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ABSTRACT

As Knowledge Based Engineering (KBE) is gaining in popularity in the industry, the models devel-
oped with the technology grow in complexity. The larger KBE models suffer from long (re)generation
times and outgrow the memory resources of standard desktop computer. In the meantime, the
number of cores present in computer’s processors is steadily increasing, and the cloud revolution
has changed the way software is consumed.

Yet, KBE models are not doomed to become slower and heavier as their complexity increase.
They often feature inherent parallel region, which could be exploited to decrease their (re)generation
time. ParaPy, a leading company in KBE technology, sees this opportunity and research possible so-
lutions to distribute and parallelize their models. To this extent, this works proposes a partitioning
strategy for parallelizing KBE models and extends the ParaPy KBE system with high-level parallel
programming constructs to express and exploit parallelism present in their models.

Distributed ParaPy, as is called the extended ParaPy system, provides two new programming
constructs, Persistent Remote Models (PRMs) and Transactional Remote Models (TRMs), that let
developers define child objects in their model that will be instantiated in their own process. The
remote children created with PRMs are long-lived and reproduce the behaviour of traditional ParaPy
children, while introducing the opportunity to parallelize the evaluation of their slots. PRM can be
displayed in ParaPy’s graphical user interface, which also automatically parallelize the generation
of their geometries. TRMs are short-lived remote children, which are instantiated in the objective
to compute a specific set of output slots and destructed once the computation is done. They return
a dependency tracked lightweight version of the remote object containing only the values of the
computed output slots. They provide the same parallelization opportunity than PRMs and add a
solution to control the memory footprint of a model.

In addition to extending the ParaPy KBE system, this work proposes and compares 3 cloud
architectures to run Distributed ParaPy model. These architectures are partially implemented such
that their respective potential can be assessed. The developed constructs and cloud architectures
have been demonstrated on a KBE application from the industry, to evaluate their impact on (re)-
generation time and memory footprint.

The tests operations performed on the application showed that the (re)generation time of KBE
models can be reduced through parallelization. The speedups obtained depend on the type of op-
eration performed on the model, and it is observed that the parallelization efficiency is higher when
running in the cloud than on a desktop computer. Surprisingly, running a parallelized model across
several cloud nodes provided better speedups than running on a single node with the same level of
parallelization despite the communication overhead between nodes.
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1
INTRODUCTION

1.1. MOTIVATIONS
Knowledge Based Engineering (KBE) is a technology used to automate and speed up the design
process of complex products by capturing and re-using engineering knowledge [? ]. KBE originated
in the aerospace industry where it is used to develop detailed aircraft models common to every
discipline involved in the early design stages [? ]. Over time, KBE gained in popularity and escaped
the aerospace niche to find applications in various engineering domains, from the automotive [? ?
] to the shipbuilding industries [? ? ].

KBE models can be used inside Multidisciplinary Design Optimization (MDO) frameworks or
directly accessed by an end user in the form of a KBE application. In MDO, KBE is used to auto-
matically generate a model for each set of iteration parameters, on which the different discipline
analyses will be performed. KBE applications on the other hand define a custom Graphical User In-
terface (GUI) through which the user can visualize the model, tune its configuration and eventually
perform application-specific operations by using the widgets provided by the GUI. Figure 1.1 shows
the GUI of a KBE application.

As KBE gain in popularity, the model developed with the technology grow in complexity. This
increased complexity affects the performance of larger KBE models, resulting in longer (re)generation
times and large memory footprint. As an example, the geometry generation of the model shown in
figure 1.1 takes around 40 seconds on a regular desktop computer. For MDO, the generation time of
the model will directly impact the overall duration of the optimization. For users working with a KBE
application to design a product, the model (re)generation time will impact the GUI’s response time
upon design changes. Beside hampering the user experience and reducing the time left for design
space exploration, delays in an application’s GUI response have been proven to negatively affect the
quality of a design activity and increase the risk of errors in the final design (such as a faulty design
or an unoptimized design) [? ]. As for the memory footprint of large models, it results in some KBE
models outgrowing the memory resources of standard desktop computers.

According to Moore’s law, the number of transistors on a microchip (hence their computing
power) should double every two years. For over 50 years this law held true, yet the pace has slowed
down since the early 2010s, and processor manufacturers have started to focus on multicore pro-
cessors instead of single core ones to increase their chip’s computing power [? ? ] (see figure 1.2).
As a result, parallel computing is becoming one of the main approaches to increasing software per-
formance. Beyond the boundaries of single desktop computers, cloud computing [? ] can provide

1



2 1. INTRODUCTION

Figure 1.1: Example of KBE application developed with the KBE system ParaPy [? ]. The model’s geometry can be visual-
ized in the center panel. The left panels let the user browse the model components and tune its configuration. Buttons
at the top are the widgets that this specific application provides to perform pre-programmed design operations on the
model.

flexible and almost infinite computing resources. It has become an interesting alternative to grid
computing and dedicated High Performance Computing (HPC) clusters to run parallel computing
applications [? ? ].

Figure 1.2: Evolution in the maximum number of cores per processor in the past decades for the two industry leaders.

ParaPy [? ], a software company developing the KBE system of the same name, sees the op-
portunities offered by multicore computers and cloud computing to increase the computational
efficiency of its system. ParaPy is interested in finding a solution to distribute and parallelize its
KBE models to reduce their (re)generation times and developing new computing models to con-
trol their memory footprint. This master thesis work lies within this initiative and will present the
methodology and software development work conducted to improve the computational efficiency
of the ParaPy KBE system in these matters.

Parallel computing has already been researched and integrated in the design workflows involv-
ing KBE models. In MDO, parallelization is used to run simultaneously discipline-specific analyses
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for each iteration, as illustrated by the ParallelGroup constructs of the open source MDO frame-
work openMDAO [? ]. Other works also aimed at parallelizing the generation of meshes [? ], which
is often a required step before performing analyses on KBE models’ geometries. Parallelization of
the analyses themselves, such as solving flow equations, is also an important research topic [? ? ? ].
However, the parallelization of the KBE model’s generation has received less attention.

1.2. RELATED WORKS
Even if KBE technology is gaining popularity in the industry, it has received little attention from
academia and research worlds [? ]. As a result, there is no real literature about the distribution and
parallelization of KBE systems.

An effort to parallelize the generation of KBE models was made by the concurrent KBE system
Gendl [? ]. In this KBE system, the developer can partition a model into child sub-models and run
these sub-models in different local or remote server processes. The generation of the distributed
sub-models can therefore be executed in parallel. An illustration of this partitioning is shown in fig-
ure 1.3. Unfortunately, A single documentation paper was found with some high level instructions
to use this feature [? ]. While this works gives insights on how to partition a KBE system for paral-
lelization, it is difficult to build on it, and it presents some shortcomings. Setting up a distributed
model requires the manual creation and configuration of the server running the instances of the
sub-models, as they cannot be dynamically created by the system. Furthermore, this work doesn’t
provide directions for a possible cloud architecture to run distributed KBE models.

Figure 1.3: Partitioning of a KBE model and parallelization in Gendl.

A similar solution is implemented for Computer Aided Design (CAD) by the commercial and
web-based software system OnShape. In OnShape, users can create and modify CAD parts or sketches
in a so-called Part Studio (PS). A PS is a container in which the user can create and modify CAD parts,
materialized by a tab in the browser [? ]. Each PS runs in its own process called "container" (which
could hint that these so-called containers are actually Docker containers), such that the generation
of the CAD part in each PS can take place in parallel. For example, if a PS contains a sketch, and
multiple other PS references this sketch and build a 3D geometry based on it, then, when the sketch
is modified in the “parent” PS, the geometries in the “dependant” PS are updated in parallel. The
partitioning of the CAD model is therefore comparable to the one of a KBE model in Gendl.

Parallel generation of KBE models has also been implemented at a higher level in optimization
processes. Some optimization algorithms, such as differential evolution, generate multiple set of
design variables at each iteration stage. When the optimization is based on a parametric model,
multiple instances of the model can be instantiated and kept alive to be regenerated in parallel for
each set of design variables. Such solution is implemented by Brouwer in his master thesis [? ].
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Multiple instances of a Flying-V KBE model are kept alive during the whole optimization process
and their geometries are generated in parallel for each set of design variables generated by the dif-
ferential evolution algorithm. At Boeing, Carrere present a similar architecture to parallelize the
generation of a complex parametric propulsion system for multiple sets of design parameters dur-
ing a MDO process [? ]. The model instances are running on cloud based Virtual Machines (VMs).
These efforts outline the need to reduce the model generation time during optimization processes,
however the solutions they propose are ad-hoc and target a specific type of optimization.

1.3. RESEARCH OBJECTIVE AND QUESTIONS
Every KBE system is different and present its own specificities. This statement is particularly true
for ParaPy, being implemented in and on top of Python as opposed to the other KBE systems being
based for the most part on a Lisp-like language [? ]. To this extent, this thesis work will target specif-
ically the ParaPy KBE system. Based on section 1.1, the following research objective is formulated:

Extend the ParaPy SKD with new programming models and constructs to increase
the computational efficiency of KBE models in terms of run time and memory man-
agement.

From this main research objective, several research questions and sub-questions can be de-
rived, which read:

RQ1: Can the (re)generation time of a ParaPy KBE models be reduced through parallelization?

a. What are the main overheads when parallelizing a KBE model?

RQ2: How to distribute a KBE model while preserving its integrity?

a. How to adapt the KBE lazy evaluation, dependency tracking and caching mechanisms
to function across multiple processes?

b. Are there conditions to be verified by a KBE model to be parallelized?

c. To what extent can the complexity arising from parallelization can be hidden to the
model developer?

RQ3: How to leverage cloud computing in the most efficient manner to run distributed KBE mod-
els?

RQ4: Are there opportunities to reduce the memory footprint of a KBE model in a distributed ar-
chitecture?

1.4. DOCUMENT OUTLINE
Chapter 2 will introduce relevant knowledge and jargon required to understand the content of this
work. Chapter 3 will present the methodology followed to answer the posed research objective and
questions. Chapter 4 will cover the implementation of Distributed ParaPy, and its verification will
be presented in chapter 5. The results will be shown and discussed in chapter 6, and eventually
chapter 7 will conclude and propose recommendations for further works.
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BACKGROUND

2.1. PARALLEL COMPUTING
In this section relevant parallel computing notions related to this thesis work will be introduced

2.1.1. PARALLEL PROGRAMMING MODELS

A parallel programming model provides a set of high level abstractions to express in a clear and
simpler way the low level execution of a parallel program. This section will present the main parallel
programming models.

SHARED MEMORY MODEL

In the shared memory model, a program execution is composed of multiple concurrently running
threads within the same process. If the program is run on a multicore machine, threads can run in
parallel. The communication between threads is implicit, as they have access to the same memory
space and therefore the same data. Locking mechanisms have to be implemented to avoid multiple
thread accessing the same data at the same time. The advantage of this model is the absence of
communication overhead between the simultaneously running pieces of the program. Its main dis-
advantage is that a program parallelized using a shared memory model is bound to a single machine
and cannot be scaled over a cluster of computers.

MESSAGE PASSING MODEL

In this model, the different pieces of a program running concurrently have their own private mem-
ory space and communicate together through messages. There are two types of messages:

• Asynchronous messages: once the message is sent, the process initiating the communication
can continue to perform operations directly, without waiting for a reply. The communication
is said to be non-blocking.

• Synchronous messages: these messages expect a reply from the recipient. The sending pro-
cess will therefore wait until it receives the reply, the communication is said to be blocking.

Higher level programming abstractions exists on top of the message passing model.

TASK PARALLELISM

This model defines how a program is partitioned to introduce parallelism. In the task parallelism
model, a program is partitioned in a set of different tasks that can be run simultaneously. Tasks have

5
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inputs and outputs. This model can be used on top of the shared memory or the message passing
models.

