamics. The NDTF2 of the ascending path-
ways for each participant is plotted separately in
Figure 10. Based on these four participants, no con-
sistent difference can be observed in the ascending
NDTF2 between the force-task and the position-task.

VI. Discussion

Many studies have shown that corticomuscular con-
nectivity is both nonlinear [11], [15] and bidirec-
tional [10], [9], [30]. Although nonlinear and bidirec-
tional techniques exist, they are seldom combined to
detect connectivity in neural systems. In this study,
we introduced a new approach to quantify directed
(non)linear corticomuscular coupling: the Nonlin-
ear Directed Transfer Function (NDTF). The NDTF
is derived from a NARX model. The NARX model
structure has been used before and its relevance to
describe a non-linear system has been proven on a
great variety of (technical) systems [31], [32], [21].
However, the NARX model has not yet been used to
characterize corticomuscular coupling. We propose
a novel approach by using a discrete approximation
of the causal output spectrum (NDTF) as connectiv-
ity measure.

The discussion starts with implications of this
study on the field. In the subsequent two subsec-
tions (Subsection VI.B-C), the main findings of this
study are listed and interpreted. First, the capabil-
ity of NDTF as a connectivity measure was demon-
strated using simulations. Subsequently, the feasi-
bility of using NDTF on real EEG-EMG data was
shown. The discussion addresses the findings based
on these two phases separately. Afterwards, the lim-
itations of this study are listed as methodological
considerations (Subsection VI.D). Finally, the last
subsection gives recommendations for future stud-
ies (Subsection VI.E).

VI.A. Implications

The long-term goal of using system identification
techniques to characterize corticomuscular coupling
is to gain more insight in the impaired mechanisms
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Descending path: EMG← EEG Ascending path: EEG← EMG

Figure 8: The NDTF per participant per pathway for both tasks. On the left, the estimated NDTF for the descending path (i.e.
EMG ← EEG) is shown; on the right, the NDTF for the ascending path is depicted. The shown NDTF is the sum of the
first and second order NDTF. However, as shown in Figure 9,the NDTF is dominated by the linear contribution. There is
no consistent difference between the force and position task. Lastly, notice the difference in scale between the acending and
the descending pathways. The NDTF for the descending pathways is substantially higher that for the ascending pathways,
in all participants.
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Descending path

Ascending path

Figure 9: First order NDTF, NDTF1 (5), and total NDTF (i.e.
sum of first and second order) shown separately for
the force task of participant s01. The graph shows
that the contribution of the second order is minimal
compared to the first order, for both the ascending and
descending pathways.

behind movement disorders. In the last decades,
identification has focused on identifying the de-
scending pathways [33], [34]. However, for many
movement disorders it is essential to include the in-
fluence of the somatosensory system, i.e. the ascend-
ing sensory pathways. For example, the intactness of
the sensory pathways is a good predictor of motor
recovery in stroke survivors [35]. In individuals with
PD, the resting tremor shows signs of an afferent in-
put aside from the motor drive [36]. To study the
ascending pathways, it is important to take nonlin-
ear processes into account, since these pathways pre-
sumably behave highly nonlinear [11]. The NDTF is
the first measure that can study nonlinear coupling
in the ascending pathways, without using perturba-
tions. Therefore, it can contribute substantially to
our understanding of movement disorders.

VI.B. NDTF on simulated data

Based on simulated data, we demonstrated that
NDTF can detect the linear and nonlinear coupling
for both pathways in a bidirectional system. The
FROLS algorithm for model term selection proved
to select the correct model structure [26], even in the

S01 S02

S03 S04

Figure 10: The second-order NDTF, NDTF2 (6), for the ascend-
ing pathways is plotted for each participant for both
tasks. The ascending pathways carry sensory feed-
back. Since the muscle spindles, sensing position
of the limb, are known to introduce second-order
nonlinearities [12], a higher NDTF2 in the ascend-
ing pathways was expected during the position task.
This was only seen for participant s02. Participant
s04 shows completely opposite behavior: a higher
NDTF2 for the force task.

presence of noise and with an extensive library of
model terms to choose from. Due to the 1D mapping
of the 2nd order transfer function H2( f1, f2), the com-
bined effect of the first and second order terms can
be plotted in one coördinate system. NDTF could
even be expanded to third or higher order nonlin-
earities. Therefore, NDTF is a useful addition to cur-
rently available measures to assess corticomuscular
coupling.

