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STELLINGEN

In een twee-dimensionale horizontale morfologische berckening is het onjuist in
een bijna-kritische of superkritische stromingssituatic de waterbeweging en
morfologie te ontkoppelen.

Voor praktische toepassingen waardevolle één-dimensionale morfologische
berekeningen met behulp van een numeriek schema van het Lax-Wendroff type
zijn alleen mogelijk wanneer gebruik wordt gemaakt van een kunstmatige viscosi-
teit, bij voorkeur een type met "Toral Variation Diminishing" eigenschappen.

De waterstanden ter plaatse van een watersprong, berekend met een één-
dimensionaal numeriek shock-capturing model worden door Rahman en Chaudry
(1993) ten onrechte vergeleken met metingen.
M. Rahman and M.H. Chaudry (1995) Simulation of hydraulic jump with
grid adaptation. J. Hydraulic Research, IAHR, Vol.33, No.4, p.555.

De ontbrekende fundamentele schakel in het kwantificeren van dichtheidsstromen
van sediment is een voldoende geverifieerd wiskundig model voor de sediment-
water interactie.

Het spoelen van fijn sediment door middel van dichtheidsstromen kan als een zeer
efficiénte hydraulische methode worden beschouwd om de trap-efficiency van een
stuwmeer te reduceren.

In tegenstelling tot de gangbare veronderstelling worden negatieve economische,
sociale, morfologische en milieu effecten niet alleen veroorzaakt door de stuwdam,
maar vooral door het bijbehorende stuwmeer.

Als gevolg van de trendmatige groei van het aantal kleine stuwmeren, is een
aanzienlijk grotere investering vereist in onderzoek naar reservoir sedimentatie.

Het falen van de satellieten in een baan om de planeet Mars kan door rivier-
morfologen als een teleurstelling worden ervaren.
Baker, V.R. (1982) The channels of Mars, Univ. of Texas Press, Austina,
Texas, USA.

Met de huidige techniek kunnen wiskundige modellen kernproeven niet geheel
vervangen. Daarom zal de vraag naar aanvullende empirische informatie leiden tot
hervatting van kernproeven.

Naast de kwaliteit bepaalt helaas vooral de presentatie de waardering voor de op
een congres gepresenteerde wetenschapsresultaten.
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De voortdurende speurtocht naar de oorsprong van het heelal wordt gevoed door
het "eindig" denken van de mens.

Voor de westerse wereld wordt de armoede in ontwikkelingslanden duidelijker
naarmate deze landen verwestelijken.

Een sterke bevordering van de economische ontwikkeling van Kaapverdié€ zal zich
voordoen wanneer de monopoliepositie van de nationale luchtvaartmaatschappij
wordt doorbroken.

In het aanbieden van videorecorders met drie knappe (weergave-)koppen aan de
consument wordt door de industrie voorbij gegaan aan de noodzaak voor een
vierde knappe kop voor de bediening van het apparaat.
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Abstract

Due to sedimentation processes, reservoirs designed to store, use and regulate river
runoff are loosing their capacity, and are therefore seriously threatened in their
performance. To master the reservoir-sedimentation issues the endeavour to a good
prediction of the processes, and to a better understanding of the reservoir behaviour
is essential. From these processes a more profound study is made of turbidity
currents in reservoirs. These suspension underflows are able to carry fine
sediments towards the dam where they can be sluiced out, reducing the deposition
rate. In this thesis the properties and development of such turbidity currents are
studied by means of a two-dimensional depth-averaged (2-DH) two-layer
mathematical model. The model is developed as a blend of conventional approaches
and state-of-the-art techniques. To analyze the structure of solutions of the 2-DH
model and an equivalent one-dimensional (1-D) model the method of characteristics
is used. Further, after studying density-current fronts and internal jumps, some 1-D
and 2-DH analytical solutions are used to gain insight in the mechanics of the
propagating turbidity current, and to verify numerical solutions. For the 1-D
approach a numerical finite-difference technique (based on MacCormack’s scheme)
is adopted, which is also applicable to simulate the fronts and jumps in the
propagating density current. Some of the used numerical procedures were found to
be also very useful in computing morphological processes in an open channel flow.
For testing and verification the numerical model is applied to some laboratory
experiments and field observations.

Samenvatting

Sedimentatie in stuwmeren

Stuwmeren ontworpen om rivierafvoeren te bergen, te benutten, en te reguleren,
verliezen hun capaciteit door aanzandingsprocessen. Hun functie wordt daardoor
ernstig bedreigd. Om deze reservoir-sedimentatie problematiek te bestrijden is het
essentieel te streven naar een goede voorspelling van de processen en naar meer
inzicht in de werking van stuwmeren. Uit deze processen is een meer diepgaande
studie verricht naar suspensie dichtheidsstromen in reservoirs. Dit type
dichtheidsstromen is in staat fijn sediment naar de dam te voeren, waarna het kan
worden geloosd zodat de hoeveelheid aanzanding wordt gereduceerd. In dit
proefschrift zijn de eigenschappen en de ontwikkeling van zulke dichtheidsstromen
van gesuspendeerd sediment bestudeerd met behulp van een wiskundig twee-
dimensionaal dieptegemiddeld (2-DH) twee-lagen model. Het model is gebaseerd
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op een combinatie van traditionele en nieuwe technieken. De "karakteristieken
methode” is gebruikt om de structuur van de oplossingen van dit 2-DH model en
een overeenkomstig één-dimensionaal (1-D) model te analyseren. Na het bestuderen
van interne fronten en sprongen zijn vervolgens enkele 1-D en 2-DH analytische
oplossingen bestudeerd om inzicht te krijgen in de mechanica van het
voortplantende suspensiefront, en voor verificatie van numerieke oplossingen. Voor
de 1-D aanpak is een numerieke eindige-differentie methode (op basis van het
MacCormack schema) gekozen, die ook toepasbaar is voor het simuleren van de
interne fronten en sprongen in de ontwikkelende dichtheidsstroom. Een deel van de
numerieke methoden bleek ook bruikbaar te zijn voor het berekenen van
morfologische processen in open waterlopen. Voor toetsing en verificatie is het
numerieke model toegepast voor enkele laboratorium experimenten en
veldwaarnemingen.
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Chapter 1

Introduction

1.1 General

Reservoirs designed to store river runoff are seriously threatened in their
performance by sedimentation processes, which is a natural consequence of
interrupting the river course. The quiescent pool behind the dam generates
favourable conditions for particle settling, such that important storage capacity is
lost. Replacement of this lost storage and construction of new reservoirs to satisfy
the increasing demand becomes more difficult due to constraints imposed by
environmental, social, political and environmental concerns. Therefore a growing
research effort is made to minimize the trap efficiency of reservoirs and to
maximize the long-term storage volume. Engineers are challenged by the difficult
questions emerging. How to incorporate reservoir problems in feasibility studies
(cost-benefit analyses) including environmental and technical effects, limitations on
benefit and possible measures? Or what is the impact of sedimentation on the
reservoir performance, and what is the impact of the reservoir on stream-system
morphology? Obviously a good prediction of the processes, and the endeavour to
better understanding of the reservoir behaviour is essential to master the reservoir-
sedimentation issues.

This thesis addresses the problem of reservoir sedimentation from a hydraulic
engineering point of view. This means that the study focuses primarily on the flow
and sediment-transport processes in a reservoir, with only few extensions to other
themes. In the following sections it is shown that the many geophysical processes
which are involved in deposition and distribution of the sediments are complex and
often poorly understood. Therefore any reliable quantification of detailed
sedimentation processes can exist only if we are able to simulate all the
mechanisms using appropriate models. Anticipating on the reduction of the
deposition rate a choice is made for a more profound investigation of turbidity
currents, i.e., density currents caused by sediment suspensions. Turbidity currents
occur when the river inflow contains sufficient suspended particles to plunge below
the clear and quiescent reservoir water, after which it continues as a dense
underflow capable of transporting the sediments over long distances. If the current
can reach the dam it can be effectively used to sluice fine sediments through the



reservoir if it is released through bottom outlets in the dam.

To gain more insight in the behaviour and physics of turbidity currents in
reservoirs a mathematical model is presented in chapter 2. The nature of these
currents allows for a two-layer stratified-flow model which is presented in a 2-DH
(depth-integrated) form and consists of balance equations for momentum and for
mass of sediment and fluid of a turbulent underflow in a ambient fluid of finite
depth. To quantify the flow and sediment structure of these currents, required for
closure of the depth-integrated model, an additional semi-empirical model is
developed based on laboratory and field data. Furthermore some relations for
physically important mechanisms as friction and interfacial mixing are proposed
and evaluated. The analogy between turbidity currents and other types of density
currents (e.g., saline currents) is here an important postulate.

In chapter 3 the mathematical model, consisting of a number of partial differential
equations, is further examined using the method of characteristics. It is shown how
disturbances develop in the solution as physically relevant wave fronts, inherent to
the hyperbolic character of the basic equations. On basis of these results important
criteria, limitations and simplifications of the model are detected which are valuable
for other types of 2-D models as well. As the characteristics are a fundamental part
of the solution they play an important role in the analytical and numerical
approaches in the following chapters.

It is not a universal fact that gravity currents developing in reservoirs are smooth.
Usually they are characterized by various discontinuities such as internal hydraulic
Jjumps and naturally the advancing front or head of the current. The computation of
the front is relevant to approximate when or whether it reaches the dam where it
can be vented. In the model these phenomena can be represented with partially
empirical shock-relations which act as internal boundary conditions. In chapter 4 it
is shown that alternatively, by rewriting the 1-D basic equations, the front (and
other shocks) can be captured properly as discontinuous solutions or shock waves
of the mathematical model. Theoretical considerations on these shock relations are
given for 1-D as well as for 2-D fronts. In chapter 5 the complete discontinuous
solution for the two layer model (in a somewhat simplified form) is studied
analytically for self-similar density currents. Both for 1-D plane and 2-D radial
developing underflows these exact solutions are analyzed and explained. Self-
similar solutions are especially meaningful for verification of the numerical method
presented in chapter 6.

Although important insight can be obtained from this analytical approach for the
simplified model, a numerical approach is required to solve the complete non-linear
and non-homogeneous model. The methodology to compute 1-D discontinuous
turbidity currents is the topic of chapter 6. A numerical shock-capturing scheme is
chosen after a review of available schemes from Computational Fluid Dynamics.



Furthermore special attention is paid to artificial viscosity techniques, boundary-
value treatment and certain numerical tricks to optimize accuracy and stability of
the computations. Some test cases for the 1-D numerical model are presented in
chapter 7 to validate the two-layer approach.

1.2 Storage reservoirs and reservoir-sedimentation issues

For thousands of years dams have ensured an important supply of water for
domestic usage, irrigation, energy generation and other purposes (e.g., Sloff,
1991). Reservoirs behind the dams store the unstable flood waters of the river
runoff increasing and conserving the manageable and stable amount of fresh water.
Furthermore they create head for hydro-electric power generation (often referred to
as white coal, and presently responsible for about 20% of the worlds primary
electric energy production) which is often a primary motivation to their design.
Over the last hundred years the number of dams has increased from 1000 to over
36000, of which 85 % was built in the last 40 years (Veltrop, 1991). About 80 %
of these dams are between 15 and 30 m high, about 15 % between 30 and 60 m,
and about 5 % exceeds the 60 m (up till 300 m). The total amount of water which
can be stored in these reservoirs is about 5500 km?* of which one-third is dead
storage and cannot be used. A large growth of reservoir volume and the number of
dams is expected for the coming decades, related to the fast economic
development, growth of the world population and the expanding irrigated
agriculture (Osborne, 1995, Velirop, 1991). On the other hand a growing
resistance of environmental, social, cultural, political and economical nature
imposes important constraints on the construction of new dams. The awareness of
the serious impacts of reservoirs also imposes responsibilities to engineers,
although they will not be able to sufficiently satisfy all (often conflicting) interests.

A serious threat to available storage is imposed by reservoir sedimentation. The
annual loss of storage in reservoirs is roughly 1% corresponding to a about 50 km’
world wide (Mahmood, 1987). Some reservoirs have a much higher storage loss,
e.g., the Sanmenxia Reservoir in China looses about 1.7% yearly, the Sefid-Rud
reservoir in Iran about 2%, and the Welbedacht reservoir in South Africa looses
about 5% of its capacity. In the meantime significant transformations can occur in
the streamn basin due to the redistribution of sediments and discharges. Sloff (1991)
reviewed these phenomena by means of a survey of the scattered literature in order
to find the remaining gaps in the applied theory. Theoretical approaches are here
desired to estimate the sedimentation threat and even to reconsider the design. In
the past highly empirical models were used for this purpose, but often resulted
(sometimes deliberately) in an underestimation of the actual sedimentation rate.



This can be ascribed to failing theory as well as to a lack of data. For instance
sedimentation rates of the Sefid-Rud reservoir in north-west Iran can be estimated
with a 60 years old highly empirical approach (Tolouie et al., 1993) to be about
35-10° m*/a. However, after construction (in 1962) the measured rate was about
45-10° m’/a causing a storage loss of over 30% in 1980. The original predicted
useful reservoir life of one century based on old data, was found to be actually
about 30 years (Pazwash, 1982). Not until 1980 flushing operations were started
which were able to regain about 7% of the lost capacity.

topset bed
plunge point Dam
foreset bed :

/ d
Delta
(coarse sediment)

bottomset bed
(fine sediment)

ure 1.1 Schematic presentation of

fed storage reservoirs.

Figure 1.1 shows the principle processes involved with sedimentation in a storage
reservoir as treated in Sloff (1991). The distribution principles of these sediments
in the reservoir and the associated river reach can be subdivided into four groups
which will be summarized in the following. Note that the grain-size distribution of
river sediments is an essential feature in these processes.

Coarse sediments and deltaic deposits

Mainly the coarse sediment fractions are deposited in the head of the reservoir by
backwater effects during high discharges, forming a delta. Successively the most
upstream part is called the tail reach (transition from river to delta), the middle part
is called topset bed (with a practically constant slope, about 1/2 to 2/3 times the
original bed slope), and the lower part is called foreset bed (with a slope about 6%




to 100 times the topset slope). In this profile the delta proceeds into the reservoir
while the foreset slope can be considered as a front which appears as an area of
instability and slumping. A simple 1-D computational example for an advancing
delta is given in figure 1.2. It is computed using the model presented in this thesis
(Chapter 6) using uniform sediment, a constant width, and a constant inflow. A
similar result was reported by Hotchkiss and Parker (1991).

40
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Figure 1.2 Example of a delta development due to backwater effects in a 1-D
reservoir with uniform sediment and fixed lake level.

When the delta toe reaches the dam the slumping of the delta face can block the
entrance to the bottom outlets. Deltaic deposits may result in unattractive swamps
(in combination with fine sediments), and extend the backwater and sedimentation
effect further upstream (see also figure 1.2). The latter effect will cause for
instance an increased flooding risk, silting up of harbours in the upper reach, and
problems for navigation by shoaling and by less clearance below bridges.
Furthermore an adaptation of the river regime may occur where for instance a
braided channel becomes a single meandering stream, such that important branches
for navigation can disappear (Vanoni, 1977).

Some interesting features can be observed in reservoir deltas. During pool
drawdowns a channel is created in the deposits by retrogressive erosion. Its slope
approaches that of the original river bed. Furthermore a clear sorting effect is seen
where the topset slope continues into the foreset slope (Fan & Morris, 1992a,
Schoklitsch, 1935). At this point an abrupt change develops from gravel to sand,
which is also common in natural streams and has often been associated with
pronounced bimodality in the bed material (Poalo et al., 1992).

The complex morphological development of the delta is highly dependent on the
stochastic riverine inflow parameters, sediment properties, the shape of the valley,
and the operation of the reservoir. Since input data are usually insufficient, and
since the actual physics cannot be modelled accurately (mainly empirically) it is
still difficult to obtain reliable predictions on the delta development.



Fine sediments in homogeneous flow

A large part of the fine sediments transported in suspension or as washload are
transported beyond the delta after which they settle out to form the bottomset bed.
They are more evenly spread than coarse sediment, but there distribution is highly
dependent on reservoir circulation and stratification, for instance generated by river
inflow and wind shear, or precluded by an ice cover. Also for this type of
deposition the quantification methods still yield rough predictions.

In case of cohesive sediments, consolidation and the pattern of shrinkage cracks
formed during filling and emptying of the reservoir may result in a impermeable
blanket which is strong and dense enough to resist erosion (this feature can also be
found on the delta, but to a lesser extent). The effectiveness of desiltation methods
is reduced by these phenomena.

Turbidity currents

Another important transport mode for fine sediments, i.e., silt and clay, is the
turbidity current. It is formed when the turbid river inflow plunges below the clear
reservoir water and continues as a density underflow. Also other processes can
generate them, such as underwater slides (slumping of delta front) or coastal
erosion. Turbidity currents are driven by an excess gravity force (negative
buoyancy) due to the presence of sediment-laden water in a clear ambient fluid.
These low velocity currents are capable of transporting large quantities of sediment
over long distances. Not all reservoir researchers were convinced of their
importance, as they have often been considered as rare events. On the other hand,
the abundance of evidence in literature, indicates that turbidity currents become
more and more accepted as potential measure to reduce sedimentation although
their contribution is less than deltaic deposit processes (usually they create large
mud deposits, turbites, in front of the dam). Examples of field studies in lakes and
reservoirs are for instance Chikita (1989, 1992), Chikita et al. (1991), Fan (1986,
1991), Gould (1960), Lambert and Giovanoli (1988), Nizery and Bonnin (1953),
Normark and Dickenson (1976), Smith et al.(1964), and Weirich (1984). Some
well-known field studies from oceans and seas are for instance Hay et al.(1982),
Heezen and Ewing (1952), Inman et al.(1976), Prior et al. (1987), and Shepard et
al.(1977).

In many reservoirs the formation of a turbidity current is a well known spectacle
with the lake-shore residents, since the plunge point is clearly marked on the
reservoir surface by a dividing line of clear and turbid water covered with
driftwood and debris. It can be seen in large Chinese reservoirs, but also in Europe
and other places, for instance where the river Rhine enters the Bodensee
(Schoklitsch, 1935). The plunge point is usually located near the transition of topset




and foreset beds on the delta (Fan & Morris, 1992a, Chikita, 1991), and constitutes
a complex and rapid 3-D flow variation with noticeable fluid mixing. Downstream
of this point the current follows the river channel or spreads over the bottom as a
dense layer advanced by a front. Meanwhile a reverse flow or circulation is formed
in the reservoir which meets the river flow at the plunge point. It provides the
pressure necessary to arrest the plunge point. More details on the typical structure
of the turbidity current and its front are treated later in this thesis.

Downstream river sediments

Since sediments are trapped and discharges are regulated by the reservoir the
downstream reaches are exposed to significant morphological changes (Sloff,
1991). A decrease in sediment supply causes degradation and bank erosion as the
riverbed slope decreases over long distances (Bruk, 1985). An example of erosion
downstream and sedimentation upstream is given in figure 1.3, resulting from
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Figure 1.3 Measured bed variations due to heightening of a dam in the Yuba
river (below Parks Bar bridge) after Schoklitsch (1935).

heightening a dam in the Yuba river in the USA (Schoklitsch, 1935). Erosion of
the river bed may have various negative consequences, for instance the drying up
of irrigation-water intakes, failure of bridge piers, lowering of groundwater table,
and retreat of the river delta. On the other hand the riverbed and water depth
stabilizes, for instance by changing from regime from a braided to single-channel
river, which is favourable for navigation (Zhang & Qian, 1985). Note that
especially coarse sediments are trapped, hence changing the grain-size distribution
in the river. Degradation effects are counteracted by the effect of the modified
discharge regime. Reduction of flood peaks, with erosive ability, is characterised



by a net aggradation of the downstream reach. Whether degradation or aggradation

dominates is highly uncertain, but anyway, in both cases the river will change
noticeably.

The processes and impacts described here comprise the most important reservoir-
sedimentation issues. Other processes, such as sedimentation by tributaries and rare
events like landslides and mud flows are not further discussed here. To minimize
their sedimentation threat to storage reservoirs it is necessary to understand the
mechanisms and to invent appropriate counter measures. Furthermore the continued
construction of new reservoirs and the conservation of existing reservoirs
necessitates careful planning and operation, particularly when realizing that not the
dam provokes the impacts, but that reservoirs do. In the following section the most
popular methods for mitigation of reservoir-sedimentation problems are discussed.

1.3 Methods to preserve reservoir capacity

Without any mitigating measures the viability of many reservoirs is questionable, as
the impacts and losses are not balanced by the profits. The most important motive
to use strategies for controlling reservoir sedimentation still is the preservation of
reservoir storage (especially if appropriate sites for replacement are unavailable),
but impacts up- and downstream of the reservoir gain more consideration now. The
commonly applied measures can be subdivided in three groups (Brown, 1943, Fan,
1985, Fan & Morris, 1992b, and Sloff, 1991):

- Methods to reduce the inflow of seduueni inio ilie reservoir, e.g., by means
of erosion control in the catchment, or by means of bypassing of sediment-
laden flows. Fighting the problem at its cause through reduction of sediment
yield from the basin can be very effective. Nevertheless, it can also become
very expensive, and it will become effective in the long run only.

- Methods using the hydraulics of the flow to reduce accumulation of
sediments, or to induce erosion of accumulated material (sluicing and
flushing). Therefore operation of the reservoir has to be adapted. In many
reservoirs this is the most attractive way to reduce sedimentation.

- Methods based on hydraulic dredging and mechanical excavation. This is an
often used efficient alternative but a very costly one. Disposal of the
sediment usually imposes severe constraints. A most promising technique
seems the use of available head difference, i.e. syphon-dredging systems, to
evacuate sediments (Scheuerlein, 1987).

Hydraulic methods (second group) are the most interesting techniques for hydraulic
engineers with interest in morphological processes. Sluicing techniques are defined




as routing sediments through, and releasing them from the reservoir while keeping
them in suspension. Flushing techniques are defined as erosion of deposits by
increased flow velocities. Both these approaches require substantial and long
drawdown of water levels, involving great losses, and they require large bottom
sluices. Their application is restricted to small and middle-sized reservoirs (Ackers
& Thompson, 1987). A third technique which is not attended with these drawbacks
is venting of density currents, which are able to transport sediments single-
handedly to the dam. When the front of the current reaches the dam the bottom
outlets can be opened to vent the turbid underflow.

Flushing and sluicing are old techniques which have proven their value for many
reservoirs. During sluicing operations the reservoir is partially emptied for creating
sufficient shear to sustain suspension. Under optimal conditions it is possible to
arrest further sedimentation, as even small amounts of newly deposited sediments
can be eroded. Since the highest sediment concentrations are found in the rising
limb of the flood hydrograph at the beginning of the wet season (Fan & Morris,
1992b, Ackers & Thompson, 1987), it is most effective to sluice these flows
through the nearly empty reservoir and to start the refilling with the less turbid
water following the peak. Two early successful examples of this type of sluicing
are the Old Aswan dam on the Nile river in Egypt (Mahmood, 1987) and the
Bhatgarh dam in India (Brown, 1943). As an extension of sluicing operations,
recovering part of the lost storage is only possible by flushing operations in which
the reservoir surface is fully drawn down. During these operations a channel is
formed in the deposits primarily by means of retrogressive erosion, while flood-
plain deposits are hardly affected (their build-up can only be delayed). After some
period the initially unstable channel reaches some kind of equilibrium state after
which flushing is completed. Clearly such techniques, which produce riverine
conditions, are most effective in small or gorge-type reservoirs.

Effective flushing operations were reported for instance by Tolouie et al. (1993)
where about 7% of the original capacity of the Sefid-Rud reservoir in Iran could be
regained. They proposed a further improvement by pumping water into the
consolidated flood-plain deposits to encourage their erosion through the piping
mechanism. Also Schoklitsch (1935) presents some examples of flushing, but
underlines the negative environmental impacts to the downstream reach due to the
sudden release of sediment-laden flow (see also Sloff, 1991). With this warning in
1935 Schoklitsch was apparently far ahead of his time. Other successful flushing
operations, mainly in China are discussed by Fan (1985) and Fan & Morris
(1992b). These experiences show that flushing should be performed periodically,
and complete drawdown is essential (otherwise only a small flushing cone is
obtained, Scheuerlein, 1987). Still various improvements and variations of the
technique are possible, such as using highly unsteady flows or moving sediments
from active storage to dead storage.



Flushing and sluicing operations are best be considered during the design of the
dam and the operating rules, although flexibility is necessary as future variations in
the imposed conditions are uncertain. For successful flushing it is necessary that
bottom outlets (usually tunnel-type) do not become clogged. Di Silvio (1990)
showed that the initial and final phases of the operation are most critical for the
occurrence of permanent clogging. To avoid this, the cross section of tunnel and
gates must be sufficiently large and the operation of the gate must be well thought-
out. Di Silvio showed that masses of sediment (*dunes’) from the collapsing banks
of the flushing channel may lead to temporary clogging, but usually they are
washed away after the reservoir level rises.

If turbidity currents are occurring or likely to occur on a regular basis it is
attractive to sluice them out, especially for large reservoirs where water-level
drawdown yields unacceptable water losses. The formation of a turbid underflow
and its ability to reach the dam requires a concentrated inflow of fine sediments, a
sufficient depth and bed slope, and a smooth bottom. The last smooth-bed criteria
compels some pre-conditioning of the reservoir, for instance the removal of trees,
sills, and other obstacles. Favourable for propagation is the presence of a channel
which is either the original river channel or a flushing channel.
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Figure 1.4  Measured turbidity current in Sanmenxia reservoir (China) during 16-
18 August 1961 (after Bruk, 1985).

‘A very effective example of density-current venting is reported by Duquennois
(1956) where 45% of the incoming sediment load was released from the Iril Emda
reservoir in Algeria. Other examples, especially from China, indicate ratios of silt
discharges to silt inflow ranging from 18 to 36% (Fan, 1985, Fan & Morris,
1992b). In figure 1.4 an example is given of a density current vented from the
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Sanmenxia reservoir in China. A typical detail in this figure is the submerged dam
about 15 km upstream of the dam site (caused by a bank failure). It appeared that
the mud was piled up in front of the submerged dam, before it could flow over and
reach the dam. Sometimes it is suggested to wait with sluicing until a muddy pool
(fluid mud) is formed behind the dam, which is vented afterwards before it
consolidates.

At present (1996) the knowledge about turbidity currents in reservoirs is limited
and sluicing techniques are highly empirical. Since it is much less investigated than
other processes and techniques, we have chosen to make a more profound study of
the physics and modelling techniques for these currents. In the following section a
short introduction is given to general modelling techniques to assess reservoir-
sedimentation processes. After that, in the following chapters, the results of our
model study for turbid underflows is treated.

1.4 Modelling techniques

For sake of fighting the reservoir-sedimentation problems a need exists for
quantification of the processes. Prediction of capacity losses, impacts on the
stream, and distribution of sediments, as well as the efficiency of mitigating
measures require modelling techniques which can be used to determine operating
rules and feasibility demands of the project. In the previous sections it is shown
that various complex and coupled mechanisms determine the issues. Furthermore
we are dealing with large uncertainties in measured and forecasted data. For
instance the sediment yield, which is the source of all sedimentation problems can
usually not be predicted accurately and with sufficient detail. Early modelling
attempts have often proved to be unreliable, which forced engineers to put a
significant effort in inventing more sophisticated approaches.

The most expensive but most appealing type of models are the scale models in a
hydraulic laboratory. Unfortunately complete similarity between the prototype and
model cannot be achieved due to the variance in scale effects when studying
different processes at once (De Vries, 1993). Although for certain 3-D processes
(e.g. delta formation, design of outlets) scale models are more trustworthy than
available mathematical models, they are not widely used. Instead a growing interest
is paid to computational modelling.

Based on experiences from many existing reservoirs a number of empirical

techniques have been devised which have become very popular among engineers.
The most simple group of empirical methods are developed some decades ago to
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predict the trap efficiency of reservoirs (the ratio of incoming sediment load that is
used to give a quick approximation of storage loss, but are certainly not suitable
for design purposes. Brune’s (1953) and Churchill’s (1948) graphical methods are
often recommended (Graf, 1984). There are more complex empirical relations
which also account for the distribution of the sediments, notably the deltaic
deposits. Some methods are referred to by Graf (1984) and Sloff (1991) but still
they are highly inaccurate.

When the empirical models became more complex due to inclusion of physics the
engineers and scientists began to switch to mathematical modelling of
hydrodynamic and morphological processes. Presently this type of modelling is
most common and popular to study reservoir sedimentation. Most of these models
are still 1-D, especially when predicting long-term morphological behaviour. On
the other hand 2-D and 3-D models are used more often to study hydrodynamic
processes in the reservoir such as thermal stratification. When switching from 1-D
to higher dimensions some of the remaining empiricism (for closure) can be
eliminated, but other difficulties of physical and mathematical nature appear.

A state of the art review of applied methodology given by Sloff (1991), for
mathematical modelling of sedimentation in reservoirs, revealed the main gaps in
the present knowledge. This study resulted in various recommendations for further
research and engineering applications. The different processes, described in the
previous section, still require different approaches and different simplifications. For
instance to model delta formation it is at least necessary, even essential, to consider
the unsteady inflow hydrograph, reservoir operation (lake level and flushing), and
sorting effects of sediment. On the other hand, the high uncertainties in available
data and sediment yield still do not fully justify the effort to implement more
detailed feamres, such as the formation of distributary channels, wave action and
other fully 3-D actions. In reviewing literature the most promising results can be
obtained (economically) using the most advanced 1-D or 2-D morphological
models, preferably in combination with statistical analyses and notably with reliable
methods for predicting sediment yield. A similar argumentation applies for the
methodology to model other processes which are relevant for reservoir
sedimentation, particularly if one realizes that these models are primarily used to
support decisions for reservoir design and operation.

