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Chapter 2 

Porous Media Flow 

2.0 General 

Over the past 150 years or so, investigations into porous media flow have yielded a great deal of understanding 

of the phenomenon. Much of the work has been empirical in nature, similar to the well-known contribution 

of Darcy (1856). Such investigations have identified the parameters relevant to the phenomenon and have 

provided some useful relationships between them. The majority of the analytical work has been directed 

towards deriving such empirical relationships from the equations of motion and continuity (with appropriate 

simplifications and approximations), thereby isolating the effects of, and the relative importance of, individual 

terms. The final goal of this research is of course to produce a reliable predictive description of the 

phenomenon of flow through coarse granular media. 

It is therefore useful to review previous theoretical and empirical results in order to better understand the 

nature of the present investigation. This chapter begins with a general overview of the concepts of porous flow 

followed by a brief review of Darcy's law, including a description of the parameters comprising this law, its 

upper limit of validity and the reasons for its failure after this limit. Next, flow laws governing stationary non-

Darcy (or post-linear) steady flow are described and, finally, the few previous investigations into unsteady flow 

are reviewed and the goals of the present study are highlighted. 

2.1 Overview of the Phenomenon 

A porous medium acts as a resistance to flow; it is the goal of research to describe the form of the resistance 

coefficient. Fluid particles flowing through the pore spaces pass through expansions and constrictions to the 
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flow and experience olher convectional inertia effects caused by the curvilinear flow paths. Given that 

resistance coefficients for pipe flow through expansions, contractions, etc., are determined by empirical means, 

the complexity of defining resistance coefficients for a generalized, random porous medium is readily apparent. 

A porous medium is generally visualized as a continuum having properties of dimension and porosity (Shih, 

1990). The permeability of the porous medium is usually described in terms of directly measurable quantities, 

most commonly the porosity, and a large body of work has been (and is still being) directed towards relating 

permeability and porosity. The per.neability is, however, obviously dependent upon other proi>erties including 

particle size, shape, orientation and surface roughness. 

Analytically, the continuum approach requires averaging of the terms in the equations of motion and 

continuity, as these quantities cannot be used directly owing to the complex boundary conditions of flow 

through the pore spaces of the medium. Thus, the properties of velocity and pressure must be averaged over 

a volume which is large enough for the averaging procedure to be valid and yet small enough so as to be 

considered infiniiesimal with respect to the total sample volume (Scheidegger, 1960; Bear, 1972; Le Mehaute, 

1976). This requires that the magnitude of the flow be much greater than the pore volume. Therefore, flow 

through large pores (or past large obstructions), such as waves passing through the armour layer of a 

breakwater, cannot be validly described by this approach. Gray and O'Neill (1976) described such a technique 

of "local averaging" to obtain generalized porous flow equations and Le Mehaute (1976) illustrated how such 

an averaging of the terms in the Navier-Stokes' equations can result in Darcy's law. 

2.2 Darcy's Law and Laminar Flow 

Darcy's experiments (1856) yielded the results that, over a limited range of flowrates, Q, 

Q = i t ^ ^ i ^ l ^ [2.1] 
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where A r is the cross-sectional flow area, 1 is the length of the sample, h, and h^ are the piezometric heads 

at locations 1 and 2 at elevations z (ie h, = p/pg + z,), p is the density of water, g is the acceleration due to 

gravity and K is a constant of proportionality which Darcy called the permeability of the material. 

Expressing (2.1) in terms of pressure and noting that the average or "bulk" or "superficial" velocity is q = 

Q/At, Darcy's law can be written as 

V is the gradient operator, i is the slope of the energy grade line ( i = dh/dx), commonly termed the hydraulic 

gradient, p is the fluid density, g the acceleration due to gravity and the permeability, K, is a function of the 

fluid and the porous medium; these two aspects can be separated yielding 

k - [2-3] 
98 

where k is defined as the intrinsic permeability of the material (because it depends only on properties of the 

material) and has dimensions of (Length)' and \i is the dynamic viscosity of the fluid. 

Hence, Darcy's law states that the energy loss across a porous medium due to ftiction is directly 

proportional to the averaged or "bulk" velocity. However, this law applies only to a limited range of flowrates 

where effects of inertia are negligible compared to the those due to viscous forces (Wright, 1968; Scheidegger, 

1960; Philip, 1970; Dybbs and Edwards, 1982). 

For a generalized flow equation, the force balance must include not only the fi-ictional terms but also the 

effects of inertia and gravity so that, for steady flow (Le Mehaute, 1976) 
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spatial f Inertia Gravity Pressure Friction 
mean value of I force + force 4- force + force J = 0 [2.4] 

Recently, Gu and Wang (1990) have examined the relative importance of different resistance components due 

to viscosity, inertia and turbulence for the particular case of gravity waves over porous bottoms. This 

treatment will be discussed in section 2.3. 

The relation (2.4) above can be formulated by the general Navier-Stokes' equation 

+ (Ü-^Ü = - ^ ( P - ^ f ) + v ^ i f [2.5] 
dt p 

where U is the velocity vector, F is an externally applied force (such as gravity), v is the fluid's kinematic 

viscosity and t represents time. The two terms on the left hand side represent the temporal and convectional 

inertia, the first term on the right hand side represents both the pressure and external (ie. gravity) components 

and the last term is the component due to friction. Therefore, neglecting the effects of inertia, the solution 

to this equation, averaged over a suitable volume element AV, becomes (Le Mehaute, 1976) 

T^Hfj-'^^^P^^ * i""^^ = 0 [2-6] 

The integral of the first term becomes 

-V(p + pgz) [2-7] 

where p is the locally averaged pore pressure, and it is seen that the equation becomes identical to Darcy's 

law if the second term comprising the viscous forces is proportional to the average velocity, v, as 
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and then 

V = KV(p + pgz) = KVH = q 
[2.9] 

where K is the constant of proportionality and..H is the total pressure head, H = p + pgz. Darcy's law is 

therefore seen to be a solution to the Navier - Stokes' equation if inertial effects are neglected and the terms 

of pressure and velocity are averaged over a suitable elemental volume. This realization has prompted 

researchers to adopt concepts from traditional fluid mechanics into the field of porous media flow. Such 

concepts must be modified to account for the nature of a porous medium, which is most commonly defined 

by its permeability. 