Nevertheless, the NDTF as connectivity measure
may present a couple of drawbacks. Firstly, the
NDTF is sensitive to changes in the frequency res-
olution. A low frequency resolution results in leak-
age and worsens the discrete approximation of the
second-order NDTF. A Hann window has proven
useful in preventing leakage [37] and was, therefore,
applied on the experimental data. The loss of infor-
mation due to the discrete approximation, however,
is harder to resolve (Appendix C). Only combina-
tions of frequencies are taken into account that are
represented in the discrete input spectrum. For ex-
ample, f1 = 4 Hz and f2 = 3 Hz might result in an
output at fout = f1 + f2 = 7 Hz. But, input frequen-
cies f1 = 3.9 Hz and f2 = 3.1 Hz might also have an
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effect at 7 Hz, although these frequencies might not
be in the discrete frequency vector. So, by increas-
ing the frequency resolution, more combinations of
frequencies are added, and the approximation will
become better. To compare the NDTF for two sig-
nals, it is important that the frequency resolution is
equal, as it influences the magnitude of NDTF.

Secondly, while noise does not affect model term
selection, it does influence the parameter estimation.
Parameters are underestimated in the presence of
measurement noise, leading to a lower NDTF. Pa-
rameter estimation in the symmetric case was more
biased for both paths, which is reasonable consid-
ering that more noise was added in total. Moving
towards real data, the effect of asymmetric noise
should be studied more in-depth, since EEG con-
tains significantly more noise than EMG. A next step
could be to apply NDTF to simulated data where the
total amount of noise is kept constant, but the distri-
bution over signal u and signal y varies.

VI.C. NDTF on EEG-EMG data

The feasibility of NDTF for real data was tested us-
ing EEG and EMG data recorded during two wrist
flexion tasks: a force task and a position task. We
expected a stronger ascending coupling (i.e. more
sensory feedback) during the position task [22],[23].
Secondly, we expected to see second-order nonlin-
earities in the ascending coupling originating from
the muscle spindles [12].

Based on the EEG-EMG data we can cautiously
draw three conclusions: 1) the linear interactions
were dominant in both pathways, 2) the descending
NDTF was much higher than the ascending NDTF,
and 3) the VAF is much higher for the ascending
pathways than for the descending pathways.

Firstly, the NDTF for the EEG-EMG data for all
four participants, shows that the linear part dom-
inates the nonlinear part in both directions, while
this was only expected for the descending pathways.
Vlaar et al. [11] stated that nearly 80% of the sen-
sory evoked potential was the consequence of non-
linear processes, originating mainly in the muscle
spindles. This is supported by the widely accepted
muscle-spindle model of Mileusnic [12] , which also
contains second-order nonlinearities. Based on these
studies, we expected a contribution of the second-
order NDTF. There are two main explanations for
the fact that a large second-order contribution is
missing. First of all, the linear behavior could be ex-
plained by the fact that most other studies quantified

nonlinearities using mechanical perturbations. Yang
et al. studied nonlinear coupling based on a nonlin-
ear extension of coherence, n:m coherence, without
perturbations and found more nuanced results [38].
Although they did find some second-order nonlinear
behavior, the largest part of the system was found to
be linear. Mechanical perturbations push the ner-
vous system in a certain, artificial state that might
contain more nonlinear behavior.

