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A B S T R A C T

In the western part of the Netherlands, the soil contains mainly sand, peat, and
clay which are known as soft soil layers. The buildings and infrastructures, such
as roads, constructed on these soil layers are usually associated with substantial
construction measures during the execution of the project and might suffer from
damages induced by the post-construction deformations.

In practice, one of the primary stages of road construction involves geotechnical
in-situ investigations for determining the soil properties based on which the set-
tlement is predicted through empirical models. There are several techniques for
monitoring the post-construction deformation on roads, among which the most
time and cost-efficient technique is advanced Differential InSAR (D-InSAR).

Since no research has been dedicated to establishing a direct link between the
geotechnical in situ measurements and deformation measurements, in this research,
the main focus is to develop a fully data-driven methodology to model road defor-
mation based on loading/unloading conditions and soil properties. The study area
is the newly constructed part of the A4 highway (Delft-Schiedam) in the Nether-
lands.

The proposed methodology in this research consists of three steps. In the first step
of the methodology, the measurements that represent soil properties, loading/un-
loading and deformation measurements should be determined and gathered. Cone
Penetration Testing (CPT) measurements and boreholes are two freely available data
sets that represent soil properties. Another important soil property is the variations
in soil water content can be characterized by temperature and precipitation. The
latest stage of loading/unloading history can be determined by comparing the ele-
vation of the study area before and after the construction. Deformation time series
produced by D-InSAR techniques are suitable measurements for investigating spatio-
temporal deformations on roads. After determining pre-processing steps for each
of the raw data sets, the relevant parameters from each data source are extracted.

In the next step, the correlations and similarities between the soil properties, load-
ing/unloading condition, and deformation are investigated. The last step deals
with extracting suitable features from CPT profiles in order to use machine learning
to model the relationship between soil properties, loading/unloading conditions,
and deformation. To this end, the CPT profiles are segmented, then qualitative (soil
types) or quantitative descriptors of the segments are used as features. To determine
the soil classes, Support Vector Machines (SVM) classifier is used. The relationship
between soil properties, loading/unloading and the linear rate of deformation is
modeled through two tree-based algorithms, i.e. Random Forests and Gradient
tree-boosting.

The Pearson correlation and the coefficient of determination between soil proper-
ties, loading/unloading and the linear rate of deformation are 0.6 and 0.4, respec-
tively. The correlation of deformation time series and temperature and precipita-
tion is quite low and no consistent pattern could be found between the time de-
lays. The soil classification by SVM classifier is more accurate compared to empirical
charts. For the deformation modeling, the best performance metrics are obtained
through the Gradient Boosting algorithm with quantitative descriptors as features,
(Mean Absolute Error (MAE) is 1.1 mm/year, Root Mean Squared Error (RMSE) is 1.5
mm/year and the coefficient of determination is 0.5). In conclusion, the resulting
models with different algorithms and different sets of features are of moderate accu-
racy. The uncertainty of the models is due to three main reasons: 1. The complexity
of the study area in terms of construction history 2. Lack of other necessary data 3.
The uncertainties caused by the proposed methodology.
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1 I N T R O D U C T I O N

In the western part of the Netherlands, the soil contains mainly sand, peat, and
clay [Cuenca and Hanssen, 2008; Hoogland et al., 2012] which are known as soft
soil layers [Vermeer and Neher, 1999; Kempfert and Gebreselassie, 2006]. More
specifically, soft soil can be considered as geologically young clay soil, silty clay soil,
and peat which comes to equilibrium by its weight but has not notably experienced
secondary or delayed consolidation after its formation [Vermeer and Neher, 1999;
Kempfert and Gebreselassie, 2006]. The characteristics of soft soils are high natu-
ral water content, high sensitivity, high compressibility, low permeability, and low
shear strength to the point that it can only bear its weight and any additional load
leads to relatively significant deformation [Kempfert and Gebreselassie, 2006; Isaac
et al., 2019]. The soft clay and peat layers show large time-dependent deformation
after loading or unloading [Van Baars, 2003].

With such characteristics, soft soils are tricky to deal with, especially in terms
of predicting their response to loading/unloading during design, construction, and
maintenance of buildings, roads, and other urban infrastructures. As a consequence,
the buildings and infrastructures, such as roads, constructed on these soil layers
are usually associated with substantial construction measures during the execution
of the project and might suffer from damages induced by the post-construction
deformations [Kempfert and Gebreselassie, 2006; Peduto et al., 2016].

More specifically, in case of roads, the deformation causes failure in serviceability
and performance of structures and induces high maintenance and repair costs [Du
et al., 2018; Peduto et al., 2016]. Bumpy roads, which are the result of the settle-
ment, are dangerous, damaging and inconvenient for both the vehicles and drivers
[Wijeyesekera et al., 2016]. Furthermore, the partial closures of the transportation
networks during the maintenance period have social and economic impacts [Peduto
et al., 2016]. For the reasons mentioned above, predicting and constant monitoring
of the ground deformation on infrastructure network is of significant importance
for improving the network resilience [Peduto et al., 2016; North et al., 2017].

In practice, one of the primary stages of road construction involves geotechnical
in situ investigations and tests for determining the soil properties, and more specif-
ically for identifying subsurface layers of highly organic materials and peat [Loehr
et al., 2016; Almeida and Marques, 2013]. To this end, among other measurements,
Cone Penetration Testing CPT are carried out in the field and further examined in
the laboratory [Meigh, 2013; Almeida and Marques, 2013; Lunne et al., 2014]. Based
on these measurements, the compression indices and settlement estimates are com-
puted and reported for the design of highway structures and embankment, and
mitigation strategies are adopted if necessary [Loehr et al., 2016; Almeida and Mar-
ques, 2013].

There are several in situ techniques for monitoring the settlement on roads, namely
leveling and GPS measurements [North et al., 2017]. Although these techniques
provide accurate measurements of the deformation at a single point, they are not
cost- and time- efficient, especially in providing spatial and temporal dense cover-
age [North et al., 2017]. The alternative is using remote sensing technologies and
more specifically advanced Differential Synthetic Aperture Radar Interferometry
or D-InSAR which enables measurement of deformation on millimeter-scale [North
et al., 2017].

In this research, the main focus is to develop a fully data-driven methodology
to model road deformation based on loading/unloading conditions and soil prop-
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2 introduction

erties. The study area is the newly constructed part of the A4 highway (Delft-
Schiedam) in the Netherlands. In the next section, the motivation for using a data-
driven approach is discussed in more detail.

1.1 motivation and problem statement
Although the geotechnical deformation analysis and models provide insight regard-
ing the design process of the roads, there are several issues involved in the predic-
tion procedures. To start with, in geotechnical engineering, the procedures suffer
from a long history of empiricism [Wood, 2014]. For instance, soil classification
based on CPT measurements, which is the basic step in the determination of the soil
properties, is carried out based on empirical charts developed by, among others,
Robertson [2010]. Although the use of empirical classification charts is prevalent
in the design process, they are generic and may not provide accurate soil classifica-
tion [Jung, 2009]. The empiricism holds in the equations for calculating the index
parameters ( measures of the physical properties and behavior of the soil), the com-
pression or swelling properties and even deformation estimation [Kempfert and
Gebreselassie, 2006; Wood, 2014].

Moreover, the models for understanding the deformation behavior of soft soils are
quite diverse, ranging from simple elastic models to mathematically complex non-
linear elasto-plastic models [Kempfert and Gebreselassie, 2006]. Therefore, even
for a problem with known soil properties and structural parameters, the results of
numerical analysis are largely influenced by the chosen model giving rise to a wide
range of predicted deformations [Kempfert and Gebreselassie, 2006]. Furthermore,
there is a large discrepancy among numerical results carried out by different expert
groups [Kempfert and Gebreselassie, 2006].

In theory, the geotechnical models for soil deformation already represent the
empirical relationships between soil properties, loading/unloading stress, and de-
formation based on lab experiments. However, it is valuable to investigate cor-
relations between the soil properties and deformation measurements under envi-
ronmental loading. Assuming that the spatio-temporal deformation measurements
after road construction represent the true deformation due to loading/unloading
stress, establishing a link between soil properties, loading/unloading stress and
spatio-temporal deformation measurements through a data-driven approach can
be the starting point to reduce the empiricism in modeling road deformation.

1.2 objectives and research question
Considering the above-mentioned problems with conventional methods of estimat-
ing deformation, in this research, the goal is to use data-driven approaches to model
road deformation based on soil properties and estimated loading/unloading condi-
tions on the study area. Hence, the main research question is:
Using machine learning techniques, is it possible to model a spatio-temporal rela-
tionship between the soil properties, loading/unloading, and the deformation mea-
surements on roads?
To answer this question, the following sub-questions are to be covered:

• What are the data sources needed for studying soil properties, loading and deformation
measurements?

• Is there a correlation between soil properties, loading/unloading stress, and deforma-
tion measurements?

• What parameters/features should be included from the available data sets?
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• What machine learning algorithm(s) are more suitable in establishing the relation-
ship?

• What is the accuracy of the chosen machine learning technique and is it satisfactory?

In order to answer the above questions, an overview of previous relevant stud-
ies on ground deformation, in general, is given in the Section 1.3. These studies
provide information on the required data and modeling approaches in studying
deformation. Although the studies are not necessarily limited to road deforma-
tion, the gained insights are used in developing the methodology for answering the
research question.

1.3 related works
In general, as land deformation is a quite complicated process, a lot of research has
been devoted to understanding, monitoring, and predicting the phenomena. van
Asselen et al. [2018] assessed the relative contribution of peat compaction and oxi-
dation to total subsidence over 1000 years and subsequently assessed the potential
future subsidence in the Netherlands, using borehole data, loading history and res-
piration analysis of potential peat samples under different atmospheric conditions.
The contribution of loading history is determined by classifying the study area into
six classes ranging from no loading sites to heavily loaded sites. Based on bore-
hole data and loading history the compaction of peat layer is estimated and the
respiration measurements are used for assessing the contribution of oxidation. The
research concludes that the spatial and temporal variability in peat compaction de-
pends on overburden weight, time since loading, and organic matter content. The
spatial variability of subsidence due to oxidation depends on depth below the sur-
face of water table and the depth of top of the peat layer.

Du et al. [2018] and Minderhoud et al. [2018] used D-InSAR techniques for moni-
toring the amount of subsidence in more detailed spatial scales. They used optical
remote sensing for the classification of land use. The results of the two research
works highlights the correlation between land use and subsidence pattern due to
lowering of the phreatic water table, groundwater extraction and loading by build-
ings and infrastructure.

Other authors exploited machine learning techniques as a tool that allows the
incorporation of different factors for land subsidence susceptibility mapping. Tien
Bui et al. [2018] tested four different machine learning classification algorithms and
eight relevant features that play role in land subsidence around coal mines. The
study concludes that while all the machine learning algorithms provide acceptable
goodness of fit and predictive capabilities, there are statistically significant differ-
ences between the results of the algorithms. A similar study, Ghorbanzadeh et al.
[2018] used the adaptive neuro-fuzzy inference system with the relevant features in
the study area (height,slope, land use/cover, depth of ground water,distance to ex-
cavated water wells, distance to streams and distance to fault). The lithology layers
were not used in the model with the assumption that almost entire study area has
the same lithological formation.

In another study, Ilia and Loupasakis [2018] investigated the relationship between
the rate of the deformation due to groundwater withdrawal and three other vari-
ables i.e. the thickness of loose deposits, Sen’s slope of ground water level, and
compression index. Rahmati et al. [2019a] used elevation, slope, distance from
stream, stream density and water table drawdown and lithology as features for cre-
ating subsidence susceptibility maps. They tested four tree-based classifiers and
concluded that Random Forest is the best algorithm to predict land subsidence and
groundwater drawdown is the most significant feature. Rahmati et al. [2019b], used
maximum entropy and genetic algorithm rule-set production to map land subsi-
dence susceptibility, based on the distance from groundwater abstraction systems,
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land use, distance from faults, distance from afforest project in the area, lithology,
and groundwater drawdown as subsidence features.

Abdollahi et al. [2018] used support vector machine with different kernels to
create land subsidence susceptibility maps based on number of features: percent-
age slope, slope aspect, altitude, profile curvature, plan curvature (see conforti et
al), topographic wetness index, distance from river, lithological units, piezometric
changes, land use and NDVI. Zhou et al. [2019] used gradient boosting algorithm to
establish a model for land subsidence in Beijing. In this study, the relevant features
are: the thickness of compressible deposits, ground water level, static load defined
as index-based built-up index (see xu), and dynamic load by calculating the dy-
namic load stress field. The concluded that the thickness of compressible deposits
played the most important role in determining the amount of subsidence.

Many studies are dedicated to different advanced InSAR methods for monitor-
ing land deformation. Stramondo et al. [2008] applied Interferometric Point Target
Analysis in order to handle the low coherence regions. Ketelaar [2009] provides
an extensive research on Persistent Scatterer Interferometry (PSI) for land subsi-
dence purposes, and its corresponding quality control and validation. Another
study used InSAR Small Baseline Subset technique to deal with spatial decorrela-
tion for monitoring land deformation and the consequent susceptibility to the flood
[Aditiya et al., 2017]. North et al. [2017] combined PSI data with soil types, trans-
port infrastructure data and climate classes to monitor the response of roads and
railways to ground deformation. In another study, Özer et al. [2019] showed that
the (sub)-seasonal swelling and shrinking pattern of the levee revealed by D-InSAR

deformation time series depend on the meteorological conditions, i.e. average tem-
perature and cumulative precipitation. They further enriched the time series mod-
els by adding the seasonal effect of meteorological conditions to the linear trend of
deformation.

A new research investigated the potential of CPT for calculating void ratio and
compressibility of the peat layer due to the increase in vertical effective stress which
can be used for mapping the subsidence potential [Koster et al., 2018a]. Based on
the functions for peat compression and oxidation that were derived in their previ-
ous studies, together with using 3D geological subsurface voxel-model, modeled
phreatic groundwater levels and a subsidence model, Koster et al. [2018b] achieved
to study the potential susceptibility of Rotterdam and Amsterdam to future subsi-
dence.

Based on these investigations on identifying the influential mechanisms, as well
as modelling and monitoring the ground deformation, the following insights can
be gained:

• Most of the studies explored ground deformation in large areas (in the scale
of cities, regions or countries), while within even a small area the deformation
behavior might be quite diverse

• The influential parameters vary depending on the land use, geographical and
geological setting. However, in general, information on soil properties (such
as depth and thickness of specific soil types and soil moisture), loading history,
and ground water level seem to be necessary in most of the above mentioned
studies.

• The driving mechanisms are quite diverse, i.e. some factors are geotechnical,
some are geological and some are even meteorological conditions

• There is no single machine learning algorithm that can model the relationship
between the influential parameters and ground deformation

• Machine learning algorithm, most specifically tree-based models are beneficial
in terms of identifying the most influential parameters
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• No research has been dedicated to combining the CPT measurements with de-
formation measurements acquired by D-InSAR techniques and the direct rela-
tionship between the CPT measurements and the rate of deformation acquired
from D-InSAR has not yet investigated.

1.4 an overview of the methodology
In order to address the main question, the measurements that represent soil prop-
erties, loading and deformation measurements should be determined and gathered.
CPT measurements and boreholes are two valuable and freely available data sets
that represent soil properties and soil types. Another important soil property is
soil moisture and its variations in different seasons which is not directly available
but can be characterized by temperature and precipitation. The latest stage of load-
ing/unloading history can be determined through multiplying the elevation differ-
ence of the study area before and after the construction by the unit weight of the
removed soil. Deformation time series produced by D-InSAR techniques are suitable
measurements for investigating spatio-temporal deformations on roads.

The next step is to determine the pre-processing steps for each of the raw data
sets and extract relevant parameters from each data source. After that, the correla-
tions and similarities between the soil properties, loading/unloading condition, and
deformation are investigated. The last step deals with extracting suitable features
in order to use machine learning to model the relationship between soil properties,
loading/unloading conditions, and deformation. Figures 1.1 represents the sum-
mary of the whole pipeline.

Figure 1.1: An overview of the proposed methodology

1.5 scope of research and limitations
In this section, first the scope of the research is determined and the limitations in
each step of the methodology are discussed. As mentioned in Section 1.3, one of the
influential parameters on studying deformation is land use. Therefore, the scope of
the research is deformation on the road infrastructure and the proposed data-driven
approach is only tested on the study area. Hence, modeling deformation for other
infrastructures such as buildings and dikes is excluded from this research. Further-
more, between the different influential parameters on the road deformation, soil
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properties and loading/unloading condition are considered as driving mechanisms
and used for deformation modeling.

There are several limitations in this study. To start with, the available data sources
on soil properties do not provide all the necessary information, e.g. information
on the presence of certain expansive minerals or information on the groundwater
fluctuations are missing. Based on the available data set, only the latest loading/un-
loading step can be estimated while information on the previous conditions (which
are discontinuous in time) is missing. The D-InSAR measurements only provide infor-
mation about the first three years after the construction of the road and therefore the
information on the amount of deformation is limited to this period. Furthermore,
there are uncertainties involved in both data sets and pre-processing steps. It is dif-
ficult to evaluate the quality of available data sets since in most cases the metadata
on the accuracy and details of data acquisition or data processing is missing. The
pre-processing steps (such as interpolations, regression modeling, etc.) introduce
some inaccuracies that cannot be modeled.

Another important point is that although the study area shows diverse and com-
plicated deformation behavior which makes it interesting for investigating more
influential parameters of road deformation, it presents another limitation. The di-
versity of the behavior on A4 highway is due to the special construction history and
therefore, it cannot be easily generalized to the other roads. In other words, the
machine learning model, rather than presenting a general relationship, is used to
investigate the effectiveness of the gathered data in explaining the phenomena and
the model is not validated with another road.

1.6 thesis outline
Chapter 2 explains the basic definitions in soil mechanics, the two main types of
ground deformation and their causes, as well as the two types of geotechnical in-
situ techniques for predicting deformation through empirical models. The chapter
continues by introducing the principle of D-InSAR technique for monitoring ground
deformation.

Chapter 3 3 introduces the basic concepts of machine learning, and different al-
gorithms for classification and regression problems. Finally, the different aspects of
performance estimation are discussed in this chapter.

Chapter 4 is focused on the collected data sets for this thesis, their characteristics,
and their qualities.