ACTOR MODEL

In the actor model, a parallel program is viewed as a set of autonomous objects called actors, com-
municating together through message passing [? ]. Autonomous means that each actor possesses
its own thread of execution and state, the latter being private. When an actor receives a message,
it executes the method specified by the message arguments. The original actor definition stated
that actors should only communicate through asynchronous messages, however more developed
communication patterns such as synchronous messages (request/reply) can be implemented [? ].
Notorious actor implementations are the programming language Erlang [? ] and the distributed
programming frameworks Akka [? ] and Orlean [? ] which implement the actor model for Java and
.Net applications respectively.

2.1.2. PARALLEL COMPUTING IN PYTHON

As ParaPy KBE system is implemented in and on-top of Python, this paragraph will introduce the
main characteristics of Python regarding parallel computing. A notable feature of Python is the
Global Interpreter Lock (GIL). The GIL is a locking mechanism which ensures that a single thread
can control Python’s interpreter at a time. The functioning of the GIL won’t be detailed here, but one
of its consequence is that parallelism is not possible in Python using threads. The preferred way to
introduce parallelism in Python is to distribute the algorithm execution into multiple processes.

2.1.3. AMDAHL’S LAW

For a given application, the speedup achieved by introducing parallelization does not only depend
on the number of processors used. Amdahl [? ] stated that this speedup is limited by the non-
parallelizable portion of the code, also called the sequential portion of the code. Hill & Marty [?
] provide a synthetic expression of the Amdahl’s equation: given a computer program with an in-
finitely parallelizable fraction of code f (and thus a serial fraction of code 1− f ), then the maximum
speedup sN achieved by using N processors is given by:

sN = 1

(1− f )+ f
N

The consequence of this law is that no matter the number of available computing resources, the
speedup obtained from parallelization will always be bound by the serial portion of the code. It is
an important rule to have in mind when considering the result of a parallelization.

2.1.4. NESTED PARALLELIZATION AND OVERSUBSCRIPTION

Nested parallelism happens when a parallel region of a parallelized program triggers another layer
of parallelization as illustrated in figure 2.1. Nested parallelism can result in oversubscription (more
threads and/or processes working in parallel than the number of processors of the machine the
program is running on) and eventually reduce and even invert the gain in computation time ob-
tained from parallelization. In ParaPy, the geometry kernel already uses parallelization to improve
the computational performance of some geometry operations. Adding a new layer of parallelization
in ParaPy could therefore result in oversubscription.

2.2. CLOUD COMPUTING
Cloud computing is the use of Information Technology (IT) resources (such as servers, data storage,
software applications) over the internet in an on-demand and pay-as-you-go fashion. It provides
an often advantageous alternative to owning and maintaining these IT resources on premise. A
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Figure 2.1: Visualization of nested parallelism.

large part of this work will focus on cloud computing and therefore an introduction to its related
technologies is necessary.

2.2.1. CONTAINERIZATION

Containerization is the packaging of an application’s code together with the required libraries, de-
pendencies and configuration files to run the code in isolated user spaces, called containers. Con-
tainerization allows developers to run an application consistently in different infrastructure. Con-
tainers are more lightweight than traditional virtualization technologies such as Virtual Machines
(VMs) since they share the host machine’s operating system, which is the reason containerization
is the preferred way to run applications in the cloud. Many solutions exist to create and run con-
tainerized application but the most popular platform is Docker [? ]. As Docker will be used in this
thesis, its containerization process will be shortly introduced.

There are two important components in Docker: Docker images and Docker containers. A
Docker image is the file containing the containerized application’s code and dependencies. It acts
as a read only template for creating Docker containers. To this extent, Docker containers can be
described as running instances of Docker images. Docker images are composed of layers, each
layer originates from the previous layer and adds new components to the image, such as a new
dependency or codebase. The layering of docker images allow for high reusability and saving in
disk space. For example, if two images include the same first layers then these layers will be stored
only once by the docker engine.

2.2.2. ORCHESTRATION

Orchestration is the use of programming technology to manage the deployment and management
of applications’ workload on a cloud infrastructure. While this first definition can seem vague to
a novice reader, an orchestration tool can be described in the context of this thesis as a system
controlling the lifecycle of the containers composing a distributed cloud application. In this work,
the open-source Kubernetes [? ] orchestration system is used. The following paragraph will provide
a simplified view of the Kubernetes’ components used in this work.

Kubernetes manages the lifecycle of pods on a cluster. A cluster is a collection of physical ma-
chines or VMs managed called nodes and a Pod can be seen as Kubernetes wrapper around a con-
tainer. Pods can be directly created by a user, or indirectly created by another workload resource.
For example, if a Kubernetes cluster is used to run a web application accessible from the internet,
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the cluster can be configured so that Kubernetes scales the number of pods to adjust to the incom-
ing traffic: with increasing traffic Kubernetes will add more pods to cope with demand, and discard
pods if the traffic decreases.



3
PROPOSED METHODOLOGY

This chapter will present the methodology followed in this work to answer the thesis objective and
questions. The first step is to analyze the inner functioning of ParaPy models to identify where
inherent parallelism is located and propose a partitioning strategy and a programming model to
exploit it. In the meantime a solution to control and reduce the memory footprint of parallelized
model will also be defined. Once the strategy to improve the computational efficiency of ParaPy
models is set, development work is carried out to create high level programming constructs that
will be made available to model developers, thus allowing them to use these constructs in order to
express the parallelism present in their own models. Then, three different cloud architectures are
proposed and developed to run distributed models. Each architecture is expected to provide better
performance results than the previous one, to the cost of making more assumptions regarding the
solving of technical challenges induced by the architectural choices. This overall development work
will result in an extension of the ParaPy SKD named Distributed ParaPy. Finally, the improvements
in computational efficiency of Distributed ParaPy compared to the standard implementation are
demonstrated on a use case from the industry, on a multicore desktop machine and in the Cloud for
the three proposed architectures.

The run time improvements resulting from parallelization will be assessed by computing the
speedup obtained by using the developed programming construct when running specific test-cases
on the model. In parallel computing, the speedup sN is defined as the ratio of the run time of the
serial algorithm to the run time of the parallel algorithm, using N processors. Let TS be the run time
of the serial algorithm and TN the run time of the parallel algorithm on N processors, then

sN = TS

TN

Another relevant metric is the parallelization efficiency η, defined as the ratio between the speedup
and the number of processors:

η= sN

N

The assessment method for the memory efficiency is more ad-hoc and will be introduced in section
3.4.2

Section 3.1 and 3.2 will present the chosen partitioning strategy and programming models. Sec-
tion 3.3 will introduce the three different architectures to gradually exploit the resources offered by

9
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1 class Aircraft (Base ):
2
3 ...
4
5 @Part
6 def wing(self ):
7 return Wing( airfoil =self.airfoil ,
8 span=self. wing_span )
9

10 @Part
11 def tailplane (self ):
12 return Tail( airfoil =self.airfoil ,
13 span=self. tail_span )
14
15 @Part
16 def engine (self ):
17 return Engine ( position =self.wing. engine_position )

Figure 3.1: Example of children defining parallel regions in a KBE model.

cloud computing to run distributed ParaPy application and their corresponding assumptions. Even-
tually, section 3.4 will present the ParaPy KBE application that will serve as a use case, and which
specific test-cases will be performed to assess the performance improvements.

3.1. PARTITIONING STRATEGY
Similarly to Gendl [? ] this work proposes to partition ParaPy KBE models across parent-child rela-
tions to parallelize the evaluation of slots in sibling children objects. Indeed, ParaPy models often
features inherent parallel regions encompassed inside sibling children of a parent object, if the chil-
dren do not present interdependencies (a slot of one child depending on the slot of another child).
Such configuration is frequent in KBE models, and is often implemented by repetitive structural ele-
ments in models representing the geometric structure of a product, as illustrated by the wing model
of figure 1.3. The other advantage of partitioning the models across children is that on top of often
defining parallel regions they also make the identification of such parallel regions relatively easy to
model developers, especially when the children are defined in Sequences. In order to identify these
parallel regions, the model developer only has to verify that the defined inputs of the children do
not depend on slots from the others. An example is given in figure 3.1. Once instantiated, the wing
and the tailplane children will define regions with no interdependencies where parallelism could
be exploited. This is not the case for the wing and engine children.

3.2. PROGRAMMING MODELS
In order to exploit the parallel regions introduced above two constructs have been developed, namely
Persistent Remote Model (PRM) and Transactional Remote Model (TRM). These two constructs will
sometime be referred to by the umbrella term Remote Model (RM) in the rest of this document.
Note that the Model of the RMs naming refers to KBE models and not programming model. PRMs
and TRMs provide two different parallel programming models, respectively actor based and task-
parallel models, to parallelize the evaluation of slots in non-dependent sibling children. The reasons
behind these choices will be detailed in subsequent sections. RMs are children of a ParaPy object
that live in a different process than their parent. They are declared with a customized @Part dec-
orator, and their definition must follow the same strict syntax than Part slots. When a slot defining
a RM is accessed, the ParaPy class instance that should be returned according to the slot definition
is actually instantiated in a different process, called Worker Process (WP). As explained in section



3.2. PROGRAMMING MODELS 11

2.1.2, multiprocessing is the only way to execute parallel code in Python. The instance is called Re-
mote Object (RO). A proxy object acting as a handle on the RO is returned by the slot in the main
process. Internally, communication between proxies and their corresponding RO happens through
message passing.

The ParaPy syntax to implicitly define Sequences (with the quantify keyword) is compatible
with RMs. If the keyword is used in a RM definition, the Sequence is said to be a remote Sequence,
and its members will be treated as independent RMs, meaning that their respective ROs will be
living in different WPs. Remote Sequences are therefore very handy to parallelize a ParaPy model.

The respective programming models of PRMs and TRMs will be further detailed in section 3.2.1.

3.2.1. PERSISTENT REMOTE MODELS

PRMs are the RMs whose behaviour resembles the most the one of traditional child objects. As
their name suggests, the RO associated with a PRM is long-lived, has a state as any object and the
operations it executes are dictated by the messages it receives from its proxy. To this extent the
RO can be defined as an actor. The proxies of PRMs are called Persistent Proxy (PP) and from the
user perspective they behave almost identically as regular ParaPy objects: they feature the same
slots than their associated remote object, which can be accessed using the dot notation. Behind the
scenes, the slot call is transferred to the remote object which evaluates the slot and send back the
returned value. The computational effort is therefore delegated to the WP where the remote object
resides. The value is then cached by the proxy object in the main process. Intermediate slots of
the remote object that get evaluated during the requested slot evaluation are cached by the remote
object but not transferred to the proxy. If the returned value is a ParaPy object, which is the case for
every Part slot but can also be the case for Attribute or Input slots, a custom serialization is sent to
the proxy, which instantiates a proxy object in the main process bound to the newly created remote
object.

PARALLELIZATION API
Using the dot notation to retrieve a slot value on a proxy will block the calling process execution
until the slot is evaluated by the RO and the value sent back to the proxy. To evaluate slots from
PRMs asynchronously, proxy objects have an additional method called eval_async() which takes
as argument the name of the slot to evaluate. When called, it triggers the evaluation of the slot by
the RO and returns directly, such that the calling process can continue performing operations.

An alternative implementation was envisioned using futures. Futures are programming con-
structs first introduced by Baker and Hewitt [? ] to represent the result of an asynchronous oper-
ation. Future objects are directly returned by asynchronous function calls. The future object itself
does not hold the value returned by the call, but can be described as a reference to this value. Typi-
cally, futures implementations include a blocking method to retrieve the value. In Python, the value
can be retrieved using the result() method of Future instances or by using the await syntax.
The main drawback of this approach is the refactoring effort required to make it compatible with
existing ParaPy models and the rest of the ParaPy ecosystem, as values and not future objects are
expected when accessing a slot using the dot notation. This is the reason why the implementation
with the blocking dot notation and eval_async() method was selected.