Although the absence of perturbations probably
plays a role, we pose that the attenuation of the non-
linear terms is actually inherent to the way NDTF2
was derived. It comes down to the discrete approx-
imation of the second-order NDTF. For linear sys-
tems, output at frequency f1 is caused by input at
frequency f1 (Figure 1). The transport between these
two is stored in the transfer function. Hence, multi-
plication of the transfer function with the input spec-
trum accurately describes the output spectrum. In
case of nonlinear transfer with a continuous input
spectrum, there is an infinite amount of combina-
tions of frequencies that together result in the final
output spectrum (Figure 2). Not all these combina-
tions are taken into account. Therefore, the contri-
bution of the second-order to a system is underes-
timated, while the contribution of the linear terms
is not (Appendix C). This is supported by the sim-
ulation results where the second peak in the NDTF
is much lower than the first, while this is not the
case for the actual output spectrum (Figure 5). The
approximation can be improved by increasing the
frequency resolution and, thus, the number of com-
binations taken into account, but for a continuous
spectrum it will always be inferior to the linear con-
tribution.

Secondly, there was a clear difference between the
magnitude of the NDTF found in the descending
compared to the ascending pathways. The descend-
ing pathways showed NDTF peaks in the order of
10−3, while the ascending pathways stayed behind
around 10−7. Previous studies that compared in-
formation flow based on linear ARX models, have
found similar results [29], [39], [40]. They concluded
that the descending pathways dominated motor con-
trol. We argue that the difference in magnitude is
mainly explained by the difference in the variances
of EEG and EMG. The muscle amplifies the neural
input it receives from the motor neurons. The vari-
ance of the recorded EEG signals is approximately
a factor 103 smaller than the variance of the EMG
signal. This results in high gains in the descending
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pathways and low gains in the ascending pathways,
making comparing the two troublesome.

Lastly, the NARX models predictive capabilities,
assessed with the VAF, were high for both the de-
scending and the ascending pathways considering
the high noise levels in EEG and EMG data. This
can be explained by the large role of local dynamics.
The VAF we calculate is based on the one-step-ahead
(OSA) prediction, meaning that the error is reset af-
ter every step [25]. For a high sampling frequency
(512 Hz), model term y(t − 1) becomes so close to
y(t) that the VAF, due to this one model term, be-
comes very high. However, this does not necessarily
mean that the model structure is completely correct,
just that the one-step-ahead prediction is close. Ad-
ditionally, the model fit for the ascending pathways
was much better than for the descending pathways
(VAF ≈ 50% and VAF ≈ 70%, respectively). The
cause likely lies in the asymmetric distribution of
noise in the signal. The EEG signal contain consider-
ably more noise than the EMG signal. All that noise
is amplified in the descending pathways, making the
EMG signal hard to predict.

VI.D. Methodological considerations

A few considerations for interpreting the current re-
sults are listed.

1. Simulations are performed on a discrete sys-
tem, where the influence of all correct terms is
picked in the same order of magnitude. How-
ever, for continuous, physical systems, the in-
fluence of each term depends on the sampling
frequency. For physical systems at a high sam-
pling rate, signal y(t− 1) is often close to y(t)
due to inertia. At the same time, the influence
of u decreases with decreasing step size, mak-
ing it less likely for the causal terms to be se-
lected by the algorithm. This is a well-known
issue in model term selection [41]. A solution
that has been used previously is to downsam-
ple the data, to increase the relative impact of
the input terms.

2. The correct ESR depends on the noise level in
the system, which is unknown. To approach the
optimal value, multiple models with different
ESR values were fitted and evaluated on a test
data set. However, this was only a rough grid
search so the accepted ESR value might still not
be optimal. Even small differences in ESR can
have a large impact on the eventual model.

3. It is not possible to validate whether the cor-
rect model terms are selected. The VAF only
determines how well a model predicts an out-
come but is no guarantee for a correct model
structure. Since the frequency-domain NARX
model is derived of the time-domain model, the
right model structure is more important than
the quality of the prediction. Some solutions
for this limitation are discussed in the subse-
quent Subsection VI.E.

