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Abstract—Massive terminal users have brought explosive need
of data residing at edge of overall network. Multiple Mobile
Edge Computing (MEC) servers are built in/near base station
to meet this need. However, optimal distribution of these servers
to multiple users in real time is still a problem. Reinforcement
Learning (RL) as a framework to solve interaction problem is a
promising solution. In order to apply RL based algorithm into a
multi-agent environment, we propose an iterative scheme: select
individual users with priorities to interact with the environment
iteratively one at a time. Furthermore, we tried to optimize the
overall system performance based on this scheme. Hence, we
construct three objective system performance indicators: average
processing cost, delay and energy consumption, improve the
existing Deep Q-learning Network (DQN) by using the cost
as reward function, changing the fixed exploitation rate into
dynamic one that associated with reward and episode time.
In order to explore the performance potential of the proposed
algorithm, we have simulated the proposed algorithm, DQN
algorithm and greedy algorithm under different users and data
sizes. The results show that the proposed algorithm had reduced
at least 12% of system average processing cost comparing to the
greedy algorithm. It also outperform the greedy algorithm and
DQN algorithm in delay and energy consumption significantly.

Index Terms—Mobile Edge Computing, Computation Offload-
ing, Reinforcement Learning, Deep Q-Learning Network

I. INTRODUCTION

In recent years, with the development of mobile communi-
cation technology, a large amount of physical environment data
are generated from the devices such as behavior records, audio,
video devices etc. at the edge of the network [1]. MEC is an
emerging paradigm that pushes computing resources from the
network to network edge, which means massive computing
and storage resources are placed close to mobile devices or
sensors that is the edge of overall network [2]. In this way,
mobile device users can exchange their data with nearest MEC
servers rather than cloud server far away. Therefore, MEC has
the advantage of low delay, low energy consumption, and high
bandwidth [3].

In this paper, with the goal of minimizing average pro-
cessing cost of the system, we try to solve the problem of
computation offloading in the MEC environment. Computation
offloading means that the user will offload the computing
task to the MEC server for processing, and the MEC server
will calculate the task and return the calculation result to
the user. When the tasks arrive, we need to decide whether
the tasks should be processed locally or offloaded to MEC
servers. If offloaded, which MEC server should be offloaded

to. Traditional optimization algorithms use fixed mathematical
models, and it is difficult to adapt to this rapid changing edge
computing network environment. Hence, researchers want to
find solutions in adaptive algorithm.

Reinforcement learning algorithm as a algorithm frame-
work designed specifically to solve interaction problem with
changing environment would be a better choice [4]. The
DQN algorithm is a representative reinforcement learning
algorithm for solving discrete problems, which was proposed
by DeepMind in 2013 to solve the Atari game problem, and
achieved great success [5]. As for mobile edge computing
scenarios, some researchers apply it to optimize the resource
distribution [6]. In this paper, an Improved-DQN algorithm is
proposed to solve the problem of computation offloading in
the distributed networks.

Currently, the computation offloading problem in the MEC
scenario faces many challenges. System resources such as
channel capacity and computing capacity of the MEC servers
are always changing. Secondly, as users and MEC serves
both increase, the offloading decision set becomes very huge,
which brings the problem of dimension explosion to the RL
algorithm. To address these challenges, this paper proposes
a method that applies an Improved-DQN algorithm to build
up adaptive task distribution choice between individual user
to multiple MEC servers at one time, then iterate this task
distribution choice over all potential users with priorities.
Furthermore, we want to reduce the overall system process-
ing cost based on existing DQN algorithm and design the
reward function considering system average processing delay
and energy comprehensively, propose a dynamic exploitation
based scheme, which is doing less exploitation in early stage
and more in later stage according to episodes. The main
contributions of this paper are as follows:

1) Improved DQN algorithm: This paper introduces the
idea of dynamic exploitation factor ε into DQN al-
gorithm, associate the ε factor with the number of
iterations and the current reward. As Equation 8 shows,
the exploitation rate will change according to environ-
ment feedback and its iteration state. According to our
observation(refer to Figure 5), the value of ε is large
at the beginning of algorithm convergence, it slowly
decrease to a stable lower value as time goes by. This
means the proposed algorithm would like to explore
more in the early stage but exploit more in the later
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stage.
2) Iterative task distribution by RL algorithm: In the

simulation stage, we establish a multi-user multi-MEC
server system scenario. In order to solve the problem
of computing offloading for multiple users, we first
sort users according to their priorities, and process the
computing offloading decisions of each user in turn by
way of round robin. In this way, the proposed algorithm
is still an individual agent that can interact with the
multi-MEC servers as an environment. This process will
be taken iteratively for all users with its priority.