2.2.1 Permeability and Porosity 

The intrinsic permeability term k in Darcy's law (equation 2.3) is dependent upon the configuration of the 

granular matrix; the size and shape of the particles, their size distribution and orientation and the porosity of 

the sample. Owing to the fact that these properties are difficult to measure and control in laboratory and 

prototype, most effort has been concentrated on the last factor, porosity, as a descriptor of the permeability 

of the sample. In addition, most studies assume an isotropic porous medium so that k is a constant; for 

anisotropic media k is a tensor quantity. 

Early analytical attempts at defining the permeability led to the development of models that represented the 

porous medium as a series of capillary tubes, and common pipe flow laws were applied to describe the 

hydraulics of the system. Scheidegger (1960) gives a good review of these models. Most are based upon the 

Hagen-Poiseuille equation for laminar flow in straight, circular pipes, (which is also a solution to the Navier-

Stokes' equation for these specific boundary conditions) ie. 
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dx 
[2.10] 

For porous media flow Vp is replaced by the bulk velocity q and the diameter D is usually replaced by a typical 

grain diameter, Djo for example, because of the difficulty in assigning a typical pore size. This approach is 

limited because the nature of flow through a porous medium is quite different from that in pipes. At Reynolds' 

numbers of about 1, convective acceleration terms in the Navier-Stokes equation can no longer be neglected 

as the fluid must follow curvilinear paths through the granular matrbc (Scheidegger 1960; Wright 1968; 

Dudgeon 1964; Philip 1970). When applied to flow in straight, circular pipes, equation [2.10] is an exact linear 

equation (non-linear convective terms are identical to zero) which applies to a specific geometry and breaks 

down suddenly at the onset of turbulence, commencing at Reynolds' numbers of about 2000 (Streeter and 

Wylie, 1981). In a porous medium, however, the linear flow law (Darcy's law) is conditional upon the non­

linear convective terms being "small", ie. at Reynolds' numbers less than about 1 to 10 (Philip 1970; Dybbs 

and Edwards 1982; Yalin and Franke, 1961). This fundamental difference between Poiseuille's law and Darcy's 

law is often ignored, with only the coincidental similarity of the hydraulic gradient being proportional to the 

bulk velocity being considered. 

Wright (1968) gave a good qualitative review of the physical processes involved in the failure of Darcy's law. 

He noted similarities, for the non-linear behaviour of the porous media flow, with flow through pipe coils and 

in flow past fixed obstructions. In these cases a gradual transition fi-om the linear law is observed as the 

relative importance of convective inertia increases. 

One application of pipe flow analogies to a porous medium is the series of models named Hydraulic Radius 

theories that make use of the fact that the intrinsic permeability has dimensions of and is described by a 

length term, the hydraulic radius, R. The hydraulic radius is defined as the ratio of sample volume to the 

surface area of the pores (again, difficult to assess for most porous media). The basic form of the permeability 

relation is 
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k - c - ^ [2.11] 
m 

where c is a dimensionless constant and (j)(n) represents some function of the porosity. Of the hydraulic radius 

theories, that of Kozeny (1923) is the most widely used description of permeability. 

Kozeny's theory couples the steady-state Navier-Stokes equation (neglecting inertia terms) with Darcy's law 

and describes the permeability as 

k . SnL [2.12] 

where c is a dimensionless shape factor, analytically derived to be approximately 0.5, and S is the specific 

surface of the flow tube - a measure of the hydraulic radius. Equation [2.12] is known as the Kozeny equation 

and has been modified in many ways by different researchers to obtain better fits to experimental results. 

Sometimes a Tortuosity" term is introduced so that 

k - [2.13] 

where the tortuosity, accounts for differences in observed and theoretical pressure gradients arising from 

the curvilinear flow paths. Another common modification to equation [2.12] is that proposed by Carman 

(1937), resulting in the Kozeny-Carman equation, 

k = [2.14] 

where S,, is Carman's specific surface and the empirically determined factor of 1/5 replaces Kozeny's term 

c= 1/2 to give a better fit to the data. The term (1-n)' / n^ = <t)(n) is a porosity function which differs ft-om that 
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of Kozeny given in equation [2.12]. A list of some of the various porosity functions proposed over the years 

is given below: 

*(n) = 1/n̂  Kozeny (1927) 
( l - n ) V Carman (1937) 
( l -n) /n ' Rumer and Drinker (1966) 
1/n" Slichter (1897) [2.15] 
1/n', 1/n* Mavis & Wilsey (1936) 
l/n^'C' Rose (1945) 
( l - n ) V Chardabellas (1940) 

A l l of these expressions are extremely sensitive to the porosity value, which is unfortunate for practical usage 

where the accuracy of permeability estimates are in the order of 5 to 10%. Even in laboratory conditions. 

Dudgeon (1964) described differences in porosity measurements on a given sample depending on the 

measurement technique used. Variations of 10% were commonly exhibited. A discussion on how these 

functions were obtained is included in section 2.3.4. 