4. After initial parameter estimation, a linear
noise model consisting of terms e(t − 1) and
e(t − 2) is added to the selected model terms.
A second linear-least-squares algorithm is ap-
plied to make sure that the parameters are not
biased by past noise terms. However, only two
linear terms are added. Noise cross-terms (e.g.
e(t− 1)y(t− 1)) are not added and these terms
might still bias the fitted parameters [20]. Noise
enters the neuromuscular system at different
points, not only as an addition to the output.
Noise terms that enter the system earlier in
the process will likely correlate with input or
output terms going through that same process.
Therefore, the parameters for these terms might
be influenced if the noise model is incomplete.

5. During preprocessing of the EEG data, the elec-
trode was selected based on the highest corti-
comuscular coherence. As coherence is a lin-
ear measure, this selection criterion might fa-
vor electrodes with a stronger linear compo-
nent over electrodes with second-order nonlin-
earities. However, Vlaar et al. found similar
electrodes while using the signal-to-noise ratio
per electrode as selection criterium, which has
no bias towards linear behavior [11]. So, the
chances that this approached biased our results
is limited.

VI.E. Recommendations and future work

The recommendations are divided over four areas:
1) easy interpretation of the NDTF, 2) improvements
in model-term selection, 3) validation of the model
structure, and 4) improvements in data collection.

First, the NDTF is not an intuitive, easy-to-
interpret measure. Many linear connectivity mea-
sures, such as coherence or PDC, vary between 0
and 1, making it relatively easy to interpret them
and make comparisons between conditions, partic-
ipants and even different studies. Such a range is
achievable if a maximum value or an optimum of the
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measure is known, and that is in case of the NDTF
a problem. He et al. tried to solve this problem
by molding the nonlinear transfer function Hn such
that it would fit the linear matrix formulation that
underlies PDC and DTF [21]. However, in this at-
tempt, the nonlinear coupling at output frequency
f1 became dependent of the input spectrum at f1.
Since there is no isofrequency coupling for nonlinear
interactions (Figure 1), this derivation was incorrect.

A solution might be to fit a continuous spectrum
through the available data. A continuous spectrum
has the advantage that no frequency combinations
are lost, and therefore, the predicted outcome spec-
trum should approach the actual causal influence on
the output spectrum. Billings already derived equa-
tion (6) for a continuous input spectrum [27], [42].
However, to bring this theory to practice, a method
is required to convert discrete data to a continuous
spectrum. If this continuous NDTF is normalized
with respect to the measured output spectrum, the
measure is approximately bound between 0 and 1.

Secondly, correct model term selection is key to
a meaningful NDTF. In this study, the FROLS al-
gorithm was used with the error-reduction-ratio
of as selection algorithm, which is a computa-
tionally easy model term selection algorithm [26].
Many studies focused on improving the FROLS-
ERR algorithm[41], [43]. Globally, the improvements
can be divided into three topics: different or ad-
ditional selection criteria, different stopping criteria
and methods to remove spurious terms. An example
is, for instance, to use mutual information as a selec-
tion criterion in addition to the error-reduction-ratio
[41]. We propose that, to remove spurious terms,
the standard error of the mean (SEM) values of the
parameters might be used (Figure 5, bottom row).
Terms that do not belong in the system, will presum-
ably not fit to every data segment. Therefore, these
incorrect terms can be recognized by a high SEM. A
more elaborate selection algorithm could result in a
better model fit and therefore, a more useful NDTF.

The third direction for future studies is the statis-
tical validation of the NDTF. Statistical analysis of
model-based measures like the NDTF is challenging.
It is possible to prove three things: 1) how well the
NARX model predicts the signal in the time domain
based on the VAF, 2) how consistently the model
parameters are estimated based on the SEM, and 3)
whether the residual noise is white and independent
of both the input and output signal with correla-
tion tests [44] (not performed in this study due to

time constraints). However, it is impossible to prove
whether the correct model terms are selected for un-
known systems. Furthermore, there is no confidence
limit known for the NDTF.