Chapter 5 presents the three steps of the methodology, i.e. pre-processing, inves-
tigation of similarities and correlations, and finally the modeling through machine
learning algorithms. In the end, the chapter provides details of the implementation
of the proposed methodology.

Chapter 6 provides the results of each of the steps of the methodology together
with a discussion on the results.

In Chapter 7, the research questions are answered and recommendations for fu-
ture studies are provided. An overview of the road map of this thesis is shown in
Figure 1.2.
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Figure 1.2: Thesis road map





2 G R O U N D D E F O R M AT I O N : A
T H E O R E T I C A L B A C KG R O U N D

This chapter aims to provide the relevant theoretical knowledge about soil mechan-
ics and the deformation of soft soil. Section 2.1.1 introduces the basic definitions in
soil mechanics that are used frequently in this thesis. Section 2.1.2 and Section 2.1.3
respectively describe the three most common types of soil deformation, i.e. heave,
subsidence and settlement, that affect foundations and infrastructures. Section 2.1.4
describes the empirical formulation of deformation due to loading/unloading and
the shortcomings of such models. The next two sections Section 2.1.5 and Section 2.2
introduce two geotechnical in-situ site investigation methods, i.e. CPT and borehole,
together with their applications. Furthermore, two specific applications of CPT mea-
surements for soil classification and settlement modeling are discussed. Section 4.2
of this chapter describes the process of D-InSAR for obtaining deformation time se-
ries. The chapter ends with Section 2.4 in which the research approach in this thesis
is discussed.

2.1 deformation in geotechnical engineering

2.1.1 Basic definitions in soil mechanics

In this section, basic definitions in soil mechanics frequently used in this thesis are
described. The definitions are mostly based on Budhu [2015].

• Soil types and soil texture: Gravel, sand, silts, and clays are the common soil
types for identifying specific soil textures. Texture is the appearance of the
soil and rated from fine to coarse, i.e. sands and gravels are coarse-grained
soils while clays and silts are considered fine-grained soils. The mechanical
behavior, which is the response of fine-grained soils to loads, depends on
the type of predominant minerals and amount of organic material recently
derived from decayed vegetation.

• Unit weight (γ) is the weight per unit volume of a material.

• Water content: the ratio of the weight of water to the weight of solid, expressed
as a percentage.

• Void ratio: the ratio of the volume of void space to the volume of solid, ex-
pressed a decimal quantity.

• The groundwater level or groundwater table can be intuitively explained as
follows: if we dig a hole in a fully saturated soil (i.e all voids are filled with
water), the water level in the hole shows the groundwater level. Z w denotes
the depth of the groundwater level below the ground level.

• Porewater pressure (u) is the pressure of water held in the soil. Porewater
pressure at depth Z is:

u = γw(Z− Zw) (2.1)

• Stress is the intensity of loading and is defined as load (or force) per unit area
in kPa. In general, stress is regarded as the sum of two components: 1. the

9
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normal stress (compression or tension) which is perpendicular to the surface,
and 2. the shear stress that is parallel to the surface.

• Strain is the geometrical measure of the deformation caused by stress and rep-
resents the displacement between particles in the body relative to a reference
length. Normal stress causes a normal strain and shear stress causes a shear
strain.

• Total stress (σ) is the stress carried by the soil particles and the liquids and
gases in the voids. Total stress at depth Z is:

σ = γZw + γsat(Z− Zw) (2.2)

• Effective stress (σ′) is the stress carried only by the soil particles. Hence, de-
formations of soils are a function of effective stresses, not total stresses.

σ′ = σ− u = γZw + (γsat − γwt)(Z− Zw) (2.3)

2.1.2 Heave deformation

Heave is the upward ground movement of underlying supporting soil stratum.
Heave is usually associated with the expansion of clay soils that have a high swell/shrink-
ing potential [Jones and Jefferson, 2012]. It should be noted that not all clay soils can
be considered as expansive clay types [Rajapakse, 2016], i.e. clay soils with certain
minerals (such as smectite, that absorb water) show a higher potential of swelling
and shrinking behavior [Jones and Jefferson, 2012]. The causes of heave include
[Zeevaert, 1973; Jones and Jefferson, 2012]:

• overburden recovery or stress relief due to the soil being removed by excava-
tion which causes a reaction in clay materials,

• disturbance of the soil when driving piles into the soil,

• water content variations both temporally and spatially,

• the accumulation of water attributable to the trees that have died or removed
and their root networks no longer draw water from the soil,

• water expansion due to freezing in silty and sandy clay.

In the field of geotechnical engineering, there are tests (e.g. Oedometer test) and
various empirical models for predicting heave based on loading conditions (e.g.
heave models presented in Nelson et al. [2015]). The primary difference between
the models is the method through which the swelling index of soil layers are deter-
mined Nelson et al. [2015].

In general, the following factors should be taken into account for predicting heave
[Nelson et al., 2015]:

• expansion properties of the soil,

• initial and final effective stress state conditions,

• soil profile and thicknesses of the soil strata,

• groundwater level variations,

• depth of wetting, i.e. the depth to which water content will increase owing to
external factors),

• degree of wetting which defines the ability of the soil to intake water.
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2.1.3 Subsidence and settlement deformation

Subsidence is referred to as either the sudden sinking or gradual downward settling
of discrete segments of ground surfaces with little or no horizontal motion [Deng
et al., 2017; Ilia and Loupasakis, 2018]. The cause of this downward movement is the
loss of support of the underlying soil strata or as the result of volumetric changes
in the soil or sub-base materials. Therefore, subsidence is the reverse process of
heave. Land subsidence types are categorized based on the geological processes (i.e.
mainly tectonics, isostasy, and sediment compaction) and man-induced causes (i.e.
withdrawal of hydrocarbons and groundwater, loading and shallow groundwater
table lowering) [van Asselen et al., 2018]. In the literature, the terms subsidence
and settlement are used interchangeably. However, it is worth to explain settlement
in more details, since settlement modeling is one of the important analysis before
construction of roads.

Settlement is the downward movement of the underlying supporting soil stratum
due to loading from above in excess of bearing capacity of the soil below. In this
sense, all structures on compressible soils settle. The settlement of soft soil can be
described as the combined effect of immediate settlement, consolidation (primary
compression) and a subsequent creep (secondary compression) process [Smoltczyk,
2003; Huat et al., 2014]. Immediate settlement occurs instantaneously upon applica-
tion of load due to compression of gas within the pore spaces causing shear defor-
mations under constant volume conditions [Smoltczyk, 2003]. Primary compression
refers to time-dependent shear deformation and reduction of soil volume due to the
compression of the soil structure associated with water expulsion which is slow for
fine-grained soils and is fast for coarse-grained soils [Yuill et al., 2009; Fellenius,
2017]. Secondary compression refers to the slow long-term compression of the soil
skeleton through the reorganization of sediment grains into a more tightly packed
alignment (usually without water expulsion) [Yuill et al., 2009; Fellenius, 2017].

It is worth to explain the effect of loading history on the observed settlement.
The loading history of the soil and the past maximum effective stress is maintained
in the soil memory. To understand the response of soil to loading, we should look
back to the past maximum stress. If the current stress is less than the past maximum
stress, the settlement would be small. But if the current stress is larger than the past
maximum stress, the settlement is larger.

More specifically, Huat et al. [2014] explain the compression behavior of soft soils
consisting of organic and peat layers. In general, the compression of peat is much
larger compared to other soil types. The primary compression is much faster than
that of the other soils and the secondary compression plays a more significant role
in determining the total settlement.

There are also various models to predict settlement in time, based on soil prop-
erties and loading and unloading steps (e.g. Bjerrum, Isotache, Koppejan). The
differences between these models are the definition of compression indices and the
strain conditions which will be discussed in more details in Section 2.1.4.

For a road in the Netherlands, the most influential parameters of subsidence are:

• soil profile and thicknesses of the soil strata,

• the applied loading/unloading stresses (loading history),

• the water content of the soil.

2.1.4 Stress-strain relationships

The description of stress-strain relationships in this section is mainly based on Ver-
ruijt and Van Baars [2007]. Soil deformation happens mainly due to changes in
particle assembly by sliding and rolling of particles. As such, after unloading a soil
will not return to its original state. If the soil is reloaded, there is probably less
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occasion for further sliding of the particles, therefore the soil will be much stiffer
when reloaded compared to the first loading (virgin loading). As mentioned before,
after unloading and subsequent loading, if the stresses are increased beyond the
previous maximum stress, the resulting deformations are much larger and the soil
is said to be overconsolidated.

One of the tests for establishing the relationship between stress and strain is
the Oedometer test in which a cylindrical soil sample enclosed in a very stiff steel
ring is loaded by a weight pressing on the top of the sample. The confining ring
prevents any horizontal deformation meaning that the only non-zero strain is the
vertical strain and the load of the sample is the vertical stress. When performing
the test, it can be observed that firstly the sample becomes gradually stiffer when
the load increases and secondly each doubling of the load has the same effect (e.g.
an increase from 20 kPa to 40 kPa leads to the same incremental deformation as an
increase from 10 kPa to 20 kPa). Hence, the test results are reasonably described by
the following logarithmic formula:

ε = − 1
C

ln(
σ

σ1
) (2.4)

or alternatively

ε = − 1
C10

log10 (
σ

σ1
) (2.5)

(a) (b)

Figure 2.1: (a) Stress-strain relationship (b) Stress-void ratio relationship

where ε denotes the vertical strain, σ is the vertical stress, σ1 denotes the initial
stress and C10 = C

2.3 . The compression constants C and C10 are dimensionless
parameters and can be easily determined for a particular soil type in the laboratory
through a compression test. In some countries, the same relationship is expressed
as a function of void ratio (e):

e1 − e = Cc log10 (
σ

σ1
) (2.6)

where e1 is the void ratio at the initial stress σ1. According to this formula, the
void ratio decreases when the stress increases which corresponds to the compres-
sion of the soil and Cc is the compression index. Figure 2.1a and 2.1b, respectively,
show the stress-strain and void ratio-stress relationships of a test in which the soil
is first loaded, then unloaded, and next is loaded again. It should be noted that all
the above mentioned logarithmic formulas are not much more than a convenient
approximation of test results.
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In a one-dimensional Oedometer test on a soil sample, under a constant load,
the deformation appears to continue practically forever which is called creep. If
plotted on a semi-logarithmic scale the deformation can be approximated very well
by a straight line, demonstrating that the relationship between strain and stress
increment after a long time, which is known as Keverling Buisman formula, can be
written as:

ε = εp + εs log10 (
t
t0
) (2.7)

Where εp is the primary strain, εs is the secondary strain and the t0 is a reference
time usually chosen to be 1 day. In practice, the values for time are limited to a few
hundreds or thousands of years. The secondary strain is often denoted by Cα and
called the secondary compression index.

Koppejan derived a new formula by combining the formulas of Terzaghi and
Keverling Buisman:

ε = −[ 1
Cp

+
1

Cs

t
t0
] log10 (

σ

σ1
) (2.8)

The coefficients Cp and Cs have quite different values for virgin loading and for
unloading and reloading.

Findings of Den Haan demonstrated that the time-dependent term is practically
independent of the actual magnitude of the load and therefore proposed the follow-
ing formula which is known as a,b,c-Isotach model:

ε = −a ln(
σ

σ1
)− b ln(

σ

σ1
)H(σ− σ1)− c ln(

t
t0
) (2.9)

where H(x) represents the Heaviside’s step function,

H(x) =

{
0 i f x < 0
1 i f x > 0

(2.10)

which suggests that the second term of the formula holds only if the stress is
larger than the largest stress ever experienced before (σ ¿ σ1) and therefore in case of
unloading and reloading σ < σ1, this term disappears. The second term represents
the irreversible component of the deformation and the first term represents the
reversible part of the deformation. Alternatively, the same formula can be expressed
in terms of void ratio known as Bjerrum’s relation:

e0 − e = Cc log10(
σ

σ1
) + Cα log10(

t
t0
) (2.11)

where e0 is the void ratio at the initial stress σ1 for t = t0.
The main application of the above-mentioned formulas in geotechnical engineer-

ing is the prediction of the settlement of a layered soil due to an applied load. The
standard practice is as follows:

1. A sample of each of the soil layers are collected,

2. An initial load is applied to each of the samples,

3. Then each sample is loaded by an additional load corresponding to the load
in the field,
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4. According to , the settlement appears to increase with the logarithm of time
after application of the load and hence the deformation in the field is predicted
using this formula,

5. The contribution of each layer to the total settlement is obtained by multiply-
ing the strain of the layer by its thickness,

6. The total settlement is obtained by summing up the deformation of all layers.

However, there are some caveats to this approach. To start with, due to local
experiences, slightly different formulas and constants are being used for the same
phenomenon. Secondly, the prediction of deformation can be complicated in an
area with complex stress history. The main reason is that the stress-strain relation-
ship of the soil depends on the loading history and hence the behavior of the soil
may be quite different below an unknown earlier stress level and above that stress
level. As such, if the stress history is unknown the extrapolation of the labora-
tory tests may be inaccurate. Thirdly, all the above-mentioned models refer only
to one-dimensional compression meaning that they apply only if in the field there
are no horizontal deformations. However, in case of local load, lateral deformation
is also expected and, therefore, consolidation and creep should be considered as
three-dimensional phenomena.

2.1.5 Cone penetrating testing

CPT is a geotechnical measurement technique in which a cone on the end of a series
of rods is pushed into the ground at a constant rate and continuous or intermittent
measurements are taken [Meigh, 2013]. The standard rate of measurement is 20
mm/s ± 5 mm/s [Lunne et al., 2014]. The measurements are made of either the
resistance to penetration of the cone and outer surface of the rods or the resistance
of a surface sleeve [Meigh, 2013].

Cone resistance, qc, is defined as the total force acting on the cone, Qc, divided by
the projected area of the cone, Ac. Sleeve friction, fs, refers to the total force acting
on friction sleeve divided by the surface area of the friction sleeve As [Lunne et al.,
2014]. R f is simply the ratio of fs to qc presented in percentage. As depicted in
Figure 2.2, CPT profile consists of measurements of qc, fs and/or R f with respect to
depth.

Figure 2.2: An example of CPT profiles
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A Piezocone penetrometer enables measurement of porewater pressure at one,
two or three locations: on the cone (u1), behind the cone(u2) and behind the sleeve
friction (u3) [Lunne et al., 2014]. These measurements might also be available de-
pending on the Piezocone penetrometer.

Several soil variables, such as stress level, soil density, stratigraphy, soil miner-
alogy, soil type, and soil fabric influence the measurement of the cone resistance
[Budhu, 2015]. The measurements serve three main applications: to determine the
profile of subsurface strata, to determine groundwater conditions, to assess the en-
gineering parameters of the soils and to evaluate bearing capacity and settlement
[Lunne et al., 2014; Meigh, 2013]. In this research, the soil classification and predic-
tion ground settlement based on CPT measurements are of interest and hence are
briefly discussed here.

Soil classification

The soil type is determined by means of tables and charts based on corresponding
qc, fs and/or R f values at each depth. The CPT soil classification systems are mainly
empirical and quite diverse depending on geological and geographical differences
of different regions.

Begemann [1965] was first to find that there is relationship between qc and fs
values and soil types and presented a table in which the values of R f are used to
determine the soil types. Vos [1982] suggested a more specific soil classification
for the Netherlands with different ranges of R f than that of the Begemann [1965].
Douglas [1981] used both qc and R f values to define the soil type zones.

One of the recent and well-known soil classification charts is proposed by Robert-
son [2010]. In this thesis, we frequently refer to this soil classification system as
the Robertson classification or classifier. Figure 2.3 depicts Robertson [2010]’s CPT-
based method to estimate the soil type behavior based on normalized values of qc
and R f which are calculated as follows [Robertson, 2009]:

Qtn =
(qc − σ)

σ′
(2.12)

Fr =
fs

qt − σ
100 (2.13)

where qt is the cone resistance corrected for water effects, where qt = qc + u2(1 −
a); a is the net area ratio of the tip, typically around 0.8; σ is the current in-situ total
vertical stress; σ′ is the current in-situ effective vertical stress.

Figure 2.3: Robertson chart for soil classification

settlement prediction

One of the most important applications of CPT measurements is predicting settle-
ment before the construction of infrastructures. Figure 2.4, shows the workflow of
settlement prediction using empirical models in geotechnical engineering.
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Based on CPT measurements, the subsurface soil types are determined using one
of the empirical soil classification charts mentioned in the previous section. After
that, the coefficients of primary and secondary compression are estimated from
empirical tables that can be found in the D-Settlement manual by Deltares or the
manuals of Netherlands Standards Institute (e.g. NEN 9997-1+C1). Finally, the set-
tlement is predicted using one of the empirical models such as Bjerrum, Isotache,
and Koppejan. Of course, the choice of soil classification chart, estimation of com-
pression indices and settlement model affects the result of modeling and causes
inconsistencies and uncertainties in predicting the settlement.

Figure 2.4: Workflow of empirical settlement estimation

2.2 borehole
Boreholes are another type of geotechnical site investigations that provide infor-
mation about the composition of subsurface [Todd, 2017]. Usually, borehole logs
provide the following records:

• Drilling information

• Soil description

• Field testing

• Strata information

More specifically, boreholes describe soil types and establish the position of in-
terfaces between different types of soil [Todd, 2017]. It should be noted that there
are different techniques for borehole drilling. The choice of the drilling method can
substantially affect the quality and accuracy of the soil type descriptions.

2.3 SAR interferometry and deformation
Remote sensing is the science of obtaining information about the earth’s surface
and atmosphere by sensors that are mounted on either aircraft or satellites and
measures electromagnetic radiation [Lillesand et al., 2014; Lavender and Lavender,
2015]. There are two major types of sensors: passive and active sensors. The former
refers to the sensors that either detect radiation emitted by the sun or detect the
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thermal radiation emitted by all objects (e.g. optical and thermal sensors), while
the latter refers to the sensors which emit radiation and analyze what is sent back
to them (e.g. RAdio Detection And Ranging (RADAR) sensors). The advantage of
active sensors is the observation of the earth’s surface day and night and under all
weather conditions.

