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1
Abstract

The emergence of Apple’s Macintosh computers’ popularity introduces new threats and challenges for
the security on the Mac. For a long time, OS X security has benefitted from the popularity of Microsoft
Windows. The threat landscape for the Mac is rapidly changing as the marketshare of the Mac is
approaching 15%1. Malware on Apple’s OS X systems emerges to be an increasing security threat that
is currently solely countered with ancient anti-virus (AV) technologies [18]. Current AV technologies
pose a performance overhead on the entire system and have an inherent delayed effectiveness, due to
their signature based detection [15][31]. In addition, current malware uses many forms of obfuscation
to prevent detection by AV technologies, redering AV technologies useless against advanced threats
[15][31]. Consequently, the need for more advanced detection and prevention techniques of malware
is increasing. Detection of malicious behaviour instead of malicious signatures, ought to provide a more
advanced form of protection. A system call is referred to as the request and service of specific, basic,
functionality provided to applications by the operating system.
This Master thesis answers the research question: “Is it possible to detect malicious behaviour per-
formed by malware, based on monitoring system calls?”
Presented is a novel, generic, behavioural detection and prevention mechanism for malware on OS X
based on system calls. System call traces can be used to describe the behaviour of processes [11].
Much effort was put into the development of a kernel module that bypasses kernel security mechanisms
and rewires one of the operating system’s core functionalities; system call handling. The rewiring of
system call handling provided the ability to log all of the system call invocations performed by processes
running on the monitored system. A significant amount of OS X malware and benign applications were
executed in a monitored environment of which system call traces were collected. Based on analysing
heat map visualisations and manual sequential analysis of the system call traces of both malicious and
benign processes, anomalies in the malicious traces could be observed. Subsequently, several mali-
cious system call patterns and detection rules were extracted providing detection of malware on OS X.
The most successful defined pattern is constructed around the executions of Unix shell processes per-
formed bymalware. It is shown that this detection pattern results in a 100% detection rate of allmalware
possible to obtain for this thesis. Even advanced malware in an infected OS X application, known as
OSX.KeyRanger.A, was detected using this method. In order to evaluate the False Positive Rate (FPR)
accurately in real world scenarios, three different user profiles were defined. Applications distributed
via the Mac App Store do not generate false positives. In case of the developer user profile type, the
FPR increases to 20%. Applications responsible for the false positives feature a cross-platform nature,
such as MATLAB, R, LaTeX and interpreters for scripting languages. A conducted survey under Mac
users verified these conclusions. However, the number of false positive generating benign applications
is very limited and whitelisting solutions provided can reduce the FPR in this developer user profile. The
results of this Master thesis have been composed in a paper “Behavioural detection and prevention of
malware on Mac OS X” (appendix A) and submitted to the IEEE CNS 2016 conference2.

1https://www.idc.com/getdoc.jsp?containerId=prUS41176916
2http://cns2016.ieee-cns.org/

1
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2
Introduction

The emergence of the Internet over the last two decades has impacted our society and environment
tremendously. Nowadays, the interconnected world seems inseparable from common practices. The
Internet gave birth to entire new industries of which their absence in today’s world would be unimag-
inable. The amount of Internet connected devices and appliances, the so-called Internet of Things
(IoT), is growing exponentially. Gartner estimates that in 2020 over 20 billion devices will be connected
to the Internet1, creating a huge potential of functionality. However, as society shifted to the online
world, so did crime. Cyberattacks and cybercrime profited from the growth of the Web and was in 2014
alone responsible for $445 billion in losses [42]. The threats presented by the interconnected world are
varying and the characteristics of the malicious software used (known as malware) are changing over
time. Around the mid-2000s, more than a million known computer worms circulated around the Inter-
net. E-mail spam was becoming big business as luring recipients of spam e-mail into clicking on the
content of the e-mail was often successful. In the years after, malware authors professionalised and
new actors entered the scene. Currently, large companies primarily try to defend their networks against
cyber espionage and state-actor attacks that use a type of threat named APT (Advanced Persistent
Threat), due to its stealthy and persisting nature2. Since 2013 a new type of malware is disrupting the
information security within personal computers and corporate networks3. Ransomware4 is taking the
prominent first place in 2016 as most problematic cyberthreat, according to a Kaspersky Labs report
in 20162. Many malware samples use obfuscation techniques, some even based on Microsoft Office
macros, to prevent detection making attacks more difficult to defend against when using traditional
anti-virus (AV) technologies [15][31]. Similar to many other advanced types of malware, ransomware
authors put much effort into obfuscating the malware to construct a seemingly unique, new signature.
Signature based malware detection technologies not aware of the new signature then fail to trigger on
this new signature, resulting in an evasion of the traditional AV system [15][31].

From a security point of view, Apple’s Macintosh computers benefitted from the popularity of Microsoft
Windows for a long time. Due to its lowmarket share, malware authors did not invest in targetingMacs5.
However, as the Mac is gaining popularity and market share, the number of malware targeting the Mac
increases. A study performed by security firm Bit9 + Cabron Black [4] indicates that over the last three
years an increasing growth of malware targeting OS X (the operating system of the Mac) systems
is observed. Five times more OS X malware appeared in 2015 than during the previous five years
combined. Many types of malware previously only appearing on Microsoft Windows systems are now
also emerging on OS X systems. Also the APT’s and ransomware are not absent on Macs anymore.

1https://www.gartner.com/newsroom/id/3165317
2https://securelist.com/files/2016/05/Q1_2016_MW_report_FINAL_eng.pdf
3https://blog.fox-it.com/2015/09/07/the-state-of-ransomware-in-2015/
4Ransomware is a type of malware that restricts access to the infected computer system in some way, and demands that the
user pays a ransom to the malware operators to remove the restriction. Some forms of ransomware systematically encrypt files
on the system’s hard drive, which become difficult or impossible to decrypt without paying the ransom for the encryption key,
while some may simply lock the system and display messages intended to hoax the user into paying.

5http://www.digitaltrends.com/computing/can-macs-get-viruses/
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4 2. Introduction

Similar to Microsoft Windows systems, Mac anti-virus technologies still heavily rely on binary signature
checking. Due to the reasons mentioned above, a need for more advanced malware detection methods
arises.

2.1. A brief introduction to system calls
Operating systems form a platform of functionalities for applications running on a computer. Many
of the functionalities are concerned with the availability of operating system and hardware services
used by the applications running on the operating system 6. The implementation of many of these
functionalities reside in a part of the operating system called “the kernel”6. The kernel is the heart of
the operating system that directly interacts with the hardware (USB ports, keyboards, hard disk drives
etc.) of the computer. The kernel forms the core layer on which all other functionality layers are built.
Core functionality to interact with hardware and other kernel services are implemented in the kernel.
These core functionalities define the possible interactions that applications running on the operating
system are able to perform. This set of core functionalities can be requested by other parts of the
system through a mechanism named “system calls” [17]. When an application running on the operating
system wishes to use functionality provided by the operating system, it will request that functionality by
calling the particular system call that is responsible for the functionality or service. An example of this
would be an application trying to write a file to the file system. In this scenario, the application uses a
SYS_open system call to request a file handle and later a SYS_write system call to write a stream of
data to the file handle it previously obtained from the SYS_open system call. Other system call examples
are calls to execute processes, request memory or open an Internet connection.

Typically, system calls are not called directly by applications7 [17]. Instead, the system call functions
are wrapped in core libraries provided by the operating system that are used by applications. The
most well known library is the GNU C library also known as glibc on Unix systems and ntdll.dll on
Microsoft Windows systems. These libraries typically wrap the system call into a richer API (Applica-
tion Programming Interface) function [17]. API library functions can be called by programs running on
the operating system to perform specific tasks. Examples of such tasks are writing to a file handle
or displaying an application window on the screen of the user. Operating system provide many stan-
dard libraries containing API functions aimed to provide standardised functionality to applications. The
“Win32 API” on Microsoft Windows8 and Core Services9 API on OS X systems are examples of such
API libraries.

The system calls are the key subject of this Master thesis. In particular, this thesis is interested in
the invocations of system calls by applications. The ordered sequence of system calls performed by
processes from start of the process to the end, called a system call trace, may be a description of the
behaviour it is trying to perform. The following sections elaborate.

2.2. CTMp Endpoint module (FoxGuard)
Fox-IT is a Dutch IT security firm. One of the services Fox-IT provides to their clients is detecting
and preventing cyber threats from damaging clients infrastructure. Their ‘Security Operations Centre’
(SOC) is a well advertised room in which employees of Fox-IT monitor clients’ infrastructure for cyber
threats.10 A complete new version of the monitoring framework that is used by the SOC is named ‘Cy-
ber Threat Management platform (CTMp)’ and is currently being developed by Fox-IT itself. Part of this
platform is a module named ‘Endpoint’ (formerly known as FoxGuard), which is software deployed on
the computers of the clients’ employees (so called endpoints) to primarily prevent intrusions. FoxGuard
takes a different approach in protecting the endpoints than traditional anti-virus (AV) software. Where
AV-software is mainly concerned with detecting malicious binaries on a system that are marked as ma-
licious by the AV-producer using characteristic binary signatures, FoxGuard aims to prevent malware
6http://www.linfo.org/kernel_space.html
7http://man7.org/linux/man-pages/man2/syscalls.2.html
8https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516(v=vs.85).aspx
9https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/
CoreServicesLayer/CoreServicesLayer.html

10https://www.fox-it.com/en/products/managed-security-services/

http://www.linfo.org/kernel_space.html
http://man7.org/linux/man-pages/man2/syscalls.2.html
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https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CoreServicesLayer/CoreServicesLayer.html
https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/OSX_Technology_Overview/CoreServicesLayer/CoreServicesLayer.html
https://www.fox-it.com/en/products/managed-security-services/


2.3. Thesis outline 5

from executing by hardening the system and reducing the attack surface of the system. FoxGuard en-
forces system- and user-wide rules that define the permissions certain applications and processes are
granted and especially, what permissions are not granted. When a program or process, i.e. a browser,
is exploited by malware, the malware will not be able to perform operations outside the permissions of
the browser, defined and enforced by FoxGuard. For example, FoxGuard may enforce:

• a read-only operation by the browser in the C:\Windows\ directory, or
• only allow the browser to use port 80 (HTTP traffic) and 443 (HTTPS traffic), or
• constrain the browser the ability to execute binaries.

The possibilities are arguably endless, depending on the creativity of the rule maker. Rules are Fox-
Guards charm, but simultaneously introduce a great challenge. If a rule fails to cover proper restrictions
to certain component in the system, those components can be exploited by malware. If a client uses
certain software, unknown to FoxGuard, this may cause security issues.

2.3. Thesis outline
This Master thesis conducts research to improve protection abilities for endpoints by systems like Fox-
Guard. In particular, it focusses on the detection and possibly prevention of malicious behaviour based
on system calls.

2.3.1. Research question
The primary goal of this research is to design a method that allows for detection of malicious behaviour
based on monitoring system calls performed by processes on an OS X system. Based on monitoring
system call invocations, a process performing malicious behaviour should be detected and thereafter
prevented from further harming the system.
The research question is thus formulated as:
Is it possible to detect malicious behaviour performed bymalware, based onmonitoring system
calls?
In particular, recurring patterns in the system call traces that define malicious behaviour are a key
research aspect with respect to answering the research question. The subquestions formulated to
answer the principal research questions are:
1. What are the current detection techniques (proposed in literature)? Answering this question pro-

vides relevant orientation for a new and improved method of detection, based on techniques
proposed in literature.

2. How can all system calls performed by processes be monitored and collected? In order to obtain
an understanding of the performed system calls by processes, the system call traces have to be
collected for further analysis.

3. What is an efficient method to analyse system call traces for anomalies? An efficient analysis
method is important for finding anomalies in collected system call traces of malicious processes.

4. How can the anomalies be defined as elementary detection rules? Ultimately, the definition of
malicious behavioural rules may improve the detection and thus prevention of malware on sys-
tems. The elementary rules can be adopted and implemented by anti-malware solutions such as
FoxGuard.

The next section outlines the approach taken to answer the research questions.

2.3.2. Research outline
In Chapter 3, prominent OS X malware are investigated to obtain a high-level understanding of their
characteristics. In addition, evolutions of malware are described and state of the art practical detection
techniques of malware on OS X. Chapter 4 provides a comprehensive literature study on the detection
techniques proposed in research. The chapter distinguish two types of malware analysis methods and
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categorises the methods of detection based on those two types of analysis. This literature study is used
to draw conclusions that can be used for the research performed in this thesis. Chapter 5 describes
the possible options of monitoring system call traces and the subsequent development decisions for
a kernel module used to collect system call traces. The chapter finalises by explaining the structure
of the dataset collected after monitoring system calls. The dataset containing system call traces will
be analysed for anomalies. Chapter 6 and 7 describe observations and two analysis methods used to
define malicious system call patterns. Four malware detection patterns are constructed based on the
performed analysis techniques which are evaluated in Chapter 8 according to established evaluation
metrics derived from the literature study. A discussion of the results and explanations for the observa-
tions made, is explained in Chapter 9. The conclusion in Chapter 10 finally ends this Master thesis and
provides concrete directions for future research.



3
Malware on OS X

While not as commonly appearing as on Microsoft Windows, the targets of malware on OS X appear to
be very similar to malware on Windows operating systems. Phishing, adware, spyware and backdoor
trojans are the most commonly seen malware types as shown in this chapter. However, malware
with fairly different targets has been found by the security industry as well. OS X malware named
‘XcodeGhost’ and ‘Wirelurker’ are an example of this more advanced type of malware. This chapter
provides an overview of the characteristics of malware found on OS X. Subsequently, it explains the
current practical malware detection and prevention methods for OS X. In addition, a brief overview
is provided of more advanced infection techniques that may be adopted by malware on OS X in the
future.

3.1. A brief study of malware for OS X
Malware is a general term for any kind of malicious software. Viruses, trojans, worms, spyware, key-
loggers, remote access software all fall under the umbrella of malware. Differences in functionality
and installation methods are relevant, as it implicates differences in the traces the malware leaves be-
hind on a system. This section provides a brief overview of the most impactful or prominent malware
samples found the OS X platform in terms of used techniques and scale of infection. The overview
specifically focusses on the characteristics and methods used by malware leaving traces that may be
detected. The concluding subsection describes the most commonly used techniques and in addition,
provides more sophisticated techniques that may be used by malware on OS X in the future.

3.1.1. Spyware
Spyware is malware that aims to gather information about users without their knowledge and sends that
information to the attacker without the users consent [13]. On Microsoft Windows, spyware is mostly
used for the purposes of tracking and storing Internet users’ movements on theWeb and serving up pop-
up ads to Internet users. Whenever spyware is used for malicious purposes, its presence is typically
hidden from the user and can be difficult to detect [13].

Renepo (2004)
According to ESET, a Slovakian antivirus company, the first malware specifically written for OS X
emerged in 2004 [8]. Renepo was a Bash shell script that required admin privileges or write access to
system areas and utilities. Once installed, it adds itself as a Startup Item and it remains root privileged.
Startup Items are programs that launch upon user login to the system. Later versions were reported
to install a backdoor and spyware functionality, stealing a wide range of application configurations and
information, including passwords.

Hovdy (2010)
Hovdy is a family of OSXmalware implemented using bash and AppleScript scripts [8]. Hovdy weakens

7
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security of the system, installs remote access (ARD, SSH, VNC), installs the open source LogKext
keylogger and sends gathered information back to the Hovdy script creators.

LogKext (2010)
LogKext is an open source1 keylogger for OS X that consists of a kernel extension and user space
components daemon and client, which ensure communication with the kernel extension and user com-
munication respectively. The kernel extension hooks onto a callback functionality in the IOHIKeyboard
kernel component, which is responsible for driving the keyboard hardware.

3.1.2. Backdoor
In the context of this research, a backdoor is malware that opens unauthenticated (mainly remote)
access to the victims computer, allowing the attacker to perform a variety of generic operations on the
victims system2.

Olyx (2011)
Olyx.A was found in a compressed file containing content that appeared to be from Wikipedia [30].
Among the files was an MS Word document containing a malicious binary that targeted Mac systems.
Upon opening of the MS Word document the malicious binary is executed using the built in MS Word
macro functionality, which installs and runs in the background without root privileges. It disguises itself
as a Google application support file by creating a folder named ‘google’ in the /Library/Application
Support directory, where the backdoor installs as under the namestartp. It also keeps a copy in
the temporary folder as google.tmp. It creates a Launch Agent www.google.com.tstart.plist, to
ensure that the backdoor launches upon user login. The backdoor initiates a remote connection request
to a static IP address, where it continues to make attempts until established. After a connection is
established, Olyx allows remote access to the compromised system, allowing the attacker to perform
file system manipulations, file exfiltrations and provides the attacker a remote shell to the compromised
system.

XSLCmd (2014)
According to security firm FireEye, it is unclear how the XSLCmd binary was distributed [3]. A submis-
sion to VirusTotal caught attention of the binary, which contains large portions of code for a backdoor
originally found in a Windows-based version of XSLCmd. The binary has an installation and backdoor
routine. The installation routine is called upon first launch of XSLCmd which checks whether the bi-
nary is launched with root privileges. It stores a Launch Agent file into /Library/LaunchAgents/ that
launches the backdoor routine of XSLCmd upon user login and checks whether its parent process is
launchd, indicating a launch by the operating system. The installation routine differs slightly depending
on whether or not the process is running with root privileges. If run as root, the installation routine will
also copy /bin/ksh to /bin/ssh. FireEye, who performed an investigation into XSLCmd, suspects
that “this is likely done to make it less obvious that a reverse shell is running on the system, since it
may raise less suspicion to see an ssh process opening a network socket rather than a bash process,
although the real ssh executable is actually located in /usr/bin/ssh, not /bin/ssh” [3]. In case of root priv-
ileges, XSLCmd will also perform key logging. XSLCmd uses the CGEventTapCreate API call which
requires root privileges, or ‘Assistive Devices’ to be enabled for the calling process. Enabling ‘Assistive
Devices’ was easily achievable prior OS X 10.9. XSLCmd therefor crashes on versions later than OS
X 10.8, where these API calls to enable ‘Assistive Devices’ were removed. XSLCmd uses a socket to
communicate with its C&C (Command & Control3) server, with which it functions as a backdoor, the
main purpose of XSLCmd.

3.1.3. Trojan horse
A Trojan horse, or Trojan, in computing is malware which misrepresents itself as useful or interesting in
order to persuade a victim to install it. The term is derived from the Ancient Greek story of the wooden
horse that was used to help Greek troops invade the city of Troy by stealth [9]. Although the payload
of the trojan horse can be anything, oftentimes a backdoor is used to infect the system.
1https://github.com/SlEePlEs5/logKext
2https://www.f-secure.com/v-descs/backdoor.shtml
3https://www.trendmicro.com/vinfo/us/security/definition/command-and-control-(c-c)-server

https://github.com/SlEePlEs5/logKext
https://www.f-secure.com/v-descs/backdoor.shtml
https://www.trendmicro.com/vinfo/us/security/definition/command-and-control-(c-c)-server
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Amphimix (2004)
According to ESET [8], Amphimix was the first (proof of concept) Mac Trojan seen early in 2004 that
masqueraded as an MP3 media file, using an .mp3 icon. In fact, it is an application that, when clicked
on, displays a message, launches iTunes and to play a ‘wild laughter’ audio clip.

RSPlug (2007)
This family of DNS changing malware is also closely related to the Zlob family, associated with similar
malicious functionality on Windows platforms [8]. This type of malware was found in great numbers in
the wild. It is predominantly found as a DMG file containing an installation package named install.pkg,
appearing as a Codecs, an approach commonly found to be used bymalware on other platforms.

RSPlug.A implemented DNSChanger functionality, which modifies the DNS namesevers to point to
rogue DNS servers that are used to inject advertisements into webpages, generating fraudulent adver-
tising profits. RSPlug.A installs itself in a system directory used for browser plugins [8].

Flashback (2011)
Flashback malware infected over 500.000 Apple computers, creating a large botnet [5]. Initially,
OSX.Flashback.A masqueraded Adobe Flash Player to infect systems. Later versions used a ‘drive-
by-download’, a technique used by malware that exploits a vulnerability in web browser components
in order to install itself onto a system. Flashback exploited a Java vulnerability upon a visit to a ma-
licious website by the victim. A self-signed Java Applet that impersonated Apple Inc. was served,
asking the user for permission to run. The Java applet installed a hidden (indicated by a precursory
dot) executable. Upon first execution, Flashback encrypts large portions of its main binary using the
UUID of the system and RC4 encryption algorithm. Flashback checks if Xcode or anti-virus/firewall
software is installed and uninstalls itself if predefined paths of this software is detected. Depending
on permissions, Flashback installs a dynamic library that is used to intercept HTTP/HTTPS traffic and
inject advertisements into the HTTP/HTTPS traffic that is then served to the user. New C&C servers
are announced via Twitter hashtags, which Flashback checks to say updated.

Janicab (2013)
An analysis performed by ESET [8] describes that unlikemost othermalware onOSX, Janicab operates
using scripts, allowing itself to be compliant with multiple systems. Janicab exploits a vulnerability in
MS Word, allowing the execution of scripts. On OS X it used Python scripts to operate. Spyware
functionality is implemented using these scripts, including audio recording via command line tool “Sound
eXchange”, capturing screenshots using command line tool “mt” (MouseTools), achieving persistence
using the Unix command line utility “cron”, a time-based Unix job scheduler.

Wirelurker (2014)
Wirelurker is a Trojan Horse that aims to infects both OS X and iOS systems, according to security
firm Palo Alto Networks [55]. The malware was initially spread via Maiyadi, a third party app store,
using a repackaged/torjanised cracked Mac applications. The cracked application functioned as a
trojan horse to elevate privileges for Wirelurker. The main binary of the cracked application was re-
placed by a Wirelurker binary which called the cracked binary upon execution. In addition to the binary
replacement, it includes a zip file and bash script that are hidden using an Apple specified hidden
flag (UF_HIDDEN). Upon execution of the hijacked application, Wirelurker checks a system directory
(/usr/local/machook/machook) whether a version of itself has already been installed. It then exe-
cutes scripts with root privileges, acquired by the by Wirelurker hijacked application. The scripts install
a Launch Daemon in the Launch Daemon specific directory (/Library/LaunchDaemons/) and decom-
press an executable to another system directory /usr/bin/ that serves as an updater for Wirelurker.
Wirelurker spawns two processes in the background, one to check for updates and one to check for
iOS devices that are connected to the USB port. Wirelurker downloads an infected iOS application,
stores this in system directories, and uses libimobiledevice library to interact and infect the connected
iOS device by installing the infected iOS application onto the connected iOS device.

Wirelurker’s main purpose it to infect iOS devices and exfiltrate user information contained on the iOS
device. OS X is thereby only used as a host for this infection and is not targeted.

iWorm (2014)
In September 2014, a new ‘multi-purpose backdoor’ malware sample named iWorm was first sighted.
Unlike the name suggests, according to Patrick Wardle [53], iWorm is a classic trojan that primarily
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spread via pirated OS X applications that were shared via the torrent tracker “The Pirate Bay”. It used
famous Adobe applications to grant itself access to the victims system. iWorms dropper4 was designed
in such a way that it modified the application install binary to first launch the iWorm malware and only
afterwards the legitimate application to prevent user suspicion. This redirection of application launch
to its own binary allowed iWorm to use the elevated privileges granted by the user for the installation of
the torrented application. Normally, a modification in the application’s binary would be detected by OS
X’s Gatekeeper (see Section 3.1.7). However, due to Gatekeeper’s design, applications that download
executables to the system are responsible for enabling Gatekeeper signature checking. Torrenting
applications typically do not enable Gatekeeper for the files they download [53]. The dropper installs
iWorms binary in /Library/Application Support/JavaW, and uses a Launch Daemon to remain per-
sistent after system reboots. iWorm provides basic backdoor functionality to the victim’s system, but
contains no worm-like (i.e. self-spreading) capabilities [53]. The usage of Reddit.com for communica-
tion with its Command & Control servers, has not been seen before on OS X (Flashback used Twitter
for communication with C&C servers).[53]

XcodeGhost (2015)
XcodeGhost (and variant XcodeGhost S) are modified versions of Apple’s Xcode development environ-
ment that are considered malware, targeting infection of iOS applications distributed through the iOS
App Store [56]. The software first gained widespread attention in September 2015, when a number of
iOS applications originating from China harboured the malicious code. XcodeGhost infected the Xcode
compiler, forcibly linking compiled applications against libraries that contained malicious code objects.
Specifically, a rogue version of CoreServices, a framework that is widely used by iOS applications in-
cludes malicious code objects that aim to exfiltrate iCloud passwords from iOS users. Developers that
used this malicious version of Xcode to compile their iOS apps, would unknowingly produce malicious
iOS applications containing this malicious code objects. XcodeGhost has no further interest in OS X
itself, but merely functioned as injection vector for malicious code in iOS applications [56].

