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Abstract

In this thesis we consider multiple Automated Guided Vehicles (AGVs) navigating a common
workspace to fulfill intralogistics tasks, typically formulated as the Multi-Agent Path Finding
(MAPF) problem. To keep plan execution deadlock-free, one approach is to construct an
Action Dependency Graph (ADG) which encodes the ordering of AGVs as they proceed along
their routes. Using this method, delayed AGVs occasionally require others to wait for them
at intersections, thereby affecting the plan execution efficiency. If the workspace is shared by
dynamic obstacles such as humans or third party robots, AGVs can experience large delays.
A common mitigation approach is to re-solve the MAPF using the current, delayed AGV
positions. However, due to its inherent complexity, solving the MAPF is time-consuming,
making this approach inefficient, especially for large AGV teams.

To address this challenge, we present a novel concept called a Switchable Action Dependency
Graph (SADG) which is used as the basis for a shrinking and receding horizon control scheme
to repeatedly modify an acyclic ADG to minimize route completion times of each AGV using
an optimization based approach. Our control strategies persistently maintain an acyclic ADG,
necessary for deadlock-free plan execution.

The proposed control strategies are evaluated in a simulation environment and show a reduc-
tion in route completion times when a fleet of AGVs is subjected to random delays. Finally,
the methods are also implemented using ROS and validated in the Gazebo simulation envi-
ronment to illustrate practical feasibility when applied to real systems.
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Chapter 1

Introduction

Continuous advancements in the fields of robotics, algorithm development and decreasing
hardware costs are opening up possibilities in automation for a large number of application
areas. Specifically, consider the logistical challenges of organizing and displacing inventory
in large warehouses, commonly referred to as intralogistics. Traditionally, intralogistics tasks
have predominantly been performed by humans and/or highly supervised human-operated
machinery. However, the logistics and warehousing industries have seen a large increase in
automation, as shown by a recent study by Elms et al. [5]. Two examples of automated
distribution centers are shown in Figure 1-1. The study goes on to predict an exponential
increase in the potential use of Automated Guided Vehicles (AGVs) to perform such intral-
ogistics tasks and subsequently emphasizes the increasing demand for solutions to efficiently
coordinate AGVs in warehouses and distribution centers.

An AGV is a general description given to a mobile robotic platform capable of navigating
a workspace autonomously. In the case of the intralogistics use-case, an AGV is typically
configured to carry a payload such that it can transport goods throughout the warehouse.
The Active Shuttle, shown in Figure 1-2a, is an example of an AGV which was developed by

(a) Amazon Robotics [6] (b) Robert Bosch GmbH [1]

Figure 1-1: Examples of distribution centers which pose significant intralogistics challenges.

Master of Science Thesis Alexander Berndt



2 Introduction

(a) Active Shuttle AGV navigating a dynamic
environment. The orange and red regions repre-
sent its collision-avoidance regions.

(b) Multiple Active Shuttle AGVs navigating
an intersection while carrying payloads (blue
crates).

Figure 1-2: An example of AGVs used to perform intralogistics tasks [1].

Bosch Rexroth, a subsidiary of Robert Bosch GmbH. It uses a variety of sensors including
two laser scanners and a camera to localize itself in a dynamic environment. Battery-powered
electric motors coupled to a differential drive system are used to allow the Active Shuttle to
navigate throughout the workspace. A payload can be carried by driving under a shelf and
lifting it up using an actuated loading bay at the rear of the vehicle.

The pioneering work of Wurman et al. [6] has illustrated that multiple AGVs are capable of
efficiently performing intralogistics tasks, assuming a defined factory layout with no dynamic
obstacles other than the AGVs occupying the workspace. In this thesis, the aim is to con-
tribute to an extension of this concept by contributing to the coordination of multiple AGVs
navigating a workspace shared by third-party static and dynamic obstacles such as humans.
The robotics community has already developed effective controllers which allow individual
AGVs to efficiently navigate dynamic environments, as illustrated in Figure 1-2a. However,
coordinating multiple AGVs efficiently within dynamic environments remains a challenging
task. The coordination of multiple AGVs in a shared environment can be formulated as the
Multi-Agent Path Finding (MAPF) problem. The MAPF problem typically considers an
abstraction of the workspace to a graph, called a roadmap, where vertices represent spatial
locations and edges pathways connecting two locations. The problem is to find trajectories
for each AGV along this roadmap such that they reach their goal positions without colliding
with the other AGVs. MAPF solvers determine such solutions while minimizing some metric
such as cumulative route completion time or, alternatively, the makespan. The makespan of
a plan is the maximum time it takes all the AGVs to complete their tasks.

Despite the abstraction of the MAPF to a significantly reduced decision space as a multi-
agent graph search problem, solving the MAPF is a computationally demanding task. This
is substantiated by the fact that the problem has been shown to be NP-Hard [7]. As is
typically the case with combinatorial challenges such as vehicle routing or job shop scheduling,
researchers formulate the problem by introducing a variety of constraints on the solution space
in order to reduce the computational effort required to obtain solutions. In the case of the
MAPF problem, AGVs traverse a graph structure representing the workspace, while assuming
discrete graph traversal movements and ignoring external disturbances such as delays imposed
on the AGVs [8]. Even though some more recent solutions do accommodate slight delays and
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asynchronous AGV movement such as in [9, 10], these methods still result in inefficient plan
execution when delay duration and frequency increases, since the ordering of AGVs along their
paths remains fixed. Currently, most approaches require the MAPF problem to be re-solved
when AGVs experience significant delays. However, due to the MAPF problem’s exponential
complexity, this approach is often very inefficient, especially when we consider a large number
of AGVs.

In this thesis, the aim is to address this challenge by developing approaches that permit the
re-ordering of AGV plans without needing to re-solve the entire MAPF plan, while simul-
taneously minimizing the route completion time of the AGV fleet. In contrast to existing
approaches which consider delays a-priori, this thesis will focus on developing an online op-
timization scheme, which allows the plan ordering to be adjusted based on the delays that
AGVs experience as they carry out their plans.

Finally, the MAPF problem can be used to address a number of practical challenges, not
only the coordination of AGVs in a warehouse. Other practical applications are numerous
and have been addressed by the literature. These include the routing of airport crew vehicles
[11], ships in a harbor [12], mobile mining robots [13] and even artificial armies in computer
games [14], as illustrated in Figure 1-3. This thesis will focus on general solutions which will
essentially allow the developed methods to be applied to any of the aforementioned use cases.

(a) Routing airport crew vehicles [11]. (b) Ships in a harbor [12].

(c) Mobile mining robots [13]. (d) Computer game armies [14].

Figure 1-3: Various applications of the MAPF problem
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4 Introduction

1-1 Research Objectives, Focus and Scope

It is clear that a lot of work has been done on improving solutions to the MAPF. This thesis
is focused on developing solutions which don’t compete, but rather complement these recent
advances to ultimately yield a more efficient and robust overall system. This will be done by
looking into an online adjustment method to augment already determined plans such that
AGVs can efficiently adjust their ordering based on delays while carrying out these plans.
This brings us to the first research objective.

Research Objective 1. Adjust the ordering of AGVs based on their current delays, while
maintaining the collision-free and deadlock-free guarantees of the original plan.

Next, the MAPF has recently been generalized into the so-called Multi-Agent Pickup and
Delivery (MAPD) in [15]. The MAPD is essentially a persistent planning variant of the
MAPF. In the MAPD, instead of a start-goal location for each AGV, AGVs are provided a
stream of start-goal locations which need to be fulfilled as they appear. With the anticipation
that the MAPD will become increasingly relevant, the methods developed in this thesis should
be implementable for persistent plans as well. This requirement is encompassed in the second
research objective.

Research Objective 2. Extend the ordering of AGVs to be applicable to persistent planning
architectures using a receding horizon control approach.

Finally, to ensure that the developed methods are not only theoretically interesting, but
practically implementable and beneficial, it is desirable to validate the developed theory by
considering a realistic use-case simulating an environment where these methods will most
likely be used. This validation is specified in the third and final research objective.

Research Objective 3. Validate the developed methods in an extensive and realistic simu-
lation environment.

1-2 Contributions

Despite the increased attention multi-agent planning algorithms have garnered in recent years,
adapting plans based on disturbances such as AGV delays in an efficient manner remains an
open research question. This thesis aims to address this by presenting a new concept, called
a Switchable Action Dependency Graph (SADG), to allow for the persistent adjustment of
AGV schedules in an online fashion using an optimization-based approach.

Specifically, our contributions include the introduction of reverse agent dependencies leading
to the SADG, an Optimal Control Problem (OCP), formulated as a Mixed-Integer Linear
Program (MILP), to optimally select agent dependencies, and showing that execution man-
agement based on this approach guarantees collision- and deadlock-free plan execution.

Additionally, this thesis presents a method to reformulate the aforementioned OCP into a
receding horizon scheme which is guaranteed to maintain the original collision- and deadlock-
free plan execution guarantees. Finally, the presented methods are evaluated in an extensive
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1-3 Outline 5

statistical simulation framework as well as a realistic simulation environment using the Robot
Operating System (ROS) and Gazebo.

The theoretical contributions are summarized as follows:

1. Switchable Action Dependency Graph
A novel data structure which can be used to re-order AGVs based on trajectory com-
pletion, while maintaining collision-free guarantees of the original plan.

2. Shrinking Horizon Optimal Control Problem
The formulation of an Optimal Control Problem based on the SADG which can be
solved in a feedback scheme to maintain the original deadlock-free guarantees of the
plan despite re-ordering of AGVs.

3. Receding Horizon Optimal Control Problem
Translation of the shrinking horizon OCP into a receding horizon formulation, while
maintaining deadlock-free guarantees despite only considering a subset of the original
plan within the OCP.

4. Recursive Feasibility Guarantees
Both the switching and receding horizon feedback schemes are proven to be recursively
feasible, meaning that the OCP can be guaranteed to have a feasible solutions at each
iteration, which implies that plans are guaranteed to be completed in a collision- and
deadlock-free manner.

1-3 Outline

This thesis consists of eight chapters, organized as depicted in Figure 1-4. Following the in-
troduction in this chapter, Chapter 2 provides an overview of relevant literature regarding the
coordination of multiple AGVs in shared environments. The goal of this chapter is to provide
the reader with a concise overview of the state-of-the-art in order to put the contributions of
this thesis into context.

Chapter 3 forms the foundation of this thesis. This chapter introduces the Switchable Action
Dependency Graph (SADG), a novel data structure which forms the basis of the developed
feedback schemes in the rest of this thesis. The SADG is presented following the introduction
of switchable dependencies facilitating the re-ordering of AGVs despite significant delays in
plan execution. The SADG is used as the basis of an Optimal Control Problem (OCP) for-
mulation which can be solved in a feedback scheme such that the cumulative plan completion
times for the AGVs is decreased.

Introducing the need for a persistent planning variant of the approach in Chapter 3, Chapter
4 extends the aforementioned concepts to be used in a receding horizon fashion, essentially
allowing our approach to be used on schedules of theoretically infinite length.

Chapter 5 considers the OCPs presented in both Chapters 3 and 4 and presents a Mixed-
Integer Linear Program (MILP) formulation which can be used to solve the OCPs in an
efficient manner. This chapter also presents various cost functions and introduces several
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6 Introduction

heuristics for obtaining faster solutions exploiting the structure of the SADG. Finally, recur-
sive feasibility is proven for both the shrinking and receding horizon control schemes of the
previous chapters.

Chapter 6 provides a statistical evaluation of the presented methods in this thesis. The aim
of this chapter is to gain insight into the performance benefits of the proposed methods from
a statistical point of view.

In Chapter 7, the approaches presented in Chapters 3 through 5 are validated in a realistic
simulation using the Gazebo simulation environment. A complete analysis of this simulation
is performed to provide insight into the practical applicability of the methods developed in
this thesis.

Finally, Chapter 8 presents a discussion of the results presented in Chapters 6 and 7. These
results are analyzed in detail and placed in the context of the current state-of-the-art in the
literature. This chapter also summarizes the contributions of this thesis, and provides insight
into potential future work.

Chapter 1
Introduction

Chapter 2
Planning for

Multiple AGVs

Chapter 3
Switchable Action
Dependency Graph

Chapter 4
Receding Horizon
Control Approach

Chapter 5
Optimization and

Recursive Feasibility

Chapter 7
Gazebo Simulation

Chapter 6
Statistical
Evaluation

Chapter 8
Conclusions & Outlook

Figure 1-4: Outline of this thesis
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Chapter 2

Planning for Multiple AGVs

In this chapter, we introduce and describe the most notable developments related to the
planning and coordination of multiple Automated Guided Vehicles (AGVs) relevant to this
thesis work. The aim of this chapter is two-fold: firstly, to provide the reader with a brief, yet
detailed overview of the current literature dedicated to the coordination of multiple AGVs in
a shared environment; secondly, to place the contributions of this thesis into the wider context
of existing solutions. These two points are important because the work in this thesis aims at
complementing existing planning methods. To this end, a comprehensive understanding of
the capabilities and limitations of existing methods is necessary.

2-1 The Multi-Agent Path Finding Problem

Consider a shared workspace, occupied by a set of AGVs, each with a unique start and goal
pose as pictured in Figure 2-1a. In an intralogistics context, these start and goal poses could
refer to inventory drop-off and pickup locations respectively.

(a) AGVs with start and goal positions. (b) Trajectories for each AGV.

Figure 2-1: AGVs occupying a workspace, with starting positions (rectangular shapes) and their
corresponding goal positions (circles), as well as possible collision-free trajectories.
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8 Planning for Multiple AGVs

(a) Graph-based roadmap. (b) Continuous trajectories. (c) Comparison of trajectories.

Figure 2-2: A continuous workspace with obstacles and multiple UAVs with graph-based solutions
along the roadmap, continuous trajectories based on the graph-based solution and a comparison
of these trajectories with those obtained from planning in the continuous workspace directly [2].

The task is to determine trajectories for these AGVs such that they can each reach their goal
pose without colliding with one another. Additionally, it is desirable for these trajectories to
be minimized by some metric such as expected route completion time or route distance. An
example of trajectories resulting in minimum cumulative route completion time is shown in
Figure 2-1b.

Planning in a continuous space is a very challenging task. To alleviate this, a common
approach is to abstract this continuous space into a graph structure. A recent example of
work which uses this approach is [2], where the authors address the challenge of coordinating
multiple Unmanned Aerial Vehicles (UAVs) in a shared environment. Such a graph structure is
commonly referred to as a roadmap, and it is assumed that AGVs can navigate the continuous
space by traversing the edges of this roadmap. Referring to the work in [2], Figure 2-2a shows
an example of a roadmap extracted from the continuous workspace littered with obstacles.
In this manner, the problem of finding collision-free trajectories for AGVs in a common
workspace is abstracted to a multi-agent graph search problem. Based on the graph-based
solution, continuous trajectories can be extracted as shown in Figure 2-1b. It is worth noting
that the abstraction of a workspace to a graph can yield longer trajectories compared to if these
trajectories were planned in the original continuous space. An example is shown in Figure 2-2c,
which shows trajectories based on a graph-based solution (in black), compared to the solution
determined directly in continuous space (in color). Another example of a roadmap occupied
by AGVs is shown in Figure 2-3. In this case, there are 70 AGVs occupying the workspace,
and despite reducing the problem to a graph-search problem, it remains a challenging task
which requires a significant amount of computational effort. This will be discussed in more
detail in Section 2-2-1.

Note that there are some approaches which plan directly in continuous space. An example
is the work of Pecora et al. [16]. However, this work assumes some general trajectory has
already been determined for the AGV, and the task is to coordinate AGV movement to
avoid collisions while following these pre-determined trajectories. This is different to the
more general case we are considering here, where AGVs have more than one possible general
trajectory they can follow to their respective goals.
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2-1 The Multi-Agent Path Finding Problem 9

Figure 2-3: A roadmap occupied by 70 AGVs (represented by colored dots). AGVs must efficiently
navigate from a start to a goal position (shown by colored circles) while avoiding collisions with
one another, despite being subjected to delays.

Having briefly introduced the MAPF problem, let us now formalize this concept. The formal
MAPF problem is defined in Problem 2.1.

Problem 2.1 (Multi-Agent Path Finding) The MAPF problem for N AGVs is a tuple
(G, AGV ) where G = (V, E) is an undirected graph and AGV = {AGV1, . . . , AGVN} is a list
of AGVs occupying G. AGVi is a tuple (si, gi), where si ∈ V and gi ∈ V denote the start and
goal positions respectively, such that si 6= sj and gi 6= gj ∀ i, j ∈ {1, . . . , N}, i 6= j. Time
is discretized such that each AGV is at one of the graph vertices and can only perform one
action at each time step. An action is a function a : V 7→ V such that a(v) = v′ such that
if AGVi is at v and performs a, it will be at v′ in the next time-step. At each time-step, an
AGV can either wait at the current vertex v or move to an adjacent vertex v′ if (v, v′) ∈ E.

It is worth noting that the problem formulation in Problem 2.1 assumes that AGVs per-
form actions at fixed time-steps. Next, we define a valid solution to the MAPF problem in
Definition 2.1.

Definition 2.1 (MAPF Solution) Consider a roadmap G = (V, E) occupied by a set of
N AGVs where the ith AGV has start si ∈ V and goal gi ∈ V, such that si 6= sj and
gi 6= gj ∀ i, j ∈ {1, . . . , N}, i 6= j, an MAPF solution P = {P1, . . . , PN} is a set of N plans,
each defined by a sequence of tuples p = (l, t) consisting of a location l ∈ V, and a time
t ∈ [0,∞). Pi = {p1

i , . . . , p
Ni
i } refers to the plan for AGVi. If every AGV perfectly follows

its plan given by the MAPF solution, then all AGVs will reach their respective goals in finite
time without collision.
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10 Planning for Multiple AGVs

Essentially, a valid solution to the MAPF is a sequence of adjacent nodes for each AGV, from
start to goal, such that none of the AGVs occupy the same roadmap node or traverse the
same edge of the roadmap at the same time. Definition 2.1 only specifies the requirements for
a valid MAPF solution, without placing any requirements on plan length, as long as they are
finite. The idea is that a solver solving the MAPF problem will do so by minimizing a metric
such as cumulative trajectory length or the makespan. The makespan is the maximum plan
length or route completion time of each of the AGVs.

2-2 Challenges Related to Multi-Agent Path Finding

There are numerous challenges related to the MAPF problem. In this section, we present
the challenges which need to be considered by the solution in this thesis work. Given that
the MAPF is NP-hard [7], the first obvious challenge is that of developing efficient solvers to
solve the MAPF in an efficient manner. The second challenge which needs to be considered is
motivated by the fact that a valid MAPF solution as in Definition 2.1 requires an execution
policy. This is because most MAPF solutions assume that the AGVs executing the plan do so
in a perfectly synchronous manner. This requires AGVs to have perfect, global communica-
tion, and assumes AGVs will never be delayed. Naturally, these assumptions are difficult to
adhere to in practical applications, meaning that MAPF solution execution policies need to
be developed to ensure correct execution of theoretically collision-free MAPF plans. Another
challenge is the fact that the MAPF problem assumes AGVs have a start and goal pose. This
is a limiting assumption because, typically, AGVs get assigned new tasks once their current
tasks are completed, implying the need for a persistent MAPF formulation.

The aim of this section is to provide more details about these aforementioned challenges,
starting with efficient solutions to the MAPF in Section 2-2-1, extensions to persistent MAPF
formulations in Section 2-2-2, existing MAPF solution execution policies in Section 2-2-3 and
methods which consider delays in the planning algorithm in Section 2-2-4.

2-2-1 Efficient Solutions to the MAPF

Due to its increasing relevance and important application domains, solving the MAPF prob-
lem has garnered widespread attention over the years. Comprehensive overviews of existing
MAPF solutions have been presented by Felner et al. [17] and, more recently, Stern et al. [8],
of which the most relevant to this thesis will be presented here. Since the MAPF complexity
grows exponentially with the number of decision variables, existing solutions either attempt
to solve the problem optimally in an efficient manner using heuristics, or solve a bounded
sub-optimal version of the problem. We are also limiting our focus to complete algorithms,
meaning that these algorithms are guaranteed to find a solutions, if one exists.

Conflict-Based Search

A popular approach is called Conflict-Based Search (CBS), introduced by Sharon et al. [18].
Consider a MAPF problem with a set of N AGVs denoted by AGV s = (AGV1, . . . , AGVN )
navigating a roadmap Groadmap = (Vroadmap, Eroadmap). The CBS algorithm uses a two-level
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2-2 Challenges Related to Multi-Agent Path Finding 11

solution scheme. The high level component performs a search along a so-called conflict tree
(CT). Each node within the CT consists of the following elements:

1. Constraints
Each constraint is associated with a single AGV. Each node in the CT inherits the con-
straints of its parent nodes. The root node constraints is an empty set. Constraints can
either be related to vertices or edges within the roadmap Groadmap. A vertex constraint
is given by the tuple

(AGVi, v, t) where AGVi ∈ AGV s, v ∈ Vroadmap, t ∈ R≥0. (2-1)

Similarly, an edge constraint is given by the tuple

(AGVi, vk, vl, t) where AGVi ∈ AGV s, vk, vl ∈ Vroadmap, t ∈ R≥0. (2-2)

These constraints refer to a portion of the roadmap Groadmap which should not be visited
by AGVi at time t.

2. Solution
A set of N paths where the path of AGVi adheres to all the constraints applicable to
that AGV.

3. Total cost
The cost of the node solution. This is the sum of the path length of each AGV.

The solution for a node within the CT is determined at the low level. This is done by
performing a shortest-path search for the AGVs associated with the constraints of that node.
This shortest path search is performed while adhering to the constraints defined in the current
CT node.

Once a solution has been determined for a node in the CT, it is validated. This means that
it is checked to see if it contains plans which occupy the same vertex or edge at the same
time-step, which is referred to as a conflict. Conflicts can either be vertex- or edge conflicts.
A vertex conflict is a tuple of the form

(AGVi, AGVj , v, t) where AGVi, AGVj ∈ AGV s, v ∈ Vroadmap, t ∈ R≥0. (2-3)

Similarly, an edge conflict is a tuple of the form

(AGVi, AGVj , vk, vl, t) where AGVi, AGVj ∈ AGV s, vk, vl ∈ Vroadmap, t ∈ R≥0. (2-4)

If a solution contains a conflict, this conflict is resolved by creating two constraints, one for
each AGV in the conflict. A conflict (AGVi, AGVj , ·) yields the constraints (AGVi, ·) and
(AGVj , ·), where the dot is used to represent the same vertex and time of both vertex and
edge conflicts and constraints. Note the difference between the conflicts in (2-3) and (2-4)
which refer to two AGVs, compared to constraints in (2-1) and (2-2) which are used in the
low-level shortest-path search algorithm. The aforementioned discussion is contained within
the pseudo code for the CBS algorithm in Algorithm 1.

To illustrate the multi-agent graph-search problem addressed in the MAPF, consider the
illustration shown in Figure 2-4. This illustrations shows the trajectories some of the AGVs
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12 Planning for Multiple AGVs

Algorithm 1 Conflict-Based Search High-Level [18]
Input: MAPF problem.
Result: P

1: Root.constraints ← ∅
2: Root.solution ← low level shortest-path search for each AGV
3: Root.cost = getCost(Root.solution)
4: CT .insert(Root)
5: while CT not empty do
6: P ← lowest cost node in CT
7: Validate paths in P until conflict occurs
8: if P has no conflicts then
9: return P .solution

10: C ← first conflict (AGVi, AGVj , v, t) in P
11: for AGVi in C do
12: A← new CT node
13: A.constraints ← P .constraints + (AGVi, v, t)
14: A.solution ← P .solution
15: Update A.solution using low-level search for AGVi

16: A.cost = getCost(A.solution)
17: if A.cost <∞ then
18: Insert A to CT

must follow in order to guarantee collision-free movement to their respective goals. Note, for
example, the first portion of yellow trajectory, where the AGV must temporarily move to the
right to make way for another AGV before moving to the left again, in the direction of its
goal position. This kind of behavior may seem sub-optimal for a single AGV, but is optimal
when considering all the AGVs collectively.