In a slightly different approach to the analytical description of permeability, Iberall (1950) used the Stokes' 

flow analogy and, similar to Rumer and Drinker (1966), assumed the total resistance of the porous medium 

to be the sum of resistances offered by all individual particles. Drag forces were estimated by the Navier-

Stokes' equation neglecting inertia terms and any effects of neighbouring particles on flow around the 

obstructions. Iberall's model schematized the porous medium as a number of cylindrical fibres oriented in 3 

orthogonal directions (one of which was parallel to the flow) and used the expressions of drag force on a 

cylinder in an unbounded fluid, coupled Darcy's law to obtain 

16 [l-n 
Ir-MPqpljinA [2.16] 

4-]n(Dqpl\in)) 

where D is the fibre diameter (constant). Here, it is apparent that permeability is a function of flow rate, q, 

and is therefore not a constant for a given material. This is contrary to most other theories which desaibe 

the permeability as a constant value for a given (isotropic) porous medium. 
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2.2.2 Comparison between Darcy's Law and Stokes' Law 

Similarities between Darcy's law and Stokes' law for flow past a single obstruction have been noted by many 

researchers (Wright, 1968; Scheidegger, 1%1; Philip. 1970). Both are solutions to the Navier-Stokes' equation 

for an incompressible fluid and negligible inertia. Both Darcy's and Stokes' laws fail when the effects of inertia 

cease to be small; this occurs when the Reynolds' number (q-D/v, with D chosen as some characteristic grain 

diameter) attains values of about 1 and the departure from the linear law is a gradual one. The connection 

can be illustrated by the use of dimensional analysis as follows: 

Figure 2.1(a) and (b) shows, graphically, the flow patterns being compared. Figure 2.1(a) is a homogeneous, 

isotropic porous medium comprised of equal sized spheres of diameter D (which is small compared to the 

container dimension H) with porosity n. A uniform steady laminar flow of magnitude v^ is passing through 

the medium. Figure 2.1(b) shows a single circular cylinder of diameter D in an unbounded laminar flow of 

magnitude U. 

For the porous medium, the phenomenon can be completely described by the characteristic parameters (D.n.q) 

along with the fluid viscosity and density (Yalin and Franke, 1961). Expressing these parameters in tenns of 

H.-^o„ci^ni«c vari^hi^s rhv nsint. the "Buckineham-Pi Theorem", (Yalin, 1971), and choosing basic quantities 

D,q and p), any given dimensionless property, Y. , can be described by the relation 

where 4>. represents some function related to the dimensional property "a" and the geometry of the medium 

under consideration. For the case of filtration flow the velocity heads are neglected as q'/2g - 0. Although 

this is not the case for flow through rockfill structures, the velocity heads remain small compared to other 
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Figure 2.1 a) Porous Medium b) Sphere in Unbounded Fluid 

energy losses, even in prototype (Parkin and Trollope, 1966; Hall, 1987). For the case of waves plunging on 

a breakwater the velocity heads in the armour layers are likely not negligible. However, as explained in section 

; 2.1 that flow situation is not validly described the present system of analysis. In addition, other effects such 

as air entrainment and fully turbulent flow require a different method of solution to be adopted. Therefore 

; the influence of the velocity heads will not be considered in this analysis of porous media flow. 

i 

f If the flow is laminar (small viscous forces dominate over the convective inertial forces, which are 

represented by p. I f the inertial forces are not to be considered then p (thus l y cannot be included in the 

j functional relation but the viscosity, ^, must remain. If the quantity a is the pressure gradient 

(dH/dx = pgi = I) , then application of dimensional analysis (by choosing basic quantities as D, q, ^ ) provides 

i the relationship 
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y = £!Li ^ 4, („) 
1̂ 9 

[2.18] 

Equation [2.18] can be written in terms of the hydraulic gradient, i , as 

[2.19] 

or, equally. 

[2.20] 

(where Fr is the Froude Number) which is identical to Darcy's law if 1/K = v/gD^ 4>,(n). In addition, the 

quantity i/F, is proportional to 1/R^ The term i/F, is a common expression for the friction factor and wil l be 

discussed further in section 2.3. 

If the property under investigation is the total force F on the porous medium then, as above, for small 

Reynolds' numbers, 

p = J i ! ^ ^ ( £ 5 ^ . „) [2.21] 
P ^ 

where, for laminar flow, p is not a parameter and must vanish as above. To accomplish this F must be linearly 

proportional to R, and therefore 

F = iigDa •<!>(/») [2.22] 

where a is the coefficient of proportionality Equation [2.22] is seen to be identical to Stokes' law for a single 

particle, that is. 
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F = Cj,s^D-q [2.23] 

except that for a porous medium a term for the porosity (which is commonly used to represent the 

permeability) must be included. 

For the flow situation in Figure 2.1(b), the analysis proceeds identically to that given above except that the 

porosity term is not present. Therefore, any property under investigation becomes a function of the Reynolds' 

number only (other properties such as surface roughness are incorporated into the functional relationship for 

all geometrically similar configurations). For the case of the total force, F, on the particle, this becomes 

F - [2.24] 
P l i 

and for laminar flow the density term is neglected, leaving the result (Stokes' law) 

F - ^DC^U [2.25] 

where is the proportionality constant commonly called the drag coefficient. 

Rumer and Drinker (1966) used this similarity to show that Darcy's law can be derived from a simple force 

balance if Stokes' law can be assuro.e4 to apply to a porous medium (with appropriate modifications). This 

approach also allowed them to derive a theoretical form of the porosity function (4>(n)) listed in equations 

[2.11] to [2.15]. They considered a cylindrical element (E), (Figure 2.2) with porosity n, length ds and inclined 

at an angle 9 to the vertical so that cos8 = dz/ds. The force balance (stationary flow) is then 

ËL - = 0 [2.26] 
els pndAj.ds 
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e 
^ g n d A d s 

Figure 2.2 Porous Medium Elemental Volume E 

where H is the pressure head and Rp is the total resistance force of all the grains within the volume (dA)(ds). 

