
Quantifying the Endogenous Domain and Model Shifts
Induced by the CLUE Recourse Generator

Karol Dobiczek
Supervisor(s): Cynthia C. S. Liem, Patrick Altmeyer

EEMCS, Delft University of Technology, The Netherlands

June 18, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract

Employing counterfactual explanations in a recourse process gives a positive
outcome to an individual, but it also shifts their corresponding data point. For
systems where models are updated frequently, a change might be seen when
recourse is applied, and after multiple rounds, severe shifts in both model and
domain may occur. Algorithmic recourse frameworks such as CARLA compare
the counterfactual generators based on the effectiveness and cost of employing
recourse, but little to no previous work has been done on analyzing the shifts in
dynamics of the systems. In this paper, we propose a set of metrics aimed at
measuring shifts in the domains and models employed in those systems, as well
as an experiment framework built on top of CARLA. These metrics allow us to
analyze experimentally the characteristics of shifts in dynamics induced by the
CLUE and Wachter generators.

1 Introduction

Machine learning models as a decision-making and decision support tool are increasing in popularity
in domains such as medical diagnoses [1], credit score evaluation [2] or job candidate screening [3].
The nature of these domains can mean that a prediction made by a model used for this task may
influence a person’s life directly, for example in a case of an incorrect medical diagnosis. A decision
made by a black-box model can have a strong influence on one’s life. It is thus crucial, especially
in cases where a human is involved, to provide explainable decisions and constructive means of
changing the decision outcome to the advantage of the end user[4].

One of the ways to address these problems is through counterfactual explanations (CEs). These can
take a form of a sentence similar to "You have received a negative credit score assessment because
your monthly pay is 10,000C. If you had a monthly pay of 15,000C, you would have received a
positive credit score." In the given example the counterfactual shows one of the possible feature
changes that lead to a favourable outcome for the end-user [5].

If a human is involved in the process of providing counterfactual explanations, the process is then
referred to as recourse [4]. There, the counterfactual explanations are provided to the subjects and if
successfully employed, they essentially shift the data point corresponding to the subject to the other
side of the classifier’s decision boundary. When enough data points in the dataset have been moved
as an effect of the recourse process, they can cause shifts in both the dataset and the classifier model.
We have chosen to refer to those shifts in the dynamics of the system as endogenous shifts, due to
them stemming from within the process.

Numerous methods providing counterfactual explanations were developed over the years, 11 of
which have been included in Counterfactual And Recourse Library - CARLA [4], a benchmarking
framework with a specific focus on comparing recourse methods. Apart from recourse methods, this
framework contains standardized data sets that can be used to evaluate the analyzed effects. The
recourse method selected for this research project, Counterfactual Latent Uncertainty Explanations -
CLUE [6] is a recourse generator which aims to provide the smallest change to an input, such that it
stays on the data manifold and the model’s decision on said input is certain.

In this work, we aim to answer the question "What are the characteristics of shifts induced by the
CLUE recourse generator?" by comparing it to a baseline Wachter generator. We provide answers
for the following sub-questions:

• Does the magnitude of observed shifts differ compared to the baseline generator?
• What might be playing a role in the observed differences?
• What appear to be good ways of mitigating endogenous shifts?

To this end, we explore methods of quantification of the endogenous model and domain shifts
induced by using recourse generators. We analyze and discuss results found by quantifying the
dynamic shifts induced by two of the generators included in the CARLA framework. The shifts
induced by recourse generators can stem from various variables of the system. The research entails

1

experimentally analyzing the distribution shifts of the datasets, shifts in models’ performance and
decision boundaries, and the quality of recourse.

Using the results gained from the experiments, we define the characteristics of the endogenous model
shifts induced by the CLUE generator. The results found by performing experiments on the CLUE
recourse generator have been compared to those found by analyzing the recourse process of the
generator by Wachter et. al [5]. The dynamics were compared to test whether the process generates
new, distinct clusters in the dataset and to see how it affects the model’s performance on the original
data. The analysis also helped define factors that play a role in increasing the magnitude of the shifts,
such as the models’ or generators’ hyperparameters.

Previous work on the topic has been done by Upadhyay et al. [7] in their paper introducing the ROAR
generator and by Pawelczyk et al. [4] in the CARLA framework. These papers compare recourse
generators based on metrics such as validity, costs, redundancy, or closeness of the counterfactual to
the correct cluster. These metrics although useful for evaluating the effectiveness of the generated
CEs, do not capture their short- and long-term influence on the system.

The scope of our research is to provide metrics for analyzing the shifts in dynamics and to use them
to characterize and compare shifts created by using certain recourse generators. We contribute to the
field of algorithmic recourse in two ways. We create a framework capable of executing algorithmic
recourse experiments and analyzing the shifts in dynamics of the underlying systems. This allows the
future work in the field to easily evaluate recourse generators in terms of the induced shifts. We also
perform experiments on two recourse generators and analyze the characteristics and causes of the
shifts they induce. By providing information on how different types of recourse generators perform
on certain types of domains and with different black-box models, we aim to show and explain the
dynamics governing the processes. This can help with better use of the generators for different tasks.

The paper is structured as follows. First, in Section 2 we discuss the previous research in the field and
we show the relevancy of the undertaken research given the knowledge gaps in the field. Secondly,
in Section 3, we show the steps taken to answer the research question by stating the experimental
setup, the resources and techniques used in the research. In Section 4, we show and describe the
obtained results. In Section 5 we discuss the obtained results and explaining possible shortcomings
of the research. Section 6 reflects on the possible ethical issues of the conducted research and the
steps taken to ensure reproducibility. Finally, in Section 7, we conclude by stating the steps taken in
the research process, the crucial findings and contributions, and the possible future work in this field.

2 Related work

Algorithmic Recourse

Algorithmic recourse generators aim to provide alternatives to decisions made by black-box machine
learning models through counterfactual explanations, such that the counterfactual outcome is positive
from the point of view of the end-user [4]. As discussed in Section 1, numerous implementations of
recourse generators have been produced over the years [5–9]. This paper focuses on comparing the
effects of applying recourse generated by two generators: the CLUE generator was compared to a
baseline generator created by Wachter et al. [5].

The recourse generator formulated by Wachter et al. [5] has been chosen as a baseline to compare
the results obtained by generating recourse with CLUE, since it is one of the first recourse generators
created and it has a relatively simple objective function. For factuals x it optimizes generated CEs
x′ using the following objective function: argminx′ maxλ λ(fw(x

′)− y)2 + d(x′, x) with fw(x
′)

being the CE label, y being the original label and d(·, ·) a distance function. Due to the inclusion of d
in the formula, it generates CEs to be as close to the original factuals as possible. This means that it
is very likely for the CEs to appear close to the decision boundary of the model, as seen on Figure 1.

The generator tested against Wachter in this paper, CLUE [6] is a generative recourse model. It uses
a variational autoencoder (VAE) [10] to estimate the generative model of the domain. The CEs are
generated by performing a search in the latent space of the encoder for points which generate inputs
similar to the original observations in the dataset but are assigned a low uncertainty by the model.
The uncertainty is measured as the noise inherent to the generative process of the data and it can
stem from class overlap. This approach allows CLUE to generate counterfactual explanations that
are close to the original distribution, as opposed to generating noisy inputs that get classified as the

2

Figure 1: Dataset after a single round of recourse, 25 CEs generated. Left: CLUE, right: Wachter.
The negative class is colored purple, the positive class is colored yellow. Each factual (light grey) and
its corresponding counterfactual (olive) are linked with a light grey line. CLUE can generate multiple
CEs in the same location.

positive class. Figure 1 shows CEs generated by CLUE, they fit in to the positive class distribution,
while CEs generated by Wachter tend to approximate the decision boundary of the model.