The literature study presented in Sloff (1991) and the considerations above led to a
choice to develop a model for turbidity currents in reservoirs. Initially also the
challenging and relevant topics of delta formation and drawdown flushing
-mechanics were selected, but successfulness of modelling these phenomena (e.g.,
channel erosion) is doubtful since their basic mechanisms are not well understood
and described. The goal of this research is to develop a model to study the
development of turbidity currents in reservoirs, and to asses their physics. The
results are primarily derived for research purposes and discussed in the following
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chapters. It was found that the most important limitation of this approach is the
lack of good field data, which is a problem inherent to the phenomenon.
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Chapter 2

Mathematical model

2.1 Introduction

Hydrodynamic and morphological processes in reservoirs are very complex and
irregular, and many phenomena are poorly understood and described. This makes it
impossible to give an exact and complete quantification of sedimentation with the
present state of technology, especially when appreciating the defects of the
available data. To make a contribution to the understanding of at least one of these
phenomena, we have decided initially that this study focuses on modelling
reservoirs where turbidity currents are to be expected. In the following a choice is
made for the type of model starting from an evaluation of the present state of
mathematical modelling techniques. Then, in section 2.2, the full basic equations
for water and sediment of the chosen model from Sloff (1994a) are presented,
together with the basic assumptions and relevant simplifications. To asses the
problem of correctly representing the convective-diffusive behaviour of suspend-
sediment the commendable approach of Galappatti (1983) and Galappatti and
Vreugdenhil (1985) is applied for the underflow, which is treated in section 2.3.
Additionally, closure relations are required for flow structure and sediment
transport, which is of course an inevitable consequence of schematization and
integration. The partially empirical, partially theoretical study of these relations is
discussed in section 2.4, while some special considerations are given on interfacial
mixing and boundary friction in section 2.5.

Most models for turbid underflows are in some way analogous to models for
conservative saline and thermal density currents for which a lot of references
exists. By contrast to the latter the sediment in a turbidity current is in general a
non-conservative contaminant. Sediments can be entrained and deposited at the bed,
thus changing the total amount of sediments in suspension. For a swift turbidity
flow on a steep slope the net pick-up of sediments increases its negative buoyancy
through which it accelerates and picks-up more sediments. Although this is a
credible phenomenon, most turbidity currents in reservoirs are of a net depositing
nature with relatively low velocities and low densities. Contrary to self-accelerating
turbidity currents are those which loose their transport energy and eventually die
out by settling of particles. Clearly the dynamic interactions between sediment
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exchange, sediment suspension, mean flow and turbulence are very delicate, hence
turbidity-current modelling is much more difficult than modelling of open-channel
flow or conservative density currents. To quantify the underflow it is important to
realize that it is originating and determined by the integral behaviour of the fluid
and sediment mixture. A different behaviour than individual particles is due to their
aggregation and the resulting mutual interactions between the particles. In many
matters this is a common feature. For instance a single water molecule does not
exhibit a boiling point, as this is an effect of collectivity of the molecules.

Early models such as that of Hinze (1960) and Keunen (1951, 1952) are based on a
rather crude simplification of the integral flow assuming uniform layer depth with
steady-state characteristics. The resulting model is a Chézy-type equation also
called a ’slab’ model due to the absence of space-differentials. Also the model of
Plapp and Mitchell (1960) was formulated for a steady-state, but their approach
included space differentials. Unfortunately these models are failing to correctly
describe the sediment-flow interaction and the overall unsteadiness of the flow.
More advanced mathematical models are required to achieve this.

One of the most relevant advances in turbidity-current modelling techniques is due
to Bagnold (1962) with the formulation of the energy-based auto-suspension
principle, which assesses the question why (fully turbulent) turbidity currents are
able to maintain themselves. Irrespective the exact physical mechanisms he
considered the energetics of the current (extending Knapp’s concept, 1938), and
developed a simple model based on the power provided by gravity, counteracted by
power needed to maintain suspension and power expended against bottom friction
(empirically). To correct some over-simplifications and deficiencies, improvements
or alternatives to Bagnold’s model were suggested by various researchers (e.g.,
Pantin, 1979, Pallesen, 1983). For instance Pantin corrected the auto-suspension
criterium by coupling the power for supporting suspension to the power to maintain
turbulence by bed friction, and by including the power expended on the bed load.
Pantin and later Parker et al. (1986) used the corrected Bagnold approach for
closure of sediment transport in their layer models. These applications showed that
the energy approach seems especially useful for modelling highly erosive self-
accelerating underflows, where sediment entrainment is coupled to available
turbulent kinetic energy rather than to bed-shear stresses. However, the superiority
of this approach to other models cannot be proved for low-velocity depositing
turbidity currents. There is no direct evidence (at most circumstantial) that
sediment-flow interaction in nature obeys these energy considerations, particulary
when considering that many other often neglected factors (unsteadiness, interfacial
mixing, ambient flow, bed forms, etc.) also contribute to the energy balance in a
very complex way.

Whereas 1-D layer models are still the most commonly used (e.g., Akiyama &
Stefan, 1985, 1988, Hay, 1987, Graf, 1983b) there are some extensions to 2-DV
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approaches (transversally averaged). Stacey and Bowen (1988a) presented a 2-DV
model based on the mixing length theory. Some of their results on turbulence
characteristics are used for our model as well in section 2.4. More sophisticated
and promising is the 2-DV model of Brérs and Eidsvik (1989) and Eidsvik and
Brérs (1989) which uses dynamic turbulence modelling. Also for these models the
delicate flow-sediment interaction and the lack of data delays the progress, and still
impede a justified extension to 3-D. Similarity in modelling turbid flow in
sedimentation basins for sewer systems can be used as a reference for further
research (e.g., Devantier and Larock, 1987).

Considering this overview of existing models it can be observed that there is still
need for improvement. Most layer models are still limited to 1-D and one layer
(turbidity current entering a infinitely deep ambient fluid), or they do not account
for shocks. Although their simplicity compared to a fully 2-DV or 3-D model is
obvious, the price to be paid for simplicity is the requirement of empirical closure
relations to describe physical processes which are still rather obscure. On the other
hand, the much more advanced turbulence models for 2-DV and 3-D approaches
are only in a very early stage of development (with respect to sediment-fluid
interaction) and at the time (in 1991) their superiority over layer models could not
be proved. For reservoir sedimentation we have finally chosen, in agreement with
observed stratification, to develop a two-layer model with a clear quiescent upper
layer and a turbulent dense lower layer which is free to exchange sediment with the
bed. The derivation of this model and the required closure relations is treated in
Sloff (1994a). In the following sections a summary is given of this study.

2.2 Basic equations for a 2-DH two-layer model

2.2.1 General model

To schematize the complex 3-D dynamics of a turbidity current into a reservoir an
unsteady two-layer model can be used, which is derived by depth-integration of the
3-D hydrodynamic equations for water-sediment mixtures. In Sloff (1994a) a
complete derivation of this model is treated following the approach presented by
Sloff (1993a) for 1-D sediment-laden flows in unstratified channels. For generality
and to capture spreading effects of the underflow it was kept 2-D in plan by only
applying depth-averaging. Furthermore the effects of large concentrations were
retained in the equations, provided that the flow remains turbulent, and only
afterwards they were neglected by adopting the Boussinesq approximation (defined
later in this section). Equations of mass and momentum for fluid and sediment
were determined by means of depth-integration of Reynolds equations for four
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contiguous sub-layers as defined in figure 2.1: a bottom layer consisting of uniform
sediment and pores filled with stagnant water, a bed-load layer close to the bed in
which sediment is transported as bed load, a suspended-load layer extending up to
the density interface in which sediment is transported as suspension, and a clear-
water upper layer. The final two-layer model is formulated by combining the
equations of the three lower layers to one turbid underflow layer.

= \_a
Turbidity current 1 ~» upper layer
interfacef ...
a,: :
2 - suspended-load
: - layer
: bed-load layer
2p bottom layer

Figure 2.1 Definition sketch.

Some of the most important assumptions in these derivations are (Sloff, 1994a):
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The density difference between the layers is small (<5%), but sufficient for
stability of the stratification.

The underflow is fully turbulent (Re, = u,-a,/v > 3000), and turbulence
breakdown (e.g., at large concentrations due to sediment pick-up) is not
considered. Viscous shear stresses are fully neglected, while horizontal
gradients in turbulent shear-stresses are neglected compared to those in
vertical directions (no horizontal diffusion). The Reynolds equations of the
flow are derived using the eddy-viscosity concept (e.g., van Rijn, 1987).
Pressure is assumed to be hydrostatic.

The equations are derived along a tilted coordinate system along the average
reservoir bottom slope. Hence the gravity-acceleration vector is decomposed
to allow for steep slopes in the following way:




g = (8,8,8,) @2.1)

- Bed-load concentrations do not contribute to the motion of the underflow
layer, as their effect on density is negligible compared to suspended load.

- Similarity of velocity and concentration profiles applies for all directions at
every location. The dimensionless shape functions for these profiles are
treated in section 2.4, For shape factors, originating after multiplications of
profiles (e.g., in convection terms), the ’slab’-approximation is used, which
states that these factors are taken equal to unity (Ellison and Turner, 1959).

- At the density interface interfacial mixing and interfacial shear-stress is
imposed, at the bottom a bed shear-stress. These concepts are further
discussed in section 2.4.

- Temporal and spatial variations in the density are small such that an
asymptotic approach can be used to define the depth-integrated suspended-
sediment concentration from the convection-diffusion equation. This method
proposed by Galappatti (Galappatti, 1983, Galappatti and Vreugdenhil, 1985)
and extended to 2-DH models by Wang (1989) accounts for the spatial and
temporal adaptation of suspension profiles to the changing flow conditions.

- Buoyancy effects of interstitial fluid (fluid between particles) of the
underflow are neglected. For instance to model features of warm-water
turbidity currents entering a cold ambient, or fresh-water riverine turbidity
currents entering a coastal environment (e.g., see Hiirzeler et al., 1996).

The resulting system of basic Eulerian equations in general form are presented in
Sloff (1994a, 1994b). It consists of eight partial differential equations which are
non-linear in their dependent variables, but quasi-linear in their derivatives.
Furthermore it is in agreement with Vreugdenhil’s (1979) model for conservative
saline currents, which in turn corresponds to the original often cited model of
Schijf and Schonfeld (1953) if reduced to 1-D. If concentrations and density
differences are neglected the model governs unsteady shallow-water flow on a
mobile bed, which clearly illustrates the generality of the model. In chapter 3 some
insight in the mathematical behaviour of this fully coupled system is given by
studying characteristic propagation phenomena.

The primary closure for the proposed model consists of relations for velocity and
sediment profiles, boundary shear stresses (notably bed-shear), entrainment
velocities (interfacial mixing), bed-load transport and sediment fall-velocity. These
closure relations are treated in section 2.4. In the following sub-sections simplified
versions are presented which are the final basis for the computational model.
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2.2.2 2-DH Boussinesq model

It is quite ambitious to solve and analyze the complete system of equations, since
some simplifications are allowed which make the model much easier to work with.
One of the most commonly applied simplifications in stratified flow modelling for
practical situations is the use of the Boussinesq approximation. It states that density
differences only affect body forces, hence it affects the 3-D Reynolds equations by
taking the density of the fluid-sediment mixture p,, equal to the fluid density p,
everywhere except when multiplied with gravity g (notably in pressure gradients).
Note that formally this simplification is not justified for underflows with higher
density differences than about 5%. For instance, starting from the analogy to open-
channel flows, the results of Sloff (1993a, 1993b) show that high sediment
concentrations noticeably affect wave speeds, flow instability, and morphology.
These effects cannot accurately be resolved if Boussinesq’s approximation is
applied. The resulting equations for the reservoir are listed below (Sloff, 1994a).

Momentum equations (equations of motion) upper layer:

aqu 0 qlzx o qlquy ahs T 2.2)
- Y3 i &Yt — 84 =0 )
ot ox|{ a, oyl a ox Py

1

Oy . 3 (dudy) . 3[4y h, o, 23
+ = +——+ga1~——+_—ga1:0 .
Ot ox| a dy z p y

Mass balance equation (continuity equation) upper layer:

oa, . aq,, . aqu B

w, =0 2.4
a o  dy fe

Momentum equations (equations of motion) lower layer:

2 2
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Mass balance equation of mixture (continuity equation) lower layer:

(_3% + iqg + __._any +w. =0 (27)
ot ox Ay ¢
Sediment balance equation:

(1 )% . O(Spe +S52) . 9(sy, *5,) . da,C, o 2.8)
Pl ot ox dy ot

Modified Galappatti’s equation for suspended-sediment:

we ](Cse _ Cs) 2.9

/
a,T,
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+ +
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The definition of Galappatti’s equation (2.9) and associated coefficients is given in
section 2.3. In case of a fixed-bed model for density currents with small
concentrations of conservative matter (e.g., salt) equation (2.8) can be discarded,
and the following formulation must be used to quantify the dilution effect by
entrainment:

s s K
+ + VY, =
2 2
ot ox

Ay

aC aC ac (W‘f)cs 2.10)

Due to assumptions concerning the turbulence structure and entrainment in section
2.3 equation (2.9) does not converge to equation (2.10) when fall velocities
disappear. This implies that the proposed model is not capable to correctly
represent the mixing effect according to equation (2.10). In section 2.3 we
corrected this by decoupling this effect from the suspension relaxation effect
(without entrainment) such that it can be superimposed on the equation as a source
term.

The following variables were defined (see also figure 2.1):
a,,a, = depth of upper layer and lower layer respectively
C, averaged volumetric suspended-sediment concentration
h water-surface level = z, + @, + g,

Il

s
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Gix Gy = discharge per unit width in x,y-direction in upper layer

Q20 Gy = discharge per unit width in x,y-direction in lower layer
SperShy = bed-load transport in x,y-direction (per unit of width)

SsesSsy = suspended-load transport in x,y-direction (per unit of width)
Wi, = entrainment velocity at the interface (negative by definition)
w, = fall velocity of sediment particles (relative to z-axis)

Z = bed level

6.6, = average bed slope in x,y-direction

€ = porosity of the bed material

o5 = density of water (upper layer)

02 = density of lower layer = p(o'C,+1)

0 = density of sediment particles

a’ = relative sediment density = (p-0)/p;

TeisTyi = shear stress at density interface in x,y-direction

TepsTyp = bed shear-stress in x,y-direction

2.2.3 Decoupling of baroclinic and barotropic flow

In the presented form the system can be solved numerically with appropriate initial
and boundary conditions. However, the significant (computational) effort to achieve
this can be reduced significantly (of the order of ten times as little) by decoupling
baroclinic and barotropic parts. It is shown in chapter 3 how the method of
characteristics of the full system, presented in Sloff (1992, 1994b), revealed a clear
distinction in magnitude and interaction of wave fronts associated to internal waves
and external waves (e.g., at the surface). According to these results it is justified

fAar ocmall A tur £, t mnlify A t
for small density differences to simplify the system by decoupling the internal flow

phenomena, i.e. baroclinic part, from the external flow phenomena, i.e. barotropic
part. External flow is only weakly influenced by density differences and baroclinic
features, which can for instance be illustrated by the insignificance of the water-
surface depression above a intruding gravity-current front. From a computational
point of view this decoupling is particularly attractive since the stability
requirements on the time step (section 6.9) can be relaxed significantly by
eliminating the large barotropic celerities.

Starting from the previously presented non-linear Boussinesq model a full
decoupling is not allowed, but a ’weak-interaction’ form must be derived as is
proposed by Vreugdenhil (1979). This interaction between external and internal
flow can be obtained by defining the following dependent variables:

a +a, =a 2.11)
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Qi T 4, = 4, (2.12)

@, * 4y = 4, (2.13)

The equations for barotropic or external flow are found by adding the basic
(Boussinesq) equations of both layers (Sloff, 1994a). Their final form is obtained
after simplification of convection terms by assuming small density differences and
imposing the stability (or hyperbolicity) requirement for two-layer flow (eq. 3.16).
The baroclinic part of the flow is now affected by the barotropic part by relations
(2.11) to (2.13). By eliminating the gradient of water-surface (a barotropic feature)
through combination of the momentum equations, the baroclinic part of the model
is defined. It is now possible to define different forms of momentum equations by
various combinations of equations of mass and motion. Although this seems a
trivial operation, their weak solutions in discontinuous flows can be seriously
different (see chapter 4), due to non-linear manipulation of derivatives.

2DH decoupled model for the barotropic flow (Sloff. 1994a)

The following 2-DH basic equations for the barotropic (external) flow in the
reservoir are derived by adding equations (2.2) and (2.5), equations (2.3) and
(2.6), and equations (2.4) and (2.7):

oh
J . %(qquJ B S A T
a

ot ox

aq, 3 qf
4+ — —
a

2
Ny , A Lh|, N D|, M T,y @15)
ot ox £y y
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Clearly these relations are the classical shallow-water equations which do not need
further explanation. Any interaction with internal waves and other internal
phenomena is eliminated by neglecting terms with (u,-u,) and (v,-v;) in the
convection relations.

2DH decoupled model for the baroclinic flow (Sloff, 1994a)

The first alternative set of momentum equations which is directly derived from the
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original Boussinesq model is written in terms of ¢ and a and is therefore called the
QA system.

2
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This set of momentum equations is obtained by combination of the original
Boussinesq equations (2.5)-(a,/a,)(2.2) and equations (2.6)-(a,/a,)-(2.3). Hence
water-surface gradients and gravity-acceleration terms are eliminated.

The second alternative set can be obtained in a analogous way, but now ¢ is
decomposed by taking ¢, = w#-a; and g, = v;aq;, and subsequently the time
derivatives of g, in the original momentum equations are eliminated by using the
associated continuity equations (e.g., see Tan Weiyan, 1992, p.38-40). Since

variables are now u and a (and others) the model is called UA system.
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For both sets of momentum equations the continuity equation of the lower layer,
equation (2.7), must be added to complete the baroclinic model. Also equations for
sediment (2.8) and concentration (2.9), (2.10) remain unaltered. The QA4 system
greatly coincides with Vreugdenhil’s (1979) model, and for both models the
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characteristic celerities are accurate. Furthermore it can be shown that the expected
error in computing with the decoupled model is of the order of the density
difference (i.e., ¢'-C,) which is reasonable if compared to the errors introduced for
example by the closure relations for sediment transport. Obviously the interaction
between the external and internal flow weakens if the density difference decreases,
and even allows for a quasi-steady approach were barotropic flow is computed as a
steady flow profile (as proposed in sub-section 6.4.2 on basis of propagation
properties).

In most of the presented models in literature the general Boussinesq model is
simplified to a one-layer model by assuming an infinite ’reservoir’ depth. Through
this assumption the water-surface gradient in the Boussinesq equations can be
discarded from the beginning, hence it is a rigid-lid approach. Also upper-layer
balance equations are not longer necessary. However, Sloff (1994a) showed with a
simple theoretical consideration that only in a really infinite deep reservoir (e.g.,
for submarine canyons) this rigid-lid assumption is justified. Later in this thesis this
postulate is further demonstrated for intruding gravity currents in a shallow ambient
fluid, emphasizing the importance of using a two-layer model to compute turbidity
currents in reservoirs.

2.3 Galappatti’s model for a 2-DH turbidity current

We assume that the transport of suspended sediment in the (turbulent) turbidity
current can be described with the convection-diffusion model which follows from
conservation of mass for a unit volume (Sloff, 1994a, van Rijn, 1987). If, in
combination with appropriate diffusion coefficients, flow velocities and boundary
conditions, this partial differential equation is solved it is possible to describe the
complete concentration field of the 3-D flow. This full solution still requires a
significant computational effort, and notably due to the uncertainty in the near-bed
sediment exchange and the sediment-flow interactions this solution cannot realize a
high level of accuracy. Particularly these last processes, of high uncertainty, are of
vital importance to the (vertically and horizontally) adjustment of concentration
profiles in a turbid underflow which determine the average density of the current at
each point. It is worthwhile to study new approaches, such as Galappatti’s
approach, which can be used in our 2-DH model and which deal with these
uncertainties.

In a straight-on depth-integration of the convection-diffusion equation for the

underflow the adjustment of profiles and average concentrations is replaced by a
sediment-entrainment function, which is different than the original bed-boundary
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condition (Wang, 1989). Such a term is usually an empirical or semi-empirical
which requires calibration, and therefore reduces the predictive power of these
depth-integrated models. Obviously, another more robust approach is needed to
overcome this problem. Galappatti (Galappatti, 1983, Galappatti and Vreugdenhil,
1985) proposed an asymptotic solution to the 1-D convection-diffusion model which
can be used if the deviation of shape of the concentration profile from the shape of
~ the equilibrium profile is small. The depth-integrated form of the equation is found

by substituting an asymptotic solution of the depth-integrated concentration into it,
and by using a concentration or gradient type bed-boundary condition. The depth-
averaged concentration C, is then theoretically determined instead of empirically,
since the convection-diffusion equation is actually solved (although approximately,
only for lower order terms). Consequently the resulting equation for the depth-
averaged suspended-sediment concentration, which we call Galappaiti’s equation,
does not involve any empirical entrainment function, and is therefore much more
robust. Wang (1989) extended the originally 1-D Galappatti’s equation to two-
dimensions, and in this section a further extension of this theory is summarized for
2-D twrbidity currents as derived in Sloff (1994a). The applicability and validity of
the original approach was studied by Wang (1992).

Consider the 3-D convection-diffusion equation for suspended sediment (with
reasonably low concentrations) which is obtained by applying the Reynolds
procedure and the eddy-viscosity concept, and subtracting the continuity equation
for the mixture (of fluid and sediment).

dc, dc, dc, dc, a( de, a( dc,
+u + v +w - —|¢€ - Tty = | T
or ox dy oz ox| T ax ay\ ¥ ay (2.21)
dc, a{ ae,
=w(l-c)— + —le —

oz az\ Tz )

where « is taken equal to zero for low-concentration turbid flows. The sediment-
flow interaction is determined by the sediment mixing coefficients &, &, and the
particle fall velocity w,. After normalizing the equation it can be rewritten in terms
of differential operators

Llc,M)] = Dlc ()] (2.22)
with transformed coordinates
Ws ot E Ws E WS . Z _Zb
T = —(t-t); = x-Xx,) ; = - ; =
az( ) uzaz( ) V202<y Yo) 5 1 a,

and with normalized velocity profiles
v.(%) = u(p)/u, = normalized main flow-velocity profile in x-direction
¥.() = v(#)/v, = normalized main flow-velocity profile in y-direction
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These profiles are formulated theoretically in section 2.4 for turbid underflows.

At the interface no exchange of sediment is assumed which results in the following
boundary condition:

dc dc
gszh—s— * Wscs B wiecs - [E;Z‘A_S + Cs B Cswe/ =0 (223)
oz 5 an f-1
Where w,’ = w,/w, = normalized fluid entrainment coefficient
g, = g,/(wa,) = normalized diffusion coefficient

In the further analysis we considered w,’ very small, but yet it may become
significant since w, is usually very low in silt and clay suspensions. Later in this
section more attention is paid to this problem.

At reference level z, (i.e., 7=%, two types of bed-boundary conditions are
proposed:

* concentration type / Dirichlet type: c, (r‘] :ﬁa) =c (2.24)

* gradient type / Von Neumann type: [6cs/ aﬁ] [ace / 61‘]} . (2.25)

n=1, n=1,

where c,() = C,-ay,(f) is the equilibrium concentration, dy(#%) is the equilibrium
concentration-profile function, and ¢, = ¢,(7,) is the equilibrium bed concentration.
The gradient type condition assumes that at level z, the upward diffusive flux is
only determined by local conditions. Note that the equilibrium condition is easily

obtained by means of integration if all gradients in (2.21) to z,x,y are zero:

oc f i
€ T S;z = =0 < (@) = cexp|- f(?iz) 'di (2.26)
on ey

The required relation which expresses ¢’ as function of the depth, is treated more
completely in sub-section 2.4.5. Also the resulting equilibrium concentration profile
is derived in that sub-section.

Now the theory of Galappatti states that the (approximate) solution of the
convection-diffusion equation can be presented as an asymptotic expansion

¢ =Y (2.27)
j=0

where c; is one order of magnitude smaller than ¢, ,. Galappatti assumed that terms
on the left side of (2.21) are an order of magnitude smaller than on the right hand
side, such that after substitution of this asymptotic solution into (2.22), terms of the
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same order of magnitude can be collected as follows:

Dl 0 for j=0 2.28)
C. = .
/ L[C,q] for j>0

Formally also the boundary conditions should be treated in this manner (see Wang,
1989, 1992), and a bed-boundary condition should be used for each term C;.
However, Galappatti made the important assumption that only the zeroth-order
term contributes to the (yet unknown-) depth-averaged concentration so that the
bed-boundary condition only has to be used once (for ¢,):

1 C, for j=0
f c,dff = (2.29)
A, 0 for j>0

Alternatively Wang (1989) proposed a more general approach by introducing a set
of test functions which we also applied here, such that

1

C. for j=0
(A A) df = 5 2.30
[ erucy ¢ { o for >0 (2.30)
A

In this way the concentration-type bed-boundary condition (2.24) becomes
Ecj(ﬁ =ﬁa) =, (2.31)
j=0

A similar formulation can be used for the gradient-type condition (2.25).
The exact solution to each of the collected terms is defined by applying an inverse
operation on them (or particularly on shape functions for velocity and

concentration). The inverse operator applied to a function g() can be written for
the presented two-layer model (Sloff, 1994a) as:

1
D [g)] = f() = (d(R) -agDw;) [ [——ﬂ——]dﬁ ‘
(2.32)

a | () - dg(yw,
1

- [aidi + 04 d,(h)
b
where constant ¢, follows from
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l:‘a

If the term ay(1)w,” = 0 (zero mixing or zero concentration at the interface), then
this inverse operator is equal to that of Galappatti.

For unsteady 2-DH problems no more than the first-order solution can be applied
in practice (Wang, 1989, 1992): ¢, = ¢, + ¢,. Furthermore we neglect horizontal
diffusion and assume similarity of concentration and velocity in all horizontal
directions (no helical flow). Then the resulting Galappatti equation in terms of an
dimensionless adaptation time and length can be expressed as derived by Sloff
(1994a):

, a, 9C L u,a; oC; L v,a, oC,
— + +

cC -C =T (2.34)
se § “w, o “w oox “w,
where
L = Y2 % = dimensionless adaptation length if a
Yo o, concentration-type bed-boundary is used
L = Yo" & ) = dimensionless adaptation length if a gradient-
a .
Yo o, type bed-boundary is used
T = Yo% = dimensionless adaptation time if a
R o, concentration-type bed-boundary is used
T = (Yl +1) _ ﬁ = dimensionless adaptation time if a
Yo o, gradient-type bed-boundary is used

The coefficients in these adaptation scales are defined as

1
Y= G0 5 o = [w,0)a 0 di
fla

a,(n) = D'[a(m)] ; &) = D '[¥,(m)dn)]
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Since dy(7) represents the equilibrium concentration profile, and () the velocity
profile, the use of Galappatti’s model is only possible if mathematical relations
(shape functions) can be defined for these profiles. For complicated flow and
sediment profiles, as can be found in turbidity currents, the solution to the inverse
operator requires numerical integration of shape functions. In Sloff (1994a)
polynomial regression coefficients for turbid underflows have been determined
from such numerical computations for a large number of possible shape functions
under various conditions. Further, the derivation of the semi-empirical relations for
these shape functions are discussed in section 2.4. Galappatti has carried out a
similar exercise for open channel flows, in which he showed that by using simple
profile functions, the adaptation time depends on the ratio w,/u,, the boundary level
W, and the roughness scale 7, (or Chézy value). This dependence also exists for
turbidity currents, although here also a dependence exist on the densimetric Froude
numbers of the underflow by a parameter 7, which is the dimensionless level of the
velocity maximum in the turbidity current (5,=0.15 if internally supercritical,
1,=0.40 if internally subcritical as is shown in section 2.4). For the profiles of
section 2.4 some examples are given to illustrate the dependence of T, and L,’ on
the parameters.

In figures 2.2 to 2.7 numerically computed adaptation scales are plotted as a
function of the ratio w,/u. where u. is the shear velocity in direction of the velocity
vector as defined in section 2.4. For comparison two different roughness scales are
used which are quite realistic in laboratory and field. These results were found to
correspond qualitatively to those of Galappatti for open-channel flow, proving the
analogy between the applications. It can be seen that L,/ and T,’ values for
internally subcritical currents (7, =0.4) are lower than those for supercritical
currents (7,,=0.15) due to lower turbulence intensity (lower diffusion coefficients),
such that redistribution of the sediments in the vertical by turbulent diffusion is
retarded. A similar behaviour is also present for lower roughness scales (4,) since
bed-roughness generates the turbulence in this model.
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Figure 2.2 Adaptation lengths for 5,,=0.15 and concentration type b.c.
Legend: drawn lines: 5, = 0.0067, dashed lines: 5, = 0.000116.
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Figure 2.3  Adaptation lengths; #,,=0.40, concentration type b.c.(legend fig.2.2).
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Figure 2.4  Adaptation times: ,,=0.15, concentration-type b.c. (legend fig.2.2).
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Figure 2.5  Adaptation times: ,,=0.40, concentration-type b.c. (legend fig.2.2).
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Figure 2.6  Adaptation times: 1,,=0.15 and gradient-type b.c. (legend fig.2.2).
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The dependence on the reference level 4, enters the coefficients by the equilibrium-
concentration profile (i.e., by d,) given by equation (2.26). Its effect becomes
pronounced at low w,/u. values since for low 7, the contribution of the lower (most
turbulent) part of the underflow is greater than for large 7,.

A quite important difference in T,” can be observed between the model derived by
using a gradient bed-boundary (condition 2.24), and that derived by using a
concentration bed boundary (condition 2.25). In particular for low values of w /u,
the adaptation time computed with the gradient-type bed-boundary is much larger.
It should be noted that L,” for the gradient-type b.c. are not completely given by
Sloff (1994a) but this is not essential as it was found that for most cases it can be
assumed that (for both types of boundaries, see also sub-section 2.4.5):
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L =T, (2.35)

It is expected that in a depositing turbidity current the gradient-type boundary
condition yields better results, also when viewing the validation presented by Wang
and Ribberink (1986). Obviously for increasing turbulence rates (increasing u.,
decreasing w,/u.) the value of T," should increase in a depositing current since
settling is opposed by the turbulence. In an eroding current this is not trivial since
the increased turbulence eases the upward redistribution of entrained sediments.

To justify the use of Galappatti’s model certain rules have to be obeyed. The
validity of the model was studied by Wang and Ribberink (1986) who showed that
it can only be applied for gradually varied flow (i.e., time scale of flow T » a,/u.;
length scale L > w,a,/u.). It can further be shown that w/u. should be small (e.g.,
less than 0.4) for accuracy of the first-order solution. Quantitatively these
conclusions were verified by Wang (1989, 1992). He showed mathematically that
the first-order asymptotic solution will be accurate enough to replace an exact
model if a certain convergence radius R, is not exceeded. Basically, through the
sediment-diffusion coefficient, this radius depends on w/u. (higher convergence at
lower wy/u.). Consequently it restricts the validity of the model to situations in
which the shape of the concentration profile does not deviate to much from the
shape of the equilibrium concentration profile (hence it only improves the
equilibrium transport model).