DEPENDENCY TRACKING AND CACHING

As introduced above, only the accessed slots of a proxy are cached in the main process. Intermediate
slots of the RO on which the slot of interest depends are cached by the RO in the WP. The slots of the
RO are dependency tracked as any ParaPy object.
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1 class Rib(Base ):
2
3 position = Input ()
4
5 @Part
6 def solid(self ):
7 return Box (1, 1, 1,
8 position =self. position )
9

10
11 class Wing(Base ):
12
13 oml = Input ()
14 position = Input ()
15
16 @Part( remote =True)
17 def rib(self ):
18 """ PRM definition """
19 return Rib( position =self. position )
20
21
22 if __name__ == " __main__ ":
23
24 # the runtime is initialized
25 start_distributed ()
26
27 rib = Wing (). rib
28 solid = rib.solid

(a) A PRM definition. (b) View of the objects and processes of interest.

Figure 3.2: A PRM definition (left) and the representation of the created objects (right). The rib proxy and its correspond-
ing RO are respectively called root proxy and root RO.

1 class Foo(Base ):
2
3 @Part( remote =True)
4 def boxes(self ):
5 return Box (1, 1, 1,
6 quantify =2)
7
8
9 if __name__ == " __main__ ":

10
11 # the runtime is initialized
12 start_distributed ()
13
14 foo = Foo ()
15 foo.boxes [0]. eval_async (" volume ")
16 foo.boxes [1]. eval_async (" volume ")
17 vol1 = foo.boxes [0]. volume
18 vol2 = foo.boxes [2]. volume

1 class Foo(Base ):
2
3 @Part( remote =True)
4 def boxes(self ):
5 return Box (1, 1, 1,
6 quantify =2)
7
8
9 if __name__ == " __main__ ":

10
11 # the runtime is initialized
12 start_distributed ()
13
14 foo = Foo ()
15 future1 = foo.boxes [0]. volume
16 future2 = foo.boxes [1]. volume
17 vol1 = await future1
18 vol2 = await future2

Figure 3.3: Parallel evaluation of two PRMs using the current implementation (left) and the alternative implementation
using futures (right). In both implementations, lines 15 and 16 trigger the evaluation of the volume slot of each ROs,
which are then evaluated in parallel and retrieved lines 17 and 18.
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To preserve the model integrity, the dependency tracking mechanism of ParaPy has been ex-
tended to operate in a distributed environment such that slot dependencies can span across pro-
cesses. When an Input of a PRM gets invalidated in the main process, the information is dispatched
to the RO which performs the invalidation and informs back its associated proxy of the slots to in-
validate.

PRMS AND GUI
ParaPy features a GUI to display and interact with KBE models. GUIs are particularly important
in parametric studies since they provide near instant feedback to the user over design parameters
changes. They offer a convenient way to explore the design space and help stirring the creative
thinking of engineers. To this extent, PRMs have been implemented in such a way that they are fully
compatible with ParaPy’s GUI: they can be visualized and inspected as any regular ParaPy object.

In addition to being able to visualize and inspect PRMs as any regular objects, the GUI has
been refactored to automatically take advantage of PRMs present in the model to evaluate their
geometries in parallel when displaying them. A GUI centered KBE application can therefore benefit
from parallelization speedups solely by declaring PRMs (if applicable), without the need to use the
parallelization API inside the KBE model definition.

3.2.2. TRANSACTIONAL REMOTE MODELS

PRMs are interesting when several design iterations will be performed involving the RO. However
KBE models can also be used in a more linear fashion, especially in MDO. In some use cases, keeping
the ROs alive in the WP once the slots of interest have been evaluated and accessed in the MP is
not useful as no other iterations will be performed with different inputs, or memory space needs
to be reclaimed to perform other evaluations in the model. For these use case, TRMs have been
introduced. The main concept of TRM is that their RO is instantiated to compute a specific subset
of its slots called outputs and once they are evaluated and fetched back in the MP, the RO is deleted
from the WP. In that way, the evaluation of the RO and its outputs is similar to the one of a task. The
proxy object of TRMs provides a dependency tracked reduced view of the RO, constituted of only
its Inputs and outputs slots and the dependency relations between them. If an output of the proxy
gets invalidated, re-accessing it with the dot notation will trigger the creation of a new RO in the
WP to compute its value. A TRM definition is shown in figure 3.4. The only difference with a PRM
definition is the outputs argument of the @Part decorator. The output names must correspond to
Attribute slots of the RO. The following subsections will provide more details about the behaviour
of TRMs.

PARALLELIZATION API
The evaluation of a remote object’s outputs can be triggered asynchronously using the proxy’s eval_async()
method. This method is different from the PRM’s one since it doesn’t take any argument. Indeed,
the developer does not choose which outputs get evaluated: they all get evaluated. If the RO has
already been deleted due to a previous fetch of its outputs AND the proxy has invalidated outputs,
a new RO will be instantiated to evaluate the invalidated outputs.

DEPENDENCY TRACKING

The dependencies between the inputs and outputs of the RO are traced in the remote object and
returned when the outputs are fetched. This means that when an Input of proxy is invalidated in
the main process, only its dependent outputs get invalidated, and the other output slots can still be
accessed without re-instantiating a new RO.



14 3. PROPOSED METHODOLOGY

1 class Wing(Base ):
2 ...
3
4 @Part( remote =True ,
5 outputs =[" weight ", "shape"])
6 def ribs(self ):
7 Rib( quantify =3,
8 oml=self.oml
9 offset =self. offset )

10
11
12 if __name__ == " __main__ ":
13 distributed .start ()
14
15 wing = Wing ()
16 for rib in wing.ribs:
17 rib. eval_async ()
18 for rib in wing.ribs:
19 rib. weight
20 rib.shape

Figure 3.4: TRMs declaration and use.

Figure 3.5: Illustration of the proxy’s and RO’s flow when using TRMs. Black arrows read "depends on". Sharp angled slots
represent Input slots, and rounded ones Attributes. Red are invalidated slots and green slots that are evaluated.

EXPLAINING WITH AN EXAMPLE

As TRMs provide a new and unfamiliar behaviour to KBE developers, an example of its use will
be detailed. When a TRM is accessed for the first time in the MP, its proxy object is returned and
a first RO is instantiated in a WP. This corresponds to line 16 of figure 3.4 and stage 1 of figure
3.5. The eval_async() method can then be called on the proxy object to evaluate its output slots
asynchronously (line 17 and stage 2). Then the outputs can be fetched using the dot notation.
Note the all the outputs and the dependencies between outputs and Inputs are fetched and the RO
is deleted the first time the dot notation is used on an output slot (line 19 and stage 3). The outputs
value that are not accessed are cached in the proxy. Therefore, line 20 , the returned shape value
comes from the cache.

3.3. CLOUD
In the last decade, cloud computing has contributed to the rise of Software-as-a-Service (SaaS) [? ].
SaaS is a licensing model for software developers in which the software is hosted on a cloud plat-
form and made accessible through web technologies to the customer, instead of being installed and
run on the customer’s computer. KBE applications also follow this trend, as it makes it easier to
share and use them. ParaPy offers its own SaaS platform, the ParaPy cloud, to run ParaPy KBE ap-
plications in the cloud and access them through a web-based GUI. ParaPy cloud is constituted of
a cluster, where the applications are run, and an interface to manage users and applications called
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ParaPy Hub [? ]. A reflection is therefore required on how to leverage cloud technologies to run dis-
tributed ParaPy applications in the most efficient manner. To this extent, this work proposes three
cloud architectures to run distributed ParaPy applications, discusses their advantages and techni-
cal challenges and eventually compares their performances. These architectures are grouped in two
different approaches to apprehend cloud computing: the single-user and multi-user approaches.

3.3.1. THE SINGLE-USER APPROACH

In this approach, cloud computing is solely considered as a way to access a "bigger machine" - a
machine with more computing power than a regular desktop - to run distributed ParaPy applica-
tions. The corresponding architecture is very basic: the distributed application is run on a single
(large) VM in the cluster. The VM’s size is chosen as a trade off between computational power and
cost by the user. The more cores the VM will have, the more the application can be parallelized (in-
creased number of WPs) but also the more the VM will cost. The chosen VM is added to the cluster
when an instance of the application is started and removed after use. The main advantage of this
architecture is that all the WPs of the distributed application will run on the same machine, thus
the communication overhead is minimum. This approach also has shortcomings. Acquiring a new
VM usually takes time (around 5 minutes), and this overhead will be present each time a user wants
to run an application. This architecture also inhibits one of the most important feature of cloud
computing: elasticity. The number of RMs present in an application can vary while the application
is running, and therefore so can the number of WPs. However, the size of the VM cannot, which can
result in under or overused machine.

3.3.2. THE MULTI-USER APPROACH

The objective of this approach is to leverage the cloud in a more efficient manner by sharing infras-
tructure between different distributed applications running in the ParaPy cloud. Before continuing,
a distinction will be made between two terms that will be used in the next discussion: applica-
tions and application instances. A KBE application is the application definition (viz. the applica-
tion code), for example an application "Aircraft Designer" for designing aircrafts. An application
instance is a running instance of a particular application, and multiple instances of the same appli-
cation can be running simultaneously within ParaPy’s cloud.

Concretely, sharing infrastructure means that WPs from distinct application instances could be
allocated on any node in the cluster, as illustrated by figure 3.6.

Figure 3.6: The multi-user approach. Colours represent different application instances.

This approach would solve the node (VM) creation overhead and elasticity issues of the single-
user approach in the following manners:

• Node creation overhead: as applications are distributed over multiple nodes, the cluster can
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be constituted of similar, smaller sized nodes. The cluster can be configured to always have
spare resources (nodes are added if the cluster starts to become full, and removed as the uti-
lization decreases) to directly accommodate new application instances. As any application
can be instantiated on the spare resources, this mitigates the cost of always maintaining such
spare resources.

• Elasticity: the cluster can be scaled up and down to automatically adapt for the total workload.
This allows to save up costs for applications for which the number of RM varies during their
lifetime.

The foreseen downside of this approach is the communication overhead. In contrast with the
precedent architecture, messages will transit through the cluster’s network instead of being passed
between processes running on the same machine.

The complete cluster infrastructure and configuration to run multiple distributed ParaPy appli-
cations and scale the cluster to always maintain spare resources as described above is out of scope
for this thesis and won’t be implemented. This work will focus on evaluating the parallel speedups
that would be achieved on such an infrastructure to assess its potential. For this matter, two cloud
architectures will be proposed to spawn WPs from a distributed ParaPy application across a shared
cluster. When evaluating each architecture, the assumption will be made that the cluster always has
enough resources (nodes) to accommodate for the number of WPs the application will create.

TWO ARCHITECTURES FOR THE MULTI-USER APPROACH

This approach introduces some challenges. ParaPy applications are packaged into Docker images
in order to be run in the cloud. A consequence from the RM’s implementation, which will be ex-
plained in chapter 4, is that WPs created by an application instance must run inside a container of
the application’s image. Each time a WP of an application is allocated to a new node, the image
of this specific application has to be pulled to the node, which could result in an important over-
head during the WP creation. However, the largest layer in applications’ images is the base ParaPy
layer, common to every application images. For example, the image of the use-case RH applica-
tion weights 2.6GB, in which the ParaPy base layer counts for 2.2GB, thus the application specific
layer is only 400MB thin. Docker is smart enough to only pull the layers that are different between
images. The assumption is made that the overhead derived from image pulling can be resolved or
optimized, and that the solving of this challenge is out of scope for the current work.

Figure 3.7: Pulling a Docker image on a node and creating a Pod from it. The yellow layer represents the common layer to
all the applications images, the red and blue ones represent the application specific layers. During the tests, pulling the
image (stage 1) is assumed to be instantaneous.