Evaluating counterfactual explanations

The CARLA framework contains a benchmarking capability for evaluating the CEs found by the
generators included in the framework. It employs metrics such as the distance between a factual and
its counterfactual explanation, the cost, constraint violations for categorical or immutable features,
redundancy - how many proposed feature changes were not necessary, or yNN - a measure of how
well a counterfactual falls into the positive class [4].

In a recent work, Upadhyay et al. [7] introduced Robust Algorithmic Recourse (ROAR), a generator
whose objective function minimizes the cost of recourse for a maximal possible model shift. The
authors evaluate their framework and compare it to other existing generators based on counterfactual
cost and validity - the success rate of the recourse.

These measures are useful for evaluating the generators based on the quality of recourse they provide,
but they provide little information in terms of how employing the may CEs affect the domain and the
model. Given these circumstances, metrics capable of providing information about shifts need to be
developed.

Towards quantifying shifts

The notion of shifts in the context of machine learning models has been studied thoroughly in recent
decades. Concept drift is one of the earlier ways of describing systems in which changing domains
affect the performance or classifications of learning algorithms. Widmer and Kubat (1996) [11]
describe concept drifts as the products of radical changes in target concepts caused by changes in the
hidden context. A more specific concept of dataset shifts is described as ”a situation where the joint
distribution of inputs and outputs differs between training and test stage“ (Quinonero-Candela et al.)
[12, p. 29]. This type of shifts can be noticed in the recourse process, where in each round several
data points gain a new location in the dataset.

Numerous methods of correcting dataset shifts have been developed, methods including estimation of
biased distributions or selection probabilities [13, 14], prior knowledge of class probabilities [15], or
nonparametric methods such as Kernel Mean Matching [16]. The latter approach is designed to deal
with a particular case of dataset shift called covariate shift. It minimizes a distance function called
Maximum Mean Discrepancy [17] which calculates a distance of probability distribution embeddings
in an Reproducing Kernel Hilbert Space. This metric can be generalized to be used on any probability
distribution by providing samples to the kernel function, and furthermore, a distribution shift p-value
can be calculated using the bootstrap method [17].

3

3 Methods

To characterize the shifts in dynamics of recourse, we propose an experiment which uses numerous
metrics to quantify shifts for both the domain and the model. This section describes the experiment,
the metrics and datasets used in the experiment as well as the motivation behind their use.

3.1 Experiment

We propose an experiment in which we measure the dynamics of the system undergoing numerous
subsequent rounds of algorithmic recourse. The experiment consists of a set number of n iterations
of the following sequence. In iteration i, with generators G using dataset Di−1 and model Mi−1 do:

Algorithm 1: Experiment iteration
1 foreach generator g ∈ G do
2 Generate factuals Fi using model Mi−1

3 Generate counterfactuals using the recourse generator for factuals in Fi

4 Create Di by updating Di−1 with counterfactuals
5 Train a new model Mi on dataset Di

6 Measure shifts in the dataset by comparing Di to the initial dataset D0

7 Measure shifts in the model by comparing Mi to the initial model M0

8 Generate counterfactual benchmarks using CARLA

This setup allows us to gather information about the shifts in varying scenarios such as different
datasets, model and generator hyperparameters, or the parameters of the recourse generators. In later
iterations the datasets and the models can differ, thus all recourse methods must have a separate copy
of the dataset and the model. This copy then gets updated with counterfactuals generated in each
round of recourse. The factuals used in the recourse process are the instances in the dataset that have
been predicted by a model to be members of the negative class. Since all recourse generators have
separate models, an intersection of their factuals has to be taken to ensure all generators work on the
same factual instances.

3.2 Measurements

3.2.1 Domain shifts

Maximum Mean Discrepancy (MMD) is a statistic used to calculate a distance between two
distributions. MMD is an unbiased empirical estimate of the distance ||µp − µq|| of two mean
embeddings µp and µq in the Hilbert space [17]. By embedding the probability distributions in
characteristic Reproducing Kernel Hilbert Spaces (RKHS), the metric can capture differences in
higher-order moments of distribution. Those differences are encoded in the differences of means of
nonlinear features of the embeddings [18].

The squared maximum mean discrepancy for two random variables x and y defined on a topological
space X with probability distributions p and q respectively, and F a class of functions f : X → R is
defined as:

MMD2[F , p, q] := ||µp − µq||2

=

[
sup
f∈F

(Ex[f(p)]− Ey[f(q)])

]2 (1)

In an RKHS the squared MMD can be estimated in terms of kernel functions k:

4

MMD2[F , X, Y] =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)

− 2

mn

m∑
i=0

n∑
j=0

k(xi, yj)

(2)

where X = {x1, ..., xm} and Y = {y1, ..., yn} are observations randomly sampled from distributions
p and q respectively[17] and with a squared exponential kernel k(x, y) = e−

1
σ ||x−y||2 with σ normally

being the median distance for all points in X and Y aggregated [19], though for the sake of consistency
between experiments and in order to avoid time consuming calculations a set value of σ = 0.15 was
used. The characteristic kernel of the characteristic RKHS guarantees that for P = Q the value of
MMD2[P,Q] will be equal to zero [18].

MMD is used at the end of each iteration to compare the initial data distribution to the newly updated
one and in model shift calculation in form of probability MMD and decision boundary mesh MMD
described in the following subsection. An estimated p-value for domain shift can be obtained with
MMD using bootstrap with null hypothesis p = q for the original data distribution and the distribution
after the last round of recourse.

3.2.2 Model shifts

Disagreement is a pseudometric used in our experiments to express a notion of distance between two
machine learning models. It is defined as the probability of two models predicting a different label
for an arbitrary data point [20] and it is calculated as the fraction of data points for which the two
models disagree. For two models a and b the metric is calculated as:

1

n

n∑
x∈X

|fa(x)− fb(x)| (3)

with fa(x) and fb(x) being the predicted labels for data point x in domain X of length n.

MMD for model shifts is calculated using the algorithm for Maximum Mean Discrepancy described
above. We propose two metrics that use MMD for measuring model shifts:

• Model MMD
• Probability MMD

Model MMD generates a grid of sample points over the space of the dataset. For each point,
we generate its predicted probabilities using the initial model and the model at the current round.
The probability distributions of the two meshes are then compared using the MMD to generate a
measurement of the model shift. Due to the high runtime of the MMD algorithm for high numbers of
samples, we limited model MMD to only generate 10, 000 sample points, meaning it will generate
⌈ n
√
10000⌉ points per dimension for a dataset with n dimensions. This metric ensures a global

measurement of the shift of the decision boundary for the entire domain.

In the case of the probability MMD1, we propose the calculation of MMD with the predicted
probabilities of the initial model and the newly trained models. The motivation behind using this
metric is to calculate the magnitude of the shift of the models’ decision boundaries. As the decision
boundary shifts or changes its gradient, the distribution of predicted probabilities for the data points
in the original dataset will also change. This shift is then calculated by MMD.

Prediction mean and variance are the last metrics used for quantifying the model shifts. There are
two reasons which justify the use of those. Firstly, the decision boundary shift towards the negative
class expected in the course of recourse might mean higher prediction values for instances of the
positive class that were once close to the boundary. This can be an unwanted side effect of recourse
as it might mean that the prediction certainty for the individuals represented by those data points has
been artificially elevated. Secondly, one of the features of the CLUE generator is the high certainty of
the generated counterfactuals. These metrics can be used to analyze whether the predictions for the
data points generated by CLUE are higher than for those generated by the baseline generator.