OceanLotus (2015)
In May 2015, researchers at Qihoo 360 published a report [25] on OceanLotus which included de-
tails about malware targeting Chinese infrastructure. OceanLotus for OS X is packaged as an ap-
plication bundle pretending to be an Adobe Flash update. The application bundle when executed
spawned a process named “EmptyApplication”. For obfuscation, the EmptyApplication binary uses
XOR encryption to obfuscate strings contained within the binary. The EmptyApplication process in
later stages spawns several other worker processes. One of those processes installs a Launch Agent
/Library/LaunchAgents/com.google.plugins.plist. OceanLotus then continues to send user in-
formation about the victim machine to its C&C servers [25].

3.1.4. Worm
Malware that has de intent to replicate itself in order to spread other victims, is called a Worm [53].
Many worms that have been created are designed only to spread and do not attempt to change the
systems they pass through [9]. However, this appears not to hold for OS X.

Leap (2006)
Leap.A used a graphic icon to hide a Unix executable as a JPG image [2]. The image claimed to be
“the latest” OS X 10.5 screenshots and was spread through the iChat messenger client, using a file
called latestpics.tgz.

The malware required user interaction in order to spread via iChat messenger. Upon infection it, based
on the privileges of the current user, Leap.A extracted itself to either system locations or an unprivileged
user location. After extraction, it used Spotlight to infect all applications stored on the hard disk drive,
using an “apphook.bundle”. The apphook bundle does an execv() call on the resource fork of the
executable (which is the original application) causing the application to launch normally. However, due
to a memory allocation bug in the apphook bundle, infected applications would not launch anymore. It
was believed that this behaviour was unintended [2].

4A dropper is a program (malware component) that has been designed to “install” some sort of malware (virus, backdoor, etc.)
to a target system [53].
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Leap.A did not have any malicious behaviour other than propagating itself via iChat messenger and lo-
cal Bonjour (a protocol that Apple products use to establish a connection between each other) [2].

Inqtana (2006)
Inqtana.A is a Java based proof of concept bluetooth worm that affects OS X 10.4 (Tiger) systems that
have not been patched against a bluetooth driver vulnerability, according to security firm Intego Security
[41]. Inqtana.A arrives to victim system as an OBEX Push request, requiring users to accept the data
transfer. Unlike Leap.A, Inqtana.A uses a LaunchAgent to gain persistency on the system. On a reboot,
Inqtana.A will activate and try to propagate to devices that accept OBEX Push transfers.

Unlike Inqtana.A, a later variant (Inqtana.D) does not require user interaction and installs itself with
root privileges using a self created account on the system. It then installs a backdoor that is accessible
through the Internet [41].

3.1.5. Rootkit
A rootkit is malware designed to enable access to a computer or areas of its software that would not
otherwise be allowed (for example, to an unauthorised user) while at the same time making extraor-
dinary effort masking its existence on a system. Rootkits are particularly hard to detect and remove
because they intent to integrate very tightly with the system, granting itself a large scala of functionality
[9].

Crisis (2012)
Crisis, also known as DaVinci or Morcut, is a rootkit developed by the Italian company Hacking Team
[49]. Crisis operates on both Windows and OS X versions 10.6 and 10.7 (which it specifically checks
before it starts to operate on the system). Crisis is served by a self-signed Java applet dropper that
detects the operating system type and installs the proper malware version accordingly. On OS X, the
dropper installs two kernel extension binaries and two core component binaries. The dropper uses
INT80 system calls structure to directly call system calls instead of API or library functions. It installs
a core component of the rootkit in a system reserved directory /Library/Preferences/. The rootkit
gains persistency, after trying to trick the user into elevating privileges using an impersonated System
Preferences pop-up, shown in figure 3.1.

Figure 3.1: Impersonated request for elevated privileges executed by Crisis, by [49]

A LaunchAgent is installed and changes shared memory settings in the kernel for communication with
the user space components when root privileges are obtained. Using the root privileges, a binary named
mdworker.flg is being granted root privileges using the setuid/setgid system call. Crisis aims to infect
certain communication applications with a spying module. The infection is achieved using a legitimate
method provided by Apple, which allows to intercept events in an application using AppleScript. The
infection allows Crisis to exfiltrate (communication) information about the victim, which is Crisis’ main
purpose.

The only functionality of Crisis’ kernel extensions is to hide itself. It hooks three system calls related to
the representation of the contents on the file system (SYS_getdirentries, SYS_getdirentriesattr,
SYS_getdirentries64) to hide itself [34]. The same technique is used to hide itself from processes.
More explanation about hooking system calls is provided in Section 5.3.2.

In February 2016, a new version of the famous Hacking Team rootkit was sighted. This new version
used more advanced binary obfuscation techniques to prevent static analysis of the binary. In addition,
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it used Apple’s binary protection feature which provides encrypted processes [50]. According to Perdo
Vilaça [50], largely the same codebase of Crisis.I was used in Crisis.II.

The Crisis rootkit could be considered the most complex malware for OS X found to date, as it contains
many features and makes great effort to hide itself on an infected system [49].

3.1.6. Ransomware
At the beginning of this Master thesis, ransomware was a type of malware only affecting Windows ma-
chines. This changed when ransomware KeRanger was sighted in March 2016 in an infected version
of the BitTorrent client Transmission after the Transmission servers were hacked [6].

KeRanger (2016)
On March 4 2016, the official servers of the infamous BitTorrent client Transmission started to offer
an infected version of the BitTorrent client. Security firm Palo Alto Networks [6] detected this malware
several hours later which they marked as “the first functional ransomware for Mac”. The Transmission
version 2.90 was signed with a stolen Apple Developer certificate, used to bypass all security protec-
tions in the OS. Upon launch of the infected client, the process /Library/kernel_info is executed.
This process remains in the background and communicates with the KeRanger C&C servers to re-
quest required information to initialise the encryption process, such as encryption keys. After 3 days,
the KeRanger process will start encrypting document and media files on the file system of the infected
machine. To encrypt each file, KeRanger starts by generating subkeys from the RSA key retrieved
from the C&C server. It then uses file specific information to create random AES keys for each file it
encrypts. In several locations, KeRanger stores instructions for the user to pay the ransom in Bitcoins
and decrypt their files [6].

3.1.7. Malicious techniques and improvements
The discussed malware samples use many similar techniques. These techniques are summarised
below. A 10-week study performed by security firm Bit9 & Carbon Black [4] confirms several of these
findings.

• Many malware requires root privileges to operate as intended.

• Malware operates in system preserved file system directory.

• Almost all malware uses LaunchDaemons, LaunchAgents or Login Items to obtain persistency in
OS X.

• Open source LogKext project is often repackaged and reused in malware, which relies on a kernel
component that has to be loaded into the kernel.

• Backdoor functionality in malware requires frequently listening on a port.

• Malware tends to work with hidden files and folders to prevent detection.

• Some malware create new accounts on an OS X system.

• Rootkits use a kernel extension to implement system call hooking.

As Patrick Wardle, CTO of security firm Synack, points out — in his presentation at the Infiltrate and
Blackhat 2015 conferences [54] — about malware on OS X; compared to malware on Microsoft Win-
dows, the level of sophistication is significantly behind on OS X. In his talk, he suggests other, more
advanced, techniques that may be used by malware in the future. The sections below summarise these
proposed techniques.

Binary infection
Currently, persistency is achieved using LaunchDaemons and LaunchAgents. This technique is trivial
to detect. Despite Apple’s recommendation, the binary of many legitimate applications are still un-
signed. This results in the execution of unchecked code in the binaries. Attackers can use these
unsigned binaries to hide their malware inside and gain persistency. Each time the user launches an
infected application, the malware will also be launched. Detection of injected malware is much harder
than the detection of malicious daemons or agents.
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Dynamic library hijacking
Similar to Microsoft Windows, applications on OS X can make use of dynamic libraries. Libraries
are often packaged within an application and are currently not signature checked by the operating
system upon execution. This can be misused by malware, replacing the legitimate library using an
infected library containing malicious code. Upon execution of the application, the malicious library will
be executed by the operating system, providing the ability for malware to operate.
Spotlight plugins
Spotlight is a system-wide search utility, built-in to OS X. Apple allows developers to develop plugins
for Spotlight, extending the functionality of the famous search utility. These plug-ins are launched and
executed each time the user uses Spotlight to search the system. Malware may use the plugins to gain
persistency and collect data (as it may use the Spotlight scope on the file system).
Encrypted binaries
OS X natively supports encrypted Mach-O binaries. The Finder binary of OS X for example, uses
this method to obfuscate its functionality and increase debugging difficulty. Encrypted binaries make it
much harder for anti-virus engines to detect the malware. Especially if the malware only decrypts itself
in the intended targeted environment, leaving itself encrypted on all other systems. This technique is
heavily used by state-actor malware like Stuxnet, Duqu, Flame and others [51].
Gatekeeper signature check bypass
Gatekeeper is an anti-malware feature of the OS X operating system which verifies the signature of
applications executed by the user. The signatures are checked against Apple’s root certificate before
they are allowed to execute on the system. However, Gatekeeper does not verify all applications before
execution. Whether or not Gatekeeper should verify the signature is left to the application that download
the application to the disk. Torrenting applications for example, do not set the file attributes necessary
for Gatekeeper to perform signature checking resulting trojan horses to easily achieve execution rights
the system.
Kernel extension signature checking
By default, OS X verifies the signature of kernel extensions that are loaded. Verification of a kernel
extension (kext) is performed by a user space daemon named kextd. However, kextd is replace-
able with a version that removes the signature verification, allowing unsigned kernel extensions to be
loaded.

3.2. Evolution of malware: learn from Windows
Microsofts operating systemWindows has been, and still is, a much greater target for malware than OS
X5. This is largely due to the popularity of Windows. Figure 3.2 shows that over the last three decades,
for every Mac sold, at least 5 to 60 times as many Windows PC’s were sold.
Figure 3.3 shows the sales numbers of Windows PC’s from 1984 to 2016. A peak is visible around
2011. Figure 3.4 shows the amount of new malware samples submitted to anti-virus testing firm AV-
test. A very similar peak is observed. Arguably, there appears to be a strong relationship between
the popularity of an operating system family and the number of malware samples that is targeting this
family.
Initially, malware targeting Windows did not do as much harm, compared to todays malware samples
[29]. From 1990 to 2000, the Windows malware starting to appear, featured a worm-like nature, oc-
cupying ‘spreading’ to other systems as a primary goal. Once their goal was accomplished, — with
exception of a few malware samples — oftentimes the malware did not conduct more harm than an-
noyingly notifying the user their system has been infected [29]. Slowly but surely, the incentives of
the malware creators changed. Where previously the incentives for creating malware were rather chal-
lenging skills and hobby projects, nowadaysmalware creators are financially-incentivised [29]. Malware
creators are more sophisticated and organised than ever before [44]. Several underground services
that increase accessibility and approachability cyber-crime emerge. Crimeware-as-a-Service (CaaS)
and Exploit-as-a-Service (EaaS) (an analogous to Software-as-a-Service (SaaS) — where software
services are available on request) are now a commodity in the service offerings on the underground
5https://usa.kaspersky.com/internet-security-center/threats/mac-vs-pc-security

https://usa.kaspersky.com/internet-security-center/threats/mac-vs-pc-security
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Figure 3.2: Amount of Windows PC’s sold for every Mac, from 1984 to 2015.

Figure 3.3: Personal computers sales, from 1984 to 2016, by Asmyco

market [44]. These evolutions, together with cryptocurrencies, facilitate the current biggest cyberthreat
(according to the statement from the FBI in June 20156) for Windows machines, both in a corporate and
personal environment; ransomware. According to the FBI, estimated damages to corporates caused
by ransomware CryptoWall (a single ransomware family) are over $18 million.

Currently on OS X, very recently the first functional ransomware sample has been found [6]. As dis-
cussed in Section 3.1.7, it can be argued that OS X malware lacks sophistication and is currently at
the same level of sophistication as Windows malware was around 1995-2005 [54]. However, this is set
to change with Macs gaining popularity. According to a IDC Worldwide Quarterly PC Tracker report in

6https://www.ic3.gov/media/2015/150623.aspx

https://www.ic3.gov/media/2015/150623.aspx
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Figure 3.4: Number of unique malware samples signatures submitted to AV-test.

January 2015, Apple’s Mac sales achieved a growth of 18% where the rest of the industry underwent
a decrease in Windows PC’s sales of 3%7. According to Asmyco8 in figure 3.3, Apple has been able to
consistently outperform the market the last years. Currently the marketshare of the Mac is approaching
15%9

As Macs gain popularity under consumers, Macs will gain popularity under malware creators. In Oc-
tober 2015, Bit9 + Carbon Black demonstrated the unprecedented growth in OS X malware [4]. In
2015 alone, the number of OS X malware samples has been five times greater than in 2010 to 2014
combined, the research found. The shift to more sophisticated malware for OS X could increase more
rapidly than seen on Windows, since the cyber-crime infrastructure, ideas and experience are already
in place to facilitate a malware roll-out to Macs.

3.3. Current OS X malware detection mechanisms
In general, detection methods for malware on OS X implemented in consumer products, can be divided
into two types; signature- and path-based detection. The sections below elaborate on the detection
types.

3.3.1. Signature-based detection
Traditional anti-virus (AV) engines implement signature-based detection techniques [40]. AV engines
contain a database of all known malware samples and upon execution of any binary by the operating
system or a write of a binary to the disk, the anti-virus checks its signature database against the sig-
nature of the particular binary. If a match is found, the anti-virus engine has detected the malware and
will deny execution [40].

Signature-based detection technique can be very effective, but argues security firm Imperva [18], can-
not defend against malware unless some of its samples have already been obtained by the anti-virus
company, a proper signature has been generated and the anti-virus database is updated with the lat-
est signatures. This approach is not really effective against zero-day or next-generation malware, i.e.
malware that has not yet been encountered and analysed [18]. It also is ineffective against polymor-
phic and metamorphic malware. Polymorphic malware mutates its code while keeping the functionality
intact [16]. This means that the signature changes, but the functionality (malware) remains intact.
Metamorphic malware uses an interpreter to produce machine code [16]. Most common examples
of metamorphic malware are samples of which certain parts (payloads) are encrypted and are begin
7https://www.idc.com/getdoc.jsp?containerId=prUS25372415
8http://www.asymco.com/2015/04/14/personal-computer/
9https://www.idc.com/getdoc.jsp?containerId=prUS41176916
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http://www.asymco.com/2015/04/14/personal-computer/
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decrypted at runtime. Signature-based detection renders ineffective against these techniques adopted
by modern malware [18].

Heuristic analysis

A more advanced detection technique implemented in major anti-virus engines is a technique known
as heuristic analysis [16]. In essence, heuristic analysis tries to detect malware by investigating and
identifying specific (known as malicious) functionality or characteristics. Functionality or characteristics
may be a program which:

• tries to inject a copy of itself into other programs.

• remains resident in memory after it has finished executing.

• binds to a TCP/IP port and listens for instructions over the network.

• is similar to other programs known to be malicious.

Heuristic analysis uses emulation and virtual machines to simulate the program in isolation and inves-
tigate the program for malicious patterns. It is often concomitantly implemented with a Multi-Criteria
Analysis, where detected patterns are weighed to more accurately assess the program regarding ma-
licious patterns [16].

Heuristic analysis appears to be very similar to behavioural analysis. The discrepancy however lies in
the components they monitor and analyse. As explained above, heuristic analysis mainly focusses on
analysing the binary for malicious parts prior to execution. Behavioural detection monitors and analyses
the system for malicious events and aims to block those events [27].

3.3.2. Path-based detection
The previous section concluded that due to the relative absence of interest of malware creators in OS
X, the amount of malware is relatively small and unsophisticated. In combination with the structure of
the OS X operating system, this results in malware residing in specific locations [54]. It is relatively easy
to scan these location and detect malware. Several of these detection programs exist for OS X.

BlockBlock

As stated in Section 3.1.7, an extremely common method for malware to acquire persistency, is to
make use of LaunchDaemons. LaunchDaemons are contained in certain system location in order for
the system to launch their corresponding programs upon boot of the system. BlockBlock (by Patrick
Wardle)10 is a program that consistently monitors file I/O events in these LaunchDaemon locations to
detect ‘persistence attempts’. Upon such an event, it displays the event to the user together with some
basic process information. BlockBlock uses the OS X FSEvents API to be alerted of specific file and
directory changes. On top of that, DTrace is used to keep track of process creation to maintain a list
of active processes and their information. This allows BlockBlock to be a userspace application that
alerts the user of suspicious behaviour of processes running on the system.

KnockKnock

Unlike BlockBlock, which is a continuously monitoring background process, KnockKnock10 (from the
same creator as BlockBlock) is a system analysis tool that scans the system upon request of the user.
It uses the same path based approach as BlockBlock, scanning for installed kernel extensions, login
items, browser plugins, Launch Items, Spotlight importers and dynamic library insertions. Results are
checksummed and checked against the VirusTotal malware definition database11.

10https://objective-see.com/
11https://www.virustotal.com

https://objective-see.com/
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osquery

Osquery12 (by Facebook, Inc.) exposes an operating system as a high-performance relational database.
This design allows for SQL-based queries to efficiently and easily explore operating systems. With os-
query, SQL tables represent the current state of operating system attributes, such as:

• running processes

• loaded kernel modules

• open network connections

SQL tables are implemented via an easily extendable API. Examples of such queries are:

• SELECT name, path, pid FROM processes WHERE on_disk = 0;
This shows all processes running on the system, but not maintaining a binary on the disk, which
is perceived as typical malware behaviour.

• SELECT DISTINCT process.name, listening.port, listening.address, process.pid FROM
processes AS process JOIN listening_ports AS listening ON process.pid = listening.pid;
Using the SQL-join operation, multiple sources of information are merged together to provide an
extended view of the context. This query provides a detailed description of processes that are
listening on TCP/IP ports.

Osquery aims to be a valuable, flexible and interactive intrusion detection tool. However, detection
intelligence is not implemented and very specific knowledge is required from the user in order to detect
malware.

chrootkit

One of the main characteristics of rootkits, as explained in Section 3.1.5, is preventing detection by
making great efforts to hide itself. chrootkit13 (check rootkit) is a utility that tries to identify signs of
rootkit hiding. Specifically, it checks for deletions in system, user login/logout, system status log files.
It also includes checks for specific versions of the LKM rootkit. These checks are based on searching
for discrepancies between the parent directory link count and the number of subdirectories, which
would indicate hidden files and folders. Same checks are performed for running processes using ps-
output.

3.4. Conclusions

Figure 3.5: Timeline of impactful malware (red) and protection mechanisms from both Apple and third party producers. OS X
File Qurantine was later improved and rebranded to XProtect, OS X built-in signature based malware detection.

This chapter has shown malware on OS X is on the rise and the level of sophistication is increasing.
Lately, more frequently new OS X malware samples have been spotted. Threats only existing on
Microsoft Windows, such as ransomware, are now also appearing on OS X. Section 3.2 showed there
is a relationship between the popularity of an operating system and the amount of malware targeting
12https://osquery.io/
13http://www.chkrootkit.org/

https://osquery.io/
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the operating system. As OS X may continue to increase in market share, the numbers of malware
samples will increase.
The timeline in figure 3.5 summarises the occurrences of new malware samples over the last 6 years,
as well as the introduction of current protection and detection mechanisms. Relatively simple pro-
tection mechanisms currently suffice in preventing infection of OS X malware. Most of the detection
mechanisms use path-based detection of malware.
Arguably, the majority of malware on OS X is still trivial to detect, hence the many path-based solutions.
Malware on OS X uses specific file system directories to gain persistency on the system. Solutions
such as BlockBlock monitor these locations, and in case of changes, inform the user. However, these
solutions only detect certain characteristics used by somemalware and do not provide a generic method
of protection against malware, based on behaviour detection.



4
Literature research

In scientific research, manymoremethods and techniques to detect anomalies andmalicious behaviour
on operating systems have been proposed. A vast majority of the behavioural malware detection
research is focused on anomaly detection by learning process behaviour. This chapter provides an
overview of the conducted research related to malware detection. The first section briefly explains the
machine learning methodology and popular algorithm types. The following sections explain different
types of malware detection methods proposed by research. As stated earlier, this thesis is specifically
interested in detecting malware using system calls. The first part describes several proposed broad
behavioural detection methods, while the second part of the study focusses specifically on detection
methods based on system calls.

4.1. Machine learning
Machine learning is a subfield of computer science that evolved from the study of pattern recognition
and computational learning theory in artificial intelligence [37]. Algorithms used, are primarily based on
statistics fundaments in order to make data-driven decisions and predictions. The machine learning
algorithms can be categorised using the following categories [37]:

• Supervised learning: The computer is presented with example inputs and their desired outputs,
given by a ‘teacher’, and the goal is to learn a general rule that maps inputs to outputs.

• Unsupervised learning: No labels are given to the learning algorithm, leaving the algorithm on
its own to find structure in the input of the algorithm. Unsupervised learning can be a goal in itself
(discovering hidden patterns in data) or a means towards an end.

Another categorisation of machine learning tasks arises when one considers the desired output of a
machine-learned system:

• Classification: inputs are divided into two or more classes and the learner must produce a
model that assigns unseen inputs to one or more of these classes. This is typically tackled in
a supervised learning way. Spam filtering is an example of classification, where the inputs are
email (or other) messages and the classes are ‘spam’ and ‘not spam’.

• Regression: also a supervised problem, the outputs are continuous rather than discrete.

• Clustering: a set of inputs is to be divided into groups. Unlike in classification, the groups are
not known beforehand, making this typically an unsupervised task.

In the conducted research, anomaly detection for malicious behaviour of programs is concerned with
supervised learning. The typical approach taken by the research training a classifier is based on data
labeled as malicious or benign. The classifier is trained using a training dataset. In the training dataset
the input and output results are known to the classifier algorithm. After the training phase, the classifier
is then tested using a test dataset in which corresponding output is absent. The classifier will then
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behave to these input cases as it would in ‘real’ scenarios. This is different from anomaly detection in
a networking environment, in which often unsupervised learning is used.

Oftentimes, the dataset used for training and testing undergoes some feature selection. Feature se-
lection extracts relevant features (variables, predictors) from the dataset in order to improve the con-
struction of the — in this case — classifier.

As shown in this Chapter, in the field of malware detection, the effectiveness of a detection technique
is typically evaluated using two metrics, Detection Rate (DR) and False Positive Rate (FPR):

• Detection Rate (DR): the detection rate is defined as the number of intrusion instances detected
by the system (True Positive) divided by the total number of intrusion instances present in the
test set [43].

• False Positive Rate (FPR): An event signalling a detection system to produce an alarm when no
attack has taken place [43].

4.2. Detecting malware
In general, there are two common approaches to analyse malware samples: statically and dynami-
cally. Static analysis method is the most popular approach to identify whether a program is benign or
malicious. This approach inspects executables to obtain a sequence of characteristics that identify the
behaviour of the program. These characteristics are called signatures [26][33]. In dynamic analysis
method, the malware binary is executed in a safe or virtual environment and the run-time behaviour of
the malware binary is monitored. From this dynamic behaviour, signatures are extracted that are used
to assess the nature of the program.

4.2.1. Static analysis and detection
Static analysis on binaries has been performed by many researchers [26][39][22][10][19]. Several
different static analysis methods are proposed:

• String occurrence, library and function calls
In 2006 Kolter et al. [23] pioneered in applying machine learning to the field of malware detection.
Kolter et al. extracted strings, used in dynamic link libraries and API calls (explained in Section
2.1) from binaries, and used these features to test several machine learning algorithms. Boosted
decision trees (J48) working on 500 𝑛-grams (an 𝑛-gram is a contiguous sequence of 𝑛 items from
a given sequence of text or speech, in this case ranging from 1 to 4 items) were found to produce
better results than both the Naive Bayes classifier and Support Vector Machines. True Positive
rate (TPR) and False Positive Rate (FPR) are used to measure performance of the classifier.

• Binary block comparison
A binary is disassembled and divided into blocks based on function structures (call and return
instructions). These blocks are then compared against other known malware samples using an
algorithm known as Hungarian algorithm1, in order to find similarities. Kang et al. [22] claim to
reduce the size of binaries that has to be scanned to 24% of the total binary size.

• Constructing control-flow graphs
Faruki et al. [10] and Lee et al. [26] extracted API-call information in Control Flow Graph (CFG)
structure from disassembled binaries. The CFG is then transformed to an API call-gram. In the
proposed method, API-calls instead of system calls are used. The call-grams are then converted
to feature vectors, which are then used to train four different classifier algorithms; Random For-
est, J-48, SMO-SVM, Voted-Percetron. The train and test data is constructed using the K-fold
cross validation, in Weka2. The measurements that are used to measure performance are True
Positives, True Negatives and Accuracy. They claim to have a detection rate of 98,1%. Kazuki
et al. [19] use Dice’s coefficient in combination with Hierarchical Cluster Analysis, however they
acknowledge to have bad results.

1Hungarian algorithm explanation: http://www.hungarianalgorithm.com/
2Weka is a collection of machine learning algorithms for data mining tasks. http://www.cs.waikato.ac.nz/ml/weka/

http://www.hungarianalgorithm.com/
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• API function usage of binaries
Sami et al. [39] extract API call information from the import address table in the header in the
binary. They use the Fisher score to rate API calls that appear to be often occurring in malicious
binaries and benign binaries. The authors claim to have achieved a detection rate of 99,7%
while keeping accuracy as high as 98,3%. In addition, TPR and FPR are used as performance
indication. Ye et al.[57] use Objective-Oriented Association (OOA) mining based classification
on API call information extracted from Portable Executables (PE). J-48 appears to perform the
best. Similar to other research, their performance is measured using the TPR, FPR, accuracy
and detection rate metrics.