From this assumption, a first architecture can be proposed, called B1. In this architecture, a
Kubernetes Pod is created for each WP. As Kubernetes Pods are wrappers around Docker containers
(see section 2.2.2), this means that each WP is running in its own container.
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In architecture B1, a Kubernetes Pod (and thus a container) has to be created for each WP. Even
if containers are considered as lightweight processes, their creation time introduces an overhead
when spawning new WPs. Ideally, there should be no creation overhead when spawning WPs, be-
sides the creation time of the Python process itself. Therefore, a last architecture is implemented,
B2, where a single Pod is present on all the nodes, and this Pod can contain multiple WPs. The ad-
ditional assumption for this architecture is that a solution can be found to remove the Pod creation
overhead when spawning new WPs of a distributed ParaPy application on a shared cluster. Some
suggestions can already be made on how to achieve this:

• A cluster is dedicated to a specific application. This means that only instances of this specific
application will run on the cluster. This would be plausible if popular KBE applications are
developed that have a sizable user base. In this case, WPs from any of the instances could run
in the same Pod, as they all rely on the same Docker image.

• The images from the different applications are optimized such that the application specific
layer is very thin, and each node runs a Pod (and thus a container) for each application’s image
ready to spawn new WPs.

• WPs do not have to run from within a Docker container that is an instance of their appli-
cation’s image. This could be achieved for generic ROs, that are common to every ParaPy
applications, such as geometry objects from the ParaPy library.

Figure 3.8: Architecture B1 (left) and B2 (right).

3.4. ASSESSMENT OF DISTRIBUTED PARAPY
To assess the performance improvements introduced by the use of the extended Distributed ParaPy
SKD, different tests have to be run on real KBE applications from the industry. In this work, both
PRMs and TRMs will be demonstrated on the same application, the RH hull design application
developed jointly by ParaPy and engineers from the Royal Huisman shipyard. This application is
representative of KBE applications developed with the ParaPy SKD. One of its advantages is that it
presents a wide range of utilization, making it possible to define tests for both PRMs and TRMs.
Furthermore, the hull structure of a sail yacht has similar features to the one of an aircraft.

3.4.1. THE ROYAL HUISMAN APPLICATION

This section will provide a high level view of the RH application’s components and design workflow,
as well as the elements of the hull structure KBE model it is based on. Then, the tests defined to
assess PRMs and TRMs will be presented.

The RH application generates the structure of a hull based on a shape retrieved from an external
file. The user can visualize the structure and tune its configuration through a set of tools provided in
the GUI. Once the user is satisfied with a configuration, Finite Element Method (FEM), weight and
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collision analyses can be performed on the hull structure to assess its characteristics and quality.
The custom GUI of the application is shown in figure 1.1. The application is also often used in a
more linear fashion by the RH engineers, directly generating the hull structure from a predefined
configuration to perform the analyses. These two utilization workflow are summarized in figure 3.9.

Figure 3.9: The two different workflows defining the utilization of the RH application: iterative (top) and linear (bottom).

The application is based on a KBE model of the hull structure, named the construction modeler.
This model generates the geometries of all the structural elements of the hull. The structure can be
broken down in three main groups of elements; the frames, beams and stringers. The construction
modeler present multiple parallel regions. The main ones are the frames and the stringers. This
work focus on the frames, as their generation is the most time expensive of the two. The frames
are transverse structural elements of the hull similar to ribs in a wing or the fuselage’s frames of an
aircraft. The hull is constituted of 42 frames, which are instances of the Frame class. They can be
visualized in figure 3.10.

Figure 3.10: Anatomy of the hull structure as generated by the construction modeler. From left to right: frames, beams
and stringers.

3.4.2. TEST CAMPAIGN

As introduced above, the application can be used in two different workflows, which will be referred
from now on as the iterative and linear workflows.

In the iterative workflow, the user will visualize the frames through the GUI and iteratively
change the frames’ configuration until a satisfactory design is obtained. When the user is satis-
fied with a design, he can move on to perform the different analyses. PRMs are particularly suited
for this workflow, due to its iterative nature and the fact that the parallel objects have to be displayed
by the GUI.
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In the linear workflow, the complete hull geometry is generated from a predefined configura-
tion and directly used for subsequent analyses. The analyses only require the shape representation
of the hull elements in order to be performed. The geometries of the different elements of the hull
model are rather simple and therefore their generation cannot be described as memory heavy. For
example, once their geometry is generated the complete set of frame objects weights 261MiB, which
is low compared to the memory standards of current desktop computers (around 16GiB). Despite
not being representative of the memory greedy KBE models, the frames can still serve to demon-
strate the saving up in memory space induced by the use of TRMs, by defining as output the shape
representation of a frame’s geometry. This way, the proxy objects will only contain the shape repre-
sentation of the frame, while the RO containing the "heavy" geometry objects required to produce
the shape is destroyed.

Figure 3.11: Simplified representation of how TRMs are used to parallelize the frames in the linear workflow to save up
memory space. The shape representation required by the subsequent analyses is defined as output, and the unnecessary
intermediate slots counting for most of the total size are deleted with the RO.

The test campaign will therefore be divided in two stages: tests for the PRMs and test for the
TRMs. The next sections will detail each stage.

TESTS OF PRMS

This stage comprises two tests and will assess the effect of using PRMs for the frames on a typical
design session through the GUI. These tests will be performed on different environment which will
be detailed in section 3.4.2 and 3.4.2.

The tests consist of measuring the duration when performing two operations representative of
a design session, with parallelized and serial frames, and compute the speedup. The tests will be run
for multiple configurations that will be detailed in section 3.4.2 and 3.4.2. For each configuration,
the tests will be run 3 times and the duration averaged over these 3 runs before computing the
speedup. These operations and why they are representative of a design session are listed below:

OP1 Frames creation and visualization: this is the first logical action performed by a user when
starting a design session. It is triggered when the user "double click" on the Part slot defining
the frames for the first time. This action will successively create and initialize the WPs and
ROs, and generate the frames’ geometries and display them. When PRMs are used to define
the frames, the generation of the frames’ geometries will automatically be parallelized by the
GUI. This operation will induce several initialization overheads that will be detailed in section
4.2.
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OP2 Position update: this operation consists of changing the position of all the already displayed
frames. This operation is proposed in the application in the form of a button to "equi-space"
the frames. Clicking it changes the positions of the frames such that the space between them
is the same and regenerate their geometries. This operation will be performed after OP1, to
emulate a typical design session. The objective of this test is to evaluate the speedup obtained
for a design change resulting in the regeneration of all the frames’ geometries once the ROs
have been initialized.

The tests are summarized in table 3.1. Note on the prerequisite of T1: evaluated inputs on
master side means that the values that will be returned by the child rules defined in the frames Part
slot definition are already evaluated, but does not mean that these values are already sent to the ROs
(see section 4.2.2).

Test
name

Objective Prerequisite Steps Performance
Indicator

T1 Evaluate the speedup
when performing op-
eration OP1

1. Application is
running
2. The inputs of the
frames are evaluated
on MP side

1. Time OP1 with
serial frames
2. Time OP1 with PRM
parallelized frames

Speedup

T2 Evaluate the speedup
when performing op-
eration OP2

1. OP1 has been per-
formed

1. Time OP1 with
serial frames
2. Time OP1 with PRM
parallelized frames

Speedup

Table 3.1: Tests to be performed to assess the increase in performance brought by PRMs.

LOCAL TEST ENVIRONMENT FOR PRM TESTS

Tests T1 and T2 will in a first place be run on a multicore laptop, for different number of cores. For
each number of cores, the maximum number of WPs used to parallelize the frames will set to the
same value as the number of cores, to avoid over subscription. The laptop has an AMD CPU with 8
physical cores and a maximum frequency of 2.90GHz per core. The number of cores is controlled
using Windows’ msconfig utility which allows to reduce the number of cores accessible by the OS,
and thus emulates a machine with less cores but with the same computing power per core.

CLOUD ENVIRONMENT FOR PRM TESTS

Tests T1 and T2 will be run in the cloud for the 3 architectures presented in section 3.3, on the
Microsoft Azure cloud platform. Azure proposes different VM families and the Dasv5 family [? ]
has been chosen to run all the series of tests. These VMs utilize AMD’s 3rd Generation EPYC 7763v
processors that can achieve a boosted maximum frequency of 3.5GHz. The reason for this choice
are the following:

• The VM family should be targeted toward CPU intensive applications.

• The VM family should offer VMs with number of cores varying from 2 to 32 (4 to 96 multi-
threaded cores [? ]).

• The VM family should be available in European datacenters.

For the single-user approach, the two tests will be run for a number of WPs ranging from 2 to
42. Each run will be run on a VM with (if possible) the same number of cores as the number of WPs.
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The multithreaded cores present on the Dasv5 family are counted as a half core.

Number of WPs 2 4 8 16 32 42
VM D4as_v5 D8as_v5 D16as_v5 D32as_v5 D64as_v5 D96as_v5

Table 3.2: VMs used to assess the single-user approach.

For the multi-user approach (architectures B1 and B2) the two tests will be run on a cluster of 8
nodes of 4 cores each (D8as_v5 VM), so a total of 32 cores. The tests will be run for a number of WPs
ranging from 2 to 32. The size of the cluster will remain the same for every number of WPs.

For each architecture, the cluster will be configured in such a way that the assumptions from
section 3.3.2 are verified. As a reminder, this means that for architecture B1 the application Docker
image will be pre-pulled on each node before the tests are run, to avoid the image pulling overhead.
For architecture B2, a specific Pod will be running on each node ready to spawn new WPs before the
application is started.

TEST OF TRMS

TRMs are currently still at the prototyping phase and therefore will undergo less extensive tests than
the PRMs. Actually, this stage of the test campaign consists of a single test, that was already partially
introduced above. The frames will be parallelized using TRMs, with their shape representation de-
fined as output. The metric of interest here is the ratio rmem between the memory size of the set of
frames once their shapes have been evaluated with the non-distributed application and the size of
the frames’ proxies once the shapes have been retrieved using TRMs. The size of the frames will be
measured by computing the difference between the memory size of the application’s process before
the shapes evaluation and after. Let Slocal be the size of the set of frames when evaluated locally
and Spr ox y the size of the proxies once the shape has been fetched, then

rmem = Slocal

Spr ox y

The size of the empty WPs won’t be included when computing the size of the proxies, as they are
supposed to be configurable such that they are killed once no more ROs are left (not implemented
yet).

As the only metric of interest for this test is the memory ratio which does not depend on the
environment the test is run in (due to the low memory requirements of the frames), this test will be
run on a regular laptop computer.
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Test
name

Objective Prerequisite Steps Performance
Indicator

T3 Assess the saving in
memory consumption
when evaluating the
frames shapes with
TRMs

1. Application is
running
2. The inputs of the
frames are evaluated
on MP side

1. Get mem. size of
process
2. Evaluate the shapes
of the serial
frames
3. Get mem. size of
application’s process
3. Restart app
4. Get mem. size of
process
5. Evaluate the shapes
of the TRMs
frames & fetch them
6. Get mem. size of
application’s process

rmem

Table 3.3: Test to assess the memory improvement from using TRMs.
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DISTRIBUTED PARAPY IMPLEMENTATION

4.1. ARCHITECTURE
A distributed ParaPy application is divided in different processes: the main process where the ap-
plication’s script is run, a message broker, a scheduler and several WPs. An overview of these com-
ponents is given in figure 4.1. To ensure a proper functioning of a distributed ParaPy application,
the developer must enclose the application script in the if __name__ == "__main__": guard
and before anything else initialize the runtime environment by calling the distributed.start()
function. This function call will start the broker and scheduler processes.