Figure 2-4: Visualization of conflict-free paths determined by CBS. Only a subset of the trajec-
tories are shown for clarity. These paths are collision free in space-time.
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2-2 Challenges Related to Multi-Agent Path Finding 13

Improvements and Variants of Conflict-Based Search

The original CBS algorithm has been improved by exploiting properties such as geometric
symmetry by Li et al. in [19] or using purpose-built heuristics as by Felner et al. in [20].
Another significant increase in performance was presented more recently by Lam et al. in
[21]. Lam et al. identified the similarity of CBS to the branch-and-bound architecture used
in Mixed-Integer Linear Program (MILP) solvers, where the linear program relaxation corre-
sponds to the low level shortest-path graph search in CBS. This work goes on to formulate
the MAPF as an MILP which is subsequently solved using a purpose-designed branch-cut-
and-price solver.

Another approach to ensure fast solution times is by finding sub-optimal solutions that are
bounded with respect to the optimal solution. Depending on the chosen sub-optimality ratio
w, this can lead to significantly faster solution times. Barer et al. introduced a variant of
CBS, called Bounded Sub-Optimal Conflict-Based Search (ECBS) [22], which uses a focal
search variant of A* at the low level planner of CBS to yield solutions with a makespan
upper-bounded by a factor w compared to the optimal solution.

Other notable solutions to the MAPF include Prioritized Planning using Safe Interval Path
Planning (SIPP) [23], declarative optimization approaches using answer set programming
[24, 25], heuristic-guided coordination [16] and graph-flow optimization approaches [26]. The
work by Ryan et al. [3] manually decomposes the overall map into a set of simpler sub-graphs.
The plans are then determined in a hierarchical fashion: first, robots plan movements from
one sub-graph to another; second, purpose-specific planners are used to determine paths
within each sub-graph. This method is sound and complete, however, the increase in search
performance is highly dependent on the (manually performed) graph decomposition. Figure 2-
5b shows the overall graph of the original factory in Figure 2-5a with sub-graphs indicated by
the different colors. Wilt et al. [27] follow a similar approach where congested portions of the
graph are highlighted where a dedicated agent is used to solve the routing problem locally.
The aforementioned works and references are summarized in Table 2-1.

Name Optimal Reference
Conflict-Based Search yes [18]
Prioritized Planning using SIPP no [23]
Declarative Programming yes [25]
Graph flow optimization yes [26]
Exploiting symmetry in CBS yes [19]
Purpose-built heuristics CBS yes [20]
Enhanced-CBS bounded sub-optimal [22]
Subgraph optimization no [3]

Table 2-1: Summary of MAPF solutions.
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14 Planning for Multiple AGVs

(a) A roadmap graph showing the abstraction
of the workspace into a roadmap.

(b) Reduction of the roadmap into sub-graphs
indicated by different colors.

Figure 2-5: Top-view of a real warehouse workspace layout as used by Ryan et al. in [3].

2-2-2 Extensions to MAPF

Despite the numerous works already dedicated to solving the MAPF, the original formulation
as presented in Problem 2.1 has a number of shortcomings regarding its generality. More
specifically, the MAPF assumes all AGVs move in discrete, constant time steps across an
unweighted graph. Additionally, all AGVs are assumed to be given a single task, and stay
in their goal position once it is reached. When considering certain implementation examples,
these assumptions can sometimes be too strict, which has inspired researchers to consider
relaxations of these problems. We discuss two notable extensions in this section which are
most relevant to this work.

Roadmaps as Weighted Graphs

The authors of [28] address the fact that the MAPF is originally defined for unweighted
roadmaps where AGVs only move in discrete time-steps by introducing Continuous Conflict-
Based Search (CCBS). CCBS allows the roadmap to be defined as a weighted graph. The
CCBS algorithm also makes use of a two-level approach like CBS. However, the lower level
path planning is solved using SIPP [23] instead of the much faster A∗ search or Dijkstra’s
algorithm as in CBS. This results in increased computation times for the same sized problem,
as well as solutions which allow multiple AGVs on the same edge, as long as they do not collide.
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Figure 2-6: A roadmap graph occupied by two AGVs with start si and goal gi for i = {1, 2}.
The edge weights indicate the expected traversal times.
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2-2 Challenges Related to Multi-Agent Path Finding 15

Multi-Agent Pickup and Delivery

Another important assumption in the original MAPF problem is that AGVs have a single
task defined by a start-goal pair and, once this task is complete, the AGV simply remains
at the goal position until all the AGVs have reached their goals. However, a more realistic
assumption, especially when considering intralogistics, is that tasks appear in a continuous
stream, and AGVs must fulfill each task as they appear. This is the motivation behind the
recently formalized Multi-Agent Pickup and Delivery (MAPD) problem. The MAPD problem
is essentially a persistent extension of the original MAPF which was formally introduced by
Ma et al. in [15]. The authors use a method where the basic idea is that AGVs assign
themselves to a stream of incoming tasks based on their relative location and availability.
The tasks and assignment information is stored in globally-shared memory and accessed by
each AGV when necessary. Despite results showing that this method is far less effective than
the MAPF solution in the case that all the tasks appear at once, this method is a good
starting point when considering persistent task assignment. Initially omitted from the first
MAPD solution, Ma et al. go on to address kinematic constraints imposed on each AGV in
[29].

2-2-3 Executing MAPF Solutions using Plan Execution Policies

A core assumption in many MAPF algorithms is that AGVs acting out the plans are perfectly
synchronized and are thus able to be in constant, perfect communication with one another.
The result is that MAPF planners sometimes yield solutions which cannot easily be executed
in reality, unless the aforementioned can somehow be met, which is rarely the case in practice
[30]. To illustrate this point, consider the scenario shown in Figure 2-7. In this case, the
roadmap consists of a 4-node rectangular graph, with one AGV at each node. The goal
position for each AGV is the next node, looking in an anti-clockwise orientation, implying
that the MAPF solution only requires each AGV to move forward by one node. In theory,
executing such a plan is trivial. However, to avoid collisions, the AGVs must be perfectly
synchronized and move at exactly the same velocity to ensure that none of them collide. Since
AGVs are typically controlled by motion planners using controllers based on feedback laws,
each AGV is waiting on the next AGV blocking its path to move. This will result in a deadlock
because each AGV is waiting on another, forming a cycle of inter-AGV dependencies.

(a) AGVs in starting positions. (b) AGVs moving synchronously towards goals.

Figure 2-7: Example illustrating the need for synchronous coordination among AGVs to execute a
trivial MAPF solution. Colored edges and nodes indicate trajectory and goal positions respectively.
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16 Planning for Multiple AGVs

(a) A valid MAPF solution for
each AGV indicated with colored
edges/nodes.

(b) The orange AGV is delayed
but the red AGV follows its
path.

(c) The red AGV is now block-
ing the orange AGV because of
the delay.

Figure 2-8: Example illustrating the need for plan execution policies to account for AGV delays.
Colored edges and nodes indicate trajectory and goal positions for the corresponding AGV.

Another example that illustrates the need for plan execution policies is shown in Figure 2-8.
In this case, two AGVs have independent goals, and a MAPF plan is solved to determine the
routing for each AGV such that collisions will not occur assuming nominal behavior. The
original plan requires that the red AGV waits for the orange AGV. However, as shown in
Figure 2-8b, the orange AGV could be delayed due to an external disturbance, meaning that
the red AGV waits, and then starts following its dedicated plan. The result is that the red
AGV ends up blocking the orange AGV since its goal position is along the path of the orange
AGV.

The conclusion of these two examples is that an execution policy is required to ensure the
original plan is followed correctly. Referring to the second example, informing the red AGV
of the delayed orange AGV could allow it to first wait until the orange AGV makes up for the
delay before continuing along its path. The original MAPF problem does not consider these
challenges, and the solutions presented in Section 2-2-1 do not account for these aforemen-
tioned complications. However, some recent works have addressed this challenge of which the
most notable and applicable to this thesis work are discussed next.

Robust Multi-Robot Trajectory Tracking Strategy

In [30], the authors present a control scheme which considers the progress of each AGV along
its path, as dictated by a MAPF plan, and determines if each AGV can proceed, or whether
it should stop and wait on other AGVs. The control law considers the AGVs in coordination
space, a space formed by taking the product of each AGV’s trajectory in space-time according
to the plan. This method, dubbed by the authors as RMTRACK, ensures that AGVs can
continue with their individual plans up until the point where they block another, possibly
delayed, AGV from safely following its plan. RMTRACK is compared to the a so-called
ALLSTOP approach, which is a naive control law that requires all AGVs to stop and wait
until a delayed AGV has made up for this delay, showing lower overall cumulative route
completion times in simulation.

As with all literature detailing plan execution policies for multiple AGVs, the authors of
RMTRACK analyze the collision-free and liveness properties of their method. The core
assumption for the liveness guarantees of RMTRACK is the fact that the ordering of AGVs, as
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2-2 Challenges Related to Multi-Agent Path Finding 17

dictated by the original MAPF plan, remains unchanged. Hence, RMTRACK only improves
the efficiency of AGVs as they complete their plans by potentially allowing them to move
despite other AGVs being delayed. However, if e.g. AGV1 is delayed by a significant amount
of time, and the implicit ordering dictated by the MAPF plan requires AGV1 to reach a point
S ∈ R2 along its path before AGV2 can reach that same point, RMTRACK will force AGV2
to wait until AGV1 has made up for its delay. At the limit, this implies that a single AGV
could still significantly delay all other AGVs.

Action Dependency Graph Approach

In a somewhat parallel approach to RMTRACK, the authors in [31] make use of a so-called
Action Dependency Graph (ADG) to maintain the implicit ordering of AGVs along their
MAPF. Combined with an execution management approach, this allows AGVs to execute
MAPF plans successfully despite kinematic constraints and unforeseen delays. This work was
extended to allow for persistent re-planning in [9]. The ADG is will be used as the foundation
for work in this thesis, and we therefore introduce this concept in more detail, starting with
the example shown in Figure 2-9. Consider the representation of a workspace as a roadmap
G = (V, E), shown in Figure 2-9a.
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(a) A roadmap occupied by two AGVs with start si and goal gi for i = {1, 2}. The start and goal
vertices are highlighted with dotted and solid colored circle outlines respectively. The edge weights
indicate the expected traversal times.
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(b) Illustration of the ADG where each vertex status is color coded. It reflects the momentary progress
of the AGVs in Figure 2-9a.

Figure 2-9: Illustrative MAPF problem example alongside the constructed Action Dependency
Graph
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18 Planning for Multiple AGVs

Solving this MAPF problem with the previously introduced CCBS method yields P =
{P1, P2} as

P1 = {(A, 0), (B, 1.0), (C, 2.2), (G, 3.1), (H, 3.9)},

P2 = {(E, 0), (F, 1.1), (G, 3.9), (C, 4.8), (D, 5.9)}.

Note the implicit ordering in P, stating AGV1 traverses C −G before AGV2. It is important
to note that we modified the CCBS algorithm such that AGVs are not permitted to occupy
the same edge at the same time. Originally, CCBS allows two AGVs to occupy the same edge,
as long as the circles describing their position-envelopes do not intersect. The ADG method
assumes that AGVs cannot occupy the same edge at the same time, hence our modification.

To facilitate discussion, let us first introduce the relevant notation. Given a plan tuple
p = (l, t), we define the operators l = loc(p) and t = t̂(p) which return the location l ∈ V and
planned time of plan tuple p respectively.

The ADG is defined in Definition 2.2. This definition is a modification of the originally
proposed ADG in [9] by allowing multiple plan tuples to be contained within a single ADG
vertex. The motivation behind this modification will become clear in Section 3-2-1, since it
allows us to introduce a spatial exclusivity property to vertices making up the ADG.

Definition 2.2 (Action Dependency Graph) An ADG is a directed graph GADG =
(VADG, EADG) where the vertices represent events of an AGV traversing the roadmap G. A
vertex vk

i = ({p1, . . . , pq}, status) ∈ VADG denotes the event of AGVi moving from loc(p1), via
intermediate locations, to loc(pq), where q ≥ 2 denotes the number of consecutive plan tuples
encoded within vk

i . Finally, status ∈ {staged, in-progress, completed}.

Initially, the status of vk
i are staged ∀ i, k. The directed edges in an ADG, from here on

referred to as dependencies, define event-based constraints between two vertices. Formally,
(vk

i , v
l
j) implies that vl

j cannot be in-progress or completed until vk
i = completed. A dependency

(vk
i , v

l
j) ∈ EADG is classified as Type 1 if i = j and Type 2 if i 6= j.

An ADG can be constructed from a plan P using Algorithm 2. Figure 2-9b shows an example
of an ADG plan being executed, based on the AGV positions in Figure 2-9a. Observe how
AGV2 cannot start v2

2 before v4
1 has been completed because of the Type 2 dependency pointing

from v4
1 to v2

2.

A sufficient condition to guarantee liveness of the plans encoded within an ADG is for it to be
acyclic. Recall that a vertex within the ADG corresponds to an action executed by an AGV.
Since a dependency enforces that the vertex to which it is pointing from must be completed
before the vertex to which it is pointing to can be in-progress, an acyclic ADG implies that
no vertices are mutually dependent. This means that at each time-step, at least one of the
vertices can be completed. However, as discussed in [9], there exist valid MAPF solutions for
which the resulting ADG is cyclic, a simple example being the previously discussed MAPF
problem illustrated in Figure 2-7. It is possible to modify MAPF planning algorithms to avoid
obtaining such plans, which require precise synchronous execution. In CBS, this corresponds
to an additional edge constraint which needs to be considered every time there is a node-
conflict. Such an assumption is relatively easy to maintain, in theory as well as in practice,
as detailed in [31], since we only consider additional constraints in the CT of CBS.
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2-2 Challenges Related to Multi-Agent Path Finding 19

Algorithm 2 Action Dependency Graph Construction based on [9]
Input: Plan Pi for each robot.
Result: GADG

// create vertices and Type 1 edges
1: for i = 1 to N do
2: v1

i ← ({p1
i }, staged)

3: Add v1
i to VADG

4: vprev ← v1
i

5: for k = 2 to Ni do
6: vk

i = ({pk
i }, staged)

7: Add vk
i to VADG

8: Add edge (vprev, v
k
i ) to EADG

9: vprev ← vk
i

// create Type 2 edges
10: for i = 1 to N do
11: for k = 1 to Ni do
12: for j = 1 to N do
13: if i 6= j then
14: for l = 1 to Nj do
15: if s(pk

i ) = g(pl
j) and t̂g(pk

i ) ≤ t̂g(pl
j) then

16: Add edge (vk
i , v

l
j) to EADG

17: break

As a result, we introduce Assumption 2.1, which allows us to guarantee that a constructed
ADG will be acyclic.

Assumption 2.1 (Acyclic ADG) The MAPF solution as defined in Definition 2.1 is such
that the ADG constructed by Algorithm 2 is acyclic.

2-2-4 Explicitly Considering Delays

In real applications, AGVs are inevitably going to experience delays. Such delays can be
caused by the need for an AGV to avoid an obstacle, taking a longer time to cross a section
of the road, or dynamic obstacles temporarily blocking the path of the AGV, or even in the
form of a mismatch between the roadmap and the physical world, where the actual path the
AGV must travel is longer than expected. Having previously discussed methods to account
for delays while executing MAPF plans, some works in the literature have considered delays
within the MAPF formulation itself. The duration of these delays are typically modeled as an
arbitrary deviation from a given value bounded within a range, or as a value sampled from a
probability distribution. In this section, we present the most notable solutions which consider
delays viewed from either of these two perspectives.
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20 Planning for Multiple AGVs

Robust Solutions to the MAPF

The abstraction of the MAPF to a graph search problem means that executing the MAPF
plans requires monitoring of the assumptions made during the planning stage to ensure and
maintain their validity. This is because irregularities such as vehicle dynamics and unpre-
dictable delays influence plan execution. kR-MAPF addresses this by permitting delays up
to a duration of k time-steps [10]. The authors introduce kR-CBS, an extension to CBS,
where the constraints as presented in (2-3) and (2-4) are extended such that they are defined
over a range, subsequently called range constraints. A range constraint can be represented as
follows

(AGVi, v, [t1, t2]) where AGVi ∈ AGV, v ∈ Vroadmap, t1, t2 ∈ R≥0, t1 < t2.

The result of this work is a more conservative solution to the MAPF problem, since each
AGV is allocated a larger time window to visit the vertices along its path as it drives towards
its goal. By varying the value of k, the robustness of the solution is increased, but at the
cost of deterministic optimality. Note that, in the case that an AGV is delayed by more than
k time-steps, other AGVs which share a path with this AGV need to wait in order to avoid
collisions.

Modeling Delays Stochastically

An alternative representation of delays is by modeling them in a stochastic manner. The most
notable work on this is that of Ma et al. in [32], where the authors present an extension of
the MAPF, called the multi-agent path finding problem with delay probabilities (MAPF-DP).
This problem formulation essentially considers the probability on whether an AGV will ad-
vance to the next position along its path or not. The MAPF-DP is then solved using a 2-level
algorithm, much like the CBS approach, consisting of a high-level and low-level search. The
main difference is that the low-level search uses a minimization in expectation approach to
determine individual paths with the lowest expected routing time. The authors go on to
introduce two robust plan-execution policies to execute a valid MAPF-DP solution. The two
policies are a communication-heavy fully synchronized policy (FSP) and a minimal commu-
nication policy (MCP). These policies are similar to the RM Track approach discussed in
Section 2-2-3, albeit with global or only local information sharing respectively.

Shortcomings

A clear shortcoming of both the robust and stochastic delay methods discussed in this section
are the fact that information of the delays are assumed a priori, and once the re-formulated
MAPF problem (kR-MAPF or MAPF-DP) has been solved, no adjustment to the plans
can be made to account for unexpected disturbances. This means that these methods are
highly reliant on a good representation of the expected delays which AGVs will experience
while completing their tasks. Both these formulations are therefore not well suited to highly
dynamic environments with unpredictable delays.
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2-3 Problem Outline

Based on the literature presented in the previous sections, we now present an outline of the
shortcomings of these approaches in order to define the challenges to address in this thesis
work. Four important realizations from the literature presented in this chapter are:

1. Solving the MAPF is time consuming
Despite extensive research on solving the MAPF, finding an efficient solution to this
problem remains time-consuming in the case that a large number of AGVs are consid-
ered. The main realization is that including re-planning within a feedback loop is not a
realistic approach to account for disturbances. Hence, an alternative form of re-planning
is required which considers a significantly smaller subset of the original MAPF decision
space.

2. MAPF execution policies are a necessity
The MAPF is a highly abstracted interpretation of the physical problem of routing
AGVs in a shared environment. Despite such an abstraction begin necessary to make
finding MAPF solutions a tractable problem, many of the assumptions thereof cannot
always be guaranteed. Hence, a reliable, efficient and robust plan execution policy is
necessary to execute a MAPF solution.

3. Large delays are best addressed in an online fashion
Existing work which take delays into account consider them in an a-priori fashion.
These approaches typically view delays as a lack of synchronization between AGVs,
rather than as significantly impacting the route completion time. The result is that
plan execution is unnecessarily inefficient when a single AGV is largely delayed and
others are on schedule, since AGVs still occasionally need to wait for the delayed AGV
before continuing their plans. We observe that to efficiently mitigate the effects of
such large delays the plans should be adjusted continuously in an online fashion. The
challenge being to optimize the plan in an efficient manner while maintaining deadlock-
and collision-free execution guarantees.

4. Liveness guarantees assume constant AGV ordering
The presented literature guarantees liveness by assuming the initial MAPF solution is
collision-free and executable in finite time, and then maintaining the implicit ordering of
the AGVs to maintain this liveness property. However, in order to make plan execution
more efficient when considering large delays, a re-ordering strategy is highly desirable.
The challenge is to maintain the original liveness guarantees while allowing for the
re-ordering of AGVs.

Based on these four realizations, we are now ready to present the solutions developed in this
thesis, starting with a Switchable Action Dependency Graph in Chapter 3. This solution
addresses these four points by (1) only solving a subset of the MAPF decision space, (2)
providing an execution policy for AGVs allowing real AGVs to execute the MAPF plans, (3)
accounting for large delays in a feedback loop and (4) maintaining liveness despite re-ordering
the AGVs.
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22 Planning for Multiple AGVs

2-4 Summary

In this chapter, a review of literature related to the planning and routing for multiple AGVs
was presented. The MAPF problem was formalized and presented, as well as an overview of
existing solutions and extensions developed to address the challenges posed by this problem.
It was observed that a solution which allows for the natural re-ordering of AGVs based on
unpredictable delays has not been addressed in the literature yet, as far as the author is
aware. Finally, the problem outline which will be addressed in this thesis was presented.
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Chapter 3

Switchable Action Dependency Graph

In this chapter, the initial contributions of this thesis are presented. Having identified in
Chapter 2 that persistent plan re-ordering is a crucial component in ensuring efficient execu-
tion of MAPF plans given large delays, we present a novel concept called a Switchable Action
Dependency Graph (SADG) which will allow the re-ordering of AGVs while maintaining the
collision- and deadlock-free guarantees of the original plan. We prove that the SADG main-
tains these guarantees given realistic plan assumptions. This SADG can be used to enable
the re-ordering of AGVs as they complete their planned trajectories to ultimately decrease
plan completion times when these AGVs are subject to delays.

Working towards this result, we introduce the concept of a reverse dependency, which brings
forth the necessity for spatial exclusivity among Action Dependency Graph (ADG) vertices.
We then present an algorithm which uses these concepts to construct an SADG which can
be used as an efficient tool to execute a MAPF plan despite significant AGV delays. We
prove that the obtained SADG can maintain the original plan’s collision- and deadlock-free
execution guarantees.

3-1 Preliminaries

Recall the introduction of the Action Dependency Graph (ADG) in Section 2-2-3. This con-
cept facilitates the successful execution of a MAPF plan despite small delays experienced by
the AGVs. This is done by imposing inter-agent dependencies on the events implicitly con-
tained within the MAPF solution. The ADG is a directed graph where each node represents
an action associated with an AGV, and the edges indicate the dependence on different events
within this ADG. An event within the ADG can only change from staged to in-progress if all
the dependencies pointing to that event are completed.

Given the simple example in Figure 3-1a, the MAPF solution can be obtained using a dedi-
cated solver and the ADG constructed using Algorithm 2. Now, let us consider the case where
one of the AGVs is delayed for a significant amount of time. As both AGVs complete their
events, AGV1 (in red) is delayed (possibly due to a dynamic obstacle temporarily blocking
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the way). In Figure 3-2b, AGV2 cannot proceed due to the dependency (v4
1, v

2
2), and since v4

1
is not completed. We therefore switch the two dependencies, as shown in Figure 3-2c, allowing
AGV2 to continue with its path without having to wait for AGV1. Finally, in Figure 3-2f, the
AGVs reach their respective goals. Note that these ideas apply seamlessly to any number of
AGVs, as long as the switched dependencies do not form a cycle (causing a deadlock). Only
two AGVs are used in this example to illustrate the concept in an intuitive manner.
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Figure 3-1: Example of an illustrative MAPF problem in (a) as well as the constructed Action
Dependency Graph in (b).
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Figure 3-2: Illustrative example of switching based on event completion within the ADG. De-
pendencies are switched between (b) and (c), emphasized by the differently colored arrows.
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It is important to note that this example made use of various properties of the ADG which
we did not specifically mention. These properties are necessary to define a systematic manner
to allow for the switching of dependencies, and are as follows:

1. Switching dependency
The switching dependency should maintain the collision-free guarantees of the original
dependency.

2. Spatial exclusivity
Consider a single dependency, switching the dependency will only require the introduc-
tion of one new dependency if the ADG vertices are spatially exclusive, meaning that
each vertex requires the transition of an AGV to a new area.