False Positive Rate and True Positive Rate appear to be a commonly used metric to evaluate the
effectiveness of the proposed techniques.

Statically analysing malware can achieve a high detection speed but can be more easily defended
against by malware authors using obfuscation techniques. Moser et al. [32] present an obfuscation
scheme based on opaque constants “hidden” in processor registers that manipulate the control flow of
a program. Opaque constants are constant values in source code generated by an obfuscated function
that always generates the same constant. Their proposed technique also makes it difficult to locate
control flow changes; call, jump and return instructions, indicating function changes. Mozer et al. show
the proposed obfuscation approach is able to evade advanced semantics-based malware detectors
and in addition, the opaque constant primitive can be applied in a way such that is provably hard to
analyse for any static code analyser. Due to these limits of static analysis, a transition to dynamic
analysis is research can be observed.

4.2.2. Dynamic analysis of malware
Unlike static analysis, dynamic analysis determines the behaviour of programs while executing in a
safe and isolated environment. Several levels of abstraction are presented in research to define and
analyse the behaviour of programs. This section provides an overview of proposed research in this
field.

• Function call monitoring
When a program is executed a trace is created from the order of operating system functions
that is calls. These operating system functions consist of API functions of operating system
libraries and system call functions. Sun et al. [46] use dynamic monitoring of Windows API calls
to detect worms and other exploits. However, their approach is limited to detection of worms
and exploits that use hard-coded addresses of API calls which is not the case if Address Space
Layout Randomisation (ASLR) is activated on the operating system. Nair et al. [33] determine
the frequency of critical API calls by programs and use this information to construct a signature of
a program. Nair et al. introduce their own classification algorithm and claim to have a detection
rate of 80% for Windows malware.

• Function arguments monitoring
Tsyganok et al. [48] perform an analysis on API calls including arguments passed along with the
function call to classify metamorphic and polymorphic malware. They cluster the behaviour of
programs based on fuzzy clustering algorithm and reach a classification error of 21.4%. Salehi et
al. [38] present a similar technique that monitors API calls and their arguments of malware sam-
ples that are ran in a virtual machine for 2 minutes and use several Weka classifiers to construct
a new classifier. They use Relief feature selection and claim to get best performance using the
Random Forest and J48 algorithms.

• Information flow tracking
Yin et al. [58] present a system named Panorama which uses system wide information flow track-
ing to track the flow of critical information, based on taint graphs. A taint graph is a representation
of information flow that shows the processes that access tainted data, how the data propagates
through the system, and finally, to which file or network connection this data is written to. Special
hardware and shadow memory is used to generate taint graphs. Yin et al. present a rule based
model that classifies programs as benign or malicious.
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4.3. Detecting malware based on system calls
Detecting malware based on system calls is considered a dynamic detection approach, since the mal-
ware has to be executed and inspected in order to analyse the its system call invocations. Where the
previous section provided a broad overview of dynamic malware detection research, this subsection
describes research purely using system calls as a detection method, the detection method this thesis
is concerned with.

In 1996, Forrest et al. [11] were the first to introduce a simple intrusion detection method based on
monitoring the system calls used by active, privileged processes. Each process is represented by its
system call trace — the ordered list of system calls used by that process from the beginning of its
execution to the end. This work showed that a program’s normal behaviour could be characterised
by local patterns in its traces and deviations from these patterns could be used to identify security
violations of an executing process. Forrest methodology was based on lookahead pairs of system
calls. Others [20] tried to improve on this methodology by using machine learning algorithms, however,
these improvements came with a computational cost and were not able to perform real-time detection
of malware.

4.3.1. Systrace
In 2002, Niels Provos [36] introduced a tool named Systrace which aims to improve the host security
by enforcing system call policies based on interposing system calls. Several attempts in intrusion
detection using interposing of system calls prior to Provos had been made. Cerb3 and MAPbox are
examples of these attempts. However, Provos and Garfinkel[14] point out that these attempts — based
on ptrace (debugging functionality to trace a process) — are easily by-passable due to the limited
traceable scope of ptrace. Systrace overcomes this problem by monitoring the direct system call usage
(instead of a mirrored version by ptrace). Systrace consists of a kernel component that intercepts the
system calls and a userspace component that enforces system call policies. The system call policies
define for a process which system calls with corresponding arguments it is allowed to perform. Provos
points out that, although powerful, policy enforcement at the system call level has inherent limitations.
Monitoring the sequence of system calls does not provide complete information about an application’s
internal state. For example, some system services change the privileges of a process on successful
authentication but deny extra privileges if authentication fails. A sandboxing tool at system call level
can not account for such state changes and adapt policies to these state changes.

Kurchuk et al. [24] in 2004 improve upon Provos’ Systrace by proposing two extensions; nested policies
and dynamic policy generation. Nested policies enforce the same policies of the parent process on the
child process. It also provides capability to keep track of the (un)privileged states and state transitions
of programs. Performance tests of this proposed extension show a significant (2 to 10 times) speed
decrease of the system. However, both Provos and Kurchuk do not elaborate on the effectiveness of
intrusion detection by Systrace and its extensions. The effectiveness of intrusion detection will very
likely largely depend on the restrictiveness of the enforced policies. These policies however, are not
evaluated.

4.3.2. System calls and Machine Learning
Wagner et al. [52] in 2009 provide research for malware analysis with graph kernels and support
vector machines. Described is a modelling framework capable of representing relationships among
processes belonging to the same session, as well as the information related to the underlying system
calls executed. The models that express relationships are based on process models, in which relations
between process invocations are expressed. The sys_execve system call (process execution) plays
a central role in this relationship creation. The process trees contain information on the execution
of processes by other processes, their process names, process ID’s and execution related system
calls called. In order to accomplish the system call monitoring, Wagner et al. modify the source code
of a Linux system to log the system call usage. In particular, they monitor behaviour of the default
SSH (Secure Shell) that is claimed to be a high target for malware. Based on malicious and benign
3http://cerber.sourceforge.net/
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process trees, a SVN classifier is trained. 𝐹1-measure and the accuracy-score are used to measure
the performance of the classifier.

Alazab et al. [1] propose a method that aims to detect obfuscated malware by investigating the struc-
tural and behavioural features of API calls. They developed a system that automatically extracts API
calls. The system is based on IDA (a binary disassembler) to disassemble the binary and later store the
contents in structured format using a SQLite database. The 𝑛-grams are constructed by first counting
the frequency of each 𝑛-gram within the entire corpus. Once that has been completed, Alazab et al.
reduce this list to the top 100most frequent 𝑛-grams. The above procedure is replicated for 𝑛 values be-
tween 1 and 5 inclusive. Then the SVM classification technique is used to construct an 𝑁 -dimensional
hyperplane which separates the dataset into two groups, malicious and benign. Alazab et al. achieve
a 85% detection rate and 15% False Positive Rate (FPR) for 𝑛-grams larger than 4. For single API
calls they achieve a 97% detection rate and 1.91% FPR. However, the reason for improvement in case
of single API call inspections is not explained. Alazab’s methods relies on existing unpacking tools. If
those tools fail to unpack the binary, they are not able to analyse the binary. In addition, this technique
could be considered static analysis, since the binary sample is not dynamically analysed.

4.3.3. Critics & alternatives

Dehnert [7] in 2013 argues that an IDS (Intrusion Detection System) running on the host operating
system itself is vulnerable against a direct attack and proposes an intrusion detection method based
on a hypervisor— a software component that virtualises an entire operating system and thereby entirely
separating the IDS from the system on which it tends to detect intrusions. VMware VProbes are used
for the proposed hypervisor implementation. VProbes are very similar to DTrace’s probes (DTrace is
explained in Section 5.2.1), and allow for specific detection of pre-defined patterns on the virtualised
operating system on the host system that runs the hypervisor. Dehnert uses the VProbes to detect
system call usage and their arguments. The detection methods implemented are manually defined
patterns and system call patterns using ‘Sequence time-delay embedding’ (stide), implemented without
any tuning. As expected by Dehnert, the detection with manual defined patterns was effective. The
detection based on stide however, due to the absence of any refinement, performed poorly. When
all the instrumentations of the proposed IDS are enabled, it operates with a performance overhead of
almost 300%.

Nguyen et al. [35] in 2003 propose research for detecting insider threads on a system, based on file
operations. Their research consists of constructing a large dataset of system call traces, defining the
amount file system operations and process executions on the system originating from user processes.
They show that ‘normal’ execute file operations very limitedly fluctuate around a steady amount, and
malware or exploited system binaries would differentiate from this small fluctuation. In addition, they
remark that the ability to monitor process executions using system calls allowed to detect exploitation
of processes. A process should only spawn another process of itself. In a typical exploit situation,
the exploited process would spawn a malicious process, instead of one of itself. However, they point
out that malware can easily go undetected by this detection method by performing only very few file
operations. Metrics used are the FPR and FNR to measure the performance.

Unfortunately, literature also suggests numerous weaknesses of detecting intrusions using system
calls. Tan et al. [47] focus on argument-oblivious systems like Stide. They show that system call
monitoring is viable in detecting intrusions of malware, but as a countermeasure show that an attacker
can insert additional system calls that are common in the real system, to circumvent the detection. By
spreading out the suspicious system calls, an attacker can hope to avoid triggering anything unusual.
There is also a risk that a suspicious system call might be entirely replaced — while an execve system
call might be unusual, an open and write might not be. On the other hand, if the file being opened
and edited is /etc/passwd, the open/write may be no less dangerous. Garfinkel [14] suggests that
Unix may be too complicated for system call techniques to work. Features like hardlinks and the dup2
system call make it hard to do any sort of tracking based on arguments; there are too many different
ways to name objects for it to be effective.
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4.4. Conclusions
The majority of the detection methods proposed in literature are based on machine learning. The
generation of classifiers is very similar to the general methods of training a machine learning classifier
as in other fields where machine learning is applied. A classifier that is repeatedly reported to perform
well is J-48, a Weka classifier. Other Weka classifiers based on decision trees also achieve good
detection rates. Very few research provide an explanation, reasoning or assumption on why a certain
machine learning algorithm is used or performs best in classifying their data set. There appears to be
a consensus with regard to the metrics that ought to be used to measure performance of the classifier.
TPR (True Positive Rate) and FPR (False Positive Rate) are the most commonly used metrics. Often
accuracy and detection rate is also used as a metric.
Research points out that due to the code obfuscation techniques used by malware creators, static anal-
ysis appears to become less feasible and a move towards dynamic analysis is inevitable to determine
the actual nature of a program. Very few real-time detection methods exist based on system calls.
Systrace is a great example of an IDS that aims to detect and prevent malicious behaviour in real-time.
It could be considered proven to be interesting to the security community, since it has been added to
the security focussed OpenBSD Linux distribution.45

An important observation is that the literature concerned with machine learning techniques for detec-
tion of malicious behaviour, are heavily dependent on post-execution detection. In other words, the
classifiers are trained to detect malicious patterns on complete system call traces of programs, which
are only available after the programs have finished executing. This means that the potential damage of
malicious programs is already accomplished and can not be prevented by these methods. This thesis
strives for a real-time, ‘inline’ detection method that aims to detect malicious system call behaviour as
early as possible in order to prevent potential harm. Research for such a detection method has not
been found.

4http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/systrace.1
5http://www.openbsd.org/
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Collecting system call traces

Similar to the approaches taken by the research discussed in Chapter 4, collecting data resembling the
behaviour of processes is crucial for this research. This chapter explains the type of data the dataset
consists of, the methods used to gather the data and elaborates on the construction of a kernel module
that has been developed in order obtain the data.

5.1. System calls
Section 2.3.1 expressed the particular interest in system calls to define, detect and possibly prevent
malicious behaviour based on system calls. Section 2.1 briefly discussed the concept and context in
which system calls operate. This section will elaborate on system calls on OS X.

OS X features the XNU (X is Not Unix) kernel, a hybrid kernel that consists of a combination of compo-
nents from the Mach microkernel and large portions of the FreeBSD kernel project and was originally
designed by NeXT, before NeXT was acquired by Apple Inc. [28]. The Mach component in XNU is
specifically responsible for process and memory management in OS X, where the BSD portion pro-
vides functionality for all other tasks that a kernel is expected to provide and take responsibility of [28].
This includes functionality on top of Mach to implement POSIX processes, File System, networking,
security policies etcetera. The kernel defines functions (system calls) that can be invoked by other
processes on the system in order for the processes to accomplish tasks on the system. Examples of
tasks that can be performed would be to execute a process, I/O operations on files, create a socket
for network communication, acquire memory. XNU provides a little over 430 system calls1 — of which
several reserved and deprecated — that are combination of BSD and Mach system calls and can only
be called by userspace processes. The XNU kernel does not use system calls [21].

Processes cannot access memory outside of their memory space. Therefor, system calls are wrapped
in programming libraries for programmers to access within their program’s scope (the standard C li-
brary is an example of this). The C library function then calls the system call by their number, moving
the number into the processor register EAX and calling interrupt 80. The kernel will take over from
userspace and handles the system call, afterwards returning the result back to userspace. The sys-
tem calls in essence define what processes can do on a system, which implies analysing system call
invocations reveals the behaviour of processes [21].

5.1.1. Dataset
To analyse the system call invocations (and thus behaviour) of applications, a dataset consisting of
every system call called is constructed. Hereafter, this thesis refers to the system call invocation order
as a system call trace. Conceptually, the dataset can be interpreted as an extremely large log containing
the behaviour of all processes running on the system while the log file was constructed. Every system

1XNU open source: https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master
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call invoked during the period in which the log is constructed, has to be logged in the exact order in
which the system calls occurred. Together with the order of system call invocation, metadata about the
process is also logged to the dataset. Section 5.3.4, discusses the metadata of each system call that
is captured and logged.

5.2. System call information gathering mechanisms
Several mechanisms and techniques exist in OS X that allow the retrieval of information concerning the
invocation of system calls. Some of the mechanisms are supported and empowered by Apple itself,
other techniques are not. This section elaborates on the possibilities and limitations of the available
techniques.

5.2.1. DTrace
In November 2003, Sun Microsystems released a dynamic debugger tool for Sun Solaris 10 operating
system, called DTrace2. DTrace is a dynamic tracing and debugging framework designed to real-
time troubleshoot kernel and applications running on a system. DTrace was ported to FreeBSD and
NetBSD, and thus is available under OS X by default. The framework contains a comprehensive set of
tracing tools varying from tracing userspace applications to tracing system calls in the kernel. DTrace
includes the ability to provide a global overview of the running system; memory, CPU, filesystem usage
and network rescues by active processes. It also allows for more fine-grained inspection of the system
using so called probes. Probes are defined using a DTrace specific programming language called D,
which is inspired by the C programming language. Unlike C, D is a data driven language, meaning that
it reacts on data patterns defined in a data stream, fed to DTrace. The data stream is extracted from
the system, while the actions are defined by the user using probes. DTrace will react with an action
defined by the user, upon detecting probes in the data stream that meet a specified condition.

Due to its power and comprehensiveness, DTrace seems an ideal choice for analysing system calls
throughout the system. However, DTrace has its limitations with respect to the scope of its analysis.
Based on the DTrace research performed, it appears to be impossible to gather every generic system
call in a system including relevant process information. DTrace was designed to perform process
specific analysis and therefor DTrace’ scope is limited to user defined processes and does not work
properly on an unknown, undefined set of processes, which is a requirement for analysing all system
calls performed by, for example, malware.

5.2.2. TrustedBSD
Mandatory Access Control (MAC) frameworks allow administrators to enforce policies for users and
application behaviour. Every modern operating system uses resource control systems like MAC to
provide operating system security. FreeBSD implements MAC in its TrustedBSD3 module which is
also adopted by OS X where it is used to implement system security services, including application
sandboxing.

TrustedBSD provides a Kernel Programming Interface (KPI) that allows third party developers to reuse
features and functionality provided by the TrustedBSD framework4. The KPI allows to filter events oc-
curring in the OS, such as I/O access control, network activity, Mach ports and process launch. By
filtering these events, TrustedBSD allows for implementation of security functionality. It also allows
filtering for several critical system calls. It would be possible to system wide log events for when these
critical system calls are executed, but due to the restriction of only critical (as defined by Apple) sys-
tem function, this would limit the system call logging to only system calls that Apple considers useful
for security purposes. This research requires analysis of broader set of system calls, which renders
TrustedBSD in an unviable option.

2http://dtrace.org
3http://www.trustedbsd.org/mac.html
4http://sysdev.me/trusted-bsd-in-osx/
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5.2.3. KAuth
OS X 10.4 introduced a new kernel subsystem; Kernel Authorization or Kauth for short, for managing
authorization within the kernel. It was implemented primarily to simplify the implementation of access
control lists (ACLs), a component within Mandatory Access Control that defines access rights for users
of the system. While Kauth was originally designed to support ACLs, it is a general kernel authorization
mechanism and can be used for a variety of other tasks. One such use is as a simple notification
mechanism for anti-virus developers which is the KPI that Apple makes available to third parties. KAuth
allows developers to define scopes in which their software operates. Within a scope, events occur for
which actions can be defined by the developer. An action is implemented using a listener that listens
in the scope for a specific event to occur. Upon an event, the function of the developer is called using
a callback mechanism. A callback function is called by an operating system specific component, in this
case KAuth, and has permission to interfere. An example would be a file change. In the filesystem
scope, an event ‘file change’ occurs, for which third party software that uses KAuth can allow or deny
this file change.

KAuth scopes allow for a wide variety of file system events monitoring, for example file modifications
and executions. This could be used to monitor system call execution to some extend, but again limits
the amount of system calls that can be monitored and logged. Similar to TrustedBSD, KAuth does not
qualify to monitor system calls at large scale, as intended for this research.

5.2.4. System call hooking
The functions that implement the system calls, reside in memory owned by the kernel. A table with
system calls and their corresponding implementing functions, which is a one-to-one mapping, also
resides in kernel memory. This table is known as the ‘sysent table’. The sysent table is not available
for developers and changes to this table is not supported and discouraged by Apple. However, since
this table forms the core of the system calls, it is of interest for this research. System call hooking is a
technique that allows for interference with system calls. By ‘replacing’ the original system call function
in the sysent table by a function of the developer, the operating system will call the developer’s function
instead of the original system call function. Typically, the developer performs the desired actions after
which it calls the original kernel function to continue ‘normal’ execution of the system call as intended by
the operating system. As explained in Section 3.1.5 system call hooking is a technique that is typically
used by rootkits to hide their existence and manipulate the operating system at a very low level. The
technique can also be used for this research since the performance overhead of monitoring the system
calls would be minimal and has an unrestricted monitoring scope. The disadvantage however, is that
protections that Apple has put in place to protect against system call hooking and other exploitations,
have to be bypassed or defeated.

5.3. Kernel extension
To monitor real time, system wide execution of system calls, one has to reside very close to the core
component in system call execution. The sysent table can be seen as this core component since every
system call execution is routed using this table. System call hooking, as explained in the previous
section, appears the most viable option. This section explains the creation of a kernel extension that
has as its main purpose; creating a log of all executed system calls, which will later form the dataset
as discussed in Section 5.1.1.

5.3.1. Defeating OS X kernel protections
Kernel memory is protected against tampering and malicious use. Two main mechanism are in place
to perform these protections:

• Kernel Address Space Layer Randomisation
KASLR is a mechanism that randomises the offsets at which processes are loaded into memory.
It aims to protect memory against shellcode (malicious code) that loads itself at specific memory
locations. Due to the randomising factor, the shellcode can not load itself at statically defined
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memory locations that are available after exploitation of the kernel. This renders the shellcode
unsuccessful. Upon boot of the operating system, the kernel is loaded at a random offset, defined
by the bootloader, a layer connecting hardware and software.

• Kernel memory write protection
Kernel memory by default is write protected. Disabling the write operation to kernel memory
protects the kernel against modifications by malicious programs. Write protection is enforced by
the CPU when it executes memory pages owned by the kernel. Write protection is indicated in
64-bit control register 0 (CR0) of the CPU. It is a register that defines several control parameters
regarding the execution of memory pages. The CR0 contains a write protection (WP) bit that if
set to 1, makes the memory page read-only. Anything on this memory page can not be modified.

Bypassing KASLR
In order to hook system call functions, the memory location of the _sysent table has to be determined.
Due to KASLR, this is not a static address. In order to bypass KASLR and dynamically determine
the _sysent memory location, the randomised offset has to be calculated at runtime of the operating
system. Typically, this is performed using the binary of kernel and the memory location of exported
functions, for example the famous printf() function or interrupt 80 (INT80)5. On a high level, one
determines the memory location of an exported function in the kernel binary on the disk and the location
of the same function loaded in memory. The delta of these addresses provides the (random) amount of
memory locations by which the kernel memory has been shifted. Once the offset has been determined,
the _sysent table can be located.

In the kernel extension built for this research, a more dynamic approach was implemented. Mach-O
binaries contain a symbolic table in their header while loaded into memory. This symbolic table contains
references to the memory locations of global variables and exported functions. Resolving the location
of the _sysent table consists of 4 steps (visualised in Figure 5.1):

1. Find the location of INT80 in the IDT. The Interrupt Descriptor Table (IDT) is an array in the
header of the kernel memory image containing the kernel handlers for the interrupts. This table
is exported in the header and thus the memory location is resolvable. The memory location of
interrupt 80 (INT80) can be obtained from the IDT table.

2. Locate the base of the kernel header. Using the interrupt 80 memory address obtained from the
IDT, the start of the header can be found. The memory structure of interrupt 80 handler is known,
which can be used to linearly “slide” over the memory locations and match its structure with the
loaded memory .

3. Locate the __DATA segment from the kernel header. From the base of the memory, the __DATA
segment can be resolved using the __DATA segment reference. From the __DATA segment,
local variables and functions can be read from and written to6.

4. Locate the _sysent table from the __DATA segment. Because the structure of the _sysent table
is known, again a linearly brute-force technique is used to “slide” over the memory locations and
match the _sysent structure with the structure found in memory.

Once the (dynamic) _sysent memory location as been resolved, system call handlers can be resolved
and hooked.

The exact implementation of the resolution of the _sysent table is available at the open source project
named “Onyx the Black Cat” by Pedro Vilaça7.

Disabling Write-Protection
Disabling write protection involved less effort, since the CR0 register can be retrieved easily using
global functions. These global functions are defined in proc_reg header file in the XNU kernel, the
kernel contained in OS X. The WP-bit can then be changed to the value 0.

5http://ho.ax/downloads/Defiling-Mac-OS-X-Ruxcon.pdf
6https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/
7https://github.com/gdbinit/onyx-the-black-cat

http://ho.ax/downloads/Defiling-Mac-OS-X-Ruxcon.pdf
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/
https://github.com/gdbinit/onyx-the-black-cat
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Mach-O kernel memory image

0x0000F291F     INT80

0x0000231F     __DATA

0x06DEAD21     _sysent

__DATA

__TEXT

Mach-O header

Mach-O segments

1. Get INT80 address via IDT.

2. Slide to start of the header.

3. Jump to __DATA segment

4. Slide to start of _sysent.

Figure 5.1: Process of retrieving the memory address of the _sysent table which defines the system call implementations. The
memory addresses used are fictional.

5.3.2. Hooking system call functions
Once the sysent table has been located and the write protections are turned off, the defined system call
functions can be hooked. Hooking technique replaces the original functions by self defined functions
that perform their operation and call the original function as return value, assuring that the operating
system remains functional. Figure 5.2 shows this structure.
Every system call in the sysent table (also presented in Figure 5.2), is contained in its own struct,
shown in code block 5.1. This sysent system call struct contains among other information, a pointer to
the system call implementation, the return type and the number of arguments.

1 struct sysent_system_call {
sy_call_t *sy_call;
sy_munge_t *sy_arg_munge64;
int32_t sy_return_type;

5 int16_t sy_narg;
uint16_t sy_arg_bytes;

};
Listing 5.1: C struct defining required information regarding a system call.

The main purpose of hooking the system calls, is the ability to intercept the system call. Intercepting the
system call allows for logging metadata of each individual system call. Every system call is passed a
pointer to; the structure of the calling process (struct proc *p), a structure of arguments (system call
specific) and a pointer to memory for the return value. The pseudo-code of a generic hooking function
is shown in Listing 5.2. Specific metadata that are logged are described in Section 5.3.4.
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_sysent

SYS_read

SYS_write

SYS_i

SYS_i+1

SYS_n

...

...

SYS_read

implementation

SYS_write

implementation

SYS_write
hook

Request from 

process X

“Process X calls 

SYS_write!” 

Log 

file

Figure 5.2: High level sysent-table representation in which all the system calls are defined. System call SYS_read represents
the normal system call wiring to its implementation. System call SYS_write represents a hooked system call, which is logged to
the log file to create a system call trace.