1 class Aircraft (Base ):
2 ...
3
4
5 if __name__ == " __main__ ":
6 from parapy import distributed
7
8 distributed .start ()
9

10 obj = Aircraft ()

Figure 4.1: Typical setup of a distributed ParaPy application (left) and overview of the processes involved during the
application lifetime and their interactions (right).

4.1.1. MESSAGE BROKER

All messages in Distributed ParaPy transit through the message broker. The message broker was
developed for this work based on the ZeroMQ messaging framework [? ]. User friendliness, perfor-
mance and the quantity of communication patterns available [? ] are the reason why the ZeroMQ
framework was chosen. The developed message broker acts as a message queue and enables the
different communicating entities to send messages only by specifying the name of the recipient,
without having to know the recipient’s address. The main advantage of developing a custom mes-
sage broker is the ability to create messaging patterns adapted to the application being developed.

4.1.2. WPS AND SCHEDULER

WPs were introduced earlier, and will be further detailed in this section. A WP can contain mul-
tiple ROs, both persistent and transactional. The developer can define pool-like groups of WPs,
called WP types and assign RMs to a specific WP type. The available WP types can be defined us-

23
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ing the distributed.Config class. An instance of this class must be passed as argument to the
distributed.start() function. A WP type can define the following attributes:

• name: the name of the WP type. This is how a RM declaration will reference this type. Each
type must have a unique name.

• cpu: the CPU request of this type. Float value corresponding to the minimum number of
CPU cores that must be reserved for each WP of this type. This attribute is only relevant when
running on a cluster.

• memory: the memory request for each WP of this type. Again, this attribute is only relevant
when running in a cluster.

• max: the maximum number of WP of this type. When the maximum number is reached, no
more WP are created and new remote objects assigned to this type will be instantiated in an
already existing WP.

The scheduler is responsible for creating the WPs and allocating the remote objects on the right
WP. If the application is running in a cluster, the scheduler is also responsible for placing the WP on
the right node. This section will only discuss the behaviour of the scheduler when the application
is running on a single machine. When a RM is accessed for the first time, a message is sent to the
scheduler process with the metadata required to create the RO, including type information about
the object and the name of the WP type in which the RO should be instantiated. The object’s type
information consists of the fully qualified class name of the object (e.g. ’app.src.rib.Rib’) such
that the WP knows how to instantiate the object1. The scheduler will first look in the metadata for
the WP type, and check if the maximum number of WPs of this type is reached. Then:

• If the maximum is reached, it will schedule the object on the less crowded WP of this type.

• If not, it will create a new WP and schedule the object on it.

The scheduler keeps track of the number of objects living in the WPs and uses this information
to determine the less crowded WP of each type. The number of remote objects in a WP is decre-
mented when the object associated with a TRM is fetched and garbage collected.

The initialization of a new WP is a time consuming task. This is due to the substantial import
time of the required packages, such as ParaPy core, the geometry kernel library, etc. This overhead
is around 2 seconds on a laptop with a 2.9GHz processor. Furthermore the import time of the ROs
class and its dependencies can also incur an extra overhead. To avoid adding up the WP initializa-
tion overheads when accessing multiple RMs consecutively, the RM creation is asynchronous. The
root proxy object is directly returned while the creation instruction is sent to the scheduler. Subse-
quent calls on the proxy (such as eval_asyn() or dot notation calls) will be queued until the RO is
instantiated. The chronology of a PRM creation is presented in figure 4.2. In this sequence diagram,
a PRM is accessed, and then one of its slots’ value is retrieved using the dot notation on its proxy.

1An alternative solution would have been to serialize the class definition (at least until the parent ParaPy class, which is
most probably not serializable due to C++ extensions, and reconstruct the full class definition in the WP) and send it
instead of the fully qualified class name of the object. The main advantage would be that the application source code
would not have to be present in the environment where the WP is running (interesting when the WP is susceptible to
run on a different machine, typically when an application is distributed on a cluster. In this case WPs could run in any
Docker container with the ParaPy package installed). The main reason this implementation was not chosen is that the
classes defined in a model can rely on compiled packages which would not be serializable making this solution less
robust.
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Instead of calling a slot, another RM could have been initialized in parallel (not represented due to
the complexity of the resulting sequence diagram).

1 class Rib(Base ):
2
3 @Attribute
4 def weight (self ):
5 value = ...
6 return value
7
8
9 class Wing(Base ):

10
11 @Part( remote =True)
12 def rib(self ):
13 return Rib ()
14
15
16 if __name__ == " __main__ ":
17
18 distributed .start ()
19
20 rib = Wing (). rib
21 weight = rib. weight

Figure 4.2: The sequence diagram (right) corresponds to line 20 and 21 of the code snippet (left). Arrows ending with
a "o" indicate that a message is queued by the message broker since the recipient is not ready to receive messages yet.
Arrows starting with a "o" indicate dequeued messages. Colours help relating queued and dequeued messages. Yellow
boxes represent processes boundaries. The WP is actually created with the "create process" arrow, even if the size of the
box suggests that it is present from the beginning.

4.2. PERSISTENT REMOTE MODELS
This section will lay out the inner functioning of PRMs. The objective is to decompose the op-
erations taking place when interacting with PRMs into low level actions to be able later to finely
breakdown and analyse the parallel run time of the developed constructs and provide relevant rec-
ommendations for further work.

PRMs are controlled through the API provided by proxy objects. Part of this API was already
introduced earlier such as the dot notation to access a slot or the eval_async() method. Table 4.1
summarizes the most important components of the API that will be detailed in this section. These
components are grouped by the entity consuming them.

An overview of the actions occurring during the different API calls is given by the activity dia-
grams of figure 4.3 and 4.4.

4.2.1. PROXY CREATION

PPs are instances of dynamically created ParaPy classes, they are created based on the class of their
RO such that they feature the same slots. A custom serialization mechanism is added to any ParaPy
objects living in a WP. When a ParaPy object living in a WP is serialized, only its fully qualified class
name and optional slots value are actually serialized (the optional slots are drawables’ shape slot,
see 2). When the object is deserialized in the MP, a mechanism will first look if a proxy class has



26 4. DISTRIBUTED PARAPY IMPLEMENTATION

Consumer API component

Developer
Get slot value: dot notation. E.g. value = proxy.slot
Evaluate slot asynchronously: eval_async(name: str) -> None
Set slot value: python attribute setting syntax. E.g. proxy.slot = 2

GUI
Evaluate children shapes: eval_drawables() -> None
Construct child tree: construct_tree(names: List[str]) -> None

ParaPy internals Invalidate inputs: invalidate_inputs(names: List[str]) -> None

Table 4.1: API of PRMs. The consumer indicates the entity for which the API endpoint was originally developed. End-
points usage is not limited to the consumer specified in this table, to the exception of ParaPy internals endpoints which
should not be called by the developer nor the GUI.

Figure 4.3: Activity diagram showing the actions taking place for each API call on a proxy object. The input invalidation is
not shown here and will have its own diagram.

already been created for the RO’s class. If yes, an instance from this proxy class is returned. If this
is the first time that a RO of this class is serialized, a new proxy class is created for this class and
cached.

4.2.2. INPUT EVALUATION

Chapter 3 introduced the API calls to evaluate slots asynchronously and retrieve their value, but it
lacked important information about how this is achieved. The first question a reader might have is
"when are the inputs of a PRM evaluated and sent to the RO?" Two different strategies for evaluating
the inputs of a PRM have been implemented, called respectively lazy and eager inputs evaluation.

Before detailing further each strategy, lets first start with a reminder of how inputs are evalu-
ated in ParaPy. Evaluating a slot of a ParaPy object can lead to one or more of the object’s inputs
to be evaluated, if the slot depends on them. For non-remote child objects, the default behaviour
is to check if a child rule has been defined for this Input slot in the Part definition. Child rules in
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Figure 4.4: Activity diagram showing the control flow of a RO. Each command message received by the RO is the result
from an API call on its associated proxy object.

ParaPy are the statements where a child Input slots values are defined as function of their parents’
slots. For example, in figure 3.2a, the statement line 8 ( position=self.position) in the solid
slot definition is a child rule. If a child rule has been defined for this Input, it gets evaluated and the
Input is set to the returned value. If no, then the default value of the Input is used (other methods
of passing Input values from parent to child exists in ParaPy but are rarely used and haven’t be im-
plemented for PRMs). As dependencies are discovered and tracked at runtime in ParaPy, it is not
possible to know in advance when accessing a slot from an object if it might depend on one of the
object’s Inputs.

As its name suggests, the lazy inputs evaluation strategy mimics the behaviour of traditional
ParaPy’s Part slots. The name of the inputs for which a child rule is defined are transferred to the RO
at creation time. The evaluation of the child rule is requested by the RO when a remote slot evalu-
ation requires the value of such an input. This means that ROs are capable of initiating a request in
the direction of the MP, which implies that the MP should be listening for incoming requests from
the RO for the whole duration of the remote slot evaluation (and therefore be blocked). This be-
haviour is incompatible with the parallelization objective of PRMs. For this reason, a specific thread
is created for each PRM that listens for input evaluation requests from the RO. This thread is called
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Figure 4.5: Sequence diagram of the lazy and eager input evaluations. The sequence corresponds to line 40 of figure 4.6,
if the ribs PRM was defined with lazy or eager evaluation (for practical reason only two ROs are shown).

the Rule Evaluation Thread (RET). Internally, ParaPy uses thread local objects to track dependencies
between slots which makes the caching and dependency tracking mechanisms thread safe.



4.2. PERSISTENT REMOTE MODELS 29

1 class Rib(Base ):
2
3 oml = Input ()
4 offset = Input ()
5
6 @Attribute
7 def shape(self ):
8 """ Depends on oml and offset """
9 return ...

10
11
12 class Wing(Base ):
13
14 # wing outer mold line
15 oml = Input (...)
16 # offsets of the ribs
17 offsets = Input ([...])
18
19 @Part( remote =True ,
20 config = RemoteConfig (eager=True ,
21 worker ="id"))
22 def ribs(self ):
23 return Rib( quantify =4,
24 oml=self.oml ,
25 offset =self. offsets [
26 child.index
27 ])
28
29
30 if __name__ == " __main__ ":
31
32 wrk = WorkerType (name="id",
33 max =2, cpu =1.0)
34 config = Config ( workers =[ wrk ])
35
36 distributed .start( config )
37
38 ribs = Wing (). ribs
39 for rib in ribs:
40 rib. eval_async ("shape")

Figure 4.6: Sequence of PRMs definition and parallel evaluation
of a slot.

The advantage of extending the lazy
inputs evaluation of Part slots to PRMs is
that only the required inputs get evalu-
ated and requested by the RO. However,
the consequence is that a request/reply
cycle is performed for each requested in-
put. In many use-cases, the slots of in-
terest in PRMs will depend on every child
rule defined inputs. For such use-cases,
the eager input evaluation strategy was
developed. If this strategy is chosen,
each time an input of a RO is accessed
the evaluation of all the child rules is re-
quested at once by the RO (only if the
corresponding RO’s input is invalidated,
to avoid sending unnecessary input val-
ues). With this architecture, a single re-
quest/reply cycle is required to evaluate
the inputs. Lazy and eager input evalua-
tion are represented in the sequence dia-
gram from figure 4.5.

The sending of inputs to ROs feature
some optimization for PRMs defined in-
side a Sequence. When defining a child
rule for a Sequence, the value returned
by the child rule can either be distinct
for each member of the Sequence (it is
said that the child rule is child-specific)
or the same for all the members (child-
agnostic rule). ParaPy’s child object
is used to define child-specific rules, as
shown line 26 of figure 4.6. In this exam-
ple, the oml child rule’s value is the same
for the 4 members of the Sequence, while
the offset value is distinct for each. If
multiple members of a Sequence are al-
located to the same WP, a caching mech-
anism is implemented on WP side to only request once the value of a child-agnostic rule. This
behaviour is illustrated in figure 4.7.

