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ARTICLE OPEN

Realization of a quantum neural network using repeat-until-
success circuits in a superconducting quantum processor
M. S. Moreira 1,2, G. G. Guerreschi 3, W. Vlothuizen1,4, J. F. Marques1,2, J. van Straten1,5, S. P. Premaratne3, X. Zou3, H. Ali1,2,
N. Muthusubramanian 1,2, C. Zachariadis 1,2, J. van Someren1,5, M. Beekman1,4, N. Haider1,4, A. Bruno1,2, C. G. Almudever1,5,
A. Y. Matsuura3 and L. DiCarlo 1,2✉

Artificial neural networks are becoming an integral part of digital solutions to complex problems. However, employing neural
networks on quantum processors faces challenges related to the implementation of non-linear functions using quantum circuits. In
this paper, we use repeat-until-success circuits enabled by real-time control-flow feedback to realize quantum neurons with non-
linear activation functions. These neurons constitute elementary building blocks that can be arranged in a variety of layouts to carry
out deep learning tasks quantum coherently. As an example, we construct a minimal feedforward quantum neural network capable
of learning all 2-to-1-bit Boolean functions by optimization of network activation parameters within the supervised-learning
paradigm. This model is shown to perform non-linear classification and effectively learns from multiple copies of a single training
state consisting of the maximal superposition of all inputs.

npj Quantum Information           (2023) 9:118 ; https://doi.org/10.1038/s41534-023-00779-5

INTRODUCTION
Deep learning is an established field with pervasive applications
ranging from image classification to speech recognition1. Among
the most intriguing recent developments is the extension to the
quantum regime and the search for advantage based on quantum
mechanical effects2. This effort is pursued in a variety of ways,
often inspired by the diversity of classical models and based on
the concept of artificial neural networks. Prior works have
proposed quantum versions of perceptrons3,4, support vector
machines5,6, Boltzmann machines7, autoencoders8, and convolu-
tional neural networks9–11. The advantage ranges from reducing
the model size by exploiting the exponentially large number of
amplitudes defining multi-qubit states, to speeding-up either
training or inference by applying efficient quantum algorithms
such as HHL12 to solve systems of linear equations or reducing the
number of samples needed for accurate learning.
A promising implementation is based on variational quantum

algorithms in which parametrized quantum circuits are used to
prepare approximate solutions to the problem at hand. These
solutions are then refined by classically optimizing circuit
parameters13. However, fundamental questions must be answered
on the parameter landscape14, on the cost of the classical
optimization loop, and on the expressive power of circuit
ansatze15. Encouraging results suggest that trainability is possible
for quantum convolutional neural networks16,17. Still, it is
recognized that loading training set data into a quantum machine
accurately and efficiently is an unsolved problem18 and, although
promising results19–21, current solutions work only under specific
assumptions. Nevertheless, the exponential complexity of states
generated by ever larger quantum computers22 suggests that
machine learning techniques will become increasingly important
at directly processing large-scale quantum states23.
It was noted in traditional machine-learning literature that non-

linear activation functions for neurons are superior24. To translate

this observation to the design of quantum neural networks
(QNNs), several methods have been proposed to break the
intrinsic linearity of quantum mechanics. These solutions range
from the use of quantum measurements and dissipative quantum
gates25, to the quadratic form of the kinetic term26, reversible
circuits27, recurrent neural networks28 and the SWAP test29 with
phase estimation30.
Previous work in this context10 has shown the implementation

of neural networks applied in post-processing to the classical
results of measurements. Here, we experimentally demonstrate a
quantum neural network architecture based on variational repeat-
until-success (RUS) circuits31,32, that is implemented in a fully
coherent way, handling quantum data directly, and in which real-
time feedback is used to perform the internal update of neurons.
In this model, each artificial neuron is substituted by a single
qubit33. The neuron update is achieved with a quantum circuit
that generates a non-linear activation function using control-flow
feedback based on mid-circuit measurements. This activation
function is periodic but locally resembles a sigmoid function.
Despite the mid-circuit measurement, this approach does not
suffer from the collapse of relevant quantum information. Rather,
the measurement outcome signals that the neuron update is
either successfully implemented or that a fixed, input-
independent operation is performed. This other operation can
be undone by feedback and the circuit rerun as necessary until
success, leading to a constant, not exponential, overhead in the
number of elementary operations required by RUS. Note that the
overall fidelity of RUS circuits critically depends on the architecture
and speed of the active feedback mechanism.
Our experiment uses 4 of the 7 transmons in a circuit QED