In many cases the first-order solution still appeared to give good predictions outside
the convergence domain as well (Wang, 1989). Wang showed additionally with a
simple morphological model that exactness of the results strongly depends on the
normalized wave number k1q,/w, (k=w/L) and a relative frequency (a,/w,)Qx/T).
The model performs well if these numbers do not significantly exceed the
convergence radius R,. For the longest waves (smallest k) the agreement is best,
while for the shortest admissible waves with length 2:-Ax (k¢ = =n/Ax, Ax =
numerical space step) the agreement is poor dependent on whether they fall within
the convergence radius. On the other hand the shortest waves are physically not
relevant and will be damped out quickly. To illustrate these rules we consider the
turbidity current of Bonnecaze et al. (1993) of 100 g sediment with Dy, = 23 um
released in a 0.3 m deep flume by removing a lock. Some preliminary calculations
showed that at x = 4 m from the head of the flume, 80 s after release the
following results can be found:

w
- —< =022 gives R =5
u*
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Due to the low celerity of the underflow the time-scale of the flow amply exceeds
T, of about 70 s. On the other hand the limitation of the relative wave number
results in a Ax,,, of 0.75 m which is indeed much smaller than the physical L, but
much higher than desired for the numerical solution with sharp shock waves.
Although it seems contradictory to use Galappatti’s model in situations with shock
waves (where L<L,,, T<T,,), it was found afterwards that the presented
limitations are not fatal and can be circumvented quite easily in a numerical model
(see section 6.10). Bonnecaze et al. (1993) used a model slightly similar to
Galappatti’s model to compute the concentration in their lock-exchange
experiments.

In the derivation of the adaptation coefficients the exchange term dy(1)w,’ is
neglected based on the often applied assumption of negligible mixing and on the
low concentration near the interface. In reality the turbid underflow does not only
erode and deposits sediments at the bed, but to a similar extend it also ’erodes’
clear water from the upper layer. The importance of this effect just appeared
during computations by comparing dilution effects in nearly conservative turbidity
currents and conservative saline density currents. Essentially the entrainment

velocity at the interface has a similar, but counter-productive effect on the average
concentration as the settling out of sediments. Again the concentration profile is
modified and needs a certain adaptation time/length to readjust. Therefore it seems
worthwhile to correct Galappatti’s model for this purpose in future studies.
However, we are not convinced that it is sufficient to recalculate the adaptation

coefficients proposed in this chapter without neglecting w,’.

In this study we assumed (crudely) that the adaptation (diffusive) effects of this

entrainment phenomena are negligible compared to settling, and that dilution can be

superimposed on Galappatti’s equation as a source term as follows

ac, [Lu,|oc, [Llv,)ac, w W,
+ + 2= —

- : (Cse B Cs) *
ot T’ ox Ta/ ay a, Ta/ a,

a

)cs (2.36)

In this way the model allows for dilution in the traditional way, even if w,
approaches zero (conservative density current expressed by equation 2.10). When
applying a direct depth-integration on the convection-diffusion equation one obtains
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indeed this new source term next to an empirical sediment-entrainment term. It is
therefore fully consistent with the chosen approach. The values of C, computed
with equation (2.36) can be used to compute the suspended-sediment transport rate
as (in x-direction)

%

1
[ ue, dz = ayu, [ y,m)c,)dn = auuC, (2.37)

Zq Na

This convective part of the transport (neglecting horizontal diffusion) is similar in
y-direction.

In the following section the vertical structure of the turbid underflow (turbulence)
is modelled in a semi-empirical approach. The results of this model were used by
Sloff (1994a) to determine the adaptation coefficients in Galappatti’s model as
presented in this section.

2.4 Flow structure and sediment transport
2.4.1 General structure and basic equations

The delicate and complex interaction between flow and density in the turbidity
current is particularly dependent on the turbulence structure and the exchange of
water and sediment at the bed and interface. In the derivation of the model some
important assumptions have been made on this structure which require a practical
quantification. In this section a semi-empirical model is presented (derived in Sloff,
1994a) which is based on observed velocity and concentration profiles and the
analogy with conservative density currents and with open-channel flow. The results
of this study were used to define adaptation scales in Galappatti’s model (previous
section) and to formulate a sediment-transport equation for turbidity currents.

The turbulence related flow structure and the sediment-concentration distribution in
a turbidity current are coupled in a complex way, which makes it quite difficult to
quantify these effects directly within a layer model without serious simplifications.
Even in complete turbulence models (e.g., Eidsvik and Brdrs, 1989, Stacey and
Bowen, 1988a), accounting for the spatial and temporal development of these
currents, it is still not possible to represent the exact processes in the vertical.

In general turbidity currents in reservoirs are of a turbulent boundary-layer type,
although also laminar types exist with very high concentrations (fluid-mud layers).
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The two-layer system in the reservoir is schematized according to figure 2.8.

The lower layer is defined as the
suspended-sediment transport layer and
actually consists of two sub-layers: a
dense turbulent sub-layer covered by a
turbulent mixing layer (interfacial sub-
layer) with a strong density gradient.
Usually the underflow depth a, is
greatly taken by this interfacial shear
layer. The transition between the sub-
layers is located approximately at the
level of the pronounced velocity
maximum. These definitions are
common in literature in describing
turbidity currents (e.g., Parker et al,
1987).

———— ’ A

Figure 2.8  Schematic diagram.

From reported measurements in laboratory and field can be concluded that it is

possible to define a standard velocity
turbidity currents.

and concentration profile for ’equilibrium’
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Figure 2.9  Velocity profiles of internally supercritical density currents.

36




Garcia (1990)
Garcia (1990/1993)
Garcia (1990/1993)
Chikita (1989)
Chikita (1989)

Fan (1986)

Fan (1986)

Fan (1991)

Fan (1991)

> ¢ 0« x b ¢ + D

Figure 2.10 Velocity profiles of internally subcritical density currents.

In figure 2.9 and 2.10 measured dimensionless velocity profiles are plotted from
internally supercritical density currents and internally subcritical density currents
respectively. The vertical coordinate 4 represents the dimensionless depth (z-z,)/a,,
and the horizontal coordinate represents the dimensionless velocity function y,,
defined as ¢, =u(z)/u,,, Where u,,, is the maximum flow velocity in the turbidity
current. Data of turbidity currents in a laboratory flume from Garcia (1985, 1990,
1993), Garcia et al. (1986), Garcia and Parker (1993), and Parker et al. (1987) are
plotted. Additionally data is plotted from turbidity currents in the field presented by
Chikita (1989) and Fan (1986, 1991), and data from saline currents presented by
Ellison and Turner (1959) and Garcia (1990). For resemblance some measurements
of turbulent wall jets in a wind tunnel are added to show the similarity in shape
between density current and wall jet velocities. The figures show a tendency of
similarity between different profiles measured at different conditions and different
locations. The drawn lines in the figures are the best fits to the data. Note that
scatter in these figures is partially caused by inaccuracy of the measurement
devices and by differences in instability and stratification of the currents. For
example Stacey and Bowen (1988a) concluded that the measurements of Ellison and
Turner (1959) are at an experimental scale which is being affected by molecular
processes. Furthermore the discrepancies in defining interface levels in literature is
another important source of variance.
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From these similarity collapses (figs. 2.9 and 2.10) it has been concluded that the
velocity maximum is located at about 15% of the underflow depth for internally
supercritical turbidity currents and at 40 % for internal subcritical currents (7,,).
Below this velocity maximum the turbidity current has an approximately
logarithmic profile, and is dominated by boundary-generated turbulence (e.g.,
Ashida & Egashira, 1975). Therefore the elaboration of the mixing length theory
for open channel flow is adopted for this sub-layer. In the sub-layer above the
velocity maximum a regression equation is defined for the velocity profile based on
laboratory experiments reported in literature. From both profiles the distribution of
the fluid-diffusion coefficient has been derived from the mixing length theory
accounting for turbulence damping effects by density gradients. The profiles
derived in this way are assumed to be representative for all directions (x,y)
provided that secondary (helicial) currents are negligible.

In its basic form we assume that the flow structure of the turbidity current is
governed by the 3-D Reynolds equations, simplified by applying Boussinesq’s
approximation (sub-section 2.2.2) and neglecting viscous shear stress. If S, and S|,
are the local turbulent shear stresses in x,y-direction respectively, then the
"Reynolds-stress  Boussinesq’”  approximation (different to the Boussinesq
approximation above) and Prandtl’s mixing-length concept yield (Sloff, 1994a):

Ju
oz

o . 0
-sz = pfefx?lzt = Pfl:,'F(Rl)' —u (238)

oz

in which F(Ri) is a damping function which expresses the effect of stratification on
turbulence by means of a gradient Richardson number Ri as is shown hereafter, &
is the fluid diffusion coefficient and [, is the mixing length for momentum (i.e., the
guantity suppressed by Ri). This formmlation is only wvalid for the gsmall
concentrations on which our two-layer approach is based (here errors were found
to be less than 1% if compared to a more complete formulation). The gradient
Richardson number is a well known measure for stabilizing effect of stratification
on turbulence in a shear flow:

Ri - _[é] (9p/92) (2.39)
P) (Ou/dz? + (9v/dz)}

The stability threshold for which the flow is unstable (turbulent) is usually taken as
Ri<0.25 (e.g., Miles, 1990, and references reported in there). In practical
situations, for instance due to boundary mixing, the flow is turbulent for Ri<0.4 to
0.6 (Garcia, 1993). Larger density gradients or smaller velocity gradients make the
flow more stable. The instability of the initial interface in a developing turbidity
current results in Kelvin-Helmholtz instabilities which generates the interfacial sub-
layer by means of mixing processes (entrainment and turbulence). Although one
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can expect that eventually the interfacial mixing layer stabilizes, it is shown that
due to bed-generated turbulence (outside this layer) this process of layer expansion
persists (Piat & Hopfinger, 1981). In a two-layer model these effects are usually
expressed empirically by means of entrainment relations (section 2.5).

2.4.2 Lower sub-layer of a turbidity current

For the derivation of the (logarithmic) flow structure in the lower sub-layer of the
turbidity current the analogy with open-channel flow is used. Prandtl’s mixing
concept, leading to the law of the wall, is applied here without accounting for
stratification effects (F(Ri)=0). In harmony with Stacey and Bowen’s (1988a)
observed damping effect near the velocity maximum and the observed exponential
increase of concentration towards the bed, we assumed a parabolic shear stress
profile S,, with a zero value at 7,,, and we assumed a linear mixing length profile.
Here 7, is the 7, is the dimensionless level of the velocity maximum (i.e.,
1,=0.15 for super, and 7,,=0.4 for subcritical currents). Integration yields for the
velocity profile in the lower sub-layer:

@) _ 1|, Jﬁo_ L-y1-(A/4,) ST - T G| @40
= 2 [ =0 — 0 @A - T (R,
e Y

*X
where u., is the shear velocity in x-direction = 7, /(7,0,)"*
% is the von Karman constant ( =0.4).
7 is the dimensionless elevation = (z - z,)/a,
7,, is the elevation at which u(z) is maximal
1, is the roughness scale: the elevation at which u(z)=0
7, 18 the x-component of the bed-shear stress.

fi

m

O U, £

Figure 2.11 Velocity and diffusion coefficient below velocity maximum.

The corresponding fluid diffusion coefficient is defined as
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The diffusion coefficient varies from zero at the bed to zero at the velocity
maximum. The maximum value of g is located at level 7=vV2/24,. A plot of
. equations (2.40) and (2.41) is given in figure 2.11. Assuming similarity of profiles
" in all directions these formulations also hold for the velocity profiles in y-direction.

2.4.3 Upper sub-layer of a turbidity current

Due to the significance of stratification effects in the upper sub-layer the derivation
of an analytical formulation is much more complex. To find such an expression we
determined empirical relations for the dimensionless velocity and concentration
profiles reported in literature. The resulting stress, Richardson number and
diffusion coefficient profiles (using again the mixing length theory) have been
compared to the profiles presented by Stacey and Bowen (1988a).

A fit of the velocity data presented in figures 2.9 and 2.10 yields the following
relation:

u(fi) = u,- exp(-3-{f -4, if fi, <f <1 (2.42)

where u,, = maximum velocity (at 7=1,,). A fit of concentration data from Garcia
(1985), and Parker et al (1987) yields:

c(f) = ¢, exp(—Z- 1; _?m] if 1, <A <1 (2.43)
-4,

where ¢,, = maximum concentration at level #,. Again these formulas are also
assumed to hold both in x- and in y-direction. These profiles are not applicable to
laminar stratified flows. The general form of the damping function F(Ri) may be
expressed as

F(Ri) = (1+y/Ri)™ (2.44)

where ' and n, are calibration constants. In the following we used Stacey and
-Bowen’s (1988a) calibrated coefficients y'=6.5 (or 3.5) and n,=4. Additionally the
turbulent length scale or mixing length is given by the relations (Stacey and
Bowen, 1988a):

L, = K- ay(f +1) if  0<xf <02 (2.45)
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[, = xa,(0.5 + 1) if ki > 02 (2.46)

m

By substitution of the relations above into equation (2.38) we can express gradient
Richardson number, shear-stress and diffusion coefficient profiles which were
found to be greatly corresponding to Stacey and Bowen'’s results (Sloff, 1994a). In
figure 2.12 we plotted these relevant parameters qualitative.

=

u(i) (M) Ri(R) FRi) S, () e
Figure 2.12 Relevant flow parameters plotted for equilibrium flow above the
velocity maximum.

These figures show how Ri is minimal at level 4,,=7%,+0.4<(1-7,) which implies
that the flow there is locally most instable. At the interface the turbulent shear
stress equals 7,;" (the interfacial shear stress and a pseudo shear stress induced by
entrainment of stagnant water from the upper layer). From figure 2.12 it follows
that this value is often very small compared to the bed-shear stress and may be
neglected (with respect to momentum transfer) for stable turbidity currents. This
assumption does not agree with other approaches (e.g., Abraham et al. 1979, saline
current) where the location of the interface is in the middle of the mixing layer
(e.g., 7=0.7 for a subcritical density current). There the shear stresses are of the
same order of magnitude as the bed-shear stress. It is clear that the definition of the
upper boundary of the dense underflow is representative for the magnitude of this
interfacial shear stress (see also section 2.5).

2.4.4 Depth-integrated velocity and roughness scale

Combination of the presented analytical and semi-empirical formulations constitute
the profile function for velocity in an underflow which are for instance used in the
derivation of Galappatti’s model. For our two-layer model depth-integration of the
relations (2.40) and (2.42) yields for the average velocity in x-direction the
following relation (Sloff, 1994a)
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where I, and f, are functions expressed by

1
1, = fexp[—3(ﬁ—ﬁm)3/2]dﬁ = -0.357), -0.014/% -0.0694 +0.425 (2.48)

VNo/N ——
Vol | 1—(110/T1,,,)2 (2.49)
1-1-(A/M,)

Equation (2.47) gives a relation for the depth-averaged flow velocity u, as a
function of the bed-roughness length 7, and relative depth of maximum velocity.
When the roughness is expressed in terms of a C, or Chézy values then the
following relation expresses the relation between the roughness scale and these
roughness parameters (in a 1-D flow v, disappears):

w2

*

Cp = 2 2 ; c- £
uy +v, Cp

2
., = [_Iz] (2.50)

where u. is the shear velocity. For internally super and subcritical density currents
we plotted this relationship (while using eq. 2.47) in fignre 2.13.

0.004]
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0.00001 0.0001 7 0.001 0.01
0
Figure 2.13 Relation between bed-friction coefficient C, and roughness length
scale 7, for 4,=0.15 (supercrit.) and %,,=0.4 (subcrit.) respectively.
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The sensitivity of this result to the various parameters is studied by Sloff (1994a).
In general it can be concluded that the model accuracy remains within the
limitations of accuracy of values of 7, and 7,

Again it should by underlined that the equations presented have to be used with
care. They are primarily based on experimental velocity and concentration profiles
which can only approximate the erratic behaviour of a turbidity current. In reality
many more factors can affect the actual velocity profile. For instance due to
entrainment of water from above and sediment from below pressure gradients may
occur which modify the velocity profile, but are not explicitly included in our
approach. The velocity reduction induced by water entrainment can be incorporated
by an entrainment term in the 2-layer model which acts as interfacial shear, without
accounting for a redistribution of the velocity profile. Note that also the choice of
the depth a, (and consequently level 7,) is a point of uncertainty for which no
agreement exists in literature.

Since we neglected secondary currents we assume that the presented velocity
profiles also hold for the velocities in y-direction.

2.4.5 Concentration profile and suspended-sediment transport

The concentration profile is deducible from the turbulence profile through the
diffusion coefficient in the convection-diffusion equation. This is the link between
sediment and flow interaction, and is relevant for the definition of Galappatti’s
coefficients which is treated in section 2.3. By assuming an equilibrium situation in
which the underflow is steady and uniform this equation and its solution reduce to
relation (2.26) in section 2.3. Although in Sloff (1994a) also a modified form for
large concentration is analyzed, based on Richardson and Zaki’s (1954) correction
of fall velocity, we have restricted the final results to the present low-concentration
situation. If the normalized sediment-diffusion coefficient ¢, = ¢, /(w,a,) for all
values of §=(z-z,)/a,, and the equilibrium reference concentration ¢, are known the
concentration profile can be formulated. Therefore we assumed that e, = ',
where ' = (3¢ in which § is a factor describing the difference in the diffusion of
a discrete sediment particle and the diffusion of a fluid particle, and ¢ expresses
the damping of the fluid turbulence by the sediment particles (van Rijn, 1984b).
Here the ¢ factor reduces Karman’s constant. Especially for the sub-layer below
the velocity maximum where the highest concentrations are found we can now
define a profile function in a similar way as is conventional in open channel flow.
In the upper sub-layer we already assumed the concentration profile to be
expressed by equation (2.43), so that we only have to link it to the lower sub-layer
profile (value ¢, at 7=17,,).
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A drawback of the proposed fluid diffusion-coefficient profile is the zero diffusion
near the velocity maximum 7,, as can be seen in figures 2.11 and 2.12. Hence an
internal boundary against diffusive mixing exists causing an unrealistic

discontinuity in the concentration profile.
1

213 ? & m
0
€4lm2/s]
Figure 2.14 Linear bridge connecting the homogeneous parts of the diffusion
coefficients according to mixing length theory.

To overcome this problem Launder and Spalding (1972) proposed to use a linear
bridge connecting the maxima g, and &, in the sub-layer above and below the
velocity maximum respectively as shown in figure 2.14. For the derivation of the
concentration profile now three sub-layers must be considered.

The further integration of this model and the resulting (equilibrium) concentration
profiles are presented in Sloff (1994a). The result is used in Galappatti’s model to
define the adaptation scales (section 2.3). A relevant parameter, analogous to open-
channel flow, is a suspension parameter Z defined as

—_— w(‘ wv

" yxu,  po-wu,

~
[\
Ch
—
S~

where u. is the shear velocity in the direction of the shear stress. Firstly it is
assumed constant over the depth with ¢=1 to allow for analytical integration of
equation (2.26), and 3 is defined as (van Rijn, 1984b)

B =1+ 2°[ws/u*]2 (2.52)

Furthermore the value of &, is based on a local value of Ri = 0.4 in the damping
function F(Ri) (approximately corresponding to the stability limit). After
verification of this assumption we found that the resulting concentrations are rather
-insensitive to this value, as well as for n,=4 in F(Ri).

Instead of taking the damping function ¢ equal to unity it is more appropriate to

relate it to the local concentration as proposed by van Rijn (1984b) and illustrated
in figure 2.15. For relatively large concentrations which can be found close to the
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bed (in the lowest sub-layer) the 17 — —

concentration profile can only be og =L N .
obtained numerically due to the $ L
dependence of ¢, on the concentration. 0.6 ~ R - -
The same problem was encountered by 04
van Rijn (1984b) in open channel flow '
and he proposed to a simplified method 02
in which he defined a modified :
) . oLl !
suspension number Z’ through which 0.001 001 o 01
the first order concentration profile S
(equation 4.36) can be corrected for Figure 2.15 Damping factor ¢.
additional effects:
Z'=Z+ ¢ = Vs + @ (2.53)
Pru,

where Z was defined by equation (2.51) with ¢=1, and where ¢ is the overall
correction factor representing all additional effects. The value of ¢ is determined
by means of trial and error for the lowest part of the turbidity current ( <
#,/2/2). Multiple fifth-order concentration profiles have been computed
numerically and for various sets of hydraulic parameters (w,/u., ¢,/c;, 1, %,) Where
¢y=0.65. Then the ¢-values have been determined that yield analytical zeroth-order
concentration profiles (with ¢=1) coinciding with those numerically computed with
¢#1. Especially the equality of value ¢(#,V2/2) in the numerical and analytical
approach is used to find appropriate values of ¢, since errors in this value
significantly affect the rest of the profile. By means of the method of least squares
a regression equation is found in Sloff (1994a) from about 800,000 different -
values which expresses ¢ as a function of the hydraulic parameters with inaccuracy
of about 5% (where 0.01 < wj/u. < 1, 4, = 0.01). This high accuracy resulted in
a large regression equation, but it is worth the computational effort. Only for small
values of 7, the sensitivity to small variations in Z’' increases. Van Rijn (1984b)
proposes a minimum reference level of %,,, = 0.01 at which the concentration
profile can be predicted with an error less than a factor 2 if the error in Z’ is less
than 20%. We do not want to violate the basic theoretical model too much, and
consider the increase of accuracy by using a more complex regression equation
more relevant than the decrease of computation time.

In figure 2.16 is shown how the concentration profile expressed by the equations
presented by Sloff (1994a), varies with the value of Z for sub- and supercritical
turbidity currents. Besides for deriving adaptation scales for Galappatti’s model
(section 2.3) these results can also be used to define a relation for the equilibrium
concentration C,, by depth-integration of the concentration-profile functions over
the underflow depth. Using some approximations (to make the equation more
manageable) the resulting equations become for internally sub- and supercritical
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Figure 2.16 Concentration profiles for Z=0.2 and Z=0.8 and two flow types (7,,).

currents:
For 4, = 0.15:
/
~Joa21y, 2 mue i
c, - ca[ . (3-o- 4oona) {0.15Ya[ 2PN @Y, -1 v sy

+ exp(-0.67(2") -[3.74-102 (2 + 15.0-103(Z)) + 0.4114] }

where Y, = (f,/0.15) - (y2/2)

For 3, = 0.4:
_[oa4s3 7\ [ 270y
C, -c, [_ﬁa_(z-,/4—25na) {0.4 Ya[—g(Z/) Yo + 2V, - 11+ (555

+ exp(-0.749(2")) - [16.88-107(Z'}* + 45.0-1073(z’) + 0.3766] }

where Y, = (1,/0.4) - (/2/2)

A comparison of successfully computed and measured concentration and velocity
profiles for verification of the theory is given in figure 2.17. The first three plots
are profiles from experiments Run 9, Run 17 (both internally supercritical), and
Depo3 (internally subcritical) measured by Garcia (1985, 1990) in a laboratory
flume. The fourth plot is an internally supercritical profile from flume experiment
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Figure 2.17 Some computed velocities and concentrations compared to Garcia’s
(1985, 1990) and Cordi & Ophem’s (1994) flume experiments.

Run 10 (see section 7.3) carried out by Cordi and van Ophem (1994). All these
profiles were measured sufficiently far from the inlet section of the flume such that
they reached a practically equilibrium state. In most experiments the profiles are
very uniform at the inlet gate. During this verification it was observed that, due to
settling and adaptation, in general close to the inlet the concentrations in the upper
sub-layer are slightly underestimated using the model, while those far downstream
are slightly overestimated. This deviations are within the scatter range of the
empirical relation as expected.

The computations are carried out by choosing a value for a,, ¢, (%,), Cp and using
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Stokes law to compute the fall velocities of the fine sediment. Practically the
important ¢, and C, values require calibration and empirical closure relations as
described in the following section. It is important to realize that this physically
based model results in somewhat larger values of a, than those proposed by other
authors (e.g., Parker, et al., 1987, Garcia, 1990, Stacey & Bowen, 1988a). Their
underflow depths are indirectly obtained from the following integrals

hS

kg hy
ua, = fudz ; u22a2 = fu*dz ; w,Ca, = fuc, dz (2.51)
% Z, z,

which is based on the slab approximation (sub-section 2.2.1) of Ellison & Turner
(1959) which claims that all shape factors can be taken equal to unity. This
formulation is consistent with our depth-integrated model, but there is no direct
relation to the physical underflow depth. Measurements of profiles and visible
interface levels indicate that in most cases our approach results in depths located
between the depths observed visually and computed with equation (2.51).
Consequently the shape factors originating from the depth integration of convective
terms (#%) and sediment transport terms (#-c,) are found to be larger than unity (up
to 1.3), which contradicts the slab approximation and needs a correction in the
basic equations. Essentially the proposed concentration and velocity profiles are
used to close Galappatti’s equation, and only a small correction of this equation is
sufficient to harmonize the model. We have done this by setting L,’ equal to T’
which were found to be differing to an extent equal to the shape factor for
sediment-transport (Sloff, 1994a). We did not further examine small effects of this
defect, for instance on the equilibrium concentration.

In the following section the closure relations and calibration parameters are
discussed which are needed to complete the two-layer model. The effects of bottom
friction and the equilibrium reference equation are particularly important in this
section, but also the quantification of interfacial mixing and shear is assessed.

2.5 Closure relations for the two-layer model

When using a depth-integrated two-layer model the inevitable consequence of
schematization is the necessity of quantifying boundary terms each of which gather
various physical processes. In principle these boundary terms at bed and/or
interface comprise friction, sediment entrainment, sediment concentration, and
interfacial mixing. In this section is discussed how these terms are estimated in the
model, as proposed in Sloff (1994a).

The roughness length-scale 4, is found to be one of the primary calibration
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parameters of the presented model, representing the grain and bed-form induced
bed-shear stress. It is essential for the model to define an appropriate roughness
scale or a relation between roughness scale and hydraulic conditions. We have
already shown that this scale can also be expressed in terms of a bed-friction
coefficient C,, or a Chézy value with help of equation (2.50). In a 2-D model we
assume similarity in flow profiles in x and y-direction and we note that for the bed-
shear stresses holds that 7, = V/ (7,2 +7,2). Then we find for the bed-shear stress in

x-direction
Txb _ _ 2 2 2.52
-2 = uu,, = Chuyyuy +v, (2.52)
Py

A similar form holds for the stress in y-direction. Note that in a 1-D flow v, simply
disappears. As we are usually dealing with rough boundaries the roughness scale 7,
can be expressed in terms of a Nikuradse sand-roughness height. However,
experimental observations of turbidity currents on a mobile bed revealed the
presence of bed forms which requires a reliable bed-form roughness predictor.
Here the literature does not present us many tools to account for these bed forms in
relation with turbidity currents. Garcia and Parker (1993) used a method developed
by Nelson and Smith (1989) for the removal of form drag due to bed forms for
open channel flow. But this method can only be used if bed-form dimensions are
known. Also predictors from open-channel flow (e.g., van Rijn, 1984c) are not of
much use, since they should be reformulated for the underflow depth for which a
large number of data is required. Since data on this phenomena are very scarce it is
best to calibrate the C, or Chézy value for each application (e.g., on basis of
observed velocity profiles). Considering that turbidity currents are characterised by
rather constant Froude numbers it is plausible that the bed-form regime (and
roughness scale) remains quite similar along the reach.

On the interface boundary a similar friction term can be defined to express the
interfacial shear stress. When studying the velocity and concentration profiles
according to the model presented in the previous section this stress at the associated
interface level can be neglected compared to bed-shear stress. However, since the
underflow depth in the two-layer model must be consistent with Ellison and
Turner’s (1959) slab approximation (equation 2.51, all shape factors are equal to
unity) the interface is located at a lower level within the mixing layer. In sub-
section 2.4.3 it was shown that at this level the interfacial shear-stresses are of the
same order of magnitude as bed-shear stresses. In harmony with the bed-shear
stress we use the following 2-D equation for 7,; (Abraham et al., 1979):

Thi T Pfcm<“2_"1)\/(u2_”1)2 + (v vy) (2.53)

The result can be written in y-direction in a similar way. The Cj coefficient
requires calibration again, where it must be smaller than Cp,. In the model
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interfacial friction and mixing have a similar impact on the momentum equation
although mixing also effects the mass balance and concentration.

So far the effect of friction is assessed in a empirical but fundamental way. Even
more uncertain is the quantification of the entrainment velocity which is appearing
in the basic equations due to interfacial mixing processes. Basic mechanisms of
mixing are studied by Sloff (1994a). It can be concluded that these mechanisms are
still poorly understood and only empirical quantification is possible. The present
knowledge on basic mixing mechanisms has mainly been provided from laboratory
experiments. Usually these experiments are very specific and simplified, and their
results cannot be applied for general field situations which differ much from
laboratory circumstances. For instance it is shown that vortex-generated mixing
behind the front may be much greater in a gravity current which enters a diverging
channel or a widening reservoir, than the mixing in a prismatic laboratory flume
(section 4.2). It is also possible that different basic entrainment mechanisms can
occur simultaneously in the field which interact. It is therefore not surprising that
the published empirical relations often show large deviations from the mixing rates
in the field.

Mixing between the layers and the governing formation of the mixing layer is
determined by shear and turbulence generated interfacial perturbations at the head
of the current (e.g. Kelvin-Helmholtz instabilities originating from vortices at the
interface). In the following we consider, just like Bo Pedersen (1980), all mixing as
entrainment irrespective whether it is a one-way (pure entrainment), an equal two-
way process (pure diffusion), or somewhere in between. In sub-section 2.3.1 it is
shown that mixing processes occur at the upper edge of the upper sub-layer or
mixing layer of the turbidity current, while the mixing layer itself is formed just

behind the front (section 2.4). Eventually turbulence and shear-generated
instabilities in this layer are the processes which entrain (net) the clear water and
determine the entrainment rate. Considering these complex processes, as well as
various others (Sloff, 1994a), it is not surprising that a satisfactory relation is not

yet formulated.