For the case of laminar flow all energy is dissipated by friction, as shown above, and the resistance of the solid 

particles can be described by Stokes' law, modified to account for the effects of many particles, ie. 

where fp is the drag force per unit volume acting on one particle, D is a characteristic length, diameter for a 

sphere, Vp is the actual fluid pore velocity, and X is a factor incorporating effects of the neighbouring particles 

( X ^ = 3n for a single sphere in an unbounded fluid). Considering N particles within the volume element 

E, then 

N 
a-n)dAds [2.28] 

where p is a volumetric shape factor (n/6 for a sphere). Substituting equations [2.27] and [2.28] into [2.26] 

and assuming the relationship Vp = q/n, then 
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X ( l - n ) n as 
[2.29] 

The terra pnV[A,(l-n)] is a function of the pore system only and can thus be replaced by the dimensionless 

coefficient c. Recalling that the (constant) intrinsic permeability k has dimensions of L ^ as does the constant 

cD^ then the product cD ' can be replaced by the constant k and equation [2.29] becomes identified with 

Darcy's law, equation [2.2] as 

Note that here the permeability k is a function of the term (nV(l-n)). This is the form of the porosity function 

^(n) derived on a semi-theoretical basis. 

2.2.3 Non-Stationary Laminar Flow 

Few studies have addressed the case of accelerated or cyclic flow. In this case an additional external force 

must be required to accelerate the mass of water (Dean and Dalrymple, 1984; den Adel, 1987). This extra force 

is Mdv^dt where M is mass of accelerated water and v„ is the actual velocity of water in the twre soace. Then 

the total force balance per unit volume (in terms of bulk velocity q = nVp) results in 

q = 
ds 

[2.30] 

[2.31] 

The general form of this equation is 

i = aq ^ C [2.32] 
dt 
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where the coefficient C' is called the acceleration coefficient and is thought to be a constant for any given 

media (as is the coefficient a). If the velocity q is described by a sine function with period T, ie. 

. ,2nt. [2.33] 

then from equation [2.32] 

i = ^^(asinwt + C'wcoswO 

with CO = 27I/T or, if 0 is defined by 

i^cos6 = aq^ 

lysine = C'u>q„ 

where i„ is the magnitude of the gradient, then the hydraulic gradient can be described by 

i = i„sin(öï + 6 ) 

where 9 is a phase shift induced between the velocity and energy gradient. 

den A d d (1987) wrote equation [2.32] in terms of the potential H = p+pgh. then assumed a sinusoidal 

appUed hydraulic gradient i=i^in(2i t tyT) so that 

[2.34] 

[2.35 b] 

[2.36] 

= i . . = ü s inc r [2.37] 
i 

K ng 

The analytical solution to equation [2.37] is q = c^sinQt + c^coscot with 

1 
c, = 

' ^ ( l ) ^ . ( i ^ ) ^ 
K ng 

[2.38 a] 

and 
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K ng 

1 
[2.38 b] 

TTie velocity, q, may be written as 

q = g , s in(o) ï -0) [2.39] 

if q^ = ( C j ' + C j ' ) * ^ and 6 = tan ' (-c^/Ci). Thus for laminar flow, if either the velocity or gradient is described 

by a sine function then both will be sine functions with a phase shift between them. This phase shift affects 

the resistance of the porous medium and will be discussed later in this chapter. 

From equations [2.38] and [2.39] den Adel defined a period-dependent cyclic permeability K.(T) as 

For applied hydraulic gradients with small periods, the permeability K.(T) becomes much smaller (ie. increased 

resistance) than the stationary Darcy permeability, K, (Figure 2.3). It appears that as the period of the applied 

gradient deaeases less pore water can be brought into motion, and the flow becomes less dependent on the 

applied pressure gradient. 

The concept of permeability of a porous medium has yet to be well defined, for it is dependent upon, and 

sensitive to, many parameters that are difficult to control even in a laboratory environment. To this day the 

permeability coefficient must still be determined indirectly in laboratory permeameter tests, for no reliable 

general predictive formulae have been produced. 

[2.40] 
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L a m i n a r C y c l i c K a s f u n c t i o n o f T 

Figure 2.3 Period-dependent Permeability, K.(T) 

Thus have the basic concepts of porous media flow been identified for Dar<y or laminar flow. For many 

engineering applications flow rates above the laminar regime prevail and must be considered. A n over 

of the many studies into this field is presented in the following sections. 
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2.3 Post-DarcY Flow 

2.3.1 Steady Flow Experiments 

Darcy's law Is only valid over a limited range of conditions and is commonly refered to as the Darcy or 

linear laminar regime of flow. Outside of this range the relation between flowrate and energy loss is not 

linear. It is the "post-Darcy" regime that is relevant for consideration in this report Many studies have 

defined the valid form of the flow law in this range reasonable well but not all aspects of the flow law are 

accepted as universal and complete. 

General agreement of the form of the flow law describing energy losses in the post-Dar(y regime has been 

reached. Two forms are commonly quoted, the series type and the exponential type. The exponential type 

is of the form 

i = a'qf [2-41] 

where i = hydraulic gradient = h/L -
q = bulk velocity = Q/A = nVp 
a',f = coefficients 

Note that if f = 1 and a '=^/pgk then Darcy's law is expressed. This form of flow law is preferred by some 

(Barends, 1980) because of its similarity to pipe flow equations and thus compatibility with standard 

measures such as drag coefficient. Muskat (1937), using dimensional analysis, showed that f has an upper 

limit of 2 for gravity flows, signifying fully developed turbulent flow in all pores in analogy to the pipe flow 

law. From the result of the dimensional analysis, Muskat has shown that 

a' - pD^-'v^-/ [2.42] 

The resistance of the medium must be inversely proportional to the viscosity of tiie fluid hence a' must 

be proportional to viscosity. For physically meaningful results f must therefore be less than 2. A 

drawback to this formulation is that the coefficients a' and f vary continuously ova flow regimes and are 

therefore difficult to parameterize. 
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Dudgeon (1964) conducted permeability tests on different types of materials covering a wide range of 

flowrates from the pre-Darcy regime to fully turbulent flow. Figure 2.4 shows results of these tests plotted 

as hydraulic gradient against velocity on log-log paper. It may be noticed that the slope, f, of the lines 

does not vary a great deal with porosity while the intercept, a', is highly sensitive to this factor. The 

variation of these coefficients with flow regime is also evident. 