processor34 to implement a feedforward QNN with two inputs,
one output, and no intermediate layers. We demonstrate that the
QNN can learn each of the 16 2-to-1-bit Boolean functions by
changing the weights and bias associated with the output neuron.
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It is particularly noteworthy that this architecture allows imple-
mentation of the XOR Boolean function using a single neuron
since this is a fundamental example of the limitations of classical
artificial neuron constructions, which cannot capture the linear
inseparability1 of such a function.
We follow the supervised learning paradigm, in which a set of

training examples provides information to the network about the
specific function to learn. Our experiment uses multiple copies of a
single input state (the maximal superposition of 4 inputs),
demonstrating that the QNN can learn from a superposition.
Finally, we investigate the specificity of parameters learned for
each of the Boolean functions by characterizing how well the
values learned for one function can be used for any other. This
provides indications on using the QNN to discriminate between
the Boolean functions when provided as a quantum black box.

RESULTS
Synthesizing non-linear functions using conditional gearbox
circuits
The conditional gearbox circuit35 belongs to a class of RUS
circuits31 that use one ancilla qubit QA and mid-circuit measure-
ments to implement a desired operation. The three-qubit version
(Fig. 1a) has input qubit QI, output qubit QO, and angles w and b as
classical input parameters. For an ideal processor starting with QA

in 0Aj i, QI in computational state kIj i (k∈ {0, 1}), and QO in the
arbitrary state ψOj i, the coherent operations produce the state

0Aj i kIj i ψOj i ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
pSðθkÞ

p
0Aj i kIj iRgðθkÞx ψOj i

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� pSðθkÞ

p
1Aj i kIj iR�π

2
x ψOj i;

(1)

where θk= kw+ b and pSðθkÞ ¼ cos4 θk
2

� �þ sin4 θk
2

� �
. A measure-

ment of QA in its computational basis produces outcomemA=+ 1
(projection to 0Aj i) with probability pS(θk). In this case, the net
effect on QO is a rotation around the x axis of its Bloch sphere by

Fig. 1 Conditional gearbox circuit using repeat until success. a Three-qubit circuit with input parameters (w, b) ideally implementing RgðwþbÞ
x

on QO for QI ¼ 1j i and RgðbÞx for QI ¼ 0j i, heralded by mA=+1 (success). For mA=−1 (failure), the circuit ideally implements R
�π

2
x on QO. The

probabilistic nature of the circuit is rectified using RUS: in case of failure, QA and QO are first reset (Rπx and R
π
2
x , respectively), and the circuit re-

run. The S† symbol corresponds to R
�π

2
z . b Compilation into the native gate set after circuit optimization and added error mitigation (two

refocusing pulses on QO during QI-QA CZ gates and XY-8 sequence38 during measurement). c Illustration of the ideal action of the conditional
gearbox circuit on QO when starting in 0Oj i. d Comparison of the ideal g(θ) to a Rabi oscillation of QO, showing the non-linearity of g.

Fig. 2 Synthesis of non-linear functions using a conditional
gearbox circuit. a Probability of success and failure at the first
iteration of the conditional gearbox circuit (Fig. 1) as a function of
w(b= 0). b, c Pauli components of QO assessed by quantum state
tomography conditioned on (b) success and (c) failure, for QI
prepared in 1j i. d Purity of QO for success and failure. All panels
include experimental results (symbols), ideal simulation (dashed
curves), and noisy simulation (solid curves).
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angle g(θk), where

gðθkÞ ¼ 2 arctan tan2
θk
2

� �� �
(2)

is a non-linear function with a sigmoid shape (Fig. 1d). This
outcome constitutes success.
For failure (i.e., outcome mA=−1 and projection onto 1Aj i), the

effect on QO is an x rotation by −π/2, independent of k, w, and b.
In this case, the effect of the circuit can be undone using feedback,
specifically Rπx and R

π
2
x gates on QA and QO, respectively. The circuit

can then be re-run with feedback corrections until success is
achieved. For an ideal processor, the average number of runs to
success, 〈NRTS〉, is bounded by 1 ≤〈NRTS〉= 1/pS(θk) ≤ 2. This
bound holds even when QI is initially in a superposition state
ψIj i ¼ α 0Ij i þ β 1Ij i. In this general case, the output state upon
success is still a superposition but with potentially different
amplitudes:

0Aj i
X1
k¼0

α0k kIj iRgðθkÞx ψOj i: (3)

The probability amplitudes can change, from αk to α0, depending
on the initial ψIj i, w, b, and NRTS. This distortion of probability
amplitudes can be mitigated using amplitude amplification36,
which we do not employ here.