Existing entrainment relations are based on the hypothesis that the entrainment
velocity is proportional to a characteristic velocity, usually defined as a mean
velocity or shear velocity of the underflow (Turner, 1986). Furthermore it is, in
agreement with the turbulence considerations in section 2.3, considered to be
fundamentally dependent on the gradient Richardson number or an equivalent
formulation:

Wie _ ¢ (Ri) (2.54)
u,

It is this parametrization and the regions of validity which generates the differences
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in various approaches. In this study we considered a few popular formulas, but we
have not made any effort to improve them or to develop alternatives. Often cited
are Ellison and Turner’s (1959), Bo Pedersen’s (1980), Christodoulou (1986a,b),
and Parker’s (1987) formulas. In figure 2.18 a comparison of data and theory from
Sloff (1994a) is presented (for references in this figure see this thesis). It illustrates
the uncertainty in predicting the entrainment rate, especially when realizing that
both axes have a logarithmic scale, so that the actual scatter is greatly distorted.
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v Ashida & Egashi (1975) + Deardorff & Willis (1982)

Figure 2.18 Entrainment rate: comparison between theory and data.

The large scatter in this figure is partially due to various uncertainties in measuring
and scaling the entrainment rate. Using other length and velocity scales, such as
proposed by Christodoulou (1986b) have not shown an appreciable improvement of
these results. As an example of a possible source of uncertainty it should be
remarked that the values of e, from Parker’s (1987) experiments were back-
calculated from a finite difference form of the following fluid mass balance
between two sections:

duwa, w i e, - Wie 2.55)
dx o e U,

Inevitably an increase in error is involved due to the differentiation of the measured
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values for depth and velocity.

Another phenomenon that could militate against the use of the formulations
proposed is the possibility of spurious correlations. Benson (1965) has shown that
correlating two parameters, each containing the same stochastical variables, may
lead to spurious correlation. In the most popular methods the entrainment rate is
defined as

w. o'C.ga,

“ = f(Rip,) 5 Rig, = v ; Au=u-u, ~ (2.56)

If w,, Au, a,, and C; are stochastic variables is can be shown that the parameters
»1=Ww,/Au and y,=(¢'Cga,)/Au? a large correlation coefficient can exist although
the original variables are not correlated (Sloff, 1994a). To prevent the occurrence
of spurious correlations an alternative parameter should be used (e.g.,
y,=w,/(gr)"* ). This possibility is not further studied, mainly because of the
unavailability of appropriate data. Alternatively the entrainment rate can be coupled
to energy considerations when using Bagnold’s approach to compute sediment
transport rates. Such an approach was followed by Pallesen (1983) as an extension
of Bo Pedersen’s (1980) approach.

Clearly the use of these relations demands caution. Under- or overestimation of the
actual entrainment rate with a factor of the order of two is possible, which does
reduce the predictability of a two-layer model significantly. Although entrainment
effects are usually considered of minor importance, it can be shown numerically
that these effects can completely modify the behaviour of the underflow. It affects
the current in a similar way as the deposition of sediment, which also involves
empiricism with a very large uncertainty

The quantification of the near-bed sediment concentration ¢, (reference
concentration) determines completely the value of the equilibrium concentration in
Galappatti’s model. In quantifying it this large uncertainty is introduced. In
previous turbidity-current studies various existing equations for ¢, have been used,
which were almost all derived for open-channel flow. The reason therefore is the
lack of a specific equation for turbidity currents and the lack of data to derive one.
Furthermore the flow conditions below the velocity maximum are comparable to
those in open channel flow. Although Parker et al. (1987) tried to fit their data to
an empirical relation for open-channel flow, the inaccuracies in the data and the
method of computing the entrainment rate of sediment resulted in a large scatter.
Experiments of a saline current passing over an erodible bed by Garcia and Parker
(1993) yielded more useful results which are more realistic than those found for
open-channel equations. Still large scatter in the data is due to the method of
computing the sediment entrainment (e.g, by differentiating the concentration and
velocities along a section). Garcia (1990) and Garcia and Parker (1991) compared
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the performance of some equations for computing ¢, in open-channel flow. One of
the equations that performed best on open-channel data is the one proposed by van
Rijn (1984b).

For practical purposes or numerical experiments also a more simple power law
can be used based on the critical shear-stress approach. For instance by considering
that Van Rijn’s (1984a) transport stage parameter is proportional to the square of
the underflow velocity, the reference concentration can be written as some cubic
function of this velocity:

c. =m- u23 2.57)

a

or in line with van Rijn’s approach:

c = m TS = | T e (2.58)

a 2

where m is a parameter related to sediment characteristics and the reference height
n, and u.,, is the critical shear velocity for initiation of movement.

In combination with these closure relations the presented two-layer model can be
applied to simulate various types of turbidity currents. Clearly calibration and
empiricism is inevitable in this model, but when applied correctly the results are
sufficiently accurate for practical applications. However, at all times the limitations
of the model due to shortcomings of the closure relations must be borne in mind.
In the following chapter the mathematical model is further studied by using the
method of characteristics.
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Chapter 3

Characteristic analysis

3.1 General

To simulate the evolution of flow and bed morphology in a non-prismatic reservoir
we have derived a two-dimensional (2-DH) two-layer model. In its complete form
it corresponds to an extended form of the model for sediment-laden shallow-water
flow on a mobile bed as presented by Sloff (1993a, 1993b). Furthermore it forms a
hyperbolic system of first-order partial differential equations characterized by
wave-like solutions. A useful tool in analyzing the structure of these complicated
solutions, and those of other types of 2-DH hydraulic models, is the method of
characteristics, which concerns the study of propagation of physical disturbances.
Disturbances with infinitely small amplitude propagate along the characteristics in
the solution space (f,x,y-space) as wave fronts, carrying information from initial
and boundary conditions. As we show herein, this method supplies us with some
essential information for simplifying, and analytically or numerically solving of the
equations. It gives us rules for imposing boundary conditions to make the system
well posed, and it can be used to formulate a stability criterium for two-layer flow.

The mathematical treatment of the characteristic theory for a general system of
partial differential equations is given by Courant and Hilbert (1962). Often their
treatment has been used to analyze and solve the 2-D (depth-averaged) shallow-
water equations for flow on a fixed bed (without stratification), for example by
Daubert and Graffe (1967) and Hirsch (1988). De Vriend (1985,1987a,b) added the
influence of a mobile bed into the characteristic analysis of 2-D shallow-water
flow. More general applications of the method to 2-D depth-averaged hydraulic
models are given by Sloff (1992), where the theory is elaborated starting from
simple shallow-water flow to fully coupled two-layer flow on a mobile bed. A
further extension of the 2-D theory is given by Sieben (1994) (also Sieben & Sloff,
1994) to analyze models which include morphological changes in mountain rivers
with sediment mixtures. A general treatment of 1-D models is given by Abbott
(1966).

Application of the method of characteristics is pursued herein for our reservoir
model in one and two dimensions. It shows how, and under which conditions, the
mobility of the bed and the high sediment concentrations affect the solutions, by
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comparison with fixed-bed models for conservative density currents (e.g. saline
density underflows). Various simplifications and rules are obtained for further
elaboration of the mathematical (and numerical) model, explained from a physical

point of view. The theory presented can easily be applied to other type of 2D
models.

3.2 Characteristic conditions

When initial values are given on an arbitrary surface (or a line in a 1-D model) in
the r,x,y-space then the solution of the corresponding (Chauchy) initial-value
problem is obtained by extending this initial data into an integral surface (solution
surface) in the characteristic directions. However, when this initial data is given
along a characteristic surface such an extension is not possible, and a solution
cannot be found. Clearly, as the complete solution is constituted by the
characteristics, this theory can be used to analyze propagation properties of the
model. One of its features is that regions with different solutions are separated by
characteristic surfaces. Therefore, jump discontinuities with infinitely small
amplitude are carried along characteristic surfaces and can be interpreted into wave
fronts. Likewise characteristic celerities are defined as the propagation velocities of
these small disturbances in the solution space. They correspond to the characteristic
directions dx/dt in the 1-D approach, and to the bicharacteristic directions dx/d¢ and
dy/dt in the 2-D approach (the directions of the characteristic lines and surfaces). In
a 2-D flow the discontinuities propagate along a family of bicharacteristics or rays
which envelope the associated wave front in the corresponding characteristic

directione. Mathematicallv the celerities can be obtained from the characterictic
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equation or characteristic condition as will be shown in this section.

A general mathematical presentation of the method of characteristics can be found
in Courant and Hilbert (1962). Here we prefer to summarize the results of such an
analysis for our model from a physical viewpoint (see also Hirsch, 1988, 1990). A
more elaborate presentation of this study was given in Sloff (1992) and Sloff
(1994b). The analysis is applied to the general coupled system of basic equations
before utilizing the Boussinesq application and decoupling baroclinic and barotropic
flow. The relative effect of these simplifications is of the order of the density
difference and therefore irrelevant.

-For the characteristic analysis the general 2-DH model (in g,a-form) is written in

the following matrix form

4l g UL Uy 3.1)
a  a Dy
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where A; are the Jacobian matrices, b a column vector of the non-homogeneous
source terms, and U is the vector of dependent variables i.e., (qi., Gy, a1, G 5 @y »
a,, 7, C). To this system of eight equations (or six if 1-D flow) an identical
number of characteristic surfaces can be defined. The formulation of these surfaces
can be obtained from the corresponding eigenvalue problem for the wave front
surface in which the characteristic condition is expressed as

Q6,0 E,) = det| AL, + AL +AE ]| =0 (3.2)

where each vector ?k, which satisfies this equation, is the vector normal to the
corresponding characteristic surface C,:¢,(x,y,#)=0 (phase of the wave front) which
can be expressed as

3 op O od
ewgcﬂ@:(gfgfa) 3.3)

The system is hyperbolic, such that simple-wave-like solutions of the type U =

Uexp(l ‘¢,) exist, if all the characteristic normals (or eigenvalues) are real with

linear independence of the corresponding left eigenvectors. For each & which

satisfies equation (3.2) we can define bicharacteristic directions in the #,x,y-space as
dr _ 9%, dy | 9O/, (3.4)
dt 9QJoE, ' dt  AQJd,

These celerities are the directions of the (infinite number of) bicharacteristic rays in
the r,x,y-space which envelop the characteristic surfaces. By eliminating € from
eq. (3.2) by means of eq’s. (3.4) the characteristic equation can be expressed in
terms of dx/ds and dy/dr and is then called the Monge equation. In a 1-D model
equation (3.4) reduces to (Hirsch, 1988)

dx

&l 3.5
& £,1¢E, (3.5)

such that the celerities in the #x-plane can be directly obtained from the
characteristic condition (3.2).

The characteristic condition for our 2-DH model is an algebraic equation in £ of
the order eight but it can be factorized into two linear and one sixth-order equation:

= 9y q
Lo Q&) =2, =&+ + Pg -0 (3.6)
a, a
for which dx/dr = ¢,/a, and dy/dr = g, /a,. This is a type of wave, along
the stream lines in the upper layer, along which vorticity is transported
(Vreugdenhil, 1989). It is a wave only observable in the velocity pattern,
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and does not exist in 1-D theory.

S

QE) =2y =& + 2zxg » Dog g 3.7)
a, a,
for which dx/dt = g,/a, and dy/dt = q,/a,. This is a wave (located along
the stream lines) in the lower layer representing convective transport of
suspended sediment following from Galappatti’s equation with L,"=T,".
3. Anssixth order algebraic equation in § is Q; = O:

03(2) = EzaZA’z (p/“CSYS) [ (Ai-alng‘S)(}‘é_azng:;) - alazgzzlg(l - £) ] +

Shtor 4242 S 2
+ 1,6 8,0 —0,8, )| X AS(A —ag Ay - ) + A (AR, A5 L+
u2tot 2tot (3 : 8)
2| Shror 42 o .2 2
- gy | EEAL + A (M -ayghe) = O
u2tot u2tat
where:

Spror = \/(sbx2+sby2) 3 S = WaSpod Uaror 5 Sy = VaSptor Uator

Untor = \/(u22+v22)

fb = dsbmr/ duyy,

p' = l-¢, (bed porosity)

£ = ¢'C, (density difference: g,’ = g-¢)

x3 = £x2+£y2

A = U, o8,

)\5 = v2£x_u2gy

Ys = dummy equals O or 1: unity at high C,, zero at low C..

This irreducibie algebraic equation in £ cannot be soived anaiyticaily, and
therefore cannot be written as a Monge equation. The six characteristic
cones expressed by equation Q;=0 make up four cones (Monge cones) in
the #,x,y-space.

The cones following from @Q;=0 can be subdivided in two groups: 2 cones
generated by circular (or elliptical) wave fronts, and 2 cones generated by star-
shaped fronts (at least when y,=1 as is shown hereafter). An example is given in
figure 3.1 which shows how wave fronts develop in time originating from a point
disturbance at the origin and how bicharacteristics (rays) envelop the cones. In
reality the bicharacteristics are curved since they are dependent on the local values
of the dependent variables (depth, discharge, etc.) which also vary in time and
space. Due to this curvature wave fronts of different disturbances may intersect and
allow for jumps and fronts with finite amplitude (e.g. Courant and Hilbert, 1962).
This property plays an evident role in shock-capturing methods for solving the
equations as discussed in chapter 6. The physical meaning of each cone is
discussed in the following sections.
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Figure 3.1 Monge cones for 2-DH mobile bed models

We found that one of the star-shaped cones almost coincides with the stream line in
the lower layer if concentrations are large (with y,=1), and fully coincides with the
stream line if y,=0 if concentrations are small (then it can simply be shown that Q,
factorizes into a fifth order and another linear algebraic equation). This wave is
associated to transport of vorticity in the lower layer (cf. Q, = 0).

If the general 2-DH model is integrated over the width, while assuming a wide
prismatic channel, the following 1-D characteristic equation is found

(¢ -uy)

(YSCS-P’)¢“2({(¢‘“1)2*8201}{(“"“2>2‘g1“2} i gjalaz—ppl ) ’

2

’ stbd)( {(¢—u1)2*gzal}{(¢~u2) U, - azgz} - gzzalazpif) + 3.9)

2

R4 I S I
Ps

where ¢ = dx/dr is the characteristic celerity. Again for low concentrations -y, =0
the result can be simplified notably. Here the celerity ¢=u, (first term in eq. 3.9)
follows directly from Galappatti’s equation with L,'=T,’.

+ 8,41, (- ”2){ (@ _“1>2 -84

As will be shown later in this chapter, a fundamental difference of the behaviour of
the model following these characteristic equations exists for an internal subcritical
and internal supercritical density current (e.g., Schijf and Schonfeld, 1953). For
relatively low concentrations the flow is internal critical if the densimetric Froude
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numbers Fr, and Fr, satisfy
(u2+v2) (u2+v2)
2 2 17V 2 V2
Fr; + Fr, = p +

-1 (3.10)
/
gzal gzaZ

where g’ = g, = g,0'C,. If their sum is smaller than unity then the flow is
internal subcritical, else supercritical. In a 1-D flow velocities v, disappear and
condition (3.10) remains unchanged.

3.3 Analysis of characteristics for the 1-D 2-layer flow

The characteristic equation of the width-integrated 1-D formulation of our model is
given by equation (3.9). It is reducible to a fifth-order algebraic equation and a
term ¢ =u, associated to adaptation of suspended-sediment concentration. The fifth-
order equation cannot be solved analytically and is therefore not practical. Still it
will be possible to relate the complex mathematical behaviour expressed by this
relation to physical phenomena. Later in this section some approximative solutions
are proposed, based on the conclusions of a complete numerical analysis of this
equation.

In a fixed-bed situation the characteristic condition corresponds to the classical two-
layer condition (Abbott, 1979), while in a infinitely deep reservoir with mobile bed
the condition reduces to the open-channel flow condition (de Vries, 1959, 1965,
Sloff, 1993a, 1993b) with modified gravity acceleration (g’ instead of g). To

X . ) .
extend and combine the analyses of these classical models we consider 2 two-layer

flow with zero velocity in the upper layer (¥,=0). Furthermore we define the
following dimensionless parameters:

Fr, = densimetric Froude number of underflow (Fr;=0)

A, = a,/a, = dimensionless depth parameter

¢ = ¢/u, = dimensionless celerity ‘
v = f,/(a,{p'-v,C,}) = dimensionless bed-load transport parameter

Rewriting the complete characteristic equation (3.9) yields

1+e

-4
é{[e&f - AaFrz‘z][a(&—l)2 - Frz'z] - A, Fr, } +

- v w b [ed - AP eld-1) - Fr7] - A,

1+¢

Fr;* } (3.11)

1+¢

- Frz‘zq;(d)—l)[ $ - AaFr;Z(l— 1 )] -0
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The five roots of this algebraic equation are plotted as a function of the densimetric
Froude number in figures 3.2~ and 3.3 using y,=1. Here the roots ¢,, ¢; and ¢; are
always positive (pos), while ¢, and ¢, are negative (neg) as shown in the figures.
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=
= <]
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Figure 3.2  Absolute values of dimensionless celerities for different i, using
A,=1, €=0.01 and u,=0.
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Figure 3.3 Absolute values of dimensionless celerities for different A, using
¢=0.01, £¢=0.01 and u,=0.
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Comparing these celerities to those for conservative two-layer flow and open-
channel flow on a mobile bed some important conclusions can be drawn from these
figures and from a more general analysis of equation (3.9).
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The critical state Fr,=1 (or in general equation 3.10) is clearly the point
where absolute values of &54 and &)5 intersect. It is most important for
mathematical and physical behaviour.

It can be shown that the celerities ¢, and ¢, correspond to the external
celerities of the barotropic flow (celerities of surface waves). The effect of
mobile bed (through parameter ) and baroclinic phenomena (through
parameter ¢) is negligible for all Froude numbers, permitting a decoupling of
the model. In general their magnitude is one order of magnitude larger than
¢, and they depend on the total discharge and depth of the reservoir.

In an internal subcritical state with Fr,<0.8 the celerity ¢, corresponds to
the positive celerity of internal waves in the baroclinic flow as found for a
two-layer fixed-bed model. Likewise the celerity ¢, corresponds to their
negative celerity (baroclinic disturbances travel up and downstream). The
remaining positive celerity ¢s can be associated to disturbances in the bed
morphology related to bed-load transport.

In an internal supercritical underflow with Fr,>1.2 the celerity ¢,
corresponds again to the positive celerity of internal waves, but also the
positive celerity ¢; is now associated to internal-wave propagation (no
upstream propagation of baroclinic disturbances). The remaining negative
celerity is now identified with bed disturbances, for instance the upstream
propagation of anti-dunes.

In a fixed-bed model celerity ¢, disappears in these figures for Fr,<1 and
¢, disappears for Fr,>1. Then ¢s=¢,=0 at Fr,=1. In the non-critical

ranges of Froude numbers the internal celerities are nractically indenendent

VLATLILTO Qb paalulaiiy aaliopuiaaciai

of the mobile bed (allowing a decoupling). Bed mobility is only relevant for
the bed celerity. However, in the near-critical region (0.8 <Fr,<1.2) the
celerities ¢ and ¢, are fully coupled and dependent on € and .

Bed celerities are not affected by the depth parameter A, if ¥ is constant for
all Froude numbers. Clearly they are independent of the depth.

For large densities and y,=1 (increasing &, not illustrated here) the positive
internal-wave and bed-wave celerities are increased, while their negative
counterparts are decreased. As a consequence the critical flow condition is
slightly shifted to lower values of Fr,. This phenomena was described by
Sloff (1993a, 1993b) for open-channel flow on a mobile bed.

A breakdown of the model occurs when ¢, and ¢, become imaginary. In the
figures this is called the unstable region, as for this situation the model
becomes elliptic and the 2-layer approach looses its stability. The general
stability criterion for 1-D two-layer flow with low concentrations is (Sloff,
1992)




(u2 _ u1)2 < gz/(al + az) (312)

where g,'=g.e. At larger concentrations this condition still holds provided
that the right-hand term is somewhat reduced. This stability criterion
practically equals that which can be found by analyzing the Kelvin-
Helmboltz instabilities (e.g. Thorpe, 1971) and requiring that the depth of a
subsequent developing interfacial mixing layer is less than the total depth or
layer depth. Coherently also a consideration of energy of the mixing process
due to Kelvin-Helmholtz instability yields the same criterion. Equation
(3.12) as well as the figures shows that the two-layer model is more stable
in deep-water reservoirs, and becomes superfluous in an infinitely deep
TEServoir.

- Another type of flow instability arising from the non-linearity of the basic
equations (geometry and roughness) are roll waves in steady uniform
supercritical flow. Mathematical analysis based on the characteristics for
sediment-laden open-channel flow (Sloff, 1993a, 1993b) showed that again
the stability criterion at which these instabilities occur is reduced at high
concentrations. Due to the analogy with open-channel flow internal roll
waves appearing on the density interface can also be observed as interfacial
instabilities (Alavian, 1986).

For turbidity currents observed in reservoirs the bed-load transport parameter y is
small. Therefore their 1-D characteristic behaviour is not much different from
fixed-bed models where the bed-wave celerity does not exist. For these zero-
amplitude long waves the effect of suspended sediment does not affect the bed and
internal waves (this is different for short waves with a certain amplitude).

Following these conclusions it has been shown that flow in flow situations which

are not close to the critical one, i.e, approximately for Fr.2+4+Fr,2<0.7 and

Fri2+Fr,2> 1.4, it is possible to simplify the model and to allow for a quick and

analytical solution as follows (Sloff, 1992):

- The propagation velocity of disturbances in the bed is small compared to
those in flow. Consequently flow and morphology can be decoupled: Use a
quasi-steady approach for computing the morphology by neglecting all
derivatives to ¢ except those for dz,/dt, but by still allowing for the time
variation of discharges. Consider a fixed bed for computing the unsteady
flow phenomena.

- Also the difference in magnitude of the barotropic (internal waves) and
baroclinic flow (surface waves) propagation velocities allows us to decouple
these modes if the density differences between the layers are small (e<1),
which was also shown by Vreugdenhil (1979).

For the 1-D model at can be shown easily that these simplification results in the
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following approximative celerities (also shown by Schijf and Schonfeld, 1953):

Internal-wave celerities ¢;:
Assume fixed bed (f,=0). Consider the terms (¢-u,) and (¢;u,) of order
v/(ega) in which a, and a, are of order a (total depth). Then the terms of
order (ega)? can be neglected compared to the other terms (e«1), yielding:

_ay tayu, a,a, T 1
b, - ava, J (a1+a2)2[sgz(“1+“2) (4~ ws) | G-13)

External-wave celerities ¢,:
Assume fixed bed (f,=0). Consider the terms (¢,-u,) and (¢,-u,) of order
J(ga) and ((u;-u,) of order \/(ga) in which a, and a, are of order a. Then
the terms of order g(ga)®> can be neglected compared to the other terms
(e=1). This yields:

a)U ta,

b, = ———— = /g,(a,+a) (3.14)

a, +a2

Bed-wave celerity ¢,
Assume steady flow (neglect all derivatives to ¢ except dz,/0f) and assume
small concentrations. This yields:

fbu2<1 —Fr,z)
azp/<1 ~Fr} —Fr22)

b, - (3.15)

These results are quite important but not comprehensive. The characteristic analysis
of the 2-DH model provides more insight in the physical behaviour of the model
and more support for decisions concerning simplification and decoupling of the
model. This will be shown in the following section.

3.4 Analysis of characteristics for the 2-DH 2-layer flow

3.4.1 Introduction

Wave fronts (with infinitely small amplitude), originating from a point disturbance,
can be obtained from the Monge equations (i.e., characteristic equation rewritten in
terms of dx/dr and dy/df) by means of integration to ¢. We suppose that the
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disturbance emanates in the origin of the coordinate system. By expressing dx/dr =
Ax/At and dy/dr = Ay/At we can draw wave fronts developing for each value of
At. However, for the characteristic condition Q;=0 (equation 3.8) a Monge
equation cannot be formulated and we used the graphical Huygens’ method
(Courant and Hilbert, 1962) to construct the wave fronts. Taking Ar=1 s, the lines

- (a,Ax) - (a,Ay) = 0 envelop the wave front, where the values for A (the
elgenvalues) follow (numerically) from Qs(-A, a,,«) = 0 and where a=(a,,a) is
a unit vector which has to be varied over the unit sphere (cf. Hirsch, 1990). These
lines are the secants of the bicharacteristic strips and the surface r=1 s. Equation
Qs(-\ o) = 0 gives six roots for the eigenvalues A relating to the four cones
expressed by this equation (Sloff, 1992). Alternatively to this graphical approach
Sieben (1994) (also Sieben & Sloff, 1994) proposed the use of polar coordinates to
formulate the wave fronts. This results in a more direct numerical description of
Huygens’ approach.

3.4.2 Internal subcritical flow

Consider an internal subcritical two-layer flow. These types of turbidity currents
have a low sediment-transport capacity so that we may assume v,=0. In figure 3.4
the wave fronts are plotted for a mobile bed derived from condition Q; originating
from a point disturbance (in the origin at r=0 s) after Ar=1 s. We used the
fictitious values q,,=-0.3m?/s; q,,=q,,=0 m?/s; ¢,,=0.5 m?*/s; a;=3 m; a,=1 m;
exaggerated C, = 0.1; s5,,,=0.001 m?/s; Fr2+Fr,>=0.16.

q,,= — 03 m%s /,/y~ 0.005
<~ 5 o
- ~.
q,, =0.5 m?/s -0.005
/‘\»
-5 rX

Figure 3.4 Wave fronts internal subcritical flow.

We found that for a fixed bed model (dz,/0t=0) the two circular fronts are
practically identical to those for a mobile bed in figure 3.4, but that the star-shaped
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front cannot be found. The wave fronts in figure 3.4 can be associated to the

following physical phenomena which were also identified in the 1-D approach:

- The large circular front is associated to surface waves. This external flow
phenomenon disappears if a rigid lid model is defined. Surface waves have a
relatively large propagation speed.

- The small elliptical front is associated to internal waves at the density
interface, which have a much smaller propagation speed than surface waves.
These internal waves only occur in multiple-layer models.

- The small star-shaped front is associated to bed waves and is typical for all
morphological models. Their propagation speed is very low.

The distinct differences in magnitude of the celerities of these waves, notably for
Fri2+Fry2<0.8, allows us to simplify the model as in the 1-D case to define
approximative solutions. By simplifying and reducing the characteristic equation
0;=0 according to these considerations we can define approximate Monge
equations for each type of wave front separately. These equations are presented in
Sloff (1994b) and show some analogy with the approximative solutions for the 1-D
celerities given by equations (3.13) to (3.15). Analogous to the 1-D approach we
assumed fixed bed and neglect density differences for the external waves, resulting
in a Monge cone practically corresponding to that of open-channel flow on a fixed
bed. For internal flow (internal waves) we assumed fixed bed and neglect terms of
order (gg(a,+ay))?, resulting in a somewhat more complicated equation
characterised by circular cones (figure 3.1). For the morphology we assume the
flow to be quasi-steady and rewrite the system of equations for coordinates in the
flow direction (s,n-axis) of the underflow (we assume the bed morphology to be
practically independent of the quiescent ambient flow). This is permitted as
characteristic are invariant with respect to arbitrary transformations of independent
variahles (Courant & Hilbert, 1962) This yields an equation similar to that for
quasi-steady flow on a mobile bed as presented by de Vriend (1987a,b) and Sloff
(1992). It can be solved, yielding four roots forming two families. These roots
compose the star-shaped cone illustrated in figure 3.1. The approximative 1-D
celerities of the previous section correspond to the intersections of the wave fronts
with the flow axis. For instance the bed celerity corresponds to the downstream
point of intersection of the two-dimensional star-shaped bed-wave front with the s-
axis in flow direction. At this point the elementary behaviour of the bottom is
identical with the one-dimensional behaviour. Compared to the one-dimensional
models it can be noticed that at the edges of the star shaped front the two-
dimensional approach yields slightly larger propagation velocities of bed
disturbances.

The separate Monge equations presented in Sloff (1994b) can be used to determine
the Monge cones for subcritical unsteady density and turbidity currents with small
density differences. They are required for numerical methods which are based on
the method of characteristics.
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3.4.3 Internal supercritical flow

Now consider an internal supercritical turbidity current which can be sediment-
laden (y,=1). In fig. 3.5 the wave fronts after Ar=1 s are plotted for a mobile bed
derived from condition Q; originating from a point disturbance in the origin (at t =
0 s).

y q,.~1.5 m3s y
/\»
5 5

Fixed bed

Mobile bed

Figure 3.5 Wave fronts internal supercritical flow, left fixed, right mobile bed.

We used ¢,,=q,,=¢,,=0 m?s; ¢,,=1.5 m¥s; a,=3 m; a,=1 m; C; = 0.1;
1,=0.01 m; s,,,=0.003 m?/s; Fr,=1.17. Clearly the figure for fixed bed resembles
that for internal subcritical flow, except for the internal wave front, which is now
located fully downstream of the disturbance source (typical for supercritical flow).
Furthermore the fixed bed and mobile bed models show a fundamentally different
behaviour except for the large circular (external) wave front. These aspects were
already observed comparably in the 1-D analysis.

A more detailed plot is given in figure 3.6, which also illustrates how the wave
fronts are constructed using Huygens’ method. Firstly a small star-shaped front is
found near the lower layer streamline (amplified in the dotted circle in figure 3.6),
which, as previously stated (section 3.3), we may associate to vorticity. Secondly
on a mobile bed the small egg-shaped and star-shaped front near the origin interact
in such a way that upstream disturbance propagation occurs. In the 1-D analysis
this negative propagation was associated to the propagation of anti-dunes on the
bed, but that is not evident in a 2-DH model.
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y Huygen's method:
— lines enveloping the
wave front

Figure 3.6 Huygens’ construction of the internal supercritical wave fronts with
v,=1 and stagnant upper layer (external waves not plotted).

From the strong interaction between the two wave fronts we may conclude that in
internal supercritical flow the wave fronts cannot be associated to either internal
waves or bed waves, and consequently the processes are fully coupled. A similar
behaviour was found for supercritical shallow water flow on a mobile bed without
stratification by Sloff (1992) and by Sieben and Sloff (1994). Solving of the
equations for this type of flow requires at least a fully coupled (numerical) solution
method for the internal flow and the bed morphology, whereas the solution
becomes sensitive to the boundary conditions. This is contradictory to the results of
the 1-1 analysis in which is shown that decoupling is allowed for Froude numbers
larger than 1.2. External flow may still be decoupled for the same reasons as in
subcritical flows. The decoupled equations for the baroclinic and barotropic flow
are presented in sub-section 2.3.3.