In his book, Billings shows that the multiple-step-
ahead prediction error (or simulation error) can in-
dicate whether the correct model structure was cho-
sen [25]. As mentioned before, we calculate the VAF
based on the one-step-ahead (OSA) prediction. To
accurately assess whether the model terms are cho-
sen correctly, a multiple-step-ahead (MSA) predic-
tion is the better choice. In this approach the er-
ror accumulates over steps, while for the OSA pre-
diction the error is reset every step. Taking many
steps ahead is not realistic for physiological data that
contains high noise levels. However, calculating the
VAF based on the, for example, five-steps-ahead pre-
diction error, might give insight in whether the cho-
sen model terms are correct.

A possible approach to estimate a confidence limit,
might be random permutation (RP). This approach
was previously used by Florin et al. [45] to assess
the confidence limit for several linear model-based
connectivity measures. Both the EEG and EMG
data samples are randomly shuffled in the time do-
main, such that there is presumably no correlation
between the two signals. The confidence limit can be
estimated based on the NDTF for the non-correlated
data.

The last area to focus on in future studies is im-
proving the experimental protocol. The number of
participants in this study was sufficient for a proof
of concept. However, considering the large interindi-
vidual differences that have been found in similar
studies [4], [30], a larger participant group is re-
quired to draw meaningful conclusions about the
neuromuscular system.

A final note is that currently no individual com-
ponent analysis (ICA) was performed on the data.
One electrode was selected per participant to per-
form the data analysis. If an ICA is combined with
a source localization algorithm, the resulting signal
might contain less noise [46] and, therefore, result in
a better fit for the NARX model.

VII. Conclusion

The aim of this study was to introduce a new
connectivity measure that could provide insight
in linear and nonlinear processes in the human
nervous system: the NDTF. The NDTF was demon-
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strated on simulated data and validated on real
EEG-EMG data. This section summarizes the
conclusion drawn in both phases of the study.

Based on the simulated data, the following
conclusions were drawn:

• The NDTF can correctly identify both linear
and nonlinear coupling in a bidirectional sys-
tem and responds to changes in coupling
strength.

• The magnitude of the NDTF increases with the
frequency resolution of the input spectrum.

• The model term selection algorithm is robust
to additive white noise. There is room for im-
provement in parameter estimation in the pres-
ence of noise.

Based on the EEG-EMG data, the following con-
clusions were drawn:

• Linear coupling seems dominant in both the
ascending and the descending pathways for a
constant force and constant position wrist flex-
ion task. However, NDTF has a bias towards
linear interactions, which could explain these
results.

• The NARX model fit, assessed by the VAF, for
the ascending pathways is consistently better
than for the descending pathways.

• There was no consistent difference in NDTF
across participants, between the wrist flexion
force-task and position-task.
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Appendices

A. Model term section and parameter estimation

In this subsection, the procedures used for model
term selection and parameter estimation are de-
scribed.

a. Model term selection

The Forward Regression Orthogonal Least Squares
(FROLS) algorithm [26] was used for model term
selection, since it’s computationally very efficient.
Consider the full NARX structure as expressed in
equation 3 reformulated in matrix form:

y = P0Θ + e (16)

with

P0 =
[
p1 p2 . . . pM

]

=


p1(1) p2(1) . . . pM(1)
p1(2) p2(2) . . . pM(2)

...
...

...
p1(N) p2(N) . . . pM(N)

 (17)

where matrix P0 contains all possible M model
terms (both first- and second-order) through time
(t = 1, 2, ..., N); vector Θ contains the model pa-
rameters; vector y represents the output signal, and
vector e represents the model prediction error. The
FROLS algorithm is an iterative method. In each
step, one term pi is added to the model, starting
with the most prominent term.