We compile the three-qubit conditional gearbox circuit into the
native gate set of our processor (Fig. 1b) and evidence its action
after one round using state tomography of QO conditioned on
success and failure. Figure 2 shows experimental results when
preparing QI (QO) in 1Ij i ð 0Oj iÞ, setting b= 0 and sweeping w,
alongside simulation for both an ideal and a noisy processor.
Qualitatively, the experimental results reproduce the key features
of the ideal circuit: we observe a π-periodic oscillation in pS(w)
with minimal value 0.5 at w= π/2, and a sharp variation in ZO from
+1 to −1 centered at w= π/2. However, the nonzero ZO
components observed for both success and failure indicate that
the action on QO for both cases is not purely an x-axis rotation.
The noisy simulation captures all key nonidealities observed. This
simulation includes nonlinearity in single-qubit microwave driving,
cross resonance37 effects between QA and QO, phase errors in CZ
gates, readout error in QA, and qubit decoherence [see
Supplementary Materials]38.
We note the existence of different activation circuits that can

implement non-linear activation without the need for RUS
strategies. Despite the disadvantages of softer non-linearities
implemented by such schemes, they may be viable candidates for
implementations of QNNs optimized to noisy processors. We
provide a detailed comparison of these schemes in the
Supplementary Material.

Control-flow feedback on a programmable superconducting
quantum processor
Active feedback is important for many quantum computing
applications, including quantum error correction (QEC). Past
demonstrations of QEC relied on the storage of measurements
without real-time feedback39,40. Moreover, real-time feedback has
been demonstrated using data-flow mechanisms, where indivi-
dual operations are applied conditionally41. In contrast, the
implementation of RUS hinges on support for control-flow
mechanisms in the control setup (Fig. 3), where the entire
sequence of operations has to be assessed and executed,
depending on the results of measurements, in real-time.
In our quantum control architecture, a controller sequences the

sets of operations to be performed in real-time, controlling various
arbitrary waveform generators (AWG) and digitizers to implement
the desired program. Therefore, our implementation of control-
flow feedback focuses on this controller and achieves a maximum
latency of 160 ns. The latency to complete the full feedback loop
of the overall control system (controller, analog-interface devices,
and the entire analog chain) was measured to be 980 ns. This
represents 3% of the worst coherence time, and sets an upper
bound on the efficiency of RUS execution with the quantum
processor. Further improvements could be achieved by optimizing
the design of our readout (RO) AWG for trigger latency and
speeding up the task of digital signal processing within the
digitizers.
Note that the critical feedback path consists of the entire

readout chain in addition to the slowest instrument, whose
latency must also be accounted for before the branching
condition is assessed and implemented. In our control setup,
the slowest instrument is the Flux AWG, due to the latency
introduced by various finite input responses and exponential
filters implemented in hardware for the correction of on-chip
distortion of control pulses42.

Constructing a QNN using RUS circuits
The characteristic threshold shape of g makes it useful in the
context of neural networks: the conditional gearbox circuit can be
seen as a non-linear activation function, whose rotations are
controlled by the input qubits to mimic the propagation of
information between network layers. We use these concepts33 to
implement a minimal QNN capable of learning any of the
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Fig. 3 Quantum control setup. a Schematic of wiring and control
electronics, highlighting critical feedback path between outputs of
the quantum processor, the analog-interface devices, controller, and
the flux-drive lines. b Timing diagram for the critical feedback path.
Hashed regions indicate idling operations for each instrument.
Latency concerns the time necessary to ensure synchronicity, since
instruments are delayed with respect to the AWGs to account for the
difference in propagation/latency time between readout and qubit
drive instrumentation.
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2-to-1-bit Boolean functions (see Supplementary Materials for
their definition and naming convention). These 16 functions can
be separated into three categories: two constant functions (NULL
and IDENTITY) have the same output for all inputs; 6 balanced
functions (e.g., XOR) output 0 for exactly two inputs; and 8
unbalanced functions (e.g. AND) have the same output for exactly
three inputs.
The 4-qubit circuit shown in Fig. 4 corresponds to a 3-neuron