RADAR is an active system which transmits Microwave energy from an antenna in
very short bursts or pulses, and measures the return time t of signal echoes from
scatterers (objects) back to the sensor [Lillesand et al., 2014]. Assuming that the
energy propagates at the velocity of light c, equation 2.14 gives the slant range, SR,
to any given object [Lillesand et al., 2014].

SR =
ct
2

(2.14)

The spatial resolution is the minimal distance at which two distinct scatters with the
same brightness can be uniquely detected as separate signals [Hanssen, 2001]. For
radar systems, the resolution is expressed in the range direction and the azimuth
direction. The range resolution depends on the pulse length: the shorter the pulse
length, the finer the range resolution. However, the pulse length cannot get shorter
than a certain amount: the shorter pulse length means less transmitted power and
therefore less received power which leads to low signal to noise ratio. Higher range
resolution is achieved through transmitting a chirped pulse (the signal with increas-
ing frequency over pulse interval).

The azimuth resolution depends on beam-width which is inversely proportional
to the length of the antenna [Lillesand et al., 2014]. In case of non-coherent (real
aperture) radars, to a limited extent, the beam-width is decreased by increasing the
physical length of the antenna [Lillesand et al., 2014].

SAR system is a coherent RADAR system, meaning that both amplitude and the
phase of the signal are measured. The desirable consequence of the coherent imag-
ing system is that the azimuth resolution is significantly improved [Rees and Pellika,
2010]. Considering the motion of the sensor and processing the return signals from
a scatterer within the beam based on their Doppler shifts, an artificially long an-
tenna can be synthesized which leads to better azimuth resolution [Lillesand et al.,
2014].

Here, we present a more detailed mathematical description of SAR interferometry
based on Hanssen [2001]. Amplitude represents the strength of the radar response
and the phase represents the fraction of one complete sine wave cycle. Each pixel in
a SAR image gives a complex number that carries amplitude and phase information
of all the scatters within the resolution cell which can be expressed as the following
summation:

z = yeiψ = ∑ Aje
iφj (2.15)

where Aj are real numbers correspond to the amplitudes and the φj to the phase
of the elementary scattered waves. y is the resultant amplitude and ψ is the resultant
phase of the resolution cell.

Disregarding atmospheric propagation delay, the phase observation is the com-
bination of the phase proportional to distance and the phase of the elementary
scattered waves within the resolution cell. The phase observation is a deterministic
quantity, meaning that repeating the measurement under exactly the same condi-
tions should give the same result which is known as coherent imaging.

The degree of coherence provides a direct similarity measure between the two
observations. In reality, coherence can be diminished due to various sources of
decorrelation such as geometric decorrelation, Doppler centroid decorrelation, ther-
mal decorrelation, temporal decorrelation, and volume decorrelation (See Hanssen
[2001] for more details).
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(a) (b)

Figure 2.5: (a) Single pass and (b) Interferometric configuration by Hanssen [2001]

Figure 2.5a shows the single pass configuration while Figure 2.5b shows the in-
terferometric configuration in which points are imaged from slightly different ge-
ometry either by two sensors or by exploiting repeated orbits of the same satellite
at different times. The distance between the two satellites (or orbits) in the plane
perpendicular to the orbit is called the interferometer baseline and its projection per-
pendicular to the slant range is known as the perpendicular baseline. Having two
single look complex, an interferogram can be formed by the complex multiplication
of the image phasors:

v = y1y∗2 = |y1||y2|ej(ψ1−ψ2) (2.16)

Equations 2.17 and 2.18 present the observed phase values for the resolution cell
p in the first and second image.

ψ1p = −2π2R1

λ
+ ψscat,1p (2.17)

ψ2p = −2π2R2

λ
+ ψscat,2p (2.18)

Assuming that the contribution of scattering characteristics is the same during
both acquisitions, they will be canceled out in the interferometric phase. In general,
the interferometric phase variation can be split into two contributions [Ferrettia,
2007]: 1. The phase variation due to the altitude difference of the point targets
2. The phase variation is proportional to the slant range displacement of the point
targets. In interferogram flattening, using the precise orbital data, the second contri-
bution is computed and subtracted from the interferometric phase. Equations 2.19

and 2.20 demonstrate the interferometric phase and its derivative:

φp = ψ1p − ψ2p = −4π(R1 − R2)

λ
= −4π∆R

λ
(2.19)

∂φp = −4π

λ
∂∆R (2.20)

From a geometric perspective, the ∆R can be written as in equation 2.21. However,
because of phase ambiguity and orbit inaccuracies, ∆R cannot be derived from
geometry but the relation between the changes of ∆R and θ can be written as in
equation 2.22:

∆R = B sin(θ0 − α) (2.21)
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∂∆R = B cos(θ0 − α)∂θ (2.22)

Combining equation 2.20 and 2.22, the relation between the changes of the inter-
ferometric phase and the changes of look angle can be written as:

∂φp = −4π

λ
B cos(θ0 − α)∂θ (2.23)

The height of the satellite and its derivative with respect to change in look angle
can be written as:

Hsat = R1 cos(θ) (2.24)

∂Hsat = −Hp = R1p sin θ0
p∂θ (2.25)

Where Hp is the measured height for cell p which includes both p and p′. By sub-
stituting ∂θ from equation 2.23 in equation 2.25, a relationship between the height
Hp and the phase difference can be established:

Hp = −
λR1p sin θ0

p

4πB cos(θ0 − α)
∂φp (2.26)

By combining the surface displacement, Dp to equation 2.26, the phase variation
can be written as:

∂φp = −4π

λ
(Dp −

B cos(θ0 − α)

R1p sin θ0
p

Hp) (2.27)

As can be seen in equation 2.27, the phase variation contains both altitude and
motion contributions. The phase variation between two points represents the ac-
tual altitude variation provided that the phase ambiguity (an integer number of 2π
phase cycles) is added to the interferometric fringes [Ferrettia, 2007]. This process is
called phase unwrapping which provides an elevation map in SAR coordinates [Fer-
rettia, 2007]. Assuming that the point scatterers on the ground are moving (e.g. due
to subsidence), another term is contributing to the interferometric phase due to the
motion [Ferrettia, 2007]. If a Digital Elevation Model Digital Elevation Model (DEM)
of the area in SAR coordinate is available, the altitude contribution can be subtracted
from the interferometric phase and the terrain motion component can be measured
[Ferrettia, 2007]. This technique is called D-InSAR and is well-suited for measuring
the ground deformation on millimeter-scale.

The D-InSAR time series involves the processing of a sequence of SAR images. How-
ever, the methodologies for generating the D-InSAR time series are optimized based
on two types of scatters within a pixel: persistent and distributed scatters. If a pixel
consists of a strong reflecting object that dominates the radar measurement, the
Doppler centroid decorrelation is greatly reduced. Persistent scatterers are mainly
man-made urban infrastructures such as bridges, roads, dams, and dikes. However,
distributed scatterer pixels containing no dominant scatterer and are affected by
decorrelation.

SAR data has currently sufficient temporal resolution and by applying D-InSAR

techniques, land deformation can be monitored on the order of millimeters but the
technique only observes and monitors the phenomena rather than having predictive
capabilities. For monitoring highways, in addition to the general limitations of
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D-InSAR (such as different sources of decorrelation), some parts are not visible to
SAR satellites since they are occluded by other objects. For instance, the road is
passing through tunnels, or lower parts of the highway are being occluded by the
upper parts in complex highway junctions.

Another limitation is that because of a few meters of spatial resolution, there are
always back-scattering from undesirable objects (vegetation, buildings, etc.) since
each pixel in an Interferometric Synthetic Aperture Radar (InSAR) image gives a
complex number that carries amplitude and phase information of all the scatters
within the resolution cell. Therefore, investigation of a specific target land use
should be carried out with consideration. In case of roads, the width of the highway
should be large enough that back-scatterings from other objects are minimized.

2.4 research approach
This chapter provided the geotechnical background on in-situ investigations and
their application in empirical modeling of deformation. Also, the monitoring of
spatio-temporal deformation based on the D-InSAR technique was discussed. As
mentioned in Chapter 1, the goal of this study is to model the road deformation
based on data-driven approaches. In this research, machine learning algorithms are
used to model the spatial and temporal deformation based on the in-situ investi-
gation and loading/unloading stress. Hence, Chapter 3 describes the theoretical
background of machine learning algorithms and the corresponding performance
assessment.



3 M A C H I N E L E A R N I N G

3.1 basic definitions
Machine learning is automatic computer procedures aiming at solving a practical
problem by gathering a dataset and training a general-purpose machine to predict
the outcome [Spiegelhalter et al., 1994]. The learner is the machine learning al-
gorithm, the input space is a set of features that represent the target we wish to
predict.

In the conventional engineering design flow, in-depth analysis of the problem do-
main and capturing the key features of the problem is necessary for the definition
of the mathematical model and hence the procedure is “typically the result of the
work of a number of experts” [Simeone, 2018]. Machine learning is an alternative
that, rather than relying on domain knowledge and a design optimized for the prob-
lem at hand, relies on a large amount of data to dictate algorithms and solutions
[Simeone, 2018]. Machine learning can be a time- and cost- efficient approach, es-
pecially for too complex problems [Simeone, 2018]. The caveats are that firstly, it
might hinder the interpretability of the solution and secondly, could be applied to
a limited set of problems [Simeone, 2018].

Typically, machine learning problems can be categorized into three different types
of supervised learning, unsupervised learning and reinforcement learning :

• In supervised learning, the aim is to identify a predictive distribution for the
value of the target y given the vector of the values of features (covariates or
explanatory variables), x. In this context, generally, two types of problems can
be solved: classification problems and regression problems. In a classification
problem, the value of the target is discrete (also known as labels) while in a
regression problem the value of the target is continuous.

• Unsupervised learning aims at the task of learning the properties of the mech-
anism that generates the data of interest. The problems in unsupervised learn-
ing can further be classified into three types. A clustering problem is the
problem of grouping similar examples. The second type of problems deals
with representing the data in a smaller or more convenient space, such as
dimensionality reduction, feature extraction. The third type of problems is
generative modeling in which the learning task is to generate a mechanism to
produce artificial examples that are similar to available data.

• In reinforcement learning, the aim is to infer optimal actions based on rewards
or punishments received as a result of previous actions.

In this research, we are most interested in supervised learning. Supervised learn-
ing contains the following components:

• Training data: the set in which the data set is represented as

S = {xn, yn}N
n=1 (3.1)

where each element xn among N is called a feature vector and yn is the corre-
sponding label or target [Burkov, 2019].
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• Target: the representation of the object that is being described by the feature
vector.

• Feature vector: the feature vector is a numerical vector of dimension d that
represents the object. In a feature vector, each dimension j = 1, ..., d contains
a value that describes the target. That value is called a feature and is denoted
as xj.

• Input space: The complete set of all the possible inputs

• Output space: Prediction results of the input space

• Target function: The unknown function that maps the input space to the out-
put with an accuracy of 100%.

• Hypothesis or model: A candidate machine learning algorithm of a certain
complexity that approximates a target function

• Hypothesis set or model set: Set of all the possible hypothesis that might
possibly be returned by the machine learning system

• Error measure: A function for estimating the prediction error of the model

• Final hypothesis or final model: The hypothesis from the hypothesis set that
approximates the target function with the best possible accuracy

• Hyper-parameters: The tuning parameters of the machine learning algorithm
which we have to specify before model fitting

• Model parameters: The parameters whose values are derived from training
the model

The goal of supervised learning is to predict the value of target y for an input x
that is not in the training set [Burkov, 2019].

3.2 regression and classification algorithms
This section introduces four supervised learning algorithms designed both for re-
gression and classification problems. Although the basic concept of algorithms is
the same for both types of problems, the implementations are different. Therefore,
for the sake of brevity, the explanation of the algorithms are in alignment with their
application in Chapter 5.

3.2.1 Support Vector Machines (SVM)

SVM is based on maximizing a margin around the decision boundary (which is a
hyper-plane for a p-dimensional input space) between two classes. Consider the
training set in equation 3.1, with xi ∈ Rd and yi ∈ −1, 1, a hyper-plane can be
defined as:

x : f (x) = xT β + β0 = 0 (3.2)

where β is a unit vector. The classification rule induced by f (x) is

g(x) = sign(xT β + β0) (3.3)

Using the training data, we want to find a hyper-plane that creates the biggest
margin (C) between the training points for class 1 and -1. It can be shown that
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C = 1
‖β‖ and hence the search for the optimal separating hyper-plane can be written

in the form of following optimization problem:

min
β,β0

1
2
‖β‖+ C

N

∑
i=1

ξi

s.t. yi(xT
i β + β0) ≥ 1− ξi

ξi ≥ 0

(3.4)

where ξi are the slack variables. The slack variables penalize the outliers and the
magnitude of the slack depends on the orthogonal distance to the hyper-plane par-
allel that is supported by the population associated with the outlier.

The optimization problem can be solved by the method of generalized Lagrange
multipliers and Karush-Kuhn-Tucker conditions. One of the characteristics of the
solution to this optimization problem is that the solution only depends on the dot
product of pairs of samples i.e. xi.xj. Given the solutions β̂ and β̂0, the decision
function can be written as:

g(x) = sign(xT β̂ + β̂0) (3.5)

The tuning parameter of this procedure is the cost parameter C.
If the boundary between classes in the feature space is not linearly separable, the

solution is to transform a non-linear separable feature space into a higher dimen-
sional space in which one can obtain a linear separable feature space. Let φ(x) be
the transformation function for the input space. To solve the optimization problem,
one needs to find the φ(xi).φ(xj) rather than specifying φ(x). In other words, one
need a kernel function K(x, x

′
) = φ(xi).φ(xj) that computes the inner products in

the transformed space. The three popular choices of kernels in SVM literature are:

• dth Degree polynomial: K(x, x
′
) = (1 + 〈x, x′〉)d

• Radial basis: K(x, x
′
) = exp(−γ‖x− x′‖2/c)

• Sigmond: K(x, x
′
) = tanh(κ1〈x, x′〉+ κ2)

3.2.2 Decision trees

Tree models are constructed by partitioning of the feature space and then fit a simple
model, e.g. a constant value like the mean of the region, to each partition. Here, we
are more interested in the construction of regression trees and hence it is discussed
in more detail.

Let’s assume the training data consists of a feature vector of p dimension and a
target for each of the N observations. We start with a greedy algorithm in which
for all of the data, we consider a splitting variable j and split point s. Then, we can
define the pair of half-planes as:

R1(j, s) = {X|Xj ≤ s} and R2(j, s) = {X|Xj ≥ s} (3.6)

The splitting variable j and the split point s should be chosen such that in each
region the variance or entropy is minimized. In other words, the resulting regions
should become as homogeneous as possible. This condition can be written as the
following optimization:

min
j,s

[
min

c1

N

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

N

∑
xi∈R2(j,s)

(yi − c2)
2] (3.7)
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For any choice of j and s, the inner optimization is solved by:

ĉ1 = ave(yi|xi ∈ R1(j, s)) and ĉ2 = ave(yi|xi ∈ R2(j, s)) (3.8)

By scanning all of the inputs, it is feasible to determine the best pair of the (j, s)
very quickly. After finding the best split pair, the data is partitioned into two result-
ing regions and the process of splitting each of the two regions is repeated.

The splitting of the regions should stop at a certain point. A very large (or deep)
tree is prone to over-fitting the data, meaning that even the stochastic noise is being
modeled by the tree, while a small (or shallow) tree fails to capture the important
structure and hence under-fits.

The size or depth of the tree is a tuning parameter that reflects the model’s com-
plexity, and the optimal size should be adaptively chosen by the data. One strategy
to tackle this problem is to grow a large tree and stop the splitting process if the
minimum node size reaches a certain number. Then the large tree can be pruned by
cost-complexity pruning.

In cost-complexity pruning, a subtree T ⊂ T0 is defined as any tree that is ob-
tained by collapsing any number of T0 internal nodes. Let’s index leaves by m
where node m represents region Rm and let the |T| be the number of terminal
nodes in T. By defining:

Nm = #{xi ∈ Rm} ĉm =
1

Nm
∑

xi∈Rm

yi Qm(T) =
1

Nm
∑

xi∈Rm

(yi − ĉm)
2 (3.9)

the cost-complexity criterion can be defined as follows:

Cα(T) =
|T|

∑
m=1

NmQm(T) + α|T| (3.10)

For each α, we want to find the subtree Tα ⊂ T0 which minimizes the Cα. α ≥ 0 is
the tuning parameter that controls the trade-off between tree size and its goodness
of fit to the data. While a large α results in smaller trees Tα, the large value for alpha
results in larger Tα.

It can be proven that there is a unique smallest tree for which the Cα is minimized.
To find Tα, the internal nodes which produce the smallest per node increase in
summation should successively collapse, and this process should continue until a
single node (root) tree is produced. This process yields a finite sequence of subtrees,
and one can show this sequence must contain Tα. α can be estimated by five- or
tenfold- cross-validation such that the value α̂ minimizes the cross-validation sum
of squares and the final tree will be Tα̂.

3.2.3 Relative importance of predictor variables

Usually, the input features do not have equal importance or relevance, i.e. a small
subset of them have significant contribution on the prediction of target values. With
decision trees, it is possible to compute the relative importance or influence of each
of the features in predicting the target. For a single tree, the following measure can
be used as an indication of relevance or importance for predictor variable Xl :

I2
l (T) =

J−1

∑
t=1

ι̂2t I(v(t) = l) (3.11)

The summation is over the internal nodes of the tree. As mentioned before, at
each internal node, the splitting input variable Xv(t) partitions the region into two
subregions and a constant value is fit to the target values in each of the subregions.
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By definition, the Xv(t) is chosen such that the estimated improvement ι̂2t for a
constant fit over the entire region is maximized. To calculate the squared relative
importance of Xl , we simply sum up the squared improvements of all internal nodes
whose splitting variable is Xl .