Another optimization targets the serialization of child-agnostic rules’ value. Serialization is
time-consuming and to avoid repeating this redundant operation for child-agnostic rules the se-
rialized value returned by the rule is cached in the MP when a first RO requests it is and reused for
all the members. If the value is invalidated the cached serialization is removed and will be recom-
puted for the next RO to request it.

It is important to note that the current implementation does not allow to pass ParaPy ob-
jects as Input to PRMs. PRMs Inputs (those who are defined through child rules) should be non-
ParaPy serializable objects. If a developer really needs to pass a ParaPy object as Input to a PRM,
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a custom serialization should be implemented for this particular object, by using either Python’s
__getstate__() and __setstate__() or __reduce__() dunder methods.

Figure 4.7: Pseudo sequence diagram showing the messaging optimization for inputs defined by child-agnostic rules
(here depicted with the eager input evaluation configuration). The first RO to evaluate its oml input will request the value,
and the second one will use the cached value (as long as it hasn’t been invalidated in the meantime).

4.2.3. GUI INTEGRATION

ParaPy’s GUI was extended to automatically exploit parallelization opportunities offered by PRMs.

GUI FUNCTIONING

The GUI displays drawable objects. Drawable objects are ParaPy objects that define a geometry
representation, which is stored inside a slot called TopoDS_Shape. This slot will be referred as
shape in the rest of this work.

The display of a ParaPy object by the GUI can be broken down in 3 steps. The first step per-
formed by the GUI is to scan through the object and its children recursively to discover drawable
children (step A). If the children are not instantiated yet or have been invalidated, this operation
will instantiate them and it is said that the child tree of the root object is being constructed. Once
the drawable children are gathered, their shape will be evaluated (step B). The last step is the tessel-
lation of the shapes to transform them into displayable objects (step C). The main time-consuming
step is the shapes’ evaluation, since the generation of the geometries often involve complex com-
putation. However, it is not the only time-consuming step. Scanning through the children can also
be lengthy if some children are not instantiated. For example if the size of a Sequence depends on
a slot whose evaluation involves complex computation, scanning through the members of the Se-
quence will require the evaluation of said slot and incur a delay. These 3 steps are summarized and
illustrated in figure 4.8.

GUI PARALLELIZATION

A straightforward parallelization implementation would be to let the GUI process with the scanning
step (A) and use the asynchronous slot evaluation API on the shape slot of all the collected drawable
children that are also proxies. Then accessing the shape in step B would only fetch the already evalu-
ated shape from the RO. However, such an implementation would be highly inefficient. First, in the
case where the children are not instantiated the ROs’ tree construction would not be parallelized for
PRMs. Furthermore building the proxies’ tree would require instantiating each child proxy one by
one using the dot notation ( rootproxy.child1, then rootproxy.child1.child2, etc...), when
the full child tree could be instantiated in a single request/reply cycle. This is the reason why the
API features methods dedicated to the GUI, to optimize the parallelization and display of PRMs.

In order to understand how the GUI parallelizes the display of PRMs, an example will be fol-
lowed step by step. Let’s suppose one wants to display a ParaPy object with two PRMs. On MP side,
the GUI will start by scanning through the object’s children recursively to find drawable objects (get
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Figure 4.8: Activity diagram and schema of the three main steps happening during the display of an object by the GUI. The
first activity scans through the object’s children to find drawable objects (represented in yellow). Here the upper schema
illustrates the tree being constructed, but the children could also already be instantiated (typically if the object has already
been displayed and is being re-displayed after that a change in the configuration invalidated the model geometry). Then
the shapes of drawable children are evaluated, and finally the shapes are tessellated in order to be displayed.

drawable children activity, see figure 4.9a). The first two children will be the root proxy objects. The
GUI will therefore call the evaluate_drawables() method on each proxy (stage 1 of figure 4.9a
and 4.9b). This API call is asynchronous, it triggers the scanning for drawables children of the RO
and the evaluation of their shape in the WP. Therefore the child tree construction (if the RO’s chil-
dren are not instantiated yet) and the shape evaluation will be parallelized for the two PRMs. Then
the GUI will check if the proxies have some non-evaluated direct child slots. If this is the case, it
will call the blocking construct_tree() method on the proxy (stage 3). This is an optimization
method. Its role is to reduce to the maximum the messaging between proxies and ROs. This meth-
ods request the flat tree representation of the RO’s children and constructs the full child tree of the
proxy from it. The flat tree representation contains the serialization of the RO children (which are
de-serialized into proxy objects in the MP as detailed in section 4.2.1) and their parent/child rela-
tions. The serialization of drawable children will also contain their shape attribute which will be
cached by their proxy 2. Thus, the recursive calls of the get drawable children activity on the proxies’
children won’t require any more communication, since all the children are already instantiated in
the MP. During the second display step (B) the GUI will access the drawable proxies’ shapes through
the dot notation, and the cached value will be returned. The last step is the tessellation of the shapes,
which is not parallelized yet (stage 4).

In the case where the proxy’s children are already instantiated, stage 3 (tree construction) is
omitted. This situation usually happens when an object has already been displayed, but a change
to the model configuration has invalidated the shapes of the ROs. The consequence is that during
the next GUI step (B), accessing the shape slot through the dot notation will result in a request to
the RO as the shape value is not cached by the proxy yet (but already evaluated and cached by the

2This shape Attribute is the optional slot’s value that a ParaPy object’s serialization can contain
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RO).

(a)

(b) Light blue boxes represent proxy objects living in
the MP. Darker blue boxes represent the ROs. Yellow
boxes are drawable objects.

Figure 4.9: Activity diagram of the scanning step (left) and pseudo sequence diagram representing the display of two
sibling PRMs (right).

4.3. DISTRIBUTING THE RH APPLICATION
Despite the efforts in making the transition between a traditional ParaPy model to a distributed
model seem seamless to the developer, a few changes had to be made to the model codebase to
parallelize the frames. The changes mainly targeted the Inputs of the Frame class which defines the
frames. Most of these Inputs expect ParaPy objects, and as introduced earlier ParaPy objects cannot
currently be passed as Inputs for PRMs without defining a custom serialization. These problem-
atic Inputs can be broken down in two categories: those for which a custom serialization is easily
implementable and those who require a minor refactoring of the model architecture.

Developing a custom serialization for the first category was trivial. Most of them were simple
geometry objects, and the only slot of interest for the Frame class was their shape representation
( TopoDS_Shape slot). In this case, the custom serialization consisted of serializing the shape and
recreating a new geometry object from this shape at deserialization time.

For the Inputs that could not be serialized, the model architecture had to be modified. This will
be explained through an example. One of the elements of the hull structure is the fuel tank. The
frames need a reference to the tank object in order to generate their geometries. In the applica-
tion, the tank is passed to the frames as Input, however defining a custom serialization for the Tank
class that would fit the needs of the frames was deemed difficult, and an easier solution was im-
plemented. Instead of passing the tank object to the frames as Input, the Frame class is refactored
to instantiate its own tank object. As Tank instances are not too heavy, having one for each frame
instance instead of a single one in the model does not affect too much the application performance.
It is important to note that this solution had to be found in a time when the author didn’t have much
knowledge about the functioning and architecture of the RH model, and that retrospectively some
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1 def create (type_ , shape ):
2 return type_( TopoDS_Shape =shape)
3
4
5 def reduce (self: Face_ ):
6 shape = self. TopoDS_Shape
7 return create , (Face_ , shape)
8
9 Face_. __reduce__ = reduce

Figure 4.10: Custom serialization for the Face_ class. When a Face_ object gets serialized, the __reduce__() method
is called, which returns a reference to a function to call at deserialization time with some parameters to pass. At de-
serialization time the create() method will be called which will instantiate a new Face_ object with the same shape
representation. This kind of simple serialization does not work for more complex geometry objects but was enough for
most of the frames inputs.

more elegant and efficient solutions could have been implemented. This refactoring is illustrated in
figure 4.11.

Figure 4.11: Example of the refactoring required to distribute the frames.

From now on, the original KBE model of the hull will be called model A, and the model refac-
tored to allow the parallelization of the frames will be called model B. Even if the code structure has
been modified, the embedded engineering rules have been preserved between both models and the
resulting frames’ geometry remains unchanged. The refactoring of the model incurred a penalty in
run time for the operations targeted by T1 and T2. This penalty is summarized in table 4.2. The run
time penalty won’t be included in the computation of the speedups. The reason is that this penalty
could be reduced with a smarter refactoring of the hull model if time allowed.

Operation Run time - model A (s) Run time - model B (s) Runtime penalty
Frames creation
and visualization

14.97 17.01 14%

Position update 13.67 14.240 4%

Table 4.2: Run time penalty incurred by the refactoring of the hull model to comply with PRMs requirements.

Eventually, the frames definition in the hull model is shown in figure 4.12. The frames are de-
fined in a Sequence ( quantify=42). Some comments can be made regarding the child-rules. The
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only child-specific rule is the frame’s position, all the other rules are child-agnostic. The serialized
size of the position’s value is 743B, and the total size of the child-agnostic rule is 12.2MB. The size
ratio between the child-specific rule and the child-agnostic rules is of 6.1e−5, which can be consid-
ered negligible. This information will be relevant when analysing the results.

1 @Part
2 def frames (self ):
3 return Frame( quantify =42,
4 position =self. frame_positions [child.index],
5 deck_datum =self.deck_datum ,
6 center_girder_datum =self. center_girder_datum ,
7 floor_datum =self. floor_datum ,
8 ship_rear_datum =self. ship_rear_datum ,
9 hull_datum =self.hull_datum ,

10 in_plane_v_dim =self. in_plane_v_dim ,
11 cut_outs =self.cut_outs ,
12 tank_datums =self. tank_datums )

Figure 4.12: The frames’ definition in the refactored hull model (here declared as a regular ParaPy Part).



5
VERIFICATION OF DISTRIBUTED PARAPY

As this thesis is strongly oriented on software development, the verification methods chosen will
differ significantly from the ones usually encountered in other thesis works.

The verification of PRMs and TRMs will be presented in section 5.1. Section 5.3 will present the
verification of developed cloud architectures.

5.1. VERIFICATION OF PRMS AND TRMS
In software engineering, unit testing is the preferred method to verify a program. Unit testing is the
action of checking the behaviour of small sections of a software to detect bugs at an early stage and
avoid their propagation to the rest of the software [? ]. Unit tests have been developed in parallel
with the main software to ensure that PRMs and TRMs behave as expected. The testing framework
used is the Python package pytest [? ]. These unit tests are run regularly in order to detect breaking
changes in the codebase.

Figure 5.1 shows a first series of test targeting the user APIs of PRMs. The code starts with
the definition of the ParaPy class that will be used to conduct the tests. This class defines a PRM
named box (line 5 - 7) that returns a ParaPy Box object. The first test test_get() is very simple: it
checks that we can evaluate slots of ROs using the dot notation. It also checks that the mechanism
for evaluating child rules of PRMs works (line 19). The second test, test_async_evaluation(),
checks the proper functioning of the asynchronous evaluation of remote slots. First, the evaluation
of a remote slots is triggered using the PRM’ parallelization API ( eval_async()). The status of the
width Input of the root object is then checked (checking the status means checking if the slot’s value
is evaluated and cached). If width is evaluated (status is True), it means that the RO has evaluated
its volume slot and requested the evaluation of the child rule. The next test test_invalidate()
checks that the invalidation still works across PRMs. The last test test_proxy() checks that
ParaPy objects are not directly serialized but instead return a new proxy object associated with them.
Indeed, the bbox Part slot of a Box object returns an instance of the BBox ParaPy class. The BBox
object gets instantiated in the WP, and a proxy object is returned in the main process. Similar unit
tests have been developed for TRMs.