1Suggested by a colleague, Aleksander Buszydlik

5

3.2.3 Benchmarks

The CARLA framework provides methods for benchmarking the generated counterfactuals [4]. The
metrics used in these benchmarks are y-Nearest-Neighbours, a metric signifying whether the
counterfactual explanation has been generated near the members of the positive class, the average
time for generating a counterfactual, the constraint violations caused by the counterfactual for
categorical and immutable features, redundancy of the proposed changes and the average success
rate of the recourse process.

The y-Nearest-Neighbours metric is implemented in the CARLA framework using the k-Nearest-
Neighbours algorithm. The metric is calculated using the following formula:

1− 1

ny
·

n∑
i∈C

y∑
j∈kNN(xi)

(p(xi)− p(xj)) (4)

with n being the total number of counterfactuals C, y being the number of neighbours used in the
kNN algorithm and p(xi) being the predicted label of the ith data point in the domain.

3.3 Datasets

We select a number of fixed datasets with both synthetic and real-world data to analyze the character-
istics of the dynamics of shifts in a wide range of domains.

Figure 2: The synthetic datasets used in the experiments. From left: linearly separable, skewed
distribution, balanced positive clusters, unbalanced positive clusters, overlapping, plus shaped.

Various synthetic datasets shown in Figure 2 have been generated. The datasets have been generated
using settings stated in Appendix A. They range from simple, linearly separable single-cluster
distributions, to non-linearly separable overlapping or multi-cluster datasets. With linearly separable
datasets, we aim to capture and verify the expected behaviours of the recourse generators for simple
shifts in the dynamics of the system. They also serve as means of verifying the correctness and
debugging the implementations of the metrics used in the experiment. This type of datasets contains
normally distributed data, skewed data, and data with two balanced and unbalanced positive clusters.
The non-linearly separable sets contain a dataset with overlapping normally distributed clusters and a
dataset with a plus-shaped arrangement of clusters. With these, we aim to test how the generators
perform on datasets which require more complex models.

Although analyzing recourse on synthetic datasets can bring useful insights into the process, our
main goal is to perform research on real-world data. Thus, real-world datasets have been used in the
experiments. The CARLA framework contains 4 datasets loaded from an online repository: Adult
Census, COMPAS Recidivism Racial Bias, Home Equity Line of Credit (HELOC) and Give Me
Some Credit. As credit score assessment is one of the domains in which decision-making using
machine learning models is widespread [2], we decided to use Give Me Some Credit and German
Credit as the real-world datasets in our experiments. The information about preprocessing of these
datasets is included in Appendix B.

Give Me Some Credit (GMSC) is a dataset published in a 2011 Kaggle prediction competition [21]
and contains 250,000 samples of credit borrowers for which the goal is to predict the probability of
them being in financial distress within the next two years. The dataset has an input dimension of 11
with features containing the pay, history, balance and loans of a person. Due to the high amount of
samples in the original dataset, we generated a downsampled version of the dataset (n = 3K) to be
used in the experiments to ensure reasonable execution times. The dataset also contains immutable

6

and categorical features, which for some recourse generators such as CLUE can be problematic due
to lack of support for these kinds of features and can lead to constraint violations.

German Credit (GC) dataset has been published by the UCI Machine Learning Repository [22]. It
contains 1,000 instances of individuals classified by their good or bad credit risk score. The input
dimension of the dataset is 20 with 7 numerical and 13 categorical features. As this dataset contains
even more features than GMSC, by using GC we aim to test whether this change in dimensionality
will also require appropriate adjustments in CLUE hyperparameters. Wachter generators and is
repeated 5 times.

Figure 3: Effects of 20 rounds of recourse on 4 synthetic datasets; from left: linearly separable,
unbalanced positive clusters, overlapping, plus shaped. Top row: Initial dataset, model. Recourse
generators: middle: CLUE, bottom: Wachter. The background represents the decision boundary
of the model. Blue represents negative class, yellow represents positive class for both model and
datapoints.

4 Experiment

We propose a set of experiments testing how various characteristics of the domains, models and CE
generators affect the dynamics of recourse. Each experiment (except for the experiment specific to
CLUE) is ran on both CLUE and Wachter generators.

The experiments use a variety of classifiers to accommodate various systems that arise in the
experiment settings. In total, we use 4 classifiers all implemented in the CARLA framework with
PyTorch neural networks:

1. C1 - A neural network with one hidden layer - hidden size: [5]
2. C2 - A neural network with two hidden layers, for simpler datasets - hidden size: [10, 10]
3. C3 - A logistic regression classifier implemented as a neural network with no hidden layers
4. C4 - A neural network with two hidden layers, for complex datasets - hidden size: [15, 10]

7

4.1 Varying datasets

Experiment consisting of 8 runs in 6 synthetic and 2 real-world datasets. The first experiment
we established tests how the data distribution affects the recourse generator performance for low-
dimensional, synthetic, and complex, real-world datasets. Artificial neural networks with two hidden
layers (C2, C4) were used to provide models that can perform well on both linearly separable and
non-linearly separable domains.

The results of the first experiment shown in Table 1 show that the CLUE generator causes less
severe shifts for both domain and the model than the baseline. This is consistent for all of the
synthetic datasets. The differences in domain shifts measured in MMD are higher for simpler, linearly
separable datasets (linearly separable, skewed, balanced and unbalanced positive clusters) than for
the non-linearly separable ones. A possible explanation for this observation is the complexity of the
decision boundary for those datasets. As the model gets more complex, higher dimensionality of
CLUE’s VAE can be necessary. This can also cause the success rate for CLUE to drop for the more
complicated domains such as unbalanced positive clusters since a single CLUE configuration has
been used in this experiment.

Dataset Linearly separable Skewed distribution Balanced clusters
Method CLUE Wachter CLUE Wachter CLUE Wachter
MMD ↓ 0.08(0.01) 0.12(0.02) 0.11(0.01) 0.16(0.00) 0.05(0.01) 0.11(0.01)

Disagreement ↓ 0.02(0.01) 0.05(0.03) 0.00(0.00) 0.03(0.01) 0.02(0.01) 0.03(0.03)
Model MMD ↓ 0.04(0.03) 0.05(0.03) 0.05(0.02) 0.08(0.00) 0.02(0.01) 0.02(0.01)

CE Pred. Prob. ↑ 0.90(0.14) 0.58(0.05) 0.86(0.16) 0.57(0.06) 0.90(0.13) 0.59(0.08)
yNN ↑ 0.99(0.01) 0.99(0.02) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.94(0.17)

Distance ↓ 0.50(0.25) 0.24(0.11) 0.48(0.22) 0.20(0.10) 0.34(0.15) 0.25(0.10)
Succ. Rate ↑ 1.00 1.00 1.00 1.00 0.78 1.00

Dataset Unbalanced clusters Overlapping Plus shaped
Method CLUE Wachter CLUE Wachter CLUE Wachter
MMD ↓ 0.04(0.01) 0.14(0.00) 0.04(0.01) 0.07(0.02) 0.02(0.01) 0.03(0.01)

Disagreement ↓ 0.01(0.01) 0.02(0.02) 0.04(0.03) 0.12(0.06) 0.03(0.02) 0.07(0.06)
Model MMD ↓ 0.01(0.01) 0.02(0.01) 0.01(0.01) 0.02(0.01) 0.06(0.01) 0.09(0.03)

CE Pred. Prob. ↑ 0.91(0.14) 0.62(0.08) 0.81(0.17) 0.55(0.03) 0.88(0.15) 0.58(0.06)
yNN ↑ 0.96(0.08) 0.88(0.13) 0.95(0.06) 0.88(0.11) 0.94(0.05) 0.89(0.13)

Distance ↓ 0.41(0.18) 0.22(0.10) 0.38(0.13) 0.19(0.12) 0.29(0.14) 0.08(0.05)
Succ. Rate ↑ 0.47 1.00 0.65 1.00 0.86 1.00

Table 1: Varying datasets experiment results for the 6 synthetic datasets. Values show mean and
standard deviation (in parentheses). The CLUE generator causes less shifts than Wachter for all
datasets. The differences are more pronounced for simpler datasets.