3.2.4 Random forests

In order to present the idea of Random forests, explaining the concept of bootstrap
and bagging is essential. The bootstrap method is a general tool for assessing sta-
tistical accuracy in which the quantities of a population are estimated by averaging
the estimates from multiple smaller data samples. The smaller data samples are
randomly drawn with replacement from the training data. It can be shown that the
bootstrap method can be used to improve estimate or prediction itself. Bootstrap
aggregation or bagging refers to a family of ensemble machine learning algorithms
in which the final prediction is made by averaging the prediction over a collection of
bootstrap samples which in turn reduces the variance. The idea of bagging works
well high variance (noisy) and low bias models such as trees since they capture
complex structures in data and also have low bias provided that they have grown
to a sufficient depth. In case of regression, the same regression tree is being fitted
many times to bootstrap sampled versions of training data and average the results.
Random forests is a modification of bagging and the idea is to enhance the variance
reduction of bagging by reducing the correlation between the trees (or decorrelated
trees) while the variance is not increased too much. To this end, the trees are con-
structed through a random selection of input variable (or a random selection of
features in the feature vector). Here, the selection of m < p input variables at ran-
dom as candidates for splitting is important. For a regression problem, the typical
value is m=p/3 or even as low as 1 and the minimum node size is five. However, in
practice, these are the typical values and depending on the data, these parameters
should be tuned through cross-validation. 3.1 explains the algorithm of Random
forests in more detail.

Algorithm 3.1: Random forests

1 For b = 1 to B:
2 (a) Draw a bootstrap sample Z of size N from the training data.
3 (b) Grow a random-forest tree Tb to the bootstrapped data, by re-
4 cursively repeating the following steps for each terminal node of
5 the tree, until the minimum node size nmin is reached.
6 i. Select m variables at random from the p variables.
7 ii. Pick the best variable/split-point among the m.
8 iii. Split the node into two daughter nodes.
9 Output the ensemble of trees {Tb}1

B.
10 To make a prediction at a new point x:
11 Regression: f̂ B

r f (x) = 1
B ∑B

b=1 TB(x)

12 Classification: Let Ĉb(x) be the class prediction of the bth random-forest
13 tree. Then ĈB

r f (x) = majority vote {Ĉb(x)}B
1

One advantage of Random forests is the use of out-of-bag samples, i.e. for each
observation z(x, y) constructs its Random forests predictor by averaging only those
trees corresponding to bootstrap samples in which zi did not appear. It is shown
that the out of bag error estimate is almost identical to that of the K-fold cross-
validation, hence the cross-validation is being performed along the training process
and the training can be terminated when the out of bag error stabilizes.

Another significant advantage of Random forests is that the importance of each
of the individual features can be extracted in two possible ways. One is that at each
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split in each tree, the importance measure for the splitting variable is calculated
by the amount of improvement in the split criterion and is accumulated over all
the trees for each variable. The second method for assigning importance measure
is to use out of bag samples to measure the strength of each variable. After the
bth tree is grown, the target value for the out of bag samples are estimated by the
tree, and the prediction accuracy is recorded. Then, by randomly permuting the
values for the jth variable in the out of bag samples and passing them down the
tree, another accuracy for predicting the target can be calculated. As such, the
importance measure of variable j is the average decrease in the accuracy due to this
permutation over all trees.

3.2.5 Gradient boosting

Gradient tree-boosting (or simply Gradient boosting) refers to another family of
ensemble machine learning algorithms that reduce bias and variance by sequentially
converting weak learners to a strong learner. In other words, it sequentially builds
trees such that each subsequent tree reduces the errors of the previous tree. In
contrast to Random forest which uses deep trees, boosting make use of shallow
trees.

Algorithm 3.2: Gradient boosting

1 Initialize f0(x) = argminγ ∑N
i=1 L(yi, γ)

2 For m = 1 to M
3 (a) For i = 1,2,...,N compute

4 rim = −[ ∂L(yi , f (xi))
∂L( f (xi))

] f= fm−1

5 (b) Fit a regression tree to the targets rim giving terminal regions
6 Rjm, j = 1, 2, ..., Jm.
7 (c) For j = 1, 2, ..., Jm compute
8 γim = arg minγ ∑xi∈Rjm

L(yi, fm−1(xi) + γ).

9 (d) Update fm(x) = f(m−1)(x) + ∑Jm
j=1 γjm I(x ∈ Rjm).

10 Output f̂ (x) = fM(x)

As explained in 3.2, in the first iteration, the optimal constant model is a single
node tree f0 in which the bias is high and the predictive power is just a tad better
than a random guess. In the next iteration, a new model with constants γ is fit to
the residuals from the previous step. Then the new model is combined with f0 to
give f1 which is called the boosted version of f1. This procedure can be iterated
m times. Hence, the two basic tuning parameters are the number of iterations M
and the sizes of each of the constituent trees Jm, m = 1, 2, ..., M. Alternatively, it is
possible to restrict all trees to be the same size and J becomes the tuning parameter
of the entire boosting procedure.

3.3 performance assessment

In this section, the concepts, methods, and metrics for assessing the performance
of machine learning models are described. As such, first, the concepts of bias-
variance and over-fitting and under-fitting are discussed. Then the performance
estimation using K-fold cross-validation is explained. After that, techniques for
hyper-parameter tuning and learning curves are briefly described. Finally, the chap-
ter ends with introducing the performance metrics for classification and regression
problems that are used in this research.
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3.3.1 Bias-variance decomposition

With the assumption that Y = f (X) + ε where E(ε) = 0 and Var(ε) = σ2
ε , the

expected prediction error of a regression fit f̂ (X) at an input point X = x0 with the
squared-error loss can be written as follows:

Err(x0) = E[(Y− f̂ (x0))
2|X = x0]

= σ2
ε + [E f̂ (x0)− f (x0)]

2 + E[ f̂ (x0)− E f̂ (x0)]
2

= σ2
ε + Bias2( f̂ (x0)) + Var( f̂ (x0))

= IrreducibleError + Bias2 + Variance. (3.12)

The irreducible error is the variance of the target around its true mean and it
cannot be reduced regardless of what algorithm is used unless σ2 = 0. The second
term is the squared bias which denotes the amount by which the average of the
estimate differs from the true mean. Bias is caused by the simplifying assumptions
built into the model, e.g. approximating a non-linear function using a linear model.
The last term is the variance, the expected squared deviation of f̂ (x0) around its
mean. Generally speaking, for a given quantity of training data, choosing a more
complex model leads to lower bias since it learns the training data better but at the
same time causes higher variance.

In supervised machine learning, the goal is to achieve low bias and low variance
model which leads to better prediction performance (or generalization). While lin-
ear machine learning algorithms provide high bias and low variance, the non-linear
machine learning algorithms provide low bias and high variance. This inevitable
property of predictive models is called bias-variance trade-off and the problem of
minimizing both of them at the same time is called bias-variance conflict.

3.3.2 Under-fitting and over-fitting

Under-fitting and over-fitting can be explained by bias-variance trade-off. Under-
fitting happens when the supervised learning algorithm cannot capture the underly-
ing complexity of the data meaning that the model has a high bias. If both in-sample
and out-sample are high, the prediction accuracy is subjected to under-fitting. There
are two main causes of under-fitting: 1. Lack of training data that is representative
of the complexity of the input space. Typically, the problem of a low quantity of
training data with respect to the complexity of the input space can be solved by
either adding more training data or reducing the complexity of the input space. 2.
Lack of complexity of the selected model can be easily solved by choosing a more
complicated model.

Over-fitting occurs when the model captures all the variances (noise and outliers)
in the training set meaning that the model has high variance. If the out-of-sample
error is high but the in-sample is low, it can be occluded that the prediction accuracy
is subjected to over-fitting. Over-fitting is more harmful than under-fitting since it
provides a misleading in-sample error which promises a higher prediction accuracy
than the algorithm can actually provide. There also two main causes for over-fitting:
1. the complexity of the selected model is more than the complexity of the training
data meaning that the algorithm is learning the stochastic noise instead of a pattern.
One solution is to increase the quantity of training data. Also, the complexity of the
input space can be captured by adding more features. If the quantity of training
data is fixed, less complex learning algorithms should be used. 2. Intentional or
unintentional manipulation of the learning process by using human intelligence.
Intentional manipulation refers to the use of human intelligence to find a pattern in
the training set and steer the learning model such that it captures the found pattern.
Unintentional manipulation occurs due to small mistakes made prior to and during
the learning process.
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3.3.3 Performance estimation

Performance estimation is an extremely important step with two main goals of
assessing the generalization performance and model selection.

Model selection refers to the process in which the generalization performance of
different models is estimated leading to the selection of the best model from a given
hypothesis space. More specifically, training a model with different hyperparameter
values results in different models and the task of finding the best-performing model
from a set of models with different hyperparameter configuration is called model
selection. The goal is to increase the predictive performance by improving the
learning algorithm.

The generalization performance of a supervised learning method refers to its
prediction capabilities on the independent test data (unseen data). It is a step after
choosing the final model in which the generalization error is assessed on new data.

K-fold cross-validation for generalization performance

In cross-validation, the hyper-parameters are assumed to be predefined. The idea
is to cross over the training and test steps in successive rounds with the goal to test
each sample in our dataset. More specifically, K-fold cross-validation is the process
of iterating over a dataset set k times and in each round, the dataset is split into
K parts. One part is kept as the test set and the remaining K − 1 parts are merged
for training the model. The procedure results in K different models that are fit
to distinct but partly overlapping training sets and evaluating on non-overlapping
test sets. The cross-validation performance is the average over the K performance
estimates of the test sets.

There is no general rule for selecting the best value for K. If K is too small (in the
extreme case K = 2), both the pessimistic bias and variance might increase since
less training data is available and the model is more sensitive to how the data was
split. For K = n, called Leave-One-Out Cross-Validation, a model is fit to n-1 data
points and evaluated on the remaining data points. The process is computation-
ally expensive and hence is only suited for small datasets where withholding data
would be harmful. Also, the variance is higher due to the correlation between the
performance estimate while the pessimistic bias is lower compared to any other
value for K. One typical value for K is 5 since it is computationally less expensive.
However, empirical studies on real-world data sets suggest that K = 10 provides
the best trade-off between bias and variance.

K-fold cross-validation for model selection

K-fold cross-validation can be used for model selection by dividing the dataset
into two training and an independent test set. Then, using Bayesian optimization,
randomized search or grid search, we examine various hyperparameters setting
for each of which we apply K-fold cross-validation on the training set leading to
different models and performance estimates. Based on the performance estimates
of the previous step, we choose the hyperparameter configuration with the best
result in the K-fold cross-validation. Then the whole training set is used to fit a
model with this configuration. Next, using the independent test set we evaluate the
generalization performance of the model. The last optional step is to use all the
data points to train the best performing model for real-world applications.

3.3.4 Grid search and random search for hyperparameter tuning

In grid search, we set up a grid of hyperparameter values. Then for each combina-
tion of hyperparameter values, we train the model and evaluate it on the validation
set. This method is inefficient in performance since it checks every single combina-
tion of hyperparameter values.
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In random search, again a grid of hyperparameter values is set up but instead
of checking all the possible combinations of hyperparameters, the combinations are
selected randomly for training the model and evaluating it on the validation set. As
such, it is more efficient than the grid search.

3.3.5 Learning curves

Generally in statistics and machine learning settings, learning curves represent the
expectation value of the test and training errors (generalization performance of the
model) as a function of training set size. In this context, the expectation value is
calculated by considering all the possible combinations of choosing a training set
of a given size. Generally, the training error curve increases while the testing curve
decreases.

Figure 3.1 illustrates the typical learning curves in terms of bias and variance
analysis. In a high bias and low variance model, the training and test learning
curves converge quickly but compared to the more complicated model the ultimate
performance is worse and hence we observe under-fitting. In a low bias and high
variance model, the two curves are getting closer (and may converge to a small
value if more data is available) but the gap in between is still high.

Figure 3.1: The learning curves

3.3.6 Performance metrics

Performance metrics are vital components of evaluation frameworks and depending
on the supervised learning problem (classification or regression), different perfor-
mance measures are used.

Performance metrics for regression

Botchkarev [2018] identified the three most common performance metrics for the
regression problem based on researches in different years. The three metrics are
Mean Squared Error (MSE) or RMSE, MAE, mean absolute percentage error. It is
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further pointed out that certainly not one performance metric can be used for eval-
uating the performance of a machine learning model.

The performance metrics used in this research for the regression problem are:
Mean Absolute Error is the average of the absolute difference between the predicted
values and the observed value. With this metric, all the individual differences are
weighted equally in the average.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3.13)

Root Mean Square Error represents the sample standard deviation of residuals
(the difference between predicted values and observed values). RMSE penalizes the
higher residuals more than MAE.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3.14)

Coefficient of Determination (R2) represents the proportion of the variance in the
dependent variable that is predictable from the independent variables and defined
as:

R̂2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳi)2 (3.15)

Performance metrics for classification

One of the methods for assessing the performance of the classification problem (for
both binary classification and multi-task classification) is using Confusion Matrix
in which each column represents the instances in a predicted class and each row
represents the instances in the actual class (or vice versa) [Sokolova and Lapalme,
2009; Hossin and Sulaiman, 2015]. the correctness of a classification of an individual
class i is evaluated by defining the following variables:

• True positives (tp): the number of correctly classified instances of class i,

• True negatives (tn): the number of correctly recognized instances that do not
belong to class i,

• False positives ( f p): the number of instances that were incorrectly assigned to
the class i,

• False negatives ( f n): the number of examples that were not recognized as
instances of class i.

Based on these variables, the following performance metrics can be calculated per
class:

• Precision which is the class agreement of the data labels with those of the
classifier:

Precision =
tpi

tpi + f pi
(3.16)

• Recall which is the effectiveness of the classifier to identify class i:

Recall =
tpi

tpi + f ni
(3.17)
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• F1-score which isthe harmonic mean of the precision and recall:

F1− score =
2× Precision× Recall

Precision + Recall
(3.18)

Using micro-average and macro-average, the overall precision and recall can be
defined. The macro average computes each metric independently for each class
and then take the average, meaning that all classes are treated equally. The micro-
average aggregates the contribution of all classes to compute the average metric
and therefore, it favors bigger classes and hence is more preferable in case of class
imbalance.

Precisionµ =
∑l

i=1 tpi

∑l
i=1 (tpi + f pi)

(3.19)

Recallµ =
∑n

i=1 tpi

∑l
i=1 (tpi + f ni)

(3.20)

PrecisionM =
∑l

i=1
tpi

tpi+ f pi

l
(3.21)

RecallM =
∑l

i=1
tpi

tpi+ f ni

l
(3.22)

In addition to the above-mentioned metrics overall metrics, such as overall accu-
racy and Cohen’s kappa score can be calculated. The former represents the overall
effectiveness of a classifier as the ratio of correct predictions over the total number
of instances while the latter measures the degree of agreement among raters (i.e.
the predictions and the ground truth) and takes into account the possibility of the
agreement occurring by chance.

Accuracy =
∑l

i=1 tpi

n
(3.23)

Cohen′sKappa =
N ∑l

i=1 Cii −∑l
i=1 Ci+C+i

N2 −∑l
i=1 Ci+C+i

(3.24)

where l is the number of rows in the confusion matrix, Cii is the number of obser-
vations in the row i and column i, Ci+ is the marginal total of row i, C+i is the
marginal total of column i, and N is the total number of observations.





4 S T U DY A R E A A N D DATA S E T S

This chapter gives a description of the study area and the datasets used in this thesis.
Section 4.1 gives a brief history of the A4 highway. Section 4.2 provides information
on D-InSAR deformation measurements used in this research for monitoring road
deformation. Next, Section 4.3 describes the details of gathered CPT measurements.
Section 4.4 provides a description on borehole data. Section 4.5 presents informa-
tion about Light Detection and Ranging (LiDAR) point cloud. Section 4.6 provides
details about temperature and precipitation time series.

4.1 study area
The study area is the recently constructed part of the A4 highway that connects Delft
to Schiedam in the Netherlands. The information about the history of construction
is based on van Meerten et al. [2015] and the figures are from their presentation. The
construction of the highway started in 2011 and the road was opened in December
2015. This part of the highway is constructed in a shallow to deep cutting over a
length of 3 km at an average elevation of −5 m to −10 m sea level (See Figure 4.1
and Figure 4.2).

Figure 4.1: The design of the A4 highway in 2011

Figure 4.2: The highway longitudinal profile

The construction of this part of the highway involved additional complications
due to the presence of the old sand embankment and the sand piles. The old sand
embankment with a thickness of 3 m is from around 1970 when the Dutch Road
Authorities started to build a high level motorway. The embankment settled due
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to the consolidation of the soft soil (See Figure 4.3 ). The sand piles are positioned
every 3 m with the diameter of 0.3 m but the exact positions of the sand piles are
unknown. The purpose of the sand piles was to accelerate the consolidation of the
soft Holocene sediments.

Figure 4.3: The old embankment

As evident in Figures 4.1 and 4.3, as well as the borehole measurements, the
main subsurface soil layers are peat, clay and sand layers. The geological built-
up consists of 16 m of Holocene sediments (sand, clay, peat) lying on top of the
Pleistocene Formation that consists of 15 m of fluvial sand.

4.2 D-InSAR deformation time series
In this study, among different techniques of monitoring road deformation, D-InSAR

deformation time series are gathered since this technique provides spatially and
temporally dense measurements. The SAR images are processed by SkyGeo. The
satellite from which the SAR images are taken is Terrasar-X with the spatial resolu-
tion of 3.00 m × 2.80 m and the revisit period of 11 days. The images are in X-band
with a wavelength of 3.1 cm.

The InSAR time series are generated by combining a sequence of radar images
from the 15th of January of 2016 to the 9th of September of 2018. The end product
is delivered as the time series representing the amount of deformation with respect
to the first acquisition (see Figure 4.4), as well as the 3D position of the deformation
point. Based on the documentation [SkyGeo, 2018], it can be assumed that the time
series represent deformation under coherent conditions since roads show consistent
reflections throughout time. The time intervals between the measurements are not
equal. The number of deformation measurements in 2016, 2017 and 2018 are 16, 19,
12 deformation points, respectively.

There are several points on the quality of the measurements to be considered in
interpreting the D-InSAR time series [SkyGeo, 2018]:

1. As mentioned in Section 2.3, a SAR pixel is either persistent scatter (like scat-
ters from roads) or distributed scatter. Based on Samiei Esfahany [2017], de-
pending on different factors such as the width and direction of the roads,
the feasibility of extracting useful information and reliable phase estimation
from distributed scatter pixels over roads is case-dependent. Hence, in this re-
search, only the deformation measurements from persistent scatter points are
included. There are in total around 19000 processed persistent scatter points
but only around 7000 of them are exactly on the road.

2. The deformation measurement is relative with respect to a stable reference
point (or a stable network of reference points) that does not move in the verti-
cal direction.