1 int hook_write(struct proc *p, struct write_args *a, user_ssize_t *r) {
_log_metadata(p, a);
return _kernel_fnctions[SYS_write](p, a, r);

}
Listing 5.2: Generic system call hook funtion

Since the structure of the arguments passed to a system call function differs for each system call, it
is not possible to hook all functions with a generic system call hook-function. For every system call, a
hook function is defined which are hooked into the sysent table (_sysent[]).

Code sample 5.3 provides the hook mechanism for hooking the write system call function. In essence,
the original system call function is stored into an array (_kernel_fnctions) for use within the hook
function. The original function in the _sysent table is then replaced with the hook-function.

1 _kernel_fnctions[SYS_write] = (void*)_sysent[SYS_write].sy_call;
_sysent[SYS_write].sy_call = hook_write;
Listing 5.3: Hooking a system call function

After hooking each system call of interest (see Appendix B for a list of all hooked system calls), kernel
memory protections are enabled again and the system continues to operate, using the hooked-system
calls. As explained in Appendix B, not all system calls are hooked, because several system calls are
extremely frequently used by processes.

KAuth to monitor process execution
As explained in Section 5.2.3, KAuth is a framework that allows kernel extensions to be notified upon
certain file system events, defined by Apple. Due to the relative difficulty in retrieving corresponding
binary’s file system path of the of a process, compared to the possibilities that KAuth provided, Kauth
was used to gather information about the process creation. The KAuth scope KAUTH_SCOPE_FILEOP
allows to filter for KAUTH_FILEOP_EXEC notifications of file system operations, which include process
executions (execve() system call). KAuth calls the defined callback function which will log the path of
the binary, process ID and parent process ID upon execution. This is useful information to obtain to
gather more insights in possible process execution structures.
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Table 5.1: Metadata of a system call that is captured.

Name Abbreviation Explanation
Uptime time Uptime of the system, in microseconds preci-

sion, to keep track of system call order.
Process ID pid Together with the parent process ID, this

provides the ability to perform traces in the
dataset.

Parent process ID ppid Together with the process ID, this provides
the ability to perform traces in the dataset.

Privileges is_root Does the calling process have superuser priv-
ileges.

Process name procname Name of the process
Process execution path ppath File system path of the process
System call name sys_call Name of the system call
SYS_write location SYS_write_loc Location of the where the write system call

writes to.

5.3.3. Preventing deadlocks
Hooking system call functions has implications regarding normal performance. Every additional opera-
tion performed inside the hook-function may invoke other system calls. Specifically, logging the system
call data to a file invokes the SYS_write (the write system call). This can easily cause a deadlock. In a
deadlock, resources are waiting for each other, bringing the system in a state in which it not able to per-
form any other operations anymore. To prevent deadlocks in system call logging, the hook-functions
filter on the calling process. If the call appears to be invoked from the kernel (pid=0) or syslogd (the
process that writes the system call data to a file), it will not log the system call data.

5.3.4. Gathering metadata of system calls
Specific information of interest is not only the calling process and system calls that were executed,
but also metadata regarding the calling process and the arguments with which the system call was
called. This enriches the dataset with possible valuable information, easily extractable from the process
structure and arguments structure passed to a system call hooking-function. Table 5.1 provides an
overview of the available properties logged for each system call.

Each system call will be represented according to the semicolon separated format shown in Listing 5.4.
The first line presents the column descriptions, the rows below each represent a system call invocation
with corresponding metadata.

1 time ; process name; pid; ppid; syscall ; is_root;
0:5:6,448659; pboard ; 474; 1 ; SYS_pipe ; 0;
0:5:6,448689; pboard ; 474; 1 ; SYS_posix_spawn ; 0;
0:5:6,450010; /bin/sh ; 474; 1 ; NEW_PROCESS ; 0;

5 0:5:6,450205; sh ; 476; 474 ; SYS_shared_region_chk; 0;
Listing 5.4: Process pboard executes /bin/sh process and sh starts calling system calls (OSX.OceanLotus.A).

5.3.5. Constructing the log
In order to find patterns that can be used to describe malicious system call behaviour, the system
call usage of malware has to be monitored and recorded. This kernel extension will create a record
of every hooked system call made by every process (except for the processes explained in Section
5.3.3). The log is created by writing to both the system.log generic logging (located in the default
location /var/log/system.log) and to the serial port. The advantage of logging over a serial port is
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its thread-safety, since a log operation over the serial port is fully synchronous8. When the serial port
log is available (only in a virtual environment, or with a second computer connected over a FireWire
port8), this log file is preferred. The log file will form the raw dataset of system calls, that will later be
used to analyse malicious behaviour.

5.3.6. Load priority of the kernel extension at boot time
Collecting the system calls as early as possible in the boot process allows for a more detailed look
of the behaviour of both the system and applications as well as the malware with which the system
may be infected. Apple allows to specify the order in which kernel extensions are loaded upon boot
time of the system. The property OSBundleRequired in the corresponding Info.plist of the extension
informs the system that the kernel extension must be available for loading during early boot. This valid
values for this property include Root (required to mount root), Local-Root (required to mount root on
locally attached storage), Network-Root (required to mount root on network-attached storage), Safe
Boot (required even in safe-mode boot) and Console (required to provide character console support,
in single user mode).

This kernel extension would like to be loaded before the root of the file system is mounted, which means
before any processes other than the kernel processes are started.

5.4. Environment setup and data gathering process
The (isolated) environment in which the system call data is gathered is explained in this section. First,
the environment setup is described, thereafter the system call trace data collecting process is ex-
plained.

5.4.1. Environment setup
To prevent the malware from harming production systems, the malware samples are ran inside a Virtual
Machine. OS X 10.6 Snow Leopard and 10.11 El Capitan are virtualised. Virtual Machines also provide
the ability to rollback the state of a system to a previous saved (uninfected) state of the system. Due
to OS compatibility issues of some malware samples (i.e. the Crisis rootkit, see Section 3.1.5), OS X
10.6 is also virtualised. Both systems are cleanly installed, OS X 10.11.3 from an App Store download
of which the SHA-1 checksum is verified, OS X 10.6 is installed from an Apple installation DVD.

In the first phase, the systems are installed with basic, very commonly used office applications:

• Microsoft Office 2011 for Mac,

• OS X Mail client with an installed mail account,

• OS X Safari web browser, without Adobe Flash and Java Runtime,

• OS X Calendar application,

• OS X Address book/Contacts application.

5.4.2. Process of gathering system call data
To distinguish malicious system call behaviour from benign, two types of data set are required.

• A dataset in which only benign processes perform system calls: benign dataset.

• Datasets in which malware performs its system calls: malware datasets.

Benign dataset
The benign dataset is extracted from the cleanly installed virtual systems. Typical office behaviour is
simulated using the installed applications. An exact workflow of the interactions with the system is
8Developer forum “Stack Overflow” question answered by well respected member Phil Dennis-Jordan: https://
stackoverflow.com/questions/36327605/printf-in-system-call-returns-malformed-output/

https://stackoverflow.com/questions/36327605/printf-in-system-call-returns-malformed-output/
https://stackoverflow.com/questions/36327605/printf-in-system-call-returns-malformed-output/
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Table 5.2: A list of OS X malware samples analysed in this research.

no. Name Type Detection date

1 OSX.Flashback Trojan 09/30/2011
2 OSX.Crisis.I Rootkit 07/25/2012
3 OSX.FakeCodec Adware 02/03/2013
4 OSX.LaoShu.A Backdoor 01/21/2014
5 OSX.CoinThief.A Trojan 02/26/2014
6 OSX.Xslcmd Trojan 09/05/2014
7 OSX.Wirelurker Trojan 11/06/2014
8 OSX.Janicab Trojan 11/26/2014
9 OSX.iWorm Trojan 01/05/2015
10 OSX.Kitmos.A Backdoor 03/04/2015
11 OSX.Genieo!gen1 Adware 05/18/2015
12 OSX.Malcol Adware 05/21/2015
13 OSX.Downloader Adware 07/29/2015
14 OSX.Jahlav.A Trojan 07/29/2015
15 OSX.InstallCore Adware 11/16/2015 before

16 OSX.EliteKeylogger Keylogger 02/15/2016 after
17 OSX.OceanLotus Trojan 02/19/2016
18 OSX.Crisis.II Rootkit 02/26/2016
19 OSX.KeRanger.A Trojan 03/06/2016
20 OSX.Pirrit Adware 04/06/2016
21 OSX.Bundlore Adware 04/11/2016

described in Appendix C. To ensure that the simulation represented the behaviour of benign users,
a survey under 30 real Mac user was conducted. Chapter 8 elaborates on the survey and evalua-
tion.

Malware datasets
According to Symantec, 55 unique OS X malware samples have been found since 20109. Obtaining
functional malware samples is not trivial and in order to create a system call trace from a malware
sample, the sample must be complete and functional. Often, only specific malicious parts of a OS X
application that are not executable are uploaded to malware sample collecting services like VirusTotal.
For this research, 21 functional OS X malware samples were obtained from different sources101112.
Table 5.2 provides an overview of the functional malware samples obtained and analysed in this re-
search.

Every sample in Table 5.2 is ran in the exact same environment as the clean system for 10 minutes,
after which the malware has performed its infection phase. Based on the literature study performed in
Chapter 4, 10 minutes of recording appears to be the maximum amount of time a sample requires to
infect a system. The infection phase is particularly interesting to study because if this stage could be
prevented, malware itself would not have the ability to infect the system. A detection and prevention
method for this phase would secure a system against malware. The kernel extension is launched and
ran just before manual infection of malware samples, by executing the malicious binaries.

After 10 minutes, the log is captured and replaced by an empty log file, and the state of the system is
rolled back to the ‘pre-malware’ state, ready for the next malware sample to monitor and record.

Eventually, after the process is completed, a large benign system call log is acquired, together with a
log of system calls for every malware sample listed above. A sample of the log/raw dataset is provided
in Appendix D. From this point in this research, the analysis of malicious behaviour starts.

9https://www.symantec.com/security_response/landing/azlisting.jsp?azid=O
10https://objective-see.com/
11https://www.virustotal.com/
12https://researchcenter.paloaltonetworks.com/

https://www.symantec.com/security_response/landing/azlisting.jsp?azid=O
https://objective-see.com/
https://www.virustotal.com/
https://researchcenter.paloaltonetworks.com/
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5.5. Conclusions
In order to analyse behaviour of processes based on system calls, a log of system calls performed by
processes (system call traces) is required. Constructing a log of system call traces is not trivial. This
chapter evaluated the possible tools currently available and concluded none of the tools was able to
monitor every system call of every process, including unknown malicious processes. A kernel module
was developed to facilitate the construction of a log. The kernel module “rewired” the system call
implementation of the operating system by modifying protected kernel memory. Security technologies
such as Address Space Layer Randomisation (ASLR) and memory write protection were bypassed
to achieve the modifications in memory. The “rewiring” of the system call implementations allowed
to include the logging functionality. When the kernel module is loaded, every system call invocation
(including its metadata described in Table 5.1) logs to a pre-defined log file. The kernel module is
open-source and available on GitHub13.
Asmany as possible functional malware samples (shown in Table 5.2) were executed in an environment
in which the kernel module was loaded. This process produced logs of system call traces for every
malware sample executed. These log files are analysed in the next chapters.

13https://github.com/vivami/grey_fox

https://github.com/vivami/grey_fox


6
Heat map analysis

This chapter describes the initial analysis of the system call datasets performed in order to extract
possible detection patterns. Heat maps are used to gain initial, general insights in collected system
call traces datasets, with the aim to provide a starting point for further analysis. General observations
and patterns are described and some initial malware detection system call patterns are presented at
the end of this chapter.

6.1. Heat maps
A heat map is a graphical representation of data where the individual values contained in a two-
dimensional matrix are represented as colours. The matrix can be extracted from a table, on which the
columns and rows are represented in the matrix that is visualised using a heat map. Larger values are
represented by dark colours and smaller values by lighter colours. A heat map can provide a good first
general insight into a large dataset in which relations are not trivially extractable. In this chapter, a heat
map is used to gain insights in a possible relation between processes and — the amount of — invoked
system calls. From the raw dataset (described in Appendix D), a table has been constructed featuring
system calls on the 𝑥-axis top row and process names on the 𝑦-axis first collum. Table 6.1 illustrates
an example of the table format to which the raw system call dataset is converted.

SYS_call_1 SYS_call_2 SYS_call_i+1 SYS_call_n
process1 6 8 11 4
process2 19 3 13 2
process3 6 9 7 12
process4 31 2 5 2

Table 6.1: Table format of the underlying system call data of the heat maps.

Several features of the raw dataset are not taken into account and left out in the analysis using heat
maps. Time sequencing of system calls for example is not possible to combine in the current format of
the heat map and will be discussed in the next chapter when more thorough analysis is applied.
R library d3heatmap1 is used to create the heat map resulting in a— similar to Figure 6.1— visualisation
of the system call datasets.

1http://blog.rstudio.org/2015/06/24/d3heatmap/

35

http://blog.rstudio.org/2015/06/24/d3heatmap/


36 6. Heat map analysis

6.2. Benign heat map
Figure 6.1 shows a heat map of the benign dataset.

Figure 6.1: Heat map visualisation of the benign system call traces. The system calls called and processes are listed on the
𝑥-axis and 𝑦-axis respectively. Each square represents the number of system calls, as a normalised data point. Darker blocks
represent an outlying number of system calls performed by a process, relative to other processes. The black arrows and square
indicates SYS_posix_spawn being called by launchd and xpcproxy only.

A few observations are made:

1. The SYS_posix_spawn system call is only performed by xpcproxy2 — an OS X process providing
mechanisms for interprocess communications — and is tightly integrated with the launchd3 pro-
cess, responsible for starting and managing processes after the kernel has been loaded. These
are described in more detail in Section 9.1. These calls are indicated in the benign heat map
visualisation in Figure 6.1 by the black arrows.

2. The programs used the most, web browser and MS Word, perform the far majority of the system
calls. The ocspd4 process is related to SSL certificate validation, very likely used by the web
browser to perform HTTPS connections.

2https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/xpcproxy.8.html
3https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/launchd.8.html
4https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ocspd.1.html

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/xpcproxy.8.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/launchd.8.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/ocspd.1.html
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3. The fontd process does an extraordinary amount of SYS_open calls. This is very likely due to MS
Word loading and/or using the font files when opening a Word document.

4. MS Word does many SYS_write calls, very likely involved in the process of saving a Word doc-
ument.

5. com.apple.WebKit, part of the Safari web browser, does many system calls related to socket
operations. Sockets are used to communicate over Internet connections.

6. The shell process sh does exactly one SYS_execve call and several SYS_sigaction calls. This call
should be ignored, since it used to launch kextunload, a process related to unloading the kernel
extension from the kernel. This is not considered “ordinary” behaviour, as kernel extensions are
typically loaded on boot of the system, as explained in Section 5.3.6.

The last observation however, is important to make. As assumed by Niels Provos [36] and as will be
shown in the following sections, malware specifically performs many process execution (SYS_execve
and SYS_posix_spawn) system calls to execute new processes. The next section will provide more
observations regarding malware specific behaviour, that is not observable in the benign dataset.

6.3. Malware heat maps
From initial observations of the heat map visualisations of the malware samples listed in Section 5.4.2,
some common patterns that are not existent in the benign dataset can be observed. The sections
below explain both common, as well as malware specific system call patterns.

6.3.1. iWorm
The iWorm malware is a recent and relatively sophisticated OS X malware sample. iWorm also per-
forms interesting behaviour as can be seen in the heat map of the iWorm dataset in Figure 6.2.

As explained in Section 3.1.3, iWorm is a backdoor that spawns two processes, ‘0’ and ‘1’. Process
‘1’ is a process that installs the iWorm backdoor binary ‘JavaW’ and creates a LaunchDaemon to gain
persistence. Observed from the heat map in Figure 6.2 the following observations can be made:

1. DNS process mDNSResponder performes many socket operations. This may indicate iWorm trying
to establish a connection with its C&C servers.

2. Process 1 does many system calls regarding semaphore operations; SYS_semget and SYS_semop.
These operations and system calls are absent in the benign data set.

3. Process JavaW performs SYS_fstatfs and SYS_getdirectories system calls that are related to
obtaining file system statistics5, which is on par with iWorms backdoor nature.

4. The shell process sh is significantly more prominent compared to the benign dataset. It also
performs many SYS_fork, SYS_execve, SYS_dup2 and SYS_pipe calls. These calls are completely
absent in the benign system call dataset.

6.3.2. Wirelurker
As described in Section 3.1.3, Wirelurker is a malware sample targeting iOS devices via OS X platform
with the goal to exfiltrate data from the iOS device. Two patterns similar to the patterns observed in
iWorms heat map, are also observed in Wirelurker’s heat map (Figure 6.3). A shell process is present,
invoking process execution calls (SYS_execve).

The following sections show last observation will recur in many malware heat maps, and may be a
good first indication of an infection process.

5https://www.freebsd.org/cgi/man.cgi?query=fstatfs

https://www.freebsd.org/cgi/man.cgi?query=fstatfs
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Figure 6.2: Heat map visualisation of the iWorm malicious system call trace. The system calls called and processes are listed
on the 𝑥-axis and 𝑦-axis respectively. Each square represents the number of system calls, as a normalised data point. Darker
blocks represent an outlying number of system calls performed by a process, relative to other processes. The black arrows
indicate the SYS_execve calls performed by sh.

6.3.3. Common patterns
Appendix E shows the heat maps of other malware samples listed in Section 5.4.2. This section will
describe and explain several patterns the heat maps of the malware samples have in common.

A majority of the malware samples is a Trojan Horse and uses an installer to infect an OS X system.
Observed is that the installers heavily rely on a shell process (sh) used to install components of the
malware onto the system. The sh process makes various system calls that are not existent in the
benign dataset. In particular, the SYS_execve (used to execute a binary file), SYS_fork (creates a new
(child) process6), SYS_pipe (used for interprocess communication7) and SYS_dup2 (used for file I/O8).
This pattern indicates execution of processes that communicate with each other over pipes.

Other behaviour prominently present in the malware is the information gathering SYS_getpgrp which is
a system call used to obtain information about the group ID in which a process belongs9.

6http://linux.die.net/man/2/fork
7http://linux.die.net/man/2/pipe
8http://linux.die.net/man/2/dup2
9http://linux.die.net/man/2/getpgrp

http://linux.die.net/man/2/fork
http://linux.die.net/man/2/pipe
http://linux.die.net/man/2/dup2
http://linux.die.net/man/2/getpgrp
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Figure 6.3: Heat map visualisation of OSX.Wirelurker malicious system call trace. The system calls called and processes
are listed on the 𝑥-axis and 𝑦-axis respectively. Each square represents the number of system calls, as a normalised data
point. Darker blocks represent an outlying number of system calls performed by a process, relative to other processes. The
black arrows indicate the SYS_execve calls performed by sh, and the black square indicates SYS_posix_spawn being called by
launchd and xpcproxy. Note: the SYS_posix_spawn calls by com.apple.MailServer and update are malicious calls performed
by the OSX.Wirelurker malware.

Many occurrences (> 121) of SYS_sigaction in a very short period of time (< 5 minutes) are also a
typical phenomenon observed by the malicious processes. The SYS_sigaction system call is used to
change the action taken by a process on receipt of a specific signal by the OS. The signals are used
for interprocess communication. In the benign dataset, the SYS_sigaction system call only occurred
approximately 30 times by a single process.

Some of the samples that have a backdoor nature, show specific socket operations. Genieo malware
for example, calls the SYS_listen system call, indicating that the malware marks a socket as a passive
socket, that is, as a socket that will be used to accept incoming connection requests10. The SYS_listen
is not used by any benign process.

Processes that connect to the internet are identifiable by their system calls related to sockets. In the
benign dataset, processes that do not open a connection to the Internet, do not perform the SYS_socket,
SYS_setsockopt, SYS_socketpair, SYS_sendmsg_nocancel, SYS_sendto and several others related to
socket operations. The heat maps provide insights in the use of Internet by malicious processes, purely
based on the aforementioned system calls.

The Genieo malware family (Genieo, MacVX, PaperPost, MacInstaller) is identifiable by significantly
more SYS_posix_spawn calls. On a normal system, only the Apple processes launchd and xpcproxy
appear to perform a certain amount of SYS_posix_spawn calls. The MacInstaller family tends to perform
twice the amount of SYS_posix_spawn calls, compared to launchd and xpcproxy. Also the Flashback
10http://linux.die.net/man/2/listen

http://linux.die.net/man/2/listen
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malware shows this behaviour. The SYS_posix_spawn is a system call providing similar functionality to
the SYS_execve call11.
Both MacInstaller and PaperPost show many similarities as explained above, also perform an extraor-
dinary amount of SYS_open system calls to hidden files on the file system. In the two minutes that
both samples ran, both made 5447 and 5352 SYS_open respectively. Providing a perspective: the
benign dataset, where (apart from fontd process) the maximum amount of SYS_open calls was 1194
by Microsoft Word and the second largest consumer, mdworker (Apple owned), performed 487 open
calls.

6.4. Conclusions
Heat maps are a valuable visualisation technique to provide initial insights into a raw data set, and this
chapter has not shown differently. Many observations relating to both benign and malicious system
call traces have been made in this chapter. Section 6.2 starts by presenting a visualisation of the
benign system call traces (Figure 6.1). Observations made are the use of execution system calls only
performed by OS X processes and Internet facing applications performing many system calls related
to sockets. Section 6.3 visualises in Figures 6.2 and 6.3 malicious system call traces which shows the
presence of shell processes and execution system calls performed by other processes than only OS
X processes. After analysing all the heat maps of all malicious system call traces collected, execution
system calls and shell processes appeared to be a common pattern present in malware and absent in
benign processes.
The next chapter elaborates on these observations and provide more detailed patterns related to the
detection of malicious behaviour.

11http://linux.die.net/man/3/posix_spawn

http://linux.die.net/man/3/posix_spawn


7
Manual sequencial analysis

After the initial analysis facilitated by the visualisation of the system call traces using heat maps in
Chapter 6, some interesting patterns and behaviour that appear to belong to malicious processes were
found. This chapter dives deeper into the the conclusions drawn in Chapter 6 by performing manual
analysis for additional, more fine-grained and in particular sequential malicious patterns. In this section,
all major malware samples are analysed by stepping through the raw system call trace, constructed
by the kernel extension. Particularly interesting bits of these system call traces are listed in text blocks
and is elaborated upon. Finally, this chapter is ended by providing a detailed conclusion in Section 7.9
of the findings and extracted common malicious patterns.

7.1. iWorm
The iWorm sample starts upon execution of the Install binary in the ‘Trojaned’ installer packed in the
installer of an iWorm infected application.

The listing below shows the Install binary being launched.

1 Time; process name; PID; PPID; syscall; root privs; write/binary path;
0:1:43,82720; /Users/m/Desktop/Install.app/Contents/MacOS/Install; 362; 0;

NEW_PROCESS; 0;
Listing 7.1: iWorms Install binary executed.

The Install binary performs several system calls seemingly unrelated to malicious behaviour and
one set of (as defined in Section 6.3.3) possibly malicious calls: SYS_shm_open, SYS_pipe, SYS_fork,
SYS_dup2, in that particular order. It finalises execution with two SYS_execve calls that launch 2 pro-
cesses, 0 (executed with elevated privileges) and 1.

1 Time; process name; PID; PPID; syscall; root privs; write/binary path;
0:1:43,249674; Install; 362; 1; SYS_shm_open; 0;
0:1:43,299625; Install; 362; 1; SYS_pipe; 0;
0:1:43,313445; Install; 362; 1; SYS_fork; 0;

5 0:1:43,339043; Install; 363; 362; SYS_dup2; 0;
0:1:43,352853; Install; 363; 362; SYS_execve; 0;
0:1:48,203333; /Users/m/Desktop/Install.app/Contents/MacOS/0; 363; 0;

NEW_PROCESS; 1;
0:1:48,203846; Install; 362; 1; SYS_execve; 0;
0:1:48,208305; /Users/m/Desktop/Install.app/Contents/MacOS/1; 362; 0;

NEW_PROCESS; 0;
Listing 7.2: iWorms Install binary performs its operations.

41



42 7. Manual sequencial analysis

Process 0 executed by Install performs among some other frequently occurring system calls; two
SYS_posix_spawn that launch a sh process. SYS_posix_spawn1 appears to have very similar function-
ality to SYS_execve. Both are used to launch/spawn new (child) processes.

1 Time; process name; PID; PPID; syscall; root privs; write/binary path;
0:1:48,238454; 0; 363; 362; SYS_posix_spawn; 0;
0:1:48,239772; /bin/sh; 363; 0; NEW_PROCESS; 1;
0:1:48,326414; 0; 363; 362; SYS_posix_spawn; 0;

5 0:1:48,331568; /bin/sh; 363; 0; NEW_PROCESS; 1;
Listing 7.3: iWorms Install binary performs its operations.

These two SYS_posix_spawn calls seem to finalise the execution of 0.

The other process executed by Install is named ‘1’ and performs a large amount of system calls
related to semaphores. According to Patrick Wardle [53], the ‘1’ process is not a malicious process,
but should be the process that installs the benign application. However, the iWorm sample used to
create this system call trace dataset, did not contain a benign program to be installed. It is unclear
what functionality resides inside the ‘1’ binary, however semaphore operations could be considered
uncommon behaviour, as it is not visible in any other dataset, both benign and malicious.