Table 1 also shows that the differences among the generators for model shifts are lower than those
for the domain. The disagreement metric clearly shows that in all cases the baseline generator
causes more shifts that result in misclassifications by the model. The Model MMD shows the least
difference across datasets except for the plus-shaped dataset, where a large difference is observed,
which corresponds with the results in Figure 3, where Wachter drastically changes the decision
boundary, while for CLUE the changes are minimal. These observations can be attributed to the
nature of CEs generated by CLUE and Wachter. By generating CEs along the decision boundary, the
latter of the generators accelerates the shift of the decision boundary towards the negative class. This
behaviour can later result in new CEs being generated within the negative cluster, thus increasing the
disagreement metric.

The CLUE generator consistently created CEs with high yNN values. This means that the explanations
provided by the generator fall into the desired class more frequently than the ones provided by the
baseline generator. This and the fact that the generator aims to produce CEs that have low uncertainty
for the classifier results in higher CE predicted probabilities for all experiments. Another effect
caused by the inherent characteristics of the two generators is the lower distance for CEs generated
by Wachter. In its objective function Wachter aims to generate CEs with the lowest distance to its
factuals, while CLUE does not optimize such an objective.

8

Dataset Give Me Some Credit German Credit
Generator CLUE Wachter CLUE Wachter
MMD ↓ 0.017 (0.001) 0.006 (0.002) 0.0007 (0.0002) 0.0004 (0.0001)
MMD p-value ↓ — 0.003 (0.006) 1.00 (0.00) 1.00 (0.00)
Disagreement ↓ 0.22 (0.06) 0.18 (0.02) 0.19 (0.02) 0.15 (0.04)
Probability MMD ↓ 0.25 (0.07) 0.27 (0.05) 0.14 (0.07) 0.08 (0.05)
CE Predicted Prob. ↑ 0.99 (0.04) 0.87 (0.15) 0.95 (0.10) 0.52 (0.03)
Distance ↓ 0.92 (0.27) 0.03 (0.01) 2.83 (0.39) 0.27 (0.21)
yNN ↑ 1.00 (0.00) 0.96 (0.02) 0.84 (0.08) 0.61 (0.12)

Table 2: 30 rounds of recourse for 25 CEs ran on a reduced version of the Give Me Some Credit (n
= 3K) dataset with equally populated classes and 10 rounds for 15 CEs on German Credit. Values
show mean and standard deviation (in parentheses). Probability MMD was used due to model MMD
limitations discussed in Section 5

The experiment ran on a large, dataset containing real-world data, Give Me Some Credit [21] and
German Credit [22], result in CLUE causing more domain shifts than Wachter. As seen in Table 2,
for both datasets CLUE causes a higher MMD and disagreement, and for German Credit, it causes a
more noticeable shift in the model. While it causes more shifts, the generator is still able to generate
CEs that fall better into the target class and have higher predicted probabilities.

4.2 Varying models

Experiment consists of 3 runs on 3 models. In this experiment, we test how the shifts differ when the
recourse is being generated for models with varying parameters. Three types of models were tested in
the experiments C3, a linear model, in this case, logistic regression implemented as a PyTorch neural
network without hidden layers and a sigmoid activation function C1, an artificial neural network with
one hidden layer and C2, an artificial neural network with two hidden layers.

Classifier C1 - 1 layer ANN C2 - 2 layer ANN C3 - logistic
Generator CLUE Wachter CLUE Wachter CLUE Wachter

MMD ↓ 0.04(0.01) 0.06(0.00) 0.04(0.01) 0.05(0.02) 0.05(0.00) 0.08(0.00)
Disagreement ↓ 0.30(0.22) 0.31(0.23) 0.05(0.03) 0.08(0.06) 0.05(0.01) 0.12(0.02)
Model MMD ↓ 0.04(0.01) 0.11(0.04) 0.02(0.02) 0.02(0.01) 0.12(0.01) 0.14(0.01)

CE Pred. Prob. ↑ 0.64(0.13) 0.51(0.04) 0.89(0.12) 0.54(0.02) 0.55(0.05) 0.50(0.00)
yNN ↑ 0.96(0.06) 0.91(0.15) 0.95(0.05) 0.95(0.04) 0.92(0.07) 0.68(0.31)

Table 3: Mean and standard deviation (in parentheses) for MMD, disagreement, model MMD, CE
predicted probability, yNN for 10 rounds of recourse for 10 CEs ran on the overlapping dataset. Three
classifiers used.

When comparing the two generators for systems using different classifiers, the first observation that
can be made using the data in Table 3 is that CLUE outperforms the baseline generator, similarly to
the case in the previous experiment. Here, recourse with CLUE generates less domain and model
shifts for all cases except for the 2-layer ANN, where its model MMD and yNN metrics are the same
as for the baseline classifier.

The largest differences among the generators happen when using the logistic regression classifier - C3.
There, Wachter causes noticeably more domain shift and a higher disagreement with relatively low
yNN. A possible cause of those characteristics is the fact that the model could be highly susceptible
to data shifts as well as not being able to fit well to the non-linearly separable data. As seen in Figure
4 recourse on a system using this model has also caused the most severe domain and model shifts.

The one-layer ANN classifier - C1 shows a high initial growth of model MMD which later flattens
out. For the baseline classifier, the recourse using C1 leads to a noticeably higher model drift than
for CLUE, which performs relatively well. Another observation worth noting in this experiment is
the overall high disagreement metric results. This metric stays at an average value of around 0.3
throughout the whole duration of the experiment. This is not likely to stem from the recourse process.
A possible explanation for the observation is that the classifier does not fit well into the domain and
each retraining of the model causes it to change its predictions for a large part of the data points.

9

Figure 4: Varying models experiment for 3 models: linear regression, 2 hidden layer ann, 1 hidden
layer ann. Top row: CLUE, bottom row: Wachter. Graph contains mean line and the value range
(shaded).

One characteristic apparent in the recourse process using C2 and C3 classifiers in Figure 4 is a
difference in the disagreement metric for the two generators. While for Wachter the disagreement
metric starts growing immediately after the start of the process, for CLUE the value of the metric on
average stays close to zero until the fifth round of recourse. This means that the CLUE generator
manages to keep the models’ original predictions for half of the duration of the process. The recourse
using the two-layer ANN classifier - C2 shows the least shifts overall, both generators perform
relatively well in this system setting.

4.3 Varying CLUE hyperparameters

Experiment consists of 17 runs with 6 VAE latent dimension, depth and width settings on 2 real-world
datasets and with 5 VAE latent dimension, depth, width and epoch settings on a synthetic dataset. A
separate experiment aimed to compare shifts induced by recourse employed by the CLUE generator
was executed. The CLUE generator uses the VAE decoder as means of generating counterfactual
explanations [6]. By increasing the dimensions of the VAE and its training parameters, we aim to test
whether it allows CLUE to generate CEs that cause less domain shift and stay certain for the model.