3. The deformation measurement at each point in the time series is with respect
to the first acquisition.
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Figure 4.4: An example of deformation time series by SkyGeo

4. The deformation measurements are in the viewing direction of the satellite
with the incidence angle of (15-45 degrees). The consequence is that the mea-
surements reflect both horizontal and vertical deformations. As we assume
that the deformation is mainly in the vertical direction, the measurements are
projected in the vertical direction.

5. The absolute position (X, Y, Z) of the measurements is less certain due to
many sources of uncertainty. The estimation of the absolute height has a stan-
dard deviation of about 1 m. The uncertainty in the horizontal direction is
caused by multiple factors including deviation in height estimation, uncer-
tainties in the orbit of the satellite, and part of the atmospheric delays that
could not be modeled. Hence, the accuracy of the horizontal position can be
several meters. Here, it should be noted that due to the nature of the D-InSAR

techniques in which the deformation is calculated with two images accurately
registered relative to each other, these uncertainties are not involved in the
deformation time series themselves.

6. The reliability of the measurements depends on how accurately the phase
ambiguity has been solved. The dataset at hand contains points where the
estimation of the phase ambiguity is carried out with 99 % certainty.

7. The precision of the deformation measurements depends on the signal to
noise ratio of the reflection and atmospheric influence. The former refers
to the consistency in reflection or coherence within a resolution cell and it is
a measure of the strength of coherence: generally the higher the coherence,
the more reliable the deformation measurements. The latter can be modeled
and eliminated when a large number of images are used for calculating the
deformation because the atmospheric delay is random in time but correlated
in space.

4.3 cone penetrating testing

The CPT measurements are made freely available by the Geological Survey of the
Netherlands, available at www.dinoloket.nl. The basic measurements in CPT files
are the cone resistance (qc) and sleeve friction ( fs). In the study area, there are 559

available CPT measurements acquired between the years 2010 to 2014.
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One important aspect of the CPT measurements is the quality and confidence
of the data which should be considered in the methodology. As illustrated in Di-
noloket [2019], quality and confidence depend on:

• The standard based on which the test was performed (NEN3680, NEN5140,
ISO 22476-12:2009),

• The method and the device of measurement: the mechanical devices measure
force while the electrical devices measure pressure directly,

• The date of the test: data files older than 1982 tend to be less accurate,

• Digitizing on paper measurements and distortions introduced as the result,

• The number of parameters that are measured and the depth of the measure-
ments: variations in both of these factors need to be dealt with in the prepro-
cessing steps of the methodology.

Based on the metadata of the CPT files, the horizontal position of the measure-
ments is acquired by the Differential-Global Navigation Satellite System (GNSS)
which provides an accuracy of about 1 m. The vertical positioning method is also
based on GNSS technology, but the information on accuracy is missing.

4.4 borehole
The boreholes are also made freely available by the Geological Survey of the Nether-
lands, available at www.dinoloket.nl. On the study area, there are only 60 available
boreholes. In this research, we are only interested in the soil type information
available in the boreholes. The soil types are mainly identified with the 2 main
components: one describing the primary material while the other describes the
secondary material [Todd, 2017]. The information about the drilling method, the
positioning method of the boreholes and their accuracy are missing. Furthermore,
not that much explanation about the quality and confidence of the borehole logs is
given on the Dinoloket website.

4.5 point cloud
In recent years, LiDAR systems are used to accurately map roads and highways [Lem-
mens, 2011]. To this end, the laser scanner is mounted on the car which is called
terrestrial mobile mapping. Laser scanners are active sensors that emit continuously
laser beams which are modulated as sine waves for measuring the distance to the
objects. In terrestrial laser scanners, the point cloud is taken using either phase shift
or pulse measurement principle. In phase shift measurements, the system compares
the phase of the reflected part and the emitted one and the range is calculated from
the difference in phase. In the time-of-flight, the time taken by the pulse to reflect
back to reach the instrument is measured. The range is measured by multiplying
the travel time by the speed of light divided by two.

To determine the 3D position of a point, in addition to the range, the position of
the instrument and the vertical and horizontal angles of each laser beam must be
known. In case of mobile mapping, the car is equipped with a GNSS receiver and
Inertial Measurement Unit (IMU) provides the accurate positions of the laser scanner
and enables the geo-referencing of the acquired data [Lemmens, 2011].

Figure 4.5 shows a part of the point cloud of the A4 highway provided by the
Smart Street viewer of Cyclomedia. The point cloud has 2 cm measurement accuracy
which is sufficient for this research.
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Figure 4.5: The LiDAR point cloud of the A4 highway

One of the applications of point cloud data is to extract DEM using an interpola-
tion method. The point cloud of the road acquired by the mobile mapping technique
can be used to extract the current elevation of the road.

4.6 meteorological data
The temperature and precipitation are acquired from the Royal Netherlands Mete-
orological Institute. It is possible to interpolate the meteorological data of the near
stations to the study area. However, in this study, only the nearest station to the A4

highway is taken into account which is station 344 in Rotterdam.
As will be explained in Chapter 5, the deformation on a specific date may be

influenced by the meteorological conditions of its previous days. Therefore, the
meteorological data are dated from the 1st of November 2015 to December 2018.
Figure 4.6 and Figure 4.7 show the original time series for daily measurement of
precipitation and temperature, respectively.
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Figure 4.6: The daily precipitation time series

Figure 4.7: The daily average temperature time series



5 M E T H O D O LO GY A N D
I M P L E M E N TAT I O N

5.1 methodology
The overall methodology consists of three main steps. The first step is mainly data
collection and pre-processing in which the relevant parameters for the second and
the third step are extracted. In the second phase, the correlations and similarities
are investigated. In the third step, we used machine learning to define the rela-
tionship between soil properties, loading/unloading history and the linear rate of
deformation.

5.1.1 The first step: pre-processing

The raw data sets collected for this thesis are extensively discussed in Chapter 4.
These raw data sets consist of borehole measurements, CPT measurements, LiDAR

point cloud of the road, deformation time series, and meteorological data (temper-
ature and precipitation time series). The objective of this step is to structure and
transform the gathered raw data sets into processed data sets that are used in the
next steps of the methodology. As such, the following pre-processing steps are
taken (See also 5.1):

• From the boreholes, the main soil type and the 3D position (X, Y, Z coordi-
nates) are extracted.

• The CPT files should be first filtered so that only the measurements with suf-
ficient depth are considered for analysis. Also, the measurements should be
exactly on the road or with a small distance to the road. Based on experts’
knowledge, within a radius of around 5 m is safe to say that the soil layering
is the same. From the CPT files, the relevant parameters such as depth, qc,
fs, 3D position are extracted. Based on the values of qc and fs, other values
such as R f , Qtn, Fr can be calculated. Having the values of Qtn, Fr, the soil
classification based on Robertson classification (in this research, we also refer
to it as Robertson classifier) can be performed.

• The raw point cloud data is converted to a DEM. The created DEM should have
a high resolution to reflect the transverse slope of 2.5% on the road.

• The Z coordinate of the CPT indicates the elevation of the terrain before the
construction of the road. The current elevation of each CPT is extracted from
the DEM model. Assuming a uniform thickness for the road layers, the differ-
ence between the current and old elevation indicates the amount of removed
or added stress due to excavation or back-filling. Hence, the estimation of
loading /unloading stress is possible.

• From the D-InSAR deformation measurements, the 3D position and the defor-
mation time series are required. The measurements of the deformation time
series are not in equal intervals. Within most of the deformation time se-
ries, two patterns can be observed: an irreversible inter-annual deformation
such as heave or subsidence which is long term and depends on the type and
composition of the soil and the loading/unloading conditions, as well as a
short-term seasonal deformation due to changes in soil moisture.
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• The daily temperature and precipitation are to be studied with the deforma-
tion time series. Hence, the interval of the temperature and precipitation time
series should be adjusted to the time intervals of the deformation time series.
Furthermore, the effect of temperature and precipitation are not instantaneous
on the deformation and a single deformation measurement in time is affected
by the average temperature and cumulative precipitation of the previous days.

After extracting the relevant parameters, three new processed data sets are cre-
ated:

1. Processed dataset 1: Using nearest neighbor analysis, for each borehole, its
corresponding CPT is found.

2. Processed dataset 2: The nearest neighbor analysis is also performed for each
CPT in order to find its corresponding deformation time series decomposed to
linear trend and seasonal pattern.

3. Processed dataset 3: The data set contains the adjusted temperature and pre-
cipitation time series.

Figure 5.1: The first step of the methodology

5.1.2 The second step: correlations and similarities

This step consists of two parts as depicted in 5.2. In the first part, the similarities and
correlations between CPT, loading/unloading stress and the deformation (processed
data set 2) are being studied. The reason for such an analysis is to investigate the
degree that the CPT measurements and loading/unloading stress can explain the de-
formation. In the second part, the correlation of D-InSAR seasonal deformation time
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series and temperature, as well as the correlation of D-InSAR seasonal deformation
time series and precipitation are investigated.

For the first part, a single correlation measure cannot be defined, simply because
the CPT measurements are a series of measurements in depth, the loading/unload-
ing stress is a single number, and the deformation measurement can be in the form
of time series or a single number (the linear rate of deformation). Therefore, an-
other way of investigating the similarities and correlations is proposed based on the
following hypothesis:

If two or more data points are similar to each other in terms of both qc and
fs profiles and the loading history is approximately the same, the deformation
behavior should be approximately the same.

Based on the hypothesis, first, a similarity measure should be defined for the
CPT measurements. Serra and Arcos [2014] presents several similarity measures for
clustering and classification of time series. The qc and fs profiles are measurements
in depth and are similar to time series. Hence, any of the similarity measures
discussed in Serra and Arcos [2014] can be used to measure the similarities between
qc and fs profiles on the road. Secondly, two data points are similar in terms of
loading/unloading stress if the difference of their loading/unloading stress is less
than a threshold. Finally, with these criteria, for each data point (called the reference
point), zero or more than zero similar data points (called the similar points) might
be found. If the number of found similar data points is more than one, the mean or
median of the linear deformation of the similar points should be taken into account.
The degree that the linear deformation of the reference point is in accordance with
the linear deformation of its similar points can be an indicator of how well the
deformation can be addressed by the CPT measurements and loading/unloading
stress.

In the second part of this step of the methodology, the temperature and pre-
cipitation, as indirect indicators of soil moisture, are correlated with the seasonal
deformation. In theory, expansive clay swells with the increase in moisture and
shrinks with the decrease in water content. As such it is expected that, in dry sea-
sons (high temperature and low precipitation), the soil should shrink. With the
same reasoning, in the wet seasons, the swelling of the soil is expected. Therefore, a
negative correlation is expected with average temperature and a positive correlation
is expected with cumulative precipitation.

5.1.3 The third step: modeling through machine learning

This step consists of two parts (see 5.3). In the first part, soil classification is per-
formed through a machine learning algorithm. In the second part, the deformation
is modeled through machine learning algorithms.

Soil type classification

As mentioned in Section 4.3, soil type is one of the important soil properties in this
research, however, it is mostly derived from empirical charts and tables. Since there
are some borehole data available for this case study, an alternative is to use machine
learning to carry out a soil classification task. Using processed data set 1, for each
data point at a certain depth on the CPT profile, a set of features should be defined
and the label to be predicted by the classification algorithm is the soil types derived
from borehole measurements at that specific depth. The data set is split into a train
and a test set, and a machine learning algorithm is trained. The performance of
the machine learning model is assessed using the performance assessment metrics
explained in Section 3.3.6. Finally, the results of the machine learning model are
compared with that of the empirical charts.
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Figure 5.2: The second step of the methodology

Deformation estimation

In this step, in order to create a link between the soil properties, loading/unload-
ing stress and the deformation, the application of machine learning algorithms is
explored. Here, for simplicity, the scope is limited to modeling the linear rate of
deformation which provides the general trend of deformation. Hence, the feature
vector consists of parameters of soil properties and loading/unloading stress and
the target to be calculated by the regression model is the linear rate of deformation.

As mentioned in Chapter 3, in order to model a phenomenon using machine
learning algorithms, a set of features that are representative of the phenomenon
should be defined. One representative feature of deformation is the loading/un-
loading stress. The qc and fs profile in CPT measurements are also representative
of soil properties. However, the raw data cannot be used as features because of the
increase in the dimension of the input space and the resulting sparsity. The prob-
lem is called the curse of dimensionality and can only be solved with an enormous
amount of training data. Since in this research the size of training data is small, the
dimension of feature space should be strictly controlled. Therefore, from CPT mea-
surements, a limited number of features should be extracted that are meaningful as
well.

Based on Coerts [1996], in general, to translate the CPT measurements to mean-
ingful geological and geotechnical information, CPT measurements are divided into
segments. Each segment represents a soil layer or set of soil layers. The segmenta-
tion can either carried out manually or quantitatively. While the manual segmen-
tation is subjective (depends on the experts’ knowledge), it is the most commonly
used method, especially for small data sets. The quantitative segmentation methods
use automated procedures and while they are more objective and suitable for large
data sets, most algorithms still require rigid criteria which makes them less useful
for CPT analysis.

The characteristics of segments reveal the properties and structure of soil layers.
The analysis and description of the segments are useful for geological interpreta-
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tion as well as understanding stratigraphical correlations. The description of the
segments can be either qualitative or quantitative. An example of qualitative de-
scriptors is soil type. Quantitative descriptors are the numerical parameters (e.g.
statistical measures) from each segment.

Different types of features can be extracted from the segments based on the choice
of descriptors. After feature extraction, the deformation can be modeled through
machine learning algorithms. To this end, the data set is split into a training and
a test set. The machine learning algorithm is trained on the training set and the
performance of the trained model is assessed on the test. Finally, both the model
and results of the performance assessment are interpreted.

Figure 5.3: The third step of the methodology

5.2 implementation
This section provides the details of the implementation of the proposed methodol-
ogy for each of the steps. These details involve the specific assumptions and choices
of thresholds, models, methods, etc. The implementation was carried out through
programming in Python and using other geospatial information systems software
packages such as FME and QGIS.

5.2.1 The first step: pre-processing

The CPT measurements should be representative of the sub-surface soil. Therefore,
CPT files that contain too many missing values of key parameters or shallow mea-
surements in depth should be excluded. The CPT measurements may contain null
values. The null values at the end and beginning of the measurements are excluded
and for the few missing values that are in between, interpolation based on previous
and the next record is used. Furthermore, from each CPT measurement, the CPT

profiles to the depth of 15 m under the surface are taken into account so that the
result of analysis would not get distorted because of the variation of measurements
in depth. The choice of 15 m is due to two main reasons:
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• As mentioned before, the geological built-up consists of 16 m of Holocene
sediments (sand, clay, peat) lying on top of the Pleistocene Formation of fluvial
sand. Therefore, the effective depth in terms of the presence of compressible
soil types is 15 m.

• This depth is a good trade-off between having the maximum possible mea-
surements for each CPT and not losing too many CPT measurements shallower
than that depth.

The relevant parameters such as depth, qc, fs, R f , Qtn, Fr, soil types based on
Robertson chart, as well as total stress (σ) and effective stress (σ′) at each depth
due to upper soil layers are extracted through a Python code developed by Deltares.
The 3D position is extracted through a separate Python code and converted to a
shapefile. The shapefile of the road is used to perform a point in polygon analysis
on CPT measurements so that only the measurements inside the road or within 4 m
distance with the road are included in the data set.

The raw point cloud data is converted to DEM using Triangulated Irregular Net-
works (TIN) interpolation in FME software. While there is no consensus on the best
choice of interpolation method for creating a DEM, TIN surface may have a higher
resolution and more suited for applications where a higher detail is required (ref).
The TIN surface is converted into a raster DEM with a resolution of 30 × 30 cm. The
lower resolution, 50 × 50 cm, was not accurate in some locations when compared
to the planned road profile in Figure 4.2, while a finer resolution is not necessary.

As mentioned in the methodology, the CPT points before and after construction
are known. In this research, since the details of the construction of the road such as
the thickness of the road layers (surface, base, sub-base, and sub-grade) are not avail-
able, we assume a uniform thickness of 90 cm for the road layers based on expert’s
knowledge. Hence, at each point the di f f erence = (za f ter − thicknesspavement) −
Zbe f ore determines the depth of excavation if the difference is positive. If negative,
the difference determines the amount of backfilling.

In the case of excavation, the unloading stress equals the stress of top soil layers at
the depth of excavation (with a negative sign that indicates unloading). In the case
of backfilling, we assume that the loading is because of the added sand layer on top
of the road. Assuming that the unit weight of sand γsand is 18 kN/m3, the stress
equals to di f f erence × γsand (with a positive sign that indicates loading). Over the
A4 highway, mostly excavation happened during the construction.

To each borehole, its nearest neighbor CPT measurement, with a distance less than
6 m and an elevation difference of less than 0.3 m, is assigned. These criteria were
considered to minimize the misalignment in soil layering and depth of soil layers
between the borehole and CPT measurements as well as including maximum data
points. With the two mentioned conditions, the number of CPT measurements that
have close enough borehole is 47.

The 3D position of the deformation time series is extracted and converted to a
shapefile. A point in polygon analysis is performed and the D-InSAR deformation
measurements that are exactly on the road are used for the rest of the analysis. For
decomposing the InSAR deformation measurement to trend and a seasonal pattern,
the assumption is that the trend is linear. While empirical models for heave and
subsidence are mostly exponential functions, the assumption of linearity is for the
sake of simplifying the problem. The time series are decomposed to a linear rate
of deformation and a seasonal deformation using a least-squares linear regression
model:

De f ormationLinear = Rate× Time + Intercept (5.1)

De f ormationSeasonal = De f ormationTrue − (De f ormationLinear) (5.2)
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For each CPT measurement, the nearest neighbor deformation measurement with
a distance of less than 5 m is extracted as its deformation time series. The choice
of 5 m is again based on experts’ knowledge and the fact that the soil layering is
approximately the same within a radius of 5 m. The assigned InSAR deformation
measurements are manually checked for consistency.