feedforward network. Two quantum inputs (QI1 and QI2) are
initialized in a maximal superposition state. Next, the RUS-based
conditional gearbox circuit (now with three input angles w1, w2,
and b) performs threshold activation of QO, with no bounds placed
on the number of times the conditional circuit is allowed to re-run
until success. Following RUS (i.e., QA projected to 0Aj i), QA is
reused for training set preparation. Here, the Boolean function f is
encoded in a quantum oracle mapping
kI1j i lI2j i 0Aj i ! kI1j i lI2j i f ðk; lÞA

�� �
. At this point, the 4-qubit register

is ideally in state

X1
k;l¼0

α0kl kI1j i lI2j i f ðk; lÞA
�� �

RgðθklÞx 0Oj i; (4)

where θkl= kw1+ lw2+ b. Finally, QA and QO are compared by
mapping their parity onto QA and performing a final measurement
on QA on a computational basis.
We define C= (1−mA)/2 from the output mA and estimate

hCi 2 0; 1½ � by averaging over 10,000 repetitions of the full circuit.
Training the QNN to learn a specific Boolean function thus
amounts to minimizing〈C〉 over the 3-D input parameter space.
Beforehand, we explore the feature space landscapes. Figure 5
shows 2-D slices of 〈C〉 and 〈NRTS〉 for three examples: XOR,
IMPLICATION2, and NAND (see Supplementary Materials for slices
of all 16 functions). These slices are chosen to include the optimal
settings minimizing 〈C〉 for an ideal quantum processor [see
Supplementary Materials]. These landscapes exemplify the com-
plexity of the feature space and highlight the various symmetries
and local minima that can potentially affect the efficient training
of parameters.

Training a QNN from superpositions of data
To train the QNN, we employ an adaptive learning algorithm43 to
minimize 〈C〉 over the full 3-D parameter space. Figure 6 shows
the training process for NAND, chosen for the complexity of its
feature space. The parameters evolve with each training step,
starting from a randomly chosen initial point, then exploring the
bounds, and subsequently converging to the global minimum in
~50 training steps, requiring ~1min per step. This satisfactory
behavior is observed for all the Boolean functions.

Following training of the QNN for each Boolean function, we
investigate the specificity of learned parameters by preparing the
256 pairs of trained parameters and function oracles and
measuring 〈C〉 for each pair. To understand the structure of
the experimental specificity matrix (Fig. 7), it is worthwhile to first

Fig. 4 Quantum neural network using the repeat-until-success conditional gearbox circuit. a Schematic representation of simplest
feedforward network, highlighting the role played by parameters (w1,w2, b) in weighing the sum of input signals, before the result is passed
through a non-linear activation function. QI1 and QI2 are input nodes, QO is the output node and QA is an ancilla used first within the RUS
circuit and then as expected output for the training set. b Quantum circuit for a 3-neuron feedforward network. This circuit is divided into four
steps. Input (QI1, QI2) preparation into maximal superposition; threshold activation into QO using RUS conditional gearbox circuit with
(w1,w2, b); unitary encoding of Boolean function (AND, in this case) using oracle; and comparison of QA with QO. XY-4 specifies an error
mitigation sequence38 applied during measurement and the symbol ⊔ denotes parking of spectator qubit QI2(QI1) during CZ(QA, QI1) (
CZ(QA, QI2)) gates [Supplementary Materials].