CLUE par. (10, 16, 6) (16, 12, 4) (16, 16, 6) (16, 20, 4) (16, 20, 8) (20, 20, 8)
MMD ↓ 0.13 (0.02) 0.11 (0.01) 0.06 (0.02) 0.03 (0.00) 0.10 (0.03) 0.01 (0.01)

Disagr. ↓ 0.37 (0.12) 0.30 (0.14) 0.21 (0.05) 0.22 (0.03) 0.21 (0.06) 0.19 (0.04)
Mod. MMD ↓ 3.07 (0.01) 3.09 (0.02) 3.08 (0.03) 3.09 (0.02) 3.08 (0.02) 3.08 (0.03)
Prob MMD ↓ 0.50 (0.28) 0.44 (0.06) 0.29 (0.08) 0.32 (0.05) 0.43 (0.09) 0.06 (0.03)

yNN ↑ 0.90 (0.19) 0.98 (0.03) 0.99 (0.01) — 0.88 (0.10) —
Succ. rate ↑ 1.00 1.00 1.00 0.53 1.00 0.03

Table 4: 100 rounds of recourse generated by 6 configurations of CLUE generator on the downsampled
Give Me Some Credit dataset. Values show mean and standard deviation (in parentheses). The values
for model MMD have been scaled by a factor of 104. The CLUE parameters are displayed as (latent
dimensions, width, depth) of the VAE.

10

The results of the experiment shown in Table 4 partially confirm the previous assumptions about
the parameters of the VAE. As the amount of latent space dimensions grows, the MMD at the last
round of recourse for CLUE decreases, but after a certain point, the generator is unable to generate
enough CEs, possibly due to a mismatch between the VAE width and depth or too high latent space
dimensionality. Due to this decrease in success rate, the results for the 4th and 6th configurations are
not comparable to the rest of the results, as their domains and therefore models did not undergo the
same magnitudes of shifts.

It is worth noting that the model MMD metric fails to capture any differences between the tested
parameter configurations, while probability MMD produces results that roughly correspond to the
domain shifts. The reason for that is the fact that the sample points of the metric are distributed
uniformly throughout the space of the domain. While for synthetic, low-dimensional datasets, the
metric gives relatively good results, it is limited by the number of samples it can take. This fact in
conjunction with the existence of outliers in real-world data decreases the effectiveness of this metric.
The probability MMD, on the other hand, by using existing data points as samples for the MMD,
makes it less likely that the changes will not be captured and produces realistic results.

One notable CLUE configuration, 16 latent dimension, 20 width, 8 depth, has a success rate of
1, meaning that this set of hyperparameters does not impact the generator’s ability to create CEs,
although the results suggest a higher shift in dynamics of the system than the 16 latent dimensions,
16 width, 6 depth configuration. This result might stem from the mismatch between the width and the
depth of the VAE.

CLUE par. (10, 16, 6) (16, 12, 4) (16, 16, 6) (16, 20, 4) (16, 20, 8) (20, 20, 8)
MMD * 102 ↓ 0.11 (0.02) 0.13 (0.03) 0.12 (0.02) 0.10 (0.01) 0.08 (0.01) 0.11 (0.01)

Disagr. ↓ 0.20 (0.01) 0.21 (0.04) 0.18 (0.02) 0.21 (0.03) 0.21 (0.03) 0.19 (0.01)
Prob MMD ↓ 0.16 (0.05) 0.19 (0.11) 0.29 (0.08) 0.15 (0.03) 0.18 (0.06) 0.17 (0.04)

Distance ↓ 2.85 (0.31) 2.62 (0.28) 3.26 (0.38) 2.81 (0.33) 2.75 (0.04) 2.74 (0.39)
yNN ↑ 0.68 (0.09) 0.96 (0.04) 0.85 (0.11) 0.96 (0.04) 0.94 (0.04) 0.70 (0.16)

Succ. rate ↑ 1.00 1.00 1.00 1.00 1.00 0.99

Table 5: 100 rounds of recourse generated by 6 configurations of CLUE generator on the downsampled
Give Me Some Credit dataset. Values show mean and standard deviation (in parentheses). The values
for MMD have been scaled by a factor of 102. The CLUE parameters are displayed as (latent
dimensions, width, depth) of the VAE.

An experiment has been run using the same settings on the German Credit dataset. The results in
Table 5 show that the obtained MMD values are relatively low, similarly to the experiment on the
same dataset against Wachter in the varying datasets experiment. For this experiment, the lowest
shifts in MMD and Probability MMD are observed for hyperparameter configurations with higher
VAE width and depth. This corresponds with the prior assumptions about the experiment, that as the
dimensionality of the domain rises, the CLUE generator will require a more complex VAE to be able
to generate better CEs.

The probability MMD for the 3rd configuration, which caused the least shifts for the earlier experiment
now obtained the highest value. Although its disagreement value is low, the results for this metric
are similar for all configurations. Moreover, this configuration provides CEs that require the highest
distance on average to be employed.

CLUE par. (6, 10, 3, 2) (12, 10, 3, 2) (12, 10, 3, 5) (12, 10, 8, 2) (12, 10, 8, 5)
MMD ↓ 0.01 (0.01) 0.10 (0.01) 0.06 (0.01) 0.08 (0.01) 0.07 (0.01)

Disagreement ↓ 0.00 (0.00) 0.04 (0.01) 0.01 (0.01) 0.03 (0.01) 0.03 (0.01)
Model MMD ↓ 0.11 (0.01) 0.12 (0.01) 0.11 (0.01) 0.13 (0.01) 0.13 (0.01)

CE Pred. Prob. ↑ 0.64 (0.17) 0.64 (0.12) 0.65 (0.13) 0.73 (0.17) 0.74 (0.17)
yNN ↑ — 0.97 (0.06) 0.93 (0.08) 0.92 (0.18) 0.95 (0.08)

Succ. Rate ↑ 0.10 0.98 0.90 1.00 1.00

Table 6: 10 rounds of recourse generated by 5 configurations of CLUE generator on the linearly
separable dataset. Values show mean and standard deviation (in parentheses). The CLUE parameters
are displayed as (latent dimensions, width, depth, number of epochs) of the VAE.

11

The final experiment has been conducted on the linearly separable dataset with the C3 logistic regres-
sion classifier. Here, we tested the recourse process for 5 configurations of CLUE hyperparameters.
The 2nd configuration in Table 6, VAE width 10, depth 3, latent dimension 12 with 2 training epochs
has been used in most of the previous experiments with synthetic datasets. In configuration 1, where
the latent dimension of search is decreased to 6, the success rate of the generator drops to 0.1, meaning
that the generator generates data points that are not counterfactual. By increasing the number of
training epochs to 5 in the 3rd configuration, we see lower values for shift metrics, although the
success rate of the generator decreases. In configurations 4 and 5, we notice an increase in the success
rate to 1, meaning that the VAE is well fitted to the domain and can always generate a counterfactual
data point. Those configurations produce CEs that have higher predicted probabilities, although they
also generate slightly higher shifts.

5 Discussion

After performing and analyzing the experiments, our findings suggest that we have developed a set of
metrics that can measure shifts within a system under recourse. Using our suite of metrics we can test
the magnitude and the significance of the shifts induced by the recourse process. When it comes to
classifier models the metrics allow us to measure the magnitude of decision boundary shifts and how
their predictions change over time. Moreover, using CARLA we can also assess the generated CEs.
With these metrics and the results of experiments in Section 4, we can answer the research question:
"What are the characteristics of shifts induced by the CLUE generator?". To that end, we first
discuss the subquestions introduced in Section 1.