In the study of seasonal deformation of levees, Özer et al. [2019] proposed that
the short term sub-seasonal deformation has to do with the ”change in water levels,
precipitation, and temperature, occurring over periods of days to weeks depending
on the soil and loading conditions”. The time intervals of 10 days and 30 days
for average temperature and cumulative precipitation were considered, respectively.
However, it does not mean that the same numbers could be necessarily applied for
roads. In this research, the daily temperature time series are averaged over different
time intervals (over the past 10, 20, 30 and 40 years). The cumulative precipitation
time series are summed up over the same number of days as the temperature.

5.2.2 The second step: correlations and similarities

In this step, the similarities and correlations are being studied. We can use any of the
similarity measures discussed by Serra and Arcos [2014] to measure the similarities
between qc and fs profiles on the road. In this research, we used the simplest
similarity measure which is the Euclidean distance between the time series because
the measure is suitable for comparison of samples that are at exactly the same depth
location and it is efficient in terms of computation time. The Euclidean similarity
measure is written as:

dLn(x, y) = (
M

∑
i=1

(xi − yi)
2)

1
2 (5.3)

Two data points are similar if the normalized sum of the normalized qc and fs
Euclidean distances is less than 0.02 and the difference of the loading/unloading
stress is less than 10 kPa. These thresholds are chosen through trial and error and
visual inspection of the results. If the thresholds become smaller, less similar points
are found for a reference point or the number of data points with no similar points
cannot increases. If the thresholds become larger, the measurements that are not
really similar are included as similar points.

Cross-correlation or sliding dot product is a measure of similarity of two series
as a function of the displacement of one relative to the other. This measure is
suitable for investigating the correlation of deformation time series with that of
the temperature or precipitation time series taking into account the different time
delays (lags). The definition of the cross-correlation coefficient of two time series x
and y at lag k is:

ρxy(k) =
E[(xt − µx)(yt−k − µy)]

σxσy
(5.4)

These correlations indicate how well the gathered data on soil properties and
loading/unloading conditions are explaining the deformation measurements. This
step provides some insights and motivates the use of machine learning for model-
ing the relationship between soil properties, loading/unloading stress, and defor-
mation.
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5.2.3 The third phase: modeling through machine learning

Soil type classification

The first step is to define a set of features from CPT measurements that describe
soil types. For a point at a certain depth, the input feature vector consists of Qtn,
Fr, total stress, the average qc and fs values of 1 meter above and below the point.
Qtn, Fr are considered as features since these two parameters have proven to have
predictive capabilities in Robertson classification. The rest of the features are added
to the feature vector due to the fact that the values of CPT measurements are affected
by the soil layers on top and below them. The label to be predicted by the model is
the soil type.

Figure 5.4: The features and the label for soil classification

A classification problem can be solved by any of the classification algorithms
mentioned in Section 6.3. However, because the feature vector is of low dimension
(only 7 features), the tree-based algorithms are less suitable due to the fact that these
algorithms use a random selection of features and therefore the number of features
should be large enough. Hence, here we used SVM. The feature vector consists of
features that have values with different magnitudes, and therefore all the features
are normalized between 0 to 1 so that the SVM algorithm is not affected by the large
values. The hyperparameter selection is done through a grid search. 70% of the
measurements are taken for training the model and 30% of the measurements are
used as the test set.

After performance estimation, the results are compared with the simplified Robert-
son classification. Since Robertson classification does not include peat as one of the
classes, the most similar class to peat which is clay with organic soil (class 2) is
regarded as the equivalent of peat. Class 3 and 4 are reclassified as clay. All the
classes between class 4 to class 9 are regarded as sand. This reduction of classes
is in accordance with the main soil types in the study area. Finally, the resulting
model of this part is used for soil classification of all the CPTs in the study area.

Deformation estimation

The modeling of the linear rate of deformation can be performed in two ways using
either quantitative or qualitative descriptors. Depending on the type of the descrip-
tor, the segments of different lengths are proposed so that the size of the resulting
number of features are not too small or too large.

For using soil types as qualitative descriptors, the soil classification model in the
previous section is used for each of the CPT measurements in the area. Having
the soil type profiles of the measurements, the 15-m soil profile is divided into 15
segments, i.e. segmentation in every 1 m. In each segment, the thickness of peat
and clay are the features that describe the segment. As such, the feature vector for
modeling the deformation is defined as the thickness of peat and clay in every 1 m of
the profile. Figure 5.5 further illustrates this point. The last feature is the estimated
loading/unloading stress. Therefore, with qualitative descriptors, the feature vector
consists of 31 features (15 × 2 + 1).

The quantitative descriptors with their interpretation are fully explained in Fig-
ure 5.2.3 which are median, standard deviation (STD), skewness, minimum (Min),
maximum (Max), interquartile range (IQR), trend (T), the indicator of convexity
or concavity (C), normalized number of fluctuations about the median (R), and
sharpness of the upper boundary (B). The sharpness of the upper boundary can
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be calculated only for the middle and deep segments. For using the quantitative
features the profiles of qc and R f are divided into 3 segments. These three segments
represent the soil properties in shallow, middle and deep depths. For each of the
3 segments in qc and R f profiles, these descriptors are calculated as features. The
last feature is the recent loading/unloading stress. Therefore, the feature vector for
each data point consists of 59 features ( 2 × (9 + 10 + 10) + 1).

The choice of segmentation and feature extraction based on both types of descrip-
tors is motivated by the following reasons.

• Segmentation reflects the important effect of the depth of measurements on
the deformation. For example, the deformation behavior of a peat layer in the
deep depth below layers of sand and clay is different than that of a peat layer
on the surface of the ground.

• It is also important to compare the predictive capabilities of different types of
descriptors.

• Qualitative descriptors (soil types) are more intuitive for interpretation and
understanding of which soil type is playing a more significant role in the
deformation. However, the CPT measurements are transformed into soil types
(nominal values) which introduces some distortions when translated back into
real values.

• The quantitative descriptors are directly extracted from values in the CPT pro-
files without any transformation to nominal values and hence they do not
have the distortion issue. Furthermore, they provide information about the
significance of different CPT profiles in predicting deformation. However, they
are less intuitively interpretable.

Having the qualitative and quantitative features and loading/unloading estima-
tion, the goal is to establish the relationship between the defined feature vectors
and the linear rate of deformation. The target value is the linear rate of deforma-
tion (mm/years) extracted from the deformation time series. Therefore, a regression
problem seems to be more relevant and the accuracy assessment can be carried out
with more statistical metrics helping better interpretation of the results.

Two machine learning algorithms, i.e. Random forests and Gradient boosting
algorithm are tested. The reason for the selection of these two algorithms is that,
compared to other machine learning algorithms, the tree-based algorithms provide
information about the importance of the features which further helps in the inter-
pretation of the models. Here, the emphasis is more on interpretability because the
goal is not to have an accurate model while it does not provides insights about the
driving mechanisms of deformation.

To train the Gradient boosting and Random forests model the processed dataset
3 is split into a train and a test set. 80% of the measurements are taken for training
each of the models and 20% of the measurements are used as the test set. Since
the distribution of deformation behavior is not even and the data set is unbalanced
in terms of values of the linear rate of deformation, the Stratified Shuffle Split in
SKlearn library of Python is used. This method of splitting the dataset preserves
the distribution of samples in both the train and the test set.

Quantitative segment descriptors

The most intuitive quantitative descriptors of CPT measurements can be their mean
and variance. The problems with these simple descriptors are that they are not
always representative parameters and there is always the danger of information
loss in case of taking only measures of central tendency and dispersion into account.
The pattern of segments can be modeled by least squares regression analysis (e.g.
fitting second-order polynomials). The problem with the regression analysis is the
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Figure 5.5: The feature vector with qualitative descriptors and the target for deformation
modeling

diversity of patterns, i.e. not all segments can be modeled by a similar order of the
polynomials. Therefore, regression analysis does not provide proper features for
the quantitative description of segments.

Other possible descriptors for CPT measurements can be the presence of peaks,
dips, spikes, and plateaus as well as other attributes such as amplitude, topography,
trend, skewness. Coerts [1996] introduces a set of descriptors for CPT measurements
together with their physical interpretation:

• Median value for the q c measurements reflects the texture and packing (rela-
tive density) while for R f , it reflects the amount of organic matter.

• Interquartile range (IQR) represents homogeneity and heterogeneity with re-
spect to various lithological aspects.

• Indicator of simple trend (T) generally represents the gradual change with
the depth. For q c measurements it shows the changes of the grain-size or the
packing while for R f it represents the changes of the amount of fines or the
organic matter. To calculate trend, the following steps are required:

1. Let z be the vertical position of a data point in a CPT segment, v the
observed quantity (e.g. q c and r f ) and n be the total number of ob-
servations in a segment. A rank rv i is assigned to each observation v i,
i = 1, 2, ..., n (and i > j means zi < zj) such that:

rvi > rvj i f vi > vj

rvi < rvj i f vi < vj

rvi = rvj i f vi = vj

2. A matrix is constructed by comparing the rv i and applying the following
rules to determine the values of the matrix elements:
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−1 i f rvi > rvj

+1 i f rvi < rvj

0 i f rvi = rvj

For example, such a matrix for Figure 5.6 is:



rv 4 5 3 1.5 1.5
4 ∗ 1 −1 −1 −1
5 ∗ −1 −1 −1
3 ∗ −1 −1
1.5 ∗ 0
1.5 ∗


3. The trend is defined as the summation of values to the number of pairs,

e.g. for the segment in Figure 5.6, we have T = −7
10 = −0.7

• Indicator of convexity or concavity (C) provides information about the con-
trast with adjacent layers and the relative vertical position of disturbances. c
can be calculated as follows:

1. For each observation, the corrected rank of vertical position is crzi =
|rzi − I| and the corrected rank of observed quantity is crvi = (rvi − I)
where I = n+1

2

2. The sum of corrected ranks of vertical position J is defined as:

i f n even : J =
n
2

2

i f n odd : J =
1
4
(n− 1) ∗ (n + 1)

3. The indicator of convexity or concavity c = n
J2 ∑n

i=1 crzi − crvi. For exam-
ple:

Table 5.1: Example of the calculation of C for Figure I = 3 and J = 6
rzi rvi crzi crvi c

1 4 2 1

2 5 1 2

3 3 0 0 -0.07

4 1.5 1 -1.5
5 1.5 2 -1.5

The value of C can be interpreted as follows:

C = 0 indicates strictly monotonously constant or increasing or decreasing
pattern
C < 0 indicates convex pattern
C > 0 indicates concave pattern

• Normalized number of fluctuations about the median (R) which provides in-
formation about homogeneity and heterogeneity with respect to certain litho-
logical aspects. To every point in the segment, a Boolean value is assigned: 1
if the value of the observation is greater than the median and 0 otherwise. A
run is defined as an uninterrupted series of 1 or an uninterrupted series of 0.
Then, R = number o f runs

number o f datapoints .
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Figure 5.6: An example of calculating T and C

• Sharpness of upper boundary of the segment (B) which reflects the abruptness
of lithological change. To quantify this measure, the upper boundary segment
is defined as follows:

B =
ub− lb
ub + lb

(5.5)

where lb is the sum of two records immediately below the segment boundary
and ub is the sum of two records immediately above the segment boundary.
If −1 < B < 0, there is an upward decrease in observation values around the
boundary and If 0 < B < 1, there is an upward increase in observation values
around the boundary.



6 R E S U LT S A N D D I S C U S S I O N S

This chapter provides the results of the three steps of the methodology. The results
of the first step of the methodology provide important insights into developing the
next steps of the study. The results of each step are described together with the
discussions on the analysis.

6.1 results of the first step
This section mainly provides the visualization of the processed data sets. Sec-
tion 6.1.1 shows the resulting processed data set 1. Section 6.1.1, Section 6.1.2 and
Section 6.1.3 together visualize data set 2, and Section 6.1.2 visualizes part of data
set 3.

6.1.1 Soil properties: CPT and borehole measurements

As mentioned in Chapter 5, the results of this step are the three data sets that are
used in the next steps. Figure 6.1 shows an example of a CPT profile with the three
measurements of qc, fs and R f as well as the corresponding borehole measurement
and soil classification based on Robertson.

Figure 6.1: An example of CPT measurement, its nearest borehole and the soil classification
based on Robertson classifier

Investigating these graphs for the whole data set provides three observations:

1. Considering the thresholds for finding the nearest CPT to each borehole mea-
surement, the two measurements match well together with a negligible mis-
alignment or shift in depth. As can be observed, the qc values for peat and
clay layers are lower compared to sand layers while the R f values are higher
than that of the sand which is in accordance with empirical charts. More
specifically, the peat layers have the highest R f values and it is in accordance
with empirical soil classification charts.

2. The general soil layering pattern in this highway from the surface to the depth
of around −20 m consists of sand layers on top, followed by peat and clay
layers, and again sand layers in the deep part.

51
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3. Although the borehole measurement shows only the main soil layers, its com-
parison with Robertson classification or the simplified Robertson classification
shows that using the Robertson classification fails to recognize the organic
soils and peat layers. Also, the classification based on the Roberson chart can
be noisy in some cases.

6.1.2 Digital elevation model and loading/unloading stress

The DEM model created from LiDAR point cloud shows the current elevation of the
highway. As shown in Figure 6.2a, the DEM reflects the deep excavation in the
south part of the highway which is in accordance with 4.2. Figure 6.2b shows the
difference between the elevation of the highway before and after the construction.
The difference in elevation reflects the thickness of removed soil during the excava-
tion. The loading/unloading stress map is presented in section Section 6.3.2.

(a) (b)

Figure 6.2: (a) The current DEM of the A4 highway. (b) Difference in elevation before and
after the construction for each CPT measurement

6.1.3 Deformation and meteorological time series

Figure 6.10b and 6.10a show two examples of InSAR time series decomposed to a
linear trend and a seasonal pattern. The seasonal pattern has different amplitudes
at different positions. Also, the seasonality in the time series cannot be attributed
to the expansion and contraction of asphalt for two reasons:

Figure 6.4 shows an example of the adjusted meteorological time series. The
time series of adjusted temperature averaged over 10 days and adjusted cumulative
precipitation over 30 days are presented.

1. The contraction (or expansion) of asphalt due to the temperature difference
of 40 Celsius is less than 0.5 mm while as can be seen in the time series, the
amplitude can be 4 mm.

2. The amplitude of the seasonality pattern should be similar since the thickness
of asphalt is more or less the same on the road.
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(a)

(b)

Figure 6.3: (a) An InSAR deformation measurement with clear and high amplitude seasonal
pattern (b) An InSAR deformation measurement with noisy and low amplitude
seasonal pattern
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(a)

(b)

Figure 6.4: (a) Adjusted temperature time series averaged over 10 days (b) Adjusted cumula-
tive precipitation time series over 30 days

6.1.4 Discussion

Based on the above observations, the following insights are gained:

• The first and the third observation in Section 6.1.1, inspires the idea of using
machine learning for modeling the relationship between CPT and borehole
measurements for soil classification purposes. For evaluating the machine
learning model, it can be compared with simplified Roberson classification.

• Also, the second observation in Section 6.1.1 suggests that the deformation
behavior due to soil types and soil layering depends on the variations in thick-
ness and depth of soil layers within this general pattern. Therefore, one way
to investigate the relationship between the deformation and the soil properties
from CPT measurements is to use the thickness of soil types at certain intervals
in depth as features of deformation.

• DEM map and the difference in elevation, in section Section 6.1.2, suggest that
the diversity in deformation behavior can be attributed to the amount of exca-
vation.

• The seasonality pattern can be attributed to the soil properties such as soil
type and soil moisture. As such, in the next step, the seasonal pattern is
correlated with temperature and precipitation time series.
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6.2 results of the second step

6.2.1 Similarity and correlations based on CPT and loading/unloading stress

As mentioned in the methodology, for every data point the similar data points in
terms of CPT profiles and loading/unloading history are found. Figure 6.5a and
6.5b show an example of qc and fs measurements for a reference data point and
its corresponding similar qc and fs measurements. The unloading stress for the
reference data point is −8.7 kPa. For the similar data points, from left to right in
Figures 6.5a and 6.5b, the unloading stresses are −8.8 kPa, −9.4 kPa, −16.2 kPa,
−8.2 kPa, −8.1 kPa, respectively.

Figure 6.5c gives a better understanding of soil types and soil layering. As can be
observed, the similarity between the qc and fs and the lithology profiles are quite
high which confirms that the selected thresholds correctly group the measurements
in terms of similarity. Figure 6.5d shows the position of the measurements on the
road. Similar measurements are also spatially close together. However, this obser-
vation is not necessarily true for all the reference points and their corresponding
similar points.

Figure 6.5b shows the corresponding InSAR time series for the reference point and
its similar points. The time series found through this approach are all showing the
settlement behavior. The most similar measurement shows a linear rate of −4.5
mm/year which is quite close to the deformation rate of −4.0 mm/year of the ref-
erence point. But as the measurements are getting less similar in terms of profiles
and loading/unloading stress, the difference between the deformation rates gets
more. For example, for the similar points in Figure 6.5, the linear rates of defor-
mation range from −4.5 mm/year (the most similar point in terms of CPT profiles
and loading/unloading stress) to −0.8 mm/year (the least similar point in terms of
loading/unloading stress).

The mean and median of the deformation rates of similar points are−2.3 mm/year
and −2.2 mm/year, respectively, which can be a good estimation of the reference
point deformation with about 1.7 mm/year difference. It is interesting to investigate
the general patterns in the rest of the points and see if these observations can be
generalized to all the other points.

Investigating all the data points, three types of patterns can be observed as the
result of this analysis (see also Figure 6.6):

1. The deformation behavior (subsidence or heave) between the reference point
and its similar points is exactly the same. This is true for 200 of the data
points.

2. For less than 20 data points, the reference points show a completely different
deformation behavior than that of their similar points.

3. The reference point shows similar behavior with some of its similar points
and shows a different behavior with the rest of the similar points which is the
case for 140 of data points.