The same data is presented in figure 2.5 as a ftiction factor - Reynolds' number plot. As with pipe flow 

the lines have a slope of 1 in the laminar (Darcy) regime and tend towards horizontal at high flow rates, 

corresponding to ftilly turbulent flow. The characteristic length term is taken as Djo. The region in between 

these limits is commonly referred to as the "inertial" regime where f = (^f(RJ. Thus three regimes of flow 

can be identified: laminar, inertial and turbulent. Some researchers (Dybbs and Edwards, 1972; Wright, 

1968), however, have subdivided the inertial regime into two components, "steady" and "unsteady", 

describing relative influence of the convectional inertia, and Dudgeon (1964) interpreted the occurrence 

of up to five regimes from permeameter test results. 

The series form of the (uni-directional) flow law is 

[2.43] 
i = aq +bq'^ 

where a and b are dimensional coefficients. This formulation is more widely accepted because a and b 

do not vary significantly with flow regime. For low flow rates q ' < < q and Darcy's law is again expressed 

if a = ti/pgk. For high flow rates q^ > > q, again corresponding to ftiUy turbulent flow. For oscillatory 

flow the second term must be modified to b | q | q to account for the reversal of ftiction and an unsteady 

term, C- dq/dt can be added as described in section 2.2.3 (equation 2.32). For non-laminar flow the 

coefficient C above may 
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Figure 2.4 i versus q: Data from Dudgeon (1964) 
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be modified to include effects of added mass (Dean and Dalrymple, 1984; Hannoura and McCorquodale, 

1978a; U Mehaute, 1976). This topic is discussed in section 2.3.2. 

Both empirical and analytical approaches have been appUed to justify each of the flow laws above and to 

parameterize the coefficients, usuaUy by deriving thera fi-om the Navier-Stokes equations or dimensional 

analysis, etc. Table 2.1 lists some of the common formulations of the coefficients a and b. 

Using this form of flow law, Gu and Wang (1990) have examined the relative importance of the three 

resistance components described above, first introduced by Solitt and Cross (1972), in a non-linear, 

unsteady porous flow model described by 

VP - iiaq * pb\q\q + pC^ i i [2.44] 

The expressions adopted for a and b were those of Engelund (1953), listed in Table Z l . The acceleration 

coefficient, C, used wil l discussed in section 2.3.2, which deals exclusively with non-stationary flow in the 

post-Darcy regime. The three resistance components are therefore 

0 Uminar. f , -

it) inemal: / , « p C - J [2.45] 
at 

iii) turbulent, f , - pb\q\q 

Three dimensionless parameters were determined by considering ratios of these components, namely 
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a b Source 

180(1-n)H 2.87(1-«)'• ' 

n'gD''q°-^ 

Carmen (1937) 

150(1-«)^v 1.75 ^ ' ^ 
n^gD 

Ergun (1952) 

780 ( ^ - ' > \ 
gD^ 

3.6 (^- ' ' ) 1 
rt^ gD 

Engelund (1953) 

a ( l - B ) V P( l -n )p Muskat (1946) 

a (1 -rt)* ^ P ( l - f l ) 

g ö ( B , = n ) ' 

Irmay (1958) 

c. 
gw 

Scheidegger ( I S ^ ) 

V 

gk 

0.55 

g f k 

Ward (1964) 

V cD 

gk 

Sunada (1965) 

V 

if* 

1 
gfck 

Ahmed (1967) 

280 ^ ( ^ - " ^ ^ 
gn'D^ 

0.14 ^ den Adel (1987) 

L ^a^(X)2/5Df, 

1 ^ 

l - « ' V 1 
P , * P , e x p | p , ( X ) ' ^ D „ 

1-B 1 
Shih (1990) 

L ^a^(X)2/5Df, 

1 ^ s d J , 
P , * P , e x p | p , ( X ) ' ^ D „ 

Shih (1990) 

a, « 1 , a2, P, Pt, P], c, q , Cj are all dimensionless constants. 

Table 2.1 Coefficients a and b in Equation [2.43] 
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O 
fi 

fi 

[2.46] 

where the two Reynolds' numbers Ri and -R, are 

[2.47 a] 
V 

(DIT)D 

V 

[2.47 b] 

and signify the relative importance of inertial and viscous forces. However, R< is a result of conveaive 

inertia and R, a result of local temporal inertial resistance. The ratio of R^/ R, is a Strouhal number and 

signifies the different origins of the inertial forces (Le Mehaute, 1976; Gu and Wang, 1990) 

From consideration of the relative contributions of these resistance components Gu and Wang produced 

the foUowing figure (Figure 2.6) which identifies regions where some or aU forces have influence on the 

total resistance. It is assumed here that one force dominates over another if their ratio is greater than 

10. Hiis provides a schematic representation of the regions of flow in which each type of resistance plays 

The steady form of equation 2.44 is commonly known as the Forchheimer equation (see equation 2.43), 

a role. 
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Figure 2.6 Regions of Influence of Resistance Components (Gu and Wang 1990) 

associated with development by Forchheimer in 1901, but Ergun (1952) notes that Osborne Reynolds 

(1900) was the first to describe energy losses through a porous medium as the sum of viscous losses, 

proportional.to flowrate, and kinetic losses, proportional to the flowrate squared. Equation [2.43] can be 

written as a linear function as 

^-a.b\q\ [2-48] 

and it can be seen (Figure 2.7) that plots of i/q versus q yield a straight line for a given permeability or 

porosity over a wide range of flowrates. Both a and b are dependent upon permeability but most studies 

have expressed the relations in terms of porosity. Ergun conducted highly controlled experiments using 

crushed material and upward gas flows and obtained straight line relationships between a,b and poro'' 

factors (Figure 2.8) using the same data as shown on Figure 2.7. These expressions are 
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Figure 2.8 Porosity Factors - Data from Ergun (1952) 
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[2.49] 