The sh (367) process is used to perform the malicious tasks. It launches launchd which appears to
be responsible for the installation of a launch daemon (static analysis by Patrick Wardle can be used
to confirm this behaviour [53]).

1 Time; process name; PID; PPID; syscall; root privs; write/binary path;
0:1:48,287125; sh; 367; 363; SYS_execve; 0;
0:1:48,288733; /bin/launchctl; 367; 0; NEW_PROCESS; 1;
Listing 7.4: sh process executes launchctl.

The launchctl process executes the JavaW process. A shell (sh) process interacting with the OS
X process launchctl can be considered malicious behaviour, as the pattern is not visible anywhere
in the benign dataset. In addition, launchctl is responsible to manage and control daemons/agents
(automatic startup items), which is operating system functionality that malware is particularly interested
in [59], also shown in the rest of this chapter. A large majority of the benign applications and processes
are not interested in auto-run functionality, later shown in Chapter 8.

The JavaW process is mainly concerned with connecting to a socket (the iWorm backdoor). In its initial
phase, it gathers some information about the file system and thereafter starts a socket connection and
remains idle.

1 0:1:48,405641; JavaW; 368; 1; SYS_fstatfs; 0;
0:1:48,407694; JavaW; 368; 1; SYS_getdirentries; 0;
0:1:48,409801; JavaW; 368; 1; SYS_getdirentries; 0;
0:1:48,428004; JavaW; 368; 1; SYS_shm_open; 0;
Listing 7.5: JavaW binary performs file system information gathering.

7.2. Flashback
Similar to iWorm, the Flashback trojan horse installed a backdoor onto the victims machine. It is
launched when the user clicks on an installer that appears to install Adobe Flash Player, but instead
launches the malware. Note that the launch path seems odd since it resides in system preserved
directories, but is due to Flashback using the default OS X installer framework, which is located in
/System/Library/CoreServices/Installer.app2.

1https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/posix_spawn.2.html
2http://www.mactech.com/articles/mactech/Vol.26/26.02/TheFlatPackage/index.html

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man2/posix_spawn.2.html
http://www.mactech.com/articles/mactech/Vol.26/26.02/TheFlatPackage/index.html
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1 0:1:51,911939; /System/Library/CoreServices/Installer.app/Contents/MacOS/
Installer; 363; 0; NEW_PROCESS; 0;

Listing 7.6: Flashback installer launched.

After several read and access operations, the Installer calls SYS_posix_spawn and launches a pro-
cess named runner. It continues to perform commonly seen system calls and finalises by removing
itself.

The OS X itself (xpcproxy) appears to launch installd itself, which launches install_monitor,
runner and preinstall. The first first two show benign behaviour. The latter is the most interest-
ing.

preinstall
preinstall is a process featuring elevated privileges showing very similar behaviour to the iWorm 0
process. After several socket operations, preinstall launches an elevated sh process.

1 0:2:1,561297; preinstall; 375; 373; SYS_posix_spawn; 0;
0:2:1,562724; /bin/sh; 375; 0; NEW_PROCESS; 1;
Listing 7.7: preinstall spawns sh.

The sh process performs 8 times the exact same pattern of system calls, executing multiple file system
management binary like rm in its last SYS_execve call (line 25 in the listing below).

1 0:2:1,877144; /bin/sh; 375; 0; NEW_PROCESS; 1;
0:2:1,878564; sh; 382; 375; SYS_shared_region_check_np; 0;
0:2:1,881384; sh; 382; 0; SYS_write; 1; /dev/dtracehelper
0:2:1,883866; sh; 382; 375; SYS_ioctl; 0;

5 0:2:1,884948; sh; 382; 375; SYS___sysctl; 0;
0:2:1,887464; sh; 382; 0; SYS_write; 1; /dev/tty
0:2:1,888514; sh; 382; 375; SYS_ioctl; 0;
0:2:1,889503; sh; 382; 375; SYS_getegid; 0;
0:2:1,890524; sh; 382; 375; SYS_sigaction; 0;

10 0:2:1,891477; sh; 382; 375; SYS_sigaction; 0;
0:2:1,892425; sh; 382; 375; SYS_sigaction; 0;
0:2:1,893345; sh; 382; 375; SYS_sigaction; 0;
0:2:1,894312; sh; 382; 375; SYS_sigaction; 0;
0:2:1,895291; sh; 382; 375; SYS_sigaction; 0;

15 0:2:1,897127; sh; 382; 375; SYS_sigaction; 0;
0:2:1,899107; sh; 382; 375; SYS___sysctl; 0;
0:2:1,900137; sh; 382; 375; SYS_getppid; 0;
0:2:1,902136; sh; 382; 375; SYS_shm_open; 0;
0:2:1,905723; sh; 382; 375; SYS_getpgrp; 0;

20 0:2:1,906639; sh; 382; 375; SYS_sigaction; 0;
0:2:1,907597; sh; 382; 375; SYS_getrlimit; 0;
0:2:1,908787; sh; 382; 375; SYS_sigaction; 0;
0:2:1,911487; sh; 382; 375; SYS_sigaction; 0;
0:2:1,912428; sh; 382; 375; SYS_sigaction; 0;

25 0:2:1,913371; sh; 382; 375; SYS_execve; 0;
Listing 7.8: sh pattern performed by Flashback

These 8 iterations will eventually spawn several sh (shell) processes, that remain active until the system
shuts down. It is expected that the idle shell processes are waiting for HTTP/HTTPS connections,
however due to Flashback’s C&C hashtags are not found on Twitter anymore, it may fail to continue to
operate. This is not verifiable based on the system call trace.
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7.3. Wirelurker
Wirelurker was one of the malware samples that was not gathered in installer form. The sample’s
launch instruction was executed via the OS X Terminal application (a bash shell), instead of launched
by the kernel when it is packaged inside an installer/Trojan Horse.

1 0:1:56,519720; sh; 365; 351; SYS_execve; 0;
0:1:56,521053; /Users/m/Desktop/update; 365; 0; NEW_PROCESS; 1;
Listing 7.9: Launch of Wirelurker (update binary)

Wirelurkers update binary launches a shell process that launches several helper binaries to extract and
store its malicious files into system reserved directories.

1 0:1:56,622014; sh; 367; 366; SYS_execve; 0;
0:1:56,626348; /usr/bin/unzip; 367; 0; NEW_PROCESS; 1;
Listing 7.10: sh launches unzip

1 0:1:57,243858; sh; 369; 366; SYS_execve; 0;
0:1:57,244945; /bin/mv; 369; 0; NEW_PROCESS; 1;
Listing 7.11: sh launches mv

1 0:1:57,441376; sh; 378; 366; SYS_execve; 0;
0:1:57,442641; /usr/bin/unzip; 378; 0; NEW_PROCESS; 1;
0:1:57,583832; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/

libcrypto.1.0.0.dylib
0:1:57,742539; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/

libiconv.2.dylib
5 0:1:57,769903; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/

libimobiledevice.4.dylib
0:1:57,811844; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/libiodb

.dylib
0:1:57,832382; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/liblzma

.5.dylib
0:1:57,840472; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/

libplist.2.dylib
0:1:57,894782; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/libssl

.1.0.0.dylib
10 0:1:57,900817; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/

libusbmuxd.2.dylib
0:1:58,44824; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/libz.1.

dylib
0:1:58,55016; unzip; 378; 0; SYS_write; 1; /private/etc/manpath.d/libzip

.2.dylib
Listing 7.12: sh launches unzip and unzips a dynamic library

This behaviour can be confirmed by the static analysis performed by Palo Alto Networks [55]. The sh
process then uses chmod and rm to move files in the appropriate directories, as explained in PAN’s
Wirelurker’s analysis [55].
Subsequently, the sh process will do a SYS_execve call to launch the launchctl process and create a
startup item.
xpcproxy is then used to spawn anotherWirelurker process: com.apple.MailServiceAgentHelper.

1 0:2:11,768285; xpcproxy; 391; 1; SYS_posix_spawn; 0;
0:2:11,777087; /usr/bin/com.apple.MailServiceAgentHelper; 391; 0;

NEW_PROCESS; 1;
Listing 7.13: xpcproxy launches com.apple.MailServiceAgentHelper
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The com.apple.MailServiceAgentHelper does not appear to do any maliciously identified calls, until
it spawns another sh process using the SYS_posix_spawn system call.

1 0:2:11,840556; com.apple.MailSe; 391; 1; SYS_posix_spawn; 0;
0:2:11,841978; /bin/sh; 391; 0; NEW_PROCESS; 1;
Listing 7.14: MailServiceAgentHelper launches new sh process

That sh process is used to touch may files in system preserved directories:

1 0:2:11,894315; touch; 393; 0; SYS_write; 1; /usr/bin/periodicdate
0:2:11,918309; touch; 394; 0; SYS_write; 1; /usr/bin/systemkeychain -helper
0:2:11,941527; touch; 395; 0; SYS_write; 1; /usr/bin/com.apple.appstore.

PluginHelper
0:2:11,964870; touch; 396; 0; SYS_write; 1; /usr/bin/com.apple.

MailServiceAgentHelper
5 /System/Library/LaunchDaemons/com.apple.periodic -dd-mm-yy.plist

0:2:12,11968; touch; 398; 0; SYS_write; 1; /System/Library/LaunchDaemons/
com.apple.systemkeychain -helper.plist

0:2:12,36063; touch; 399; 0; SYS_write; 1; /System/Library/LaunchDaemons/
com.apple.appstore.plughelper.plist

0:2:12,60575; touch; 400; 0; SYS_write; 1; /System/Library/LaunchDaemons/
com.apple.MailServiceAgentHelper.plist

0:2:12,84518; touch; 401; 0; SYS_write; 1; /usr/bin/stty5.11.pl
10 0:2:12,108955; touch; 402; 0; SYS_write; 1; /private/etc/manpath.d

Listing 7.15: sh uses touch to create several files.

Thereafter, the shell process launches two grep3 and a ps4 processes, presumably to gather system
configuration parameters.
After ps has finished gathering process information, com.apple.MailServiceAgentHelper opens a
socket connection and starts interacting with the socket.
Several OSX applications that have an iOS counterpart, like photolibraryd, cloudphotosd, usernoted,
com.apple.CloudP, start to appear in the logs afterwards. This is interesting , as Wirelurker is specifi-
cally targeting iOS devices, exfiltrating user information.
Wirelurker processes exit and sleep after this behaviour, according to [55] waiting for an iOS device
to connect. Since this research is focussed on OS X and detecting threats in an early stage, the iOS
infection phase of Wireluker is out of the scope of this thesis.

7.4. MacInstaller
When a user clicks on what appears to be an MP3-file, it starts the macLauncher process which after
several system calls that were previously identified as suspicious malicious behaviour, launches a shell
process.

1 0:5:34,53365; /Volumes/Downloader/Ziggy MarleyBeach In Hawaii_mp3.app/
Contents/MacOS/macLauncher; 462; 0; NEW_PROCESS; 0;

...
0:5:37,105410; macLauncher; 462; 1; SYS_pipe; 0;
0:5:37,106461; macLauncher; 462; 1; SYS_pipe; 0;

5 0:5:37,107471; macLauncher; 462; 1; SYS_fork; 0;
0:5:37,109000; macLauncher; 462; 1; SYS_wait4_nocancel; 0;
0:5:37,109238; macLauncher; 465; 462; SYS_dup2; 0;
0:5:37,111250; macLauncher; 465; 462; SYS_dup2; 0;
0:5:37,112239; macLauncher; 465; 462; SYS_dup2; 0;

3http://linux.die.net/man/1/grep
4http://linux.die.net/man/1/ps

http://linux.die.net/man/1/grep
http://linux.die.net/man/1/ps
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10 0:5:37,113228; macLauncher; 465; 462; SYS_execve; 0;
0:5:37,114714; /bin/sh; 465; 0; NEW_PROCESS; 0;
Listing 7.16: macLauncher spawns its shell process.

The shell process gathers some information about the user groups, and eventually launches a Downloader
executable.

1 0:5:37,137395; sh; 465; 462; SYS_getgroups; 0;
0:5:37,138423; sh; 465; 462; SYS_getpgrp; 0;
...
0:5:37,144097; sh; 465; 462; SYS_execve; 0;

5 ...
0:5:37,178371; /Volumes/Downloader/.app/Downloader.app/Contents/MacOS/

Downloader; 465; 0; NEW_PROCESS; 0;
Listing 7.17: shell process used to spawn Downloader.

Downloader performs many read and write operations, appearing to corrupt the indexing service mds
databases.

1 0:5:37,304576; Downloader; 465; 0; SYS_write; 0; /private/var/folders/z2/
ygg7tspj47j8bb2pxw21b8s80000gn/C/mds/mds.lock

0:5:37,309104; Downloader; 465; 0; SYS_write; 0; /private/var/folders/z2/
ygg7tspj47j8bb2pxw21b8s80000gn/C/mds/mdsObject.db_

0:5:37,328211; Downloader; 465; 0; SYS_write; 0; /private/var/folders/z2/
ygg7tspj47j8bb2pxw21b8s80000gn/C/mds/mdsDirectory.db_

Listing 7.18: Downloader is writing to mds’s (file system indexing service) databases.

After many pairs of read and write operations, Downloader spawns ioreg and awk. They both live
for a shot period, after which Downloader starts to perform many socket operations. It appears that
processes connecting to the internet and listening for instructions or packets on a socket, are identifiable
by the system call SYS_getsockopt. This call in combination with SYS_setsockopt are used to send
and receive packets over a socket (usually connected to an Internet interface). This assumption is
based on the many operations performed by malware samples, and being only performed by benign
processes that require an internet connection, i.e. Safari web browser, Office applications (presumably
for updates).

1 0:5:49,916084; Downloader; 465; 462; SYS_write; 0;
0:5:49,917210; Downloader; 465; 462; SYS_read; 0;
0:5:49,918266; Downloader; 465; 462; SYS_getsockopt; 0;
Listing 7.19: Downloader performs socket operations.

After many dozens of sockets operations, a typical malware pattern appears in the system call trace:
1 0:5:50,196141; Downloader; 465; 462; SYS_fork; 0;

0:5:50,207916; Downloader; 476; 465; SYS_dup2; 0;
0:5:50,211487; Downloader; 476; 465; SYS_dup2; 0;
0:5:50,214974; Downloader; 476; 465; SYS_dup2; 0;

5 0:5:50,217674; Downloader; 476; 465; SYS_execve; 0;
0:5:50,220998; /bin/sh; 476; 0; NEW_PROCESS; 0;
Listing 7.20: Downloader performs typical malicious system call pattern.

The shell process starts hdiutil which uses SYS_posix_spawn to launch diskimages-helper. iTunes
is then launched, and fed the MacInstaller *.mp3 file.

1 0:5:55,907747; Downloader; 465; 462; SYS_posix_spawn; 0;
0:5:55,936362; /Volumes/silentextension/extension.app/Contents/MacOS/mac.

installer; 465; 0; NEW_PROCESS; 0;
Listing 7.21: Downloader spawns mac.installer.
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mac.installer appears to perform no malicious behaviour, other than receiving and sending data over
a socket. Eventually mac.installer exits and Downloader takes back control. Downloader executes
a shell process that is used to launch another MacInstaller process AppYS, which could be considered
the main binary of the malware. AppYS first performs several socket operations. Thereafter, it launches
osascript to execute an AppleScript that is used to perform the actual malicious operations on the
files system.

1 0:7:24,218401; AppYS; 519; 465; SYS_posix_spawn; 0;
0:7:24,221526; /usr/bin/osascript; 519; 0; NEW_PROCESS; 0;
Listing 7.22: AppYS launches AppleScript.

The AppleScript is mainly concerned with copying an application named ‘Royalbgood’ to a directory.
AppYS then stores a LaunchAgent, and starts the launchctl process. It performs this last operation
three times, shortly after each other.

1 0:7:26,118526; AppYS; 519; 465; SYS_posix_spawn; 0;
0:7:26,119820; /bin/launchctl; 519; 0; NEW_PROCESS; 0;
...
0:7:26,195429; AppYS; 519; 465; SYS_posix_spawn; 0;

5 0:7:26,196843; /bin/launchctl; 519; 0; NEW_PROCESS; 0;
...
0:7:26,281641; AppYS; 519; 465; SYS_posix_spawn; 0;
0:7:26,287504; /bin/launchctl; 519; 0; NEW_PROCESS; 0;
Listing 7.23: AppYS launches launchctl.

Afterwards, it launches several Unix killall processes calling an extraordinary amount of SYS___sysctl.
After this phase, AppYS starts again a shell process that is used to copy/install a Safari plugin.

1 0:7:56,79491; AppYS; 519; 465; SYS_posix_spawn; 0;
0:7:56,81618; /bin/cp; 519; 0; NEW_PROCESS; 0;
0:7:56,92233; cp; 563; 0; SYS_write; 0; /Users/m/Library/Safari/Extensions

/Royalbgood.safariextz
Listing 7.24: AppYS copies a malicious Safari extension.

After this operation, AppYS exits and MacInstaller appears to have achieved its target; injecting adver-
tisements into webpages using a browser plugin.

7.5. Genieo
Genieo starts by launching the process Installer. Installer writes preferences in the default OS X
preferences directory and performs several socket operations.

1 0:5:0,24931; Installer; 445; 1; SYS_posix_spawn; 0;
0:5:0,26475; /System/Library/Frameworks/JavaVM.framework/Versions/A/

Commands/java_home; 445; 0; NEW_PROCESS; 0;
Listing 7.25: Genieo spawns Java process.

The Java process lives very short, and does not perform any noteworthy operations. Intstaller uses
several SYS_posix_spawn system calls to spawn cp and rm processes that are used to prepare an
application named ‘Application.app’.

After the copying process has finished, Installer spawns a Python process.

1 0:5:7,760922; Installer; 445; 1; SYS_posix_spawn; 0;
0:5:7,765287; /usr/bin/python; 445; 0; NEW_PROCESS; 0;
0:5:7,781434; python; 452; 445; SYS_posix_spawn; 0;
...
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5 0:5:7,785041; /System/Library/Frameworks/Python.framework/Versions/2.7/
Resources/Python.app/Contents/MacOS/Python; 452; 0; NEW_PROCESS; 0;

Listing 7.26: Genieo spawns Python process.

The Python appears to be used for setting the proper file attributes of the application. After Python has
finished its job, Installer then launches the ‘Application’.

1 0:5:8,406850; Installer; 445; 1; SYS_posix_spawn; 0;
0:5:8,408706; /private/tmp/Application.app/Contents/MacOS/Application;

445; 0; NEW_PROCESS; 0;
Listing 7.27: Installer executes Application process.

Application process remains idle for a while. In the meantime, another Genieo process is launched,
interestingly enough, by an OS X system process. com.genieoinnova is then used to spawn several
Unix processes primarily used to manage file permissions.

1 0:5:13,531826; xpcproxy; 461; 1; SYS_posix_spawn; 0;
0:5:13,536276; /Library/PrivilegedHelperTools/com.genieoinnovation.

macextension.client; 461; 0; NEW_PROCESS; 1;
...
0:5:13,596716; com.genieoinnova; 461; 1; SYS_posix_spawn; 0;

5 0:5:13,598613; /usr/sbin/chown; 461; 0; NEW_PROCESS; 1;
...
0:5:13,596716; com.genieoinnova; 461; 1; SYS_posix_spawn; 0;
0:5:13,598613; /usr/sbin/chown; 461; 0; NEW_PROCESS; 1;
...

10 0:5:13,733378; com.genieoinnova; 461; 1; SYS_posix_spawn; 0;
0:5:13,736387; /bin/chmod; 461; 0; NEW_PROCESS; 1;
...
0:5:13,875735; com.genieoinnova; 461; 1; SYS_posix_spawn; 0;
0:5:13,877273; /bin/cp; 461; 0; NEW_PROCESS; 1;
Listing 7.28: Genieo uses several chown and chmod operations on files.

The cp process appears to write a launch daemon to the reserved directory. After the Unix processes
perform their task, Application process starts to interact with launchctl, confirming the behaviour
previously performed by cp.

1 0:5:14,671492; Application; 453; 445; SYS_posix_spawn; 0;
0:5:14,673052; /bin/launchctl; 453; 0; NEW_PROCESS; 0;
Listing 7.29: Application process spawns launchctl.

After the interaction, Installer performs a large amount of socket operations. Thereafter, Installer
again launches several Unix processes related to file system operations. Subsequently, two times a
shell process is spawned to execute echo.

1 0:8:11,784965; Installer; 445; 1; SYS_posix_spawn; 0;
0:8:11,786575; /bin/sh; 445; 0; NEW_PROCESS; 0;
0:8:11,825330; sh; 518; 517; SYS_dup2; 0;
0:8:11,826892; sh; 518; 517; SYS_execve; 0;

5 0:8:11,829826; /bin/echo; 518; 0; NEW_PROCESS; 0;
Listing 7.30: Installer process launches a shell process, which spawns the echo process.

The Java application launched ismainly concernedwith operations on a socket, but later uses SYS_execve
to execute System Profiler, an OS X application that provides information about the OS X system.
Eventually, defaults5 is launched 6 times, appearing to adapt firewall settings.
5https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/defaults.1.html

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/defaults.1.html
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1 0:8:32,635981; Genieo; 528; 445; SYS_posix_spawn; 0;
0:8:32,638064; /System/Library/Frameworks/JavaVM.framework/Versions/A/

Resources/MacOS/JavaApplicationStub; 528; 0; NEW_PROCESS; 0;
...
0:8:35,288114; JavaApplicationS; 528; 445; SYS_pipe; 0;

5 0:8:35,289550; JavaApplicationS; 528; 445; SYS_pipe; 0;
0:8:35,291139; JavaApplicationS; 528; 445; SYS_pipe; 0;
0:8:35,292426; JavaApplicationS; 528; 445; SYS_pipe; 0;
0:8:35,298371; JavaApplicationS; 534; 528; SYS_dup2; 0;
0:8:35,299599; JavaApplicationS; 534; 528; SYS_dup2; 0;

10 0:8:35,300749; JavaApplicationS; 534; 528; SYS_dup2; 0;
0:8:35,301854; JavaApplicationS; 534; 528; SYS_dup2; 0;
0:8:35,306899; JavaApplicationS; 534; 528; SYS_execve; 0;
0:8:35,308138; JavaApplicationS; 534; 528; SYS_execve; 0;
0:8:35,309329; JavaApplicationS; 534; 528; SYS_execve; 0;

15 ...
0:8:38,852865; JavaApplicationS; 542; 528; SYS_execve; 0;
0:8:38,854872; /usr/bin/defaults; 542; 0; NEW_PROCESS; 0;
Listing 7.31: JavaApplicationS performs SYS_execve.

After this behaviour, JavaApplicationS mainly connects and interacts with sockets. Other malicious
behaviour is not found in its system call trace.

7.6. InstallCore
InstallCore is one of the most recent malware samples, detected in February 2016. It distinguished
itself from other malware due to its binaries being signed with a valid Apple Developer certificate.
This allowed InstallCore to bypass Gatekeeper= which — as explained in Section 3.1.7 — verifies the
signatures of binaries before execution.

InstallCore tries to trick a user into thinking it is installing a new version of Adobe Flash. Once the user
launches the installer, InstallCore takes off.

1 0:6:10,781945; xpcproxy; 370; 1; SYS_posix_spawn; 0;
...
0:6:10,810977; /Volumes/Installer/Installer.app/Contents/MacOS/tirocinium;

370; 0; NEW_PROCESS; 0;
Listing 7.32: tirocinium process started.

After many SYS_ioctl/SYS_read system call pairs, tirocinium eventually executes a shell process
using SYS_posix_spawn.

1 0:6:13,165176; tirocinium; 370; 1; SYS_posix_spawn; 0;
0:6:13,166494; /bin/sh; 370; 0; NEW_PROCESS; 0;
Listing 7.33: tirocinium launches shell process.

The shell process performs several known patterns:

1 0:6:13,190134; sh; 374; 370; SYS_pipe; 0;
0:6:13,191222; sh; 374; 370; SYS_fork; 0;
0:6:13,192630; sh; 374; 370; SYS_pipe; 0;
0:6:13,193588; sh; 374; 370; SYS_fork; 0;

5 ...
0:6:13,196035; sh; 374; 370; SYS_fork; 0;
0:6:13,198652; sh; 375; 374; SYS_dup2; 0;
Listing 7.34: Shell process performs process execution related system calls.
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Then the codesign and xargs processes are launched by the shell process using SYS_execve. Both
processes do not perform any seemingly interesting behaviour.

The tirocinium process thereafter performs an extraordinary amount (over 60.000) of SYS_ioctl
system calls. It is unclear why the malware shows this behaviour. Patrick Wardle in an static analysis
of InstallCore claims that these calls are performed to obfuscate behaviour of the process: “All these
calls are ‘useless’ - they’re simply present to change the signature (hash) of identical samples and/or
perhaps thwart simple AV emulators and/or hinder analysis. However, in terms of manual analysis,
while somewhat annoying, in reality they don’t stop us.”6

In its final phase, tirocinium starts to perform socket operations, and presumably downloads Adobe
Flashplayer to a temporary directory.