3) System performance indicators and corresponding
simulation: In order to evaluate our proposed al-
gorithm’s performance on this multi-user multi-MEC
servers scenario, we construct three system performance
indicators as averaging processing cost, average process-
ing delay and average processing energy. The initial
parameter of system are set randomly to approximate
to the real situation. The proposed Improved DQN
algorithm are compared with greedy algorithm and DQN
algorithm under different users and data size. The final
simulation results demonstrate the the proposed algo-
rithm’s superiority.

The rest of the paper is organized as follows: Section II
summarizes the related work of previous researchers. Section
III presents the system model and performance indicators of
multi-user and multi-MEC server. Section IV introduces the
flow of DQN algorithm and the innovation of this paper.
Section V illustrates the details of our proposed Improved-
DQN algorithm. Section VI simulates proposed algorithm for
the system performance indicator and compare with baseline
algorithm. Section VII summarizes our work and draw the
conclusion.

II. RELATED WORK

In this section, we study previous researches related to
computation offloading and analyze the limitations of these
work.

Traditional optimal algorithms for computation offload-
ing problems: Zhao et al. proposed a joint optimization
scheme of collaborative computation offloading and resource
allocation, which decomposed the optimization problem into
two sub-problems of computation offloading decision and
resource allocation [7]. Dong et al. formulated the computation
offloading problem as a graph cut problem and proposed a
solution based on spectral clustering computation [8]. In [9],
the authors proposed an edge-cloud collaborative computation
offloading model, and used the inertia weight particle swarm
algorithm to solve the problem, which was made up for
the premature convergence of the standard particle swarm
algorithm. In paper [10], the authors proposed a novel hybrid
metaheuristic algorithm based on genetic simulated annealing
and particle swarm optimization, which achieved lower energy
consumption in a shorter convergence time.

Reinforcement Learning algorithms for computation
offloading problems: However, the studies above only focus

on the performance of static systems, and it is difficult for these
traditional mathematical optimization models to accurately
model complex networks that change in real time. To solve this
problem, some researchers introduced reinforcement learning
algorithms into the computation offloading problem. In [11],
the authors used the Q-Learning algorithm to solve the compu-
tation offloading problem. In [12], the authors proposed a joint
optimization method based on deep Q-learning for device-level
and edge-level task offloading. Zhou et al. further proposed a
method based on Double Deep Q-Learning Network (DDQN),
which can effectively approximate the value function of Q-
learning, when the number of users is 5, compared with the
local first and unloading first algorithm, the average energy
consumption is reduced by 35% and 53% respectively [13].

Current limitations of the above researches: However,
the researchers above rarely consider the scenario of multiple
MEC servers, and the number of users is too small. In the
scenario where multiple servers were considered, the author
set the parameters of the servers to be constant [11], and only
used the distance as the indicator to select the MEC servers,
which was unpractical for the real scenario. In this paper, we
consider the problem of computation offloading in the multi-
user and multi-MEC Servers scenario. In the deployment of
the MEC server, we set the computing power and location of
the MEC as different parameters. The simulation results prove
the feasibility of the algorithm.

III. MULTI-USER AND MULTI-MEC SERVER SYSTEM

In this section, we first analyze the multi-user multi-MEC
server network, then build model for computation offloading
problem for this network. Finally, the system performance
indicator average processing cost as our optimal object along
with average processing delay and average processing energy
consumption are given out at the end.