Does the magnitude of observed shifts differ compared to the baseline generator?

Our experiments show that the CLUE generator performs better than the baseline Wachter generator
in terms of both domain and model shifts on smaller, synthetic datasets. There, it generates CEs that
better fit the underlying data distribution, and therefore it shifts the system less than the baseline
generator. These experiments also showed that the CEs generated with CLUE fall better into the target
class clusters. This causes CLUE to gain better results for the yNN and CE predicted probability
metric and can be explained by the difference in the objective functions of the generators described in
Section 2.

This situation changes when recourse is applied to a more complicated dataset with real-world data.
For both the GMSC and GC real-world datasets, we experience higher domain shifts as well as higher
results for the disagreement metric with the CLUE generator. The probability MMD resulted in a
lower value for this generator, although the difference was not high. This somewhat surprising result
shows that a simpler objective function of the Wachter generator may cause less severe shifts than
CLUE. This could be caused by the characteristics of the dataset or by the VAE used by CLUE not
being trained sufficiently.

The real-world data experiment has also revealed a limitation regarding one of the metrics used for
quantifying model shifts. The model MMD metric has been omitted from the results in Table 2 due to
it giving small (in the order of 10−4) and very similar results for both generators. This was also noticed
for the results of experiment 4.3, where the results had to be scaled up and since the experiment was
run on the same dataset, it confirmed that the metric is not effective for high-dimensional, real-world
datasets. This limitation is described further in the following subsection.

When the generators were tested on different classifiers, CLUE again outperformed Wachter in most
of the metrics related to shifts. It has also become apparent that for recourse generated with CLUE
the shifts might appear later than for the baseline generator.

What might be playing a role in the observed differences?

The main cause of the differences observed between the two generators is their objective functions.
The objective function of the Wachter generator described in Section 2 includes a distance function
which causes the generated CEs to be as close to the factuals as possible. Meanwhile, CLUE uses a
VAE to generate CEs that are probable to exist in the original dataset by estimating the generative
model of the domain. Moreover, it optimizes the CEs to have a low uncertainty for the model 2. With
these characteristics in mind, we can define how they affect the results of the experiment.

2CLUE normally expects the models to be Bayesian classifiers [6]

12

One of the simplest metrics in which the difference in generator design is apparent is the distance
between a factual and a counterfactual. There, Wachter always gets the lowest mean value due to
its prioritization of the low distance. On the other hand, values for metrics such as yNN and the CE
predicted probabilities are always high for CLUE, indicating that it can generate counterfactuals that
fall into the target class and can be more certain to the generator.

The differences between the magnitudes of induced shifts on synthetic and real-world datasets for both
generators can be explained by the performance of the VAE. For small, low-dimensional, synthetic
datasets we used, the VAE can be fitted with a low amount of epochs and relatively low dimension
settings. On these types of datasets, the CLUE generator with a well-fitted VAE outperformed
Wachter by inducing both domain and model shifts of lower magnitude. For real-world datasets with
high amounts of features, the situation reverses and CLUE induces more severe shifts.

What appear to be good ways of mitigating endogenous shifts?

The last set of experiments we performed focuses on the way VAE’s hyperparameter configurations
affect the recourse provided by CLUE. Although not all optimal configurations were tested in the
limited time of the project, our results show that they greatly affect the performance of the generator.
If the configuration is mismatched with regards to the domain, e.g. the domain requires a larger VAE,
the success rate of the generator might decrease greatly. On the other hand, when the configuration is
matched well with the characteristics of the domain, we notice that the CEs are generated close to or
within the target class and therefore cause less endogenous shifts. This can be seen in the results of
the first experiment, where a well-fitted VAE enables CLUE to generate recourse which causes less
severe shifts than the baseline generator.

Another factor that plays role in the magnitudes of induced shifts is the choice of classifier in the
system. As seen in Subsection 4.2 the domain, as well as the model shifts induced in the process,
vary depending on the type of classifiers used. When acting on a non-linearly separable domain,
simpler models such as C1 - single hidden layer ANN or C3 - logistic regression classifiers cause
more shifts than a more complex C2 - a two-layer ANN. One has to therefore take into account that a
model well-fitting the domain is also needed to minimize the shifts.

5.1 Limitations

The limitations we encountered along the process of the experiment creation and execution regarding
the execution times of the recourse and the measurements as well as issues specific for certain metrics.
The counterfactual generation times play a rather small part in the overall runtime of the recourse
process, taking from fractions of seconds up to a couple of seconds.

Execution times The processes that cause the most overhead on the execution time of an experiment
iteration are training the machine learning models and training CLUE’s VAE. Both have to be
accommodated to the domain under recourse. The training times for models with lower complexities
averaged around a second while the more complex ones took up to 30 seconds to complete training.
On top of this, the models have to be trained multiple times - once per generator, and there is a risk of
a model being mistrained and not being able to generate any factuals - this case requires a retraining
of the model. The training of CLUE’s VAE is by far the most time-consuming in the whole process,
taking tens of seconds to train for simple models and up to a minute for complex ones.

With all these factors taken into account, the runtimes for full experiment suites can make them. For
simple domains, 100 experiment iterations took 14 minutes. The experiments mostly require multiple
combinations of parameters to be analyzed and they need to be repeated numerous times to obtain
believable results. This causes the runtimes for full experiments to grow into an order of multiple
hours, while for complex datasets even reaching tens of hours in runtime.

Lack of parallelization in CARLA Another limitation is caused by the implementation of the
recourse benchmarking framework CARLA. The main limitation caused by the implementation of the
framework and one which also affects the previous limitation is the lack of parallelization possibilities.
With the current implementation, the multithreading capabilities of a CPU are not accessible and tests
using the PyTorch with Cuda GPU mode enabled showed a major decrease in performance of the
experiments. The latter could also be affected by the type of operations performed during the process
of recourse, which could be incapable to be optimised by a GPU.

13

Metrics Numerous limitations regarding metrics have been found over the course of developing
the framework and running the experiments. The metrics based on the MMD metric have also been
sources of limitations. Firstly the calculation of the σ value for the MMD requires a lot of resources.
The process of calculation of the median distances for all samples would in many cases exceed the
memory capacity of the devices on which the experiments were run. For that reason, we decided
to use a set value of σ for the MMD. Although this can affect the sensitivity of the metric, it still
provided comparability for the results.

Secondly, the process of generating the p-value for MMD using bootstrapping requires numerous
iterations to calculate the value. This causes the process to be very time-consuming and thus we
limited the number of iterations to 1000. Ideally, more iterations could be used but that would further
slow the experiment process down.

Finally, a limitation in the model MMD metric appeared during tests on real-world datasets. As
mentioned in experiments in Sections 4.1 and 4.3, the metric performs well on synthetic datasets, but
the high-dimensionality and complexity of a real-world dataset cause the metric to not pick up any
dynamics. This is because the metric uses a fixed number of sample points. The number of sample
points per dimension decreases rapidly as the number of dimensions grows, e.g. 3 samples for GMSC
with 10 dimensions. To increase the sensitivity of the metric, an enormous amount of sample points
would be required, making the execution times unfeasible.

6 Responsible research

6.1 Reproducible research

A crucial part of research aimed at extending the domain under analysis is the reproducibility of
results of the described experiments. In order to fulfil the reproducibility of the results of our research,
we share the source code of the framework that was developed and used in the course of the research.
A GitHub repository 3 containing the code and the experiment data is made public. Apart from the
framework, full documentation with instructions on setting up the experiments and running them in a
correct environment, as well as several ready examples are provided. To ensure reproducibility of the
obtained results, full metadata of the experiments described in our paper is described. This includes
the number of recourse rounds, the number of counterfactuals per round, the classes of recourse
generators, machine learning models and their parameters, and the datasets.