1 0:7:36,443582; tirocinium; 370; 0; SYS_write; 0; /private/var/folders/z2/
ygg7tspj47j8bb2pxw21b8s80000gn/T/adobe_flashplayer_e2c7b.dmg

Listing 7.35: tirocinium writes DMG file to the disk.

Eventually, Safari is launched by xpcproxy (described inmore detail in Section 9.1), presumably caused
by tirocinium.

7.7. Crisis
In late February 2016, a new version of the HackingTeam Crisis rootkit for OS X was sighted by the in-
formation security industry8. This later version will be referred to as Crisis.II. Both versions are analysed
in this section.

7.7.1. Crisis.I
The OS X Crisis rootkit by HackingTeam consists of many components. The components are different
binaries that need to be assembled in order to function according to the intends of its authors. In this
research, only one component of the rootkit has been obtained and can be analysed. This component
is likely the a part of the userspace component of the rootkit7.

Crisis was launched by executing OSX_Crisis_A32E0. This process writes another binary to a System
Preferences directory.

1 0:15:13,310759; OSX_Crisis_A32E0; 1044; 0; SYS_write; 1; /private/var/root
/Library/Preferences/2Md1ctl2/WaAvsmZW.EMb

0:15:13,319438; OSX_Crisis_A32E0; 1044; 893; SYS_fork; 0;
0:15:13,319993; OSX_Crisis_A32E0; 1046; 1; SYS_execve; 0;
0:15:13,320172; /private/var/root/Library/Preferences/2Md1ctl2/WaAvsmZW.

EMb; 1046; 0; NEW_PROCESS;
Listing 7.36: OSX_Crisis_A32E0 process executes WaAvsmZW.EMb.

The WaAvsmZW.EMb process then performs some well-known calls to write a file named mdworker.flg.
According to an analysis performed by SANS [34], mdworker.flg is a file used to mark a system as
compromised by Crisis and is checked by Crisis before it starts to perform its malicious functional-
ity.

1 0:15:13,367869; WaAvsmZW.EMb; 1046; 1; SYS_pipe; 0;
0:15:13,367878; WaAvsmZW.EMb; 1046; 1; SYS_fork; 0;
Listing 7.37: WaAvsmZW.EMb performs process execution related system calls.

1 0:15:13,435378; WaAvsmZW.EMb; 1046; 1; SYS_chmod; 0;
0:15:13,435432; WaAvsmZW.EMb; 1046; 1; SYS_chown; 0;

6https://objective-see.com/blog/blog_0x0C.html
7SHA-1: 41e6edd798979be2bdfc87e293d00c54d793a340

https://objective-see.com/blog/blog_0x0C.html
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0:15:13,435623; WaAvsmZW.EMb; 1046; 1; SYS_fsetxattr; 0;
0:15:13,435629; WaAvsmZW.EMb; 1046; 0; SYS_write; 1; /private/var/root/

Library/Preferences/2Md1ctl2/mdworker.flg
Listing 7.38: WaAvsmZW.EMb writes mdworker.flg to disk.

1 0:15:13,438177; WaAvsmZW.EMb; 1049; 1046; SYS_dup2; 0;
0:15:13,438182; WaAvsmZW.EMb; 1049; 1046; SYS_dup2; 0;
0:15:13,438186; WaAvsmZW.EMb; 1049; 1046; SYS_dup2; 0;
Listing 7.39: WaAvsmZW.EMb SYS_dup2 calls.

Eventually, WaAvsmZW.EMb uses SYS_posix_spawn to spawn launchctl, an operation previously indi-
cated as malicious behaviour.

1 0:15:13,439772; WaAvsmZW.EMb; 1049; 1046; SYS_posix_spawn; 0;
0:15:13,439945; /bin/launchctl; 1049; 0; NEW_PROCESS; 1;
Listing 7.40: AppYS copies a malicious Safari extension.

Crisis.I terminates after this call. However, it is unknown what behaviour is performed by the other
components, which could not be obtained for this research.

7.7.2. Crisis.II
Crisis.II hasmajor differences in terms of binary obfuscation complexity compared to Crisis.I. The binary
is encrypted using Apples encryption scheme (as explained by Patrick Wardle in Section 3.1.7). It is
also packed with a custom-made8 packer9 to obfuscate the binary and prevent detection by signature
checking anti-virus software. This behaviour has not been seen before by malware on OS X8.
The sample is started using a shell process, since the sample was not obtained in ‘installer-form’.

1 0:5:4,783342; /Users/m/Desktop/58
e4e4853c6cfbb43afd49e5238046596ee5b78eca439c7d76bd95a34115a273; 370;
354; NEW_PROCESS; 1;

...
0:5:4,812105; 58e4e4853c6cfbb4; 370; 354; SYS_write; 1; /private/var/root/

Library/Preferences/8pHbqThW/_9g4cBUb.psr
0:5:4,841386; 58e4e4853c6cfbb4; 371; 370; SYS_execve; 0;

5 0:5:4,842744; /private/var/root/Library/Preferences/8pHbqThW/_9g4cBUb.psr;
371; 1; NEW_PROCESS; 1;

Listing 7.41: After Crisis.II is launched, it writes a binary to disk and executes that binary.

After the 58e4e4853c6cfbb4 Crisis.II process is started, it writes a binary _9g4cBUb.psr to the file
system and executes that binary using a SYS_execve call.
The _9g4cBUb.psr process then writes a LaunchAgent to the LaunchAgent respective directory.

1 0:5:5,546923; _9g4cBUb.psr; 371; 1; SYS_open; 0; /Users/root/Library/
LaunchAgents/.dat0173.001;

Listing 7.42: After Crisis.II is launched, it writes a binary to disk and executes that binary.

During _9g4cBUb.psr’s lifetime, it spawns several binaries: two times sysctl, chown, four times system_profiler.

1 0:5:21,53072; system_profiler; 376; 371; SYS_posix_spawn; 0;
0:5:21,54709; /usr/sbin/system_profiler; 376; 371; NEW_PROCESS; 1;
...
0:5:5,331064; _9g4cBUb.psr; 371; 1; SYS_posix_spawn; 0;

8https://reverse.put.as/2016/02/29/the-italian-morons-are-back-what-are-they-up-to-this-time/
9http://www.kaspersky.com/en/internet-security-center/threats/suspicious-packers

https://reverse.put.as/2016/02/29/the-italian-morons-are-back-what-are-they-up-to-this-time/
http://www.kaspersky.com/en/internet-security-center/threats/suspicious-packers
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5 0:5:5,333974; /usr/sbin/sysctl; 371; 1; NEW_PROCESS; 1;
Listing 7.43: Crisis.II binary executes multiple OS X processes.

After these calls, the OS X processes perform their actions, and _9g4cBUb.psr goes in an idle state. It is
important to note that this Crisis.II sample is not complete and lacks functionality that is not analysed in
this analysis. The described patterns however, should be enough to identify Crisis.II’s behaviour.

7.8. Ransomware
Two functional ransomware samples were obtained for this research: OSX.KeyRanger.A and Gopher.
The latter is a proof of concept built by Pedro Vilaça10.

7.8.1. KeRanger
The infected Transmission BitTorrent client executes a malicious shell process before any UI elements
are shown to the user.

1 0:13:58,523214; Transmission; 413; 1; SYS_posix_spawn; 0;
0:13:58,524348; /bin/sh; 413; 1; NEW_PROCESS; 0;
Listing 7.44: Transmission process spawns a shell process using the SYS_posix_spawn system call.

This shell process is then later used to spawn the ransomware process kernel_service [6].

1 0:13:58,530059; sh; 414; 413; SYS_execve; 0;
0:13:58,530631; /Users/m/Library/kernel_service; 414; 413; NEW_PROCESS; 0;
Listing 7.45: sh process executes the malicious kernel_service process.

kernel_service starts encrypting files after 3 days, given it has received encryption keys from its C&C,
located at lclebb6kvohlkcml.onion.link. At the moment of the conducted research, this C&C was
still operational. To speed up the infection process, the epoch time in .kernel_time was set back to
an earlier moment of time.

Upon encryption of files by the kernel_service, many SYS_write calls are performed. Files on the
file system are presumably encrypted and written back to the file system featuring a *.encrypted
postfix. The SYS_read calls are expected to be performed by kernel_service also, but are not visible
in our dataset since the SYS_read system calls are not hooked in the kernel extension, as explained in
Appendix B. Listing 7.46 shows a small sample this behaviour. This behaviour is observed for every
file in the user directory.

1 1:115:3,980185; kernel_service; 721; 1; SYS_access; 0;
1:115:3,989580; kernel_service; 721; 1; SYS_write; 0; /Users/m/Desktop/

prep_kext.sh
1:115:3,994398; kernel_service; 721; 1; SYS_access; 0;
1:115:4,10534; kernel_service; 721; 1; SYS_chmod; 0;

5 1:115:4,14923; kernel_service; 721; 1; SYS_write; 0; /Users/m/Desktop/
prep_kext.sh.encrypted

1:115:4,75076; kernel_service; 721; 1; SYS_access; 0;
1:115:4,83673; kernel_service; 721; 1; SYS_write; 0; /Users/m/Desktop/

response.txt
1:115:4,89416; kernel_service; 721; 1; SYS_access; 0;
1:115:4,94868; kernel_service; 721; 1; SYS_chmod; 0;

10 1:115:4,99715; kernel_service; 721; 1; SYS_write; 0; /Users/m/Desktop/
response.txt.encrypted

Listing 7.46: kernel_service encrypts files on the file system.

10https://github.com/gdbinit/gopher

https://github.com/gdbinit/gopher
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7.8.2. Gopher
Gopher ransomware is a proof of concept and not featuring an ‘injection phase’. To run the ransomware
sample, it was launched manually from a shell process controlled by the Terminal.app. Directly after,
gopher starts encrypting the files on the file system. A similar pattern as OSX.KeyRanger is observed:
many SYS_write calls touching many files on the system. Listing 7.47 shows a short sample of the
gopher behaviour.

1 0:6:44,477232; gopher_encrypt; 624; 566; SYS_write; 0; /Users/m/Documents
/Presentation1.pdf

0:6:44,486060; gopher_encrypt; 624; 566; SYS_write; 0;
0:6:44,491274; gopher_encrypt; 624; 566; SYS___sysctl; 0;
0:6:44,497652; gopher_encrypt; 624; 566; SYS_writev; 0;

5 0:6:44,503237; gopher_encrypt; 624; 566; SYS_write; 0; /Users/m/Documents
/Presentation1.pptx

0:6:44,511840; gopher_encrypt; 624; 566; SYS_write; 0;
0:6:44,516091; gopher_encrypt; 624; 566; SYS___sysctl; 0;
0:6:44,531157; gopher_encrypt; 624; 566; SYS_writev; 0;
0:6:44,540171; gopher_encrypt; 624; 566; SYS_write; 0; /Users/m/Documents

/test.docx
10 0:6:44,550778; gopher_encrypt; 624; 566; SYS_write; 0;

0:6:44,555413; gopher_encrypt; 624; 566; SYS_write; 0; /Users/m/Desktop/
session_pub.key

Listing 7.47: gopher_encrypt encrypts files on the file system.

7.9. Conclusions
This chapter performed an in depthmanual, sequential analysis of the system call traces of the collected
malware samples for OS X. The analysis identifies various patterns that recur in many of the analysed
malware samples, some of which recur in every sample. In addition to the patterns found in Chapter
6, the following system call patterns were identified:

1. Execution of (child) processes
Every malware sample analysed in this chapter consists of multiple processes. The samples
are launched by a single process execution, which then spawns multiple other processes. The
other processes are used to perform specific actions that together resemble the behaviour of
the malicious payload. In order to accurately identify malicious behaviour, it is important that the
behaviour of all the processes in the malware’s process tree is observed.

2. Execution of shell processes
In a far majority of the analysed samples, the most common pattern that recurred was the shell
(sh) processes used to facilitate the malicious intent of the malware. The shell process was
launched and used to launch and interact with other processes performing the malicious action.
SYS_posix_spawn and SYS_execve are the two calls very frequently used by malware, but are
absent in benign processes, apart from launchd and xpcproxy (both part of the OS X operating
system).

3. Interaction with launchctl
Every malware sample using persistency based on LaunchDaemon/Agents (auto-run items),
eventually starts to interact with launchctl (an operating system process that is used to man-
age and control daemons and agents). Nowhere in the benign system call traces is behaviour
seen of processes interacting neither with nor without using a shell with launchctl. In gen-
eral, a shell process will use SYS_execve to launch launchctl, where any other process will
use SYS_posix_spawn to launch launchctl. Typically, in case of a benign application requiring
LaunchDaemon functionality to function, this daemon/agent configuration occurs at install time
and does not recur afterwards.
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4. Ransomware performing write calls touching many files
Two OS X ransomware samples currently publicly known, show the same behaviour. SYS_write
calls are performed touching all files in a user directory. The SYS_write are performed in a very
short time interval.

The next chapter will evaluate these patterns as well as suggest detection patterns for OS X malware,
based on system call traces.



8
Evaluation

The previous two chapters described a variety of malicious behaviour observed in OS X malware’s
system call traces. This chapter constructs detection patterns based on the observations and subse-
quently evaluates the detection patterns. The evaluation phase consists of metrics commonly used in
the anomaly detection field, discussed in Chapter 4. Typically used metrics in this field of science are
the Detection Rate (DR) and the False Positive Rate (FPR). The patterns constructed in Section 8.1
are evaluated in Section 8.2 and 8.3 respectively.

8.1. Detection patterns
Based on the observations and conclusions drawn in Section 7.9, the following detection patters are
derived:

• Execute system call usage by non-OS X processes (pattern 1)
A process other than xpcproxy or launchd performing a SYS_posix_spawn or SYS_execve. Pat-
tern 2 refines this pattern to a more precise malicious pattern.

• Execution of shell processes (pattern 2)
A SYS_execve or SYS_posix_spawn executing a shell process (i.e.: /bin/bash, /bin/sh, /bin/
python), is a generic malicious pattern.

• Interaction with launchctl (pattern 3)
A shell process (i.e.: /bin/bash, /bin/sh, /bin/python) launching the /bin/launchctl or /usr/
bin/crontab binary, is a malicious pattern to gain persistency on the system using LaunchDae-
mons or cronjobs.

• Ransomware performing write calls touching many files (pattern 4)
A process that is performing SYS_write calls (presumably in combination with SYS_read calls)
touching many files on the file system in a very short period of time, is considered a malicious
pattern shown by ransomware encrypting files on the file system.

These three core derived patters will be used as ‘malware detection patterns’. Ideally, these patterns
should only be observable on systems infected with malware and not visible on clean systems. An
interim hypothesis could be formulated as: ‘The three patterns described above are only visible on a
malware infected OS X system.’ To evaluate and validate the hypothesis, two metrics commonly used
in other anomaly detection literature are used:

• Detection Rate (DR): the detection rate is defined as the number of intrusion instances detected
by the system (True Positive) divided by the total number of intrusion instances present in the
test set [43].

• False Positive Rate (FPR): An event signalling a detection system to produce an alarm when no
attack has taken place [43].

55
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8.2. Detection rate
The detection rate is an important metric to measure the accuracy of the detection patterns. In order to
measure the detection rate as accurately as possible, the number of malware samples tested against
the detection rules should be as high as possible. In the following sections, all malware samples
described in Table 5.2 are analysed.

8.2.1. Detecting patterns
The process of detecting patterns consisted of creating a system call trace of the malware samples in
Table 5.2 by executing the malware samples on in a Virtual Machine (fully patched and updated OS X
10.11.3 system). The system call traces were logged in the exact same way as described in Section
5.4.2. The malicious system call traces were then manually inspected for containing the detection
patterns stated in Section 8.1. Table 8.1 shows the amount of detected patterns for each malware
sample.
The horizontal line in Table 8.1 indicates the moment of pattern construction. After the detection pat-
terns were derived and constructed, several other newer malware samples surfaced (listed below “af-
ter”). In other words, the patterns were constructed based on system call traces from samples 1 to 15
and verified to be existent in patterns 16 to 21.

no. Name Pattern 1 Pattern 2 Pattern 3 Pattern 4

1 OSX.Flashback 21 11 1 –
2 OSX.Crisis.I 2 0 5 –
3 OSX.FakeCodec 21 6 3 –
4 OSX.LaoShu.A 2 1 – –
5 OSX.CoinThief.A 20 10 1 –
6 OSX.Xslcmd 14 8 – –
7 OSX.Wirelurker 43 8 1 –
8 OSX.Janicab 32 19 3 –
9 OSX.iWorm 13 4 2 –
10 OSX.Kitmos.A 12 1 2 –
11 OSX.Genieo!gen1 61 5 3 –
12 OSX.Malcol 23 11 – –
13 OSX.Downloader 73 2 4 –
14 OSX.Jahlav.A 21 6 2 –
15 OSX.InstallCore 8 3 – – before

16 OSX.EliteKeylogger 20 5 0 – after
17 OSX.OceanLotus 12 4 1 –
18 OSX.Crisis.II 7 0 – –
19 OSX.KeRanger.A 6 2 0 PRESENT
20 OSX.Pirrit 401 35 8 –
21 OSX.Bundlore 242 110 8 –

Table 8.1: Lists all occurrences of patterns in analysed malware samples. The entries containing a ‘–’ mean the criteria was not
applicable. No persistency was gained or the malware sample was not ransomware.

Table 8.1 shows that all malware samples analysed trigger the detection patterns and in many cases,
multiple times. Note: as previously stated, Crisis samples obtained are incomplete and lack large
portions of functionality, hence the lack of pattern 2. OSX.KeyRanger ransomware was a malware
sample that used persistency by ‘backdooring’ a BitTorrent client. It would be started when the user
started the BitTorrent client and thus be persistent on the system, hence no usage of LaunchDaemons
or cronjobs.
Based on the results in Table 8.1 it can be stated that the detection patterns feature a 100% detection
rate for OS X malware.
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8.3. False Positive Rate
Determining the False Positive Rate is more difficult compared to determining the Detection Rate of the
patterns. The main difficulty originates from the different types of nature existing in benign applications.
A far majority of the applications running on OS X do not perform tight interaction with the underlying
system. Many of those applications honour the sandboxing restrictions that Apple directs and while it is
hard to gain an overview of the Mac App Store (MAS) usage, currently over 16,2301 Mac applications
are available in the MAS. On the ofter end of the spectrum are the applications featuring a nature that
tightly integrates and interacts with the underlying system. In some cases, these applications also
perform modifications to the underlying system. Examples of these applications are:

• GPGTools: A toolset related to GPG encryption (e-mail in particular). It features a plug-in that
nestles inside the default OS X Mail application to provide it with extra functionality.

• Flux: A utility that changes the color scheme of the display to a warmer color, decreasing the
eyestrain of a user sitting for long periods of time behind the display. It is a system plug-in that
hooks into the display settings of the system to automatically modify the display colour behaviour.

• Electron: Electron is a developer toolset that allows developers to develop JavaScript apps to
run locally. It is based on NodeJS and uses many cross-platform binaries. The cross-platform
binaries are often interacted with in a similar way on all Unix-like systems.

Based on these observations, the initial hypothesis was that the applications with a Linux native nature
ported to OS X system or an OS X native application tightly integrating with the system or aim to extend
the functionality of OS X features, will with a high probability generate false positives. Early inspections
for false positives showed applications relying on shell processes to execute standalone binaries. It is
expected the shell process is used as an interface to interact with standalone binaries used to provide
cross-platform compatibility (elaborated on in Section 9.2). The next subsection explains the validation
of this hypothesis.

8.3.1. User profiles
In order to provide a more accurate analysis of the False Positive Rate three different types of users
are described and used for the evaluation. Expected is that a user only using applications downloaded
from the Mac App Store will not experience false positives, where a more advanced user will more
often trigger false positives with its application usage. Three user profiles are defined:
1. App Store user: a user only using applications downloaded from the App Store.
2. Typical user: occasionally uses applications distributed outside the App Store.

3. Power user/developer: a user who uses advanced features of the system or uses developer
environments to develop software.

8.3.2. Measuring false positives
The user profiles allow for more accurate definition of the FPR by differentiating between the type of
applications triggering false positives. The evaluation consists of two phases:
1. Collecting application usage under Mac users. A survey under 25 real Mac user was conducted

to gain insights in application usage by users fitting a profile. A user was asked to select its best
suiting profile of the profiles described above and upload their installed applications.

2. Testing the top X applications for False Positives. In the same environment as described in
Section 5.4.1 the top 90 applications derived from the survey were analysed for Detection Rate
(DR) and False Positive Rate (FPR). Malicious patterns in the benign applications’ system call
traces imply false positives.

Ninety benign applications were picked based on the popularity among the survey participants. Only
applications at least used by two participants or more were analysed and formed in total 90 applications.
A table of all the applications and their corresponding categorised user profile is available in Appendix
1http://appshopper.com/mac

http://appshopper.com/mac
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F. The 90 applications were installed in the monitored environment described in Section 5.4.2 and their
system call traces were collected. Manually, the system call traces were inspected inside a text editor
and was searched for the malicious detection patterns defined in Section 8.1.

App Store user profile

One of the strict rules2 the Mac App Store dictates, is the requirement of an application to be sand-
boxed. This implies apart from the operating system owned processes, all applications in the Mac App
Store profile are sandboxed. In this user profile it is observed the process executions SYS_execve and
SYS_posix_pawn are only performed by launchd and xpcproxy. This behaviour is explained in Section
9.1. Sixty applications from the App Store were installed and their system call traces analysed. The
nature of the applications was diverse, varying from unzip utilities to photo editors. The list of tested
applications is available in Appendix F.
The conducted analysis of the App Store user profile shows launchd and xpcproxy as the only pro-
cesses performing the execution calls and did not execute shell processes. This results in a DR of
malware of 100% and a FPR of 0%.

Typical user profile
A typical user is more likely to occasionally use applications distributed outside of the Mac App Store.
Applications distributed outside of the Mac App Store do not have to comply with the strict App Store
rules, neither do they have to be sandboxed. Concluded from the survey, the 30 used applications
distributed outside the Mac App Store from 10 users fitting the ‘typical user profile’ were tested. In
the evaluation, applications that require more close interactions with the underlying operating system
appeared as false positives. Examples of these processes are: Dropbox and Tresorit, both file syncing
cloud services that need processes to modify default OS X Finder (equivalent of Microsoft Windows
Explorer) behaviour. Google Chrome browser, due to its own sandbox security3 behaviour, spawns
many helper processes to isolate Web pages and plugin elements. Other browsers do not show this
behaviour. However, none of the process executions spawns a shell process, a prominent feature
of OS X malware. The FPR is 0% while the detection rate is 100%, meaning the defined malicious
patterns were absent in all the tested applications.

Power user/developer profile
The power user profile describes a user using many development tools, compilers and interpreters like
Python and JavaScript (NodeJS/Electron). Under the users of the held survey, 15 of them describe
themselves as developer/power user. The top 90 most used applications under these 15 developers
were analysed. As expected, the interpreters and compilers for the scripting languages in particular
showed executions of shell processes. The shell processes in particular call binaries related to the
scripting language (i.e.: /usr/bin/python).
Git, a widely used source code version control utility, also performs many execution calls to its own
binaries through the use of shell processes. Xcode, Apple’s IDE, also performs execution calls to git
binaries.
OpenVPN (VPN software) performs execution calls to OS X system binaries (i.e. /sbin/route and
/sbin/ifconfig). GPGTools (GPG encryption toolset) also performs execution calls to its own bina-
ries.
A feature all the false positive-triggering applications have in common is their cross-platform compat-
ibility. Python, R, git, OpenVPN etc. all consist largely of binaries that are available cross-platform,
meaning they have to be functional on a variety of (Unix based) platforms. As expected earlier in Sec-
tion 8.3, a shell process creates a generic method to interface and interact with these binaries, since the
shell is a powerful component available on all Unix based systems. The next chapter provides reasons
for this behaviour. Of the 90 analysed applications, 18 applications (20%) categorised as developer
tool resulted in a false positive. The FPR under power users thus increases to roughly 20% based
2https://developer.apple.com/app-store/review/guidelines/mac/
3https://tools.google.com/dlpage/res/chrome/en-GB/more/security.html

https://developer.apple.com/app-store/review/guidelines/mac/
https://tools.google.com/dlpage/res/chrome/en-GB/more/security.html
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Table 8.2: Detection Rate (DR) and False Positive Rate (FPR) of the detection patterns per user profile.

Profile DR FPR (Shell execution) FPR (Execute call)
App Store user 100% 0% 0%
Typical user 100% 0% 25%
Developer/Power user 100% 20% –

on the tested developer tools derived from the survey. It should be noted however that this number
is solely an indication and is completely dependent on the amount of developer tools and App Store
applications used by a particular user.
Table 8.2 shows the detection rates (DR) and false positive rates (FPR) for both shell executions and
solely execution calls for every type of user profile. Clearly, the malware detection is most effective on
the App Store and Typical user profile.