Accounting for large concentrations by taking vy,=1 causes, besides the formation
of a star-shaped vorticity wave, an increase in propagation velocities in the
direction of the turbidity current and a decrease in counterflow direction. Similarly
to the 1-D flow this phenomenon decreases the critical Froude number and the
Froude number at which instability occurs. Also in a 2-DH model instability of the
model is found when the Monge equation for the physical relevant wave fronts
yields imaginary roots. The stability criterion for a 2-DH flow can be approximated
(Sloff, 1994b) as

(4 = + (v, - v <ge(a +a) (3.16)

which is similar to equation (3.12) expressing the stability of long internal waves.
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In chapter 2 it was already assumed that for practical situations the low
concentration model is favourite. By applying the Boussinesq approximation to
simplify the model (sub-section 2.2.2) automatically the dummy variable v, is taken
equal to zero. The corresponding results of the 2-D and 1-D analyses are therefore
most relevant for further application to our model. In the following section the
characteristics are used to impose boundary conditions.

3.5 Number of boundary conditions

The knowledge on the development of the wave fronts can be used to determine the
number of boundary conditions (b.c.) required to make the system well posed. For
hyperbolic problems the number of boundary conditions, needed at any particular
point at the boundary equals the number of characteristics entering the region at
that point (Daubert and Graffe, 1967). In a 2-DH flow boundary conditions have to
be given at each instant ¢ at the contour of a boundary Q. Consider the lower-layer
flow-velocity normal to the boundary to be u,,,; the upper-layer flow-velocity u,,,,.
Furthermore we assume u,,, > u,,,. From the discussed wave fronts (external,
internal, bed, sediment convection, and vorticity) the required number of boundary
conditions is determined in Table (3.1) for different flow types on a mobile bed as
well as on fixed bed (Sloff, 1992, 1994b).

Internal subcritical density b.c. Internal supercritical b.c.
current - density - -
mobile | fixed current mobile | fixed
inflow u,,,<0 4 3 inflow u,,,, <0 4 4
lower
lower outflow u,,,,>0 2 2 layer outflow u,,,>0 2 1
layer solid #,,=0 2 2 solid u,,,=0 2 2
inflow u,,,, <0 1 1 inflow u,,, <0 1 1
upper
upper outflow «,,,, >0 0 0 layer outflow u,,,, >0 0 0
layer solid u,,=0 0 0 solid u,,,=0 0 0
inflow u,,,<0 1 - inflow u,,,,<0 1 -
Susp- outflow u,,,,>0 0 - SUSP- [ otflow Uyn>0 0 -
transport transport
solid u,,,=0 0 - solid #,,,,=0 0 -

Table 3.1 Number of boundary conditions for coupled 2-DH stratified flow.

In a similar way a table can be defined for the decoupled model. Figure 3.7
illustrates the characteristic planes (local approximations of characteristic surfaces)
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for an internal supercritical density current at an arbitrary boundary. Note that the
cones in this figure are the backward Monge cones, deduced by imaging them in
their vertex (point where disturbances originate). On the smooth boundary df} the
conditions have to be imposed according to the incoming characteristics.

Figure 3.7 Characteristic planes at the boundary (Sloff, 1992).

The type of boundary conditions to be given is usually determined from physical
reasoning and additional conditions for well-posedness, as will be shown for 1-D
flow in sub-section 6.7.1 (see also Hirsch, 1990).

The number of boundary conditions to be imposed on a 1-D model analogously
corresponds to the number of characteristics entering through the boundary. This is
summarized in table 3.2 based on the sign of the characteristics. In the fully
coupled 1-D two-layer turbid flow on a mobile bed (not critical) always four
positive and two negative celerities can be found (section 3.3). In a conservative

current (on a mobile bed) the positive suspension characteristic, and a positive ¢,

or negative ¢, characteristic disappears depending on the flow type. In a decoupled
model the number of boundary conditions is split according to table 3.2.

Model Upstream inflow b.c. Downstream outflow b.c.
Mode Flow type
type mobile bed | conservative | mobile bed | conservative
Fully subcritical 4 2 2 2
Coupled
Model supercritical 4 3 2 1
Baroclini subcritical 3 1 1 1
aroclinic
Di‘j[(::ji lled supercritical 3 2 1 0
Barotropic | subcritical 1 1 1 1

Table 3.2 Number of boundary conditions for 1-D stratified flow.

70




3.6 Discussion

The method of characteristics is used to analyze the 2-DH and 1-D depth-averaged
two-layer model for simulation of morphological processes in a reservoir with
turbidity currents. It shows mathematically how a point-disturbance develops into a
number of (characteristic) wave fronts (with infinitely small amplitudes) which are
related to physical phenomena. Since information from boundaries and initial
conditions is transported along characteristics it is well known that these results are
important for numerical and analytical solutions. By comparing conservative two-
layer flow on a fixed bed to that on a mobile bed and by comparing low
concentration turbidity currents to sediment-laden ones we found that:

- Besides circular wave fronts which can be associated in a coupled 2-DH
flow to surface waves (barotropic waves) and internal (baroclinic) waves,
and a star-shaped wave front which can be associated to bed waves, two
downstream propagating waves are found associated to transport of vorticity
in the upper and lower layer respectively. Furthermore another downstream
directed wave is associated to the adaptation of suspended sediment. The
characteristics found in a 1-D flow correspond to these wave fronts, except
for the vorticity waves.

- For 2-DH and 1-D internal subcritical flow (Fr,2+Fr,2<0.7) the wave
fronts (or celerities) for surface waves, internal waves and bed waves differ
several orders of magnitude and are practically independent. Their
interaction is very weak. Therefore morphological computations can be
carried out by means of a quasi-steady approach, or unsteady flow
computations can be carried out with a fixed bed. Also external and internal
flow computation may be decoupled if density differences are small (which
is elaborated in the previous chapter). These adjustments greatly simplify the
model, and allow for analytical formulations of the wave fronts or celerities.

- For 2-DH internal supercritical flow the internal and morphological
processes are fully coupled and require a fully coupled computation.
However, in a 1-D model the internal and morphological computation (e.g.,
anti-dunes) can be decoupled again for Fr2+Fr,2>1.4. Still external and
internal flow can be decoupled at all Froude numbers in both 2-DH and 1-D
models (if C,<1).

- At high concentrations the propagation speed of disturbances in flow
direction increases, while that in counter-flow direction decreases. For that
reason the flow may be become critical (and also instable) at lower Froude
numbers.
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- The required number of boundary conditions for numerical or analytical
solution directly follow from the number of characteristic entering through
the boundary. For a coupled 2-DH and for 1-D models these numbers are
summarized in tables 3.1 and 3.2.

- A physically sound stability criterion for two-layer flow follows from the
condition for hyperbolicity of the model (equations 3.12 and 3.16). At a
certain (high) value of the densimetric Froude number the model becomes
elliptic due to imaginary characteristics. In deep-water reservoirs the flow
remains stable up to higher Froude numbers than in shallow reservoirs.

The method of characteristics plays an evident role in further mathematical analysis
of the model and the solution (analytical and numerical). Sometimes it is useful to
rewrite the system of equations in an equivalent form, i.e. the compatibility
equations, along the (bi-) characteristics. This transformation to a 2-D characteristic
coordinate system is for instance treated by Hirsch (1990) and applied by Sieben
(1994). It can be shown that if the system of basic equations (3.1) is rewritten in
conservative form (i.e., A, is the identity matrix [), the characteristics can be
considered as the eigenvalues A, of the Jacobians as follows:

det| A1 - AE, - AE || = det| Al -K[ = 0 (.17
In turn we can define left eigenvectors I* as solutions of
FR =21 or PAE+AE) =L (3.18)
Then the compatibility equation for A, for the 2-DH model becomes

U | U

11U kU, kU ey (3.19)
ot Ox
In compact form this can also be written as
19 19 L9y -y (3.20)
ot ox dy

where L' is a matrix in which each k™ line is the left eigenvector I¥ (Hirsch, 1990).
Also a matrix of right eigenvectors can be defined as R=L (inverse of L”, each k"
column is right eigenvector r,). Right eigenvectors are proportional to the intensity
of the propagating disturbance, a property which is used in section 6.6 to
decompose the fluxes in simple-wave contributions (in terms of characteristic
variables or Riemann invariants). The matrix L can be shown to diagonalize the
matrix K into a diagonal matrix of the eigenvalues as is also used in section 6.6.
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The presented elaboration of the theory for characteristic analysis can easily be
used for other 2-D models by means of simplification of the model equations and
of the results. It is a useful tool in analyzing a complicated model and a first step
to be made for numerical solution. It has been shown that the intersection of the
characteristic wave fronts plays an evident role in computing shocks and jumps in
the solutions, because these discontinuities develop due to intersection of these
characteristic wave fronts. This property has been used in the following chapter to
define shock relations for the gravity-current front and related discontinuities.
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Chapter 4

Gravity-current fronts

4.1 Introduction

A gravity current advancing at the bottom of a reservoir is preceded by a frontgits
nose) which is characterized by a raised head and followed by intense mixing. Frontal
motion depends on various complicated physical processes causing energy dissipation
and dispersion. In general the motion of gravity-current fronts is important for many
different hydrodynamical, geophysical, and meteorological processes; for example
propagation of oil slicks, toxic gases, dredging disposals, avalanches, turbidity
currents in submarine canyons, or downbursts of cold air from a thunderstorm
(Simpson, 1987). For venting out turbidity currents from a reservoir the rate of
propagation the front is important to predict the arrival of the current at the dam, after
which sluices in the dam can be opened. This enables us to prevent unnecessary loss
of stored water. A good understanding of the physics is required to develop and
understand a model which includes the advance of such a front.

A description of the physical processes is given in section 4.2 which determine the
motion of a gravity-current head as reported from observations and interpretations of
laboratory experiments. The treat of these processes deals with gravity currents in
prismatic flumes (1-D plane gravity currents) as well as 2-DH currents with axi-
symmetrical spreading.

The theoretical analysis of gravity-current fronts is historically assessed from two
different view points. In one approach the characteristics of the front are studied for
a gravity current that has already been established and exhibits a practically steady
state. These steady-state features have been shown to be quite common in nature, and
this type of approach has gained much notice in literature. This has resulted in various
relations that must hold at the front. It is Benjamin’s (1968) formula which is most
often cited due to its good match with the scattered data of various observed fronts.
To reduce the discrepancies, i.e. the scatter, a wide range of other formulas and
variations to Benjamin’s equation have been developed, for instance by adjusting the
dissipation rate.

As the alternative approach the front is taken as a solution of the shallow-water
equations, for instance evolving from a state of rest. It is considered as a wave that
attained maximum steepness which means that it is a shock wave. In this context the
turbid underflow can roughly be regarded as a dam-break wave collapsing into an
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ambient fluid, which enables us to use some established methods from dam-break
modelling.

In this chapter we try to combine the two approaches in a way that the shock-wave
solution of the two-layer model matches the well-working and verified steady-state
solutions. Theoretical considerations on modelling the front are treated in section 4.3
and further. Starting from our 1-D or 2-DH models the first step in incorporating the
motion of the front would be the formulation or reformulation of appropriate balance
equations for momentum and energy. To consider the gravity current front as an
internal bore is the most attractive approach for mathematical and numerical
simulation, especially if the model is two-dimensional. A gravity-current head is
assumed to be a special form of an internal bore where downslope of the front depth
and velocity of the lower layer are extremely small. The advantage of this approach
is the necessity of only one algorithm for computing both internal bores and gravity-
current fronts. Numerical shock-fitting or shock-capturing methods can be used. They
are already in common use for instance for dam-break flows.

In section 4.4 shock relations are derived from the Rankine Hugoniot conditions for
an internal bore in a 1-D two-layer model. These are used to examine the differences
between the propagation and development of an internal bore and a real front. On
basis of empirical evidence a choice is made with respect to correcting or transforming
the basic equations for two-layer flow to account for real fluid effects such that its
shock-wave solutions matches the classical steady-state formulations. In the following
section 4.5 this approach is further elaborated to a concept model for 2-DH fronts.

Before attempting to develop a theoretical model for an intruding gravity current it is
important to understand its complex behaviour in nature. Gravity currents can be
found in various forms, which are relevant for as many different research fields. As
the leading front of the current is often an important control, much research has been
carried out to describe its behaviour. Based on the experimental part of some of this
research (in laboratory and field) a description of the physics of gravity-current fronts
is given in this section.

Most laboratory research concerns gravity currents in flumes which are not subjected
to 3-D spreading processes because these currents are confined by the parallel side
walls. In figure 4.1 the frontal region of such a plane gravity-current head is sketched.
If we want to describe its motion we need to consider all relevant forces and all
sources of energy loss. Then the primary forces controlling the unidirectional motion
of a head are pressure, gravity and friction. In the following list is described how
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Figure 4.1 Definition sketch of a gravity current head.

these components contribute to this motion, especially if we consider conservation of
momentum:

The pressure balance of sections left and right of the head yields a net driving
force. The left side pressure force is higher due to the higher density of the
gravity current.

For gravity currents on an incline an additional driving force exists from the
component of the gravity force along the bed. This force tends to dominate the
motion of the current at large slopes. On steeply sloping beds the gravity force
component is reduced due to entrainment in the head. Britter and Linden (1980)
assumed that for slopes 6>0.34° the buoyancy force down the slope
counteracts the friction force to produce a steady flow (#,=constant). For slopes
6>5° the influence of bottom drag is less noticeable, but the flow velocity
remains constant because the buoyancy force is now counteracted by increased
entrainment (see later in this section).

The pressure balance in combination with conservation of buoyancy flux yields
an increasing front celerity ¢, for decreasing submerge ratio a,/a, i.e. a deeper
reservoir (Simpson and Britter, 1979). Consequently, in reservoirs with sloping
bottom and a finite submerge ratio, a downslope increase of ¢, may occur.
The wave celerities in the following gravity current are most often larger than
the front velocity (¢;>c;, section 3.3). Therefore different parts (internal
waves) of the current catch up with the front and overtake it, resulting in
scatter in measured front velocity data. For instance in Maxworthy’s (1983)
experiment the front was overtaken by a solitary wave generated by varying the
inflow. The dense fluid from the gravity current supplied into the head is added
to the head volume together with entrained fluid. Part of the fluid is left behind
in the mixing layer.
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- Shape factors of velocity and density distributions influence the propagation of
the head, but in theoretical analyses they are usually neglected.

- Bottom drag and interfacial friction become important if propagation processes
over longer distances are considered. Interfacial friction causes shear instability
at the interface (billows) and subsequent entrainment of less dense water (see
later in this section). Furthermore interfacial and bottom shear increase the
turbulence rate in the head region.

- The depression of the free surface above the gravity current is very small
compared to effects of viscosity and interfacial instability (Benjamin, 1968).

A significant difference in propagation speed can be noticed if we compare gravity-
current fronts to related fronts in open channel flow, submerged in the atmosphere
(Simpson, 1987). The front velocity of a gravity current advancing into an ambient
fluid with a one percent lesser density will be only of the order of one percent of the
front velocity for equivalent dam-break flows in the atmosphere. The effective driving
force of the intruding front is of the order of only one percent of the open-channel
flow situation when considering that the main driving forces are gravitational and
inertial (i.e. caused by the displacement of ambient fluid).

Benjamin (1968) showed that energy dissipation must be present near the head. Some
of these energy losses may be compared with losses occurring in internal bores, or in
bores and hydraulic jumps in open channel flow. Locally energy losses and
entrainment are associated with the flow in the head, i.e. increased turbulence and
shear generated instabilities. The instabilities generated at the head are described by
Simpson & Britter (1979), Simpson (1987) and Sloff (1994) in relation to interfacial
mixing processes controlled by the head.

R TR, ~ s . =g
R — /\—,‘

(D

Figure 4.2  Instabilities of a gravity current head after Simpson (1987): (1) billows;
(2) lobes and clefts.

The two major forms of instability at the front of a fully turbulent gravity current,
which cause energy loss and entrainment, are (after Simpson, 1987, Sloff 1994):
- Billows associated to Kelvin-Helmholtz instabilities forming at the front (see
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figure 4.2, part (1)).

- Gravitational instabilities in the head caused by rising less dense fluid which is
overrun by the head. This type of instability only occurs due to the effect of
bottom friction. It is responsible for the non-steady lobe and cleft structure
illustrated in figure 4.2, part (2). The Kelvin-Helmholtz billows on the head are
then broken up in a complicated 3-D form.

Beside for the gravitational instabilities, bottom friction is also important for shear

related turbulence generation and associated energy losses in the gravity current

(Abraham and Vreugdenhil, 1971)

Interfacial mixing due to K-H instabilities increases when the bottom slope increases.
The front speed however remains constant for increasing slopes because the larger
gravitational force is counterbalanced by the increased entrainment in the head and the
flow behind it. Interfacial mixing cause momentum to be imparted to less dense
reservoir fluid entrained into the head (Britter and Linden, 1980). Furthermore it
causes (together with dense inflow from behind) a growth of the head volume and
head height. Although for large slopes ¢, remains constant, it has been observed that
the front behaviour is extremely sensitive to the slope as it approaches the horizontal.

Not only shear related instabilities and buoyancy and gravity related forces affect the
motion of the head, but also turbulence related properties of the ambient fluid can be
important:

- The propagation of gravity currents in co-flowing and counter-flowing fluids
is affected by the boundary structure (velocity profile) of the downstream
ambient fluid. Furthermore a loss of energy in the continuous upper layer may
occur in the decelerating flow just behind the head wave (Kranenburg, 1993a,
Abraham and Vreugdenhil, 1971).

- Background turbulence in the ambient fluid, in the continuous layer,
significantly influences the entrainment mechanism (e.g. Noh & Fernando,
1992, Simpson, 1987, and Sloff, 1994), and consequently the head height and
head velocity.

Turbidity currents do not significantly differ from saline density currents if the
concentration is not extremely large. However, if the sediment concentration decreases
due to settlement, the motion of the head and the flow behind is affected:

- Settling of suspended sediment can decrease the buoyancy flux of the gravity
current head Altinakar et al. (1990). However, the increased turbulence rate
locally in the head may often prevent settling and can even cause erosion of bed
sediments (Simpson, 1987). Velocities in the head are larger than the celerity
of the head wave. Then settling of sediments is more likely to occur in the
following gravity current body.

- Turbidity currents with coarse sediment show an increase of the height of the
head wave. This is caused by conversion of kinetic energy into potential energy
due to a more important loss of the buoyancy flux on a horizontal bed
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(Altinakar et al., 1990).

If a gravity current is not laterally confined by side walls the current is subjected to
spreading. For instance, if a turbidity current is not running through a bottom channel,
e.g. the former river channel in a storage reservoir, then it will spread over the
bottom as a boundary-attached plume or as a jet. Its development depends on reservoir
geometry, friction, bottom slope, initial buoyancy flux, and interfacial mixing
(Alavian, 1986). Buoyancy related forces drive the rate of lateral spreading, but it can
be reduced by the downslope driving force.

One striking difference between plane 1-D and 2-DH (axi-symmetric) spreading
gravity current in shallow reservoirs is the intensity of rotational motion, and the
related mixing rate (Rottman & Simpson, 1984, Sloff, 1994). The majority of the
gravity-current fluid becomes concentrated at the front in deep reservoirs or in
multiple fronts in shallow reservoirs, leaving only a thin layer of heavy fluid near the
ground. Plane gravity currents are more uniform in depth shortly after release. The
formation of this leading edge vortex, which occupies almost the full depth of the
dense fluid, is associated to the formation of Kelvin-Helmholtz vortices at the head:
see figure 4.3.

Figure 4.3 Comparison of gravity currents in a sector tank and in a prismatic
channel after Rottman & Simpson (1984), Simpson (1987).

Due to conservation of angular momentum and by entrainment of fluid the intensity
of the vortices is increased if they are stretched, notably near rapid expansions (e.g.
near the source). An increased intensity gives an increased entrainment. This vortex
formation is also reported by McClimans (1978) and Garvine (1984) for a fresh
surface-current entering coastal waters.

The derivation of shock relations for these 2-DH spreading currents, and the
adaptation of the mathematical model to satisfy observed behaviour, are treated in
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section 4.5. These theories are conceptual as they are not calibrated and verified yet.
The actual difference in the plume shape of 1-D and 2-DH currents due to the frontal
condition is discussed in the following chapter, illustrating causes and effects of the
increased mixing rate and the raised edge of the plume.

In the following sections a theoretical model is presented which can be applied to
simulate the front within our 2-layer model.

4.3 Theoretical considerations on shock relations for front-
propagation in a one-dimensional 2-layer flow.

In the introduction to this chapter is explained that two approaches in treating gravity-
current fronts are possible. Considering the front as the mathematical solution of a
developing two-layer flow, or considering it as a dissipating edge of a steady-state
current are usually not compatible. The only way to match the latter approach to the
former is by taking the steady-state formula as a local internal boundary condition to
the two-layer flow.

Internal bores, fronts and hydraulic jumps may be considered as discontinuous
solutions of the two-layer flow which is described by the coupled system of basic
equations. In the principle part of the reservoir the system is conservative with respect
to mass, momentum, energy and entropy. However, locally at the jump the established
assumption is that only mass and momentum are conserved. The latter follows from
the Second Law of Thermodynamics (nature always proceeds to a less ordered
situation). At a discontinuity mechanic energy is lost into turbulent motion, but this
process is irreversible and entropy is increased by an increase in random molecular
motions. It is supposed that at a discontinuity, such as a hydraulic jump, energy is lost
to just the extent that is needed to satisfy the laws of conservation of mass and
momentum.

In general the discontinuities can be expressed by shock relations. Considering the
coupled 2-layer model, where the barotropic and baroclinic computation is not
decoupled, locally at a discontinuity the basic equations (based on hydrostatic pressure)
do not hold. Therefore discontinuities can be considered as internal boundaries, where
shock relations can be considered as internal boundary conditions. These relations can
either be obtained directly from the chosen set of equations (as will be shown later)
or they can be obtained from the steady-state theory. In chapter 5 is shown that
developing gravity currents exhibit a self-similar behaviour with steadily propagating
fronts, justifying the application of steady-state theory.

Most of the existing steady-state theories for gravity-current fronts are based on
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Benjamin’s (1968) inviscid-fluid theory, i.e. viscous forces are assumed to be
completely absent. The frictional effect of ground and interface disappears but
instability, which leads to formation of billows, still remains provided that Reynolds
numbers are large. Benjamin’s model was developed for ideal fluids, notably for a
cavity flow, which is an air intrusion in a long closed water-filled channel. The
equations for conservation of momentum and volume through the transition are
formulated in a frame of reference moving with the front. Furthermore energy
conservation along a streamline is formulated (Bernoulli’s equation) for streamlines
passing through the stagnation point (or nose) of the current. For steady energy-
conserving flows (energy loss=0) the advancing layer fills half the channel
(a,/a=0.5). This is the singular loss-free solution of the model. In practical situations
the front is lower due to energy dissipation and entropy limitations (a,/a<0.5).
Benjamin’s theory has been extended by many researchers for the real fluid effects
which are described in section 4.2, which for instance affect the propagation of a front
at the bottom.

The primary differences in models based on Benjamin’s theory occur in the
parametrization of these real fluid effects and of the energy dissipation. They were all
developed to eliminate the discrepancies between predicted and observed front
celerities and to generalize Benjamin’s approach. For instance the introduction of the
nose elevation above the bottom by Simpson and Britter (1979) yielded slower
propagation speeds c¢;. Also Kranenburg (1978) predicted a decrease of ¢, by
introducing an energy loss coefficient for dissipation in the head. The parametrizations
used are all empirical and calibration and verification is inevitable. It should be
remarked that discrepancies between predicted and observed fronts are not all due to
defects in Benjamin’s model but also the definition of depths, densities and front

celerities from measurements to verify the formula are highly inconsistent in literature.
Klemp et al. (1994) demonstrated that not the uncertainty in the front conditions is

responsible for these variations, but that other effects, such as interfacial mixing and
friction in the following underflow explain them.

Although this kind of models seems to yield promising results, they have not been
applied thoroughly for spreading turbidity currents with intense vortex development.
The direct application of the results of these theories in two-layer numerical models
requires the application of difficult shock-fitting techniques or moving boundaries with
previously defined conditions (e.g. see Bonnecaze et. al., 1993).

An alternative approach to steady-state formulas can be obtained directly from the
basic equations for the continuous two-layer model. The underlying idea is that the
integral conservation law must still be satisfied at a discontinuity. Therefore a more
general integral relation can be deduced for which its solution is called a weak solution
(e.g. see Lax, 1954, or Abbott, 1975), and which does not require differentiability.
In the following is described how discontinuities occur and how weak solutions result
into appropriate shock relations. Initially we consider discontinuous solutions in 1-D
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2-layer flow which provides us with an essential foundation for computing
discontinuities in 2-DH flow.

It can be shown that weak solutions of conservation laws are not necessarily unique.
to choose the physically relevant solution it is necessary to impose an additional
condition. Mathematically this condition can be derived from the requirement that a
shock must have characteristics going into it. In figure 4.4 three types of possible
weak solutions are plotted originating from an initial state with a discontinuity
separating two constant states,

0

¢,
| = /
X Expansion shock wave

x=cft

0

Figure 4.4  Upper and lower plot: entropy satisfying shocks; Middle plot: entropy
violating shock (unstable shock).

The upper plot shows the unique weak solution in which characteristics from both
sides enter the shock as time advances. In analogy with gasdynamics this is usually
called a compression shock (compression of gas molecules). The middle plot is a
physically incorrect one, and mathematically it represents a non-unique solution (in
fact there are infinite solutions). As the characteristics go out of this expansion shock
the solution is unstable to perturbations. For this shock it can be shown that the
entropy condition is violated, the shock changes to a rarefaction wave by adding a
little (physical) viscosity. The latter type of wave, also called a centred simple wave,
is physically admissible and unique. Due to the fanning out of the characteristics the
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initial discontinuity is smeared and satisties entropy. The arguments above with respect
to physically admissible shocks can be summarized in a type of mathematical *entropy’
condition (Lax, 1957, Courant and Hilbert, 1962, Le Veque, 1990). For 1-D models
and a shock moving in x-direction from left to right we can write this criterion as:

Drin 2 € 2 Oy iy .1

where ¢,=dx/dr is the positive characteristic celerity of the continuous flow on left
and right side of the shock respectively, and where ¢; is the celerity of the front.
Clearly this condition can also be used to judge whether a shock is stable. Kranenburg
(1978) showed that the stability of the front requires the two-layer flow behind the
front to be internally subcritical or critical at most within a frame of reference moving
with the front. Effectively it reduces the maximum admissible front height to about
0.35-a which is consistent with the observations.

Now consider the two alternative systems of coupled 1-D Boussinesq equations (after
width integration) for a 2-layer flow on a fixed-bed (z, = const.) as presented in
section 2.2. The original system in ¢,a form obtained from momentum conservation
is called system QA. The system in u,a form obtained from combination of the mass
and momentum equations of system QA is called system UA (see also sub-section
2.2.3 for decoupled equations). Both systems give identical solutions in continuous
flows. The gravity current is assumed to be propagating in a smooth prismatic channel
(9z,/0x =0 relative to the average bottom slope) with quiescent ambient fluid, with
constant and low sediment concentrations, and with a prismatic cross section.

Due to the presence of friction forces, entrainment, horizontal gravity forces and
residual pressure forces (e.g. g4, 6(12/ dx and gza2aa /0x) both systems cannot be written
in conservation form. However, if we consider the picce-wisc continuous sclution of
the system in a physically small region at the shock (i.e. the support of the
discontinuity), it is usually assumed that these force terms may be neglected or
averaged over the shock. Under these assumptions the system of equations reduces
into the following semi-conservation form (which is called semi-conservative since
quantity U is not fully conserved due to the presence of a source term Q, containing
force and entrainment terms):

A N af(U)
ot ox

= Q, 4.2)

where U = (q,.a,,4:.a,) or U = (u;,a,,u;,a,) and f(U) = momentum and
mass fluxes.

If we now consider the support of the discontinuity, which we may assume to be

restricted to the limit to a single point, the physical situation can be described by the
weak solution of eq. (4.2) which is defined as (from the integral conservation law)
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where w(z,x) is a test function which tends rapidly to zero as |x|+7 increases (the
support of w, outside which w=0, covers a neighbourhood of the discontinuity in the
t.x-plane), and where U, = U(0,x) is the initial value of U. Integrate over the two
subdomains (left and right) of the support of w, which are separated by the
discontinuity curve in the z,x-plane. Subtraction of these two integrals with Q,=0
gives (e.g. see Abbott, 1975)

¢ [U U f
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lefi ~ right] = [
where U, and U, are the solutions on the respective subdomains, and ¢; = dx,/dt is the
propagation speed of the discontinuity in x-direction. This eq.(4.5) is the Rankine-
Hugoniot jump condition. It has to be satisfied for the solutions U, and U, to constitute
a weak solution.

Elaboration of this theory for either of the two systems UA and QA shows that their
weak solution and jump conditions are different. Lax (1954) already noticed that this
non-uniqueness is not paradoxical but a consequence of the nonlinear transformation
which is used to derive system UA from system QA. Derivation of one system from
the other requires manipulating derivatives in a manner that is valid only when U is
smooth. The selection of a meaningful weak solution, and hence a meaningful system
of basic equations, can only be based on physical considerations. From the classical
theories on hydraulic jumps and bores in open-channel flow it can be easily shown that
for this type of flow the only genuine weak solutions are those which follow from
basic equations in the form of system QA, governing momentum and mass
conservation (e.g. Abbott, 1979). In line with these classical ideas a major part of this
study is carried out after an early rejection of system UA. Although the results with
respect to internal bores seemed meaningful, it appeared to give a poor representation
of a real front. This effect is also known in dam-break models (e.g., Stoker, 1957) for
which the leading front approaches zero depth and propagates with a speed which is
about twice the observed one. Initially this was corrected by introducing an additional
force to the basic equations but later it was found that these problems could be tackled
much simpler by using system UA. Both of these equally important approaches are
treated in the following section.
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4.4 Shock relations for front-propagation in a one-dimensional 2-
layer flow.