3. Switching which did not cause another deadlock The switching must not cause
a cycle in the ADG, as this implies a deadlock since two or more vertices are mutually
dependent on each other to change from staged to in-progress.

Based on these properties, we will modify the original ADG to ensure spatial exclusivity, which
will lead to an introduction of a systematic manner in which to define reverse dependencies
for switching. The selection of the dependency must be done in such a way that the resultant
ADG is acyclic. These concepts are presented in Section 3-2.

3-2 Systematically Re-ordering AGVs

Having introduced the basic idea of switching, we now work towards a formal introduction
and description of a Switchable Action Dependency Graph (SADG). An SADG is a data
structure which we will utilize to optimize AGV re-ordering based on the AGV delays at a
given time-step. The core component of the SADG is the reverse dependency. However, since
the reverse dependency makes use of a spatial exclusivity assumption in an ADG, we formally
present this concept. To facilitate discussion, let us first introduce the relevant notation. Let
S(p) 7→ S ⊂ R2 be an operator which maps l = loc(p) to a spatial region in the physical
workspace in R2. Let SAGV ⊂ R2 refer to the physical area occupied by an AGV.

3-2-1 Spatially Exclusive Action Dependency Graph

An ADG contains the sequence of events defined by a MAPF plan. However, the MAPF
problem could be defined in a space including orientation or general robotic actions, meaning
that successive plan tuples in the original plan do not always refer to a transition in the spatial
domain. To allow for a natural definition of a reverse dependency, we introduce the concept
of spatial exclusivity. A spatially exclusive ADG is an ADG where each vertex v ∈ VADG
describes the movement of two spatially exclusive locations in the physical workspace. Two
locations S1, S2 ∈ R2 are deemed spatially exclusive for AGVs of size SAGV if

S1 ⊕ SAGV ∩ S2 ⊕ SAGV = ∅, (3-1)
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where ⊕ denotes the minkowski sum. (3-1) essentially implies that if an AGV of footprint
SADG is occupying a space S1, another AGV of footprint SADG can occupy S2 without any
collision between the two AGVs. The footprint of an AGV refers to its size in all possible
orientations, but for a fixed position at the origin.

Definition 3.1 (Spatially Exclusive Action Dependency Graph) A spatially exclusive
ADG is a directed graph GADG = (VADG, EADG) where the vertices represent events of an
AGV traversing the roadmap G. A vertex vk

i = ({p1, . . . , pq}, status) ∈ VADG denotes the
event of AGVi moving from S(p1), via intermediate locations S(p2), S(p3), . . . , S(pq−1), to
S(pq), where q ≥ 2 denotes the number of consecutive plan tuples encoded within vk

i and
S(p1)⊕ SAGV ∩ S(pq)⊕ SAGV = ∅. Finally, status ∈ {staged, in-progress, completed}.

Figure 3-3: A schematic showing the difference between the originally proposed ADG in orange,
overlaid by a spatially exclusive ADG used to construct the SADG in black. Note how a single
dependency in the spatially exclusive ADG is sufficient to represent multiple dependencies in the
original ADG.

We note that the definition of spatial exclusivity is rather general, specifically the definition
of the footprint of an AGV SAGV. A conservative approach to estimating SAGV would be to
simply determine the area covered by an AGV at a given point in all possible orientations.
An alternative approach could consider the kinematic constraints of the AGV as well when
moving towards a point. Such an approach would be necessary for highly constrained, non-
holonomic AGVs. However, since this is mostly dependent on the kinematic layout of the
AGV, these challenges are considered out of the scope of this chapter.

3-2-2 Reverse Type 2 Dependencies

We now introduce the concept of a reverse Type 2 dependency. In the ADG, Type 2 de-
pendencies encode an ordering constraint for AGVs visiting a vertex in the roadmap G. The
idea is to switch this ordering to minimize the effect an unforeseen delay has on the task
completion time of each AGV.

Let us first introduce notation facilitating the differentiation between planned and actual
ADG vertex completion times. Let t̂s(vk

i ) and t̂g(vk
i ) denote the planned time that event

vk
i ∈ VADG is expected to start and be completed respectively. This planned time refers to
times specified in a MAPF solution. Due to delays, the planned and actual ADG vertex
times may differ. We therefore introduce ts(vk

i ) and tg(vk
i ) which denote the actual start and

completion times of event vk
i ∈ VADG respectively. With regards to the status of ADG vertex
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Figure 3-4: A subset of an ADG with a dependency (black) and its reverse (red)

vk
i , t̂s(vk

i ) and ts(vk
i ) refer to when the status of vk

i changes from staged to in-progress, and
t̂g(vk

i ), tg(vk
i ) refer to changes from in-progress to completed. Note that if the MAPF solution

is executed nominally, i.e. AGVs experience no delays, ts(vk
i ) = t̂s(vk

i ) and tg(vk
i ) = t̂g(vk

i )
for all v ∈ VADG.

Definition 3.2 states that a dependency and its reverse contain the same collision avoidance
constraints, but with a reversed AGV ordering. Lemma 3.1 can be used to obtain a depen-
dency which conforms to Definition 3.2. Lemma 3.1 is illustrated graphically in Figure 3-4.

Definition 3.2 (Reverse Type 2 dependency) Consider a Type 2 dependency d = (vk
i , v

l
j).

d requires ts(vl
j) ≥ tg(vk

i ). A reverse dependency of d is a dependency d′ that ensures ts(vk
i ) ≥

tg(vl
j). If d has a reverse d′, the pair (d, d′) is referred to as a dependency pair.

Lemma 3.1 (Reverse Type 2 dependency) Let vk
i , v

l
j , v

l+1
j , vk−1

i ∈ VADG. Then d′ =
(vl+1

j , vk−1
i ) is the reverse dependency of d = (vk

i , v
l
j).

Proof. The dependency d = (vk
i , v

l
j) encodes the constraint ts(vl

j) ≥ tg(vk
i ). The reverse of d

is denoted as d′ = (vl+1
j , vk−1

i ). d′ encodes the constraint ts(vk−1
i ) ≥ tg(vl+1

j ). By definition,
ts(vk

i ) ≥ tg(vk−1
i ) and ts(vl+1

j ) ≥ tg(vl
j). Since tg(v) ≥ ts(v), this implies that d′ encodes the

constraint ts(vk
i ) ≥ tg(vl

j), satisfying Definition 3.2. �

Based on the spatially exclusive ADG as defined in Definition 3.1, we are guaranteed that
reverse dependencies maintain sufficient collision avoidance constraints since adjacent vertices
in VADG refer to spatially different locations.

3-2-3 Introducing the Switchable Action Dependency Graph

Having introduced reverse Type 2 dependencies in Section 3-2-2, it is necessary to formalize
the manner in which we can select dependencies to obtain a resultant ADG. A cyclic ADG
implies that two events are mutually dependent on each other, implying a deadlock. To ensure
deadlock-free plan execution, it is sufficient to ensure the selected dependencies result in an
acyclic ADG. Additionally, to maintain the collision-avoidance guarantees implied by the
original ADG, it is sufficient to select at least one of the forward or reverse dependencies of
each forward-reverse dependency pair in the resultant ADG as shown in Definition 3.2. Since
selecting both a forward and reverse dependency always results in a cycle within the ADG,
we therefore must either select between the forward or the reverse dependency.
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With this in mind, we are finally equipped to formally introduce the core contribution of
this chapter, which we call the Switchable Action Dependency Graph (SADG), defined in
Definition 3.3. Given a MAPF solution P, we can construct an SADG using Algorithm 3.
Unlike the originally proposed ADG algorithm, Algorithm 3 ensures that subsequent plan
tuples which are not spatially exclusive are contained within a single ADG vertex, cf. line 8
of the algorithm. Referring to Algorithm 3, we introduce plan(vk

i ) which returns the sequence
of plan tuples {p1, . . . , pq} for vk

i ∈ VADG. Let the operators s(vk
i ) and g(vk

i ) return the
start and goal vertices loc(p1) and loc(pq) of vertex vk

i respectively. Finally, ⊕ denotes the
Minkowski sum. Despite these modifications, Algorithm 3 maintains the original algorithm’s
time complexity of O(N2n̄2) where n̄ = maxiNi.

Definition 3.3 (Switchable Action Dependency Graph) Let a spatially exclusive ADG
as in Definition 3.1 contain mT forward-reverse dependency pairs determined using Defini-
tion 3.2. A Switchable Action Dependency Graph is a mapping SADG(b) : {0, 1}mT 7→ GADG
which outputs the resultant ADG based on the selected dependency selection represented by
b = {b1, . . . , bmT }, where bm = 0 and bm = 1 imply selecting the forward and reverse depen-
dency of pair m respectively, m ∈ {1, . . . ,mT }.

3-2-4 Plan Execution Guarantees of the SADG

Having formally introduced the SADG, the next step is to establish the formal guarantees
of this concept regarding plan execution and completion. The objective is to prove that the
SADG enables collision- and deadlock-free plan execution despite the AGVs being subjected to
finite delays, while simultaneously allowing switching of dependencies to lower the cumulative
plan completion time.

The approach to proving this property is done in two steps. First, we consider a spatially
exclusive ADG without switching, as defined in Definition 3.1, and show that plan completion
will be collision-free and the plan will be completed in finite time as long as the AGVs
are only subjected to a finite number of delays, each of finite length. This is shown in
Proposition 3.1. Note that even though Proposition 3.1 makes use of Algorithm 3, which is an
SADG construction algorithm, it is still possible to discuss properties of a spatially exclusive
ADG since Algorithm 3 yields such an ADG in the case that no switching is performed.

In the second step, we extend this idea to the SADG in Corollary 3.1. We provide the
conditions under which switching should occur to maintain collision- and deadlock-free plan
execution.

Proposition 3.1 (Collision- and deadlock-free ADG plan execution) Consider a spa-
tially exclusive ADG, GADG, constructed from a MAPF solution as defined in Definition 2.1,
using Algorithm 3, satisfying Assumption 2.1. If the AGV plan execution adheres to the de-
pendencies in GADG, then, assuming the AGVs are subjected to a finite number of delays of
finite duration, the plan execution will be collision-free and completed in finite time.

Proof. Proof by induction. Consider that AGVi and AGVj traverse a common vertex p̄ ∈ G
along their plans Pi and Pj, for any i, j ∈ {1, . . . , N}, i 6= j. By lines 1-14 of Algorithm 3, this
implies g(vk

i ) = s(vl
j) = p̄ for some vk

i , v
l
j ∈ VADG. By lines 16-23 of Algorithm 3, common

vertices of Pi and Pj in G will result in a Type 2 dependency (vl
j , v

k
i ) if p = s(vl

j) = g(vk
i )
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Algorithm 3 SADG construction
Input: MAPF solution P = {P1, . . . ,PN}
Result: SADG(b)

// Add event vertices and Type 1 dependencies
1: for i = 1 to N do
2: p← p1

i

3: v ← ({p}, staged)
4: vprev ← None
5: k = 2
6: for k = 2 to Ni do
7: Append pk

i to plan(v)
// Check for spatial exclusivity

8: if S(p)⊕ SAGV ∩ S(pk
i )⊕ SAGV = ∅ then

9: Add v to VADG
10: if vprev not None then
11: Add edge (vprev, v) to EADG
12: vprev ← v
13: p← pk

i

14: v ← ({p}, staged)

// Add forward-reverse dependency pairs
15: D = ∅ // init dependency pair list
16: for i = 1 to N do
17: for k = 1 to Ni do
18: for j = 1 to N do
19: if i 6= j then
20: for l = 1 to Nj do
21: if s(vk

i ) = g(vl
j) and t̂g(vk

i ) ≤ t̂g(vl
j) then

22: Add edge efwd = (vk
i , v

l
j) to EADG

23: Set edge to active
// Add reverse Type 2 dependency

24: if vk−1
i ∈ VADG and vl+1

j ∈ VADG then
25: Add edge erev = (vl+1

j , vk−1
i ) to EADG

26: Set edge to inactive
27: else
28: erev ← None
29: Append (efwd, erev) to D

30: return SADG
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and t̂g(vk
i ) ≤ t̂g(vl

j). For the base step: initially, all ADG dependencies have been adhered
to since v1

i is staged ∀ i ∈ {1, . . . , N}. For the inductive step: assuming vertices up until
vk−1

i and vl−1
j have been completed in accordance with all ADG dependencies, it is sufficient

to ensure AGVi and AGVj will not collide at p̄ while completing vk
i and vl

j respectively, by
ensuring ts(vk

i ) > tg(vl
j). By line 21 of Algorithm 3 the Type 2 dependency (vk

i , v
l
j) guarantees

ts(vk
i ) > tg(vl

j). Since, by Assumption 2.1, the ADG is acyclic, at least one vertex of the ADG
can be in-progress at all times. By the finite nominal execution time of the MAPF solution in
Definition 2.1, despite a finite number of delays of finite duration, finite-time plan completion
is established. This completes the proof. �

Corollary 3.1 (SADG plan execution) Consider an SADG, SADG(b), as in Defini-
tion 3.3. If b is chosen such that GADG = SADG(b) is acyclic, and no dependencies in GADG
point from vertices that are staged or in-progress to vertices that are completed, GADG will
guarantee collision- and deadlock-free plan execution.

Proof. By definition, any b will guarantee collision-free plans, since at least one dependency
of each forward-reverse dependency pair is selected, by Proposition 3.1. If b ensures ADG =
SADG(b) is acyclic, and the resultant ADG has no dependencies pointing from vertices that
are staged or in-progress to vertices that are completed, the dependencies within the ADG are
not mutually constraining, guaranteeing deadlock-free plan execution. �

The scenario with two AGVs in Figure 3-1 only shows a trivial example where identifying
which switchable dependencies to activate can be done by inspection. Naturally, in more
complex scenarios with a higher number of AGVs, the number of switchable dependencies is
greatly increased as well as the possibilities of cycles within the resultant ADG. An example
of a more complex SADG is shown in Figure 3-5. Therefore, the challenge is finding b which
ensures GADG = SADG(b) is acyclic, for any SADG(b), while simultaneously minimizing the
cumulative AGV route completion times. This challenge is formalized as an Optimal Control
Problem (OCP) in the next section.

Figure 3-5: A larger SADG for 10 AGVs. This serves solely as an illustration to emphasize the
complexity of SADGs even for a relatively small number of AGVs.
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3-3 Shrinking Horizon Optimal Control Problem

In this section we show how an SADG can be translated into an Optimal Control Problem
(OCP) based on the current progress of each AGV along each of their paths. The aim is to
extract the temporal relations implicitly defined by the dependencies within an SADG and
translate each into explicit temporal relations between AGV events in order to formulate the
OCP.
Consider the ith AGV, AGVi. Let the first vertex in its plan sequence of SADG vertices
{v1

i , . . . , v
Ni
i } which is either staged or in-progress be denoted by vni

i . Let us then define the
set V i

staged which is a set of all the staged vertices of AGVi. We then define Vstaged as the
union of these sets. Specifically,

Vstaged =
N⋃

i=1
V i

staged where V i
staged = {vni

i , . . . , v
Ni
i }. (3-2)

The OCP must consider Type 1 dependencies and Type 2 dependency pairs. These will be
considered separately.

3-3-1 Type 1 Dependencies

This results in a sequence of staged vertices {vni
i , . . . , v

Ni
i } for AGVi. Let τ(v) be the estimated

duration it will take an AGV to complete the transition specified within v. For example,
τ(v) can be derived by considering the path length specified by v and the expected AGV
velocity while traversing that path. The temporal constraints which are implied by Type 1
dependencies can be expressed by the following linear inequalities

ts(vni
i ) = ti,s,

tg(vni
i ) ≥ ts(vni

i ) + τ(vni
i ),

ts(vni+1
i ) ≥ tg(vni

i ),
tg(vni+1

i ) ≥ ts(vni+1
i ) + τ(vni+1

i ),
ts(vni+2

i ) ≥ tg(vni+1
i ),

...
...

ts(vNi
i ) ≥ tg(vNi−1

i ),
tg(vNi

i ) ≥ ts(vNi
i ) + τ(vNi

i ).

(3-3)

where ti,s refers to the expected time at which AGVi will start event vni
i , which can be

determined by local information based on the completion of a previous event.

3-3-2 Type 2 Dependency Pairs

According to Definition 3.3, the SADG has a set of mT switchable dependency pairs, which
encapsulate all inter-AGV dependencies. Note that if the reverse of a dependency does not
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exist, the dependency pair is simply (efwd,None), cf. line 28 of Algorithm 3. However, the
OCP should only contain the dependencies which can still affect the ordering of AGVs.

There are different cases to consider. Iterating through the list of dependency pairs in D,
consider a dependency pair (efwd, erev), and let efwd = (v1

fwd, v
2
fwd) and erev = (v1

rev, v
2
rev).

Finally, let Dswitchable and Dstatic represent two lists which contain the switchable dependency-
pairs and non-switchable dependency pairs respectively. These two lists are defined as follows:

Case 1: Forward and Reverse Dependency

If v2
fwd ∈ Vstaged and v2

rev ∈ Vstaged , this dependency pair can be switched and can
be added to Dswitchable. The dth switchable dependency pair can be represented by a
binary variable bd as

ts(v2
fwd) ≥ tg(v1

fwd) if bd = 0,
ts(v2

rev) ≥ tg(v1
rev) if bd = 1.

(3-4)

Case 2: Only Forward Dependency

If v2
fwd ∈ Vstaged and v2

rev /∈ Vstaged, the forward dependency efwd = (v1
fwd, v

2
fwd) can be

added to Dstatic. This can be represented by the temporal constraint

ts(v2
fwd) ≥ tg(v1

fwd) (3-5)

Case 3: No Dependency Constraints

No constraint is needed.

3-3-3 Formulation of Optimal Control Problem

Having translated the SADG into temporal constraints in (3-3) through (3-5) for i ∈ {1, . . . , N},
d ∈ {1, . . . , dT }, we can formulate the OCP. The minimization of the cumulative route com-
pletion times of all AGVs can be written as

min
b, ts, tg

J(b, ts, tg)

s.t. (3− 3) ∀ i = {1, . . . , N},
(3− 4) ∀ (efwd, erev) ∈ Dswitchable,

(3− 5) ∀ e ∈ Dstatic,

(3-6)

where b : {0, 1}dT is a vector containing all the binary variables bd and the vectors ts and
tg contain all the variables ts(vk

i ) and tg(vk
i ) respectively ∀ k ∈ {1, . . . , Ni}, i ∈ {1, . . . , N}.

The function J(·) is any positively affine function of the variables in b, ts and tg. Explicit
functions for J(·) will be introduced in Chapter 5.
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3-4 Feedback Control Scheme

The aforementioned optimization formulation can be solved based on the current AGV po-
sitions in a feedback loop. The result is a continuously updated GADG which guarantees
minimal path completion time based on current AGV delays. This feedback strategy is de-
fined in Algorithm 4.

Algorithm 4 Switching ADG Feedback Scheme
1: Get goals and locations
2: Solve MAPF to obtain P
3: Construct SADG(b) using Algorithm 3
4: ADG← SADG(0 )

5: while Plans not done do
6: get current position along plans for each robot
7: b ← solve OCP in (3-6)
8: ADG← SADG(b)
9: Execute plans according to updated ADG

Lines 1-4 of Algorithm 4 refer to the initial MAPF formulation and SADG construction based
on a set of AGVs, desired goal locations, and a roadmap. Once the initial plans have been
determined, the AGVs start executing their plans, as dictated by the initial ADG cf. line 4.
At each iteration, the AGVs’ progress along their plans is registered by the controller and the
OCP is solved based on the current progress. From the solution to the OCP, the ADG is
updated, and the AGVs continue with their plans as dictated by this updated ADG.

get vertex
statuses

Solve
OCP

ADG =
SADG(b)

AGVs proceed according to ADG

solve 
MAPF

Construct
SADG(b)

b=0

Figure 3-6: Shrinking horizon control loop diagram.

3-5 Decreasing Computational Effort

The time required to solve the OCP will directly affect the real-time applicability of this
approach. In general, the complexity of the OCP increases exponentially in the number of
binary variables. To render the OCP less computationally demanding, it is therefore most
effective to, if possible, decrease the number of binary variables required to represent the same
problem. We present two complementary methods to achieve this goal.
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34 Switchable Action Dependency Graph

3-5-1 Switching Dependencies in a Receding Horizon

The dependencies to switch will be selected in a receding horizon fashion, whereas the tempo-
ral dependencies are still considered for the entire plan length. Formally, this means that the
list Dswitchable only contains dependency pairs pointing to within a receding horizon of future
vertices. To carry this out, the conditions for dependency pairs in Case 1 in Section 3-3-2
need to be adjusted as follows:

Case 1 RHC: Forward and Reverse Dependency

If v2
fwd ∈ V and v2

rev ∈ V and tg(v2
fwd) ≤ Hcontrol, this dependency pair can be switched

and can be added to Dswitchable. The dth switchable dependency pair can be represented
by a binary variable bd as in (3-4). Conversely, if tg(v2

fwd) > Hcontrol, only the forward
dependency should be added as shown in (3-5)

An illustration of this selection of dependencies is shown in Figure 3-7. In this case, the region
bounded by the switching horizon Hcontrol is shaded in magenta. Note how only dependency
pairs which have a forward dependency (denoted in black) pointing within this horizon are
included in the optimization formulation. A dependency pair where the active dependency
does not point to within this horizon (shown in green) is not added to Dswitchable, but rather
to Dstatic.
Note that although the selection of which dependencies to switch can be done in a receding
horizon, the OCP still needs to consider all the Type 1 dependency constraints within the
SADG. This means that even though the amount of binary variables in the optimization
problem can be reduced, this is still essentially a shrinking horizon control approach. This
issue is discussed in more detail in Chapter 4, where a receding horizon framework for this
problem is presented.

Figure 3-7: Dependency selection for a horizon of 4 vertices. Switchable dependency pairs are
shown in black (forward) and red (reverse). Regular dependencies considered in the OCP are
green. Dependencies not considered are grey.

3-5-2 Dependency Grouping

Consider the example of an ADG constructed from a MAPF plan for five AGVs shown in
Figure 3-8. Note that multiple dependencies often form patterns, two of which are shown in
Figure 3-9. These patterns are referred to as same-direction and opposite-direction depen-
dency groups, shown in Figure 3-9a and Figure 3-9b respectively. Each of these dependency
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Figure 3-8: An SADG for five AGVs, clearly showing both same and opposite dependency group
patterns as described in Figure 3-9.

(a) same dependency group. (b) opposite dependency group.

Figure 3-9: Two commonly occurring dependency groups. Each dependency is either original
(black) or reversed (red). Reverse and forward dependency pairings are differentiated by line
styles.

groups share a common property: the resultant ADG can only be acyclic if either all the
forward dependencies, or all the reverse dependencies, are active. This means that a single
binary variable is sufficient to describe the switching of all the dependencies within the group,
decreasing the number of variables within the OCP in (3-6). Once such a dependency group
has been identified, the temporal constraints can then be defined as

tlj,s > tki,g ∀ (vk
i , v

l
j) ∈ DGfwd if bDG = 0,

tlj,s > tki,g ∀ (vk
i , v

l
j) ∈ DGrev if bDG = 1,

(3-7)

where DGfwd and DGrev refer to the forward and reverse dependencies of a particular grouping
respectively, and bDG is a binary variable which switches all the forward or reverse dependen-
cies in the entire group simultaneously.