A. System model of terminal users and multiple MEC servers

User Layer

(Multi-User I)

Edge Layer

(Multi-MEC Server N)

Cloud LayerCloud Layer

User 1User 1

User 8User 8

User 4User 4

User 2 User 2 

User 3User 3
User 9User 9

User 7User 7

User 6 User 6 

BS 3BS 2BS 1

User 5User 5

User 12User 12

User 11User 11

User 10User 10

Base with MEC Server Wireless Channel

Fig. 1. System model

Figure 1 shows a typical multi-user multi MEC server
network and its position inside overall communication system.
In this scenario, the user set is defined as I = {1, 2, · · · , I},
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TPi represents the priority of user i, i ∈ I. The MEC server
set is defined as N = {1, 2, · · · , N}. I and N stands for the
maximum number of users and MEC servers respectively. The
MEC server n has the computing capability is Fn

ser (cycles/s).
The terminal users generate tasks that need to be processed in
real time. The task set is denoted as K = {1, 2, · · · ,K}, and
for any k ∈ K, let k be denoted by the triplet (dk, θk, pk).
Where dk represents the data size of task k (bits), θk repre-
sents the computational complexity of task k (cycles/bit), pk
represents the popularity of the task. Normally, when the user’s
local device is under heavy load, the burden tasks are sent to
cloud server. In this way, the time response is related slow for
some delay sensitive tasks. One of the solution to speed up
respond is to build MEC servers in base station so that the
terminal users can put their tasks direct to local MEC servers
rather than to the cloud server. In this scene, users can offload
the tasks to the MEC servers, and the MEC servers calculate
the tasks and return the calculation results to the users. This
mode reduce the overall network bandwidth usage and provide
quicker respond to local users, but it brings the new problem
that: how to distribute multiple users’ tasks to multiple MEC
servers so that the local network can have lower processing
delay, processing energy consumption and cost.

In order to focus on the importance, we assume that 1)
once the task is offloaded, it will be processed on selected
edge server; 2) Task download delay will be ignored, wich
is too small comparing with upload time delay [14]. With
the purpose to measure the system performance objectively,
we construct the performance indicators: average processing
cost, delay and energy. We further choose the cost as a linear
combination of delay and energy as our object function and
try to minimize it.

B. Processing delay and energy consumption of the task

In this part, we analyze the processing delay and energy
consumption of the task. Let aki,t denote the offloading decision
of user i for task k at time t.

aki,t =

{
0 Execute locally
n Execute in MECn

(1)

When the task is executed locally, the task processing delay
is the calculation delay of the task, which is defined as:
T k
loc,i,t =

dk×θk
F i

loc

. F i
loc (cycles/s) is the computing capability of

user i. Meanwhile, the energy consumption is generated when
the user executes the task, which is defined as: Ek

loc,i,t =

Pi,exe × T k
loc,i,t, where Pi,exe (J/s) is the computing power of

the user i.
When task k is generated by user i at time t and it is decided

to offload to MEC server n for processing, user i needs to
offload the task k to the MEC server n first, and then the MEC
server calculates the task k and returns the calculation result
to the user. The task offloading processing delay is the sum of
offloading delay, the execution delay of the MEC server, and
the download delay of the task, which is defined as:

T k
n,i,t = T k,tran

n,i,t + T k,exe
n,i,t + T k,back

n,i,t (2)

T k,tran
n,i,t is the offloading delay of task k transmitted from

user i to MEC server n at time t, which is expressed as
T k,tran
n,i,t = dk

Rn,i,j
. Where Rn,i,j is the transmission rate of

channel j, defined as:

Rn,i,j = Bj log2

(
1 +

h2
jPi,trand

−θ
i,n

N0

)
(3)

In the Equation 3, Bj denotes the bandwidth of channel
j, hj denotes the fading factor of channel j. Pi,tran is the
transmit power of user i and di,n is the transmission distance
from user i to MEC server n. θ is a constant. N0 is a stochastic
norm distribution variable which stands for Gaussian white
noise.
T k,exe
n,i,t represents the calculation delay of MEC server n

processing task k at time t. There may be more than one task
offloaded to MEC server n at time t. When multiple tasks are
offloaded to MEC server n at the same time, the computing
resources of MEC server n are allocated according to the data
size and computing density of each task. T k,exe

n,i,t is defined as:

T k, exe
n,i,t =

dk × θk
dk×θk∑K

k=1 dk×θk×okn,t

× Fn
MEC

(4)

okn,t ∈ {0, 1} is the indicator variable. When task k is
waiting for execution on MEC server n at time t, okn,t is 1,
otherwise it is 0.
T k,back
n,i,t represents the transmission delay of the calculation

result of task k returned from MEC server n to user i at time
t. Compared with the data amount of the uploaded data, the
data amount of the calculation result is small. In addition, the
transmission rate of the backhaul is high, so T k,back

n,i,t is often
ignored.