For numerical computation of a gravity-current front by means of a shock-capturing
technique it is most convenient to consider the front as an internal bore with very
small finite depth and discharge in the downstream lower layer. In figure 4.5 a
schematic representation of a front or bore moving with speed c; at the bed is given,
in which all relevant parameters are summarized. The discharge of the undisturbed
ambient flow is g, and its depth q,,. Before arrival of the bore the lower layer is
assumed to have a small finite depth a,,, discharge ¢,, and concentration C,,. Clearly
this formulation allows also for regular internal bores.

Figure 4.5 Schematic representation of the computation of a front at the bottom

Locally near the shock we neglect external forces acting in the overall
(barotropic/external) flow, such as bottom friction and net gravity forces. Also local
entrainment is neglected. This is required to obtain conservation of mass and
momentum. It implies that eventual internal mass- and momentum-sink/source terms
of the baroclinic flow are balanced by both layers (e.g. forces acting on the interface).
Initially we got round the necessity of the latter assumption by collecting external
forces into a small force F, resisting the underflow. It may be cancelled to obtain
momentum conservation of the barotropic system afterwards. The local internal /
baroclinic forces, balanced by both layers, are collected and called F” also resisting
the underflow.

Now we can write shock relations as the four Rankine-Hugoniot conditions (eq. 4.5)
for the weak solutions of the four basic differential equations in (semi-) conservative
form. Therefore Qg in eq. (4.2) is composed of forces F’ and F,. The baroclinic force
F’ disappears by adding the momentum equations. In this derivation we consider q,,,
ay, 4y, force F' and the front celerity ¢, to be unknown. Others are known, for
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instance determined by the characteristics directed towards the shock. With five
unknowns, a system of five equations is required to close the problem. Following
Benjamin (1968) the fifth equation may be Bernoulli’s equation along the streamlines
over Ax close to the bottom. This approach has been used also by Kranenburg (1978,
1993a), to account for energy losses in a front on a horizontal channel. For further
elaboration of equations we use their results to determine the unknown force F’.

In line Kranenburg’s analysis the following transformations of variables can be applied
(i=1,2, and a is the total depth of the undisturbed reservoir: a=a,, +a,,):

~ Cf . ~ _ qil,r . . _ uil,r A F _ F/
¢ = ’ qil,r - > uil,r - H - /
/ / / g a?
g.a ayg.a g.a z
a a a
a, = 2y e, = T a, = r=dc,
a a a

By taking g’ = go'C, we assumed a constant concentration. This does not affect the
results if the part of the lower layer right of the bore disappears when dealing with a
front at the bed. After substitution of these dimensionless parameters, and after
eliminating g, and g,, in system QA and u,, and u,, in system UA (by substituting mass
equations into momentum equations) the following shock-relations remain:

- For system QA:

o'Ci[é(l-a) = g, (1-d,-a,) +

1 ] S (4.6)
- (1 —a,) Ea”(l +a”—ocr)(l ~a”—af) - 4,0 CSF} =0
o'Cyfdym o | 2(e, -Gy - du (@ + @] - Gy, (@ ) ¢ 4.7)
+2d,0,0'C(F+Fp) + d (@+a)l-dy =0
- For system UA:

o'C (€U ) (1-ay-a)(l+d,-a) + @.8)

+2a50'CFa - 2a5(1-a,-a,) = 0

~ ~ o~ - ~2 -
o/Cs(af~a )[(c—uzr)z(af @) - 2af] +2a; (1-aj + 4.9)

+2a70/C(F+Fy) - 24,47 =0
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Equations (4.7) and (4.9) can be used to eliminate d,, from equation (4.6) and equation
4.8) respectively. Then for each system one equation remains with two unknowns:
¢ and F; as, &, Gy Uy Gy, Uy, and F, are the dependent variables. For a decoupled
system the shock-relations for the baroclinic flow are identical to the equations
presented above if Cy«1.

The rejection of either system QA or UA can be well reasoned by comparing these
shock relations to experimental data. In the following this exercise is carried out for
internal hydraulic jumps, internal bores, and real gravity-current fronts. For a steady
internal hydraulic jump in a very deep reservoir (¢=0; F=0; F,=0; a->o0; and small
C,) the shock relation for system QA reduces to:

Gy %[ J1 8k, - 1] (4.10)

and for system UA:

az 1 2
G . Z-Frm[ V8 + Friy + Fry | @.11)
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Figure 4.6 Depth ratio a,,/a, for a steady internal hydraulic jump; drawn line: eq.
(4.10); dashed line: eq.(4.11); diamonds: Garcia’s (1993) measurements.

Eq. (4.11) shows a discrepancy with eq. (4.10), especially at large values of Fry,.
Plots of these equations for Fr, less than 3 are given in figure 4.6. This figure shows
that eq. (4.10), which is the classical hydraulic jump relation, does not favour eq.
(4.11) if compared to Garcia’s (1993) experiments.
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Figure 4.7 Internal bore: experiments versus theory: system QA; eq.(4.10).
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Figure 4.8 Internal bore: experiments versus theory: system UA; eq.(4.11).

A more obvious difference can be obtained from comparison of computed and
measured celerities of internal bores. In figure 4.7 and 4.8 the theoretical ¢ values
from eq. (4.10) and (4.11) respectively, with F=F »=0, are compared to experimental
values from Wood & Simpson (1984) for internal bores in 2-layer miscible fluids. A
close look to both figures demonstrates the superiority of system UA (eq. 4.11),
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although at higher values of ¢ the computations still overestimate the measured results.
Wood and Simpson showed that those experiments are characterized by more intensive
mixing and related energy losses, compared to those with a lower value of ¢.

The most striking evidence for the superiority of using system UA for computing
internal fronts in 2-layer flows, can be obtained from real fronts. Taking
a,=0;¢,,=0;F,=0 and C,«1, eq. (4.6) and eq. (4.7) reduce to

€ - a0+ 2ﬁ(l:ff) - %(2—@)(1—@) =0 4.12)
4

while eq.(4.8) and eq.(4.9) reduce to

2
1 C /] 7] C i ” ~ -~
(l—df) (C—ulr)?- + 2ulr(c—u1r) + 4F + ulzr - 2af -0 (4.13)

Note that for this situation §,, equals #,, since a,,=a and u,,=q,,/a,,.

Kranenburg (1993a) showed and verified, starting from conservation equations for
mass and momentum for a control volume, and Bernoulli’s theorem along the stream
line, how the front velocity can be expressed as above corrected with an empirical
energy-loss coefficient k. Therefore he considered a coordinate system moving along
with the front. Kranenburg’s relation can be written as

1-a

1+a
( % . k)(c‘—c}lrf + (1 + KG,,(6-4,) - a2 -4a)=0 (414
f

Originally the coefficient k¥ was introduced by Kranenburg (1978) and was found
approximately equal to zero for surface currents, and 0.6 for bottom currents.
Furthermore Kranenburg showed, demanding that energy-loss in the upper layer is
non-negative and applying eq. (4.1) respectively, that the following two restrictive
conditions should be added:

GG < 1-4 (4.15)

-4 < (1 -a,)"” (4.16)

-The front is unsteady and will flatten if the latter condition, which is more restrictive
than the former, is not satisfied.

Figure 4.9 with stagnant ambient fluid §,,=#;,=0 and k=0.6 shows the behaviour of
the presented relations, e.g., for a lock-exchange flow. In this figure some
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Figure 4.9 Front-celerities for system UA: ¢; system QA: ¢&,; Kranenburg (1978)
with k=0.6: dashed line; Huppert & Simpson (1980): ¢;.

experimental data are plotted from Altinakar et al. (1990), Abraham & Vreugdenhil
(1971) and Biihler et al. (1991) for comparison. Also the often cited empirical steady-
state relations proposed by Huppert and Simpson (1980) are plotted. In terms of
parameters a, and ¢ these relations are

¢ =119 ﬁf if 0<a <0075

o ' ) 4.17)
05-(a ") /@  if 0075<a, <1

™
I

Figure 4.9 clearly illustrates the superiority of system UA over QA. Actually it can be
shown easily that a front, computed with system QA, which satisfies restrictive
conditions (4.15) and (4.16), can only exist if its height is zero. This corresponds to
the theoretical (non-physical) height of a dam-break wave on a dry bed treated by
Stoker (1957).

For k=0 and §,,=0 Kranenburg’s equation (4.4) reduces exactly to Benjamin’s (1968)
formula. A comparison of this relation with the UA relation in figure 4.10 shows that
the latter performs remarkably well, especially when recalling the verification of
Benjamin’s equation by Klemp et al. (1994). Note that the experimental data in this
plot indeed satisfy the restrictive condition (4.16).

The celerities from system UA seem still systematically too large, but adequate for
practical applications, especially if the effect of bottom friction and entrainment is
added to the model which is shown later in this thesis. Even if the original ambient
fluid is flowing moderately, the results of system UA are still satisfactory. This is
illustrated in figure 4.11 for an ambient co-flow with §=¢,,, comparing Kranenburg’s
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Figure 4.10 Front-celerities for system UA: drawn line; Benjamin (1968) : dashed

line. Symbols represent experimental data, dotted line is eq. (4.16).
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Figure 4.11 Front-celerities in ambient flow. System UA: drawn lines, Kranenburg
(1993a): dashed lines; eq.(4.15): line 1; eq.(4.16): line 2.

result (eq. 4.14) to system UA (eq. 4.13) and data published by Bithler et al. (1991)
and Abraham & Vreugdenhil (1971).
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Rejection of system QA obviously implies that at a gravity-current front momentum
is not conserved. Momentum and energy is lost by friction and entrainment of upper-
layer fluid, as described in section 4.2, to such an extent that velocity is conserved.
This is shown in experiments (e.g. Britter and Linden, 1980) where, even at large
bottom slopes, the front celerity ¢; remains practically constant due to the action of
mixing. In shallow water the velocity difference u,-u, is conserved which agrees with
the observed dependence of front celerities on the relative depth a,/a.

Although these examples give sufficient argument to choose for system UA, an attempt
was made to extend system QA such that it would resolve into the correct shock
relation for a gravity current at the bed (o,=0). This attempt originated after a
preliminary rejection of system UA on basis of the classical shock theories as
mentioned before. Instead of taking F=0 in the shock relations (as we did above), a
relation for this unknown force (to enable momentum loss) is found by using
Kranenburg’s (1993a) relation for closure: eliminate ¢ from eq. (4.12) using eq. (4.14)
to describe F as a function of a, G, and k. A very simple (approximate) result can be
derived it §,, = O:

P . l 2,1 ) 1 ? (1 +k)2-a (1 - ap) 4.18)
Q1 4 4 1+a +k(1—af)
If g,, # 0O the following approximate result can be derived
SRV 2(¢-4,) - (1-4,)2-4) (4.19)
w0 27 020/C6-q, P + 30'C,a,2-d,) - 2(1-a)

where &-4,, follows from eq. (4.14). These equations for F are slightly different if the
front is computed as an internal bore with a finite depth of the lower layer downstream
of the front. For computing a gravity-current front as an internal bore the resisting
force if §,,=0 can be written as

) (2- a)( a; ~2a,m, +a (2- ar)>

24 (2-d;-a)[k(1-a;)+1+a]

(4.20)

The variation of F with dy, k and §,, from eq.(4.19) is plotted in figure 4.12. In this
figure also the restrictive conditions to a, are plotted expressed by eq. (4.15) and eq.
(4.16). Clearly (figure 4.12) the value of F (opposing the frontal motion) increases as
the ambient co-flow increases, tempering the frontal motion by an increased energy
loss in the ambient flow layer. On the other hand an ambient counterflow decreases
this value. Also differences between the figures for k=0 (surface current) and k=0.6
(bottom current) are evident. The increased losses in the bottom current result in a
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Figure 4.12 Variation of F with d;and g for k=0 and k=0.6; © = condition (4.15);
B = condition (4.16).

larger resisting force F and a higher admissible front height.

In this section we have formulated the shock relations for a 1-D fixed-bed two-layer
model. It is shown that the formulation of the system of basic equations in terms of
# and a (system UA) can be used to compute discontinuities in the internal flow. If the
system is formulated in terms of g and a (system QA) a resisting force should be added
locally near the front to enable momentum loss. For coupled as well as decoupled
models the derived relations are identical provided that C«1. The actual error in front
celerity using the decoupled model is of the order of 1 % depending on g'=ga’C;
(deduced by comparing numerical results of equations 4.8 and 4.9 to equation 4.13).
This is a logical consequence of the insignificance of the local surface depression for
the behaviour of the baroclinic flow. In general gravity-current fronts are found to be
velocity conserving such that balance of forces on the head (which cause momentum
and energy losses) allow for constant front celerities.

4.5 Conceptual model for 2-DH front propagation.

The results from the 1-D model can be extended to 2-DH fronts considering that only
quantities normal to the front suffer a jump, while in tangential direction all quantities
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remain continuous. In a radial (axi-symmetric) flow situation on a horizontal bed a
simple transformation of the 2-DH flow equations to a 1-D model the previously
defined shock relations can be applied without modification. For instance chapter 5
(section 5.3) this approach is followed to define an analytical model for axi-symmetric
plumes. However, in more complex 2-DH flow situations the 1-D shock relations have
to be adopted to model some typical 2-DH physical processes. In this section a
conceptual model is derived to add some additional information to shock relations
which are based on g,a basic equations (system QA) for conservation of mass and
momentum.

In appendix A the shock relations are derived from the Rankine-Hugoniot condition
for the 2-DH baroclinic basic equations. By means of a coordinate transformation of
the basic equations to coordinates s,n respectively tangential and normal to the front
these Rankine-Hugoniot conditions reduce to an equivalent 1-D formulation with only
one celerity ¢, of the front in the normal (n) direction:

c(W)-W)) = (H,-H)) - F" (4.21)
where W' is the vector of dependent variables and H' is the (discontinuous) flux
vector in n direction. Besides the regular forces such as friction and gravity, the force
vector F’’ also contains the continuous tangential flux vector 0G'/dx. Again we
neglected the effect of these force terms compared to the strong discontinuous terms
in the equations.

At the foremost point of the advancing plume the shock relation in the s,n-system
equals that of a 1-D plane current (as in the previous sections). However, this is not
necessarily true at its sides by the presence of tangential velocity components. In fact,
as contrasted with the 1-D approach, the parametrization of additional (front-related)
energy losses in Bernoulli’s equation must involve this tangential velocity to model in
some way the physical processes related to it. To underpin this argument, and to
underline the difference with 1-D fronts, the following physical properties of the flow
near a 2-DH front must be considered:

- Due to the increased vorticity in the head, as mentioned in section 4.2, the
local friction losses are expected to be larger than in a 1-D flow.

- Experimental results from unbounded density currents on a sloping floor
(Alavian, 1986) show that just below the narrow inflow channel a region
appears with rapid spreading of the plume (near zone), while further
downstream the spreading ceases and the plume width remains practically
constant (far field) as the side-fronts are arrested. For small density differences
this width was found to be smaller than for higher density differences. The
latter type of density current behaves more like a spreading plume due to the
dominance of buoyancy over momentum, while the former behaves more like
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a jet due to the opposite reasoning.

The experiments showed that these processes were rather insensitive to the
slope, which implies that gravity is not the only essential force in arresting a
front with a finite depth. The experiments of Liithi (1981) and Hauenstein and
Dracos (1984) (see figure 4.13), and the experiments of Johnson et al. (1987)
in a horizontal diffuser, revealed the same phenomena, although their basins
were not long enough to reach a state with a constant plume width.
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(A) Aplp = 6.55 % ®) Aplp = 2.40 %
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Figure 4.13 Propagation of 3-D turbidity current: front contours;
Experiment (A) Liithi (1981); (B) Hauenstein and Dracos (1984).

The processes which are able to temper the speed of a front are again friction, gravity,
and entrainment. The processes which drive the front are pressure differences and
momentum inflow as well as gravity. From the previous considerations it became clear
that the parametrization of energy losses must allow for arresting the front to prevent
it from spreading indefinitely in all directions. The experiments mentioned above
showed that momentum of the flow and notably momentum (or velocity) in
downstream direction is able to generate forces which can counteract the net pressure
force normal to the arrested front, i.e. the sides of the plume. Firstly downstream
(tangential) flow affects bottom-generated turbulence and associated energy losses in
the head. Secondly shear stresses acting on the face of the front (between front and
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ambient fluid) drive horizontal eddies in the ambient flow and generate a flow towards
the inward of the plume (due to the water level differences generated by the frontal
friction). Furthermore ambient fluid is entrained along the face of the front (e.g. see
McClimans, 1978). Since these processes are all associated to velocities parallel to the
front we introduce them into the parametrization of the energy losses in the front,
adding up to the force F’’ in the momentum balances.

In appendix A the force F'' is eliminated using Bernoulli’s equation along a stream
line passing through the front as proposed by Benjamin (1968) for the 1-D front.
Additional energy losses AE,; and AE, in this equation represent the effects of bottom
generated turbulence in the ambient flow, and of the flow in the head of the turbidity
current respectively. Following Kranenburg’s approach these losses can be
parametrized with the square of the head velocity (47 or ¢?) using a loss coefficient
k, (Kranenburg’s k) as defined in the previous section. For the 2-DH front we add to
this parametrization a term with the square of the tangential velocity (u,,?) with an
empirical loss coefficient k,. After transforming the shock-relations and Bernoulli
equation to their equivalent dimensionless variables (similar to those in section 4.4)
the following shock relation for the case without ambient flow is derived if C, <1 and
Gy, 1s small:

(1 -4)|2-a)d - ka 4.22)
a(a,(1 - k) + 1+ k]

Here &, has to be obtained from experiments. The variation of ¢ with &, following this
equation for a few values of k,§,, is illustrated in figure 4.14.

0.8
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Figure 4.14 Variation of normal front celerity ¢ with front height a, for different
energy-loss coefficients k,.
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It can be seen how front celerities are reduced significantly due to the presence of
tangential flow velocities. The maximal value of k, for which the front is arrested, i.e.
¢, =0is

f

Ky a5 = @7 (2 - @) (4.23)
For higher values a front cannot be found from this shock relation.

Similar shock relations are derived in appendix A for the case with ambient flow (also
quite similar to 1-D relations), and the corresponding relations for the force acting on
the front F’' are deduced from these results. Note that for all these results the
tangential flow velocity (or §,,) is a governing parameter.

The relations which have been derived so far represent the frontal celerities and the
dissipating forces of 2-DH frontal motion. By introducing the energy loss coefficient
k, to the originally 1-D model based on Benjamin’s (1968) theory some physical
processes typical for 2-DH fronts are parametrized in concept. At this point the theory
can be calibrated for k, and k;, and it can be verified by means of experimental data.
However, this theory presented here is not further elaborated, and further
(experimental) research is required. One could think of numerical shock-fitting
calculations or laboratory experiments of a release of salt water in a horizontal fresh
water tank. The initial momentum and buoyancy of the plume can be varied, and at
different locations near the (intruding) front samples can be taken of velocity vectors
and density. These types of calculations and experiments are quite ambitious and for
the present research and engineering applications redundant. Again with numerical
shock-capturing techniques, in which the front is computed as an internal bore,
satisfactory results for engineering applications are expected, if calculations are based
on the u,a- basic equaiions {for which couservaiion of velocity instead of momeiituim
is achieved).
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Chapter §

Analytical similarity solutions

5.1 Introduction

So far the shock relations for an intruding gravity current are mathematically
formulated. However, the front is just an internal boundary for the integral flow field.
As its speed and height are function of the contiguous unsteady flow, the solution to
this problem can only be obtained by considering the full gravity-current development.

Although this is tackled in a numerical way in the following chapters, it can be shown
that a simple analytical solution can be derived under certain restrictions. That is, for
a two-layer flow in a horizontal channel without bed friction, interfacial mixing and
horizontal density gradients. As a result of these assumptions the system of basic
equations reduces to such an extent that the model allows for a similarity or self-
similar solution. In such a self-similar motion the distributions of flow variables
remain similar to themselves with time, and vary only as a result of changes in scale.
Therefore the flow can be described with only one independent variable, and the
original system of partial differential equations changes into a system of ordinary
differential equations.

This type of solution has a wide range of applications in gas and fluid dynamics, for
instance see Sedov (1991) and Zel’dovich & Raizier (1966,1967). Dam-break waves
in river channels, intense gas explosions, flame propagation, and supernova flare-ups
are some striking examples of self-similar motions with a great theoretical analogy to
our problem. Self-similar solutions for gravity currents have been studied for instance
by Grundy & Rottman (1985,1986), Kranenburg (1993b), and Gratton & Vigo (1994).
The last two papers deal only with plane (1-D) gravity currents, while the first papers
deal also with radial spreading (2-D) gravity currents.

Since self-similarity provides us with a simple analytical solution, this theory can be
used to verify numerical computations, and to gain important insight in the
mathematics and physics of gravity current development. Consequently, in Chapter 6
self-similar solutions are applied to verify numerical results to compensate for the
scarcity of appropriate and accurate data.

For the derivation of a self-similar solution for our two-layer model the dimensional
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methods described by Zel’dovich & Raizier (1966) or Sedov (1993) can be followed.
For a one-layer model with variable inflow this approach was used by Grundy &
Rottman (1985,1986) and Gratton & Vigo (1994). They applied a phase-plane analysis
to construct a wide range of solutions, and to determine their validity and uniqueness.
However, by starting the derivation from some relevant physical examples a large
number of these solutions can be discarded. Here, the latter approach for finding
physically relevant solutions is followed for our two-layer model, in analogy to
Kranenburg (1993b).

Our one-dimensional gravity currents are described by shallow-water equations so that
the analogy with collapsing dam-break waves and other Riemann-type problems can
be used. With respect to this type of waves the analytical solution of Stoker (1957) is
often cited. Stoker and Kranenburg’s (1993b) self-similar solutions, which greatly
coincide in their appearance, are the keys to matching different parts of the self-similar
solution. In section 5.2 this is shown for a steady two-layer flow by presentation and
discussion of the results.

Starting from these results, the 1-D (plane) self-similar solution is extended quite
simply to a 2-D solution for radial axi-symmetrical flow. This type of plume can be
observed for instance due to a vertical release of dense fluid in a horizontal basin. A
one-layer example of numerical solution of this type of flow can be found in Garvine
(1984), and a self-similar solution can be found in Grundy & Rottman (1985). In
section 5.3 is demonstrated how the solution to this problem, shows some remarkable
differences with 1-D gravity currents.

5.2 1-D self-similar solutions
5.2.1 Introduction and derivation

Considering the rather hypothetical horizontal 2-layer flow without friction and
mixing, the source terms in the baroclinic equations for mass and momentum (eq.
2.19, 2.20, 2.7) disappear. These equations are made dimensionless by a similar
transformation used for the derivation of shock relations in section 4.4, i.e.:

~ ~ / ~ / .
a;=ad; ; u; =dyga ; q=qayrga (j=12) (5.1)
The independent variables transform as

x=%a ; t=talg 5.2)
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Kranenburg (1993b) showed that this transformed system of equations is governed by
four independent parameters: two densimetric inflow Froude numbers which we take
constant, a parameter of the scale of vertical accelerations which disappears for
hydrostatic flow, and a parameter { = %/7. The flow is now called self-similar in {
because there are in this problem only two constant dimensional parameters (a and g,’)
with independent dimensions, so that only one dimensionless combination can be
formed from x and ¢ (Sedov, 1993). Parameter { becomes the only independent
similarity variable. The system of equations for our model reduces to the following
(see also Kranenburg, 1993b)

(ﬁz—C)%% - (ﬁl-c)‘;_‘? . % -0 (5.3)
()2 v a2 - 0 (5.4

‘:1_‘? N % -0 (5.5)

dZ}a' ) dizgdz 5.6

For this type of quasi-linear homogeneous system of differential equations two

solutions can be defined (see also Zel’dovich and Raizer, 1966, for the motion of a

piston in a gas):

- A trivial solution, corresponding to a constant state or uniform flow, is found
if all derivatives are zero.

da, da, du di, o (5.7)

- A non-trivial solution is found if the determinant of the coefficient matrix of the
system is zero, making the equations indeterminate.

(i O (O

a a,

1 (5-8)

In a frame of reference travelling with speed ¢ in positive x-direction, relation
(5.8) implies that in this frame the flow is critical. This means that one of the
two internal-wave celerities disappears, and a centred simple-wave or
rarefaction wave is found.
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These solutions are the general solutions to various cases of Riemann problems, which
can be considered as the development of shock-waves from an initial flow condition
in which two different constant states are separated by a single discontinuity (e.g. Le
Veque, 1990)

Kranenburg (1993b) continued the analysis by fitting and matching both solutions for
gravity currents with a relatively high inflow rate. However, it is not possible to
extend his theory to smaller flows. At this point Stoker’s (1957) dam-break solution
blends into the derivation, providing the required knowledge for matching the low-
flow trivial and non-trivial solutions. In figure 5.1 two alternatives are given for
matching the solutions to obtain physically relevant solutions.

o e - e
\ P l,
\, N e
\ constant state

N\ rarefaction wave J

Figure 5.1  Self-similar solutions for low and high discharge respectively.

On the left side of this figure the self-similar solution for a low inflow rate resembles
Stoker’s solution for dam-break waves, which also satisfies Gratton & Vigo’s (1994)
results. The right-side solution is Kranenburg’s solution for high inflow rates, also
described by Klemp et al. (1994).

To construct and evaluate the proper self-similar solution we considered three
hypothetical experiments in a laboratory flume, successively illustrated in figure 5.2.
These are partial lock-exchange, regular lock-exchange (or dam break), and sluicing.
A lock exchange (or dam break) is initiated by removing a gate which separates a
reservoir which is fully or partially filled with a dense fluid, from a reservoir filled
with lighter fluid. Two waves are generated, travelling in opposite directions. A (dam-
break) wave travels downstream with speed and height determined by its shock
relation. A wave near the surface or interface travels into the undisturbed upstream
reservoir. Due to the intruding gravity current a reverse flow is generated in the upper
layer with |Z,(0)| < [i,(0)].
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Figure 5.2 Hypothetical experiments with self-similar flow

If the gate is only partially lifted, a reverse flow cannot develop if the interface
remains attached to the gate. This means that light fluid cannot flow under the gate in
reverse direction. As a result, a total water depth increase in the flume can only be
prevented if the discharge of light fluid, released at the downstream end of the flume,
equals the discharge of dense fluid entering under the gate, i.e. §=¢,(0). This
experiment can be considered as a rough representation of a sluicing operation in a
reservoir where the gate corresponds to a stationary plunge point.

Essentially the differences in these three experiments with steady inflow and outflow
are only caused by the initial condition which has to be imposed as a Riemann
problem (i.e. a discontinuity separating sections with a constant state). This initial state
can be imposed by inflow discharge, boundary Froude numbers (or the inflow depth
and density) and the total water depth. These are the constant abstract parameters
which, combined with the front relation, determine the final shape of the current. In
the following sub-sections is shown for each case how they determine the way of
matching non-trivial and trivial solutions, and the propagation of the front.
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5.2.2 Self-similar solutions for lock-exchange flows

A graphical representation of the downstream part of a partial lock-exchange flow
resulting in a low-discharge gravity current is given in figure 5.3.

)] ~

o //.("((‘ | o ;—; C ft
77777777777777777;:7‘;{/' -----------
Constant state | X

%0 =
¢=0 ¢=C -,
Figure 5.3  Self-similar solution for partial lock-exchange flow: x-f diagram and
physical presentation.

As we have seen earlier, this 1-D baroclinic approach has two real characteristic
celerities ¢, , with ¢, > ¢,. The solution of an imposed Riemann problem will therefore
result in at most two jumps, since a jump can only exist by a mutual intersection of
characteristics belonging to the same family (either the ¢, or the ¢, family). In this
example the initial discontinuity at {=0 indeed generates two jumps: a front with
speed {; induced by ¢, characteristics, and a rarefaction wave induced by ¢,
characteristics. In figure 5.3 is shown how the ¢, characteristics fan out in the
rarefaction region, such that the flow accelerates and the depth decreases. In terms of
gas molecules this implies a spreading of the fluid such that it becomes rarified. The
velocity and depth in the constant state part of the solution remains constant in time.
With this situation disturbances near the front cannot propagate back to the gate and
the. critical condition at x=0 maintains control over the downstream propagating
gravity current. Disturbances originating upstream can take over the front during
propagation.

If at the upstream boundary {=0 (the gate) the non-trivial solution holds, then the flow
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is critical (eq.5.8). Imposing a constant discharge ¢,(0) or depth a,(0) the boundary
discharge and depth are defined, and by using equation (5.8) and (5.2) the flow profile
can be obtained numerically for consecutive values of { starting from this boundary.
For a very deep reservoir this profile can be expressed analytically as

2
a(c) - (%c . ,/a;(O)) (5.9)

with ¢, =0.364, 4,"({,,)=a, =0.772, and {; = 1.243. Here superscript * indicates that
variables are made dimensionless according to equation (5.1) in which « is replaced
by a,(0).

If the relative depth of the dense fluid before removal of the gate is d,, then the
resulting depth 4,({=0) after removal is constant and approximately equal to (4/9)-a,,
if d,,<0.2. Then the simple wave region extends from {,=-v/(dy{1-d5}) to {=¢,
(see figure 5.2). At {, equation (5.8) satisfies the shock relation for the front. From
this point it is possible to match the trivial solution to the non-trivial solution. This
downstream constant state can be found by considering mass conservation over the full
gravity current expressed as

cm
5,0 = [4,d0 + a,(¢-C,) - (5.10)

[\

This equation states that the net inflow of mass equals the mass of the non-trivial and
the trivial solution minus the initial mass (at t=0). The location of the front {; follows
from this equation after integrating the non-trivial solution from {=0to {=¢,,.

The effect of the boundary condition 4,(¢=0) or 4,, on the solution is illustrated in
figure 5.4. It shows how for increasing values of @,(0), and correspondingly increasing
values of §,(0), the solution reaches a transitional state for which ¢,, equals zero. This
transitional solution (for partial lock-exchange flows with §=0 and u,a front, i.e., a
front computed with shock relations obtained from basic equations system UA in
chapter 4) can be described with the following parameters:

5.11
a,(0) = 2)3’2 = 0.544 (5.11)

1 . 12\
- 0 = -] =018 ; =|£
3 %0 3(3) s (3

It is obtained by combining eq. (5.8) for {,, with the shock relation. Doing this the
critical front condition for existence of a front , equation (4.16) in the preceding
chapter, is exactly satisfied:
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Figure 5.4  Self-similar solutions for a partial lock-exchange flow, varying d,({=0)
with steps of 0.02. Line (*) is the transitional solution.