3-6 Summary

In this chapter, we presented a novel concept called a Switchable Action Dependency Graph
(SADG) which facilitates the re-ordering of AGVs based on their progress along their paths
as dictated by the original MAPF solution. The SADG maintains the collision avoidance
constraints of the original ADG by using the concept of switchable dependencies. The im-
plicit constraints of the SADG can be used to formulate an OCP which, when a feasible
solution is found, will guarantee the re-ordering to result in deadlock-free plan execution,
thus maintaining liveness.
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36 Switchable Action Dependency Graph

The next step for this work is to translate this method into a receding horizon optimization
approach. In this chapter, ADG dependencies can be switched in a receding horizon fashion
as discussed in Section 3-5-1, but the plans still need to be of finite length for the control
problem to be formulated. For truly persistent plans (theoretically infinite length plans),
it is necessary to come up with a receding horizon optimization formulation such that the
approach in this chapter can be applied. We address this shortcoming and present a solution
to this problem in Chapter 4.
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Chapter 4

Receding Horizon Control Approach

Chapter 3 introduced a feedback scheme to reorder a multi-agent execution schedule by per-
sistently optimizing a Switchable Action Dependency Graph (SADG). This method, however,
assumed AGV plans to be of finite length. Furthermore, the number of variables considered
within the resulting Optimal Control Problem (OCP) was directly related to the total num-
ber of events in the plans of the AGVs, which could potentially be significantly large. In this
chapter, we consider the case where AGV plans can be of significant to infinite length, while
ensuring the resultant OCP remains tractable. The result is a method which can be used to
optimize persistent plans, while only considering a subset of the SADG, making the approach
more feasible in a real-time implementation.

4-1 Motivating the Need for a Receding Horizon Scheme

Recall from Chapter 3, where the plans P were used to construct an SADG. The dependencies
within the SADG were translated into an OCP which was solved in a feedback scheme based
on each AGV’s progress along its individual plan. In this case, the OCP was based on the
entire SADG since all future dependencies and events had to be considered to guarantee the
resultant optimization problem would return a feasible solution that also maintains finite
plan completion times for all AGVs, thus mitigating deadlocks. For longer plans, however,
the resultant OCP would consist of an increasing number of variables, resulting in longer
computational times at each iteration of the feedback scheme. At the limit, for infinite length
plans, the OCP will become intractable, meaning the scheme in Chapter 3 can no longer be
used.

These limitations motivate the need for a Receding Horizon Control (RHC) approach, which
only considers events and dependencies within a pre-determined horizon to formulate the
OCP. RHC schemes such as Model Predictive Control (MPC) are very popular in the con-
trol communities and a vast amount of literature is available specifically dedicated to the
performance and stability analyses of such approaches [33]. The fundamentals of these MPC
schemes will serve as inspiration for the development of the RHC framework in this chapter.
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4-2 The Challenge of Receding Horizon Control

To use a RHC scheme to persistently optimize an SADG, it is necessary to only consider a
subset of the SADG within a finite horizon. However, it must be ensured that optimizing
over a subset of an SADG yields a solution that remains feasible for the entire SADG. This
implies that we need to carefully select the edges, vertices and forward-reverse dependencies
considered within the OCP. This is in contrast to typical RHC schemes for continuous-
time systems, where the control horizon is defined a-priori and typically remains constant
throughout the execution of this feedback scheme. To help illustrate this point, consider
Example 4.1 where an illustrative SADG is depicted in Figure 4-1a. The optimization only
considers the SADG within the shaded region which only includes the red dependency pair.
In this example, the inactive red dependency is selected. Despite this selection being optimal
for the SADG considered within the shaded region, it causes a cycle to appear in the resultant
ADG due to the other dependency pairs not considered within the OCP, as seen in Figure 4-
1b.

Example 4.1 Feasible solution to subset of SADG with infeasible ADG.
Consider the SADG depicted in Figure 4-1a. If the optimization only considers vertices within
the control horizon, indicated by the shaded region, the optimal (feasible) solution is bred = 1.
Since the green and orange dependencies are not considered, their associated variables remain
bgreen = 0, borange = 0. The result, however, is a solution which is infeasible when considering
the entire resultant ADG. This is indicated graphically in Figure 4-1b. The induced cycle in
the ADG is emphasized in red.

(a) Example of an SADG with active (solid) and inactive (dashed) dependen-
cies. Only the vertices within the magenta-shaded region are considered in the
optimization.

(b) If the red dependency is switched, and the green and orange dependencies
are not, the result is a cyclic GADG highlighted in red.

Figure 4-1: Example of a solution to an SADG where the resultant ADG from the SADG within
the control horizon is acyclic (therefore feasible), but the entire ADG is cyclic.
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4-3 Feasible SADG Subsets 39

In summary, the challenge is to determine a method to determine which portion of the SADG
needs to be considered within the OCP to ensure the optimal solution of the OCP generated
from this SADG portion remains feasible for the entire SADG.

4-3 Feasible SADG Subsets

In this section, we provide a systematic manner in which to address the challenge illustrated
by Example 4.1. Recall from Chapter 3 that an SADG is a mapping from a binary vector to
an ADG and can be visualized as a directed graph where a subset of the edges (the switchable
Type 2 dependencies) are either active or inactive. As is typical for RHC schemes, the idea
is to only consider a finite, initial portion of the SADG within the OCP. To this end, we
formally introduce the subset of an SADG in Definition 4.1.

Definition 4.1 (SADG Subset) Let S(b) be an SADG as defined in Definition 3.3. For
a given b, let the implicit ADG defined by S(b) be denoted by GADG = (V, E), as well as the
set of mT forward-reverse dependency pairs. A subset of S(b) is an SADG, denoted by S̄(b̄),
which is a mapping SADG(b) : {0, 1}mT 7→ GADG = (V, E) where 0 ≤ mT ≤ mT , V ⊆ V and
E ⊆ E.

Note that the subset of an SADG is an SADG itself. As a next step, we discern between
admissible and inadmissible SADG subsets. An admissible SADG subset is formally defined
in Definition 4.2. Recall that the goal is to ensure that the OCP derived from this SADG
subset will have an optimal solution which is feasible for the entire SADG. If this is the
case, such an SADG subset will be referred to as admissible, and can be determined using
Algorithm 5 for a given SADG and horizon time Hcontrol.

Definition 4.2 (Admissible SADG subset) Given an SADG S(b), an admissible SADG
subset S̄(b̄) is an SADG subset of S(b) as per Definition 4.1 such that if b̄ is a feasible solution
for S̄(b̄), b = {b̄, 0} is a feasible solution for S(b), where 0 = {0}m̄T−mT .

In the next step, we present Lemma 4.1, supported by the schematic in Figure 4-2, which
states that if two graphs G1 and G2 are acyclic, and any group of edges connecting the two
graphs are directed only from any vertex v1 ∈ V1 to any vertex v2 ∈ V2, then the entire graph
consisting of G1 and G2 is acyclic. The idea is to apply this result to two graphs which make
up portions of an SADG, allowing the construction of an admissible SADG subset.

Lemma 4.1 (Two acyclic graphs connected by unidirectional edges yield an acyclic
graph) Consider a directed graph G = (V, E) subdivided into two subgraphs G1 = (V1, E1) and
G2 = (V2, E2) such that V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅, V1 ∪ V2 = V and the edges connecting
vertices in G1 and G2 are contained within the set E12, such that E1 ∪ E2 ∪ E12 = E. If both G1
and G2 are acyclic and e = (v1, v2) is such that v1 ∈ V1 and v2 ∈ V2 for all e ∈ E12, then the
graph G is also acyclic.

Proof. Consider two acyclic graphs, G1 = (V1, E1) and G2 = (V2, E2). For G1, consider an
inbound edge e = (v, v′) which implies that v /∈ V1 and v′ ∈ V1. Any number of inbound
edges e will not cause G1 to be cyclic. Similarly, consider an outbound edge e = (v, v′) which
implies that v ∈ V1 and v′ /∈ V1. Any number of outbound edges e will not cause G1 to be
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cyclic. The same arguments apply to G2. Since neither G1 nor G2 have an internal cycle, the
only possibility for a cycle within G is a cycle through both subgraphs G1 and G2. Since all
edges connecting G1 and G2 can be defined by edge e = (v, v′) such that v ∈ V1 and v′ ∈ V2,
such a cycle cannot exist. This guarantees that the entire graph is acyclic, completing the
proof. �

dependencies

Completed events

Uncompleted events

S(b)

Sc(b)

Figure 4-2: Graphical illustration of how Lemma 4.1 can be applied to two graphs which make
up an ADG.

Algorithm 5 Determining an admissible SADG subset
Input: S(b), Hcontrol
Result: S̄(b̄)

// Loop through mT switchable dependency pairs of entire SADG
1: M = ∅
2: Vcontrol ← getVerticesInHorizon(Hcontrol)
3: for m = 1 to mT do
4: (eactive, einactive)← getDependencyPair(m)
5: vactive ← getHead(eactive)
6: if t̄g(vactive) < Hcontrol then
7: Vdependency ← getVertexSet(m)
8: Vcontrol ← Vcontrol ∪ Vdependency
9: M←M∪ (eactive, einactive)

// Include vertices until no dependencies point back into Vcontrol
10: Vcheck ← Vcontrol
11: while Vcheck not empty do
12: v ← pop(Vcheck)
13: Vinbound ← getTailofActiveInboundEdges(v)
14: for vinbound ∈ Vinbound do
15: if vinbound /∈ Vcontrol then
16: Add vinbound to Vcheck and Vcontrol

// Create subset SADG from Vcontrol and m̄T switchable dependency pairs
17: S̄(b̄)← constructSADG(M, Vcontrol)
18: return S̄(b̄)
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Based on the previously introduced concepts, we are ready to introduce Algorithm 5, which
provides a systematic manner to determine an admissible SADG subset given a pre-determined
control horizon Hcontrol based on an SADG of significant length. Concerning Algorithm 5,
we introduce some additional notation and functions. Let the current time be denoted by tc
and let us introduce the simplifying notation t̄s() = ts() − tc and t̄g() = tg() − tc permitting
the use of relative time so the current time is 0. The function getVerticesInHorizon(Hcontrol)
determines all the vertices in the SADG where tg(v) ≤ Hcontrol for v ∈ V. The function get-
DependencyPair(m) returns the mth dependency pair of the SADG represented by an active
and inactive edge. The function getHead(e) returns the vertex to which the directed edge e
is pointing. The function getVertexSet(m) returns a set of vertices containing all the vertices
specified within both the active and inactive edges for the mth dependency pair. The function
getTailofActiveInboundEdges(v) returns the set of vertices up until the tail vertex of all edges
pointing towards v. This means that for every edge pointing towards v, all vertices up until
the tail of this edge is added to the set.

Algorithm 5 Illustration and Walk-Through

As an intuitive illustration of the approach defined within Algorithm 5, consider the five
sequential figures shown in Figure 4-3 showing how an admissible SADG subset is constructed
from an existing SADG given a control horizon Hcontrol. As per line 1, the vertices within
the control horizon are selected, corresponding to Figure 4-3a. Following this, all dependency
groups with a head pointing to a vertex within the region considered by Hcontrol is selected
as in Figure 4-3b, which corresponds to lines 3 to 9. At this point, the result of Lemma 4.1
is utilized. As in lines 10 to 16, all dependencies pointing to a vertex contained within
the expanded control horizon and the associated vertices are added to the control horizon
in a recursive fashion until the region of interest is constructed in such a manner that no
dependencies are pointing to within it. This is shown in Figure 4-3c and 4-3d, where the
highlighted gold dependency is an example of such a dependency. Finally, as in Figure 4-3e, a
subset of the SADG is identified, from which the admissible SADG can be constructed. This
corresponds to lines 17 to 18.

Computational Complexity of Algorithm 5

Since Algorithm 5 will be run at each time-step, it is vital that it is computationally tractable.
Line 1 to 9 have a linear time complexity of O(N + mT ), since the function getVerticesIn-
Horizon(·) is a simple graph traversal procedure which can be performed in linear time, and
the switchable dependency pairs are evaluated in a single for-loop. The only potentially
time-consuming portion of the algorithm lies in lines 11 through 16, since this consists of
the recursive portion of the function. However, since all forward dependencies initially point
away from the control horizon at initialization, the recursive step will not take considerable
time. Once a forward dependency points inwards, towards the control horizon region, it will
most likely be switched since it is constraining an AGV from advancing with its goals. An
experimental validation of this statement is shown in the statistical simulation in Chapter 6.
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(a)

(b)

(c)

(d)

(e)

Figure 4-3: Graphical illustrations of the steps taken by Algorithm 5. (a) The vertices within
the horizon are defined; (b) all dependency groups pointing into the horizon are selected; (c)
dependencies pointing to the additionally added vertices are identified (highlighted in gold) and
(d) associated vertices selected; (e) the vertices, static and switchable dependencies within this
horizon are determined such that an admissible SADG subset can be constructed.
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Feasible SADG Subset Guarantees

As a final step, we will apply the aforementioned concepts in order to determine the subset
SADG with which to define the receding horizon OCP. To facilitate the explanation and proof
of Proposition 4.1, we introduce the complement of an SADG subset in Definition 4.3. This
is essentially the remaining portion of an SADG once a subset thereof is being considered.

Definition 4.3 (Complementary SADG Subset) Given an SADG S(b) and an SADG
subset S̄(b̄) as defined in Definition 4.1. The complementary SADG subset to S̄(b̄) is denoted
S̄c and is itself a SADG subset defined by the mapping SADG(b) : {0, 1}mc

T 7→ Gc
ADG =

(Vc
, Ec) where mc

T = mT −mT , V
c = V/V and Ec = E/E.

Using Definition 4.3, we are now equipped to present the final result in Proposition 4.1.
Proposition 4.1 states that a feasible solution to a subset SADG will ensure the entire resultant
ADG from the whole SADG is acyclic, and therefore feasible, as long as the subset SADG is
admissible, as determined using Algorithm 5.

Proposition 4.1 (Feasible SADG from a feasible SADG subset solution) Consider
an SADG S(b) as defined in Definition 3.3 and a control horizon Hcontrol ∈ R≥0. If an SADG
subset S̄(b̄) is extracted from S(b) using Algorithm 5, a feasible solution to S̄(b̄) will result in
an acyclic ADG for the entire SADG S(b).

Proof. Consider the SADG subset S̄(b̄), assuming a feasible solution b̄, the resultant ADG
from S̄(b̄) necessarily requires the ADG to be acyclic. Since the SADG subset is determined
using Algorithm 5, no dependencies point from the complementary subset SADG S̄c to the
subset SADG S̄(b̄). Considering the complementary subset SADG, the trivial solution S̄c(0)
is acyclic by definition. The result is an ¯ADG and ¯ADGc which are both acyclic, and the
only edges connecting the two are from ¯ADG to ¯ADGc. By Lemma 4.1, the resultant ADG is
acyclic, meaning that the overall SADG solution is feasible. �

4-4 Reformulation of the Optimal Control Problem

In this section, we formulate the OCP such that the solution thereof can be used within a
receding horizon control scheme. Recall from Section 3-3 that for each AGVi, we let the first
staged or in-progress vertex in its plan sequence of SADG vertices {v1

i , . . . , v
Ni
i } be denoted

by vni
i . For a given control horizon Hcontrol, we can construct an SADG subset S̄(b̄) using

Algorithm 5. We additionally introduce vnf

i , which denotes the last vertex in the plan sequence
of AGVi considered within S̄(b̄). Note the omission an index i in nf for clarity. Let us then
define the set VRHC,i

staged which is a set of all the staged vertices of AGVi. We then define VRHC
staged

as the union of these sets. Specifically,

VRHC
staged =

N⋃
i=1
VRHC,i

staged where VRHC,i
staged = {vni

i , . . . , v
nf

i }. (4-1)

VRHC
staged is a set containing all the vertices within the subset SADG. VRHC

staged can also be used
to determine which dependency pairs need to be considered within this OCP. This will be
shown next by separately considering Type 1 dependencies and Type 2 dependency pairs.
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4-4-1 Type 1 Dependencies

This results in a sequence of staged vertices {vni
i , . . . , v

nf

i } for AGVi. Let τ(v) be the estimated
duration it will take an AGV to complete the transition specified within v ∈ VADG. For
example, τ(v) can be derived by considering the path length specified by v and the expected
AGV velocity while traversing that path. The Type 1 constraints can be represented by the
following linear inequalities

ts(vni
i ) = ti,s,

tg(vni
i ) ≥ ts(vni

i ) + τ(vni
i ),

ts(vni+1
i ) ≥ tg(vni

i ),
tg(vni+1

i ) ≥ ts(vni+1
i ) + τ(vni+1

i ),
ts(vni+2

i ) ≥ tg(vni+1
i ),

...
...

ts(vnf

i ) ≥ tg(vnf−1
i ),

tg(vnf

i ) ≥ ts(vnf

i ) + τ(vnf

i ).

(4-2)

4-4-2 Type 2 Dependency Pairs

Regarding the Type 2 dependencies, there are three different cases to consider. Iterating
through the list of dependency pairs in D, consider a dependency pair (efwd, erev), and let
efwd = (v1

fwd, v
2
fwd) and erev = (v1

rev, v
2
rev). Finally, let DRHC

switchable and DRHC
static represent two

lists which contain the switchable dependency-pairs and non-switchable dependency pairs
respectively. These two lists are defined as follows:

Case 1: Forward and Reverse Dependency

If v2
fwd ∈ VRHC

staged and v2
rev ∈ VRHC

staged , this dependency pair can be switched and can
be added to DRHC

switchable. The dth switchable dependency pair can be represented by a
binary variable bd as

ts(v2
fwd) ≥ tg(v1

fwd) if bd = 0,
ts(v2

rev) ≥ tg(v1
rev) if bd = 1.

(4-3)

Case 2: Only Forward Dependency

If v2
fwd ∈ VRHC

staged and v2
rev /∈ VRHC

staged, the forward dependency efwd = (v1
fwd, v

2
fwd) can be

added to DRHC
static . This can be represented by the temporal constraint

ts(v2
fwd) ≥ tg(v1

fwd). (4-4)

Case 3: No Dependency Constraints
No constraint is needed.
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4-5 Receding Horizon Control Scheme 45

4-4-3 Formulation of Optimal Control Problem

Having translated the SADG into temporal constraints in (4-2) through (4-4) for i ∈ {1, . . . , N},
d ∈ {1, . . . , dT }. Minimizing the cumulative route completion time of all AGVs is formulated
as the following optimization problem

min
b, ts, tg

J(b, ts, tg),

s.t. (4− 2) ∀ i = {1, . . . , N},
(4− 3) ∀ (efwd, erev) ∈ DRHC

switchable,

(4− 4) ∀ e ∈ DRHC
static ,

(4-5)

where b : {0, 1}dT is a vector containing all the binary variables bd and the vectors ts and tg

contain all the variables represented by ts(vk
i ) and tg(vk

i ) respectively ∀ k ∈ {1, . . . , Ni}, i ∈
{1, . . . , N}. Once again, the function J(·) is any positively affine function of the variables in
b, ts and tg. Explicit functions for J(·) will be introduced in Chapter 5.

4-5 Receding Horizon Control Scheme

Based on the OCP presented in Section 4-4, we are now able to present the complete RHC
feedback scheme. This framework is presented in Algorithm 6. The key difference between
the shrinking horizon and receding horizon feedback schemes, described in Algorithm 4 and
Algorithm 6 respectively, is the use of Algorithm 5 in Algorithm 6 cf. line 6.

Algorithm 6 Switching ADG RHC Feedback Scheme
1: Get goals and locations
2: Solve MAPF to obtain P
3: Construct SADG(b) using Algorithm 3

4: while Plans not done do
5: get current position along plans for each AGV
6: Extract S̄(b̄) using Algorithm 5
7: Construct OCP from S̄(b) as in Section 4-4
8: b ← solve OCP in (4-5)
9: ADG← SADG(b)

10: Execute plans according to updated ADG
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get vertex
statuses

extract
SADG 
Alg. 5

Solve
OCP

ADG =
SADG(b)

AGVs proceed according to ADG

solve 
MAPF

Construct
SADG(b)

b=0

Figure 4-4: Receding horizon control loop diagram

4-6 Persistent Control Framework

The RHC scheme in Section 4-5 directly translates to a persistent planning setting in the case
that the MAPF is re-solved based on updated AGV goal positions. The control architecture
is largely similar to that shown in Figure 4-4, with the addition of a re-plan state which, when
triggered, can by-pass the inner control loop and obtain new goals for the AGVs, re-solve the
MAPF, update the SADG and then commence with the inner control strategy once more.
This architecture is shown in Figure 4-5.

get vertex
statuses

extract
SADG 
Alg. 5

Solve
OCP

ADG =
SADG(b)

AGVs proceed according to ADG

solve 
MAPF

Construct
SADG(b)

b=0

replan?get new goals

Figure 4-5: Persistent planning with receding horizon control loop diagram

4-7 Summary

In Chapter 3 we introduced a novel data-structure which was used as the foundation for a
shrinking horizon feedback scheme. This scheme facilitated the re-ordering of AGVs while
maintaining collision- and deadlock-free guarantees, but required the full length of the plans
to be known a-priori such that the optimization scheme could guarantee a feasible solution to
OCP in (3-6) is also feasible for the plan execution scheme. In the case of persistent planning,
however, re-planning can result in new plans being appended to an existing plan, which is
initially not considered within the OCP. Dynamically changing plans cannot be addressed
using the previously developed shrinking horizon feedback scheme, introducing the necessity
for a receding horizon scheme, which is presented in this chapter.

Initially, the challenges related to the development of a receding horizon scheme using a
directional graph such as an SADG are presented. We then introduce an algorithm capable
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4-7 Summary 47

of determining a subset of the SADG to consider within the OCP such that the optimal
solution to the resultant subset OCP is still feasible for the entire SADG. This receding
horizon approach not only reduces the computational effort required to solve the resulting
OCP at each time step, but also allows the optimization of persistent plans with the guarantee
of keeping the global ordering feasible as the AGVs complete their plans.
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Chapter 5

Optimization and Recursive Feasibility

In this chapter, we consider a Mixed-Integer Linear Program (MILP) to solve the optimal
control problems formulated in Chapters 3 and 4. Having introduced the SADG, we now
formulate an optimization problem which can be used to determine b such that the resultant
ADG is acyclic, while minimizing cumulative AGV route completion times. The result is
a MILP which we solve in a closed-loop feedback scheme, since the optimization problem
updates the AGV ordering at each iteration based on the delays measured at that time-step.
Various cost functions are proposed which prioritize different properties of the obtained solu-
tion. Based on the inherent structure of the SADG, various heuristic methods are proposed
which can be used to help find solutions faster. Finally, an analysis of the recursive feasibility
of the shrinking and receding horizon schemes is presented.

5-1 Formulation as a Mixed-Integer Linear Program

For this section, we reserve the discussion for the method presented in Chapter 4, since the
obtained formulation translates directly to the scheme in Chapter 3. Consider the OCP in (4-
5). This optimization problem consists of a combination of linear constraints, as well as binary
states representing the switching of dependencies. These components can be represented
within an MILP where the so-called big-M approach can be used to generate the binary
decision of selecting dependencies for a forward-reverse dependency switching pair. Consider
the general form of an MILP as described below

min
x

cTx,

s.t. Ax ≤ b,
(5-1)

where x ∈ Rnc × {0, 1}nd , n = nc + nd, A ∈ Rn×m, b ∈ Rm×1 and c ∈ Rn×1. The objective of
this section is to determine the variables which make up x, A, b and c. The Type 1 dependency
constraints are obtained directly from the temporal relations in Section 3-3 and Section 4-4
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50 Optimization and Recursive Feasibility

respectively. We show the equations for the RHC approach in Section 4-4, as this easily
translates the approach in Section 3-3. Let us introduce the optimization variable tki,s which,
once a solution to the optimization problem is determined, will be equal to ts(vk

i ). The same
relation applies to the optimization variable tki,g and tg(vk

i ). The Type 1 dependencies can be
taken directly from (4-2) and written as

tni
i,s = ti,s,

tni
i,g ≥ t

ni
i,s + τ(vni

i ),
tni+1
i,s ≥ tni

i,g,

tni+1
i,g ≥ tni+1

i,s + τ(vni+1
i ),

tni+2
i,s ≥ tni+1

i,g ,

...
...

t
nf

i,s ≥ t
nf−1
i,g ,

t
nf

i,g ≥ t
nf

i,s + τ(vnf

i ).