Moreover, to increase reproducibility, we include the randomness seeds in the experiment metadata.
Although, at the time of writing this paper our framework supports both seeding the NumPy and
PyTorch libraries, the experiments presented in this paper only contain the seed for the NumPy library.
Seeding NumPy ensures that operations like sampling the data are deterministic and it increases
reproducibility for metrics using MMD. In the current version, with processes like training models
or VAEs seeded, the MMD results are fully reproducible. The metric results generated by CARLA
cannot be reproduced as the framework uses different random seeds.

6.2 Ethical research

Although the problem of algorithmic recourse can influence an individual in either a positive or
a negative way, as mentioned in Section 1, our research focuses on measuring and quantifying
the factors that influence these effects. The counterfactual explanations found through algorithmic
recourse generators aim to provide individuals with ways to improve their situation in a system
with a machine learning model as means of decision making. By applying these explanations an
individual can affect the whole domain as well as the underlying model and by doing so, influence
other individuals involved in the system.

Our research aims to provide means of measuring the dynamics of the aforementioned shifts and
experimentally test how different generators influence the different dynamics of the systems. We
hope to provide useful information to researchers analyzing and developing recourse generators.
Our work can also enable entities such as banks, who need to employ algorithmic recourse as one
of their services, to choose a recourse method that would perform best given their system. In that
case, the entities become stakeholders of the research, but they can merely gain knowledge about the

3https://github.com/drobiu/recourse_analysis

14

https://github.com/drobiu/recourse_analysis

characteristics of a generator; they stay responsible for choosing those that provide characteristics
valuable for them or their clients.

7 Conclusions and Future work

The solutions for evaluating CEs in the process of algorithmic recourse lack the ability to evaluate
the dynamics of the underlying system. In this paper, we address this issue and contribute to the
field by proposing a framework with a set of metrics aimed at capturing the dynamics of the domain
and the model under recourse. We built our metrics upon CARLA, a framework for executing and
evaluating recourse. We used MMD, a non-parametric measure of distance between two probability
distributions as our main domain shift metric. We also proposed model MMD, a metric that estimates
the decision boundary of the classifier using a meshgrid and computes the shift with the MMD.

Apart from methods for measuring the domain and model shifts, our framework contains metrics
that measure the quality of generated recourse. Moreover, the framework can execute experiments,
generate results and even visualizations of the process. The process of recourse generated by CLUE
and Wachter generators was tested on a multitude of synthetic datasets modelling different possible
domain scenarios, and two real-world datasets from the credit score assessment domain.

Using this framework we were able to run numerous experiments testing different aspects that might
play a part in the characteristics and magnitudes of the shifts. The results of these experiments
enabled us to capture the differences between the two generators, which we related to their designs.
The differences seem to stem from the objective functions of the generators, which affect the way
the CEs are generated. We also analyzed different aspects of the generators, their hyperparameters,
or aspects of the system such as the type of classifiers that affect the shifts and the performance of
recourse. With that, we were also able to formulate possible ways of mitigating the shifts regarding
the previous findings.

Future work on the subject can take into account the limitations stated in Subsection 5.1. The main
hurdle in properly analyzing the configurations of the VAE used by CLUE are the long runtimes and
high amount of resources needed to train the encoder. Due to these limitations, we were not able to
find the optimal hyperparameter configurations for CLUE for the real-world data in the time span
of this project. The question of whether with optimised parameters CLUE can perform better than
Wachter on these domains remains open.

The two metrics proposed by us, used for capturing model decision boundary shifts, model MMD
and probability MMD both turned out to perform well, but they both have issues. As mentioned
in Subsection 5.1, model MMD uses a meshgrid to estimate the decision boundary over the whole
domain. This makes the metric extremely computationally expensive for high-dimensional domains.
The probability MMD, on the other hand, uses just the predicted probabilities of a sample of data
points in the dataset. This means that even if the model does not change, but points in the dataset get
updated, its value will change. Future work can take into account these limitations and develop a
metric that combines these two to create a robust but computationally viable model shift metric.

References
[1] S. Safdar, S. Zafar, N. Zafar, and N. F. Khan, “Machine learning based decision support

systems (dss) for heart disease diagnosis: A review,” Artificial Intelligence Review, vol. 50,
no. 4, pp. 597–623, 2017. DOI: 10.1007/s10462-017-9552-8.

[2] J. Galindo and P. Tamayo, “Credit risk assessment using statistical and machine learning: Basic
methodology and risk modeling applications,” Computational Economics, vol. 15, no. 1/2,
pp. 107–143, 2000. DOI: 10.1023/a:1008699112516.

[3] C. C. S. Liem et al., “Psychology meets machine learning: Interdisciplinary perspectives on
algorithmic job candidate screening,” The Springer Series on Challenges in Machine Learning,
pp. 197–253, 2018. DOI: 10.1007/978-3-319-98131-4_9.

[4] M. Pawelczyk, S. Bielawski, J. van den Heuvel, T. Richter, and G. Kasneci, “CARLA: A
python library to benchmark algorithmic recourse and counterfactual explanation algorithms,”
CoRR, vol. abs/2108.00783, 2021. arXiv: 2108.00783. [Online]. Available: https://arxiv.
org/abs/2108.00783.

15

https://doi.org/10.1007/s10462-017-9552-8
https://doi.org/10.1023/a:1008699112516
https://doi.org/10.1007/978-3-319-98131-4_9
https://arxiv.org/abs/2108.00783
https://arxiv.org/abs/2108.00783
https://arxiv.org/abs/2108.00783

[5] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations without opening the
black box: Automated decisions and the gdpr,” Harvard journal of law & technology, vol. 31,
pp. 841–887, Apr. 2018. DOI: 10.2139/ssrn.3063289.

[6] J. Antoran, U. Bhatt, T. Adel, A. Weller, and J. M. Hernández-Lobato, “Getting a CLUE:
A method for explaining uncertainty estimates,” in International Conference on Learning
Representations, 2021. DOI: 10.48550/ARXIV.2006.06848. [Online]. Available: https:
//arxiv.org/abs/2006.06848.

[7] S. Upadhyay, S. Joshi, and H. Lakkaraju, “Towards robust and reliable algorithmic recourse,”
CoRR, vol. abs/2102.13620, 2021. arXiv: 2102.13620. [Online]. Available: https://arxiv.
org/abs/2102.13620.

[8] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning classifiers through
diverse counterfactual explanations,” in Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, ACM, Jan. 2020. DOI: 10.1145/3351095.3372850.
[Online]. Available: https://doi.org/10.1145%5C%2F3351095.3372850.

[9] S. Joshi, O. Koyejo, W. Vijitbenjaronk, B. Kim, and J. Ghosh, Towards realistic individual
recourse and actionable explanations in black-box decision making systems, 2019. DOI: 10.
48550/ARXIV.1907.09615. [Online]. Available: https://arxiv.org/abs/1907.09615.

[10] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013. DOI: 10.48550/ARXIV.
1312.6114. [Online]. Available: https://arxiv.org/abs/1312.6114.

[11] G. Widmer and M. Kubat, “Learning in the Presence of Concept Drift and Hidden Contexts,”
Machine Learning, vol. 23, no. 1, pp. 69–101, 1996. DOI: 10.1023/a:1018046501280.

[12] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Dataset Shift
in Machine Learning, ser. Neural Information Processing series. MIT Press, 2008, ISBN:
9780262170055. [Online]. Available: https://books.google.nl/books?id=qJ0jEAAAQBAJ.