The diversity in the behavior of the data points already shows that CPT and the lat-
est loading/unloading history cannot fully explain the phenomenon. However, as
mentioned before, it is interesting to measure the degree that the deformation be-
havior of a point can be explained through soil properties and loading/unloading
stress of its corresponding similar data points. The hypothesis, here, is that if the
deformation behavior can be written as a function of CPT profiles and loading/un-
loading stress, the mean value of the deformation rate of the similar points to the
reference point should give an estimate of the deformation rate of that reference
point.
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(a)

(b)

(c)
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(d)

(e)

Figure 6.5: (a) The dark blue profile shows the qc profile of a reference point and the light
blue profiles represent the similar qc profiles to the reference point (b) The dark
red profile shows the fs profile of a reference point and the light red profiles
represent the similar fs profiles to the reference point (c) The lithology profiles of
the reference point (the profile on the left) and its similar points (d) The position
of the reference point and its similar points (e) The InSAR deformation time series
of the reference point and its similar points
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Figure 6.6: Histogram of different similarity patterns

The relationship between the rate of deformation of the reference points and the
mean of the deformation rates of their corresponding similar data points, as well as
line y = x are shown in Figure 6.7. The correlation coefficient and the coefficient of
determination between the reference rates and the mean of similar rates are 0.6 and
0.4, respectively.

Figure 6.7: The rate of deformation of the reference points v.s. the mean rate of deformation
of their corresponding similar data points

6.2.2 Cross-correlations of seasonal deformation with temperature and precipita-
tion

In theory, expansive clay swells with the increase in moisture and shrinks with the
decrease in water content. Figures 6.8a and 6.8b show the histogram of correla-
tion values of deformation time series with temperature and precipitation without
considering any time delay (lags). The correlations with temperature are positive
which is the opposite behavior of what is expected in theory, meaning that with
higher temperature (and hence drier soil), the soil expands. The correlations with
precipitation are already quite low and around zero.



6.2 results of the second step 59

(a)

(b)

Figure 6.8: (a) The histogram of the cross-correlation with zero lag between the seasonal
deformation time series and temperature time series averaged over different days
(b) The histogram of the cross-correlation with zero lag between the seasonal
deformation time series and precipitation time series summed up over different
days

Knowing that swelling is expected with the increase in soil moisture, the cross-
correlation of the seasonal pattern of deformation with the temperature should
be negative and the correlation with precipitation should be positive. Therefore,
we looked for most negative correlations with mean temperature and most positive
correlations with cumulative precipitation and their corresponding time delays. The
reason for looking at the problem from a different angle is to understand if the
time delays are conveying any useful information about the response of the soil to
changes in temperature and precipitation.

Figures 6.9 and 6.10 show the histogram of the highest correlations and their
corresponding lags. As can be observed, the correlation with temperature is mostly
around −0.3 and the correlation with precipitation is mostly around 0.2. The lags
can range from 0 to 10 points in the deformation time series for correlations with
temperature. For the correlation of seasonal deformation with precipitation time
series, the lags are between 0 to 5 points.
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(a)

(b)

Figure 6.9: (a) The histogram of highest negative correlations with temperature and (b) The
histogram of the lags

(a)

(b)

Figure 6.10: (a) The histogram of highest positive correlations with precipitation and (b) The
histogram of the lags
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6.2.3 Discussion

In order to interpret the values of the Pearson correlation coefficient and the coef-
ficient of determination in Section 6.2.2, it is useful to compare it with the ideal
situation (coefficient of determination equals 1). We would expect a coefficient of
determination of 1, if:

1. the qc and fs profiles and loading/unloading history of similar points were
exactly the same as the reference point and,

2. the qc and fs measurements and loading/unloading history were the only
determining parameters of the deformation behavior and,

3. the distribution of the sample data points were evenly distributed (balanced
data set).

The first situation does not hold since there are always differences between the
CPT measurements. As mentioned in chapter 2, expansion properties of the soil,
the initial and intermediate stress state conditions, groundwater conditions also
play an important role in modeling soil deformation and therefore, the qc and fs
measurements and the latest loading/unloading state are not the only defining
factors. As mentioned before, both the distribution of the deformation behavior
and the range of deformation values are unbalanced and hence the estimate of the
deformation value for a reference point through similar points is less accurate for
the points with lower frequencies.

Based on the histograms in Section 6.2.2, the following conclusions can be made:

• The low correlations suggest that temperature and precipitation may not be
representative measures of soil moisture. The low correlations might also be
due to the noise in the deformation time series.

• Considering that the time series consists of around 15 measurements of defor-
mation for every year which are not distributed in equal time intervals, a lag
of 10 points in the time series means 9 months of delay which does not convey
any interpretable information.

Based on the insights gained in this section, the third step of the methodology is
to explore machine learning algorithms in order to investigate if machine learning
algorithms have better capabilities in estimating deformation and finding hidden
patterns.

6.3 results of the third phase
The results of the third step of the methodology are presented here. First, the
results of soil classification based on CPT and boreholes (data set 1) are discussed.
In the next part, data set 2 together with the resulting soil classification model of
the previous step are used to train the two tree-based algorithms for deformation
estimation.

6.3.1 Soil classification

In this section, the result of classification with SVM classifier is presented and com-
pared to the simplified Robertson classification. Before, presenting the results,
hyper-parameter tuning is described. As mentioned in Section 3.2.1, the hyper-
parameter for the SVM classifier is the cost parameter C. Using 10-fold cross-validation
and grid search, the optimized value of 1000 is selected between the values of
0.1, 1, 10, 100, 1000.
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The performance metrics (see Section 3.3.6) of the two types of classification, i.e.
simplified Robertson classification and SVM, are compared. Figure 6.11 presents the
confusion matrix of soil classification based on the simplified Robertson classifica-
tion. Figure 6.12, shows the soil classification derived from the SVM classifier. As
it can be seen, the SVM classifier has better performance in terms of differentiating
between clay and peat compared to the Robertson classification. The accuracy and
Kappa index for Roberson classification are 0.81 and 0.65 while they are 0.83 and
0.71 for the SVM classifier, respectively.

(a) (b)

Figure 6.11: (a) Confusion matrix of Robertson classifier (b) Normal confusion matrix of
Robertson classifier

(a) (b)

Figure 6.12: (a) Confusion matrix of SVM classifier (b) Normal confusion matrix of SVM
classifier

Table 6.1 and Table 6.2 summarize the performance metrics of classification based
on Robertson and SVM classifier.

• Accuracy: The accuracy of both classification approaches are quite similar.
However, accuracy alone cannot be a good measure since we have an imbal-
anced data set. The dataset predominantly consists of clay and sand rather
than peat and it can be expected that if both classification approaches can suc-
cessfully differentiate between these two classes, then the accuracy should be
high for both classification methods.

• Kappa: The kappa index is more robust to imbalance data than accuracy and
also considers the probability of the agreement occurring by chance. The
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Kappa metric for the SVM classifier is higher than for the Robertson classifier.
The difference between the two values of kappa stems from the fact that the
Robertson Classifier performs poorly in detecting peat class.

• Precision: High precision indicates that the classifier predicts more relevant
instances of the class than irrelevant ones. In other words, given a class pre-
diction from the classifier, precision represents the probability of the correct
prediction. The precision for peat class is not high for both classifiers, however,
it is higher for the SVM model. For clay classification, the prediction by the SVM

model is more precise than that of the Robertson classifier while in classifying
sand soil type, both classifiers are quite similar in terms of precision.

• Recall: High recall indicates that the classifier predicts most of the relevant
instances. In other words, recall represents the probability of a class being
detected by the classifier. As can be seen in the table, for peat class, the recall
of the SVM classifier is substantially higher than that of the Roberson classifier
meaning that peat can be better detected by the SVM Classifier. The same is
also true for sand. However, it can be seen that clay is better detected by the
Robertson classifier. As can be seen also in the confusion matrix, the low value
of recall for peat and high value of recall for clay using the Robertson chart
can be justified by the fact that the classification method is more inclined to
detect clay while the real class is peat.

• F1-score: The F1-score is a more summary measure that presents the com-
bined values of precision and recall. As can be seen, in general, the SVM

classifier performs better for all the classes, more specifically it is higher for
peat than that of the Robertson classifier.

• Micro average of precision, recall, and F1-score: The micro average values of
precision, recall, and F1-score, in general, are higher for the SVM classifier than
that of the Robertson. However, the difference between the micro averages is
negligible. This is because peat is the least dominant class between the soil
types and the effect of its performance metrics is reduced due to its lower
support. The micro average suggests that both classifiers perform equally well
if the goal is to maximize the correct predictions and to minimize the wrong
predictions, without considering any class to be important over the others.

• Macro average of precision, recall, and F1-score: The macro average is in-
sensitive to the class imbalance. If the goal is to value the minority class in
the classification, the macro average reflects a better measure. Hence, the
greater difference between the macro average of the performance metrics of
the two classifiers is influenced by the lower performance metrics of peat for
the Robertson classifier compared to the SVM classifier.

Table 6.1: Performance metrics of Robertson classifier
Precision Recall F1-score

Peat 0.2 0.08 0.11

Clay 0.75 0.89 0.81

Sand 0.92 0.85 0.88

Micro average 0.81 0.81 0.81

Macro average 0.62 0.61 0.60
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Table 6.2: Performance metrics of SVM classifier
Precision Recall F1-score

Peat 0.35 0.5 0.41

Clay 0.87 0.79 0.83

Sand 0.91 0.92 0.91

Micro average 0.83 0.83 0.83

Macro average 0.85 0.74 0.72

Figure 6.13, shows the results of the classification on the test set. Figure 6.13a
shows a case in which the borehole measurement and soil classification based on
the SVM classifier match quite well. Figure 6.13b present a case in which the SVM

classifier miss-classifies clay as peat.

(a) (b)

Figure 6.13: The result of soil classification by SVM and Robertson classifiers(a) An example
of good match between the true soil types and SVM classification (b) An example
of mismatch between the true soil types and SVM classification

6.3.2 Insights from soil types and loading/unloading stress

In order to better understand the pattern of soil types and loading/unloading his-
tory on the road, the maps of the thickness of soil types (classified based on the
SVM classifier), the map of loading/unloading stress and the map of resulting linear
deformation are interpreted together. Also, the thickness of different soil types and
loading/unloading stress are correlated with the linear rate of deformation. Figure
6.14, show the thickness of the clay, sand, and peat layers up to the depth of 15
m over the whole road, as well as the amount of unloaded stress on the road (the
negative sign indicates unloading and the positive sign shows loading). The maps
reveal some interesting patterns:

• The northern part of the highway contains more peat (the thickness of the peat
layers is between 1 to 2 m) than that of the southern part (see Figure 6.14a).
Peat is highly compressible while it does not expand. Hence, the more is
the thickness of the peat layers, the less we expect heave behavior. This is also



6.3 results of the third phase 65

evident in Figure 6.15a where the correlation between the thickness of the peat
layers and linear rate of deformation is calculated. Although the correlation
is −0.2 which is weak, the negative sign of the correlation confirms that peat
plays a role in subsidence.

• As mentioned in Section 2.1.2, heave behavior can be partly attributed to the
presence of clay with expansive minerals. Comparing the maps for the linear
rates of deformation (Figure 6.14e) and the thickness of the clay layers (Figure
6.14b), there seems to be a correlation between the two. In the middle part
of the highway, the thickness of the clay layers is between 9 to 14 m in the
total depth of 15 m which is quite high. In the same part of the road, the
measured behavior of deformation is mainly heave. The correlation between
the thickness of clay layers and the linear rate of deformation is 0.3 (6.15b),
which shows that, in general, with more clay layers, one can expect more of
heave behavior.

• If the thicknesses of clay and peat layers are known, the thickness of sand
layers is simply the remaining of the 15 m and therefore, the thickness of the
sand layers for every point depends on the thickness of the peat and the clay
layers. However, the sand layers are the soil layers that are least prone to
deformation and hence more stable. It can be expected that with more sand
layers, especially on top of the compressible layers, more subsiding behavior
should be observed. Comparing the maps of the thickness of the sand layers
(Figure 6.14c) and the rate of deformation (Figure 6.14e) confirms that where
there are more sand layers, either subsidence or negligible deformation (rates
between −1 to 2 mm/year) can be observed.

• Heave can also happen due to excavation on roads, provided that the sub-
surface soil contains expansive clay layers. Comparing the maps for the
amount of loading/unloading stress (Figure 6.14d) and the deformation map
(Figure 6.14e), one can observe that from the north to the south, the amount
of unloading stress increases. Looking at the deformation map, the heave de-
formation is most occurring in the southern part of the road. A closer look at
maps of the deformation, the loading/unloading stress and the thickness of
the clay layers reveal that where the thickness of the clay layers is more than
9 m, the unloading stress with a magnitude of 35 kPa or more causes a sub-
stantial heave behavior. However, even large unloading stress cannot result
in substantial heave deformation where the thickness of the clay layers is not
large (less than 9 m). Figure (Figure 6.14e) and the correlation of −0.4 further
confirms the above-mentioned points.
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(a) (b)

(c) (d)

Figure 6.15: Correlation of rate of deformation with (a) Thickness of peat (b) Thickness of
clay (c) Thickness of sand (d) Loading/unloading stress

6.3.3 Discussion on soil classification and insights from soil types and loading/un-
loading stress

In conclusion, the classification based on the Robertson classifier was never much
better than that of the SVM classifier on the test set. However, if in the soil classifica-
tion, differentiating between a specific soil type (e.g. peat) and other soil types are of
importance, the SVM produced better results with better performance metrics. The
following conclusions can be made from the maps and the calculated correlations:

• While the maps and the correlations provide general insights about the behav-
ior of deformation with respect to soil layers and loading/unloading stress,
one can find that the above mentioned general patterns occur with the differ-
ent degrees of agreement.

• The weak correlations suggest that the relationship between soil properties,
loading/unloading stress, and the deformation behavior are quite non-linear.
Also, the correlations indicate that the presence of certain soil layers and the
amount of loading/unloading stress have different effects in different direc-
tions on the deformation behavior. Hence, the resulting deformation behavior
is the combined effect of soil layers and loading/unloading stress.

• Another important point is that the correlations are calculated between the
total thickness of different soil types and the linear rate of deformation, while
from a geotechnical point of view, the total thickness does not provide the
complete information for studying deformation. The order of soil layers and
the depth of each of the soil layers are also quite important in understanding
the response of soil to loading/unloading stress and the resulting deforma-
tion.
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(a) (b)

(c) (d)

(e)

Figure 6.14: (a) Thickness of peat (b) Thickness of clay (c) Thickness of sand (d) Loading/un-
loading stress (e) Resulting deformation
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Knowing that the relationship is non-linear and the fact that we do not know the
mathematical formulation of the relationship, using machine learning algorithms
is an appropriate way of modeling the relationship. Also, as there are no previ-
ous studies on machine learning with CPT measurements, the choice of proper set
of features is unknown and the machine learning algorithm should provide some
information about the significance of each of the features. Furthermore, the es-
tablished model through the machine learning algorithm should be interpretable.
These conditions confirm the choice of tree-based machine learning algorithms such
as Gradient boosting and Random forests.

6.3.4 Machine learning with qualitative descriptors

In this section, the results of using tree-based machine learning algorithms for mod-
eling the relationship between soil properties, loading/unloading stress and the
linear rate of deformation are discussed. Table 6.3 and Table 6.4 present the hy-
perparameters tuned through grid search and 10-fold cross-validation for Gradient
boosting and Random forests models. Figures 6.3 and 6.4 show the learning curves
of the trained models. Although the two learning curves are converging, the gaps
between training score and cross-validation score is large in both figures which in-
dicate high variance. If more data points probably the gaps become smaller and
converge to a score of around 0.4.

Table 6.5 and 6.6, respectively, present the generalization performance metrics of
the Gradient boosting model and Random forests averaged over the 10-fold cross-
validation, as well as the best performing model between the 10-folds. It can be
observed that on average the two models are performing the same, however, the
Gradient boosting model is a little bit better when it comes to the best performing
model.

Figure 6.17a and 6.17b show the histograms of errors of both regression mod-
els. The histograms are quite similar in the range of errors however, the histogram
of the Gradient boosting model is more uniform. Figures in 6.18 provide a better
understanding of the estimated values and errors. The estimated values are all be-
tween −1 to 5 mm/year. That means that both models fail to detect larger subsiding
patterns and extreme heaving patterns and hence the larger errors.

Table 6.3: Hyper-parameter selection for Gradient boosting model with qualitative descrip-
tors

Hyper-parameters Set of hyper-parameters Best hyper-parameters

Number of estimators {20 , 30 , 50} 50

Learning rate {0.01 , 0.05} 0.05

Maximum number of features {log2 , sqrt} sqrt
Maximum depth of tree {2 , 3 } 3

Table 6.4: Hyper-parameter selection for Random forests model with qualitative descriptors
Hyper-parameters Set of hyper-parameters Best hyper-parameters

Number of Estimators {50 , 100 , 200} 100

Maximum Number of Features {log2 , sqrt} sqrt
Maximum Depth of Tree {2 , 3 , 4} 4
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(a) (b)

Figure 6.16: (a) The learning curve of 10-fold cross-validation of Gradient boosting with qual-
itative descriptors (b) The learning curve of 10-fold cross-validation of Random
forests with qualitative descriptors

Table 6.5: Performance metrics of Gradient boosting model with qualitative descriptors
Averaged Over 10-folds Best Performing Model

MAE [mm/year] 1.3 1.2
MSE [mm/year] 3.2 2.7

RMSE [mm2/year2] 1.8 1.6
R2 [-] 0.3 0.4

Table 6.6: Performance metrics of Random forests model with qualitative descriptors
Averaged Over 10-folds Best Performing Model

MAE [mm/year] 1.3 1.2
MSE [mm/year] 3.2 2.9

RMSE [mm2/year2] 1.8 1.7
R2 [-] 0.3 0.3

(a) (b)

Figure 6.17: (a) The error histogram of Gradient boosting model with qualitative descriptors
(b) The error histogram of Random forests model with qualitative descriptors

Figure 6.20 shows the significance of each soil type and loading/unloading stress
in the total depth of 15 m ( 6.20a) and also in every 5 m ( 6.20b) based on Gradient
boosting model. Clay plays the most important role in predicting the deformation
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(a) (b)

(c)

Figure 6.18: (a) The true rates of deformation (b) The estimated rates of deformation of
Gradient boosting model with qualitative descriptors (c) The error of estimated
rates
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(a) (b)

(c)

Figure 6.19: (a) The true rates of deformation (b) The estimated rates of deformation of
Random forests model with qualitative descriptors (c) The error of estimated
rates
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behavior and after that, the loading/unloading stress is the most significant feature.
Figure 6.21 shows the feature importance based on Random forests which is more
or less the same as Gradient boosting except that in Random forests, the significance
of peat and loading/unloading stress are quite similar.