Difficulties in accurate measurements of porosity for fine materials required Ergun to first calculate n 

knowing the total mass and volume of the sample and then apply correction factors to account for 

variations in particle density. Ergun and Orning (1949) also described effects of particle size and shape, 

incorporating these into equation [2.43] as follows: 

L 
Q + ( l ) p c ( i ^ [2.50] 

where a,|J are statistical constants and Ŝ , is the specific surface of solids, ie the surface area of solids over 

the volume of solids. Theoretical development of this equation is based upon the notion of mean 

hydraulic radius, the drawbacks of which were discussed in section 2.2.1. Ergun plotted data from different 

experimenters onto a friction factor - Reynolds' number graph (Figure 2.9) where all data falls onto a 

single curve bounded by the Kozeny-Carman equation (equation 2.14) in the linear laminar regime and 

an equation by Burke and Plummer (1952) in the ftilly turbulent regime. Ergun's final equation for all 

typ€s of flow through porous mcdis Is 

2AL = i s o i l ^ M + i n s ^ ^ [2.51] 

Other experimental results have not exhibited such a good correlation between the Forchheimer 

coefficients and porosity factors, probably because such a high degree of control over packing is difficult 

to obtain especially when working with water flow and mixed media such as rocks. Dudgeon (1968) re­

analyzed data from earlier (1964) experiments and found no such relations as those described by Ergun. 

29 



Figure 2.9 Friction Faaor Versus Reynolds' Number: Data from Ergun, 1952 

Dudgeon's analysis was based upon the exponential form of flow law and since the coefficients, a' and 

f, vary continuously over flow regime he equated 

a'q^ = aq ^ bq^ [2.52] 

a' = g'""(a + bq) 

and he plotted a' against some porosity functions, two of which are shown on Figure 2.10. He also noted 

the difficulties associated with porosity measurements, coupled with the dependence of the porosity factor 

upon n^ and n ' as a large source of error. Dudgeon concluded that no universal relation exists linking 

permeability and porosity for porous materials. 
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Figure 2.10 Porosity Factors - Data from Dudgeon (1964) 

Some researchers have avoided the problem of defining a suitable characteristic dimension and porosity 

function by using the square root of the intrinsic permeability to represent the length term instead. Ward 

(1964), for example, began with a dimensional analysis using the square root of the permeability as a 

characteristic length parameter, and arrived at a general expression for porous media flow 

^ = ÉéI^SpA) [2.53] 
*a IA ^ 

defining qpvVtA = R^, a Reynolds' number. He then made use of an observation that plotting the inverse 

of the Darcy permeability against pq/j i results in a linear relation in the post-Darcy flow regime. This gives 

the relation 
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[2.54] 

which is, in fact, the familiar series or Forchheimer equation where d and e are the intercept and slope 

of the line, respectively. By equating equations [2.53] and [2.54] Ward arrived at 

ÉP^V, CP t [2.55] 

dl r fi 

where c is a dimensionless constant determined to be 0.55 for all porous media and k is defined as 1/d, 

the intercept in equation [2.54]. Controversy appeared over whether a single curve should exist for all 

porous media or whether a Moody-type diagram better describes materials of differing permeabilities. In 

either case permeability tests must be made on each sample to determine its relevant parameters. 

Ward incorporated all effects of the properties of the granular material in his permeabUity term L His 

friction factor-Reynolds' number plot (Figure 2.11) is essentially the same as that proposed by Ergun 

(1952), except that Ergun used a grain diameter as a characteristic length and included porosity effects 

externally, applied to both f and R, (Figure 2.9). 

A type of Moody diagram was proposed by Arbhabhirama and Dinoy (1973) after a theoretical 

development based upon the Kozeny-Carman equation coupled with the Forchheimer type equation given 

by Ahmed and Sunada (1969) and Ward (1964), ie based upon A as a characteristic length. Their result 

was the same as Ward's except that the constant c in equation [2.55] was treated as a variable dependent 

upon the grain parameters, ie 

D 
T T [2.56] 

( 1 ) 1 
n 
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Figure 2.11 Friction Factor - Reynolds' Number plot - Data from Ward (1964) 

In the development specific values for other parameters such as tortuosity, etc, were assumed for which no 

supporting reasons or evidence were given. Their data is plotted on figures 2.12 and 2.13. The main 

uncertainty of this theory is the application of the Kozeny-Carman equation, which is strictly applicable only 

to the Darcy regime because all inertia terms of the Navier-Stokes equations are ignored, to flows outside the 

Darcy regime and coupled with the Forchheimer equation, which is a flow law itself. This, in effect, only 

transcribes the grain parameters from the Kozenv theory into the Forchheimer equation. Other analyses by 

Ergun (1952), Burke and Plummer (1950), Ward (1964) and Ahmed and Sunada (1969) support the theory 

that a single curve can apply to all porous media, thereby refuting equation [2.56] because the "constant" c 

cannot be dependent upon grain size D. 

Ahmed and Sunada (1969) began their development using the ful l Navier-Stoke's equations for incompressible 

fluids, adopted to account for turbulent fluctuations in velocity and pressure. The parameters were 
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Figure 2.12 Permeability Data from Arbhabhirama and Dinoy (1973) 

Figure 2.13 Friction Factor - Reynolds' Number plot (Arbhabhirama and Dinoy, 1973) 
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non-dimensionalized and time averaged for steady state flow arriving at 

nV 
[2.57] 

where P = statistical space averaged pressure 
u, = dimensionless average component of velocity = u/q 
u',=dimensionless fluctuating velocity component = u7q 

Ahmed and Sunada argued that both integrals in equation [2.57] represent constant values for a particular 

homogeneous isotropic porous medium. They further assumed that the turbulent velccities are small 

compared to the main stream value and were thus neglected. After fiirther development ttey obtained 

[2.58] 

where k = cd . Results of different investigators plotted as a single line on their ftiction actor-Reynolds' 

number graph (Figure 2.14). The va lu^ of k correspond to Darcy's permeability and no anempt was made 

to relate k to any grain parameters. 