[13] M. Dudík, S. Phillips, and R. E. Schapire, “Correcting sample selection bias in maximum
entropy density estimation,” in Advances in Neural Information Processing Systems, Y. Weiss,
B. Schölkopf, and J. Platt, Eds., vol. 18, MIT Press, 2005. [Online]. Available: https://
proceedings.neurips.cc/paper/2005/file/a36b0dcd1e6384abc0e1867860ad3ee3-
Paper.pdf.

[14] B. Zadrozny, “Learning and evaluating classifiers under sample selection bias,” Proceedings,
Twenty-First International Conference on Machine Learning, ICML 2004, vol. 2004, Sep.
2004. DOI: 10.1145/1015330.1015425.

[15] Y. Lin, Y. Lee, and G. Wahba, “Support Vector Machines for Classification in Nonstandard
Situations,” Machine Learning, vol. 46, no. 1/3, pp. 191–202, 2002. DOI: 10.1023/a:
1012406528296.

[16] A. Gretton et al., “Covariate shift by kernel mean matching,” Dataset Shift in Machine Learning,
131-160 (2009), Jan. 2009.

[17] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel two-sample
test,” J. Mach. Learn. Res., vol. 13, pp. 723–773, Mar. 2012, ISSN: 1532-4435.

[18] B. K. Sriperumbudur, A. Gretton, K. Fukumizu, B. Schlkopf, and G. R. Lanckriet, “Hilbert
space embeddings and metrics on probability measures,” Journal of Machine Learning
Research, vol. 11, Apr. 2010. [Online]. Available: http://www.jmlr.org/papers/
volume11/sriperumbudur10a/sriperumbudur10a.pdf.

[19] S. Rabanser, S. Günnemann, and Z. C. Lipton, “Failing loudly: An empirical study of methods
for detecting dataset shift,” Advances in Neural Information Processing Systems (NeurIPS),
2018. DOI: 10.48550/ARXIV.1810.11953.

[20] M.-F. Baclan, “Lecture 20 & 21: Active learning,” 10-806 Foundations of Machine Learning
and Data Science, Nov. 2015. [Online]. Available: http://www.cs.cmu.edu/~avrim/
ML07/lect1116-18.pdf.

[21] Kaggle Competition, Give me some credit. improve on the state of the art in credit scoring
by predicting the probability that somebody will experience financial distress in the next two
years.

[22] D. Dua and C. Graff, UCI machine learning repository, 2017. [Online]. Available: http:
//archive.ics.uci.edu/ml.

16

https://doi.org/10.2139/ssrn.3063289
https://doi.org/10.48550/ARXIV.2006.06848
https://arxiv.org/abs/2006.06848
https://arxiv.org/abs/2006.06848
https://arxiv.org/abs/2102.13620
https://arxiv.org/abs/2102.13620
https://arxiv.org/abs/2102.13620
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145%5C%2F3351095.3372850
https://doi.org/10.48550/ARXIV.1907.09615
https://doi.org/10.48550/ARXIV.1907.09615
https://arxiv.org/abs/1907.09615
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1023/a:1018046501280
https://books.google.nl/books?id=qJ0jEAAAQBAJ
https://proceedings.neurips.cc/paper/2005/file/a36b0dcd1e6384abc0e1867860ad3ee3-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/a36b0dcd1e6384abc0e1867860ad3ee3-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/a36b0dcd1e6384abc0e1867860ad3ee3-Paper.pdf
https://doi.org/10.1145/1015330.1015425
https://doi.org/10.1023/a:1012406528296
https://doi.org/10.1023/a:1012406528296
http://www.jmlr.org/papers/volume11/sriperumbudur10a/sriperumbudur10a.pdf
http://www.jmlr.org/papers/volume11/sriperumbudur10a/sriperumbudur10a.pdf
https://doi.org/10.48550/ARXIV.1810.11953
http://www.cs.cmu.edu/~avrim/ML07/lect1116-18.pdf
http://www.cs.cmu.edu/~avrim/ML07/lect1116-18.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

A Synthetic datasets

We generated the synthetic datasets using the following settings:

Dataset a means b means a num. b num. covariance NumPy seed

Linearly separable
(
−5
−5

) (
10
10

)
200 200

(
9 0
0 9

)
9

Skewed distribution
(
−5
−5

) (
8
8

)
100 100

(
5 −4
−4 5

)
1

Balanced positive clusters
(
−7.5
0

) (
5
−6

) (
5
6

)
200 100 100

(
3 0
0 3

) (
4 0
0 4

)
5

Unbalanced positive clusters
(
−7.5
0

) (
5
−6

) (
5
6

)
200 50 150

(
3 0
0 3

) (
4 0
0 4

)
5

Overlapping
(
−5
−5

) (
5
5

)
200 200

(
12 0
0 12

)
2

Unbalanced positive clusters
(
−6
0

) (
6
0

) (
0
−6

) (
0
6

)
100 100 100 100

(
2 0
0 2

) (
2 0
0 2

)
3

Source code used for generating the datasets using these settings: https://github.com/abuszydlik/model
-shifts-with-dice/blob/b1a52eec1097c24fe74e7f8f9fc7a67cb7044e27/notebooks/synthetic_datasets
.ipynb

B Real-world dataset preprocessing

The preprocessing of the Give Me Some Credit dataset consisted of downsampling the dataset to a
size of n = 3K and providing equal target class population (n = 1.5K each).

Source code: https://github.com/drobiu/recourse_analysis/blob/f3233c57f1c374f04cfaf7f43d8d7
ec85a3c93b4/notebooks/Dataset_subsampling.ipynb

The preprocessing steps for the German Credit dataset consisted of encoding the categorical features
as binary features for frequently appearing values and aggregating some of the features.

Source code: https://github.com/abuszydlik/model-shifts-with-dice/blob/4b651d971700664a558
746f9bf14c001fe81140b/notebooks/GC_processing.ipynb

17

https://github.com/abuszydlik/model-shifts-with-dice/blob/b1a52eec1097c24fe74e7f8f9fc7a67cb7044e27/notebooks/synthetic_datasets.ipynb
https://github.com/abuszydlik/model-shifts-with-dice/blob/b1a52eec1097c24fe74e7f8f9fc7a67cb7044e27/notebooks/synthetic_datasets.ipynb
https://github.com/abuszydlik/model-shifts-with-dice/blob/b1a52eec1097c24fe74e7f8f9fc7a67cb7044e27/notebooks/synthetic_datasets.ipynb
https://github.com/drobiu/recourse_analysis/blob/f3233c57f1c374f04cfaf7f43d8d7ec85a3c93b4/notebooks/Dataset_subsampling.ipynb
https://github.com/drobiu/recourse_analysis/blob/f3233c57f1c374f04cfaf7f43d8d7ec85a3c93b4/notebooks/Dataset_subsampling.ipynb
https://github.com/abuszydlik/model-shifts-with-dice/blob/4b651d971700664a558746f9bf14c001fe81140b/notebooks/GC_processing.ipynb
https://github.com/abuszydlik/model-shifts-with-dice/blob/4b651d971700664a558746f9bf14c001fe81140b/notebooks/GC_processing.ipynb

	Introduction
	Related work
	Methods
	Experiment
	Measurements
	Domain shifts
	Model shifts
	Benchmarks

	Datasets

	Experiment
	Varying datasets
	Varying models
	Varying CLUE hyperparameters

	Discussion
	Limitations

	Responsible research
	Reproducible research
	Ethical research

	Conclusions and Future work
	Synthetic datasets
	Real-world dataset preprocessing