- (1-a)” c.12

For fronts with higher depths this entropy condition is violated and the front becomes
unsteady. In section 4.3 it is shown that it is physically correct to replace this shock
by a rarefaction wave. Therefore the only possible high-discharge solution is the one
shown in figures 5.1 and 5.4. The transitional solution now forms the boundary
between low-discharge and high-discharge solutions, and the height d; and location ¢;
of the front for the high-discharge solutions is constant and equal to that of the
transitional solution.

The high-discharge solutions are typical for gravity currents intruding into ambient
fluid with finite depth, and is not found in dam-break waves intruding the atmosphere.
For high values of 4, the celerity of disturbances travelling along the positive
characteristics falls below the front speed, resulting in a subcritical state. Now the
behaviour of the flow becomes more complex since the front affects the upstream
reservoir, while upstream variations in this reservoir affect the front. Usually this
effect of finite channel depth is largely ignored in gravity-current models.

High discharge solutions for a given value of ,(0) are constructed starting from the

front relations given above. The non-trivial solution is solved until &,($) =@,(0). From
this point {=¢,, to the upper boundary the trivial solution holds (uniform flow). The
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maximal admissible value for @,(0) is about 0.54, for which the trivial solution
disappears and the solution is non-trivial from boundary to front. The self-similar
solution with a,(0)=0.5 corresponds to a complete lock-exchange with d@,,=1. This
is the second hypothetical experiment presented in figure 5.2.

A major benefit of these simple analytical solutions for partial and full lock-exchange
flows is the possibility of gaining insight into the sensitivity of the computations to
variations in the controlling variables C,, a and ¢,(0). By means of some examples this
dependence is illustrated.

Self-similar solutions with different concentrations C, are plotted in figure 5.5 for a
partial lock-exchange flow intruding into a 10 m deep stagnant reservoir with ¢,(0)=1
m?/s.

5.0 — —
| =60 N
02 [m] | a=50m
4.0 q,(0) = 0.6 m?fs

0 B , . e ,
0 20 x [m] 40 60

Figure 5.5  Self-similar solutions in physical coordinates, for a partial lock exchange
with different values of concentration C,.

The results are transformed to the physical coordinates at time =60 s, using the

transformation
x =t(/o'Cga (5.13)

As expected an increase of concentration results in an increase of front celerity,
although the value of ; decreases in the dimensionless coordinate system. By making
the constant discharge ¢,(0) dimensionless using C,, a decreasing density results in an
increase of §,(0) and the transition from low to high-discharge solutions can be seen.

The sensitivity of velocities and discharges to the increase of concentration for this
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example is illustrated in figure 5.6 (in a physical coordinate system at 7 = 60 s). In
a turbidity current on an erodible bed this behaviour is responsible for the ignitive
auto-suspension principle treated for instance by Pantin (1979) and Parker et al.
(1986). If sediment is picked up from the bed the concentration increases, resulting
in an increase of velocity and so on. This type of self-accelerating turbidity current
can be found on steep slopes such as in submarine canyons. The self-similar solution
presented here cannot be used for suspensions with concentration gradients; therefore
this principle is not further analysed here.

1.0 1.0
C=0.05 —
E 08 g(f 8
S 8
0.6 0.6
;=001 Q003
04 C,=0.005 04
C,40.005
cHo01
02 C-0003 0.2 C,$0.05
% 20 40 o % 20 40 ' 60
x [m] x [m]

Figure 5.6 Velocities and discharges for self-similar solutions of partial lock-
exchange flows with different values of C,.

An important, previously mentioned result can be demonstrated by the internal Froude
numbers of ihe x,¢ system: the high-discharge solution (low C) is intcrnally
subcritical, and the low-discharge solution (high C)) is internally supercritical. The
transitional state corresponds to critical flow. Also Kranenburg (1993b) and Klemp et
al. (1994) concluded that therefore, in agreement with laboratory experiments, the
high-discharge solution as a whole acts as a control to the flow at {=0. For numerical
modelling this is crucial knowledge for imposing boundary conditions. Note that
internal Froude numbers for both types of solutions are close to unity, which already
indicates the importance of using a coupled model for computing flow and morphology
for turbidity currents.

The sensitivity of the self-similar solution to the total water depth a is illustrated in a
similar way as above by means of an example in figure 5.7 with C,;=0.005 and
-constant discharge ¢,(0)=1 m?/s. As the reservoir depth decreases the front is slowing
down, a,(x) increases, and the dimensionless discharge §,(0) increases. For reservoir
depths less than about 5.2 m the high-discharge solution must be used and the gravity
current becomes fully subcritical. These results emphasize the importance of
accounting for upper-layer flow when computing density currents in shallow
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Figure 5.7  Self-similar solution for a density current with different reservoir depths.

reservoirs.

To conclude these analyses of self-similar solutions for lock-exchange flows the
sensitivity of the solutions to the shock relations is illustrated. Again it is possible to
distinguish between a model described by basic equations in ¢,a form (system QA),
and a model described by equations in u,a form (system UA). So far only results
computed for UA models are presented. However, it is quite easy to show the effect
of differences in their shock relations. Firstly for both systems the non-trivial solution,
expressed by €q.(5.8), is identical. Secondly the appearance of the trivial solution is
equal for both systems, but their values deviate since the shock relations are different.
In figure 5.8 (left side) two examples of self-similar solutions for low-discharge flows
are plotted for identical flow conditions with model A and B respectively, illustrating
their difference.

----- System A (g,q) ----- Kranenburg (1978)
02 — System B (4,a) 02 —— System B (4,a)
a2 ~—— a2 ' ~
0.1 RN I 01 ;
0 0 !
0 0.4 c 0.8 0 04 7 0.8

Figure 5.8 Comparison of solutions computed with different shock relations.

In this figure (right side) also a comparison is given of solutions using Kranenburg’s
(1978) shock relation (with k=0.6) and using the shock-relation of System UA. These
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results confirm the findings from the previous chapter, and they show that density
currents computed with system UA have a lower depth with higher velocities than
those computed with the help of Kranenburg’s shock relations. The latter effect is
slightly reduced if friction and entrainment are taken into account in the basic
equations.

In figure 5.9 a similar comparison is presented for a high-discharge flow. In this
figure also some visual data (obtained from shadowgraphs) for an experimental small-
scale lock-exchange flow from Rottman and Simpson (1983) are plotted.

System B (4,a)
« +++ Rottman & Simpson ('83)
________ Kranenburg ('93b)

ol e Huppert & Simpson ('80)

0 :

0.6 ' 0.2 ¢ 0.2 ' 0.6

Figure 5.9 Self-similar solution for lock exchange flows using different shock
relations.

Clearly the presented solution reproduces qualitatively the data set which shows a
wedge shaped gravity current. Note that for Kranenburg’s (1993b) solution the surface
front is defined with k=0, the bottom front with £=0.6. Therefore a,(0)=0.54a
instead of half the channel depth. With respect to depths and velocities the conclusions
for low-discharge flows still hold.

5.2.3 Self-similar solutions for sluicing operations

The third hypothetical experiment which can be expressed by the previously defined
self-similar solutions is the sluicing experiment shown in figure 5.2. In this experiment
the elevation of the gate is adjusted at its highest possible level at which no ambient
fluid escapes to upstream. The discharge of ambient fluid downstream is defined as
d=§,(0), and a,(0) defines the discharge ¢,(0). In figure 5.10 the resulting self-similar
solutions are plotted for various elevations of the gate.

Due to the presence of ambient flow the shock relation is altered. Effectively, due to
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Figure 5.10 Self-similar solution for a sluicing operation with different inflow
discharges, or different gate elevations.

the ambient flow, front propagation speeds, as well as admissible inflow discharges
and heights increase significantly. Theoretically the value &, ,,,(0) =1 is admissible,
for which the non-trivial solution extends over the full current (in lock-exchange flows
a5 max(0) =0.55). However, for this extreme situation the Froude numbers range from
§=0to {={; from unity to a value of three, which is highly supercritical and violates
the assumption of negligible entrainment at the interface.

For all the solutions in figure 5.10 the flow is internally supercritical with Froude
numbers near unity. The subcritical state at high inflow discharges cannot be found,
also if other shock relations are used. Furthermore the transition from low to high-

inflow solutions occurs at higher inflow discharge and depth, than for lock-exchange
flows.

With respect to the sensitivity to total depth, density and shock relations the results for
lock-exchange flows presented in previous sub-sections also apply to the sluicing case.

5.2.4 Discussion

In this section analytical solutions are presented for 1-D intruding gravity currents in
a horizontal channel. These self-similar solutions are used to describe three
hypothetical experiments: partial and full lock-exchange and sluicing operations.
Although the model is severely simplified (e.g. entrainment neglected), an analysis of
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these solutions has learned us a lot about the behaviour and sensitivity of the two-layer
model, and provided us with verification material for the numerical model.

So far the analysis is restricted to gravity currents with a constant inflow discharge
and inflow Froude numbers determined by the chosen experiments. However, it seems
worthwhile to extend the more general derivations of Gratton & Vigo (1994) for one-
layer gravity currents (i.e. very deep reservoirs) to two-layer flows. They showed, by
adapting phase-plane formalism of gas dynamics (Sedov, 1993), that self-similar
solutions also exist for gravity currents with an inflow discharge defined by the
following power law

g,(x=0,0 = - qy(x=0,t=0)-t""! = @ g, -t*"! (5.14)

A constant inflow is obtained if v=1, spreading of a constant volume is obtained if
a=0, while all other positive values of « represent variable inflows. The independent
(similarity) variable of this approach becomes

Y — (5.15)

(820)" 1°
where §=(2+«)/3 for plane flow. The phase variables V and A are defined by

u, = (g’q20)1’3t5*‘-6-c’-17(cﬁ : a, = (g’q20)2’3t2°’2-62-({’)2-A(C’) (5.16)

In the phase plane (V,4) the solutions to the problem are represented by integral
curves. Self-similar solutions, characterized by the boundary conditions, are
constructed by taking appropriate pieces of these curves. In fact this phase-plane
analysis is just another (graphical) way of the representing the theory described in this
chapter, and therefore it is not further discussed here. For instance a quite clear
introduction to the use of phase-plane analyses to general Riemann problems is given
by Le Veque (1990). Phase-planes for more than two variables become multi-
dimensional and therefore difficult to present graphically. The theoretical approach
described in this section does not have this disadvantage.

By varying the inflow Froude number Gratton and Vigo (1994) obtained a wide range
of self-similar solutions with sub- and supercritical flow and internal hydraulic jumps.
For instance it is possible to manage the gate elevation and discharge in the sluicing
experiment (sub-section 5.2.3) such that the inflow Froude number is much higher
than unity. In some experiments this will generate a (moving) internal hydraulic jump.

For the derivation of self-similar solutions in this section the effects of bottom friction
and entrainment are neglected. However, this assumption must be verified for real
gravity currents, especially those which are highly supercritical. For a full lock-
exchange flow (as performed by Rottman & Simpson, 1983) a comparison is made
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Figure 5.11 Lock-exchange flow: comparison of the self-similar solution to a
numerical solution with friction and entrainment.

between the self-similar solution and a numerical solution (chapter 6), accounting for
friction and using the entrainment relation defined by Parker et al. (1987). The results
are presented in figure 5.11 in dimensionless coordinates. By considering also the
numerical solution without friction and entrainment (not presented in this figure) the
assumption above is easily verified. The only noticeable difference, aithough very
small, is found at {=0 where @,(0) is slightly larger than 0.5 (this is primarily due to
the entrainment effect). Reduction of front celerities by these mechanisms is only
effective for currents flowing over long distances or for non-conservative density
currents. Also for 2-D axi-symmetric flows in the following section a comparison with
and without entrainment is presented.

5.3 Axi-symmetric 2-DH radial flows
5.3.1 Construction of 2-DH self-similar solutions

In the previous section the similarity principle is successfully used to derive an
analytical solution for 1-D gravity currents. The question arises whether this type of
similarity can also be found in 2-DH gravity currents. Therefore it is again necessary
to reduce the basic equations of the system to a form which allows for a simple
mathematical treatment. In this section this reduction is obtained by considering
radially developing flow in a very deep ambient fluid. Examples are plumes generated
by vertical releases of dense fluid on a horizontal surface in a deep tank, riverine fresh
water plumes on the surface of coastal waters, or a collapse or explosion of a volume
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of dense gas into the atmosphere (e.g. Garvine, 1984, McClimans. 1978).
AY

Figure 5.12 Definition sketch for a radial flow.

For radial flow on a horizontal surface, defined in figure 5.12, the system can be
transformed to polar coordinates:

x =r-cos(®) ; y=r-sin® ; u-= 1/;‘22 N v22 (5.17)

The flow field is split into a near-field region with radius 7, and a far-field region.
Physically the near-field region is either characterized by 3-D hydrodynamic processes
which cannot be represented by a layer model, or it is the boundary at which dense
fluid is released. The inflow discharge g,(r)) or the inflow depth g,(r;) is taken
constant again. The far field region is the part of the flow where the layer model
applies. Due to the transformation the 2-DH system of three p.d.e. in x and y reduces
to an equivalent 1-D system of two p.d.e.:
ou R u N /0, (5.18)

Uu— =

at or * or

oa,  Oaju G (5.19)
ot or r

The only difference to the 1-D equations for a plane current is the right-hand term
a,u/r in the mass-balance equation which acts as a sink and represents the spreading
effect. Clearly for r—=0 this term and simultaneously the underflow depth goes to
infinity, which underlines the necessity of a near-field region.
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In a similar manner as in sub-section 5.2.1 the variables can be transformed as
follows:

ay = afr)a, ;s u = dyglafry s a = dar)yelar) (5.20)

The independent variables transform as

r = r"az(ro) ;= t_m (5.21)

Again the problem is determined by two constants a,(r,) and g' with independent
dimensions. Additionally to 1-D motion the near-field coordinate r, enters the
derivation which is represented by a dimensionless parameter {,=7,/f. For similarity
of the 2-DH motion it is necessary that only one similarity variable can be
constructed, and that other parameters are constant. Therefore parameter {, must
satisfy

Co = = Constant (5.22)

]S

Hence the radius r, of the near-field region must increase linearly with time. The

similarity variable {, can be defined as
¢ - (r—r0> .
’ t

-y = T (5.23)

t/g'a,(0)

The similarity variable for axi-symmetric flows defined by Grundy and Rottman
(1985, 1986) slightly differs from equation (5.23) as they assumed the inflow
discharge to increase proportionally with #* (= 0) while they assumed a fixed near-
field boundary r,. Although this approach is inverse to ours, they also concluded that
for the case where r, as well as ¢,(r;) are constant, similarity cannot exist.

~ I~

The basic p.d.e. transform to the following set of ordinary differential equations:

. da da
(u—c,)f + d; =0 (5.24)

(E-¢,) da, + dzﬂ + L 0 (5.25)
dcr dcr (Cr * CO)

The system is indeterminate if again the flow is critical in a frame of reference
travelling with speed ¢, i.e. if (#-{,)%d,=1. However, the resulting non-trivial
solution (rarefaction wave) is not required for the self-similar solution presented in this
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section.

Equations (5.24) and (5.25) are solved numerically (using the Runga Kutta method)
for & and 4,. For the upper boundary a constant discharge g,(r,) and a value for the
densimetric Froude number Fr,(ry)=1i(ry)?/d,(r,) =1 are imposed (corresponding to
physical considerations by Garvine, 1984, with respect to fresh-water plumes). At the
lower boundary, the front, the boundary condition is represented by the shock relation
as derived in chapter 6 and rewritten for deep water reservoirs:

¢, = ¢ ﬁf2 =24, ; (= uy (5.26)

Starting integration from the upper boundary it is found that the *moving’ densimetric
Froude number Fr?({,)=(a-{,)%/a, increases in downstream direction with values
exceeding unity, i.e. supercritical in a moving reference. However, from equation
(5.26) follows that at the front the flow is subcritical in a moving reference with
Fr(§)=0. Clearly a transition from supercritical to subcritical flow must exist in the
plume. Indeed, numerical computations carried out with the model presented in
chapter 6 show a well defined moving internal jump (internal bore), and also studies
of Rottman & Simpson (1984), Garvine (1984) and Grundy & Rottman (1986) reveal
this phenomenon. In neither of these studies rarefaction-wave regions or non-trivial
solutions were found.

The construction of the appropriate self-similar solution is carried out similarly to
open-channel hydraulic jumps (e.g., Chow, 1959). The internally ’supercritical’ curve
is obtained by integration in positive {,-direction starting from the upstream boundary.
An internally ’subcritical’ curve is obtained by integration in negative { -direction
starting from the front with a chosen value for {. For the internal bore the following

shock-relation can he defined (cf. section 4.4):

. o2
S Lop [m?es B with B, - B4 s27)

a, 4 a,,

where ad,, is the depth left of the jump and @,,, &, and Fr, are defined right of the jump.
The jump is located where both profiles satisfy this shock relation. In figure 5.13 a
conjugate curve is constructed by applying equation (5.27) on all the computed values
of the subcritical curve. The location of the jump is now found where the conjugate
and the supercritical curve intersect.

For the example in figure 5.13 we used ry/r=0.1 m/s; C,=0.005; Fr(ry)=1; a)(r))=1

m. The resulting profile must satisfy the following mass-balance, which follows from
integration of equation (5.25) over the plume:
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Figure 5.13 Construction of a self-similar solution for radial flow.

BfCo) Co = [2¢ + Co)ayl0) ¢ (5.28)

Iteratively the chosen value of {; must be corrected until this equation is satisfied.

The presence of an internal bore, and the absence of a rarefaction wave in these
results already indicate the differences between 1-D plane currents and 2-DH axi-
symmetric flows. These differences are all determined by the sink term a,u/r in the
mass-balance equation (5.19). In the following sub-section the characteristics of 2-DH
self-similar solutions and the comparison to 1-D self-similar solutions are presented
by means of some examples.

5.3.2 Analysis of 2-DH self-similar currents

In the previous sub-section a mathematical similarity solution for radial flow is
derived. However, the questions arise whether this solution is realistic with respect to
real spreading plumes, and to what extent this solution deviates from the 1-D self-
similar solutions. By means of some examples is tried to elucidate these issues.

For the example of figure 5.13 we have plotted the resulting 3-D state 30 seconds
after initiation in figure 5.14. The results show how a major part of the current gets
concentrated in a narrow rim at the spreading front.
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Figure 5.14 3-D representation of a self-similar axi-symmetric flow.

This mathematical result was also found by others, for instance by Garvine (1984).
For comparison we used data deduced from Garvine’s paper to compute the next
examples. These data are: r,=1 m if 1=33.4 s; 2,(0)=0.72 m; Fr,(0)=+/2; C,=0.005.
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Figure 5.15 Time evolution of the 2-DH self-similar solution in physical coordinates.
Dotted line is the numerical solution (Garvine’s ’84 data).

To illustrate the time-evolution of the presented self-similar solution, results computed
with these data are plotted in figure 5.15. On the left side of this figure the solution
is plotted in dimensionless coordinates; on the right side in physical coordinates.
Additionally we added numerical results computed with the shock-capturing model
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presented in chapter 6. Besides the good agreement between numerical and analytical
results, this figure also shows how the rim behind the front remains relatively narrow
compared to the traversed distance. Also the linear growth of r, with time is visible.

The differences to the 1-D (deep-water) self-similar solution becomes apparent if they
are visualized for a case with identical inflow conditions. Consider a self-similar
partial lock-exchange flow in a 2 m wide flume and a comparable release in a sector

z[m] o6 |
i
nw i
o;)z-'» i | \’ 102
Z[m]

Figure 5.16 3-D representation of self-similar flow in a flume and a sector tank,
using identical inflow parameters.

tank which allows for development of self-similar radial flow. In figure 5.16 a 3-D
representation of these examples is given, using data as given above for t=30 s with
Fr,(0)=1. Although both figures are computed with identical inflow parameters, they
differ substantially. For the 1-D plane current this solution is composed of a
rarefaction wave and a uniform current, without any internal shocks. Its depth remains
large compared to the radial flow, and its front celerity is somewhat larger (see also
figure 5.17). A notable difference can also be found if the densimetric Froude
numbers for these currents are compared. A plot of these Froude numbers in figure
5.17 shows that they become extremely large for the spreading part of the 2-D flow
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(a maximum value of about 8.5 for radial flow as against about 1.4 for 1-D flow).
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Figure 5.17 Comparison of depths and densimetric Froude numbers for a 1-D plane
current and a 2-D axi-symmetric current.

Due to this large value the interfacial-mixing rate must be correspondingly large. This
phenomenon was observed in laboratory in a salt-water current collapsing in a sector
tank by Rottman and Simpson (1984). Their experiments showed how multiple fronts
are formed by means of stretching of large amplitude Kelvin-Helmholtz vortices which
are generated by the greater shear in these flows. This process results in an increased
mixing rate and a larger mixing-layer depth. Also McClimans (1978) reported this
vortex formation at the front of a riverine fresh-water plume entering a saline fjord.
Clearly this effect is not accounted for in the analytical solution presented here, and
therefore it cannot be used for an exact representation of these experiments.

Using our numerical model (chapter 6). computing the entrainment velocity by the
relation of Parker et al. (1987), we attempted to simulate the experiments of Rottman
and Simpson in their sector tank. From sequential shadowgraphs of two experiments
of a collapsing volume of salt water, contours are drawn and compared to numerical
results. The experiment is initiated by removing a gate between fresh and salt water
located at r=0.6 m. The total water depth « in the tank is 0.4 m, g’ is 0.47 m/s2, and
the ratio between initial depth and total depth is given by:

Experiment 1: a,/a =1

Experiment 2: a,/a = 0.375

Time scales of numerical computations are adjusted to enable a reasonable fit with the
shadowgraphs (Rottman & Simpson did not report time scales). In figure 5.18 results
are plotted for experiment 1 (comparable to a full lock-exchange flow). Although the
formation of multiple fronts rules out the possibility of defining an accurate interface
level, it is shown that on the average a good agreement exists between the computed
and observed depths. For experiment 2 (comparable to a partial lock-exchange flow),
presented in figure 5.19, this conclusion still holds.
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Figure 5.18 Comparison visual data (Simpson & Rottman, 1984) with numerical data
for a radial flow in a sector tank, Experiment 1: @, /a=1.
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Comparison visual data (Simpson & Rottman, 1984) with numerical data
for a radial flow in a sector tank, Experiment 2: a,,/a=0.375.

Figure 5.19

Comparing the structure of the currents for both experiments, it can be seen that the
vortex formation in experiment 1 is more significant. Simpson & Rottman explained
this difference by the greater shear at the interface of the fluids. As this shear-effect
is governed by the overall Richardson number Ri, which is equal to Fr,?, these
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parameters must reveal this effect.
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Figure 5.20 Numerically computed densimetric Froude numbers for the two-
experiments without accounting for entrainment.

Indeed, a plot of Fr, in figure 5.20 computed for the respective experiments without
accounting entrainment shows that for experiment 1 the Froude numbers are

significantly larger (Ri, is much smaller). Consequently entrainment will be much
larger in this experiment (see also chapter 2).

08 0.2
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Figure 5.21 Comparison of velocities and discharges for a 1-D plane current and a
2-D axi-symmetric current (Garvine’s '84 data).

Besides the notable difference in interfacial mixing between 1-D plane and 2-D radial
currents, more deviations of parameters can be distinguished by analysing the self-
similar solutions. Looking back at the example of figures 5.16 and 5.17 it has been
shown that a significant difference exists in depths, Froude numbers and flow
structure. Furthermore, as illustrated in figure 5.21, discharges vary in a similar
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manner as underflow depths, but velocities remain quite constant. All velocity related
processes, such as bottom friction and erosion are not that different in magnitude for
both experiments,

A numerical example illustrating the effect of entrainment w;, on the frontal region of
the plume is given in figure 5.22 for 1=33.4 s.

0.6
a,
[m] Garvine ('84)
0.4 1 , [ ,,,,, 4
’j’l' N 1‘ Wie=0
P : |
0.2 a7
7 8 9 10 r[m] 11 12

Figure 5.22 Computed effect of entrainment on a radially developing plume, and
comparison to numerical solution of Garvine (1984).

For the computations a fixed value of r, (=1 m) is used for all time steps, so the
current in this example is not self-similar. Due to entrainment the head of the current
is lowered and widened, and its celerity is affected. Not surprising is the good
agreement between our numerical result (with w,=0) and the numerical result of
Garvine. Although Garvine used a finite-difference form of the characteristic
equations, the basic equations and internal-jump relations are identical to ours.
Therefore any appropriate numerical solution method will always converge to the
solutions presented in figure 5.22. Only a minor difference between Garvine’s and our
results is caused by the different shock-relation at the front. Garvine used a shock-
fitting approach where the shock-relation is a boundary condition for the numericat
solution, and contains some empirical coefficients to account for 3-D physical
processes at the front.

In figure 5.23 these computations are extended even more by incorporating bottom
friction. As entrainment clearly lowers the head and raises the body of the current,
bottom friction only lowers the head. Also the front celerity is reduced by the effect
of friction on the following current. Reduction or increase of front celerities by
friction and entrainment is not as noticeable in 1-D plane currents as in 2-D axi-
symmetric currents (e.g. compare the 1-D results in sub-section 5.2.3).

The magnitude in which 1-D and 2-D results deviate is greatly determined by the ratio
between the radius of the near-field region r, and the boundary depth a,(0). By
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Figure 5.23 Numerically computed effects of entrainment and bottom friction on a
2-D radial flow (t=33.4 s).
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Figure 5.24 Dependence of 2-D self-similar solutions on the ratio ry/a,(0).

increasing this ratio 7, the 2-D self-similar solution approaches the corresponding 1-D
self-similar solution. In figure 5.24 this is illustrated by increasing r, for Garvine’s
data as presented before. The 1-D self-similar solution for this example consists of a
uniform flow with {;=+/2 and a,(r)=a,(0).

The other parameters which determine the shape of the self-similar solution can also
be varied to illustrate the dependence. For instance Fr,(0) can be raised (starting from
unity), or C; (or g') can be varied. To some extent the dependence presented for 1-D
plane currents in the previous section also applies for these 2-D currents. It does not
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add many new insights in the physical behaviour of these currents by presenting these
analyses again for the 2-D self-similar solution. Furthermore it is possible to find a
wider range of self-similar solutions by introducing other similarity variables. For
instance the approach of Grundy & Rottman (1986) using the phase-plane method can
be used to achieve this target. These extensions of the theory might be topics for
further research.

The 2-D analytical solution in this section is developed for a gravity current intruding
into a very deep ambient fluid, i.e. represented by a one-layer model. The extension
of this theory to two-layer flow with shallow ambient flow will result a in higher and
slower front due to the ambient flow effect on the shock-relation as described for the
1-D self-similar flow. Numerical calculations based on Garvine’s data with r, = 1 are
carried out to illustrate this effect in figure 5.25. At the upper boundary the total
discharge q(r,) is set equal to the underflow discharge ¢.(r,) to prevent a return flow
into the near field (which is physically not admissible).

wie=0;Cd=O wie¢0;Cd=0.005
1.0 1.0
0.8 1 0.8
Z [m] Z [m]
0.6 1 0.6
0.4 1 0.4
0.2 0.2
0 v T 0 y T -
0 4 8 rm] 12 )] 4 8 r[m] 12

Figure 5.25 Numerically computed radial underflow (after 1£=33.4 s) in an ambient
fluid with depth a=3.0 m compared to a deep ambient fluid (a—>o).

Clearly the left plot shows how, without friction and entrainment, the front becomes
higher and the interface slope at the rim is reversed. Here an analogy to 1-D high
discharge solutions emerges. In the right plot is shown how in shallow reservoirs the
underflow with entrainment and friction reveals a similar trend. Analogous a
comparison can be made between the self-similar conservative underflow and a
turbidity current with sediment deposition. In figure 5.26 numerical results are given
for a turbidity current based on the previously used data with sediment particles of 160
pm with a fall velocity of 0.018 m/s, computed with C,=0.005 and with entrainment.
Due to deposition the density of the turbidity current is rapidly decreased, and the
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Figure 5.26 Numerically computed radial turbidity current (after 1=33.4 s) compared
to a self-similar density current.

front decelerates and rises. On the other hand dilution by interfacial mixing is less
intens due to lower velocities in the following current. In figure 5.27 the particle
concentration is plotted for this example and compared to dilution effects only by
entrainment in the deep water computation of figure 5.25.

0.006

12

Figure 5.27 Computed volumetric concentrations for turbidity current (drawn line)
and conservative current with entrainment (dotted line).
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Figure 5.28 Bed-morphology computation for a radial depositing turbidity current.
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As expected the density loss by settling of sediment is more pronounced, and results
in a radial bed-level variation as plotted 3-D in figure 5.27.

Reviewing the latter examples it is clear that the 2-D self-similar solution cannot be
used generally to explain the behaviour of all observed density currents. The
sensitivity of the exact solution to friction, sedimentation, interfacial mixing and
reservoir depth is an important argument to switch from the limited analytical
approach to more complete numerical solutions. A similar reasoning holds for the 1-D
model in section 5.2. The construction of the numerical model used for some of the
examples in this section is the topic of the following chapter.
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Chapter 6

Numerical model

6.1 Introduction

The solution of the presented 2-layer mathematical model for sedimentation and
turbidity current simulation in a reservoir has to be found by means of integration
in time and space. Due to the complexity and non-linearity and non-homogeneity of
the basic equations, and the presence of discontinuities this solution requires a
numerical integration method. In chapter 5 it is shown that only in strongly
simplified situations the use of analytical methods is justified. In general situations
a finite difference solution can be derived which approximates the exact solution if
the model is discretized by appropriate finite-difference operators. The choice of
such a numerical scheme and the solution algorithms for the chosen approach is the
topic of this chapter.

In the field of computational fluid dynamics (CFD) there is a large number of
numerical tools available to select from. Since the rise of the digital computers this
number has grown enormously. Often it seems that for every new group of
applications a new numerical scheme is invented. Then such a new generation of
schemes and algorithms is usually an improved form of an already successful one.
With respect to discontinuous flows, we owe the development of computational
methods to the fluid dynamics branch emerging from the aeronautical science. CFD
codes for the design and analysis of transonic flow past airfoils and wings have
become standard tools of the aircraft industry. At this point the engaging field of
aerodynamics links up with that of hydraulic engineering, proceeding from the
analogy between compressible flows in gas dynamics and open-channel flow.
Notably the last decade the progress of CFD in computing discontinuous shallow
water flows has increased significantly.