Figure 2.14 Friction Factor - Reynolds' Number Plot by Ahmed «fc Sunada (1969) 
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2.3.2 Conceming Porosity Factors 
I 

Data from some of Dudgeon's (1964) tests, along with daU from Yalin and Franke (1961) and Brownell et j 

al. (1950) have been analyzed to determine the a and b Forchheimer coefficients and compare to Ergun's | 

equations. This data is plotted on Figure 2.15. TTie same data is presented in Figure 2.16 as a ftiction factor j 

1 

- Reynolds' number plot, where the ftiction factor is i/F, and R, is based upon mean particle diameter. | 
\ 

Contrary to Ergun's (1952) findings, when his porosity factors are incorporated into the f and R, terms j 
i 

(Figure 2.16b) this data does not collapse onto a single curve. Indeed, the data from Yalin and Franke does i 

shift together but that from the other researchers shifts ftirther apart. It is seen (Figure 2.17 a,b) that the j 

relation between Ergun's porosity ftinctions and the Forchheimer coefficients is not so good as for Egrun's j 

data. \ 
i 

i 

AppUcation of porosity factors, or ftinctions, serve only to translate the individual curves on the axes by an ; 

amount Dx and Dy. It may be noted that Yalin and Franke's data (in Figure 2.16 a) is distributed so that the \ 

highest curve (B) has the highest porosity and the lowest curves (A and C) have the lowest porosities. It is < 

therefore possible to find a "porosity factor" that wiU shift these curves closer together by considering the | 

amount Öx,êy each must move. As an example, a "porosity factor" of n ' applied to the friction factor wil l \ 

cause a vertical shift of the curves that bring them closer together (Figure 2.18). By applying similar 

correction factors to the Reynolds' number the curves wiU shift horizontaUy and a better fit can be obtained, j 

j 

Dudgeon (1964) noted the same result for various values of the dimension D, which gets applied to both axes, j 
1 

as D is embedded in both the Reynolds' number and Froude number. Applying a ftirther correction to the D 

term wiU therefore cause an additional shift 6x,6y to the curves. This is the basis for the "equivalent 

diameter" approach to defining universal curves for aU porous media (YaUn, 1971). 

Therefore, for data from ordered media, such as that from Yalin and Franke and Ergun, the amount of shift 

can be fairly well estimated. But, for more disordered media such a shift can not be so well defined. This 
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Figure 2.17 Forchheimer Coefficients Versus Porosity Factors from Ergun (1950) 
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Figure 2.18 Porosity Factor Applied to data of Yalin & Franke (1%1) 

is evident from inspection of the data from Brownell et al. (1950): In Figure 2.15 (c) the curves for spheres 

and berl saddles are almost identical (which is interesting enough considering the wide differences in 

diameters and porosities!), whereas in Figure 2.16 (a) (after applying Ergun's correction factors) these curves 

have shifted ftirther apart. 

2.3.3 Friction Factor - Reynolds' Number Plots in Unsteady Flow 

Several figures in the preceding sections presented (stationary flow) data from different researchers as a 

friction factor, which is a function of the Reynolds' number. The rationale for this was discussed in section 

2.2.2 (Equatioa [2.20]). From equations [2.20] and [2.43] it has been shown that the form of the function 

relating the friction factor and Reynolds' number (plotted on log - log axes) in the laminar (Darcy) regime 

by a straight line with slope -1 and in the fully turbulent regime by a horizontal line. Now the effects of non-
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stationary flow will be considered. 

In addition to the charaaeristic parameters given in section 2.2.2, non-sutionary Eow requires additional 

parameters to be considered. For the specific case of oscillatory flow, these parameters include the period 

and amplitude, T and A respectively, of oscillation and time, t. However, since q, T, A and t are 

interdependent quantities, only three of the four may be included in the list of charaaeristic parameters. 

Choosing q, T and t, the relation described by equation [2.17] now becomes, for any dimensionless quantity, 

Y.. 

[2.59] 

where 4>, represents some fimaion of the variables within the brackets and is different from that in equation 

[2.17]. It is thus to be expected that the form of the ftiction factor - Reynolds' nmiber function will be 

•a 
different from that of the stationary flow case. 

In order to investigate the effects of temporal inertia, consider the laminar oscillatory Cow situation described 

in section 2.2.3 (Equations [2.32] and [2.33]). In this situation the velocity and gradknt were described by 

sine functions with a phase difference of 6 = tan"'(C'w/a) between them. C' is the acceleration coefficient 

for laminar flow (no added mass term) and a is the laminar Forchheimer coefficknt. This relation is 

represented by the plus signs on the ftiaion factor - Reynolds' number plot in Figure 2.19. The points on the 

graph were computed using equations [2.32] and [2.33] with values for the different parameters listed on the 

Figure. Absolute values of velocity and gradient data were taken in order to compute the logarithms. 

The squares on the graph display the steady flow law defined by equation [2.43] (Forchheimers' equation). 