8.4. Conclusions
This chapter described the process of evaluating the effectiveness of the defined malicious detection
rules in Chapter 7. Similar to the literature studied in Chapter 4, the Detecting Rate (DR) and False
Positive Rate (FPR) were used to define the effectiveness of the detection rules. From all the malware
samples of which the system call traces were obtained, the system call traces were searched for occur-
rences of malicious patterns. Every malware sample analysed (shown in Table 8.1) was detected by
malware pattern 2, which resulted in a DR of 100%. Every malware sample would be detected when
detection rule 2 was implemented into an Intrusion Detection System (IDS). Determining the FPR is
much more difficult. The FPR is largely dependent on the type of user: some users only use App
Store applications, other users mainly use software developer tools. Three different user profiles were
defined, “App Store user”, “Typical user” and “Developer/Power user”. A survey among 25 real Mac
users was conducted and obtained was their own opinion to which user profile they belong and a list
of applications installed on their system. Almost all the obtained applications were used in the FPR, of
which the App Store and Typical user resulted in a FPR of 0% and the Developer user profile in an esti-
mation of 20%. This is an estimation, because this percentage is completely dependent on the amount
of developer tools and App Store applications used by a particular user. The results are shown in Table
8.2. A majority of the false positive generating applications are applications featuring a cross-platform
nature, typically originating from a Linux environment, ported to OS X. Such applications use a shell
process to interact with their underlying cross-platform binaries.
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Discussion

Based on the results observed in Chapter 8 it can be concluded that for several user profiles the de-
tection – which in this case also implies prevention – of malware on OS X is effective. However, the
observations also raise important questions. Why is this behaviour observed and why is it never be-
fore published in research? How difficult is it for an attacker to ‘bypass’ the detection rules and what
can we expect from more advanced OS X malware in the future? This chapter aims to provide an
answer to these questions. It starts by explaining the important sandboxing components OS X and
shell processes in general. Subsequently, the questions above are answered.

9.1. XPC services
As described in Section 8.3.2, a phenomenon observed when analysing the Mac App Store applica-
tions is the execution of execute calls by the two OS X processes launchd and xpcproxy. In OS X’s
sandboxing technology, launchd and xpcproxy1 (XPC Services) are responsible for process execu-
tions and interprocess communication. launchd forms the equivalent of init on Linux [28], the first
userspace process that is started by the kernel and is responsible for the execution of other processes
in userspace. Many of the operating system specific processes initiated by the kernel or the user, are
executed by launchd [28].

XPC services2 provide privilege separation and interprocess communication (IPC) for sandboxed ap-
plications. XPC services are managed by launchd which launches on demand of other processes
permitted to make use of the XPC service. By default, XPC services are run in the most restricted envi-
ronment possible – sandboxed with minimal filesystem access, network access, and so on. Elevating a
service’s privileges to root is not supported. Furthermore, an XPC service is private and is available only
to the main application that contains it. xpcproxy is a service functioning as an execution trampoline
that configures the environment for an XPC service’s execution2. This means that xpcprocy is respon-
sible for the execution of sandboxed processes. The execution of sandboxed processes explains the
execution calls performed by xpcproxy for App Store applications.

Figure 9.1 illustrates XPC services process execution request scheme.

Apple also notes that “use of NSTask and posix_spawn, do not let you put each part of the application
in its own sandbox, so it is not possible to use them to implement privilege separation”3. posix_spawn
is by now well-known and NSTask() appears to be a wrapper for execve() [28], exactly the calls that
allow malware to perform its behaviour.

1https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/xpcproxy.8.html
2https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man8/xpcproxy.8.html
3https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/
CreatingXPCServices.html
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https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man8/xpcproxy.8.html
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Figure 9.1: Benign (sandboxed) process 𝑋 requests XPC services to interact with process 𝑌 . XPC services decides whether
to allow or deny this request.

9.2. Shell processes
The Unix shell has been around longer than most of its users have been alive [45]. It has survived so
long because it is a power tool that allows user to perform complex tasks. The shell is an interpreter
of commands to interact with processes and the file system. Many of the available shells come with
their own scripting language that allows users to automate shell tasks and ‘glue’ components together
[45]. The shell’s main functionality is abstracting the executing binaries by the kernel and providing a
standardised method to interact with the processes.

In the hacker community, shells are often seen as the “holy grail” after a successful exploitation of a
process [12]. A majority of the shellcode (135 as of writing) in the Exploit Database4 aims to execute the
shell process (/bin/sh). Shellcode is typically executed after an attacker has successfully exploited a
vulnerability in a process to further perform malicious interactions with the underlying system , due to
its broad powers and flexibility [12].

9.2.1. Shell process execution
Shell processes are supported in amajority of the programming languages and so do Swift andObjective-
C, OS X primary programming languages. Some tasks a programmer is trying to achieve may not be
possible using library functions and API’s provided by either the language itself or external libraries. In
these cases, the language provides an API to interact with system components (in this case the shell)
that allows for less restrictions and more flexibility. Listing 9.1 and 9.2 show a typical code snippet in
Apple’s programming language Swift and the C programming language respectively used to interact
with a shell process.

1 shell("ls -ail")

func shell(args: String...) -> Int32 {
let task = NSTask()

5 task.launchPath = "/bin/sh"
task.arguments = args
task.launch()
task.waitUntilExit()
return task.terminationStatus

10 }

Listing 9.1: Hooking a system call function

The code sample in Listing 9.1 uses NSTask(), a standard Objective-C and Swift API call. NSTask()
can run another program as a subprocess and canmonitor that program’s execution. An NSTask object
creates a separate executable entity that does not share memory space with the process that creates

4https://www.exploit-db.com/

https://www.exploit-db.com/
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it5. NSTask() uses the posix_spawn system call to execute a process6.

A shell process by default uses the execv C library function (wrapper for system call SYS_execve to
execute commands7.

1 int main () {
char command[50];
strcpy(command , "ls -ali");
system(command);

5 return 0;
}

Listing 9.2: Hooking a system call function

In C, the API call system() can be used to pass commands to a shell process. On OS X, system() is
implemented in the LibC library and uses the posix_spawn system call8.

Listing 9.3 and 9.4 show the system call trace of samples 9.1 and 9.2 respectively. The exact same pat-
tern as in themalware samples can be observed. Both shell executing processes use the SYS_posix_spawn
system call to execute a shell process (see /bin/sh in line 2). The shell process then uses the
SYS_execve to execute the command.

1 0:20:38,66317; ExecuteShell_Swift; 701; 1; SYS_posix_spawn; 0;
0:20:38,68877; /bin/sh; 701; 1; NEW_PROCESS; 0;
0:23:18,8105; sh; 777; 776; SYS_execve; 1;
0:23:18,42350; /bin/ls; 777; 776; NEW_PROCESS; 1;
Listing 9.3: Swift program “ExecuteShell_Swift” executes binary ls.

1 0:23:17,487526; ExecuteShell_C; 776; 657; SYS_posix_spawn; 1;
0:23:17,506033; /bin/sh; 776; 657; NEW_PROCESS; 1;
Listing 9.4: C program “ExecuteShell_C” executes sh.

9.2.2. Static detection of shell usage in malware
Currently, the behaviour analysis process conducted in this research to extract system call usage in-
volves some manual operations. The malware has to be copied into the virtual machine, the kernel
extension has to be loaded and the malware sample has to be executed. After the malware sample
has finished executing the virtual machine has to be rolled back to it initial state and the system call
traces log created on the host has to be analysed for malicious patterns.

Even though this process may be more automated, it would be interesting to know if the patterns can
be found using static analysis of the binary sample. Many of the infrastructure is already in place at AV
companies and as such, it would not involve the setup of an isolated behavioural detection environment
as set-up in this research.

To investigate in the static detection possibility, all the malware samples analysed in this research were
also statically analysed using the Hopper9 disassembler. Consulting Maarten Boone (reverse engineer
and malware analyst at Fox-IT) led to the search for shell paths (e.g. /bin/sh and /bin/bash) in the
__TEXT segment of the binary (also shown in Figure 5.1. In this __TEXT segment, the strings used
in the binary are stored. As shown in the previous section, a shell execution consists of an execve()
or posix_spawn() call where one argument is a string containing the path of the executable to be
launched. This string is included in the __TEXT segment of the binary. Searching for the system call
execution in the binary is more difficult, but not impossible. Knowledge about the instructions used in
the system call prologue is needed in order to find the SYS_execve and SYS_posix_spawn system call
5https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSTask_Class/
6https://github.com/apple/swift-corelibs-foundation/blob/master/Foundation/NSTask.swift
7https://opensource.apple.com/source/bash/bash-29/bash/execute_cmd.c
8https://opensource.apple.com/source/Libc/Libc-763.11/stdlib/system-fbsd.c
9http://www.hopperapp.com/

https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSTask_Class/
https://github.com/apple/swift-corelibs-foundation/blob/master/Foundation/NSTask.swift
https://opensource.apple.com/source/bash/bash-29/bash/execute_cmd.c
https://opensource.apple.com/source/Libc/Libc-763.11/stdlib/system-fbsd.c
http://www.hopperapp.com/
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executions. In several malware samples the /bin/sh and /bin/bash paths are indeed included in the
__TEXT segment.

However, in many cases the malware samples were packed using packers. Packers obfuscate the
binary in order to make it harder for reverse engineers and malware analysts to analyse the binary
sample. Many of the samples analysed used the infamous UPX10 packer to obfuscate the binary
sample. As such, it is not possible to find plain strings in the __TEXT segment anymore. Table 9.1
shows obfuscated and non-obfuscated samples.

no. Name Packer Shell strings
1 OSX.Flashback ? ?
2 OSX.Crisis.I Custom No
3 OSX.FakeCodec Custom No
4 OSX.LaoShu.A ? ?
5 OSX.CoinThief.A No Yes
6 OSX.Xslcmd No Yes
7 OSX.Wirelurker No Yes
8 OSX.Janicab No Yes
9 OSX.iWorm UPX No
10 OSX.Kitmos.A No Yes
11 OSX.Genieo!gen1 No Yes
12 OSX.Malcol ? ?
13 OSX.Downloader No Yes
14 OSX.Jahlav.A Custom No
15 OSX.InstallCore Custom No
16 OSX.EliteKeylogger No Yes
17 OSX.OceanLotus XOR11 No
18 OSX.Crisis.II Custom No
19 OSX.KeRanger.A No Yes
20 OSX.Pirrit ? ?
21 OSX.Bundlore UPX No

Table 9.1: Lists all occurrences of packers in analysed malware samples and visible shell paths in the .TEXT segment. A
question mark indicates obfuscation type could not be determined.

9.3. Literature: never before has this behaviour been spotted
Why is this research the first to spot a rather prominent behavioural feature of malware? This is a
question to which I can only guess. First and foremost, few OS X malware has been statically analysed
by the research community, let alone behavioural analysis was performed of this OS specific malware.
I assume it is knownmalware samples use shells to performmalicious tasks on a system, since in some
static analyses also referred to in this thesis, the characterising shell strings pop up in the disassembly.
However, what is not known, is that all OS X malware samples perform executions to shell processes.
In addition, I assume that it is underestimated how few benign processes make use of shell processes.
This research has shown that only applications with a cross-platform compatibility requirement rely on
shell processes to connect to its core (cross-platform) components.

9.4. Bypasses and alternatives
Comprehending the possible ways of malware to go is difficult and remains the main reason why mal-
ware continues to be a major threat. If the possibility for malware to use shell processes would be
subducted, none of the tested samples would work anymore. Removing the ability for malware to

10http://upx.sourceforge.net

http://upx.sourceforge.net
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spawn shell processes would pose a serious obstruction for malware to perform its malicious tasks.
Malware on OS Xwould have to “step up its game” to still be able to performmalicious behaviour.

The Sandbox API’s provided by Apple’s OS X development framework, as explained in Section 9.1,
are restrictive and limiting to ensure security. Apple’s “App Sandbox Design Guide”12 explains the very
few system resources available to sandboxed processes. root privileges are absent for sandboxed
processes, which form additional restrictions for (sandboxed)malware. The intentions of the restrictions
and limitations of sandboxed processes are mainly to improve the security of the system2. Current
malware as observed in this thesis is hopeless in a sandboxed environment.

However, processes on OS X are not required to be sandboxed, yet. OS X provides a rich set of
API’s to “un-sandboxed” processes, which can be used to mimic some of the shell functionality. The
next section addresses into more detail which types of functionality malware typically needs to perform
malicious tasks and which functionality is still available to malware using API’s, in case a shell process
cannot be used.

9.4.1. Malware without a shell, using purely API calls
Section 3.1 described a variety of malware samples with very different malicious functionality. Based
on the functionality analysis performed by malware, described in Section 3.1, the following basic (ma-
licious) operations can be extracted:

1. Process execution
As seen throughout this thesis, malware specifically performsmany process executions. Malware
contains many different processes (as shown in Chapter 7), each performing its own functionality.

2. File system manipulations
Malware typically stores files into specific file locations on the file system.

3. Remote shell
Backdoor malware provides a remote shell to the attacker to access victim machine.

4. Collecting system information
Spyware often gathers system, hardware and application information.

5. LaunchDaemons and cronjob
Malware obtaining persistency on a system mainly uses LaunchDaemons or cronjobs to be au-
tomatically or periodically started, without user interaction.

6. Modifying file attributes
Many malware samples change the attributes of the files they store onto the system, ensuring the
files and binary own the proper rights to perform their malicious tasks. This is typically achieved
by setting file attributes ‘owner’ and ‘group’, indicating the privileges of the file or binary.

7. Loading a kernel extension
Some malware samples consist of a kernel extension. This kernel extension has to be loaded
into the kernel in order to perform tasks.

As explained in Chapters 6, 7 and 8, every OS X malware sample obtained for this thesis relied on a
shell process to achieve the asks described above. In the listing below, the feasibility of using standard
OS X API’s provided by Apple to achieve such a malicious task, is evaluated.

1. Process execution
On demand process execution is not possible using purely API’s. NSTask() is typically used
to execute a process, but as explained in Section 9.2, NSTask relies on a shell process. XPC
services could be used, but the process would be sandboxed2. Processes started by the oper-
ating system (started by launchd) are executed with root privileges13. This would be possible by
creating a LaunchDaemon, but would only allow the process to start on system start.

12https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/
AboutAppSandbox/AboutAppSandbox.html

13https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/
AccessControl.html

https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/AccessControl.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Articles/AccessControl.html
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2. File system manipulations
The OS X NSFileManager14 API’s allows for file system manipulations. However, no method
was found to achieve modifications in system directories. Privileged processes may be able to
achieve privileged file system operations using an OS X framework named “Authorization Ser-
vices”15. However, important API’s in this framework required to execute with system privileges,
are deprecated and will likely be removed by Apple. Another method to perform privileged file
system modifications is using SMJobBless16.

3. Remote shell
A remote shell process is not possible as the execution of a shell process would be detected by
the defined rules in section .

4. Collecting system information
Collecting information about the current process is possible using the NSProcessInfo class. Var-
ious API’s are available to obtain unique ID’s for devices, an example is the NSUUID class17.

5. LaunchDaemons and cronjob
Creating LaunchDaemons is possible by storing a proper plist file into the LaunchDaemons sys-
tem directory. On startup, OS X will pick up the plist file and launch the corresponding binary18.
The plist file can be stored using NSFileManager, as described above. There is no API available
to set cronjobs18.

6. Modifying file attributes
Modifying file attributes is possible using the NSFileManager API14.

7. Loading a kernel extension
There is no API available to load a kernel extension using kextload. However, using NSFileManager
(only as a privileged process), the kernel extension binary can be stored into the kernel extension
directory and automatically be launched on system start.

It is shown many of the functionality malware currently uses a shell process for, is also available using
the standard OS X API’s. However, the pure API variant is more constrained, especially in the execu-
tion of processes, where it is dependent on startup of the system. When the malware has obtained root
privileges, it can achieve virtually unrestrictive file system modifications. Arguably, one could ques-
tion the effectiveness of any protection mechanism when malware has obtained root privileges, since
the highest possible rights allow for direct attacks by the malware against the protection mechanisms
themselves.

While it is still possible to perform malicious behaviour on a system when a shell process is not avail-
able, malware authors will have to revise and seriously improve the current architecture of their mal-
ware. Some functionality such as a backdoor remote shell, would become impossible to achieve for
malware.

9.5. Conclusions
This chapter elaborates on important concepts touched upon in this Master thesis. Understanding the
possibilities and restrictions of process execution mechanisms in OS X is important in the study of
blocking malware. Shown in previous chapters is the dependency of malware on execution of shell
processes. Sandboxed technologies (XPC Services) in OS X prevent processes from doing harm
to the underlying system by imposing serious restrictions, including the ability to execute privileged
processes. App Store applications have to comply with these restrictions, which is why their FPR is
0%.
14https://developer.apple.com/library/mac/documentation/Cocoa/Reference/Foundation/Classes/NSFileManager_

Class/
15https://developer.apple.com/library/mac/documentation/Security/Conceptual/authorization_concepts/

01introduction/introduction.html//apple_ref/doc/uid/TP30000995-CH204-TP1
16https://developer.apple.com/reference/servicemanagement/1431078-smjobbless
17https://developer.apple.com/library/mac/documentation/Foundation/Reference/NSUUID_Class/
18https://developer.apple.com/library/prerelease/content/documentation/MacOSX/Conceptual/BPSystemStartup/

Chapters/ScheduledJobs.html
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Shells processes are extremely powerful due to their flexibility and broad interactivity with the underlying
system. Almost every programming language supports usage of shells processes. As described in
Section 3.1.7, a majority of the malware on OS X is still fairly unsophisticated and unprofessional. The
extraordinary use of shell scripts confirm this statement.
When the binary of a malware sample is not obfuscated, static analysis of the binary (using reverse
engineering) indicates the usage of a shell process, based on the strings used in the binary. This
technique can be used when gathering system call traces from amalware sample is not possible.
This chapter explains malware in its current form is catastrophically crippled to the extend it is not able
to function anymore when a shell process is not available. Some of the functionalities provided by
shell processes can be substituted using the standard OS X API’s and libraries. However, this poses
restrictions and forces malware authors to seriously revise their malware architecture.





10
Conclusion

This final chapter finalises this Master thesis by answering the research questions stated in Section
2.3.1 and presents the results of the conducted research. Subsequently, the potential future work
continuing on this research is presented.

10.1. Reflection of the research process

This research started by addressing the emerging malware threats on Macs. An ongoing growth of
popularity of Apple’s Macintosh computers is observed and malware creators benefit from the success
of the Mac. Over the last few years, more Mac specific malware is observed and due to the many
obfuscation techniques of malware samples, traditional anti-virus systems (AV) more often result to be
ineffective. To improve the detection rates and overcome the obfuscation techniques used by malware,
research now focusses on behavioural detection of malware. This Master thesis follows the trend by
defining the following research question:

Is it possible to detect malicious behaviour performed bymalware, based onmonitoring system
calls?

This work shows the answer to that research question is: Yes.

System calls are low level requests for functionality and services from the operating system, per-
formed by processes running on the operating system. Many of these requests are performed by
processes and it is widely assumed monitoring the system call traces of processes reveals process
behaviour.

In order to create system call traces of all processes on the system, a kernel module was developed.
This kernel module is required to bypass kernel security restrictions enforced by Apple in order to
achieve hooking of a core component of the kernel; system calls. While this kernel module is loaded
into the kernel, system call traces are constructed by logging system call invocation. In the subsequent
phases of this research, the system call traces of both malware and benign processes are analysed
in order to find anomalies and system call patterns defining malicious behaviour. Over 20 different
malware samples and 90 different benign Mac applications were analysed. Chapters 6 and 7 explain
the heat map and manual sequential analysis of the system call traces, respectively. The heat map
analysis visualised system calls very rarely used by showing prominent colours in the heat map. The
manual sequential analysis involved a thorough investigation for the recurring patterns and defining the
malicious behaviour in terms of system calls. Subsequently, Chapter 8 described the extracted patterns
and anomalies from the malicious datasets. These patterns can be used to detect malware.
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10.2. Results
This research shows that system call traces are viable research material in deriving new methods
to detect and prevent malware. The system call traces collected after monitoring processes form a
viable perspective to describe behaviour of processes, including malicious processes. This research
also shows that heat map visualisations of the system call traces form an effective analysis technique
to gain insights in the behaviour of processes and form a technique that can be recurrently used to
extract more patterns from the system call traces.

The research question of this Master thesis can be answered positively and motivated by multiple
patterns that define malicious behaviour on OS X, extracted from the system call traces:

1. Execute system call usage by non-OS X process (pattern 1)
A process other than xpcproxy or launchd performing a SYS_posix_spawn or SYS_execve system
calls. Pattern 2 refines this pattern to a more precise malicious pattern.

2. Execution of shell processes (pattern 2)
A SYS_execve or SYS_posix_spawn system call executing a shell process (i.e.: /bin/bash, /bin/sh,
/bin/python), is a generic malicious pattern. This pattern is used to achieve a 100% detection
rate with a 0% — 20% False Positive Rate.

3. Interaction with the OS X launchctl process (pattern 3)
A shell process (i.e.: /bin/bash, /bin/sh, /bin/python) launching the /bin/launchctl or
/usr/bin/crontab binary, is a malicious pattern to gain persistency on the system using Launch-
Daemons or cronjobs.

4. Ransomware performing write calls touching many files (pattern 4)
A process that is performing SYS_write calls in combination with SYS_read calls touching many
files on the file system in a very short period of time, is considered a malicious pattern shown by
ransomware encrypting files on the file system.

Pattern 2 is used to achieve a detection rate of 100% for all malware currently known on OS X sys-
tems. In order to accurately evaluate the False Positive Rate (FPR) of the detection patterns in real
circumstances, three different user profiles were defined varying from Mac App Store application users
to a developer user profile. Only in case of the developer user profile, the FPR increases to roughly
20%. In the other user profiles, the FPR is 0% or very close to 0%. The FPR is dependent on the
type of applications used. Typical false positives are generated by applications with a cross-platform
compatibility nature. These type of applications use shell processes to interact with cross platform bina-
ries/processes. Examples of these applications are: MATLAB, R, IDE’s and LaTeX compilers.

This research has shown the dependency of OS Xmalware on shell processes. Shell processes create
a universal and generic method to interact with the underlying system. If the ability for processes to
use a shell processes is subverted, current malware would have revise its architecture and become
much more advanced. The implications of the absence of shell processes are discussed in Chapter
9.

10.3. Future research
The heat map and sequential analysis techniques used in this research resulted in extraction of simple,
but very powerful detection patterns for malware on OS X. Obviously, sufficient knowledge regarding
the OS X system internals is required in order to perform an effective analysis using the techniques
in this research. In addition, it is observed that malware for OS X is not yet as advanced as some
Microsoft Windows malware families, also noted by Patrick Wardle [54].

This research and results show that the techniques used are durable and reusable to extract other
patterns from system call traces. As shown above and in Chapter 8, multiple independent malicious
patterns were extracted using the same analysis technique. More of these patterns may be extracted
by analysing the system call traces of malware. In addition to the feature set used in the dataset of
this research, system call function arguments may be of value in successive system call research.
This research focussed in particular on Apple’s OS X operating system, but similar observations may
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be present in system call traces on Microsoft Windows systems. I believe other elementary detection
patterns — such as those provided in this research —may be derived using machine learning methods
on system call traces data set. In a passive fashion, the machine learning algorithm may be trained on
malware system call traces to construct simple patterns which are then used in the implementation of an
anti-virus solution. This method of extracting detection rules for malware would increase the detection
rate of malware, while significantly limiting performance overhead posed by the AV solution.
This research primary focussed on the infection phase of malware. In this stage, the traces of malware
appeared to be most prominent and prevention of this phase provides the most effective protection
against malware infection. System call analysis of the successive phase of malware may provide other
insights in malicious behaviour.
To further evaluate the possibility of evading the detection rules presented in this thesis, a shell inde-
pendent malware sample should be constructed — if possible — and its system call trace should be
analysed. New valuable malicious patterns, which can result in malicious behaviour detection rules,
may be derived from such research.





A
CNS IEEE paper

The results of this Master thesis have been composed in a paper “Behavioural detection and prevention
of malware on Mac OS X” which was submitted to the 2016 IEEE CNS conference in Philadelphia
(http://cns2016.ieee-cns.org/) on 27th of April 2016. The submitted paper has been added to this
thesis document and starts on the next page.
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B
Hooked system calls

Some system calls provide services that are very frequently used by applications. Changing the working
directory for a process, for example, is such a very extensively used system call. Some system calls
are called more than 500 times per second. This generates an overwhelming amount of logging data,
and the kernel will intervene the logging of the kernel extension, which will result in logged behaviour
gabs in the dataset. To prevent gabs, some of these system calls are not hooked/logged. Table B.1
provides an overview of the calls that are not hooked.

Table B.1: Table of system calls hooked status.