Adding multiple model terms that explain the
same portion of y does not improve the quality of
the model, but increases its complexity. To avoid this
scenario, potential model terms are judged based on
the vector component orthogonal to the already se-
lected terms, since this part of the vector can add
new information to the model. The classical Gram-
Schmidt algorithm was used to perform the orthog-
onalization [25].

The importance of each term was assessed based
on the error-reduction-ratio (ERR). The ERR repre-
sents the fraction of the variance of the output vec-
tor, that can potentially be explained based on model
term pi.

ERRi =
⟨y, wi⟩2

⟨y, y⟩⟨wi, wi⟩
(18)

where y represents the output vector; wi repre-
sents a the orthogonal part of potential model term
pi, and ⟨y, wi⟩ denotes the inner product of vector y
and vector wi.

The process of adding terms continues until the
residual prediction error is smaller than a specified
threshold.
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b. Parameter estimation

In addition to selecting proper model terms, the
FROLS algorithm performs a first parameter estima-
tion (i.e. finds plausible values for θ in equation (3)
for selected terms). Equation (16) can be rewritten
after the Gram-Schmidt orthogonalization as [26]:

y = PΘ + e = Wg + e (19)

where matrix P contains the selected original
model terms and Θ contains the corresponding pa-
rameters. Matrix W in the second statement repre-
sents the orthogonalized components of the original
terms, with their corresponding parameters in vec-
tor gi.

The advantage of orthogonalizing the model
terms during each iteration is that their contribu-
tions are separated. Therefore, the parameter of each
orthogonalized model term can be estimated sepa-
rately based the projection of output vector y on or-
thogonalized model term wi:

projwi←y =
⟨y, wi⟩
⟨wi, wi⟩︸ ︷︷ ︸

gi

wi (20)

where gi is the parameter for orthogonal model
term wi. By reversing the classical Gram-Schmidt
orthogonalization, original parameter vector Θ can
be retrieved from g.

The FROLS algorithm results in a NARX model
structure: the output is modelled based on previous
input and output terms, but there are no past noise
terms included in the model. Not including past
noise terms before parameter estimation might bias
the parameters. Therefore, the prediction error was
computed based on the fitted NARX model and a
linear noise model was added to matrix P (equation
(19)):

P =
[
p1 p2 . . . pj ek−1 ek−2

]
(21)

=


p1(1) p2(1) . . . pj(1) ek−1(1) ek−2(1)
p1(2) p2(2) . . . pj(2) ek−1(2) ek−2(2)

...
...

...
...

...
p1(N) p2(N) . . . pj(N) ek−1(N) ek−2(N)


where p1, ..., pj are the selected model terms and

vector ek−1 and ek−2 are the lagged prediction errors.
Parameters were re-estimated based on equation (21)

using a linear least squares approximation. After pa-
rameter estimation, the noise terms were discarded
again.

B. Recursive computation frequency mapping

The polynomial NARX model is fitted to the data
in the time-domain. However, neural oscillations
can be more intuitively studied in the frequency do-
main. For this purpose, the parametric time domain
model, in the shape of a difference equation, should
be converted to the frequency domain. Peyton-Jones
and Billings [27] analytically derived an algorithm
to make this mapping possible. The algorithm and
its derivation are described in detail in Billings’ book
[25]. To present a complete picture, the algorithm is
summarized here in short.

To start, it is practical to highlight the difference
between a ’model variable’ and ’a model term’. A
model variable is a previous instance of either the in-
put signal x1 or the output signal x2. The model
terms are build up from these model variables (e.g.
x1(k− 1)x1(k− 2) or x2(k− 5)). Note that x2(k− 5)
can be both a model variable and a model term, de-
pending on how it’s used.