(5-2)

Recall the definition of the set DRHC
static which contains all the static dependencies within the

SADG. Given a dependency e ∈ DRHC
static , where e = (vk

i , v
l
j), this Type 2 dependency can be

written as

tlj,s ≥ tki,g ∀ e ∈ DRHC
static . (5-3)

Finally, we consider the switchable dependency pairs in DRHC
switchable. As previously stated,

the set DRHC
switchable has a cardinality of d. We introduce the Boolean variable bd for the dth

dependency pair within DRHC
switchable. Using the big-M method, we can essentially activate

or deactivate a constraint based on the binary value of bd. Consider the dependency pair
(efwd, erev) ∈ DRHC

switchable, with efwd = (v1
fwd, v

2
fwd) and erev = (v1

rev, v
2
rev). With a slight abuse of

notation, where the optimization variable t1s,fwd represents the value of ts(v1
fwd), the constraints

can be written as

t1s,fwd ≥ t2g,fwd −Mbd,

t2s,rev ≥ t1g,rev − (1− bd)M ∀ (efwd, erev) ∈ DRHC
switchable,

(5-4)

where M is a large, positive constant such that M > maxi t
Ni
i,g . Note that maxi t

Ni
i,g can be

approximated by estimating the maximum anticipated delays experienced by the AGVs. In
practice, however, finding such an upper bound on delays is not evident, meaning we choose
M to be a conservatively high value. As the cost function, we consider the cumulative time
taken for each AGV to reach its goal vertex. The cost function can therefore be written as

J(·) =
N∑

i=1
t
nf

i,g . (5-5)
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5-2 Different Cost Functions

We consider three different cost functions and explain the motivation behind them. Recall
the basic optimization for an MILP as shown in (5-1).

5-2-1 Makespan optimization

As is often done in the MAPF formulations, the maximum route completion time of all the
AGVs can be used as the objective function. The idea is to ensure that all AGVs reach their
respective goals as quickly as possible.

J(·) = max
(
t
nf

1,g, . . . , t
nf

N,g

)
. (5-6)

Such a maximization can be written by introducing a new optimization variable z, representing
the upper bound of all the route completion times of each AGV. In this case, (5-6) can be
written as

J(·) = min z,
s.t. tnf

i,g ≤ z ∀ i ∈ {1, . . . , N},
(5-7)

which maintains the linear cost function specification as described in (5-1).

5-2-2 Penalty for switching

An alternative cost function could be the cumulative route completion time for each AGV,
but with an additional penalty on the switching of dependencies. The concept here is to only
switch a dependency in the case that it surpasses a certain performance increase threshold.
It could happen that switching a dependency is only marginally better, and switching is not
exactly necessary. Since the variables bd ∈ {0, 1}, a penalty of Kb can be assigned to each
switched dependency using then following cost function

J(·) =
N∑

i=1
t
nf

i,g +Kb

dT∑
d=1

bd. (5-8)

5-2-3 Greedy Switching

Another cost function to be considered is allowing switching in a greedy fashion. The moti-
vation behind this approach is founded on the unpredictable nature with which delays may
occur in the future. Given impending delays, there is no guarantee that predicted trajecto-
ries at a given time-step will be executed in that exact way, due to the possibility of delays.
For this reason, it may be reasonable to switch dependencies early on which yield improved
performance in the short-term, since the long-term is difficult to predict. By assigning a cost
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to the time it takes each AGV to complete the event defined by a vertex, early switching
could potentially be incentivized, which would not be the case when using alternative cost
functions. This cost function is written as

J =
N∑

i=1

nf∑
k=ni

qi,kt
k
i,g, (5-9)

where the tuning parameter qi,k ≥ 0 can be used to define the cost of reaching the goal point
of vertex vk

i at time tki,g.

5-3 Illustrative Example

In this section, we present a simple example illustrating the how the MILP is formulated using
Section 5-1. Consider the three-AGV example shown in Figure 5-1a. Based on the roadmap,
the MAPF is solved, from which we can construct the SADG using Algorithm 3, yielding
the SADG shown in Figure 5-1b. We now construct the MILP for this particular SADG
based on the current AGV progress. Firstly, we use Algorithm 5 to determine an admissible
SADG subset which we can use to define the constraints in the MILP. This subset is shown
in Figure 5-1c.

(a) Unweighted roadmap occupied by three AGVs.

AGV1

AGV2

AGV3

Completed

In-Progress

Staged

(b) Switchable Action Dependency Graph.

AGV1

AGV2

AGV3

(c) Highlighted admissible SADG subset.

Figure 5-1: Illustrative example of the MILP formulation applied to a three AGV scenario.
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5-4 Heuristics for MILP Solver 53

Based on this SADG subset, we now use the OCP definition in (4-5) described in Section 4-4.
Minimizing the cumulative route completion time cost function as in (5-5), the optimization
problem using an MILP formulation can be written in its entirety as

min
b, ts, tg

t41,g + t12,g + t33,g

s.t.

Type 1 dependencies:

t11,s ≥ 0, t12,s ≥ 0.76, t13,s ≥ 0,
t11,g ≥ t11,s + 1.0, t12,g ≥ t12,s + 1.0, t13,g ≥ t13,s + 1.0,
t21,s ≥ t11,g, t23,s ≥ t13,g,

t21,g ≥ t21,s + 1.0, t23,g ≥ t23,s + 1.0,
t31,s ≥ t21,g, t33,s ≥ t23,g,

t31,g ≥ t21,s + 1.0, t33,g ≥ t23,s + 1.0,
t41,s ≥ t31,g,

t41,g ≥ t41,s + 1.0,

Static Type 2 dependencies:

t11,s ≥ t12,g,

Switchable Type 2 dependencies:

t13,s ≥ t41,g − b1M,

t23,s ≥ t31,g − b1M,

t21,s ≥ t33,g − (1− b1)M,

t31,s ≥ t23,g − (1− b1)M,

where b = [b1] : {0, 1} is the binary decision variable, ts =
[
t11,s, t

2
1,s, t

3
1,s, t

4
1,s, t

1
2,s, t

1
3,s, t

2
3,s, t

3
3,s

]
,

and tg =
[
t11,g, t

2
1,g, t

3
1,g, t

4
1,g, t

1
2,g, t

1
3,g, t

2
3,g, t

3
3,g

]
. AGV2 is assumed to still require 0.76 seconds

to complete its the in-progress node. Note how the two switchable dependency pairs formed
an opposite dependency group, permitting the use of only one binary variable.

5-4 Heuristics for MILP Solver

In this section, we propose two heuristic approaches aimed at reducing the computational
time required to solve the MILP in (5-2) through (5-5). The SADG is a highly structured
graph. However, this structure may not be immediately evident to the MILP solver simply
based on the provided optimization formulation. By exploiting this structure and directly
informing the solver hereof, we may potentially reduce computational time.
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5-4-1 Preferential Switching Based on Dependency Time Difference

As shown in Section 4-4, each switchable dependency group or pair can be associated to a
single binary variable within the MILP. Most MILP solvers use a branch-and-cut approach to
solve the optimization problem. Essentially, this means fixing a subset of the binary variables,
solving the relaxed sub-problem, and then identifying if the relaxed problem has a solution
lower than the upper bound obtained thus far [34].

The order in which the binary variables are fixed before solving the relaxed problem can
largely affect the optimization time, since this will influence how soon an upper bound to the
optimization problem is obtained. Obtaining an upper bound sooner will allow the solver to
eliminate combinations of binary variables just by considering the relaxed problem, potentially
speeding-up the optimization process.

When a dependency pair is switchable, an idea could be to consider the immediate difference
in route completion time if switching were to occur in order to determine if it makes sense
to fix the associated binary variable. We could then order the dependency pairs in ascending
order according to this route completion time difference to obtain the sequence in which binary
variables should be fixed when solving the MILP. Intuitively, a large negative difference in
route completion time implies that switching to the reverse dependency could greatly decrease
route completion times for the AGVs, when only considering this Type 2 dependency pair.
Similarly, a large, positive difference in route completion time implies that switching will
result in a large increase in route completion time when only considering these two AGVs.

We now show how a dependency pair’s difference in route completion time can be determined.
Consider a dependency pair (efwd, erev), where efwd = (v1

fwd, v
2
fwd) and erev = (v1

rev, v
2
rev). We

now define an operator tpred(v) which denoted the time event v ∈ VADG is expected to start
in the case that only Type 1 dependencies are considered. A dependency pair’s difference in
route completion time can then be defined as

∆t = tpred(v2
fwd)− tpred(v2

rev). (5-10)

In the case of a dependency group, the difference in route completion time can then be defined
as

∆t = min
v2

fwd∈Vfwd
tpred(v2

fwd)− min
v2

rev∈Vrev
tpred(v2

rev), (5-11)

where Vfwd is a set containing all the vertices to which the forward dependencies in Dswitchable
are pointing to. Similarly, Vrev is a set containing all the vertices to which the reverse depen-
dencies in Dswitchable are pointing to.

5-4-2 Providing an Initial Feasible Solution

Typical solution schemes for MILPs such as branch-and-bound or branch-and-cut solvers
make use of lower- and upper-bounds to prune branches in the search tree of binary variable
states. As such, finding an initial, feasible solution with a low cost will help eliminate multiple
branches which the solver would otherwise need to consider. Since we know, by definition,
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that each SADG has a feasible solution of b = 0 at each time-step, this information can be
provided to the solver explicitly.

5-5 Recursive Feasibility

An aspect of critical importance regarding optimal feedback control strategies is that of
recursive feasibility. Recursive feasibility implies that the OCP remains feasible as long as
the control law is applied [33]. In the context of this work, an infeasible optimization problem
would imply that there is no way to switch the dependencies such that the resultant AGV
ordering does not cause a deadlock. In order to maintain liveness of the resultant plans, it is
necessary to ensure recursive feasibility. In this section, we address this challenge by proving
recursive feasibility for both the shrinking and receding horizon control approaches presented
in Chapters 3 and 4 respectively.

5-5-1 Shrinking Horizon Control Approach

Consider the shrinking horizon feedback scheme outlined in Algorithm 4. In Proposition 5.1,
we show that this feedback scheme is guaranteed to remain recursively feasible based on the
MILP formulation presented in this chapter.

Proposition 5.1 (Recursive Feasibility of Algorithm 4) Consecutively solving the MILP
in (5-2) through (5-5) based on the OCP defined in (3-6) when executing the control strategy
defined in Algorithm 4 is guaranteed to ensure that the OCP remains recursively feasible.

Proof. Proof by induction. Consider SADG(b) as defined in Definition 3.3, constructed from
a MAPF plan P using Algorithm 3. Next, assume an acyclic ADG = SADG(0) at time t. The
OCP in (3-6), formulated as an MILP in (5-2) through (5-5), always has the feasible solution
b = 0 if the initial ADG (from which the OCP’s constraints in (3-3) through (3-4) are defined)
is acyclic. Any improved solution of the OCP with b 6= 0 is necessarily feasible, implying a
resultant acyclic ADG = SADG(b). This implies that the resultant ADG = SADG(0) will
always be acyclic if the ADG = SADG(b) before the OCP was solved, was acyclic. As per
Assumption 2.1, the ADG = SADG(0) at time t = 0 is acyclic based on the MAPF solution,
implying that it will remain acyclic for t > 0. Since SADG(b) acyclicity guarantees feasibility
of the OCP, this guarantees recursive feasibility. �

5-5-2 Receding Horizon Control Approach

By similar argumentation, recursive feasibility for the receding horizon approach can also be
proven, as shown in Proposition 5.2.

Proposition 5.2 (Recursive Feasibility of Algorithm 6) Consecutively solving the MILP
in (5-2) through (5-5) based on the OCP defined in (4-5) when executing the control strategy
defined in Algorithm 6 is guaranteed to ensure that the OCP remains recursively feasible.

Proof. Proof by induction. Consider SADG(b) as defined in Definition 3.3, constructed from
a MAPF plan P using Algorithm 3. Next, assume an acyclic ADG = SADG(0) at time t.
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Consider the OCP in (4-5), which is based on S̄(b̄), where S̄(b̄) is obtained from SADG(b)
using Algorithm 5. As per Proposition 4.1, a feasible solution for (4-5) is guaranteed to be
feasible for the entire SADG(b). The OCP in (4-5), formulated as an MILP in (5-2) through
(5-5), always has the feasible solution b = 0 if the initial ADG (from which the OCP’s
constraints in (3-3) through (3-4) are defined) is acyclic. Any improved solution of the OCP
with b 6= 0 is necessarily feasible, implying a resultant acyclic ADG = SADG(b). This implies
that the resultant ADG = SADG(0) will always be acyclic if the ADG = SADG(b) before the
OCP was solved, was acyclic. As per Assumption 2.1, the ADG = SADG(0) at time t = 0
is acyclic based on the MAPF solution, implying that it will remain acyclic for t > 0. Since
SADG(b) acyclicity guarantees feasibility of the OCP, this guarantees recursive feasibility. �

5-6 Summary

In this chapter, we considered the OCPs presented in Chapter 3 and Chapter 4 and showed
how these can be written in the form of an MILP. Specifically, we used the big-M approach
to model the switching of dependencies using binary variables. We then introduce three
additional cost functions which can be used to enforce different behavior of the resultant
control strategies. To illustrate the MILP in a more intuitive manner, we also introduced
a simple three-AGV example and presented the resultant MILP which should be solved to
obtain the desired switching based on the current AGV progress.

Next, we considered the structure of the SADG and introduced two possible heuristics which
can be used to decrease the computational time required to solve the MILP by explicitly defin-
ing binary variable combinations which guarantee feasible solutions. Finally, we analyzed the
recursive feasibility of the shrinking horizon and receding horizon feedback schemes presented
in Chapter 3 and Chapter 4 respectively, and proved that these strategies will ensure the
resultant OCP will remain feasible regardless of the disturbances applied to the system, as
long as the initial ADG is acyclic.
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Chapter 6

Statistical Evaluation

This is the first of two chapters aimed at presenting simulation results used to evaluate the
performance and limitations of the control strategies presented in Chapter 3 and Chapter 4.
In this chapter, we focus on gaining insight into the statistical performance properties of the
proposed methods. To this end, a series of Monte-Carlo simulations are designed to determine
how the shrinking and receding horizon control strategies perform for different AGV fleet size,
map topologies, delay duration and varying start- and goal-positions. We present the results
and discuss them in detail.

6-1 Overview

In this section, we present the general evaluation framework used throughout this chapter.
The simulation consists of a discrete-time evaluation, akin to the movement behavior assumed
by the MAPF problem defined in Problem 2.1. This means that AGVs are simulated to move
in discrete steps along the edges of the roadmap. At each time-step, AGVs can either stay at
their current vertex in the roadmap or travel to the next vertex as dictated by the MAPF plan
and the ADG. This iterative scheme is illustrated in Figure 6-1. The benefit of this approach
is that it allows us to experiment with different simulation parameters such as prediction
horizon lengths, OCP cost functions for different AGV fleet sizes with different random start
and goal positions, different map topologies, etc. in a systematic and independent manner.

We refer the reader to Chapter 7 for an analysis of the real-time applicability of these control
strategies, where we consider optimization times, communication delays, and other real-time
issues simultaneously in an extensive simulation environment to validate the proposed ap-
proach as a whole.

Simulations are performed the roadmap shown in Figure 6-2. The simulation considers AGV
fleets of up to 70 AGVs. Each AGV is initialized with a random starting position and assigned
a random, unique goal position on the roadmap. ECBS [22] is then used with varying sub-
optimality bounds to solve the MAPF. Specifically, the sub-optimality bound w is chosen
between 1.3 and 2.5, such that the MAPF can be solved in approximately 120 seconds.
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AGV 1

Global Planner

ECBS

AGV 2 AGV N

...

SADG

OptimizerOptimizer Communication Interface

Figure 6-1: Diagram showing the iterative simulation loop which is executed at each time-step.

This simulation is implemented such that AGVs move in discrete time-steps, much like the
basic assumption of the MAPF problem definition. We consider delays of duration k =
{1, 3, 5, 10, 15, 20, 25} time-steps. At each kth time-step, a random subset (20%) of the AGVs
is stopped for a length of k time-steps. The MILP in (5-5) is solved at each time-step. We
evaluate our approach using a Monte Carlo method: for each AGV team size and delay
duration configuration, we consider 100 different randomly selected goal/start positions.

To minimize the number of binary variables in the MILP, the concept of dependency groups
is used as described in Section 3-5. The receding horizon approach proposed in Section 4-5
is used for finite-horizon simulations, where Algorithm 5 is used to determine an admissible
SADG subset at each iteration. Delays are simulated by selecting a random subset of the
AGVs at each iteration and not allowing them to continue with their plan. The simplicity of
this framework allows us to run a high number of simulations to gain a good understanding
of the method from a statistical point of view.

Our approach is compared to the original ADG approach introduced by Hönig et al. [9]
presented in Section 2-2-3. All simulations were conducted on a Lenovo Thinkstation with
an Intel R© Xeon E5-1620 3.5GHz processor and 64 GB of RAM.

(a) Roadmap (black) with possible goals (orange). (b) Random initialization of 50 AGVs.

Figure 6-2: Schematic of the roadmap used for the evaluations discussed in this chapter. Random
goal locations are selected from the yellow regions in (a). AGVs are represented by colored dots,
their goals are represented by the corresponding colored ring as shown in (b).
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Performance is measured by considering the cumulative plan completion time of all the AGVs.
This is compared to the same metric using the original ADG approach with no switching as
in [9]. Specifically, the improvement is defined as

improvement =
∑
tbaseline −

∑
tswitching∑

tbaseline
· 100%, (6-1)

where
∑
t∗ refers to the cumulative plan completion time for all AGVs. The baseline is

equivalent to forcing the solution of the MILP in (5-5) to b = 0 at every time-step. Another
important consideration is the time it takes to solve the MILP in (5-5) at each time-step.
For our simulations, the MILP was solved using the academically orientated Coin-Or Branch-
and-Cut (CBC) solver [35].

6-2 Simulations

6-2-1 Improvement for Various Delays and AGV Fleet Sizes

As a first step, we evaluate the average improvement for different delay lengths as well as
AGV fleet sizes. For each AGV fleet size of {30,40,50,60,70} AGVs, we evaluate delays of
k = {1, 2, 3, 5, 10, 15, 20, 25, 30, 40, 50} time-steps. The improvement for each permutation
is determined for 100 random start/goal assignments. The receding horizon approach in
Section 4-5 is used, with a horizon length of 5 time-steps. This horizon length was chosen
after determining that it yielded a similar performance to longer horizon lengths but at
significantly faster optimization times. For an extensive analysis on horizon length, we refer
to the reader to Section 6-2-2.

Figure 6-3 shows the results of this simulation. Figure 6-3a through 6-3e show the im-
provement of each AGV fleet size for various delays. The dark lines indicate the average
improvement, and the light regions indicate the minimum and maximum increase in perfor-
mance of the 100 simulations performed for each delay duration. Figure 6-3f superimposes
the average improvement of the different AGV fleet sizes to facilitate comparison. In this
figure, the envelopes represent the improvement within one standard deviation of the average
improvement.

From these results, it is clear that the switching of dependencies can improve overall per-
formance when AGVs are subjected to delays. We also note an almost linear relationship
between the improvement and the delay duration. However, occasionally, larger delays actu-
ally caused a decrease in improvement, for example as seen in Figure 6-3d when comparing
delays of k = 20 and k = 25 time-steps. Another observation is the large variability in the
improvement. The envelopes in Figure 6-3a through 6-3e are relatively wide. For example,
in Figure 6-3a, delays of k = 25 time-steps yielded improvements between 6.6% and 22.4%.
This leads the author to believe that certain start/goal positions and random delay inputs
can affect the switchability of the SADG. This implies that certain MAPF solutions could
be more prone to switching than others, yielding significantly varying results. This effect will
be explored from a different perspective in Section 6-2-5, where the effect of different map
topologies on average improvement is considered.
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(b) 40 AGVs
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(c) 50 AGVs
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(d) 60 AGVs
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(e) 70 AGVs
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(f) All AGV fleet sizes

Figure 6-3: Average improvement of 100 scenarios for various delay lengths and AGV group
sizes. Each scenario refers to different randomly generated starts/goals and a randomly selected
subset of delayed AGVs. Solid lines depict the average, lighter regions encapsulate the min-max
values.

Another interesting observation is that negative improvement can occur, albeit rarely. This
was typically observed for small delay durations. An example can be seen in Figure 6-3d
at a delay of k = 3, where the envelope has a minimum of 0.2%. The reason is that the
optimization problem solves the switching assuming no future delays. However, it may so
happen that the AGV which was allowed ahead of another, is delayed in the near future,
additionally delaying the AGV it surpassed.

Finally, we observe that improvement does not always increase with delay length. The im-
provement for an AGV fleet size of 60 seems to plateau at a delay of k = 40 time-steps. One
possible explanation is that evaluating 100 randomized start/goal locations is not sufficient
to accurately represent this trend in a statistical manner.
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6-2-2 Performance for Different Horizon Lengths

We now evaluate the effect the horizon length has on the cumulative route completion time.
Once again, for various AGV fleet sizes and horizon lengths, we consider a relatively short and
long delay length of k = 3 and k = 25 respectively. For each AGV fleet size and horizon length
permutation, we ran 100 simulations with different randomly selected start/goal positions.
Based on the observations in Section 6-2-1, we only consider a horizon of H = {1, 2, 3, 4, 5}
time-steps for delays of k = 3. For the delays of k = 25 we considered horizons of length
H = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}. The results for delays k = 3 and k = 25 time-steps are
shown in Figure 6-4 and Figure 6-5 respectively.

A first observation is that a horizon ofH = 1 already yields a significant improvement for every
delay and AGV fleet size permutation considered. This is an interesting result which is not
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Figure 6-4: Average improvement of 100 random start/goal positions and delayed AGV subset,
for different switching horizon lengths, for different AGV group sizes. Solid lines depict the
average, lighter regions encapsulate the min-max values. k = 3.
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Figure 6-5: Average improvement of 100 random start/goal positions and delayed AGV subset,
for different switching horizon lengths, for different AGV group sizes. Solid lines depict the
average, lighter regions encapsulate the min-max values. k = 25.

typically seen with continuous-time systems controlled using MPC strategies. Additionally,
it is worth mentioning that, unlike continuous-time systems, there is no notion of stability
for this SADG approach, meaning that any horizon length can be used to control the system
without needing to consider regions-of-attraction or invariant-sets to maintain stability as is
the case in typical MPC literature [33].

Another observation which might seem counter-intuitive is that larger horizon lengths do not
always yield increased improvements, as can clearly be seen for all the AGV fleet sizes related
to the delay of k = 3. The author believes that the main reason for this phenomenon is the
fact that the OCP formulation considers the progress of the AGVs at the current time-step,
and assumes that there will be no delays in the future. This assumption occasionally results
in dependency switching that may be optimal assuming no future delays, but actually results
in switching which may be detrimental to performance when delays inevitably occur.
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As in Section 6-2-1, we once again note a considerable variability in the improvement for the
same horizon length and AGV fleet size for different random start/goal locations, indicated
by the large lightly colored envelopes.

6-2-3 Computational Time and Horizon Length

As is the case for all optimal feedback control policies, the computational time required to
solve the OCP at each iteration will greatly determine whether the methods can be im-
plemented in practice. To this end, we evaluate the time required to solve the MILP at
each iteration by considering various horizon lengths and AGV fleet sizes. We consider 100
randomly initialized start/goal positions for various AGV fleet sizes, each for delays of dura-
tion k = {1, 3, 5, 10, 15, 20, 25} and horizon lengths H = {1, . . . , 15}. The computation times
for different permutations of the aforementioned simulation parameters are shown in Fig-
ure 6-6. Specifically, Figure 6-6a shows the peak computation time for an entire simulation,
whereas Figure 6-6b shows the average computation time.
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Figure 6-6: The computation time to solve the MILP in (5-5) for different AGV team sizes and
considered dependency horizon lengths. Solid lines depict the average, lighter regions encapsulate
the min-max values.