To sum up, when aki,t = n, the processing delay of the task
in MEC server n is expressed as: T k

n,i,t = T k,tran
n,i,t + T k,exe

n,i,t ,
at this stage, we only consider the energy consumption of the
user side, and the energy consumption of the terminal users
is the energy consumed by the user when offloading tasks, so
Ek

n,i,t is defined as: Ek
n,i,t = Pi,tran × T k,tran

n,i,t .

C. Processing cost of the task

In this section, we aim to minimize the user’s task process-
ing delay and energy consumption simultaneously, so the cost
of user i processing task k at time t is defined as follows:

Ck
i,t =

{
αT k

loc,i,t + βEk
loc,i,t aki,t = 0

αT k
n,i,t + βEk

n,i,t aki,t = n
(5)

α and β (α ∈ {0, 1}, β ∈ {0, 1}) are weight factors,
which are used to describe the proportion of delay and energy
consumption in the cost function.

The total cost of the system is defined as:∑T
t=1

∑I
i=1 C

k
i,t

(
aki,t
)
, our goal is to take the optimal

offloading decision to minimize the expectation of the
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average processing cost of the system, which is formulated
as:

minE

[
1

T

1

I

T∑
t=1

I∑
i=1

Ck
i,t

(
aki,t
)]

s.t.


aki,t ∈ {0, 1, 2, · · · , N}
t ∈ {0, 1, 2, · · · , T}
i ∈ {0, 1, 2, · · · , I}

T k
loc,i,tI

{
aki,t = 0

}
+ T k

n,i,t

(
1− I

{
aki,t = 0

})
≤ τ

(6)
I is an indicator vector, which returns 1 when aki,t = 0 is

true, and 0 otherwise. We set the upper limit of the execution
time of the task to τ , and the task is considered invalid if it
exceeds this threshold.

IV. INTRODUCTION TO DQN ALGORITHM AND THE
CHALLENGES IN MEC ENVIRONMENT

In this section, we first discuss the challenges of using the
DQN algorithm to solve the computation offloading problem
in the MEC scenario. Then we discuss how to use the the idea
of dynamic ε and iterative task distribution to deal with the
users’ offloading decision in the multi-user and multi-MEC
server scenario.

A. Challenges of applying DQN in MEC environment

In the multi-user multi-MEC server scenario, with the
increase of both the number of users and the number of
MEC servers, the space for user offloading decisions increases
exponentially, which brings difficulties to the convergence of
the DQN algorithm. In order to speed up the convergence,
we introduce the idea of dynamic exploitation into the DQN
algorithm, so that ε changes adaptively in different stages
of training. At the same time, we implement the offloading
decision of users in the scenario one by one to avoid the
problem of dimensional explosion of action sets.

B. Proposed dynamic exploitation factor

In the traditional ε-greedy strategy, the exploitation factor
ε is a constant which means the algorithm adopts a greedy
strategy with a fixed probability ε to select the optimal decision
all along. On the contrary, the DQN algorithm explores with
a probability of 1− ε, that is, to select actions randomly. This
means the probability of selecting each action is equal, which
is also possible to select the optimal action. Let the space of
the action set be N actions, we have:

π(a | s) =


1−ϵ

N actions + ϵ if a∗ = argmax
a∈A

Q(s, a)

1−ϵ
N actions otherwise

(7)

However, the fixed ε parameter cannot be adaptively
changed according to the training phase of the DQN algorithm.
On the basis of the classical DQN algorithm, this paper
dynamically changes the ϵ parameter corresponding to the
exploitation rate, and define:

ε = clip

(
1− e(V1−R)

t
, 0.8, 0.95

)
(8)

Where the clip function limits the size of ε between 0.8 and
0.95. When 1 − e(V1−R)

t is less than 0.8, the return value of
the clip function is 0.8, and when 1− e(V1−R)

t is greater than
0.95, the return value of the clip function is 0.95. When the
number of iterations t increases, the neural network parameters
gradually stabilize, the algorithm gradually converges, and the
value of 1 − e(V1−R)

t increases. At the same time, e(V1−R) is
used to measure the pros and cons of the current selection.
When V1 −R is large, the algorithm is still unstable. At this
time, the value of 1− e(V1−R)

t value is small.

C. Proposed iterative task distribution scheme

In this part, we discuss how to apply the DQN algorithm
to the offloading decision problem in the multi-user multi-
MEC server scenario. Suppose that each user generates a
computationally intensive task k at the beginning of each time
slot of the system. Then we need to decide the offloading
decision of these I tasks at time t. Since users in the scene
compete with each other for the computing resources of the
MEC server, if each user is regarded as an agent, there will
be multiple competing agents in the scene. Traditional RL
algorithm is difficult to apply to multi-agent environment
because if each agent is trained separately, all of them are
becoming intelligent that will make the environment unstable.
That is:

P (s′|s, a, π1, . . . , πN ) ̸= P (s′|s, a, π′
1, . . . , π

′
N ) (∀πi ̸= π′

i)
(9)

where π1, . . . , πN is an ordered set of n player strategies.
When the strategy of any one of the players is different, the
state transition probability of the system will be different. In
order to solve this problem, some researchers make offloading
decisions for all users simultaneously [13]. However, the ac-
tion space under this strategy faces the problem of dimensional
explosion. For example, when the number of MEC servers is
3, the user’s offloading decision is to process locally or offload
the task to a certain MEC server for processing, so the size
of the action space is 4. For the joint decision problem of I
users, the action space size is 4I . When the number of users
is large, the problem becomes unsolvable because the action
space is too large.

In this paper, we solve each agent’s offloading decision
serially. We first sort users according to their priorities as agent
1, 2, . . . , N , and make offloading decisions for these sorted
agent sequence in turn. As shown in Figure 2, at the beginning
(t = 0), agent 1 that has the highest priority over other agents
gets initial environment state s0, transmit its own action a1
and receive corresponding feedback reward r1 by interaction
with environment sequentially. The environment updates its
state from s0 to s1 and interact similarly with agent 2 that has
secondary priority at time t = 1. These interaction continues
to the lowest priority agent N at time t = N − 1 so that all
the offloading decision in this iteration are finished.

At the same time, instead of creating a new Q network
and target network for each agent, we store the offloading
decisions of all agents together. The specific method is that we
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Agent 2
MEC Server 1 MEC Server 2 MEC Server N
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r2

t=1

Agent I
MEC Server 1 MEC Server 2 MEC Server N
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sI-1

aI-1

rI-1

t=I-1

…

Fig. 2. Offloading decisions for multiple users

store the user’s ID into the state set, and index the offloading
decision of different users in the current state through different
user IDs. As shown in Figure 3, we define R

′

i,a to represent
the corresponding reward when user i takes action a. At the
same time, we use the superscript of R to distinguish the
corresponding rewards in different states.

<0,0,0,0,id=I>

State

Action
Action 1 Action 2 Action 3 Action 4

<0,2,0,1, id =I>

'

,1IR
'

,2IR
'

,4IR

''

,1IR
''

,4IR
''

,2IR
''

,3IR

'

,3IR

… … … … …

… … … … …

Fig. 3. Content of Q network

V. COMPUTATION OFFLOADING DECISION BASED ON
IMPROVED-DQN ALGORITHM

In this section, an Improved-DQN based computation of-
floading algorithm to minimize the average processing cost
of the system is proposed. Since the objective function 6 is a
mixed integer nonlinear programming problem that is one kind
of NP-hard (Non-deterministic Polynomial) problem, which is
difficult to be solved by traditional optimization methods [13].
We use the Improved-DQN algorithm to solve the offloading
decision of the tasks. In the following, we first model the
problem as a markov decision process. Then we give the flow
of the Improved-DQN algorithm in detail.