The FROLS algorithm, described in Appendix A,
resulted in a polynomial NARX model in the form
of equation (3) and (4). These two equations can be
combined and simplified. The time-domain NARX
model can then be described as [25]:

x1(k) = (22)

M

∑
m=1

m

∑
p=0

K

∑
l1,...,lm=1

cpq(l1, ...., lp+q)
p

∏
i=1

x1(k− li)×
p+q

∏
i=p+1

x2(k− li)

In this representation, M is the maximum order
of nonlinearity, K is the maximum time lag, li is
the time lag corresponding to model variable i, and
structure cpq contains all model parameters (i.e. θ
in equation (3)). Subscripts p and q denote the
number of output and input model variables in the
model term. For example, c2,0(2, 4) corresponds to
θx1(k−2)x1(k−4). If a model term is not part of the
model, cpq is equal to zero.

The recursive algorithm by Peyton-Jones and
Billings [27] was based on the form described in
equation (22). Their goal was to derive an expres-
sion for Hn, where n is the order of nonlinearity. The
n-th order transfer function Hn can be expressed as
[21]:
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Hn( f1, ..., fn) = (23)

Hn[x]( f1, ..., fn) + Hn[y]( f1, ..., fn) + Hn[xy]( f1, ..., fn)

1−∑K
l1=1 c1,0(l1)e−j2π( f1+...+ fn)l1/ fs

where a distinction is made between contributions
of pure input terms (Hn[x]), pure output terms (Hn[y])
and cross-terms (Hn[xy]), and fs is the sampling fre-
quency. These separate contributions are defined as
[21]:

Hn[x]( f1, ..., fn) =

K

∑
l1,ln=1

c0,n(l1, ..., ln)ej2π( f1l1+...+ fn ln)/ fs (24)

Hn[y] =

n

∑
p=2

K

∑
l1,ln=1

c0,n(l1, ..., ln)Hn,p( f1, ..., fn) (25)

Hn[xy]( f1, ..., fn) =

n−1

∑
q=1

n−q

∑
p=1

K

∑
l1,ln=1

cp,q(l1, ..., ln)× Hn−q,p( f1, ..., fn−q)× ...

... e−j2π( fn−q+1ln−q+1+...+ fp+q lp+q)/ fs . (26)

The algorithm is recursive since higher-order
transfer functions depend on lower-order transfer
functions. The recursion is defined as follows:

Hn,p( f1, ..., fn) = (27)

n−p+1

∑
i=1

Hi( f1, ..., fi)Hn−i,p−1( fi+1, ..., fn)e−j2π( f1+...+ fi)lp/ fs ,

and, eventually,

Hn,1( f1, ..., fn) = Hn( f1, ..., fn)e−j2π( f 1+...+ fn)l1 fs .
(28)

We implemented this algorithm in MatLab 2015b,
since there was no existing package available.

C. Effect of discrete approximation on predicted
output spectrum

This appendix contains a visual example to under-
stand the effect of the discrete approximation on the
predicted output spectrum.

For this example, the simple open-loop system
y(k) = u(k− 1)u(k− 1) was used. The system was
run for 2 seconds at a 20 Hz sampling frequency.
Since it is an open-loop system without noise, the
NDTF should approach the real output spectrum
|Y|.

If a 2 Hz sinus is used as input u, which is part
of the frequency vector, the NDTF mimics the real
output spectrum perfectly.

However, when the frequency of the input vector
is shifted to 2.05 Hz, which is not part of the fre-
quency vector, the NDTF starts to deviate.

The deviating behavior becomes worse if a multi-
sine is used as the input, with frequency content on
2.05 Hz and 3.13 Hz.

The discrete approximation, logically, becomes
better for a higher frequency resolution. If the
recording time is increased from 2 seconds to 10 sec-
onds, the NDTF performs well again, even though
2.05 and 3.13 are still not in the frequency vector.
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Lastly, a white noise signal was used as the input,
while keeping the high frequency resolution.

In the last figure, the effect of the discretization
starts to become clear. The orange line clearly lies
below the the blue line. The NDTF underestimates
the actual causal influence, since not all frequency
combinations are taken into account.
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