(a) (b)

Figure 6.20: (a) Importance of different soil types (b) Importance of different soil types at
different depths based on Gradient boosting model

(a) (b)

Figure 6.21: (a) Importance of different soil layers (b) Importance of different soil types at
different depths based on Random forests model

6.3.5 Machine learning with quantitative descriptors

Figure 6.22 shows the quantitative descriptors extracted from qc and R f profiles at
different depths. These features are the descriptors of the segments of every 5 m. In
this research, rather than being interested in the importance of each of these descrip-
tors in estimating the target value, we are more interested in investigating which of
the profiles and which depth of measurement is more significant in estimating the
linear rate of deformation.
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Figure 6.22: Quantitative descriptors extracted from qc and R f profiles

Table 6.7 and 6.7 provide the hyper-parameter setup of the Gradient boosting
and Random forests model, respectively. The hyperparameters are tuned through
grid-search and 10-fold cross-validation. Figure 6.23 shows the corresponding learn-
ing curves. In comparison with models with qualitative descriptors the learning
curves have lower bias but the variance (the gaps between training score and cross-
validation score) is still high. If more data points are added, the curves might
converge on the score around 0.5 which is better than the models with qualitative
descriptors.

Table 6.9 and Table 6.10, respectively, present the generalization performance met-
rics of the Gradient boosting model and Random forests averaged over the 10-fold
cross-validation, as well as the best performing model between the 10-folds. As can
be seen in tables the performance of the machine learning models is a little better
with quantitative descriptors. The two figures in 6.24 show that Gradient boosting
has more uniform error values (all between −4 to 4 mm/year). But the improvement
in the performance is not considerable. Figure 6.25 further explains the negligible
improvement of performance. While with Random forests with quantitative de-
scriptors (Figure 6.26) and the models with qualitative descriptors (Figure 6.19 and
6.19) the estimation of deformation rate is between −1 to 5 mm/year, the Gradient
boosting model 6.25 can estimate the deformation rate of −4 to −1 mm/year only
for one point. But still, the improvement is quite negligible.

Table 6.7: Hyper-parameter selection for Gradient boosting model with quantitative descrip-
tors

Set of hyper-parameters Best hyper-parameters

Number of Estimators {20 , 30 , 50} 50

Learning Rate {0.01 , 0.05} 0.05

Maximum Number of Features {log2 , sqrt} sqrt
Maximum Depth of Tree {2 , 3 } 3

Table 6.8: Hyper-parameter selection for Random forests model with quantitative descrip-
tors

Set of hyper-parameters Best hyper-parameters

Number of Estimators {50 , 100 , 200} 100

Maximum Number of Features {log2 , sqrt} sqrt
Maximum Depth of Tree {2 , 3 , 4} 4
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(a) (b)

Figure 6.23: (a) The learning curve of 10-fold cross-validation of Gradient boosting with
quantitative descriptors (b) The learning curve of 10-fold cross-validation of
Random forests with quantitative descriptors

Table 6.9: Performance metrics of Gradient boosting model with quantitative descriptors
Averaged Over 10-folds Best Performing Model

MAE [mm/year] 1.1 1.1
MSE [mm/year] 2.4 2.2

RMSE [mm2/year2] 1.6 1.5
R2 [-] 0.5 0.5

Table 6.10: Performance metrics of Random forests model with quantitative descriptors
Averaged Over 10-folds Best Performing Model

MAE [mm/year] 1.2 1.2
MSE [mm/year] 2.6 2.5

RMSE [mm2/year2] 1.6 1.6
R2 [-] 0.4 0.5

(a) (b)

Figure 6.24: (a) The error histogram of Gradient boosting model with qualitative descriptors
(b) The error histogram of Random forests model with qualitative descriptors



6.3 results of the third phase 75

(a) (b)

(c)

Figure 6.25: (a) The true rates of deformation (b) The estimated rates of deformation of
Gradient boosting model with quantitative descriptors (c) The error of estimated
rates

Figure 6.27 shows the feature importance for different features. Both Figures 6.27a
and 6.27b represent that features extracted from qc profiles play a more important
role in determining soil properties for estimating the deformation. After the qc
profiles, the loading/unloading stress plays a more dominant role in estimating the
deformation rates.
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(a) (b)

(c)

Figure 6.26: (a) The true rates of deformation (b) The estimated rates of deformation of
Random forests model with quantitative descriptors (c) The error of estimated
rates
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(a) (b)

Figure 6.27: (a) Importance of CPT profiles and loading/unloading stress based on Gradient
boosting model with quantitative descriptors (b) Importance of CPT profiles
and loading/unloading stress based on Random forests model with quantitative
descriptors

6.3.6 Discussion

The learning curves of all the models prove that in order to have a low variance
model more data points are needed. Also, the bias can be reduced by either a better
method of feature extraction or adding more features. This means that there are
some other parameters that play a role in estimating the deformation rates and are
unknown to the machine learning models (e.g. soil moisture and previous steps of
loading/unloading).

The best performance metrics are obtained through the Gradient boosting model,
in which the MAE is 1.1 mm/year, RMSE is 1.5 mm/year and the coefficient of deter-
mination is 0.5. The errors at best range from −4 to +4 mm/year. However, around
60% of the estimations have errors between −1 mm/year to +1 mm/year.

The resulting moderate performance metrics and the uncertainty are due to sev-
eral reasons:

• The distribution of the data points is not uniform (unbalanced dataset), more
data is available with a deformation rate between −1 to 5 mm/year and there-
fore the model is biased towards these values.

• The number of data points is not enough.

• The features based on qualitative descriptors are less representative. This is
because the percentage of soil types in every meter is used as features that
have some inherent errors due to the misclassification of the SVM classifier.

• The complexity of the deformation behavior of this specific study area is due
to its long history of loading/unloading. Also, the presence of sandpiles adds
another complication to the resulting deformation.

The result of feature importance is in accordance with theory: the deformation in
the study area is mostly heave deformation which can be attributed to clay and the
excavation. More specifically, the thickness of clay in deep depth (10 to 15 m) and
shallow depth (0 to 5 m) have more important roles. This is due to the fact that the
thickness of clay on the middle depth (5 to 10 m) is more or less the same for the
whole road. Also, based on the feature importance with quantitative descriptors, it
seems that the qc profile is more representative of the soil properties.
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The findings of the two sections of deformation estimation can be summarized
into the following points:

• The results of the models with quantitative descriptors are a little bit better
than the qualitative ones. This is mainly because, for the qualitative descrip-
tors, the CPT measurements are transformed into soil types which causes er-
rors in the features due to misclassification.

• Both machine learning models give consistent results in terms of generaliza-
tion performance and feature importance with negligible differences.

• In general, the results can be improved (in terms of bias and variance) by
adding more data points and more features that describe the diversity in de-
formation behavior.

• The distribution of deformation rates should be more uniform in order to have
better results.

• Only CPT measurements and the last step of loading/unloading stress cannot
fully describe the deformation behavior.

• The complexity of the construction history of the A4 highway adds to the
uncertainty of estimations.



7 C O N C L U S I O N S

In this chapter, the research question and research sub-questions are reviewed and
addressed. Then, the contributions to the current state of the art presented as well as
the limitation of the thesis. Regarding the limitations, future work is recommended.

7.0.1 Research overview

In this section, first, the sub-questions are answered. Based on the answers to the
sub-questions, the main research question is addressed.

• What are the data sources needed for studying soil properties, loading/unload-
ing conditions and deformation measurements? As illustrated in 4.2, among
different techniques for measuring ground deformation, in this research, de-
formation measurements based on D-InSAR techniques were chosen. The de-
formation measurements are dense in time and space that makes it suitable
for data-driven approaches. Based on studies on deformation in geotechni-
cal engineering, CPT measurements and boreholes provide information on soil
properties, and more specifically on soil types. Although CPT measurements
and borehole are not frequent in time, for this specific study area, the number
of CPT measurements and boreholes was enough to explore data-driven ap-
proaches. Since neither CPT measurements nor boreholes provide information
on soil moisture and data on the fluctuations of soil moisture is not (freely)
available, the temperature and precipitation time series are used as indirect in-
dicators of soil moisture changes. Finally, the loading/unloading conditions
are estimated through the comparison of the terrain elevation before and after
the construction of the road.

• Is there a correlation between soil properties, loading/unloading, and defor-
mation measurements? In order to answer this research question, different
correlation and similarity measures were used. Since the CPT measurements
(qc, fs) are measured in depth, while loading/unloading stress and the linear
rate of deformation are real values, the new way for correlating these mea-
surements was proposed. To this end, For each CPT measurement, its similar
measurements in terms of qc and fs values (i.e. the normalized sum of the
normalized qc and fs Euclidean distances is less than 0.02) and loading/un-
loading stress (i.e. the difference of the loading/unloading stress is less than
10 kPa) are found. The is that ”if two CPT measurements are similar to each
other in terms of both qc and fs profiles and the loading history is the same,
the deformation behavior should be the same”. The Pearson correlation and
the coefficient of determination between the linear rate of deformation of a
data point and the mean of the linear rate of deformation of its similar data
points were defined as the measures of correlation. The Pearson correlation
and the coefficient of determination were 0.6 and 0.4, respectively. While the
Pearson correlation is relatively high, the moderate coefficient of determina-
tion suggests that the linear rate of deformation of a point on the road can
be estimated with moderate accuracy through the points that have similar CPT

profiles and similar loading/unloading stress. Although this step of the anal-
ysis already suggests that the CPT and the latest stage of loading/unloading
stress cannot be enough for estimating the linear rate of deformation with

79
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high accuracy, the rigid thresholding can be also one reason for such a moder-
ate accuracy. In order to find out if the moderate accuracy of the estimation is
due to the lack of other required data sources or rigid thresholding, another
approach should be explored. This is a good motivation for examining the
capabilities of machine learning algorithms for getting a higher estimation.

The seasonal deformation time series was also cross-correlated with tempera-
ture and precipitation. Considering the low correlations and lack of pattern
in the time delays, it can be concluded that the seasonal pattern either is not
due to the changes in soil moisture or cannot be understood by temperature
and precipitation time series.

• What features should be included from the available data sets? In this the-
sis, a soil classification (classification problem) and deformation estimation
(regression problem) were performed through machine learning algorithms.
For the soil classification, the features were extracted from CPT measurements
and the label to be predicted by the machine learning algorithm is the soil
type. For the regression problem of modeling deformation, the features are
extracted from the CPT measurements. The other important feature for the
deformation model is the loading/unloading stress. The target value to be
modeled is the linear rate of deformation. In the soil classification, after align-
ing the CPT profiles with their corresponding borehole measurement, for a
point at a certain depth, the input feature vector consists of Qtn, Fr, total
stress, the average qc and fs of 1 m above and below the point. The choice
of Qtn, Fr is inspired by the Robertson chart while the rest of the features are
added as the indicators of the contribution of the soil layers on top and be-
low each of the measurements. In order to be able to use machine learning
algorithms for estimating the linear rate of deformation, a feature vector of
soil properties and loading/unloading stress should be defined. In this thesis,
the feature vectors are defined based on qualitative and quantitative descrip-
tors of the CPT measurements. To this end, for qualitative descriptors, the
lithology profile is divided into segments of 1 m. The thickness of peat and
clay in every segment together with loading/unloading stress are used as fea-
tures describing the linear rate of deformation. For quantitative descriptors,
the qc and R f profiles are divided into segments of 5 m. The quantitative seg-
ment descriptors, which are median, standard deviation, skewness, minimum,
maximum, interquartile range, trend, the indicator of convexity or concavity,
normalized number of fluctuations about the median, and sharpness of upper
boundary, together with loading/unloading stress are used as features. The
segmentation before feature extraction for deformation modeling reflects the
contribution of the depth of measurements on the deformation. Also, as ex-
pected, while the qualitative descriptors are more intuitive for interpretation,
the results show that the predictive capability of quantitative descriptors is a
little bit better than that of the qualitative descriptors.

• What machine learning algorithm(s) are more suitable in establishing the re-
lationship? In general, all the machine learning algorithms that were used in
this thesis are designed and implemented both for classification and regres-
sion problems. However, there are conditions for using each of the algorithms.
The SVM algorithm is suitable for the problems where the feature vector is of
low dimension. While the tree-based algorithms are most suitable for the prob-
lems in which the feature vector is of high dimension because the algorithms
use a random selection of the features to build each of the trees. Also, the tree-
based algorithms provide information about the importance of the features
and hence are more interpretable. In this research, the classification was per-
formed through the SVM classifier since the number of features was low. The
deformation modeling was performed through two of the well-known ma-
chine learning algorithms, i.e. Random forests and Gradient boosting. These
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two algorithms are interpretable by plotting feature importance. The results
of both algorithms are quite similar to each other. Based on the tree-based
algorithms for the qualitative descriptors, clay plays the most important role
in predicting the deformation behavior and after that, the loading/unloading
stress is the most significant feature. This result was expected as the defor-
mation is mostly heave deformation which can be attributed to clay and the
excavation. More specifically, the thickness of clay in deep depth (10 to 15
m) and shallow depth (0 to 5 m) is more important because the thickness of
clay on the middle depth (5 to 10 m) is more or less the same for the whole
study area. Based on tree-based models from quantitative descriptors, the
features extracted from qc profiles play a more important role in determin-
ing soil properties for estimating the deformation. After the R f profiles, the
loading/unloading stress plays a more dominant role in estimating the defor-
mation rates.

• What is the accuracy of the chosen machine learning technique and is it sat-
isfactory? The best performance metrics are obtained through the Gradient
boosting model, in which the mean absolute error is 1.1 mm/year, root mean
squared error is 1.5 mm/year and the coefficient of determination is 0.5. The
errors at best range from −4 to +4 mm/year. However, around 60% of the esti-
mations have errors between -1 to +1. Also, the comparison of the true values
of deformation (ranging from −7 to +8 mm/year) and the estimated values
(mostly ranging from −1 to 5 mm/year) already suggests that the accuracy is
also better for points where the true rate is also between −1 and 5 mm/year.
This is due to the fact that the distribution of data is not balanced. Comparing
the range of true values of deformation and the range of errors, as well as the
coefficient of determination, it can be seen that the uncertainty of the model
may not be desirable and improvements are needed for applications in which
high accuracy is required. The values of the coefficient of determination are
larger than zero. This suggests that the estimation of models is better than the
mean of linear deformation rates in the whole study area.

Using machine learning techniques, is it possible to model a spatio-temporal
relationship between the soil properties, loading/unloading, and the deformation
measurements on roads? In this study, a fully data-driven approach for modeling
deformation is proposed. So, it is possible to develop a model, however, the result-
ing models with different algorithms and sets of features are of moderate accuracy.
As shown in Figure 7.1, the uncertainty of the models is due to three main reasons:

1. The available data sets on the study area are not fully representative of the
deformation. Meaning that only CPT measurements and the last step of load-
ing/unloading stress cannot fully describe the deformation behavior. Also,
the distribution of deformation values is not balanced which makes it less
suitable for machine learning algorithms. Furthermore, although the number
of CPT measurements was 559, after pre-processing only 368 points remained
which is not sufficient for data-driven approaches. Also, the information on
the quality of some data sources is missing (e.g. accuracy of measurement
techniques of CPT and boreholes and their positions) or is uncertain (e.g. the
accuracy of D-InSAR deformation points is up to few meters).

2. The study area is complicated in terms of construction history. No measure-
ment on the amount and time of loading in 1970 are available and hence the
end model suffers from the lack of information on previous loading steps.
The presence of sandpiles creates a more complicated situation. The location
of sandpiles is another unknown and could not be added to the end model.

3. The proposed methodology adds to the uncertainty. The pre-processing steps,
the choice of certain criteria for interpolations and nearest neighbor analysis,
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the criteria for alignment and adjustment of data sources together, the estima-
tion of loading/unloading stress, soil classification using SVM algorithm, and
feature extractions from CPT, all have different levels of uncertainty which can-
not be modeled or eliminated. All these uncertainties also propagate to the
end model.

Figure 7.1: The sources of uncertainty in the resulting models

7.0.2 Contributions

The main motivation for investigating data-driven approaches for modeling defor-
mation was to eliminate empiricism in conventional modeling of deformation in
geotechnical engineering. The following points are the main contributions of this
research:

• The research provided information about the available data sources for soil
properties, loading/unloading history, and deformation.

• No previous study was performed on creating a direct link between CPT and
D-InSAR deformation measurements. The conventional geotechnical modeling
included some intermediate steps and estimations.

• The second step of the methodology can also be a profound direct analysis for
investigating the degree that the CPT measurements and loading/unloading
stress can explain the deformation without any empiricism.

• There are a few experiments on soil classification using data-driven approaches.
This study further confirmed that data-driven approaches are at least as accu-
rate as empirical classification methods. Furthermore, it seems data-driven
approaches can perform better if the classification of a specific soil type is of
importance.

• There is no previous study on extracting features from CPT profiles for the
purpose of deformation modeling.

7.0.3 Limitations

There are some limitations involved in this research:

• The study is limited to only one type of land use, i.e roads.

• Some other data are required. For example, most of the loading/unloading
history is unknown while it plays an important role.

• The soil classification model was not validated with another study area that
has the same main soil types.
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• Only two types of feature extraction have been explored in this research.

• The complexity of the deformation behavior in this study area is high and
unique compared to other roads. Hence, validation and generalization to
other roads might not be possible.

7.0.4 Future work and recommendations

Concerning the limitations of this research the following future works are proposed:

• Considering the complexity of the study area the explicit empirical models for
deformation could not be used. The use of machine learning for deformation
modeling is not also suitable for the study areas with complex construction
history, specifically when the available data sources are limited. Hence, data-
driven approaches should be used for simple study areas where the informa-
tion on loading/unloading and soil properties is available to a good degree.
The other option is to gather a sufficiently rich database of lab experiments
in which the soil properties, loading/unloading stresses and the deformation
are known.

• The soil classification based on data-driven approaches can further be ex-
plored since in the scale of the whole country many CPT measurements and
boreholes are available. However, the caveat is that sometimes due to the time
difference between the measurements and some in-between activities, there
is a possibility of mismatches between the measurements. Therefore, the se-
lected sample must be checked in terms of reliability.

• Other possible ways of feature extraction can further be explored.

• Using the proposed methodology on less complicated study areas with the
possibility of validating the resulting models.
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