We note that the computation time is approximately log-linear, where the slope is determined
by the AGV fleet size. This can be expected since the MILP typically takes exponential
time with regards to the number of binary variables in the optimization problem, which is
approximately a linear function of the number of AGVs for a given horizon length.

A key factor in keeping the computation times relatively low is the concept of dependency
grouping, as discussed in Section 3-5-2. This greatly reduced computation time and resulted
in an MILP with roughly one quarter of the binary variables necessary when no dependency
grouping was performed.

Finally, we consider the preferential switching heuristic discussed in Section 5-4-1 as well
as explicitly providing an initial feasible solution in Section 5-4-2. Based on 20 simulations
involving 50 AGVs and a horizon length of H = 5, the preferential switching heuristic was
found to yield a computational time that was 21.3% less than the computational time required
without using this heuristic. Providing an initial feasible solution, however, did not yield much
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improvement, with only a 1.2% decrease in computational time compared with no heuristics
and using the aforementioned simulation parameters.

6-2-4 Evaluating Different Cost Functions

As well as the cumulative route completion time, we introduced three additional cost functions
in Section 5-2 which could be used when defining the MILP in (5-5). Setting the delay
to k = 10 time-steps with a horizon of H = 5, each cost function was evaluated for 20
random start/goal positions and the improvement compared. The different cost functions
and equations are shown in Table 6-1.

Name Equation
cumulative (5-5)
makespan (5-7)
greedy (5-9)
binary penalty (BP) (5-8)

Table 6-1: Cost function names and equations

For the binary penalty, we consider four different penalty coefficients Kb = {1, 2, 5, 10}. In the
case of the greedy cost function, we set qi,k = 1 ∀ i, k. The results are shown in Figure 6-7.
From the results it is clear that the most effective cost function is the cumulative cost function
as well as the binary penalty with lowKb coefficients. Note that optimizing over the makespan
or in a greedy fashion would almost not yield any improvement. The authors believe the
reason to be that since the proposed strategy only switches the ordering of AGVs along their
paths, the last AGV will always take roughly the same time to fulfill its task regardless of
the performed switching. Considering the makespan as the cost function can therefore not
be expected to yield an improved solution, since the objective value will remain largely the
same regardless of the switching. We observed a similar phenomenon when considering the
greedy cost function.
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Figure 6-7: Comparison of cost functions for different AGV fleet sizes. Solid lines depict the
average improvement and lighter regions encapsulate the min-max values.
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6-2-5 Different Map Topologies

Since the proposed control strategies are based on the SADG derived for various MAPF
plans and the number of switchable dependency pairs within the SADG is a function of the
interweaving of plans over time, we pose the question of whether map topology affects the
switchability of the resultant MAPF plans. By switchability, we mean the degree of inclination
of plans to allow switching when considering the resultant SADG. Additionally, it would be
desirable to identify properties of map topologies which influence this switchability.

To answer these questions, we consider four fundamentally different roadmap topologies,
shown in Figure 6-8, and evaluate the differences in plan improvement. The roadmaps are
inspired by various topologies found in real warehouses. The map in Figure 6-8a shows a
large, grid-shaped warehouse largely based on the inventory shelving solution presented in
[6]. Figure 6-8b shows a similar map, but with large gaps in between which represent portions
of a factory floor reserved for items other than inventory. The roadmap in Figure 6-8c is aimed
at replicating an unstructured warehouse with multiple rooms and long, single-lane corridors
connecting them. Finally, Figure 6-8d shows a map topology similar to the one in Figure 6-8c,
but with two-lane corridors.

(a) General: grid-shaped map. (b) Semi: partitioned grid-shaped map.

(c) Islands: single-lane corridors. (d) Warehouse: two-lane corridors.

Figure 6-8: The four roadmaps used for the statistical evaluations in this section. Each map
emphasizes a different topology often seen in real warehouse maps.
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Figure 6-9: Performance comparison for different map topologies for different AGV fleet sizes.
The shaded region indicates the results within one standard deviation of the mean, indicated by
the solid, colored line.

To evaluate these map topologies, we consider 20 different start/goal positions for AGV fleet
sizes of {20, 25, 30, 40, 50, 60, 70} and a horizon of H = 3. The results are shown in Figure 6-9.

We note that the most favorable map topology was the general layout, shown in Figure 6-8a.
The map topology with the lowest improvement was the island map shown in Figure 6-
8c. Based on these results, as well as considering the SADG structure for the different
maps, we noticed that a the general map layout had far more dependency groups, with
fewer dependencies per group, as opposed to the island map which had a smaller number of
dependency groups, each with a large number of dependencies.

This result was to be expected, since small dependency groups indicate that AGVs only
share a small portion of the roadmap with another in succession, whereas large dependency
groups indicate that a large portion of the roadmap is shared (such as a whole corridor). For
reference, the SADG for the general map had an average of 1435 dependency groups for the
20 scenarios, whereas the island map only had average of 832.

With the OCP formulation of (4-5) in mind, consider the fact that a smaller dependency
group typically requires a smaller delay of the dependent AGV for switching to be beneficial.
If switching occurs more easily for shorter delays, as is the case in the General map, we can
expect higher improvement percentages compared to topologies such as the Islands map.

6-3 General Discussion

From the simulation results presented in the previous section, we observed that the receding
horizon strategy presented in Section 4-5 generally yields lower cumulative route completion
times for AGVs when subjected to random delays than when using the originally proposed
ADG approach. We noticed that average improvement is approximately linearly correlated
to the delay duration experienced by the AGVs.

Considering Figure 6-3f, it is worth noting how the graph layout and AGV-to-roadmap density
affects the results: the AGV group size of 40 shows the best average improvement for a given
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delay duration. This leads the author to believe there is an optimal AGV group size for a
given roadmap, which ensures the workspace is both:

1. Not too congested to make switching of dependencies impossible due to the high density
of AGVs occupying the map.

2. Not too sparse such that switching is never needed since AGVs are distant from each
other, meaning that switching rarely improves task completion time.

Considering the switching dependency horizon, Figure 6-4 and Figure 6-5 show the average
improvement for 100 random start/goal positions and delayed AGV subset selection. We
observe that a horizon length of 1 already significantly improves performance, and larger
horizons seem to gradually increase performance for larger AGV teams. Figure 6-6 shows the
peak computation time for various horizon lengths and AGV team sizes. As expected, the
computation time is exponential with horizon size and AGV team size.

One of the key concepts used to keep computational times when solving the OCP at each
time-step was the use of dependency groups. We found that dependency grouping typically
resulted in an MILP with one fifth of the binary variables for the same AGV fleet size and
horizon length. Since MILPs typically take exponential time to solve with respect to the
number of binary variables, this clearly yields a great increase in performance.

Two additional observations that were made are:

1. High variability in results
Note the high variability in improvement indicated by the large lighter regions in Fig-
ure 6-3f. This means that for different random start/goal and delay configurations, the
improvement varied significantly. This is due to the fact that each start/goal combina-
tion provides differing degrees-of-freedom from an ADG switching perspective.

2. Occasional worse performance
Occasionally, albeit rarely, our approach would yield a negative improvement for a
particular random start/goal configuration. This was typically observed for small delay
durations. The reason is that the optimization problem solves the switching assuming
no future delays. However, it may so happen that the AGV which was allowed ahead of
another, is delayed in the near future, further delaying the AGV it passed. We believe
a robust optimization approach could potentially resolve this.

In conclusion, we observed that the receding horizon control scheme would reduce the cumula-
tive route completion time of the AGVs based on arbitrary delays. A noteworthy observation
is that this approach does not affect the performance negatively when only small delays occur,
making it well suited to multi-AGV scenarios where delays are not frequent. Finally, we note
that this simulation environment is relatively simple. This simplicity was chosen to allow for
a large number of simulations, testing multiple design parameters such as horizon length and
AGV fleet size in a timely manner. Naturally, a more extensive simulation or practical exper-
iment is necessary to fully validate the approach. Chapter 7 presents a realistic simulation
environment and implementation used to evaluate these real-time challenges.
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6-4 Summary

In this chapter, we evaluated the statistical properties of the proposed methods of this thesis.
We showed that the proposed methods yield a decrease in route completion times for AGVs
subject to delays of various lengths. The receding horizon approach was also evaluated for
various horizon lengths, and the computation time to solve the MILP at each iteration was
considered. We also identified important features in map topologies which benefit more from
our proposed approach than others. As a next step, to further validate this approach, it
is desirable to move towards system-level tests in more realistic environments, such as by
simulations in Gazebo. This analysis is shown in the next chapter.
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Chapter 7

Gazebo Simulation

The penultimate chapter of this thesis is dedicated to the implementation of the control
strategies presented in Chapters 3 and 4 into a realistic simulation environment. The moti-
vation is to identify and address the challenges associated with implementing the developed
methods on multiple AGVs in a real warehouse. To this end, we use the Robot Operating
System (ROS) to facilitate the interaction of the coordinator with the AGVs. The AGVs are
simulated in Gazebo, a realistic physics engine and simulation environment. The results show
lower cumulative route completion times for the AGV fleet, confirming the results obtained
in Chapter 6.

7-1 Overview

In Chapter 6, we conducted a statistical evaluation of the methods presented in this thesis.
This evaluation considered simulations with up to 70 AGVs and showed that the proposed
methods can greatly decrease cumulative route completion time for the AGVs when AGVs are
subjected to delays as the plans are executed. The simulations in Chapter 6, however, were
done using a synchronous communication scheme without considering complications such as
communication delays. This means that each AGV moved to its neighboring position on the
roadmap in one, discrete time-step, following the same assumptions made by MAPF planners
such as ECBS. In a similarly discrete fashion, when an AGV was delayed, it would simply
pause at its current position for that discrete time-step. This simulation framework was
sufficient to showcase the theoretical guarantees of the proposed methods such as collision-
and deadlock-free execution, but further analysis is required to ensure the control strategies
yield the same improvements when applied to an actual warehouse scenario.

In this chapter we present a more realistic simulation framework which we use to identify the
challenges associated with implementing the proposed feedback control strategies with asyn-
chronous communication and naturally occurring AGV delays. The term asynchronous com-
munication is used to refer to event-based communication between AGVs and the coordinator
occurring at arbitrary times throughout the control loop, as opposed to the communication
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protocol used in Chapter 6 which only allowed communication after each OCP instance was
solved. To this end, we make use of the ROS software package which uses an asynchronous
communication protocol in the form of an all-to-all subscriber-publisher framework. To ensure
the model of the AGVs is accurate and sufficiently represents the dynamics and limitations
of a real AGV, we model each AGV in Gazebo [36]. A screenshot of the Gazebo environment
with four AGVs is shown in Figure 7-1.

The three main objectives of this chapter are to:

1. Identify the challenges of implementing and simulating the control strategies of Chapters
3 and 4 in a realistic simulation environment.

2. Address these challenges by translating the feedback control scheme in to the ROS
framework and simulating the AGVs in the Gazebo simulation environment.

3. Identify the limitations of this approach when applying it to actual AGVs in a warehouse
as well as gaining insight into which future work would still need to be performed to
address these limitations.

To this end, Section 7-2 presents the general framework used to implement the proposed
control strategies using the ROS framework and Gazebo simulation environment. Section 7-
3 describes the simulation setup and a discussion of the results, followed by a summary in
Section 7-4.

Figure 7-1: Four simulated AGVs in the Gazebo simulation environment with a static obstacle
(white crate) lying in the middle of the workspace.

7-2 Proposed Simulation Framework

In this section, we describe the architecture and components of the proposed framework in
more detail. Section 7-2-1 presents the communication network implicitly contained within
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the ROS framework, showing the inter-connection of all the components required by the feed-
back strategy. An important sub-component within this is the local planner and localization
scheme used by each AGV, which is also presented in this subsection. The fact that commu-
nication occurs in an asynchronous manner requires us to slightly adapt previously presented
feasible plan execution. This algorithm adaptation is presented in Section 7-2-2. Finally,
an augmented simulation setup is proposed in Section 7-2-3 which permits the simulation of
large numbers of AGVs by including AGVs simulated in Gazebo as well as a simple holonomic
motion models, allowing near real-time simulations of large numbers of AGVs despite limited
computing resources.

7-2-1 Architecture and ROS Network Description

The control framework is implemented using ROS, which is a code-agnostic middelware fa-
cilitating the communication and interaction between processes as typically seen in robotics
applications [37]. Each process is called a node, and communication is represented as an edge
connecting two nodes. As such, the interaction between software components implemented in
ROS can be seen as a graph representing such a communication network.

Each node is a software component that has the ability to publish and subscribe to a so-called
topic. Publications and subscriptions can be seen as directed edges connecting nodes in the
ROS network. A node is able to publish information it has locally to a topic, such that other
nodes which are subscribed to this topic can have access to this information. A topic is a mes-
sage with a specific datatype which provides the means of structured communication between
nodes within the ROS network. Consider the receding horizon control scheme presented in
Section 4-5. When implemented in ROS, this scheme was translated into the ROS network
as shown in Figure 7-2.

AGV 1

...Local Coordinator 1

Legend

Global Planner

ECBS

Hardware Platform

ROS Node

AGV 2

Local Coordinator 2

AGV N

Local Coordinator N

...

Coordinator

SADG

Optimizer

Central Interface and Coordinator

Sub-component

Communication 

Figure 7-2: Illustration of the communication and physical architecture for the ROS implemen-
tation of the receding horizon solution in Section 4-5. See Figure 7-3 for more details on the
sub-components of AGV i ∀ i ∈ {1, . . . , N}.
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The central coordinator interface is connected to the MAPF planner (in this case, we use
ECBS), the SADG data-structure and the optimizer. These components are all contained
within a single ROS node. To enable communication between the coordinator and each
AGV, we included a Local Coordinator i ∀ i ∈ {1, . . . , N}. This intermediate ROS node
was necessary since coordination was implemented in Python 2.7.12, whereas the coordinator
was implemented in Python 3.6.7 (since the Python-MIP package used to construct and solve
the MILP is only available in Python 3.5 or higher [38]). This intermediate node need not be
independent from the coordinator node if this were not the case, e.g. if the code above were
implemented using ROS2, which officially supports Python 3 [39].

Finally, Local Coordinator i is connected to AGV i ∀ i ∈ {1, . . . , N}. For simplicity, the
details of the control architecture of each AGV is omitted in Figure 7-2. Instead, the most
relevant details thereof are shown in Figure 7-3. The navigation stack of each AGV consists
of the motion planner and the localization scheme. In this case, we use move_base and a
localization scheme called AMCL respectively. Both these nodes interact with a simulated
instance of the AGV in Gazebo via control inputs to the simulated hardware and sensor
readings. The details pertaining to move_base and AMCL are discussed next. However,
we only discuss the details relevant to our simulations. The reader is referred to [40] for a
comprehensive reference on all the components within the navigation stack.

Motion Planner using move_base

As shown in Figure 7-3, the move_base motion planner consists of an interconnection of five
key components. In the context of this thesis work, move_base is a local planner. Sticking
to the move_base nomenclature, we note that move_base itself consists of both a global
and local planner. It is important to differentiate between the ECBS global planner and the
global planner for each AGV’s navigation stack. Move_base’s global planner uses Dijkstra’s

global_planner

move_base

sensors

base controller

global_costmap

local_planner

recovery_behaviors

local_costmap

LaserScan
PointCloud

AMCL

Map server

Gazebo environment

AMCL

Figure 7-3: Diagram illustrating the components within the navigation stack. The three main
components are the move_base and AMCL ROS nodes and the simulated AGV in the Gazebo
environment adapted from [4].
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algorithm to determine the fastest route to the a goal based on a roadmap defined by the
global costmap. The local planner is then invoked to follow this global trajectory. In our
simulations, we use the DWB local planner [41], an improved implementation of the original
DWA local planner [42] which uses a dynamic window approach as detailed in [43]. This
planner was chosen because it proved to be the most robust of the available open-source local
planners.

Figure 7-4 shows an example of the costmaps and planners in RViz. Rviz is a tool used to
visualize information contained within ROS nodes and provides a perspective into an AGV’s
sensor readings and planned control actions. In Figure 7-4a, the global and local costmaps
are depicted by a lighter and darker red-blue-magenta colors respectively. The local costmap
changes dynamically based on the AGV’s sensor data, and the global costmap is updated
based on these local observations. In this example, consider the obstacles in-front of the
AGV, as seen in the Gazebo simulation environment in Figure 7-4b, and the corresponding
costmaps in RViz. When a new goal position is specified, as depicted by the green vector,
the global planner determines the fastest route to this goal by performing a graph search, as
shown by the green path. Once determined, the local planner determines the control inputs
required by the AGV to follow this global path while taking the AGV’s kinematic constraints
into account. In Figure 7-4a, this local trajectory corresponds to the red path. For the
simulations, the local planner is run at 5.0 Hz, and the global planner at 2.0 Hz. Note how
only the local planner considers the AGV’s kinematics within its planned trajectory.

The final key component of the move_base system is the recovery behavior protocol, which
can be depicted as a flow chart as shown in Figure 7-5. This protocol defines the evasive
maneuvers which an AGV should follow in the case that it cannot proceed towards its goal.
This could be caused by an obstacle which the AGV can no longer avoid by following the
global trajectory in a collision-free manner. Referring to Figure 7-5, the default operating
state is navigating. If the AGV can no longer navigate to its goal, it will clear obstacles outside
a 2-meter radius and re-plan, corresponding to the conservative reset. If this fails, it will (if
possible) rotate in-place in order to re-localize and try find a valid collision-free trajectory
that permits it to resume its navigation to the goal. If this fails, it will clear all perceived
obstacles outside the space in which it can rotate, followed by another in-place rotation. If
all this fails, the AGV will go into an aborted state, meaning it has abandoned its navigation

(a) Global (green) and local (red) planner trajectories. (b) Gazebo simulation of the AGV

Figure 7-4: Illustration of the global and local costmaps and trajectories for an AGV navigating
through an environment littered with static obstacles as seen in RViz and in the Gazebo simulation
environment.
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towards the goal. In the context of this work, this recovery behavior is important because it
was observed that AGVs can potentially take a considerable amount of time to return to the
navigating state, potentially delaying other AGVs as dictated by the currently active ADG.

navigating

conservative
reset

clearing
rotation

aggressive
reset

clearing
rotation

aborted

Figure 7-5: Recovery behavior flow diagram illustrating the state-transitions of the move_base
ROS node as adapted from [4].

Localization using an Adaptive Monte Carlo Localization Scheme

For localization, the AGV uses an adaptive Monte Carlo localization (AMCL) scheme. This
is a probabilistic localization method that is based on a particle filter which uses a pre-
determined static map input, combined with sensor data obtained from the laser scanner to
determine a best estimate of the AGV’s pose in the environment [44]. In the simulations, the
AMCL node runs at 10 Hz, with a minimum of 500 and maximum of 5000 particles. These
parameters were found to yield a good balance between computational efficiency, localization
accuracy and overall performance.

Figure 7-6 shows an example of an AGV which is localizing itself in the workspace. Figure 7-
6a shows a visual interpretation of the sensor data used by an AGV to localize itself within the
workspace in RViz, corresponding to the simulated scenario shown in Figure 7-6b. In order
to visualize what an AGV can see around it, based on its sensor input, the RViz visualization
tool is used. This illustration shows how an AGV’s perception of its environment can be seen
from its own perspective. Figure 7-6b shows four AGVs within a Gazebo environment as well
as a previously unknown obstacle. The visualization in Figure 7-6a, shows the laser scan data
as seen by the AGV in the center. Note how the neighboring AGVs in its field-of-view are
detected by the ego AGV. Additionally, two edges of the obstacle are visible to the AGV as
well. Despite these additional, unforeseen obstacles in its field-of-view, the AMCL localization
scheme was found to return adequate pose estimates allowing for each AGV to navigate the
workspace without the localization affecting the plan execution speed in a significant manner.

7-2-2 Guaranteeing Feasibility Despite Asynchronous Event Completion

In order to minimize communication overhead between AGVs and the coordinator, we let
communication take place in an event-based fashion. This means that instead of continuously
publishing an AGVs location, and letting the coordinator determine what its next goal pose
should be based on the currently active ADG, AGVs only publish messages to the coordinator
when it has completed an event as dictated by the ADG. However, it is important to ensure
that the AGV does not start an event within the ADG which the coordinator is unaware of,
because this might cause the resultant OCP solution to become infeasible. To illustrate this
point, consider an inactive reverse dependency pointing to an ADG vertex, which is initially
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(a) RViz simulation seen by the ego robot (b) Gazebo Simulation

Figure 7-6: Four AGVs in the Gazebo simulation environment and as seen in the RViz environ-
ment from the viewpoint of one of the AGVs.

not constrained by another dependency. Based on the previous solution, the ADG dictates
that the AGV can start executing this event since no dependencies are stopping it from doing
so. However, since the OCP is being solved assuming this vertex is still staged, the optimal
solution might require the reverse dependency to now be active, resulting in infeasible plan
execution, despite an optimal (and therefore feasible) solution to the OCP.

To ensure this does not happen, we adapt the algorithm of the receding horizon control scheme
in Section 4-5 such that AGVs can only execute new vertices within the ADG before the OCP
is being solved. In the case that the OCP does not yet have a solution, the AGV is forced
to wait. The adapted algorithm is shown in Algorithm 7. Here, a boolean state variable
canGetNewEvent is used to define whether or not an AGV can request a new vertex within
the ADG plan to continue executing its plan.

Algorithm 7 Switching ADG RHC Asynchronous Feedback Scheme
1: Get goals and locations
2: Solve MAPF to obtain P
3: Construct SADG(b) using Algorithm 3
4: AGVs reserve vertices in ADG

5: while Plans not done do
6: positions ← currentPosition(AGV)
7: canGetNewEvent = False
8: Extract S̄(b̄) using Algorithm 5 and positions
9: Construct OCP from S̄(b̄) as in Section 4-4

10: b ← solve OCP in (4-5)
11: ADG← SADG(b)
12: canGetNewEvent = True
13: AGVs reserve vertices in ADG

7-2-3 Augmented Simulation Setup

Simulating an AGV with move_base and AMCL in Gazebo requires a non-negligible amount
of computing resources. Although this is rarely an issue with smaller fleet sizes (less than
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five AGVs), this becomes a challenge when simulating large amounts of AGVs, as is required
in this case. The increase in computational complexity is reflected in the real-time factor, a
metric in Gazebo which represents the ratio of simulation time to the estimated real time.
Ideally, the real-time factor should be 1.0. However, when simulating more than five AGVs,
the real-time factor would go as low as 0.1. One of the goals of these simulations, however,
is to validate the efficiency of the control strategy despite challenges such as communication
delays and occasionally longer optimization times. This can only be done if the real-time
factor is not too low.

To this end, we introduce an alternative AGV simulation to the one in Gazebo, allowing a
so-called augmented simulation setup. The idea is to split the AGV fleet into two subsets:
the first is still simulated in Gazebo, and the second is simulated using a far simpler (and
less computationally expensive) simulation model. This allows the simulation of large AGV
fleets, with a higher real-time factor, all the while considering the complications associated
of the complex navigation stack mentioned in previous subsections.

The simplified simulation setup is shown in Figure 7-7 which replaces the navigation stack
in Figure 7-3. This simulation component uses the same move_base server as the Gazebo
variant, allowing direct compatibility with the already developed ROS-based coordinator,
but without a localization scheme, and a holonomic movement model which can be steered
towards a target.

move_base server

holonomic motion model

Figure 7-7: Diagram illustrating the components within the simplified navigation stack used in
the augmented simulation setup.