5.2. ROS AND WPS ALLOCATION
The ROs allocation to the right WP can be verified through logging. During the program execution,
relevant events are logged in the system console, with a convenient formatting to track which pro-

35
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1 class Foo(Base ):
2
3 width = Input (2)
4
5 @Part( remote =True)
6 def box(self ):
7 return Box(self.width , 1, 1)
8
9 @Attribute

10 def volume (self ):
11 return self.box. volume
12
13
14 def test_get (self , initialize ):
15 """ Check that the remote evaluation works , as well
16 as the child rules evaluation ."""
17 foo = Foo ()
18 assert foo.box. volume is 2
19 assert foo. get_slot_status ("width") is True
20
21 def test_async_evaluation (self , initialize ):
22 """ Check that the asynchronous evaluation works."""
23 foo = Foo ()
24 foo.box. eval_async (" volume ")
25 time.sleep (4)
26 assert foo. get_slot_status ("width") is True
27
28 def test_invalidate (self , initialize ):
29 """ Check that distributed invalidation works """
30 foo = Foo ()
31 foo. volume
32 assert foo. get_slot_status (" volume ") is True
33 foo.width = 1
34 assert foo. get_slot_status (" volume ") is False
35
36 def test_proxy (self , initialize ):
37 """ Check the serialization of ParaPy objects """
38 foo = Foo ()
39 assert isinstance (foo.box.bbox , Proxy)

Figure 5.1: Example of tests verifying the proper functioning of the user’s API.

cess emitted the message. A simple model is developed with two RMs Sequences of 4 members
assigned to different WP types ( worker_1 and worker_2) and run on a single machine. The model
definition and the logs are shown in figure 5.2 and 5.3. On the left of the logs is the id of the WP
that emitted the message (Worker-n). There is a total 4 WPs, which is consistent with the WP types
definitions. The 4 Cylinder objects are distributed over WPs 2 and 3 and the 4 Box objects over
WPs 0 and 1, which is also consistent with the RMs declarations.

5.3. VERIFICATION OF THE CLOUD ARCHITECTURES
This section will only cover the verification of the proper functioning of cloud architecture B1. The
WP allocation of cluster architecture B1 is verified with the Kubernetes command line interface
(kubectl) during one of the test runs, by running a command which lists the pods present in the
cluster and the nodes they are running on. The relevant pieces of information of the run are:

• A PRM Sequence of 42 members is evaluated.
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1 class Foo(Base ):
2
3 @Part( remote =True ,
4 config = RemoteConfig ( worker =" worker_1 "))
5 def boxes(self ):
6 return Box (1, 1, 1, quantify =4)
7
8 @Part( remote =True ,
9 outputs =[" volume "]

10 config = RemoteConfig ( worker =" worker_2 "))
11 def cyls(self ):
12 return Cylinder (1, 1, quantify =4)
13
14
15 if __name__ == " __main__ ":
16 worker_1 = WorkerType (name=" worker_1 ", max =2)
17 worker_2 = WorkerType (name=" worker_2 ", max =2)
18 distributed .start( config = Config ( workers =[ worker_1 , worker_2 ])
19 foo = Foo ()
20 foo.boxes , foo.cyls

Figure 5.2: Defining a model with multiple RMs allocated to different WP types.

Figure 5.3: Logs once the ROs are instantiated.

• The Sequence is bound to a WP type with a maximum number of 16 workers. The cpu request
of this WP type is set to 1 cpu.

• The cluster is composed of 8 nodes with 4 cpus each.

With this configuration 16 WP should be created (each one inside its own pod) and Kubernetes
should allocate 2 pods per nodes. The output from the kubectl command is summarized in table
5.1. One can see that the pods are distributed as expected on the cluster’s nodes.

Node ID vmss001 vmss002 vmss003 vmss004 vmss005 vmss006 vmss007 vmss008
Pod ID pod-12,

pod-3
pod-10,
pod-4

pod-14,
pod-6

pod-2,
pod-11

pod-15,
pod-7

pod-0,
pod-8

pod-5,
pod-13

pod-9,
pod-1

Table 5.1: Pods and their allocated nodes.





6
RESULTS AND DISCUSSION

This chapter will present the results obtained from the test campaign. Section 6.1 will present the
speedups obtained for tests T1 and T2

6.1. PRMS

6.1.1. MULTICORE LAPTOP

Distributed ParaPy has been developed as a solution to parallelize KBE models both in the Cloud
and on regular desktop computers. The results from the test conducted on a multicore laptop are
shown in figure 6.1. The difference in speedup for both tests is clearly observable. As expected, the
overheads foreseen in section 3.4 results in a lower speedup for T1. For this specific operation, the
speedup is almost negligible on a 2 core laptop (1.1 times speedup), and still fairly low for 4 and
8 cores laptops (1.4 and 1.8). The parallelization efficiency ranges from 0.55 for 1 core to 0.2 for
8 cores, which is considered low. However, as explained in the methodology section, the operation
performed during test T1 is an initialization operation that will be performed once during the design
session. Furthermore, solutions can be implemented to reduce the WPs and ROs creation overhead,
as will be detailed in section 7.2.

The operation performed in test T2 shows slightly greater speedups, but the parallel efficiency
is still considered low (0.55, 0.425, 0.325). Yet the 1.7 and 2.6 times speedups obtained on a 4 and 8
cores computer are sufficient to have a significant impact on the user’s experience. Concretely, a 2.6
time speedup consists of a 5.6 seconds delay instead of 14.5 seconds when performing operations
on the hull geometry, which is a noticeable improvement for the user. Eventually, even is the paral-
lelization efficiency is relatively low, these speedups are appreciable on a laptop machine since they
make use of otherwise idle cores of the processor.

6.1.2. CLOUD ARCHITECTURES

SINGLE USER APPROACH

The single-user approach is expected to provide the highest speedups from the three proposed
Cloud architecture, due to the fact that all the WPs of the application are running on the same VM,
thus it is exempt of network communication overhead (as opposed to architectures B1 and B2) and
container creation overhead (unlike architecture B1). When running the tests using this architec-
ture, unexpected results were observed. For each VM size, the tests operations have to be run using
non parallelized frames and PRM parallelized frames in order to compute the speedup. The run
times measured for the non-parallelized frames are expected to decrease slightly with larger ma-

39
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Figure 6.1: Speedups obtained for T1 and T2 on a multicore laptop computer

chines, as ParaPy’s geometry kernel internally uses parallelization to improve the performance of
some of its operations. However, the opposite effect was observed: the run time of both operations
increased with larger VMs. The measured run times are reported in figure 6.2. There is a dramatic
increase in run time starting off with the D16as VM. No concrete explanations were found for this
behaviour, and therefore the speedups for the single-user approach were computed by using for TS

the shortest run time; obtained with the D8as VM.

Figure 6.2: Run times of the serial frames creation/visualization and position update operations when performed on the
set of VMs selected to assess the single user approach.

The speedups obtained with the single user approach are reported in figure 6.3. Test T1 pro-
vides slightly higher speedups than when run on a laptop computer, with 1.7 and 1.8 speedups for
4 and 8 cores, compared to the 1.4 and 1.6 obtained on the laptop computer. As enacted by Am-
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dahl’s law, the speedup curves attain a plateau with increasing number of processors (and thus, in
our case, numbers of WPs). The value of this plateau is dictated by the serial portion of the oper-
ation being run. However, there is an unexpected speedup stall observed for 42 WPs, which is not
predicted by Amdahl’s law. Test T2 on the other hand does not seem to be too affected by Amdahl’s
law for the assessed range of WPs. The slope steepness decreases with increasing number of WPs,
but the plateau is not reached. In order to understand the speedups obtained and propose relevant
recommendations, a breakdown of the different contributions to the parallel run time is required.

Figure 6.3: Speedups obtained with the single-user approach.

The proposed breakdown is mostly similar for both tests, but present some differences. To
understand the breakdown, the sequence of actions performed by the GUI and PRMs already intro-
duced in section 4.2 will be recalled for each test.

• T1: when the user "double-click" on the frame slots, the frames PRMs are asynchronously
created. This triggers the WPs creation and ROs instantiation (see figure 4.2). The GUI will
then directly call the eval_drawables() asynchronous method on all the frames root prox-
ies. This call will be queued by the message broker until the ROs are ready. Once the RO are
instantiated, they start scanning through their children and evaluating their drawable chil-
dren’s shapes (stage 1 of figure 4.9b). At some stage, this action will trigger the request of the
inputs values by the ROs (the eager input evaluation method was used during the tests, so all
the inputs values will be requested at once). In the meantime, the GUI has called the blocking
construct_tree() method on the first frame and waits for the child tree serialization, which
will also contain the serialized shapes values. Once the parallel evaluation of the ROs draw-
ables’ shapes is completed, the proxies tree construction can be performed (stage 3 of figure
4.9b). Then the GUI will access the shapes already cached by the proxies (see note 2). The last
step is the shapes’ serialization in the MP.

• T1: when the user clicks on the GUI’s button to change the frames position, a first function
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will be called that changes the position input of each of the frames one by one. This triggers
the invalidation of each frame’s geometry (and the destruction of part of its tree, since the
frames’ tree is dynamic). This first invalidation stage happens serially for all the frames. This
invalidation happens serially for all the frames. Then, the same steps as for T1 are performed
by the GUI to re-display the frames. The only differences are: 1. the WPs and ROs are already
initialized. 2. Part of the frames proxy tree is already constructed on MP side (but some parts
of it has been destructed by the invalidation. Therefore, after the parallel re-evaluation of
the ROss shapes, the GUI will first reconstruct the missing parts of the proxies’ child tree,
then request the shapes of the non-destructed drawables’ proxies. This flow is summarized in
figure 6.4.

Figure 6.4: Simplified flow of actions happening during test T2, represented here for a single PRM. Previous to the po-
sition’s invalidation, the proxy and RO were in the same state as in stage 4 of figure 4.9b. Changing the frame’s position
results in the destruction of parts of the tree, and invalidation of the shapes both in the ROs and proxies (stage 1 here).
The ROs’ geometries are then re-evaluated in parallel for the new position (stage 2). The GUI then reconstructs the parts
of the tree that are invalidated (stage 3). This happens serially for all the frames. Multiple portion of a single frame’s tree
can be destructed and therefore the reconstruction of a frame’s tree can result in multiple request/reply cycle. Then, the
invalidated shapes of the drawables’ proxies are requested (stage 4). Finally, the shapes are tessellated in the MP (not
represented here).

The breakdown for T1 consists of the following time contributions:

C1 Duration of the WPs creation and instantiation of the ROs. Also called WPs initialization.

C2 Duration of the input requests by the ROs. The input request is triggered by a specific method
to emulate the "natural" request procedure of the ROs. This duration is further broken down
in three sub-contributions:

• The total serialization time of the values returned by the child rules (for all the frames)
in the MP.

• The average deserialization time of the inputs’ values in the WPs. This duration is mea-
sured for each WP and averaged since it happens in parallel for all the WPs.

• Communication time (how long it takes to send the inputs to all the ROs).

C3 Duration of the parallel evaluation of the frames geometries (once the inputs are cached by
the ROs following the previous step). This duration should therefore monitor the "pure paral-
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lel" part of the test.

C4 Total duration of the tree construction for all the frames. As the tree construction happens
serially for each frame, the tree construction time of each frame is added up. This duration is
further broken down in the following sub-contributions:

• Creation of the flat tree by the RO.

• Serialization of the flat tree in the WP (includes the serialization of the drawables’ chil-
dren shapes).

• Communication time.

• Deserialization of the flat tree (includes deserialization of the shapes).

• Composition of the proxy’s child tree from the received flat tree.

These sub-contributions are measured for each frame and added up.

C5 Request of the drawables’ proxies shapes. This will only happen for test T2. Broken down in
the following sub-contributions:

• Serialization of the shapes in the WPs.