A. Markov decision process

The optimization problem is modeled as a Markov De-
cision Process (MDP), and the problem is formalized with
< S,A,R >:

(1) State:

S = {tas kMEC1,t, taskMEC2,t, · · · , tas kMECN,t, id}

taskMECn,t(n ∈ N ) represents the number of tasks to be
processed by MEC server n at time t. taskMECn,t varies with
user offloading decision. id represents the number of the user.

(2) Action:

A =
{
aki,t | aki,t ∈ {0, 1, 2, · · · , N}

}

aki,t(i ∈ J ) represents the offloading decision of user i for task
k at the current moment t. When aki,t is 0, it is considered that
task k is processed locally, otherwise, task k will be offload
to MEC server n.

(3) Reward:

R = min

{
V1,

V2

Ck
i,t

(
aki,t
)}

Since Ck
i,t

(
aki,t
)

is a negative indicator, we define the reward
as the inverse of the cost function. At the same time, we
delimit the reward, let the reward is the smaller one of V1

and V2

Ck
i,t(ak

i,t)
.

In order to ensure that the algorithm satisfies the constraints
in the objective function 6, the task processing delay is
calculated first before the cost. If the processing delay of the
task exceeds the threshold τ , the reward function is negative.
So that, the situation where the processing delay exceeds the
threshold can be avoided.

B. Flow of the Improved-DQN algorithm

Algorithm 1 describes the flow of Improved-DQN algo-
rithm.

Algorithm 1 Improved-DQN algorithm
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, 2, . . . , E do

Initialize sequence s = {0, . . . , 0} and get its feature
vector ϕ1 = ϕ (s1)
Initialize epreward = 0
for t = 1, 2, . . . , T do

for user = 1, 2, . . . , I do
Calculate ε = max

(
1− e(V1−R)

t , 0.9
)

With probability ε select at =
maxa Q

∗ (ϕ (st) , a; θ)
Otherwise select a random action at
Execute action at in model and observe reward rt
and next state s(t+1)

Get the feature vector of s(t+1), that is ϕt+1 =
ϕ (st+1)
Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions
(ϕj , aj , rj , ϕj+1) from D
Set yj according to ϕj+1

Perform a gradient descent step on
(yj −Q (ϕj , aj ; θ))

2 with respect to the network
parameters θ

end for
end for

end for

Specifically, the algorithm first initializes a memory pool
that can store N pieces of data and an action-value function
Q for random network parameters. Then the algorithm enters
the first loop of each episode. At the beginning of the new
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episode, the parameters of the algorithm are reset, and the
current state is the initial state. Here, the state is the number
of tasks currently requesting the MEC server and the number
of the user with the highest priority, so the initial state is an
n-dimensional 0 vector, and the feature vector of the state is
obtained through preprocessing. After that, the current round
enters the second loop, which is T-step iteration. In each
iteration, we iterate over I users in the scene, which is the
third loop.

The third loop is the training subject. First, the dynam-
ically changing parameter ϵ is calculated according to the
Equation 8. If a high probability event occurs, the optimal
action is selected according to the greedy strategy, that is,
at = maxa Q

∗ (ϕ (st) , a; θ); otherwise the algorithm explores
and executes random selected action at. Here, executing the
action means that the task k is processed locally or offloaded
to a certain MEC server for processing. At this time, the
system returns the time and energy consumption of executing
the task, and calculates the reward rt. Meanwhile, the state
vector changes based on the user’s offloading decision. st+1

is processed as feature vector, and the transformed sample
(ϕt, at, rt, ϕt+1) is stored in memory pool D. Next, we
randomly sample a small batch of transformation samples
(ϕt, at, rt, ϕt+1) from the memory pool of the target network,
and judge whether ϕt+1 is a terminal state, if so, yj = rj ;
otherwise yj = rj+γmaxa′ Q (ϕj+1, a

′; θ). DQN updates the
parameters of the neural network through back-propagation of
gradients, namely:

θt+1 = θt + α [yj −Q (ϕj , aj ; θ)]∇Q (ϕj , aj ; θ) (10)

yj is obtained from the target network, and Q (ϕj , aj ; θ)
is obtained from the Q-value network. This operation can
effectively reduce the correlation between sample data and
speed up the convergence process of the algorithm.