Differences in the resistance ftmaions are obvious. The triangles on the graph represent the oscillatory flow 

law including the turbulent term (bq- |q |) , in equations [2.44] and [2.62], and \he same acceleration 
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coefficient ( C ) is used as for the laminar flow curve (ie, no added mass effects are included). From these 

plots the effect of the inertia coefficient can be seen. It is the form of these oscillatory functions which is of 

prime interest. 

u. 
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Figure 2.19 f - Graph: Oscillatory and Steady Flow Functions 

The first point to notice is the fact that the oscillatory functions tend to be linear with slopes of -2 for lower 

flowrates. This contrasts with the steady flow condition which is characterized by a slope of -1 in the laminar 

regime and slope of zero in ftilly developed turbulent flow. The interpretation of the -2 slope of the 

oscillatory ftinctions (laminar and turbulent) is that, for most flowrates, the inertial term dominates over the 

others and the gradient, therefore, is dependent more on the acceleration than it is on the velocity. This can 

be seen from 
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V T 
[2.60] 

where, for small q values, the stationary laminar and turbulent terms will be negligible compared to the 

inertia term. Therefore i/F^ wi l l be proportional to 1/q̂  and so must be proportional to R,•^ leaving 

Then, clearly, the gradient, i , is not dependent upon the velocity, q but only on the terms remaining within 

the functional relation < '̂. Similar to the friction factor - Reynolds' number plots for stationary flow, the 

oscillatory flow plots wil l be (for a given set of parameters a, b, C, D, T, q^) a family of curves with the same 

form as that in Figure 2.19 but varying in position with different values of n. 

A second point of interest in Figure 2.19 is the "dip" which appears near the high end of the abscissa range. 

The entire lower portion of the oscillatory curves occur when the velocity approaches zero from a maximum 

or minimum. The "dip" in Figure 2.19 occurs during the time span between the maximum and zero-crossing 

of the velocity record; the actual minimum value occurs at the zero-crossing of the gradient record. The 

location of the minimum (and thus the form of the "dip") is therefore dependent upon the magnitude of the 

phase shift between the velocity and hydraulic gradient. This is the main difference between the oscillatory 

"laminar" and "turbulent" functions shown in Figure 2.19. When the turbulent resistance term is added to the 

"laminar" oscillatory equation it produces an additional phase shift, thus changing the shape and location of 

the "dip". This feature is not a physical one (as is the sudden decrease in the Drag Coefficient - Reynolds' 

number plots for flow past a sphere, seen where the boundary layer separates from the sphere) but results 

from the mathematical relationships of phase-varying sine functions. 

[2.61] 
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2.3.4 Effects of Temporal Inertia 

The ful l equation governing unsteady flow in the post-linear regime was given in seaion 2.3.1 (Equation 

[2.44]). Hiis seaion deals wilh the acceleration coefficient, C, given in that equation. The acceleration 

coefficient must include the same force that was required to accelerate the water mass for the case of laminar 

flow (seaion 2.2.3). An additional inertial coefficient, C, , is required for flow outside of the laminar regime. 

This inertial force is required lo produce the convectional acceleration of the fluid around the solid particles. 

This principle is commonly used in the analysis of wave forces on piles (Etean and Dalrymple, 1984). The 

extra inertial force is 

F, = C , p V , ^ [2.62] 

where V, is the volume of solid particles. The inertia coefficient, C, has a value of 2.0 for potential flow 

around a circular cylinder and is composed of two terms, ie. 

C, - 1 * ik. [2.63] 

where k„ is the added mass coefficient and is a function of the shape of the objea. The unity term in 

equation [2.63] arises directly from the pressure gradient across the obstruaion, similar to the buoyant force 

on an object in a hydrostatic fluid. TTie added mass term is caused by disturbances to the flow field resulting 

fi-om the object's shape. It is the force necessary to produce an additional pressure gradient which accelerates 

neighbouring fluid past the particles. In other words, the total kinetic energy of the system (including the 

moving object and the fluid set in motion around the object) is regarded as the kinetic energy of an object 

alone having the same size as the original object but with an increased mass . A similar phenomenon occurs 

when a fluid is accelerated past a stationary object, ie. the fluid appears to experience an increase of mass. 

The force balance for the system including laminar and turbulent losses, fluid inertia and added mass can be 
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written (assuming the driving force, F, is the applied pressure gradient dp/dx) 

dx di dt 
[2.64] 

where A j = Total area perpendicular to flow direction 
Vp = Volume of fluid = nVj 
V t = Total volume (soUd + fluid) = dx-A^. 
Vs = Volume of solids = V T ( l - n ) 
b ' = b / p 

Expressing [2.64] in terms of hydraulic gradient, i , and with q = nv then 

i ' aq * bq\q\ * - 1 + 
C, ( l -n) dq 

di 
[2.65] 

where the acceleration coefficient, C, includes the added mass and fluid inertia, ie 

1 + C 
ï - « ' 

[2.66] 

C has dimensions of (sec^ / m). The added mass term, k„, can be solved from [2.63] and [2.66] as 

-1 [2.67] 

and should have a value greater than 1 (Dean and Dalrymple, 1984). From this expression it is seen that for 

a porosity of n=0.3, C must be greater than 0.58 for k„ i 1 and, for a porosity of n = 0.5, C must be greater 

than 0.30. 

Hannoura and McCorquodale (1978a, 1985) and Abdel-Gawad and McCorquodale (1985) tried to solve 

equation [2.65] for the added mass term. They first conducted steady flow tests on granular materials to 

determine values of their a and b coefficients. Then unsteady tests were conducted, where the pressure 

gradient and water velocities were measured simultaneously. The steady flow values of a and b were assumed 

to apply to the unsteady flow case and then equation [2.65] could be solved directly for the acceleration 
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coefficient C. Unfortunately, no conclusive daU was obtained. The primary reason for this may have been 

due to the methods used to accelerate the water, which are described in the references listed above. Tests 

were conducted ^ t h uni-directional flow and with very short time durations (less than 1 second). Results 

from are presented in Figures 2.20 and 2.21. Figure 2.20 is a plot of i/q versus q (similar to Figure 2.7) 

showing both the steady and unsteady data. As expected, the steady flow data follows a Unear trend but the 

unsteady data seems to show no pattem at all. Figure 2.21 shows results for the inertia coefficient, Q. 

Values for C, van- widely and many are even negative which, theoretically, should not occur. 

If equations [2.44] and [2.65] are correct, the unsteady data should be expected to fall unifonnly around the 

steady flow line on Figure 2.20. One of the main goals of the present study is to check this presumption 

using an oscillatory flow field. 
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