• Communication of the shapes.

• Deserialization of the shapes.

Once again, the sub-contributions are measured for each frame and added-up.

C6 Tessellation of the shapes.

The run time breakdown for T2 is the same as for T1, to the only difference that the first contri-
bution is the duration of changing the frames positions’ value in the MP and the subsequent ensuing
invalidations:

C1 (bis) Duration of the WPs creation and initialization of the ROs.

C2 Duration of the request of the inputs by the ROs. Here, only the position input will be re-
quested, since it is the only invalidated input.

C3 Subsequent contributions are the same as for T1.

The inner breakdown of the input requests contribution C2 is shown in figure 6.6. Focusing on
T1, interesting observations can be made. First, the serialization time on MP side is constant. This is
expected: the input values returned by the child-agnostic rules are serialized once and then cached.
The child-specific rules are serialized for each RO, and the number of ROs is constant. Therefore,
the same quantity of data is serialized no matter the number of WPs. The averaged deserialization
time seems constant independently of the number of WPs. This can be explained: in each WP, the
child-agnostic inputs are deserialized once, since their values are shared between ROs. However,
the child-specific inputs are deserialized for each RO, thus the less ROs there are in a WP, the less
deserialization should happen and therefore the deserialization time should decrease with increas-
ing number of WPs. In our case, the size of the child-specific inputs is negligible compared to the
size of the child-agnostic ones (see section 4.3). Accordingly, their deserialization time is also neg-
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(a) OP1 (b) OP2

Figure 6.5: Breaking down the contributions to the overall parallel run time of operations OP1 and OP2. Hatched contri-
butions represent operations that are not parallelized in the current implementation but that could be in further work.

ligible which explain why the deserialization time is constant. On the other hand, the decrease in
deserialization time can be observed for test T2 in figure 6.6b. In test T2, only the child-specific posi-
tion input is requested and therefore its serialization time is not eclipsed by the large child-agnostic
inputs. The last observation is the communication time. For test T1 it increases with the number
of WPs. This is the result from the child-agnostic rules’ optimization described in section 4.2.2. The
value returned by these rules is only sent once per WP, so the amount of communication increases
with the number of WPs.

The breakdowns of the tree construction and retrieval of the shapes are shown in figure 6.7. The
tree construction is initiated by the GUI and happens serially for all the frames. Therefore, the total
duration for building all the frames’ tree is not affected by parallelization. This is also true for the
shapes retrieval in test T2. One observation is that the communication time for the tree construction
is greater for T2 than for T1, which can seem counterintuitive, since in T1 the whole tree is sent and
contains all the shapes of the frame, while in T2 only the destructed parts of the tree are sent and
therefore a subset of the frame’s shapes. The reason is that for T1 the construct_tree() method
is called once on the root proxy, resulting on a single request/reply cycle per frame, while for T2 this
method is called all the child proxies of a frame that have invalidated Part slots.

6.1.3. MULTI-USER APPROACH

The speedups obtained for the two architectures of the multi-user approach are shown in figure 6.9.
An unanticipated observation is that the speedups for both architectures are greater that the ones
obtained when running on a single VM. This will be explained by looking at the run time break-
downs. T1 speedups are lower for architecture B1 which confirms that the docker container cre-
ation introduces an overhead when creating new WPs. T2 speedups are almost identical for both
architectures as expected since both architectures only differ for the WP creation process. A notable
feat is the increase in parallelization efficiency when comparing to the same tests run on the laptop
computer. For T2, the parallelization efficiency is respectively of 0.675 and 0.53 for 4 and 8 cores
against to 0.425 and 0.325 on a laptop.

Only the breakdowns of architecture B1’s parallel run time will be presented and discussed. The
high-level breakdown is given in figure 6.10. The parallel evaluation of the ROs’s geometries (in blue)
is significantly faster for architecture B1 compared to the single user approach for both tests. The
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(a) OP1 (b) OP2

Figure 6.6: Breaking down the durations in the RO’s inputs request. Note: due to the large difference between the duration
of this operation for OP1 and OP2, the scales were no matched.

(a) OP1 (b) OP2

Figure 6.7: Breakdown of the GUI’s process of retrieving the proxies’s trees and the shape representation of the ROs.

only supposition for an explanation is oversubscription caused by the geometry kernel paralleliza-
tion. The oversubscription factor will always be greater for the single user approach. For example,
with 32 WPs the oversubscription factor will be of 32 for the single user approach since all the pro-
cesses are running on the same 32 core machine, while for architecture B1 the oversubscription
factor will be of 4 for each node.

Figure 6.11 and 6.12 present the same general aspect than the ones obtained from the single
user approach. The serialization times are similar, and only the communication contribution is
greater for architecture B1 as expected.

Figure 6.8 present the speedups computed by using the ideal parallel contribution C3 for the
parallel run time, instead of the complete parallel run time. The light grey line represent the linear
evolution that should follow the curves, given that the operation performed is completely paral-
lelized and doesn’t feature any serial computation. As one can see, the speedup curves do not evolve
linearly and deviate from the linear path. This figure illustrates that there is a probable oversubscrip-
tion due to the geometry kernel’s parallelization that slows down the frames geometry evaluation.
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Figure 6.8: Speedups computed when isolating the parallel evaluation contribution of the run time, from architecture
B1’s run time breakdowns

Figure 6.9: Speedups obtained with architectures B1 and B2 of the multi-user approach. Speedups from the single-user
approach are shown in light grey for comparison.

6.1.4. PARALLEL TESSELLATION AND SERIALIZATION OF THE SHAPES

In a last optimization effort to improve the speedups, a PRM and GUI implementation has been
developed where the tessellation of the shapes and their serialization happens in parallel in the
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(a) OP1 (b) OP2

Figure 6.10: Breaking down the contributions to the overall run time of the parallel operations OP1 and OP2.

(a) OP1 (b) OP2

Figure 6.11: Breaking down the durations in the RO’s inputs request. Note: due to the large difference between the dura-
tion of this contribution for OP2 and OP2, the scales were no matched.

WPs. This implementation reduces the tessellation time and serializations times of the tree and
shapes. The speedups are shown in figure 6.13.

6.2. TRMS
The results from running T3 on a laptop computer are reported in table 6.1. Despite the primitive-
ness of this test, the results demonstrate the potential of TRMs for reducing the memory footprint
of KBE models. The memory ration ratio between the frames size once their shapes have been eval-
uated (and fetched in the TRM case) if of 6.2. For this specific use-case, this only represents a saving
of 223.1MiB, but it is easily imaginable that such constructs could be successfully used on larger
use cases and eventually solve memory issues in KBE models by providing dependency tracked re-
duced representations of child objects. Furthermore, it is envisioned that the caching programming
model of TRMs, where only the inputs and outputs are cached and dependencies traced between
them could be adapted to local children as a way to only save memory for use cases where paral-
lelization is not relevant.
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(a) OP1 (b) OP2

Figure 6.12: Breakdown of the GUI’s process of retrieving the proxies’s trees and the shape representation of the ROs.

Figure 6.13: Comparison of the speedups obtained when parallelizing the tessellation and serialization of the ROs’ shapes
with the speedups from the previous parallel implementation, using cloud architecture B1.

Frames Serial TRMs
Process’s size before evaluation (MiB) 751.49 750.9
Process’s size after evaluation (MiB) 1017.8 793.83
Frames size (MiB) 266 42.9
∆mem (MiB) 223.1
Average size/frame 6.34 1.02
rmem 6.2

Table 6.1: Memory
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CONCLUSION AND RECOMMENDATIONS

7.1. CONCLUSION
This work proposed an extension to the ParaPy SKD by introducing two new constructs made avail-
able to KBE model developers to distribute and parallelize the execution of their models. The choice
was made based on observation of recurring patterns in KBE models architectures to partition the
models across parent-child relations, which often define parallel regions in the models. Two con-
structs were introduced, with different programming models and objectives. PRMs aim at increas-
ing the performance of KBE models and applications by decreasing their (re)generation times. They
are fitted for KBE applications where the user performs iterative design, and particularly optimized
for fast and efficient display of the model’s geometry by the GUI. TRMs are more at a prototype stage
and aim at proposing a solution to control the memory footprint of a model when parallelizing it.

The implementation choices of RMs enforce some conditions on ParaPy KBE models to be par-
allelized. The first condition is that the model should present parallel regions materialized by sibling
children. Furthermore, no interdependencies are permitted between RMs. This is a strong condi-
tion to parallelize KBE models, which could be removed in future works. Furthermore, the Inputs
of both RMs should be non-ParaPy serializable objects, or define a custom serialization method.
All these criteria answer question RQ2:.b.. Furthermore, the refactoring work described in section
4.3 to accommodate the RH application to RMs shows that existing application can be adapted to
parallelization with moderate efforts. For developers creating new applications, the clear API and
programming models proposed by both RMs is expected to make their use relatively easy. Further-
more, the behaviour of PRMs, which emulates the one of regular ParaPy children and their complete
integration with the GUI should make their adoption by developers swift and effortless (research
question RQ2:.c.).

RQ1: was answered by tests on PRMs. The results of these tests showed that the partitioning
strategy and programming model proposed by PRMs can indeed reduce the (re)generation time
of KBE models. The speedups obtained on a laptop computer were relatively low, with a maxi-
mum speedup of 2.6 on a 8 core machine. However, such speedup can already improve the user
experience when interacting on a model. The speedups obtained on the different proposed cloud
architecture were more conclusive, and the computed speedup efficiency was superior. The last op-
timization effort, where the tessellation of the shapes was performed in parallel, showed speedups
up to 8 times when using 32 WPs. The main overhead observed is the initialization of the WPs and
ROs. Surprisingly, the communication overhead was relatively low, and its impact only felt for higher
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number of WPs.

The comparison of the 3 proposed cloud architectures provides significant insight on the most
efficient manner to leverage cloud computing for distributed models (RQ3:). The so-called single-
user approach, which presents drawbacks in terms of setup time (claiming the node), cost (no
shared resources) and scalability eventually gave against all odds the lowest speedups. The sug-
gested reason is oversubscription, but this hypothesis should be confirmed in further works. Cloud
architectures B1 and B2 only showed difference in terms of speedup during the initial worker cre-
ation, due to B1’s container creation overhead. However, the difference in speedups are for the
creation operation are relatively low (maximum 17%), and other design update operations are not
impacted. It can be concluded that it is worth to further work in the goal of resolving the assump-
tions made for architecture B1 as it seems to provide the lowest development effort to achievable
gain ratio.

Eventually, the prototype proposed with TRMs demonstrates the potential of these constructs
to control and reduce the memory footprint of KBE models, and partially answers RQ4:. Further
tests need to be conducted to fully assess their ability to solve the memory issues encountered by
large KBE models.

7.2. RECOMMENDATIONS
As this work paved the way for distributed ParaPy, many recommendations can be made.

A first recommendation can be made to facilitate the integration of PRMs with already existing
KBE models. When adapting the RH use case for distribution, most of the effort targeted the Inputs.
A solution should be found to pass ParaPy objects as Inputs. A suggestion would be to create in
inverse proxy mechanism, with a proxy object in the WP for the object living in the MP. The main
issue foreseen with this implementation is the high communication overhead it could incur, since
ROs could be required to perform multiple request/reply cycle before accessing the slot of interest
of the input object.

A second recommendation is the pre-creation of place holder WPs when an application is started.
This would reduce the WP initialization time when accessing RMs for the first time, especially if
the WPs are configured to automatically import the required libraries to instantiate the ROs when
started.

Eventually, PRMs could evolve into independent remote child object controllable by another
user. This architecture would allow synchronous collaboration in large KBEs models, as represented
in figure 7.1.
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Figure 7.1: Evolution of PRMs into independent sub-models to introduce real-time collaboration in KBE systems.
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