VI. SIMULATION RESULTS

In this section, we present our simulation results. We
deployed 3 MEC servers in the MEC scenario, the computing
power and spatial location of these MEC servers are different.
At the same time, several stationary users are discretely
distributed. In this section, we set the baseline algorithm as
the greedy algorithm and DQN algorithm which are the basis
of our work. The greedy algorithm avoids exploration and
continuously selects the optimal decision estimated by the
algorithm at the current moment. The simulation parameters
are summarized in Table I.

A. Hyper-parameter setting according to convergence rate of
the Improved-DQN algorithm

In this part, two hyper parameters (Learning rate α and
discount factor γ) setting according to the convergence rate of
the Improved-DQN algorithm are discussed.

We set α to be 0.01, 0.001, 0.002 to analyze the convergence
of the algorithm. As shown in Figure 4 (a), when the α is 0.01,
0.001, 0.002, the algorithm has achieved good convergence
effect. Among them, when the α is 0.002, the algorithm

TABLE I
SYSTEM PARAMETERS

Parameters Value
Channel Bandwidth Bi 5 MHz
PathLoss Parameters θ 4
Transmit Power P tr

i 100 mW
Tolerate delay of the task τ 0.35 ms
Location of MEC 1 [1316, 93]
Location of MEC 2 [1985, 374]
Location of MEC 3 [464, 398]
Computation Frequency of WBAN F loc

i 1 GHz
Computing Complexity of task Xi 100 cycles/bit
Computation Frequency of MEC F ser [9 GHz, 10GHz, 8GHz]
Target network replace frequency 100
Maximum number of episodes to train 1000

converges in nearly 300 steps, and the convergence speed is
the fastest. Therefore we choose α = 0.002.

After setting learning rate α to 0.002, we turn to discount
factor which is delay coefficient that determines the impor-
tance of future rewards in learning. Here we set γ to be 0.9,
0.95, 0.99. As can be seen from Figure 4 (b), when γ is 0.9
and 0.95, the convergence effect of the algorithm is better. The
algorithm converges at about 400 steps. Here, we choose 0.9
as the value of γ.

(a) Adjust the value of LR (b) Adjust the value of GAMMA

Fig. 4. Adjust the value of LR and GAMMA
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Fig. 5. Change of ε during the training process

After that, we fix the hyperparameter α to 0.002, γ to 0.90,
and analyze the value change of ε during the algorithm training
process. As shown in Figure 5, the Greedy algorithm adopts
a greedy strategy and continuously uses the current optimal
decision. Therefore, during the algorithm training process, ε
is always 1. In the DQN algorithm, ε is a fixed value, which
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(a) Average processing cost under different user numbers (b) Average processing delay under different user numbers (c) Average processing energy under different user numbers

Fig. 6. Average processing cost under different user numbers

remains unchanged during the training process. The Improved-
DQN algorithm introduces the idea of dynamic exploitation.
In the early stage of algorithm training, ε is small, and the
algorithm is mainly based on exploration. As the number of
episode increases, the algorithm gradually converges that made
the value of epsilon increase to a stable value. At this time,
the algorithm is mainly based on exploitation. As can be seen
from the Figure 5, when the number of training episode is
greater than 300, the Improved-DQN algorithm is gradually
stabilized, and ε remains around 0.925.

B. Performance comparison under different users

In this part, the comparison between Improved DQN algo-
rithm and other two algorithm (DQN algorithm and greedy
algorithm) under different users are summarized.

As shown in Figure 6 (a), as the number of users increases,
the average processing cost of all three algorithm increase. The
reason is the increased tasks by increased users race limited
resource. To be specific, the tasks generated sequentially in a
short time period are competing for the computing resources of
the MEC server simultaneously, so the average processing cost
of tasks increases. The improved-DQN performs better than
the other two, this advantage is more obvious when number
of users lie in between (16, 20). The distance between the
Improved-DQN and other two algorithm shrink when num-
ber of users increase more. Generally speaking, the average
processing cost is reduced by using Improve-DQN algorithm
around 12% comparing with the Greedy algorithm.