7-3 Simulations

Having outlined the basic ROS framework and relevant components, we introduce the simu-
lations used to evaluate the proposed method. All simulations were conducted on a Lenovo
Thinkstation with an Intel R© Xeon E5-1620 3.5GHz processor and 64 GB of RAM. The
AGVs are simulated to lie in the workspace shown in Figure 7-8a, which is a model of a full-
sized factory warehouse of dimensions 79.5m × 78.9m. From this warehouse model, a global
costmap is determined as shown in Figure 7-8b in RViz, as well as a roadmap which defines
the traverseable space which can be used in the MAPF problem definition. The roadmap is
shown in Figure 7-9a.
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(a) Workspace visualized in Gazebo (b) Workspace visualized in RViz

Figure 7-8: Workspace visualized in Gazebo and RViz

(a) Roadmap in black with goal positions in orange (b) Instantiated with 30 AGVs as colored dots

Figure 7-9: Workspace and the associated roadmap used in the Gazebo simulations.

Consider the orange locations in Figure 7-9a. These signify potential goal locations for each
AGV. 30 AGVs are given a random starting location, as well as a unique goal location which
is randomly selected from these orange locations. With these parameters defined, the receding
horizon scheme as defined in Algorithm 7 is used to coordinate the AGVs towards their goal.
The horizon is set to H = 10 seconds and the feedback loop is run at a frequency of 1 Hz. This
simulation is run 20 times for different random start and goal locations using the persistent
framework defined in Section 4-6. This means that the AGVs are given new goals after the
tasks are completed. The AGVs then navigate to these new goals based on their current
positions.

Furthermore, as described in Section 7-2-3, a randomly generated subset of the AGVs is
selected to be simulated in Gazebo in order to keep the simulation real-time factor above 0.5.
This means that for each simulation, 5 AGVs are simulated in Gazebo, and the remaining 25
are simulated using the simplified holonomic model described in Section 7-2-3.

As in Chapter 6, we compare the cumulative route completion time for the AGVs with and
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without switching. The improvement, as defined in Section 6-1, can be calculated as

improvement =
∑
tbaseline −

∑
tswitching∑

tbaseline
· 100%.

Referring to Algorithm 7, running the original ADG approach corresponds to running the
proposed receding horizon control strategy with a horizon of length 0. Furthermore, the
canGetNewEvent variable remains True throughout the loop, since the ADG does not change
dynamically as with the SADG-based approach. Theoretically, this should allow the original
ADG approach to be marginally faster than the receding horizon approach when it does not
perform any switching. Naturally, we expect the switching of dependencies to compensate for
this small reduction in efficiency.

As shown in Figure 7-4 and Figure 7-6, we include obstacles in the workspace. For each
simulation, we randomly placed 40 obstacles such as crates or pallets in different locations in
the warehouse. The location of these obstacles is not known to the MAPF planner. The AGVs
are not aware of these obstacles beforehand, and only encounter them via sensor measurements
as they execute their plans. Obstacles are also placed such that the AGVs are not permanently
blocked, but are able to bypass them using the previously introduced local planner. An
illustrative graph showing the AGV locations for different times in a single simulation is
shown in Figure 7-10.

(a) Start at t = 0s (b) At t = 100s (c) At t = 200s

Figure 7-10: Simulation of 30 AGVs using the receding horizon implemented in ROS. Colored
dots represent the location of AGVs simulated in the Gazebo simulation environment.
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Figure 7-11: Improvement for 20 randomly generated start/goal and obstacle locations.
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Figure 7-11 shows the improvement of route completion times for the 20 scenarios, show-
ing that our approach reduces the route completion time for the AGVs in each of the 20
simulations. The average improvement is 8.49%. Recall that, unlike in Chapter 6, we did
not artificially create delays by simply stopping AGVs. Instead, delays occurred naturally
due to AGVs taking longer to fulfill certain parts of their plans. Specifically, the following
phenomena were observed to contribute towards delays:

1. Unpredictable event completion times
As previously stated, the MAPF solution considers neither AGV kinematics nor dynam-
ics. However, an AGV turning around an obstacle can take significantly longer than an
AGV simply following a straight line trajectory.

2. Mismatch in predicted velocities
AGVs are expected to execute plans at a constant velocity. However, the move_base
planner would often cause the AGV to accelerate and decelerate such as when it had to
change direction.

3. Recovery behaviors
We observed that AGVs would sometimes loop through their prescribed recovery be-
haviors due to the proximity of other AGVs causing the costmap to be occupied and
temporarily blocking the AGV from advancing towards its goal.

4. Errors in localization
Although localization is mostly stable and consistent, we noticed that, occasionally, an
AGV’s pose estimate would be very inaccurate. This was mostly caused by other AGVs
and obstacles in proximity of the ego AGV. When badly localized, the AGV would
temporarily not proceed to its goal in an efficient manner, resulting in a delay.

An important factor to ensure the efficacy of this approach is the computational time required
to solve the MILP at each time-step. Consider the computational time shown in Figure 7-12a,
which remained below 500ms. This was achieved by ensuring the horizon is low enough such
that the amount of binary variables is limited to below 25, as shown in Figure 7-12b. This
was also facilitated by the use of dependency groups. On average, the initial SADG derived
from the MAPF plan would have 5500 Type 2 dependencies which were then grouped into
dependency groups, resulting in an average of only 1146 dependency groups. This implies
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Figure 7-12: The computation time to solve the optimization problem
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that, on average, the MILP only requires around 20% of the binary variables for the same
AGV fleet size and horizon length. The result is that the feedback scheme could be run at a
conservatively fast rate of 1 Hz for a group of 30 AGVs, which proved frequently enough to
yield an improvement in the overall route completion times.

As a final comment, we note that this approach can accommodate for inaccuracies in the
various models used to approximate the real world. For example, the accuracy of roadmaps
and knowledge of obstacles is no longer as important as it is in a scenario which does not
permit online switching such as the original ADG approach. This is because the re-ordering
can account for these inaccuracies by adjusting the ordering as the inaccuracies influence the
progress of AGVs along their plans.

In conclusion, the extensive simulation presented in this chapter showcased the real-time
applicability of our approach on real AGVs. A next would naturally be to test these scheme
on a real warehouse. This is left for future work.

7-4 Summary

In this chapter, we evaluated the receding horizon control strategy proposed in this thesis
by implementing the control strategy using the ROS software framework and the Gazebo
simulation environment. This allowed for a system-level evaluation of our approach since
the efficiency of our approach could be evaluated while considering important factors such as
vehicle dynamics, imperfect AGV localization and asynchronous communication. The results
showed that the receding horizon approach allows for reduced route completion times for the
AGVs with an improvement average of 8.49%. The simulation confirms the applicability of
the proposed method to a real-world use-case.
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Chapter 8

Conclusions & Outlook

In the final chapter of this thesis, we present the reader with a summary of the work performed
during this thesis, a discussion of the obtained results, as well as a short description of
recommendations for future work.

8-1 Summary

The principal objective of this thesis was to address the need for the dynamic adjustment of
multi-agent plans based on unpredictable delays. Multi-agent planning for AGVs is typically
formulated as some version of the MAPF problem, which is known to be NP-hard. Unpre-
dictable delays in dynamic environments can cause the original plan schedule to become highly
inefficient. Furthermore, executing the plans defined by a MAPF solution is also a challeng-
ing task since the assumptions of the MAPF typically assume perfect synchronization among
the AGVs: a property which cannot easily be guaranteed in practice. Some recent work has
considered delays within the MAPF planning stage by defining the expected delay properties
in an a-priori manner. However, in Chapter 2, we go on to motivate the need for an online
solution to account for delays as they occur using a feedback control strategy. That being
said, online solutions to plan re-adjustment without re-solving the original MAPF problem
are scarce.

The work in this thesis is aimed at addressing this scarcity by presenting a new re-ordering
scheme in the form of an SADG which allows the re-ordering of AGVs while executing MAPF
plans, minimizing the affects delayed AGVs might have on the AGV fleet. To this end,
we presented both a shrinking horizon and receding horizon feedback scheme in Chapters 3
and 4 respectively. Both these feedback schemes utilize the SADG to re-order AGVs while
maintaining the collision- and deadlock-free guarantees of the original MAPF solution. We go
on to formulate an OCP for both of the control strategies which can be solved in an iterative
scheme. This OCP is formulated as an MILP in Chapter 5. We also prove recursive feasibility
of both control strategies, implying that the optimization problem will remain feasible as long
as the underlying assumptions, which we present, are met.
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In Chapter 6, the proposed methods were evaluated in an extensive statistical simulation
framework to showcase the expected increase in performance, while showing online re-ordering
for AGV fleet sizes up to 70 AGVs. This method was compared to the original ADG approach
which represents any MAPF execution strategy where the re-ordering of AGVs is not per-
formed. Initial results showed a significant decrease in cumulative route completion times for
the AGV fleet. Finally, the proposed control strategies were implemented in ROS and the
AGVs simulated in the Gazebo simulation environment. We show that the method translates
well to a realistic environment which includes complications such as asynchronous commu-
nication and inaccurate route descriptions. These results illustrate the proposed method’s
viability in real robotics applications.

8-2 Conclusions & Discussion

The work in this thesis contributes a small portion to a much larger problem being faced by
the control and artificial intelligence (AI) communities at this point in time: how can the
control schemes be used to dynamically update decisions inAI related problems in a natural
manner. In short, the control domain is largely focused on dynamic systems using the well-
known feedback-loop paradigm, as well as typically looking for mathematical guarantees for
solving problems. On the other hand, the AI domain has always typically considered discrete,
large-scale problems, but in a static setting, meaning that disturbances are difficult to account
for in a natural manner.

This was showcased in this thesis, where we considered the MAPF problem, a typical NP-
hard challenge in the AI domains, and attempted to tackle it from a control perspective by
developing a receding horizon control strategy capable of adjusting MAPF plans in an online
fashion. Finding natural combination of continuous and discrete decision spaces will allow us
to solve a multitude of problems in the future. Parallel challenges could include a traveling
salesman problem with dynamically changing destination availability.

Referring back to the three research objectives laid out in Section 1-1, we have addressed
all three these objectives by considering (1) adjusting the ordering of AGVs based on their
measured delays while maintaining collision- and deadlock-free execution guarantees of the
original plan; (2) extending this notion for use in a persistent planning architecture by trans-
lating the method into a receding horizon approach; and (3) validating the proposed method
in an extensive simulation environment.

8-3 Recommendations & Future Work

We list a few of these ideas below which could be addressed in future work.

Re-planning within a Sub-graph

Another possible extension is complementing our approach with a local re-planning method.
This is because our approach maintains the originally planned trajectories of the AGVs. How-
ever, we observed that under large delays, the originally planned routes can become largely
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inefficient due to the fact the AGVs are in entirely different locations along their planned
path. This could potentially be addressed by introducing local re-planning of trajectories.
An idea could be to consider the ADG structure and use this abstraction as the boundary
constraints of a new MAPF problem which is only defined within the confines of a sub-graph
within the entire workspace.

Planner Optimizing the Possibility of Re-Ordering

One of the weaknesses of the proposed method is the fact that it is highly dependent on the
overlap of AGV routes which depends on the MAPF planner. If an area is known to be highly
unpredictable, considering an alternative objective in the global planner could help improve
real-time performance: namely, if the MAPF plan objective is to maximize the amount of
potential re-ordering able among AGVs, if coupled with the framework in this thesis, could
allow a great increase in efficiency.

Avoiding Occasional Worse Performance

We observed that the receding horizon control scheme would occasionally yield worse perfor-
mance for a random fleet size and delay duration. The reason for this is that future AGV
delays are not considered in the OCP of either control strategy. In fact, the proposed meth-
ods assume that the AGVs will no longer be delayed in the future, therefore only considering
delays which have occurred in the past to adjust the ordering of AGVs in the present. On
occasion, this assumption would prove to be invalid, since the receding horizon scheme would
yield worse results than when no re-ordering was performed. A possible solution to this is the
use of a robust optimization approach which can consider the potential delays in the future
and derive a switching strategy which would account for this.

Evaluation on a Real Robotic Platform

Having simulated the AGVs in an extensive simulation environment, it would still be beneficial
to validate the proposed approaches on real robotic hardware, subject to the natural delays
which occur in warehouses with dynamic obstacles in the way. The developed ROS framework
could start as a baseline for an eventual hardware implementation of the proposed methods.

Receding Horizon Control using Max-Plus Algebra

Another interesting approach to disturbance rejection in a receding horizon fashion is by for-
mulating the problem using max-plus algebra [45, 46]. Applications include real-time train-
scheduling and printer optimization. Max-plus algebra is powerful because it can be used to
represent inherently non-linear schedules in a linear manner, where well-known linear control
methods can be applied to design receding horizon controllers. For example, Kersbergen et
al. [45] use max-plus linear algebra to switch the ordering of delayed trains using a receding
horizon Model Predictive Control (MPC) framework. The MPC framework is used to de-
termine if delayed train connections should be broken or not. The use of max-plus algebra,
however, requires cyclic or semi-cyclic systems for analysis, a commodity which is lacking in
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the MAPF problem structure. However, this method would be highly applicable to a problem
where multiple AGVs perform tasks defined by a cyclic schedule.
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Appendix A

Paper Submission to ICAPS 2020

The work presented in this thesis has lead to a workshop paper submitted to the International
Conference on Automated Planning and Scheduling (ICAPS) 2020 in Nancy, France 1.

This work presents the initial concepts and ideas of this thesis, specifically the work presented
in Chapter 3. However, the reader should be aware of a slight deviation in the nomenclature:
the concept of a modified ADG in the paper is equivalent to the SADG presented in this
thesis.

1ICAPS 2020 information: https://icaps20.icaps-conference.org/workshops/dmap/
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A Feedback Scheme to Reorder a Multi-Agent Execution Schedule by
Persistently Optimizing a Switchable Action Dependency Graph

Alexander Berndt1, Niels van Duijkeren2, Luigi Palmieri2 and Tamás Keviczky1

Abstract— In this paper we consider multiple Automated
Guided Vehicles (AGVs) navigating a common workspace to
fulfill various intralogistics tasks, typically formulated as the
Multi-Agent Path Finding (MAPF) problem. To keep plan
execution deadlock-free, one approach is to construct an Action
Dependency Graph (ADG) which encodes the ordering of
AGVs as they proceed along their routes. Using this method,
delayed AGVs occasionally require others to wait for them at
intersections, thereby affecting the plan execution efficiency. If
the workspace is shared by dynamic obstacles such as humans
or third party robots, AGVs can experience large delays. A
common mitigation approach is to re-solve the MAPF using the
current, delayed AGV positions. However, solving the MAPF
is time-consuming, making this approach inefficient, especially
for large AGV teams. In this work, we present an online
method to repeatedly modify a given acyclic ADG to minimize
route completion times of each AGV. Our approach persistently
maintains an acyclic ADG, necessary for deadlock-free plan
execution. We evaluate the approach by considering simulations
with random disturbances on the execution and show faster
route completion times compared to the baseline ADG-based
execution management approach.

Index terms— Robust Plan Execution, Scheduling and Coor-
dination, Mixed Integer Programming, Multi-Agent Path Finding,
Factory Automation

I. INTRODUCTION

Multiple Automated Guided Vehicles (AGVs) have shown
to be capable of efficiently performing intra-logistics tasks
such as moving inventory in distribution centers [1]. The
coordination of AGVs in shared environments is typically
formulated as the Multi-Agent Path Finding (MAPF) prob-
lem, which has been shown to be NP-Hard [2]. The problem
is to find trajectories for each AGV along a roadmap such
that each AGV reaches its goal without colliding with the
other AGVs, while minimizing the makespan. The MAPF
problem typically considers an abstraction of the workspace
to a graph where vertices represent spatial locations and
edges pathways connecting two locations.

Recently, solving the MAPF problem has garnered
widespread attention [3], [4]. This is mostly due to the
abundance of application domains, such as intralogistics,
airport taxi scheduling [5] and computer games [6]. Solutions
to the MAPF problem include Conflict-Based Search (CBS)
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Fig. 1: A roadmap occupied by 50 AGVs (represented by colored
dots). AGVs must efficiently navigate from a start to a goal position
while avoiding collisions with one another, despite being subjected
to delays.

[7], Prioritized Planning using Safe Interval Path Planning
(SIPP) [8], declarative optimization approaches using answer
set programming [9], heuristic-guided coordination [10] and
graph-flow optimization approaches [11].

Algorithms such as CBS have been improved by exploiting
properties such as geometric symmetry [12], using purpose-
built heuristics [13], or adopting a Mixed-Integer Linear
Program (MILP) formulation where a branch-cut-and-price
solver is used to yield significantly faster solution times [14].

Similarly, the development of bounded sub-optimal solvers
such as Enhanced Conflict-Based Search (ECBS) [15]
have further improved planning performance for higher di-
mensional state spaces. Continuous Conflict-Based Search
(CCBS) can be used to determine MAPF plans for more
realistic roadmap layouts [16]. As opposed to CBS, CCBS
considers a weighted graph and continuous time intervals to
describe collision avoidance constraints, albeit with increased
solution times.

The abstraction of the MAPF to a graph search problem
means that executing the MAPF plans requires monitoring
of the assumptions made during the planning stage to ensure
and maintain their validity. This is because irregularities
such as vehicle dynamics and unpredictable delays influ-
ence plan execution. kR-MAPF addresses this by permitting
delays up to a duration of k time-steps [17]. Stochastic
AGV delay distributions are considered in [18], where the
MAPF is solved by minimizing the expected overall delay.
These robust MAPF formulations and solutions inevitably



result in more conservative plans compared to their nominal
counterparts.

An Action Dependency Graph (ADG) encodes the order-
ing between AGVs as well as their kinematic constraints
in a post-processing step after solving the MAPF [19].
Combined with an execution management approach, this
allows AGVs to execute MAPF plans successfully despite
kinematic constraints and unforeseen delays. This work was
extended to allow for persistent re-planning [20].

The aforementioned plan execution solutions such as
[20], [17], [18] do not specifically address the effects of
significantly large delays. These approaches typically view
delays as a lack of synchronization between AGVs, rather
than as significantly impacting the route completion time.
The result is that plan execution is unnecessarily inefficient
when a single AGV is largely delayed and others are on
schedule, since AGVs still occasionally need to wait for the
delayed AGV before continuing their plans. We observe that
to efficiently mitigate the effects of such large delays the
plans should be adjusted continuously in an online fashion.
The main challenge being to optimize the plan efficiently
while maintaining deadlock- and collision-free execution.

In this paper, we present such an online approach capable
of reordering AGVs based on any given MAPF solution,
thus allowing for efficient MAPF plan execution even in the
presence of large delays. This approach is fundamentally
different from the aforementioned approaches [19], [18],
[17], [20] in that delays can be accounted for as they occur,
instead of anticipating them a priori. The feedback nature of
our approach additionally means solving the initial MAPF
can be done assuming nominal plan execution, as opposed
to solving a robust formulation which necessarily results in
longer initial plans.

Our contributions include the introduction of reverse agent
dependencies leading to the Switchable Action Dependency
Graph (SADG), a mixed-integer linear program formulation
to optimally select agent dependencies, and showing that
execution management based on this approach guarantees
collision- and deadlock-free execution.

Working towards our proposed solution, we formally de-
fine the Multi-Agent Path Finding problem and the concept
of an Action Dependency Graph (ADG) in Section II. Based
on a modified version of this ADG, we introduce the concept
of a reverse agent dependency in Section III. This will allow
an alternative ordering of Automated Guided Vehicles, while
maintaining collision avoidance constraints. In Section IV,
we formulate the choice of selecting between forward or
reverse ADG dependencies as a closed-loop optimization
problem. This optimization formulation guarantees that the
resulting ADG allows plan execution to be both collision-
and deadlock-free, while minimizing the predicted plan
completion time. Finally, we compare this approach to the
baseline ADG method in Section V.

II. PRELIMINARIES

Let us now introduce the fundamental concepts on which
our approach is based, facilitated by the example shown

in Fig. 2. Consider the representation of a workspace as a
roadmap G = (V, E), e.g., as in Fig. 2a. A MAPF solution
is defined as in Definition 1.

Definition 1 (MAPF Solution). Consider a roadmap G =
(V, E) occupied by a set of N AGVs where the ith AGV
has start si ∈ V and goal gi ∈ V , such that si 6= sj and
gi 6= gj ∀ i, j ∈ {1, . . . , N}, i 6= j, an MAPF solution
P = {P1, . . . , PN} is a set of N plans, each defined by a
sequence of tuples p = (l, t) consisting of a location l ∈ V ,
and a time t ∈ [0,∞). Pi = {p1i , . . . , pNi

i } refers to the plan
for AGVi. If every AGV perfectly follows its plan given by
the MAPF solution, then all AGVs will reach their respective
goals in finite time without collision.

In Fig. 2a, AGV1 and AGV2 have start and goal s1 = A,
g1 = H and s2 = E, g2 = D, respectively. For this example,
using CCBS [16] yields P = {P1, P2} as

P1 = {(A, 0), (B, 1.0), (C, 2.2), (G, 3.1), (H, 3.9)},
P2 = {(E, 0), (F, 1.1), (G, 3.9), (C, 4.8), (D, 5.9)}.

Note the implicit ordering in P , stating AGV1 traverses C−
G before AGV2.

Given a plan tuple p = (l, t), define the operators l =
loc(p) and t = t̂(p) which return the location l ∈ V and
planned time of plan tuple p respectively. Let S(p) 7→ S ⊂
R2 be an operator which maps l = loc(p) to a spatial region
in the physical workspace in R2. Finally, let SAGV ⊂ R2

refer to the physical area occupied by an AGV.

A. Modified Action Dependency Graph

Based on a MAPF solution P , we can construct a modified
version of the original Action Dependency Graph (ADG),
formally defined in Definition 2. This modified ADG encodes
the sequencing of AGV movements to ensure the plans are
executed as originally planned despite delays.

Definition 2 (Action Dependency Graph). An ADG is a
directed graph GADG = (VADG, EADG) where the vertices
represent events of an AGV traversing the roadmap G. A
vertex vki = ({p1, . . . , pq}, status) ∈ VADG denotes the
event of AGVi moving from loc(p1), via intermediate lo-
cations, to loc(pq), where q ≥ 2 denotes the number of
consecutive plan tuples encoded within vki . Finally, status ∈
{staged, in-progress, completed}.

Initially, the status of vki are staged ∀ i, k. The directed
edges in an ADG, from here on referred to as dependen-
cies, define event-based constraints between two vertices.
Formally, (vki , v

l
j) implies that vlj cannot be in-progress or

completed until vki = completed. A dependency (vki , v
l
j) ∈

EADG is classified as Type 1 if i = j and Type 2 if i 6= j.
An ADG can be constructed from a plan P using Algo-

rithm 1. Fig. 2b shows an example of an ADG plan being
executed, based on the AGV positions in Fig. 2a. Observe
how AGV2 cannot start v22 before v41 has been completed.

As discussed in [20], there exist valid MAPF solutions for
which the resulting ADG is cyclic. It is possible to modify
MAPF planning algorithms to avoid obtaining such plans,
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(b) Illustration of the ADG where each vertex status is color coded.
It reflects the momentary progress of the AGVs in Fig. 2a.

Fig. 2: Illustrative MAPF problem example alongside the con-
structed Action Dependency Graph

which require precise synchronous execution. We therefore
introduce the following assumption.

Assumption 1 (Acyclic ADG). The MAPF solution as de-
fined in Definition 1 is such that the ADG constructed by
Algorithm 1 is acyclic.

Let us introduce notation facilitating the differentiation
between planned and actual ADG vertex completion times.
Let t̂s(vki ) and t̂g(vki ) denote the planned time that event
vki ∈ VADG is expected start and be completed respectively.
This planned time refers to times specified in a MAPF
solution. Due to delays, the planned and actual ADG vertex
times may differ. We therefore introduce ts(vki ) and tg(vki )
which denote the actual start and completion times of event
vki ∈ VADG respectively. With regards to the status of ADG
vertex vki , t̂s(vki ) and ts(vki ) refer to when the status of vki
changes from staged to in-progress, and t̂g(vki ), tg(vki ) refer
to changes from in-progress to completed. Note that if the
MAPF solution is executed nominally, i.e. AGVs experience
no delays, ts(vki ) = t̂s(v

k
i ) and tg(vki ) = t̂g(vki ) for all

v ∈ VADG.
Unlike the originally proposed ADG algorithm, Algo-

rithm 1 ensures subsequent plan tuples which are not spa-
tially exclusive are contained within a single ADG vertex, cf.
line 8 of the algorithm. This property will prove to be useful
with the introduction of reverse dependencies in Section III-
A. Referring to Algorithm 1, we introduce plan(vki ) which
returns the sequence of plan tuples {p1, . . . , pq} for vki ∈
VADG. Let the operators s(vki ) and g(vki ) return the start and
goal vertices loc(p1) and loc(pq) of vertex vki respectively.
Finally, ⊕ denotes the Minkowski sum.