No. System call Hooked No. System call Hooked
0 SYS_syscall NO 263 SYS_shmctl YES
1 SYS_exit NO 264 SYS_shmdt YES
2 SYS_fork NO 265 SYS_shmget YES
3 SYS_read YES 266 SYS_shm_open YES
4 SYS_write YES 267 SYS_shm_unlink YES
5 SYS_open YES 268 SYS_sem_open NO
6 SYS_close NO 269 SYS_sem_close YES
7 SYS_wait4 NO 270 SYS_sem_unlink YES
9 SYS_link YES 271 SYS_sem_wait YES
10 SYS_unlink YES 272 SYS_sem_trywait YES
12 SYS_chdir NO 273 SYS_sem_post YES
13 SYS_fchdir NO 274 SYS_sem_getvalue NO
14 SYS_mknod YES 275 SYS_sem_init YES
15 SYS_chmod YES 276 SYS_sem_destroy YES
16 SYS_chown YES 277 SYS_open_extended YES
18 SYS_getfsstat YES 278 SYS_umask_extended YES
20 SYS_getpid NO 279 SYS_stat_extended YES
23 SYS_setuid YES 280 SYS_lstat_extended YES
24 SYS_getuid NO 281 SYS_fstat_extended YES
25 SYS_geteuid YES 282 SYS_chmod_extended YES
26 SYS_ptrace YES 283 SYS_fchmod_extended YES
27 SYS_recvmsg NO 284 SYS_access_extended YES
28 SYS_sendmsg NO 285 SYS_settid YES
29 SYS_recvfrom NO 286 SYS_gettid NO
30 SYS_accept NO 287 SYS_setsgroups YES
31 SYS_getpeername NO 288 SYS_getsgroups YES
32 SYS_getsockname NO 289 SYS_setwgroups YES
33 SYS_access YES 290 SYS_getwgroups YES
34 SYS_chflags YES 291 SYS_mkfifo_extended YES
35 SYS_fchflags YES 292 SYS_mkdir_extended NO
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36 SYS_sync NO 293 SYS_identitysvc YES
37 SYS_kill NO 294 SYS_shared_region_check... YES
39 SYS_getppid YES 296 SYS_vm_pressure_monitor YES
41 SYS_dup NO 297 SYS_psynch_rw_longrdlock YES
42 SYS_pipe YES 298 SYS_psynch_rw_yieldwrlock YES
43 SYS_getegid YES 299 SYS_psynch_rw_downgrade YES
46 SYS_sigaction YES 300 SYS_psynch_rw_upgrade YES
47 SYS_getgid NO 301 SYS_psynch_mutexwait NO
48 SYS_sigprocmask NO 302 SYS_psynch_mutexdrop NO
49 SYS_getlogin YES 303 SYS_psynch_cvbroad NO
50 SYS_setlogin YES 304 SYS_psynch_cvsignal NO
51 SYS_acct YES 305 SYS_psynch_cvwait NO
52 SYS_sigpending YES 306 SYS_psynch_rw_rdlock NO
53 SYS_sigaltstack NO 307 SYS_psynch_rw_wrlock NO
54 SYS_ioctl YES 308 SYS_psynch_rw_unlock NO
55 SYS_reboot YES 309 SYS_psynch_rw_unlock2 YES
56 SYS_revoke YES 310 SYS_getsid YES
57 SYS_symlink YES 311 SYS_settid_with_pid YES
58 SYS_readlink NO 312 SYS_psynch_cvclrprepost YES
59 SYS_execve YES 313 SYS_aio_fsync YES
60 SYS_umask YES 314 SYS_aio_return YES
61 SYS_chroot YES 315 SYS_aio_suspend YES
65 SYS_msync YES 316 SYS_aio_cancel YES
66 SYS_vfork YES 317 SYS_aio_error YES
73 SYS_munmap NO 318 SYS_aio_read YES
74 SYS_mprotect NO 319 SYS_aio_write YES
75 SYS_madvise NO 320 SYS_lio_listio YES
78 SYS_mincore YES 322 SYS_iopolicysys NO
79 SYS_getgroups YES 323 SYS_process_policy YES
80 SYS_setgroups YES 324 SYS_mlockall YES
81 SYS_getpgrp YES 325 SYS_munlockall YES
82 SYS_setpgid YES 327 SYS_issetugid NO
83 SYS_setitimer NO 328 SYS___pthread_kill YES
85 SYS_swapon YES 329 SYS___pthread_sigmask NO
86 SYS_getitimer YES 330 SYS___sigwait YES
89 SYS_getdtablesize YES 331 SYS___disable_... NO
90 SYS_dup2 YES 332 SYS___pthread_markcancel YES
92 SYS_fcntl NO 333 SYS___pthread_canceled NO
93 SYS_select NO 334 SYS___semwait_signal NO
95 SYS_fsync NO 336 SYS_proc_info NO
96 SYS_setpriority YES 337 SYS_sendfile YES
97 SYS_socket YES 338 SYS_stat64 NO
98 SYS_connect YES 339 SYS_fstat64 NO
100 SYS_getpriority YES 340 SYS_lstat64 NO
104 SYS_bind YES 341 SYS_stat64_extended YES
105 SYS_setsockopt YES 342 SYS_lstat64_extended YES
106 SYS_listen YES 343 SYS_fstat64_extended YES
111 SYS_sigsuspend NO 344 SYS_getdirentries64 NO
116 SYS_gettimeofday NO 345 SYS_statfs64 NO
117 SYS_getrusage NO 346 SYS_fstatfs64 NO
118 SYS_getsockopt YES 347 SYS_getfsstat64 NO
120 SYS_readv YES 348 SYS___pthread_chdir NO
121 SYS_writev YES 349 SYS___pthread_fchdir NO
122 SYS_settimeofday YES 350 SYS_audit YES
123 SYS_fchown YES 351 SYS_auditon YES
124 SYS_fchmod YES 353 SYS_getauid YES
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126 SYS_setreuid YES 354 SYS_setauid YES
127 SYS_setregid YES 357 SYS_getaudit_addr NO
128 SYS_rename YES 358 SYS_setaudit_addr YES
131 SYS_flock YES 359 SYS_auditctl YES
132 SYS_mkfifo YES 360 SYS_bsdthread_create NO
133 SYS_sendto YES 361 SYS_bsdthread_terminate NO
134 SYS_shutdown YES 362 SYS_kqueue NO
135 SYS_socketpair YES 363 SYS_kevent NO
136 SYS_mkdir NO 364 SYS_lchown YES
137 SYS_rmdir YES 365 SYS_stack_snapshot YES
138 SYS_utimes YES 366 SYS_bsdthread_register NO
139 SYS_futimes YES 367 SYS_workq_open NO
140 SYS_adjtime NO 368 SYS_workq_kernreturn NO
142 SYS_gethostuuid YES 369 SYS_kevent64 NO
147 SYS_setsid YES 370 SYS___old_semwait_signal NO
151 SYS_getpgid YES 371 SYS___old_semwait_sig... NO
152 SYS_setprivexec YES 372 SYS_thread_selfid NO
153 SYS_pread NO 373 SYS_ledger NO
154 SYS_pwrite YES 380 SYS___mac_execve YES
155 SYS_nfssvc YES 381 SYS___mac_syscall NO
157 SYS_statfs YES 382 SYS___mac_get_file YES
158 SYS_fstatfs YES 383 SYS___mac_set_file YES
159 SYS_unmount YES 384 SYS___mac_get_link YES
161 SYS_getfh YES 385 SYS___mac_set_link YES
165 SYS_quotactl YES 386 SYS___mac_get_proc YES
167 SYS_mount YES 387 SYS___mac_set_proc YES
169 SYS_csops NO 388 SYS___mac_get_fd YES
170 SYS_csops_audit... NO 389 SYS___mac_set_fd YES
173 SYS_waitid YES 390 SYS___mac_get_pid YES
180 SYS_kdebug_trace YES 391 SYS___mac_get_lcid YES
181 SYS_setgid YES 392 SYS___mac_get_lctx YES
182 SYS_setegid YES 393 SYS___mac_set_lctx YES
183 SYS_seteuid YES 394 SYS_setlcid YES
184 SYS_sigreturn NO 395 SYS_getlcid YES
185 SYS_chud YES 396 SYS_read_nocancel NO
187 SYS_fdatasync YES 397 SYS_write_nocancel NO
188 SYS_stat YES 398 SYS_open_nocancel NO
189 SYS_fstat YES 399 SYS_close_nocancel NO
190 SYS_lstat YES 400 SYS_wait4_nocancel YES
191 SYS_pathconf YES 401 SYS_recvmsg_nocancel YES
192 SYS_fpathconf YES 402 SYS_sendmsg_nocancel YES
194 SYS_getrlimit YES 403 SYS_recvfrom_nocancel YES
195 SYS_setrlimit YES 404 SYS_accept_nocancel YES
196 SYS_getdirentries YES 405 SYS_msync_nocancel YES
197 SYS_mmap NO 406 SYS_fcntl_nocancel NO
199 SYS_lseek NO 407 SYS_select_nocancel YES
200 SYS_truncate YES 408 SYS_fsync_nocancel YES
201 SYS_ftruncate YES 409 SYS_connect_nocancel YES
202 SYS___sysctl YES 410 SYS_sigsuspend_nocancel YES
203 SYS_mlock YES 411 SYS_readv_nocancel YES
204 SYS_munlock YES 412 SYS_writev_nocancel YES
205 SYS_undelete YES 413 SYS_sendto_nocancel YES
216 SYS_open_dprot... NO 414 SYS_pread_nocancel YES
220 SYS_getattrlist NO 415 SYS_pwrite_nocancel YES
221 SYS_setattrlist YES 416 SYS_waitid_nocancel YES
222 SYS_getdirent... YES 417 SYS_poll_nocancel YES
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223 SYS_exchangedata YES 418 SYS_msgsnd_nocancel YES
225 SYS_searchfs YES 419 SYS_msgrcv_nocancel YES
226 SYS_delete YES 420 SYS_sem_wait_nocancel YES
227 SYS_copyfile YES 421 SYS_aio_suspend_nocancel YES
228 SYS_fgetattrlist YES 422 SYS___sigwait_nocancel YES
229 SYS_fsetattrlist YES 423 SYS___semwait_signal... YES
230 SYS_poll YES 424 SYS___mac_mount YES
231 SYS_watchevent YES 425 SYS___mac_get_mount YES
232 SYS_waitevent YES 426 SYS___mac_getfsstat YES
233 SYS_modwatch YES 427 SYS_fsgetpath NO
234 SYS_getxattr NO 428 SYS_audit_session_self YES
235 SYS_fgetxattr YES 429 SYS_audit_session_join YES
236 SYS_setxattr YES 430 SYS_fileport_makeport YES
237 SYS_fsetxattr YES 431 SYS_fileport_makefd YES
238 SYS_removexattr YES 432 SYS_audit_session_port YES
239 SYS_fremovexattr YES 433 SYS_pid_suspend YES
240 SYS_listxattr YES 434 SYS_pid_resume YES
241 SYS_flistxattr YES 438 SYS_shared_region_map... YES
242 SYS_fsctl YES 439 SYS_kas_info YES
243 SYS_initgroups YES 440 SYS_memorystatus_control NO
244 SYS_posix_spawn YES 441 SYS_guarded_open_np NO
245 SYS_ffsctl YES 442 SYS_guarded_close_np NO
247 SYS_nfsclnt YES 443 SYS_guarded_kqueue_np NO
248 SYS_fhopen NO 444 SYS_change_fdguard_np NO
250 SYS_minherit YES 446 SYS_proc_rlimit_control NO
251 SYS_semsys YES 447 SYS_connectx NO
252 SYS_msgsys YES 448 SYS_disconnectx NO
253 SYS_shmsys YES 449 SYS_peeloff NO
254 SYS_semctl YES 450 SYS_socket_delegate NO
255 SYS_semget YES 451 SYS_telemetry NO
256 SYS_semop YES 452 SYS_proc_uuid_policy NO
258 SYS_msgctl YES 453 SYS_memorystatus_get_... NO
259 SYS_msgget YES 454 SYS_system_override NO
260 SYS_msgsnd YES 455 SYS_vfs_purge NO

Note: deprecated system calls are not displayed in Table B.1, hence the missing system calls.
syscalls.master1 provides an overview of all the XNU implemented system calls.

1https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master

https://opensource.apple.com/source/xnu/xnu-1504.3.12/bsd/kern/syscalls.master


C
Workflow of a typical office user

This appendix describes the workflows performed to simulate an office user in the virtualised environ-
ment using a virtual machine, described in Section 5.4.2. Monitoring of the system calls only started
after the kernel extension was loaded into the kernel, using the kextload bash command.

The office user simulation consisted of the following workflow, which does not include installations of
software. The following applications are pre-installed, before the simulation was performed:

• Microsoft Office 2011 for Mac,

• OS X Mail client with an installed mail account,

• OS X Safari web browser, without Adobe Flash and Java Runtime,

• OS X Calendar application,

• OS X Address book/Contacts application.

Workflow
The following actions were performed after the kernel extension was loaded. A Gmail account was
used to provide E-mail, contacts and calendar synchronisation.

1. Safari web browser was started to visit a web page.

2. Mail client was started.

3. E-mail was sent to the account itself (simulating both sending and receiving of e-mail).

4. Several HTTP and HTTPS websites were visited using the browser.

5. An MS Excel file was downloaded from a website.

6. The downloaded MS Excel file was opened and several macro’s were edited to make Excel per-
form new calculations

7. The Excel file was saved to a user owned directory and sent in an e-mail.

8. An MS Word file was created and some text was typed.

9. The MS Word file was saved to a user owned directory.

10. Several more websites were visited.

11. An MS Powerpoint file and several Powerpoint slides were was created.

12. The Powerpoint file was saved to a user owned directory.

13. Another email containing plain text was sent to the account itself.

14. An event was created in the Calendar application for which several email addresses were invited.

15. New contacts were created in the OS X Contacts application.
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16. Several more HTTP and HTTPS websites were visited.
The described workflow is a simplification of the workflow of an office user, but contains all the opera-
tions that such an office user could perform, if the application described would be used.



D
Sample of raw system call log

In Listing D.1, a sample of the log file created by the kernel extension is shown. The sample below
shows the system calls that occur two seconds before the iWorm malware sample (see Section 3.1.3)
is executed. The different features are separated by a ;. The first line of the sample describes the
features. The Time feature represents the uptime of the system, in hh:mm:ss:microsecs format. The
last feature represents the write path or binary path, for a SYS_write system call or process execution
respectively.

1 Time; process name; PID; PPID; syscall; root privs; write/binary path;
0:1:26,831618; xpcproxy; 363; 0; SYS_write; 1; /dev/null
0:1:26,833227; /System/Library/Frameworks/Security.framework/Versions/A/

XPCServices/authorizationhost.xpc/Contents/MacOS/authorizationhost;
363; 0; NEW_PROCESS; 1;

0:1:26,836205; authorizationhos; 363; 1; SYS_shared_region_check_np; 0;
5 0:1:26,839357; authorizationhos; 363; 0; SYS_write; 1; /dev/dtracehelper

0:1:26,840835; authorizationhos; 363; 1; SYS_ioctl; 0;
0:1:26,841960; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,846707; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,848642; authorizationhos; 363; 1; SYS_ptrace; 0;

10 0:1:26,849740; authorizationhos; 363; 1; SYS_setrlimit; 0;
0:1:26,850927; authorizationhos; 363; 1; SYS_getegid; 0;
0:1:26,852150; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,854152; authorizationhos; 363; 1; SYS_access; 0;
0:1:26,855806; authorizationhos; 363; 1; SYS___sysctl; 0;

15 0:1:26,857219; authorizationhos; 363; 1; SYS_access; 0;
0:1:26,859729; authorizationhos; 363; 0; SYS_write; 1; /dev/dtracehelper
0:1:26,861268; authorizationhos; 363; 1; SYS_ioctl; 0;
0:1:26,862974; securityd; 72; 1; SYS___sysctl; 0;
0:1:26,864014; securityd; 72; 1; SYS___sysctl; 0;

20 0:1:26,865187; authorizationhos; 363; 0; SYS_write; 1; /private/var/db/mds
/system/mds.lock

0:1:26,866958; authorizationhos; 363; 1; SYS_shm_open; 0;
0:1:26,868090; authorizationhos; 363; 1; SYS_ftruncate; 0;
0:1:26,869670; authorizationhos; 363; 1; SYS_flock; 0;
0:1:26,873489; authorizationhos; 363; 1; SYS_access; 0;

25 0:1:26,875394; authorizationhos; 363; 1; SYS_shm_open; 0;
0:1:26,878479; authorizationhos; 363; 1; SYS_access; 0;
0:1:26,879684; authorizationhos; 363; 1; SYS_audit_session_join; 0;
0:1:26,883441; authd; 119; 1; SYS_auditon; 0;
0:1:26,884521; authd; 119; 1; SYS_audit; 0;

30 0:1:26,885557; authd; 119; 1; SYS_auditon; 0;
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0:1:26,886628; authd; 119; 1; SYS_audit_session_port; 0;
0:1:26,889150; authorizationhos; 363; 1; SYS_auditon; 0;
0:1:26,890293; authorizationhos; 363; 1; SYS_getauid; 0;
0:1:26,891729; authorizationhos; 363; 1; SYS_getrlimit; 0;

35 0:1:26,895919; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,897280; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,898625; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,900075; authorizationhos; 363; 1; SYS_open; 0; /Library/Managed

Preferences/.GlobalPreferences.plist;
0:1:26,904476; opendirectoryd; 66; 1; SYS___sysctl; 0;

40 0:1:26,906393; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,908022; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,910367; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,911635; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,913521; opendirectoryd; 66; 1; SYS___sysctl; 0;

45 0:1:26,914839; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,916093; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,917367; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,918668; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:26,920113; opendirectoryd; 66; 1; SYS___sysctl; 0;

50 0:1:26,922008; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,923712; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,926088; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,927834; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:26,929299; opendirectoryd; 66; 1; SYS___sysctl; 0;

55 0:1:27,32131; com.apple.Accoun; 208; 1; SYS___sysctl; 0;
0:1:27,32277; opendirectoryd; 66; 1; SYS_unlink; 0;
0:1:27,34536; opendirectoryd; 66; 1; SYS_auditon; 0;
0:1:27,35149; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,35824; opendirectoryd; 66; 1; SYS_audit; 0;

60 0:1:27,38122; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,39914; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,41116; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,42509; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,44225; opendirectoryd; 66; 1; SYS___sysctl; 0;

65 0:1:27,45920; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,48135; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,49752; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,51078; SecurityAgent; 361; 1; SYS_shm_open; 0;
0:1:27,51104; opendirectoryd; 66; 1; SYS___sysctl; 0;

70 0:1:27,52257; SecurityAgent; 361; 1; SYS_shm_open; 0;
0:1:27,55045; com.apple.Accoun; 208; 1; SYS___sysctl; 0;
0:1:27,55370; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,57522; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,58898; opendirectoryd; 66; 1; SYS___sysctl; 0;

75 0:1:27,60161; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,61368; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,62724; authorizationhos; 363; 1; SYS_open; 0; /Library/Managed

Preferences/.GlobalPreferences.plist;
0:1:27,64743; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,65905; authorizationhos; 363; 1; SYS_getegid; 0;

80 0:1:27,67065; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,68222; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,69427; authorizationhos; 363; 1; SYS_setegid; 0;
0:1:27,70561; authorizationhos; 363; 1; SYS_seteuid; 0;
0:1:27,71736; authorizationhos; 363; 1; SYS___sysctl; 0;
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85 0:1:27,73005; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,74214; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,75421; authorizationhos; 363; 1; SYS_seteuid; 0;
0:1:27,76655; authorizationhos; 363; 1; SYS_setegid; 0;
0:1:27,77776; authorizationhos; 363; 1; SYS___sysctl; 0;

90 0:1:27,78991; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,80244; authorizationhos; 363; 1; SYS_getegid; 0;
0:1:27,81493; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,82910; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,84822; opendirectoryd; 66; 1; SYS___sysctl; 0;

95 0:1:27,86523; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,88662; authorizationhos; 363; 1; SYS___sysctl; 0;
0:1:27,90077; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,91654; authorizationhos; 363; 1; SYS_auditon; 0;
0:1:27,92846; authorizationhos; 363; 1; SYS_getegid; 0;

100 0:1:27,94000; authorizationhos; 363; 1; SYS_auditon; 0;
0:1:27,95116; authorizationhos; 363; 1; SYS_audit; 0;
0:1:27,96896; authd; 119; 1; SYS_auditon; 0;
0:1:27,97902; authd; 119; 1; SYS_audit; 0;
0:1:27,98894; authd; 119; 1; SYS_auditon; 0;

105 0:1:27,99864; authd; 119; 1; SYS_audit_session_port; 0;
0:1:27,101886; authorizationhos; 363; 1; SYS_open; 0; /Library/Managed

Preferences/.GlobalPreferences.plist;
0:1:27,104733; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,107599; cfprefsd; 118; 1; SYS_open; 0; /var/root/Library/

Preferences/ByHost/.GlobalPreferences.564DCE16-BB58-FD4B-00A9-
DD4178FC5DAF.plist;

0:1:27,110589; authorizationhos; 363; 1; SYS_shm_open; 0;
110 0:1:27,112502; authd; 119; 1; SYS_auditon; 0;

0:1:27,113479; authd; 119; 1; SYS_audit; 0;
0:1:27,114464; authd; 119; 1; SYS___sysctl; 0;
0:1:27,115568; authd; 119; 1; SYS_auditon; 0;
0:1:27,116623; authd; 119; 1; SYS_audit; 0;

115 0:1:27,117697; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,119075; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,120421; opendirectoryd; 66; 1; SYS___sysctl; 0;
0:1:27,121666; authd; 119; 1; SYS_auditon; 0;
0:1:27,122643; authd; 119; 1; SYS_setaudit_addr; 0;

120 0:1:27,123805; authd; 119; 1; SYS___sysctl; 0;
0:1:27,124905; authd; 119; 1; SYS_auditon; 0;
0:1:27,125912; authd; 119; 1; SYS_audit; 0;
0:1:27,126875; authd; 119; 1; SYS_auditon; 0;
0:1:27,127832; authd; 119; 1; SYS_audit; 0;

125 0:1:27,129349; security_authtra; 358; 357; SYS_dup2; 0;
0:1:27,130900; security_authtra; 358; 357; SYS___sysctl; 0;
0:1:27,132442; security_authtra; 358; 357; SYS_execve; 0;
0:1:27,136163; /Users/m/Desktop/malware/iWorm/Install.app/Contents/MacOS

/0; 358; 0; NEW_PROCESS; 1;
0:1:27,136599; Install; 357; 1; SYS_execve; 0;
Listing D.1: Sample of the raw dataset of system calls of an iWorm infection.





E
Heat maps of malware

Heat maps of malware samples discussed in Section 6.3.3.

Figure E.1: Heat map of the Cointhief dataset, showing processes on y-axis and system calls on the x-axis.
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Figure E.2: Heat map of the Flashback dataset, showing processes on y-axis and system calls on the x-axis.
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Figure E.3: Heat map of the Genieo dataset, showing processes on y-axis and system calls on the x-axis.
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Figure E.4: Heat map of the Jahlav dataset, showing processes on y-axis and system calls on the x-axis.
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Figure E.5: Heat map of the MacInstaller dataset, showing processes on y-axis and system calls on the x-axis.
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Figure E.6: Heat map of the MacVX dataset, showing processes on y-axis and system calls on the x-axis.



F
Analysed benign applications

Table F.1 shows the benign applications that were used by the participants of the survey. A majority of
the applications can be categorised as “Developer application”, marked as “D” in the table. The “App
Store user profile” and “Typical user profile” are “A” and “T” respectively. The application in this table
were tested for false positives, which is shown in column “FP”.

Table F.1: Table of applications tested for false positives.

Name FP Profile Name FP Profile
CodeRunner NO D Sunrise Calendar NO A
Fantastical NO A Kaleidoscope NO D
Messages for WhatsApp NO A Textual NO A
Adium NO T Picasa NO T
GitHub YES D FirefoxNightly NO D
Minecraft NO T CleanMyMac NO T
EasyFind NO A Transmit NO T
MATLAB_R2012b YES D LastPass NO T
TextWrangler NO D Latexian YES D
HandBrake NO T Pixelmator NO A
TextMate NO D AppCleaner NO T
Coda NO D Mathematica NO D
LanScan NO D PyCharm YES D
ForkLift NO D MacDown NO D
WeChat NO A Little Snitch Configuration NO D
Texpad YES D iTerm YES D
TorBrowser YES D BetterZip NO T
Microsoft Remote Desktop NO T BlockBlock NO D
TeXShop YES D Tunnelblick YES T
Google Earth NO A Microsoft Communicator NO T
1Password NO A CMake YES D
Microsoft OneNote NO A Google Drive NO T
Sublime Text NO D GPG Keychain YES D
Flux YES D Steam NO T
Microsoft Outlook NO T AppCleaner NO T
Microsoft Messenger NO T Atom YES D
GitHub Desktop YES D RStudio YES D
OmniGraffle NO A Telegram NO A
Twitter NO A TeamViewer NO T
Microsoft PowerPoint NO T Microsoft Word NO T
Cyberduck NO T Adobe Acrobat Reader DC NO T
R YES D iPhoto NO T
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Sublime Text NO D Transmission NO T
FileZilla NO D uTorrent NO T
VMware Fusion YES D Microsoft Excel NO T
The Unarchiver NO A Slack NO T
Remote Desktop Connection NO T Spotify NO T
GarageBand NO A Numbers NO A
iMovie NO A Firefox NO T
Keynote NO A Pages NO A
VirtualBox NO D Wireshark NO D
Xcode YES D VLC NO T
Dropbox NO T Photos NO A
Google Chrome NO T Skype NO T
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