Fig. 5 Feature space landscapes of three Boolean functions. 2-D
slices of 〈C〉 and 〈NRTS〉 for XOR (a, b) IMPLICATION 2 (c, d), and
NAND (e, f). For each function, the slice includes (w1, w2, b) parameters
that minimize〈C〉 for an ideal quantum processor. Black dots indicate
the experimental parameters achieving minimal〈C〉within each slice.
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consider the case of an ideal processor (see Supplementary
Materials). Along the diagonal, we expect 〈C〉= 0 for
constant and balanced functions, which can be perfectly learned,
and 〈C〉 ≈ 0.029 for unbalanced functions, which cannot be
perfectly learned due to the finite width of the activation function
g(θ). In other words, no combination of (w1,w2, b) can lead to
perfect contrast for these functions. For off-diagonal terms, we
expect 〈C〉 at or close to multiples of 0.25, the multiple being
set by the number of 2-bit inputs for which the paired training
function and oracle function have different 1-bit output. For
example, NAND and XOR have different outputs only for input 00,
while TRANSFER1 and NOT1, which are complementary functions,
have different output for all inputs. Note that every constant or
balanced function, when compared to any unbalanced function,
has a different output for exactly two inputs. Evidently, while the
described pattern is discerned in the experimental specificity
matrix, deviations result from the compounding of decoherence,
gate-calibration, crosstalk, and measurement errors. These errors
affect the 256 pairs differently for two main reasons. First, the
average circuit depth of the RUS-based conditional gearbox circuit
is higher for unbalanced functions. Second, the fixed circuit depth
of oracles is also significantly higher for unbalanced functions, as

these all require a Toffoli-like gate which we realize using CZ and
single-qubit gates. Noisy simulation [Supplementary Materials]
modeling the main known sources of error in our processor
produces a close match to Fig. 7.
Despite the evident imperfections, we have shown that it is

possible to train the network across all functions, arriving at
parameters that individually optimize each landscape. The circuit
is thus able to learn different functions using multiple copies of a
single training state corresponding to the superposition of all
inputs, despite the complexity of feature space landscapes for
various Boolean functions.

DISCUSSION
We have seen that RUS is an effective strategy to address the
probabilistic nature of the conditional gearbox circuit, allowing the
deterministic synthesis of non-linear rotations. Even at the error
rates of current superconducting quantum processors, it allowed
the implementation of a QNN that reproduced a variety of
classical neural network mechanisms while preserving quantum
coherence and entanglement. Moreover, we have shown that this
QNN architecture could be trained to learn all 2-to-1-bit Boolean
functions using superpositions of training data.
This minimal QNN represents a fundamental building block that

can be used to build larger QNNs. With larger numbers of qubits,
these neurons could form multi-layer feed-forward networks
containing hidden layers between inputs and outputs. Beyond
feedforward networks, this minimal QNN is amenable to the
implementation of various other network architectures, from
Hopfield networks to quantum autoencoders33.

Fig. 6 Learning the NAND function. a Training the QNN to learn
NAND over the full parameter space (w1,w2, b) by minimizing 〈C〉
with an adaptive algorithm. Training starts from a randomly-chosen
point, then explores the boundaries, and ultimately converges
within ~ 50 steps. b–e Evolution of training parameters (w1,w2, b)
and 〈C〉 as a function of training step. The current best setting
achieved is marked by a star.

Fig. 7 Specificity of the quantum neural network. Cost function of
the optimized parameter set for every training function (horizontal
axis) against all oracle functions (vertical axis). In each axis, the
functions are ordered from constant, to balanced, to unbalanced.
Functions are put alongside their complementary function
(NULL and IDENTITY, TRANSFER1 and NOT1, etc.). For an ideal
processor, 〈C〉 values are expected at or close to multiples of 0.25,
due to the varying overlap between the 16 Boolean functions (i.e.,
the number of 2-bit inputs producing different 1-bit outcomes).
Further differences arise in the experiment due to variations in the
average circuit depth of the RUS-based activation functions and in
the fixed circuit depth of oracle functions.
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Finally, this work highlights the importance of real-time
feedback control performed within the qubit coherence time
and the quantum-classical interactions governing RUS algorithms.
The ability to implement RUS circuits is in itself a useful result, as
the active feedback architecture demonstrated is crucial for
various other applications of a quantum computer, including
active-reset protocols and the synthesis of circuits of shorter depth
relative to purely unitary circuit design31, of value in areas such as
quantum chemistry. Moreover, recent work into quantum error
correction (QEC) highlights the importance of real-time quantum
control in protocols for the distillation of magic states or, when
coupled to a real-time decoder, the correction of errors. Similarly
to real-time feedback, the construction of a real-time decoder that
meets the stringent requirements for QEC with superconducting
qubits requires application-specific hardware developments that
are the focus of ongoing work.
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