Despite these modifications, Algorithm 1 maintains the

Algorithm 1 Modified ADG construction based on [20]

Input: MAPF solution P = {P1, . . . ,PN}
Result: GADG

// Add ADG vertices and Type 1 dependencies
1: for i = 1 to N do
2: p← p1i
3: v ← ({p}, staged)
4: vprev ← None
5: k = 2
6: for k = 2 to Ni do
7: Append pki to plan(v)
8: if S(p)⊕ SAGV ∩ S(pki )⊕ SAGV = ∅ then
9: Add v to VADG

10: if vprev not None then
11: Add edge (vprev, v) to EADG
12: vprev ← v
13: p← pki
14: v ← ({p}, staged)

// Add Type 2 dependencies
15: for i = 1 to N do
16: for k = 1 to Ni do
17: for j = 1 to N do
18: if i 6= j then
19: for l = 1 to Nj do
20: if s(vki ) = g(vlj) and t̂g(vki ) ≤ t̂g(vlj) then
21: Add edge (vki , v

l
j) to EADG

22: return GADG

original algorithm’s time complexity of O(N2n̄2) where n̄ =
maxiNi.

Furthermore, let us introduce an important property of
an ADG-managed plan-execution scheme, Proposition 1,
concerning guarantees of successful plan execution.

Proposition 1 (Collision- and deadlock-free ADG plan
execution). Consider an ADG, GADG, constructed from a
MAPF solution as defined in Definition 1 using Algorithm 1,
satisfying Assumption 1. If the AGV plan execution adheres
to the dependencies in GADG, then, assuming the AGVs are
subjected to a finite number of delays of finite duration, the
plan execution will be collision-free and completed in finite
time.

Proof 1: Proof by induction. Consider that AGVi and AGVj
traverse a common vertex p̄ ∈ G along their plans Pi and
Pj , for any i, j ∈ {1, . . . , N}, i 6= j. By lines 1-14 of
Algorithm 1, this implies g(vki ) = s(vlj) = p̄ for some
vki , v

l
j ∈ VADG. By lines 15-21 of Algorithm 1, common

vertices of Pi and Pj in G will result in a Type 2 dependency
(vlj , v

k
i ) if p = s(vlj) = g(vki ) and t̂g(vki ) ≤ t̂g(vlj). For the

base step: initially, all ADG dependencies have been adhered
to since v1i is staged ∀ i ∈ {1, . . . , N}. For the inductive
step: assuming vertices up until vk−1i and vl−1j have been
completed in accordance with all ADG dependencies, it
is sufficient to ensure AGVi and AGVj will not collide
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Fig. 3: A subset of an ADG with a dependency (black) and its
reverse (red)

at p̄ while completing vki and vlj respectively, by ensuring
ts(v

k
i ) > tg(vlj). By line 20 of Algorithm 1 the Type 2

dependency (vki , v
l
j) guarantees ts(vki ) > tg(vlj). Since, by

Assumption 1, the ADG is acyclic, at least one vertex of the
ADG can be in-progress at all times. By the finite nominal
execution time of the MAPF solution in Definition 1, despite
a finite number of delays of finite duration, finite-time plan
completion is established. This completes the proof. �

III. SWITCHING DEPENDENCIES IN THE ACTION
DEPENDENCY GRAPH

We now introduce the concept of a reversed ADG depen-
dency. In the ADG, Type 2 dependencies essentially encode
an ordering constraint for AGVs visiting a vertex in G. The
idea is to switch this ordering to minimize the effect an
unforeseen delay has on the task completion time of each
AGV.

A. Reverse Type 2 Dependencies

We now introduce the notion of a reverse Type 2 depen-
dency. Definition 3 states that a dependency and its reverse
contain the same collision avoidance constraints, but with
a reversed AGV ordering. Lemma 1 can be used to obtain
a dependency which conforms to Definition 3. Lemma 1 is
illustrated graphically in Fig. 3.

Definition 3 (Reverse Type 2 dependency). Consider a Type
2 dependency d = (vki , v

l
j). d requires ts(vlj) ≥ tg(vki ). A

reverse dependency of d is a dependency d′ that ensures
ts(v

k
i ) ≥ tg(vlj).

Lemma 1 (Reversed Type 2 dependency). Let
vki , v

l
j , v

l+1
j , vk−1i ∈ VADG. Then d′ = (vl+1

j , vk−1i ) is
the reverse dependency of d = (vki , v

l
j).

Proof 2: The dependency d = (vki , v
l
j) encodes the con-

straint ts(vlj) ≥ tg(vki ). The reverse of d is denoted as
d′ = (vl+1

j , vk−1i ). d′ encodes the constraint ts(vk−1i ) ≥
tg(vl+1

j ). By definition, ts(vki ) ≥ tg(vk−1i ) and ts(v
l+1
j ) ≥

tg(vlj). Since tg(v) ≥ ts(v), this implies that d′ encodes the
constraint ts(vki ) ≥ tg(vlj), satisfying Definition 3. �

The modified ADG ensures that reverse dependencies
maintain sufficient collision avoidance constraints since ad-
jacent vertices in VADG refer to spatially different locations,
cf. line 8 in Algorithm 1.

B. Switchable Action Dependency Graph

Having introduced reverse Type 2 dependencies, it is
necessary to formalize the manner in which we can select
dependencies to obtain a resultant ADG. A cyclic ADG
implies that two events are mutually dependent on each
other, implying a deadlock. To ensure deadlock-free plan
execution, it is sufficient to ensure the selected dependencies
result in an acyclic ADG. Additionally, to maintain the
collision-avoidance guarantees implied by the original ADG,
it is sufficient to select at least one of the forward or
reverse dependencies of each forward-reverse dependency
pair in the resultant ADG. Since selecting both a forward
and reverse dependency always results in a cycle within
the ADG, we therefore must either select between the
forward or the reverse dependency. To this end, we formally
define a Switchable Action Dependency Graph (SADG) in
Definition 4 which can be used to obtain the resultant ADG
given a selection of forward or reverse dependencies.

Definition 4 (Switchable Action Dependency Graph). Let
an ADG as in Definition 2 contain mT forward-reverse de-
pendency pairs determined using Definition 3. A Switchable
Action Dependency Graph (SADG) is a mapping SADG(b) :
{0, 1}mT 7→ GADG which outputs the resultant ADG based
on the selected dependency selection represented by b =
{b1, . . . , bmT

}, where bm = 0 and bm = 1 imply selecting
the forward and reverse dependency of pair m respectively,
m ∈ {1, . . . ,mT }.
Corollary 1 (SADG plan execution). Consider an SADG,
SADG(b), as in Definition 4. If b is chosen such that GADG

= SADG(b) is acyclic, and no dependencies in GADG point
from vertices that are staged or in-progress to vertices that
are completed, GADG will guarantee collision- and deadlock-
free plan execution.

Proof 3: By definition, any b will guarantee collision-free
plans, since at least one dependency of each forward-reverse
dependency pair is selected, by Proposition 1. If b ensures
ADG = SADG(b) is acyclic, and the resultant ADG has
no dependencies pointing from vertices that are staged or
in-progress to vertices that are completed, the dependencies
within the ADG are not mutually constraining, guaranteeing
deadlock-free plan execution.

The challenge is finding b which ensures ADGb is acyclic,
while simultaneously minimizing the cumulative AGV route
completion times. This is formulated as an optimization
problem in Section IV.

IV. OPTIMIZATION-BASED APPROACH

Having introduced the SADG, we now formulate an opti-
mization problem which can be used to determine b such that
the resultant ADG is acyclic, while minimizing cumulative
AGV route completion times. The result is a Mixed-Integer
Linear Program (MILP) which we solve in a closed-loop
feedback scheme, since the optimization problem updates the
AGV ordering at each iteration based on the delays measured
at that time-step.



A. Translating a Switchable Action Dependency Graph to
Temporal Constraints

1) Regular ADG Constraints: Let us introduce the op-
timization variable tki,s which, once a solution to the op-
timization problem is determined, will be equal to ts(v

k
i ).

The same relation applies to the optimization variable tki,g
and tg(vki ). The event-based constraints within the SADG
can be used in conjunction with a predicted duration of each
event to determine when each AGV is expected to complete
its plan. Let τ(vki ) be the expected time it will take AGVi
to complete event vki ∈ VADG based solely on dynamical
constraints, route distance and assuming the AGV is not
blocked. For example, we could let τ equal the edge distance
divided by the expected nominal AGV velocity. We can now
specify the temporal constraints corresponding to the Type 1
dependencies of the plan of AGVi as

t1i,g ≥ t1i,s + τ(v1i ),

t2i,s ≥ t1i,g,
t2i,g ≥ t2i,s + τ(v2i ),

t3i,s ≥ t2i,g,
...

...

tNi
i,s ≥ tNi−1

i,g ,

tNi
i,g ≥ tNi

i,s + τ(vNi
i ).

(1)

Consider a Type 2 dependency (vki , v
l
j) within the ADG.

This can be represented by the temporal constraint

tlj,s > tki,g, (2)

where the strict inequality is required to guarantee that AGVi
and AGVj never occupy the same spatial region.

2) Adding Switchable Dependency Constraints: We now
introduce the temporal constraints which represent the se-
lection of forward or reverse dependencies in the SADG.
Initially, consider the set EType 2

ADG = {e ∈ EADG|e is Type 2}
which represents the sets of all Type 2 dependencies. The aim
here is to determine a set E switchable

ADG ⊂ EType 2
ADG containing the

dependencies which could potentially be switched and form
part of the MILP decision space, as required by Corollary 1.
E switchable

ADG is determined by considering the dependencies in
EType 2

ADG which match the following criteria:

1) Where the tail points to a staged vertex,
2) Where the head of the original and reverse dependency

point to a staged vertex.

An illustrative example of which dependencies to consider
in the MILP is shown in Fig. 4. Having determined E switchable

ADG ,
the next step is to include the switched dependencies as
temporal constraints. Directly referring to Section III-B, we
assume mT forward-reverse dependency pairs in E switchable

ADG ,
where the Boolean bm is used to select the forward or reverse
dependency of the mth forward-reverse dependency pair,
m ∈ {1, . . . ,mT }. These temporal constraints can be written
as

Fig. 4: Illustrative example of dependencies considered in the
optimization problem. Considered dependencies are black (forward)
and red (reverse). Grey dependencies are ignored.

tlj,s > tki,g − bmM,

tk−1i,s > tl+1
j,g −

(
1− bm

)
M,

(3)

where M is a large, positive constant such that M >
maxi t

Ni
i . Note that maxi t

Ni
i can be approximated by esti-

mating the maximum anticipated delays experienced by the
AGVs. In practice, however, finding such an upper bound
on delays is not evident, meaning we choose M to be a
conservatively high value.

B. Optimization Problem Formulation

We have shown that an SADG is represented by the
temporal constraints in Eq. (1) through Eq. (3) for i ∈
{1, . . . , N}, m ∈ {1, . . . ,mT }. Minimizing the cumulative
route completion time of all AGVs is formulated as the
following optimization problem

min
b, ts, tg

N∑

i=1

tNi
i,g

s.t. Eq. (1) ∀ i = {1, . . . , N},
Eq. (2) ∀ e ∈ EType 2

ADG \ E switchable
ADG ,

Eq. (3) ∀ e ∈ E switchable
ADG ,

(4)

where b : {0, 1}mT is a vector containing all the binary
variables bm and the vectors ts and tg contain all the variables
tki,s and tki,g respectively ∀ k ∈ {1, . . . , Ni}, i ∈ {1, . . . , N}.
C. Solving the MILP in a Feedback Loop

The aforementioned optimization formulation can be
solved based on the current AGV positions in a feedback
loop. The result is a continuously updated GADG which guar-
antees minimal path completion time based on current AGV
delays. This feedback strategy is defined in Algorithm 2.

An important aspect to optimal feedback control strategies
is that of recursive feasibility, which means that the optimiza-
tion problem will remain feasible as long as the control law
is applied. The control strategy outlined in Algorithm 2 is
guaranteed to remain recursively feasible, as formally shown
in Proposition 2.

Proposition 2 (Recursive Feasibility). Consider an ADG, as
defined in Definition 2, which is acyclic at time t = 0.
Consecutively applying the MILP solution from Eq. (4) is
guaranteed to ensure the resultant ADG remains acyclic for
all t > 0.

Proof 4: Proof by induction. Consider an acyclic ADG as
defined in Definition 2, at a time t. The MILP in Eq. (4)



Algorithm 2 Switching ADG Feedback Scheme

1: Get goals and locations
2: Solve MAPF to obtain P
3: Construct ADG using Algorithm 1
4: Determine SADG()

5: while Plans not done do
6: get current position along plans for each robot
7: determine switchable dependencies
8: b← MILP in Eq. (4)
9: ADG← SADG(b)

always has the feasible solution b = 0 if the initial ADG
(from which the MILP’s constraints in Eq. (1) through Eq. (3)
are defined) is acyclic. Any improved solution of the MILP
with b 6= 0 is necessarily feasible, implying a resultant
acyclic ADG. This implies that the MILP is guaranteed to
return a feasible solution, the resultant ADG will always be
acyclic if the ADG before the MILP was solved, was acyclic.
Since the ADG at t = 0 is acyclic (a direct result of a MAPF
solution), it will remain acyclic for t > 0. �
D. Decreasing Computational Effort

The time required to solve the MILP will directly affect the
real-time applicability of this approach. In general, the com-
plexity of the MILP increases expenontially in the number
of binary variables. To render the MILP less computationally
demanding, it is therefore most effective to decrease the
number of binary variables. We present two complementary
methods to achieve this goal.

1) Switching Dependencies in a Receding Horizon: The
dependencies to switch will be selected in a receding horizon
fashion, whereas the temporal dependencies are still consid-
ered for the entire plan length. Formally, this means that the
set E switchable

ADG only contains dependencies pointing to within
H future vertices. An illustration of this selection is shown
in Fig. 5.

2) Dependency Grouping: We observed that multiple
dependencies would often form patterns, two of which are
shown in Fig. 6. These patterns are referred to as same-
direction and opposite-direction dependency groups, shown
in Fig. 6a and Fig. 6b respectively. These groups share the
same property that the resultant ADG is acyclic if and only
if either all the forward or all the reverse dependencies are
active. This means that a single binary variable is sufficient
to describe the switching of all the dependencies within
the group, decreasing the variable space of the MILP in
Eq. (4). Once such a dependency group has been identified,
the temporal constraints can then be defined as

tlj,s > tki,g − bDGM ∀ (vki , v
l
j) ∈ DGfwd,

tlj,s > tki,g − (1− bDG)M ∀ (vki , v
l
j) ∈ DGrev,

(5)

where DGfwd and DGrev refer to the forward and reverse
dependencies of a particular grouping respectively, and bDG

is a binary variable which switches all the forward or reverse
dependencies in the entire group simultaneously.

Fig. 5: Dependency selection for a horizon of 4 vertices. Switchable
dependency pairs are shown in black (forward) and red (reverse).
Regular dependencies considered in the MILP are green. Depen-
dencies not considered are grey.

(a) same (b) opposite

Fig. 6: Dependency groups. Each dependency is either original
(black) or reversed (red). Reverse and forward dependency pairings
are differentiated by line styles.

V. EVALUATION

We design a set of simulations to evaluate the approach
in terms of re-ordering efficiency when AGVs are sub-
jected to delays while following their initially planned paths.
We use the method presented by Hönig et al. [20] as a
comparison baseline. All simulations were conducted on a
Lenovo Thinkstation with an Intel R© Xeon E5-1620 3.5GHz
processor and 64 GB of RAM.

A. Simulation Setup

The simulations consider a roadmap as shown in Fig. 1. A
team of AGVs of size {30, 40, 50, 60, 70} are each initialized
with a random start and goal position. ECBS [15] is then
used with sub-optimality factor w = 1.6 to solve the MAPF.
We consider delays of duration k = {1, 3, 5, 10, 15, 20, 25}
time-steps. At each kth time-step, a random subset (20%)
of the AGVs are stopped for a length of k. The MILP in
Eq. (4) is solved at each time-step. We evaluate our approach
using a Monte Carlo method: for each AGV team size
and delay duration configuration, we consider 100 different
randomly selected goal/start positions. The receding horizon
dependency selection and dependency groups are used as
described in Section IV-D.

B. Performance Metric and Comparison

Performance is measured by considering the cumulative
plan completion time of all the AGVs. This is compared to
the same metric using the original ADG approach with no
switching as in [20]. The improvement is defined as

improvement =

∑
tbaseline −

∑
tswitching∑

tbaseline
· 100%,

where
∑
t∗ refers to the cumulative plan completion time for

all AGVs. The baseline is equivalent to forcing the solution
of the MILP in Eq. (4) to b = 0 at every time-step. Note that
we consider cumulative plan completion time instead of the
make-span because we want to ensure each AGV completes



its plans as soon as possible, such that it can be assigned a
new task.

Another important consideration is the time it takes to
solve the MILP in Eq. (4) at each time-step. For our simula-
tions, the MILP was solved using the academically orientated
Coin-Or Branch-and-Cut (CBC) solver [21]. However, based
on preliminary tests, we did note better performance using
the commercial solver Gurobi [22]. This yielded computa-
tional time improvements by a factor 1.1 up to 20.

C. Results and Discussion

To showcase the efficacy of our approach, we first de-
termine the average improvement of 100 random scenarios
using the minimum switching horizon length of 1 for dif-
ferent AGV team sizes and delay lengths, shown in Fig. 7.
The average improvement is highly correlated to the delay
duration experienced by the AGVs.

Considering Fig. 7, it is worth noting how the graph layout
and AGV-to-roadmap density affects the results: the AGV
group size of 40 shows the best average improvement for a
given delay duration. This leads the authors to believe there
is an optimal AGV group size for a given roadmap, which
ensures the workspace is both:

1) Not too congested to make switching of dependencies
impossible due to the high density of AGVs occupying
the map.

2) Not too sparse such that switching is never needed
since AGVs are distant from each other, meaning that
switching rarely improves task completion time.

Considering the switching dependency horizon, Fig. 8
shows the average improvement for 100 random start/goal
positions and delayed AGV subset selection. We observe
that a horizon length of 1 already significantly improves
performance, and larger horizons seem to gradually increase
performance for larger AGV teams.

Fig. 9 shows the peak computation time for various
horizon lengths and AGV team sizes. As expected, the
computation time is exponential with horizon size and AGV
team size.

Two additional observations that were made are
1) High variability in results. Note the high variability

in improvement indicated by the large lighter re-
gions in Fig. 7. This means that for different random
start/goal and delay configurations, the improvement
varied significantly. This is due to the fact that each
start/goal combination provides differing degrees-of-
freedom from an ADG switching perspective.

2) Occasional worse performance. Occasionally, albeit
rarely, our approach would yield a negative improve-
ment for a particular random start/goal configuration.
This was typically observed for small delay durations.
The reason is that the optimization problem solves the
switching assuming no future delays. However, it may
so happen that the AGV which was allowed ahead
of another, is delayed in the near future, additionally
delaying the AGV it surpassed. We believe a robust
optimization approach could potentially resolve this.

0 10 20 30 40 50
Delay k [timesteps]

0

5

10

15

20

25

30

Im
pr

ov
em

en
t [

%
]

AGVs
30
40
50
60
70

Fig. 7: Average improvement of 100 scenarios for various delay
lengths and AGV group sizes. Each scenario refers to different
randomly generated starts/goals and a randomly selected subset
of delayed AGVs. Solid lines depict the average, lighter regions
encapsulate the min-max values.
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(b) Delay k = 25.

Fig. 8: Average improvement of 100 random start/goal positions
and delayed AGV subset, for different switching horizon lengths,
for different AGV group sizes. Solid lines depict the average, lighter
regions encapsulate the min-max values.
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Fig. 9: The peak computation to solve the optimization problem
for different AGV team sizes and considered dependency horizon
lengths. This plot considers the average improvement for delays
k = {1, 3, 5, 10, 15, 20, 25}. Solid lines depict the average, lighter
regions encapsulate the min-max values.

Finally, we emphasize that our proposed approach applies
seamlessly to:

1) Directional road-maps (since ADG switching retains
the direction of the original MAPF plan),

2) Any (weighted) graph layout, such as the MAPF
formulation addressed by CCBS, as long as the MAPF
can be formulated and solved for this configuration;

3) Persistent plans such as for Multi-Agent Pickup and
Delivery (MAPD) [23], as long as the full plans are
of finite length, since the optimization formulation in
Eq. (4) must consider the final plan completion time.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel method which, given
a MAPF solution, can be used to switch the ordering of
AGVs in an online fashion based on currently measured
AGV delays. This switching was formulated as an optimiza-
tion problem as part of a feedback control scheme, while
maintaining the deadlock- and collision-free guarantees of
the original MAPF plan. Results show that our approach
clearly improves the cumulative task completion time of the
AGVs when a subset of AGVs are subjected to delays.

In future work, we plan to consider a receding horizon
optimization approach. In this work, ADG dependencies can
be switched in a receding horizon fashion, but the plans still
need to be of finite length for the control problem to be
formulated. For truly persistent plans (theoretically infinite
length plans), it is necessary to come up with a receding
horizon optimization formulation to apply the method pro-
posed in this paper.

Another possible extension is complementing our ap-
proach with a local re-planning method. This is because our
approach maintains the originally planned trajectories of the
AGVs. However, we observed that under large delays, the
originally planned routes can become largely inefficient due
to the fact the AGVs are in entirely different locations along
their planned path. This could potentially be addressed by
introducing local re-planning of trajectories.

To avoid the occasional worse performance, we suggest
a robust optimization approach to avoid switching depen-
dencies which could have a negative impact on the plan
execution given expected future delays.

Finally, to further validate this approach, it is desirable to
move towards system-level tests in more realistic environ-
ments, such as by simulations in e.g., Gazebo, or to perform
experiments on a real-world intralogistics setup.
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Glossary

List of Acronyms

ADG Action Dependency Graph

AI artificial intelligence

AGV Automated Guided Vehicle

AGVs Automated Guided Vehicles

AMCL Adaptive Monte-Carl Localization

CBC Coin-Or Branch-and-Cut

CBS Conflict-Based Search

CCBS Continuous Conflict-Based Search

ECBS Enhanced Conflict-Based Search

ECBS Bounded Sub-Optimal Conflict-Based Search

MAPF Multi-Agent Path Finding

MAPD Multi-Agent Pickup and Delivery

MILP Mixed-Integer Linear Program

MAPF-DP multi-agent path finding problem with delay probabilities

MPC Model Predictive Control

OCP Optimal Control Problem

RHC Receding Horizon Control

ROS Robot Operating System

SIPP Safe Interval Path Planning
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100 Glossary

SADG Switchable Action Dependency Graph

UAVs Unmanned Aerial Vehicles

List of Symbols

t̂g(v) Planned time a vertex v changes from in-progress to completed
t̂s(v) Planned time a vertex v changes from staged to in-progress
D List of dependencies
Dstatic Subset of the list of dependencies that exclude switchable dependencies
Dswitchable Subset of the list of switchable dependencies
E Set of edges of a graph
G Graph object consisting of vertices and edges
P Set of plans for each AGV
Pi List of plan tuples corresponding to AGVi

V Set vertices of a graph
N Number of AGVs in a fleet
Ni Number of vertices in the SADG associated with AGVi

tg(v) Actual time a vertex v changes from in-progress to completed
ts(v) Actual time a vertex v changes from staged to in-progress
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