As shown in Figure 6 (b), as the number of the users
increases, the average processing delay of the Improved-DQN
algorithm, DQN algorithm and the greedy algorithm all tend
to increase. As can be seen from the figure, compared to the
Improved-DQN algorithm and the DQN algorithm, the greedy
algorithm has some jitter. The reason for this phenomenon may
be that the greedy algorithm randomly assigns weights to the
parameters of the neural network during initialization, and then
continuously selects the optimal decision. The contingency
in the initialization stage has caused certain fluctuations to
the algorithm. Compared with the baseline algorithm, the
Improved-DQN algorithm has more advantages.

From Figure 6 (c), we can see that as the number of users
in the scene increases, the average processing energy con-
sumption of all the algorithms increases. Meanwhile, when the
number of users lie in between (14,18), the average processing
energy consumption of DQN algorithm and Improved-DQN
algorithm decrease. This may be related to the geographical
distribution of users. In addition, when the number of users in
the scenario is small, the resource competition phenomenon is
not serious, so there is no significant increase in the average
processing energy consumption index. Compared with the
greedy algorithm, the Improved-DQN algorithm and the DQN
algorithm have obvious advantages.

C. Performance comparison under different data size

In this part, we want to see the data size’s effect on the
Improved DQN algorithm, DQN algorithm and the greedy
algorithm respectively.

As shown in Figure 7 (a), as the size of the amount of data
for the task increases, the average processing cost of the task
increases. This is due to that the increased processing cost
required to process a single task. We can see that the data size
of the task has doubled from 1600 bits to 3200 bits. However,
the average processing cost of the task has increased by about
3 times. The main reason is that when the data volume of a task
increases, which leads to an increase in the processing time of
the task on the MEC server, so the computing resources that
can be allocated by the MEC server per unit time decrease.
As can be seen from the Figure 7 (a), the Improved-DQN
algorithm has obvious advantages compared to DQN algorithm
and the greedy algorithm.

Next, we use the average processing delay as an indicator
to compare and analyze the Improved-DQN algorithm, DQN
algorithm and the greedy algorithm. In Figure 7 (b), as the
amount of data for the task increases, the average processing
delay of the task increases. Figure 7 (b) shows that the
Improved-DQN algorithm performs better than the baseline
algorithms.

Finally, we compare the two algorithms under the average
processing energy consumption. With the increase in the
amount of data for the task, the average processing energy
consumption of the Improved-DQN algorithm and DQN algo-
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(a) Average processing cost under different data size of the task (b) Average processing delay under different data size of the task (c) Average processing energy under different data size of the task

Fig. 7. Average processing cost under different data size of the task

rithm increases slightly, while the average processing energy
consumption of the greedy algorithm fluctuates. The main
reasons for this phenomenon are that the greedy algorithm ran-
domly assigns network weights during initialization, resulting
in a certain degree of randomness. Under the criteria of the
average processing energy consumption, the Improved-DQN
algorithm still performs well.

VII. CONCLUSION

In this paper, we propose an Improved-DQN algorithm
based method to solve computation offloading decision prob-
lem in multi-user multi-MEC server scenario. In order to apply
RL framework into this scenario with multi-agent, we treat
each user as individual agent that can interact with all MEC
servers as environment at one time. After the interaction fished,
the algorithm finds another agent with lower priority itera-
tively. Furthermore, we try to minimize the average processing
cost by novel dynamic exploitation rate scheme that can adapt
to reward and convergent time. The final simulation results
carried among the proposed algorithm, greedy algorithm and
DQN algorithm under different users and data size show
that the proposed algorithm has great advantages in terms
of average processing cost, average processing delay and
average processing energy consumption. However, there is
some optimal space for our work. In the future, we will re-
order the priorities of agents in the waiting list and using more
adapative RL based model from both new invention and the
existing to improve our work.
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