The first representatives in the field of CFD for discontinuous flows were perhaps
the first-order explicit schemes of Lax or Lax-Friedrichs (1954). Some of their
variants are still in use. Later a family of second order space-centred explicit
schemes were derived from the basic Lax-Wendroff (1960, 1964) scheme. For
instance the two-step, i.e. predictor corrector, Richtmyer (Richtmyer and Morton,
1967) and MacCormack (1969) schemes, or the more general S® schemes by Lerat
and Peyret (1974, 1975). These schemes are still very popular, especially for
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discontinuous fluids and gasses. To overcome the limitations on the time step for
stability imposed by the CFL condition (Courant-Friedrichs-Lewis condition), a
variety of schemes with implicit properties has been developed. For instance we
may think of the widely used Preissmann’s (1960) scheme, the Beam-Warming
(1976, 1978) scheme, or the very popular Alternative Direction Implicit (ADI)
method for 2-D implicit schemes. A treatment of various schemes can be found in
textbooks for CFD, such as Abbott and Basco (1989), Hirsch (1990), Vreugdenhil
(1989, 1994), and Tan Weiyan (1992). Furthermore an overview of some relevant
numerical methods is given in section 6.2.

The choice of the numerical solution method for our model is determined by the

following considerations (in random order):

1 - The numerical computations are primarily considered as a tool for simulating
the physical behaviour of the model as derived herein. We are not aiming
for a new computational method.

2 - Robustness of the method is required. A method has to be chosen which has
proved its applicability and suitability for models similar to ours.

3 - The computational effort required for computation is only a weak constraint.

4 - The propagating front of a turbidity current requires the computation of a

shock wave. This is usually considered as a Riemann problem defined as an
initial value problem in which two constant states are separated by a
discontinuity at time =0. However, from an engineering point of view we
only need to estimate the approximate position and speed of the shock, and
not the details of the transition. For morphological computations the
continuous flow regions are often far more important.

5 - It must be possible and simple to extend the numerical scheme used for 1-D
flows to 2-DH flows.
6 - The mathematical 2-layer model is essentially gimilar to 1-D (and 2-DH)

shallow water models. Consequently also the numerical treatment of the
model can be derived from experience in shallow water flow.

In the following section 6.2 an overview is given of numerical methods which are
studied whether they can be used to compute our discontinuous flow. At the end of
that section MacCormack’s scheme (MacCormack, 1969) is selected from these
alternatives judging from the criteria listed above. A description of this scheme and
the discretization of the 1-D model is the topic of sections 6.3 and 6.4. This
involves the discretization of the decoupled barotropic and baroclinic flow
equations separately. Generally the method results in very small errors and high
accuracy, but near discontinuities these errors intensify and result in oscillations
without any physical meaning. In section 6.5 and 6.6 is shown how these
disturbing oscillations can be damped or eliminated by adding a viscosity term to
the numerical equations.

In section 6.7 special attention is given to the implementation and numerical
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treatment of the boundary conditions. This is actually a very important subject
since the boundary information along with its errors will eventually cover the full
computational domain (i.e., spreading out along the characteristics). The overall
accuracy and stability of the model is therefore highly dependent on the correct
boundary treatment. In a similar way the initial condition, which can also be
considered as a type of boundary condition, has a significant impact on the final
solution. In section 6.8 some alternative initial conditions are given and evaluated.

Using artificial viscosity and optimizing the boundary scheme still does not fully
guarantee high accuracy and prevent instability. Therefore an analysis of accuracy
and stability of the numerical equations is made in section 6.9 by considering the
local truncation error and solutions in terms of Fourier series (von Neumann
analysis). These results revealed some important restrictions and advantages of
MacCormack’s as well as Lax-Wendroff’s (1960, 1964) scheme.

In section 6.10 is shown that for robustness and a better convergence to realistic
solutions some additional conditions have to be added to the model. In particular
this means the inclusion of a shock tracking technique and a lower limit to the
dependent variables. Furthermore the methodology of computing decoupled flow
and morphology is presented for the proposed model. This chapter is concluded in
section 6.11 with a review of the most important results.

6.2 Overview of numerical methods for discontinuous flows

6.2.1 Introduction

The mathematical model consists of six (1-D) or eight (2-DH) first-order quasi-

linear partial differential equations, while the barotropic (external) and baroclinic

(internal) parts of flow are considered to be decoupled. The most important

constraint we impose on the numerical model, is the ability to compute shocks in

the internal flow (external flow is assumed to be continuous). A selection of the
numerical methods can already be done by considering the two possible basic
techniques to compute the front of the turbidity current numerically:

- Shock fitting (see figure 6.1): The method is most accurate (e.g., see
Moretti, 1975, Tan Weiyan, 1992). The front is considered as an internal
moving boundary condition in the computational domain which is continuous
for the rest. The internal boundary conditions are the Rankine-Hugoniot
conditions as defined in chapter 4. In 1-D models a Lagrangian (sub-)
coordinate system is usually defined moving with the shock, since the
location of the front is not explicit and may otherwise loose its sharp profile.

131



This usually involves a deforming grid. In 2-DH models the method may
encounter large difficulties due to complexity of the shocks and their mutual
interactions. Therefore it is rarely applied for in 2-D cases.

- Shock capturing (see figure 6.1): Continuous flow and shocks are all solved
by means of the same scheme without using the shock relations. This
technique has already a long history of applications for aeronautics and
aerospatial gas dynamics as well as for hydraulics, and due to its merits it is
now commonly used. The discontinuity is smeared over at least one grid cell
(cf. fig. 6) and is therefore less sharp. For the propagation of the turbidity
current front, which has a much smaller length scale than the reservoir, it is
sufficient to use a reliable and simple shock-capturing scheme.

dx
Shock c¢,= 2/ Shock ¢
W E 7
A7/l |
[ [F ]
[ [ //]]] T
[ [ [/ ]]] /
| T /
AT T

— > X —> X
eg:x= x/xf(t)
Figure 6.1  Shock-fitting (left) versus shock-capturing (right) for a moving jump.

Dashed lines represent pos. celerities ¢* at each side of the jump. In
a deformed grid the right ¢* < 0.

For 1-D models with a moving turbidity current front the shock-fitting technigue
can be used for its high accuracy and the possibility to introduce additional energy-
loss parameters in the shock relation for the front, according to chapter 4 (e.g. see
Bonnecaze et al., 1993). However, if during the computation other shock waves
appear in the flow, such as internal hydraulic jumps, this technique soon becomes
disordered and looses its robustness due to the requirement of additional (moving)
internal boundary conditions, and deforming grids. By using shock-capturing
techniques the organization of the computations is not affected by the existence of
various discontinuities in the computational domain, even if they are interacting. As
mentioned above this organizational aspect is even more significant for 2-DH CFD
codes. Eventually a blend of shock-capturing and shock-fitting techniques can be
used to keep control. For instance the model for a "lock-exchange’ turbidity current
by Bonnecaze et al. (1993) computed the front as a moving boundary (i.e. shock-
fitting) and the trailing internal jump was captured using a two-step Lax-Wendroff
scheme (see next section).

These arguments already indicate that shock-capturing techniques are favourite for
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the present application, even more if we consider that for engineering purposes the
robustness and ease of them greatly compensate the loss of accuracy. The benefit
of shock-fitting techniques for our case is the possibility of introducing an
additional energy-loss effect at the front of the turbidity current. However, it is
shown in chapter 4, that by using appropriate basic equations the front can be
computed with reasonable accuracy without additional empirical loss terms (hence
without additional calibration coefficients).

An essential property of shock-capturing techniques is the addition or presence of
pseudo-viscosity for damping the parasitical numerical oscillations ("wiggles’) near
the shock. Pseudo viscosity has a smoothening effect near the jump, while in the
gradually varied flow region it is at least one order of magnitude smaller than the
order of the numerical scheme. Some techniques require a significant additional
term in the momentum (and often in the continuity) equation, called artificial
viscosity. Others (modern schemes) take the advantage of their numerical
dissipative mechanism, e.g., coming from even-order terms in the truncation error
of the scheme. The latter is called scheme or numerical viscosity.

Figure 6.2 Front computed with MacCormack’s scheme without pseudo-viscosity
with wiggles (left), and with TVD-viscosity without wiggles (right).

In figure 6.2 two identical computational examples are shown to illustrate the
inevitable occurrence of wiggles and the subsequent disappearance of these wiggles
by using artificial viscosity with TVD properties (see section 6.3). Often the
introduction of artificial viscosity is also required to satisfy the entropy condition to
prevent the occurrence of non-physical shocks (Hirsch, 1990). The latter
requirement can be seen as an introduction of a dissipative mechanism in the model
to stimulate the energy losses associated with the shocks.

The origin of the wiggles lies in the numerical treatment of shocks. The
replacement of a derivative by a differential quotient generates an error much
larger than the truncation error. Then the solution strongly oscillates (over- and
undershooting) because the discontinuity becomes a fixed source continuously
emanating disturbances. Expanding a difference equation into a Taylor series, we
obtain again the original equation with on the right side higher-order terms added
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(e.g. originating from the convective terms). Even-order derivative terms cause
physical dissipation (wave-amplitude attenuation) while odd-order derivative terms
cause dispersion (phase velocity of the various waves are altered). The orders of
these dissipation and dispersion errors are determined by the scheme. A first-order
scheme has dissipation and dispersion errors of order 2 and 3 respectively. A
second-order scheme has fourth-order dissipation and third-order dispersion. When
dissipation is dominant (e.g. order-1 schemes) the solution is smoothed, but if
dispersion is significant (e.g. order-2 schemes) parasite oscillations occur near the
shock. Furthermore a shift of energy occurs into higher wave numbers near the
jump, but due to the finite mesh size the real high frequency waves are treated as
low frequency ones resulting in dispersion. We may conclude that oscillations
occur when the viscosity term is not present or small and an odd-order dispersive
term appears in the differential approximation. An analytical explanation of this
conclusion is given in section 6.9 for the chosen numerical scheme.

In section 6.4 we pointed out that the equations are casted in their conservative
form. Similarly, to ensure the discretization technique to correctly represent the
integral form of these conservation laws, it is important that the scheme is
conservative. In other words this means (Hirsch, 1990) that the time derivative of
the integral of U (the vector of primitive variables) over a given space domain only
depends on the boundary flux and not on the fluxes within this domain. Then a
unified formulation (Lax, 1957) of all conservative explicit schemes can be written
as (here in 2-D form)

n+1 n At x * At =« *
U; -U; = - Z;(f.-q,z,,-—f,-_l,z,,-) - E(gi,ﬁl/z‘gi,j—l/z) (6.1)
For Consistpncy of the scheme the following condition must be satisfied:
fU,...,U,) = f(U)  whenallU, =U
fU,...,U,) = gU)  whenall U U

where f* and g are the respective dlscretlzed numerical flux vectors. For equations
with source terms such as friction their discretized equivalents are added to
equation (6.1), not to the numerical fluxes.

The different types of schemes with shock-capturing abilities, which have been
developed in the past, especially for solving the Euler equations in aerodynamics,
can be subdivided into the following groups (after Hirsch, 1990):

- Space-centred schemes, such as the Lax-Wendroff (1960, 1964) and Lax-
Friedrichs (1954) explicit schemes. Or the two-step explicit schemes of
MacCormack (1969) or Lerat and Peyret (1974). Or the implicit schemes by
Lerat (1983) and MacCormack (1981).

- Upwind schemes, such as the flux vector splitting methods by Moretti (1979)
or Steger and Warming (1981). Or the exact Riemann solvers such as the
first-order Godunov (1959) scheme and second-order Van Leer (1979)
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scheme, and the approximate Riemann solvers such as Harten et al. (1983).

- High resolution TVD (total variation diminishing) schemes, such as the
explicit TVD upwind schemes by Boris and Book (1973) and Van Leer
(1974, 1979) and Harten (1983,1984). Or the implicit TVD upwind scheme
by Yee et al. (1985), or the central TVD schemes by Yee (1987).

Each of these groups of schemes are treated in the following sub-sections for 1-D
and 2-DH models. We have restricted the overview to explicit methods although
there are in each group a number of implicit tools available. For more details on
the presented techniques the cited papers and textbooks as Hirsch (1990), Finlayson
(1992), Tan Weiyan (1992) and Vreugdenhil (1994) are recommended.

6.2.2 Space-centred schemes

Most of the schemes which may be relevant for our model, are based on the
second-order accurate scheme of Lax Wendroff, which is centred in space and
time, and based on Taylor-expansions. In linearized 1-D conservative form the
numerical flux in eq. (6.1) can be written for Lax Wendroff as

1 1A

£ -
P 2 Ax

(fi+fi+1) - Ai+1/2(fi+1 _fi) (6.2)

where A is the Jacobian matrix of the fluxes .

When accounting for the non-linear fluxes in the equations, many variants exist
which are generally structured as explicit predictor-corrector algorithms. Also some
implicit variants have been developed in this Lax-Wendroff family of schemes.
Although nearly all these schemes have been developed and analyzed for 1-D
models, most of them can be easily extended to the 2-D case. An important
property of these schemes, as follows from eq. (6.2) is that they are conservative.
Furthermore they require a form of artificial viscosity in the vicinity of a shock.

One of the most popular schemes is the second-order accurate two-step version of
MacCormack (1969). Examples of the application of MacCormack’s method to 1-D
shallow-water flow are for instance Fennema & Chaudry (1986), Garcia-Navarro et
al. (1992) and Valiani (1993). Applications to 2-DH shallow water flow with
shocks were for instance presented by Fennema and Chaudry (1990) and Jiménez
and Chaudry (1988). Its merits are impressive simplicity, compactness, easy to use
in 2-D cases, order 2 accurate both in space and time, applicability to both
continuous and discontinuous flows, and simplicity in the boundary condition
procedure as it is not involved with time ¢,,,. Its drawbacks are asymmetry (using
forward and backward differences in each semi step), the necessity of artificial
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viscosity, and sensitivity to the boundary condition procedure adopted. For the
latter reasons many modified forms have been proposed. For instance a 2-D form
of MacCormack’s scheme can be defined in which the scheme is formulated in split
form by products of 1-D operators (e.g. see Hirsch, 1990). An implicit version of
this scheme was proposed by MacCormack (1981, 1982) by adding an implicit
adjustment step to the predictor and corrector steps of the original scheme. The
amount of computations increased with a factor of two, but the time-step can be
increased up to a factor of three.

By using the centred difference the physical propagation along characteristics is not
considered (no distinction of upstream and downstream influences). For continuous
functions the Taylor series expansions (the basic concept behind space-centred
schemes) can be applied for correct reconstruction, but if a discontinuity appears
information is destroyed, and oscillations appear. In the next sub-section the class
of upwind schemes is treated which account for physical propagation.

6.2.3 Upwind schemes

The class of non-space-centred schemes classified as upwind schemes establish a
relation between characteristic propagation properties and the differencing. That
means directional space discretizations are applied in accordance with the physical
behaviour of the flow. The first upwind scheme was introduced by Courant et al.
(1952), followed by a large group of variants (e.g., second-order accurate or
implicit upwind schemes) impelled by their good performance in aerodynamics. In
the following an overview is given of the different types of upwind schemes which

-----

Godunov-type schemes

A group of upwind schemes, which is based greatly on the physical properties of
the model, is the family of Godunov-type schemes. The original Godunov’s (1959)
method includes the solution of the Riemann problem (solution of Riemann
invariants along characteristics near a shock wave) at each time step for each
computational cell to find the fluxes through the interfaces of these cells. By
introducing the properties of these exact local solutions into the scheme, a very
elegant and admirable method is obtained. Various extensions to this approach for
-more general or more accurate results are usually referred to as flux-difference
splitting methods, most of them which use approximate Riemann solvers (e.g.,
Glaister, 1988, 1990, Roe, 1981a,b, and Osher, 1981). Approximate Riemann
solutions are often used since the solution of the Riemann problem is difficult due
to non-linearity of the governing equations, which requires an iteration technique.
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Often such a time consuming iteration approach is exuberant as only first-order
accuracy can be achieved. An example of one of the approximation techniques to
speed up things, and which is becoming most popular, is Roe’s (1981b) local
linearization of the non-linear equations (see also section 6.6).

Although the Godunov-type methods are very strong and physically sound
techniques for solving 1-D discontinuous flows, it is quite a job and requires quite
a computational effort to solve 2-DH discontinuous flows.

Characteristic difference schemes

In 1-D and 2-D flows the method of characteristics can be used for constructing
physically-based schemes. Therefore the compatibility equations are used which
hold on the (bi)characteristics. An example of a characteristic difference method is
the Moretti (1979, 1987) A scheme and the dam-break flood-wave model of
Katopodes and Strelkoff (1978). Since these methods use the compatibility
equations in non-conservative form, they require the shock relations (some sort of
shock fitting) to capture shocks. Upwind schemes in (bi-)characteristic direction are
used to approximate the characteristic relations. In 2-D flows these methods are
mainly used to design characteristic-based schemes rather than a characteristic
difference scheme (e.g., increasing accuracy by flux splitting and controlling the
numerical dependency domain).

Characteristic-based splitting

The characteristic-based splitting techniques involve flux-vector splitting (FVS) and
flux-difference splitting (FDS). The FVS group is formed by directional
discretization of flux derivatives (e.g., Steger and Warming, 1981, Van Leer,
1982). For instance the system of 1-D conservative equations is written as

ou , oft | of (6.3)

+ — =0
ot ox ox

where f* and f are associated to fluxes with positive and negative Jacobian
eigenvalues respectively (positive and negative characteristic directions). Then f*
and f can be discretized using a backward and forward difference. This approach
is more reasonable than a simple upwind scheme where the difference direction is
based on the flow direction. The first-order result is dissipative (no artificial
viscosity required) and always converges to a physical solution. In gas dynamics
there are many alternatives available for splitting the Jacobian matrix of the 1-D
Euler equations (e.g., see Tan Weiyan, 1992). Both splitting-first differencing-last,
and differencing-first splitting-last are feasible. The latter technique, with limiting
after the first step, was posed by Van Leer (1979) and called the MUSCL
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technique (Monotone Upwind Schemes for Conservation Laws). It performs better
near shocks than the former technique (in getting a smooth transition). Another
property of MUSCL technique is the variable extrapolation for the generation of
second-order high-resolution upwind schemes. It is possible to rewrite
MacCormack’s scheme as a FVS scheme if fluxes are split properly.

The approximate Riemann solver developed by Roe (1981a,b) is a FDS scheme,
based on the characteristic decomposition of the flux differences over a cell. It
extends the linear wave decomposition, which is the exact linear solution to
Riemann’s problem, to non-linear equations. More details on this splitting
technique is given in section 6.6, applied to our non-linear system of equations.
Roe’s method and that of Osher (1981) are usually classified as approximate
Riemann solvers in relation with Godunov-type schemes.

6.2.4 High-resolution schemes: FCT and TVD algorithms

The flux-corrected transport (FCT) and total variation diminishing (TVD) methods
are both based on flux limiters. The governing schemes can be classified as high-
resolution schemes in their capability of limiting a shock to a range of 1-2 mesh
cells. By replacing the first-order upwind schemes by second-order schemes again
oscillations are generated around discontinuities (for the same reasons as in the
central schemes). To obtain correct oscillation free solutions the scheme must
satisfy the concept of monotonicity (introduced by Godunov, 1959: no creation and
amplification of local extremes) or for 2-order schemes the concept of bounded
total variation (introduced by Harten, 1983: if the equations are non-linear with
non-TVD exact solutions). Also an entropy condition must be satisfied to obtain
physically acceptable solution. For second-order schemes to satisfy these conditions
a non-linear component, different from artificial viscosity, can be introduced in
discretizations: flux limiters (e.g., Van Leer, 1973,1974) which prevent the
appearance of over- and undershoots. In general, upwind schemes cannot avoid
wiggles without flux limiters. Except for first-order upwind schemes, where they
are usually removed by the intrinsically monotonicity of the 1-order scheme. In
contrast with artificial viscosity, which allows oscillations to develop but
subsequently damps them, flux limiters prevent the generation of oscillations.

FCT algorithms (anti-diffusive two-step methods) were proposed by Boris and
Book (1973) and are designed to avoid the occurrence of negative density when
solving mass continuity equations with steep gradients, i.e. guarantee positivity.
Therefore a diffusive term (with numerical viscosity ») is added to the order-1
predictor, while an anti-diffusive term (with coefficient u) is introduced in the
corrector to obtain second-order accuracy and to cancel that part of numerical
viscosity which exceeds the demand of positivity. By limiting the anti-diffusive flux
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(limiting u), so that no new maxima and minima can appear or that the existing
ones cannot be amplified, the requirement of limiting is exactly monotonicity
preserving. Hence stability can be ensured by preventing the occurrence of
spurious oscillations. The corrected anti-diffusive term is called the corrected flux.
The main disadvantage of FCT is the necessity of adjusting the values of the
parameters.

Since conservative monotonic schemes for non-linear equations can only be order-1
accurate, a class of high resolution schemes is developed satisfying the condition of
total variation boundness (Harten, 1983,1984), which is a weaker and more general
condition than monotonicity. This class of 1-D TVD schemes is based on the total
variation of a discrete numerical solution given by

TV = Y |4,y - u (if TV = f%dx) (6.4)
i X
The 1-D numerical scheme is TVD if
TV@u™) < TV(u") (6.5)

Therefore all monotone schemes are TVD, and all TVD schemes are monotonicity
preserving (#"*' remains monotone if ¥” is monotone, hence no overshoots can be
created). However, the above conditions can only result in an order-2 scheme if the
scheme is non-linear (Hirsch, 1990). For instance this can be done by using more
than three points (e.g. 5 points) in a non-linear way in the definition of numerical
fluxes. The methodology for defining a high-resolution scheme is (after Hirsch,
1990):

19} Select a first-order monotone numerical flux.

2) Extend the numerical flux to second-order accuracy.

3) Use non-linear limiter functions ¥ to ensure TVD conditions (restricting the
amplitude of gradients appearing in second-order terms).

4) Select time integration procedure (best suited for unsteady flows is the

combined space-time methods in line with the Lax-Wendroff technique).
Some adaptation may be required of the fluxes to ensure TVD conditions.

5) Check the entropy condition for the ’limited’ higher-order scheme, since
TVD cannot guarantee that the solution satisfies this condition.

Analyses of ¥ limiters were given by Sweby (1984, 1985) and Roe (1985). By
using these limiters the Lax-Wendroff type schemes (also MacCormack) can be
made TVD under certain constraints of ¥. Various limiters have been reported in
literature, for instance Van Leer (1974) or Roe’s (1985) 'Superbee’ limiter. Harten
(1983) introduced a modified flux to an order-1 upwind flux, leading to order-2
accuracy and followed by TVD limiting (see also Yee et al. 1985). Sweby (1984)
proposed a flux limiter to modify the FCT method into a family of high-resolution
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schemes.

The TVD approach can be considered as a kind of artificial viscosity continuously
dissipating energy (e.g. see Hirsch, 1990), avoiding the adaptation of ’empirical’
viscosity. Consequently solutions become first-order near strong gradients, while
remaining second-order in smooth regions. TVD can be used with any two-step
Lax-Wendroff type schemes resulting in sharp oscillation free profiles. For instance
the 1-D computation of discontinuous flows in open channels with a TVD
MacCormack scheme was carried out with satisfactory results by Garcia-Navarro et
al. (1992) and Valiani (1993). Although strictly speaking the TVD property only
holds for homogeneous scalar non-linear conservation laws and homogeneous
systems of equations with constant coefficients, Garcia-Navarro’s and Valiani’s
results indicate an accurate performance on the non-linear system of shallow-water
equations with non-homogeneous terms (friction). Possibly the effects of external
forces and interacting waves, which might increase the solution and hence increase
the total variation, are not dominant for these cases.

Formally TVD is a 1-D concept, but nevertheless it is applicable to the 2-D case as
well. In the 2-D case the total variation may be defined as

TV () = f IVu[dxdy = f (| + |u,| ydxdy = TV @) + TV, @) (6.6)
Q Q

where

TV, ) = Ay Y ) - (6.7)
ij

Although a 2-D TVD scheme with a specific 2-D flux limiter is at best order-1
accurate (Goodman and Le Veque, 1985), the combined use of space-splitting
technique and a 1-D order-2 TVD scheme can provide approximately second order
accuracy and sharp resolution. The TVD schemes proposed by Yee (1987) were
used to solve the 2-D Euler equations and the Navier Stokes equations. Yang and
Hsu (1993b) extended the 1-D TVD and ENO (essentially non-oscillatory scheme
proposed by Harten and Osher, 1987) schemes as presented by Yang et al.
(1993a), to compute 2-D discontinuous shallow water flow. Therefore they adopted
Van Leer’s (1982) flux vector splitting and the Strang-type (Strang, 1968)
dimensional splitting method. Still these TVD techniques are in a stage of
development and have not fully proved their robustness for 2-DH flows in open
channels. Furthermore the additional number of algebraic operations make the
approach rather costly.
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6.2.5 Choice of the numerical solution method

In the previous sub-sections a large number of alternatives is presented which can
be used for solving our model with a turbidity-current front. To choose from these
alternatives they have been tested with the conditions proposed in the introduction
(section 6.1). Summarizing these conditions which we impose on the numerical
technique: No ambition to develop a new method, robustness is required,
computational effort is of minor importance, approximative shock capturing must
be possible, computation of continuous flow regions must be accurate, one method
must be used for all computations and it must be extendable to 2-DH cases for
future research.

To satisfy a reasonable accuracy in continuous flow regions a numerical method
must be chosen with at least order-2 accuracy in these regions. Furthermore it must
satisfy the conservation property to enable shock capturing. For instance the Lax-
Wendroff type or second-order upwind schemes perform well here. Other methods,
although they may have a very good shock resolution, do not necessarily perform
better. This is an important argument to choose from a simple group of schemes
which has proved its robustness in computing shallow-water flow with bores and
dam-break waves.

In line with the modelling approach a motivation can be given for choosing an
explicit scheme in favour of an implicit scheme. Firstly, notably in situations with
nearly critical internal flow, there are no significant differences in characteristic
celerities in each of the decoupled computation steps (external flow, or internal
flow with morphology). For each computation a space and time step can be chosen
according to desired accuracy and stability. Secondly there are discontinuities in the
flow for which implicitly obtained solutions often do not satisfy conservation
requirements (Tan Weiyan, 1992) due to linearization. Overall can be concluded
that the due to accuracy limitations (only low Courant numbers allowed), and also
due to the presence discontinuities, the computational effort per time step required
for an implicit solution are not compensated, and in that respect simple explicitly
obtained solutions are superior.

As stated before the MacCormack (1969) scheme, although it is slightly old-
fashioned, is a very simple and robust centred scheme with order-2 accuracy. It
suits the accurate computation of the continuous flow sections (in which
characteristics are positive and negative), as well as the approximative computation
of the turbidity-current front. Artificial viscosity is required to prevent parasitic
oscillations (sections 6.5, 6.6). It has proved its applicability to 2-DH shallow-
water flow, and it has shown to compute shocks which are sufficiently accurate for
engineering purposes. For instance Van Leer et al. (1987) demonstrated with
applications the superior behaviour of the MacCormack scheme over FDS and FVS
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methods in continuous regions. Comparisons made by Fennema and Chaudry
(1986, 1990) between the performance of Moretti’s (1979) A-scheme, Gabutti’s
(1983) scheme, Preissmann’s (1961) scheme, and MacCormack’s scheme also
revealed the excellent performance of the latter. This conclusion was also supported
by the results of Jimenez and Chaudry (1988) in comparison with measurements.
Nevertheless the use of this scheme requires caution with respect to accuracy and
stability as is shown in section 6.9.

The description and application of the MacCormack scheme to the reservoir
sedimentation model is treated in the following sections.

6.3 MacCormack scheme

The numerical scheme proposed by MacCormack (1969) is a Lax-Wendroff type
scheme. It differs from other Lax-Wendroff type schemes in its simple and
straightforward treatment of non-linear fluxes by means of a two-step (predictor
and corrector) approach. For linearized equations the MacCormack method can be
reformulated as the original Lax-Wendroff scheme. This allows us to adopt the
results from linear numerical analyses of the Lax-Wendroff scheme with respect to
stability and accuracy.

Consider the general 2-DH formulation of the model in conservative form with
source vector Q (which contains for example friction and entrainment terms):
Jau  of(U) dg(U)

+ + Z8\F) o 6.8
ot ox oy ) ©8)

Its quasi-linear form, with associated Jacobian matrices 4, and 4, becomes
ou ou oU
— & — + A (U)— = U (6.9)
> ™ »(U) Q(U)

A(U) 5

In a 1-D formulation (eliminate d/dy terms) MacCormack’s scheme is then defined
as follows

= n A n n nfyrn ot _A n r

U, =0U; - Xﬂfhl(Um) - fi(UiH * AtQi(Ui) ’ A;(D“lﬁ - D"‘m)

= n At = r G O Atn D ;
G, 0 - A0 - 1,(0,)] - aQ,(T) - 2o, -, G

Uit =120, + T

Vector U/ is the vector of primitive variables defined at grid point [i-Ax,n-Af]
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while U;""" is defined on an advanced time level [i-Ax,(n+1)-Af]. Vector I_J[ is the
predictor solution of U, and U is the corrector solution of U. Vector D is an
eventual artificial viscosity term which can be added to the scheme to prevent the
occurrence of spurious oscillations. More about this term can be found in section
6.5 and 6.6. Term f is the discretized flux vector applied to local values of U.
Note the numerical fluxes for the scheme can be written as

fitllz — E(H1+f) ; fi*—l/z - %(f?+fi—l) (611)

such that the numerical method can be formulated as

At

_ n+1_ n _ _ 8 * —f A "+Q
AU, = U; 1 ;J,i Ax(f”l’2 ﬂiz) ' 2_(Ql Q) (6.12)
+ EE<D:’+1/2 - Din—1/2 * Diyp - D 1/2>

which shows that the scheme is in conservation form (D-terms also add up to flux).

Here the predictor step is a first-order forward scheme, while the corrector is a
backward first-order scheme. The overall combined scheme is stable and of second
order due to cancellations of the truncation errors in each step. The above sequence
of forward and backward schemes was found to be sufficiently accurate and most
successful in resolving the turbidity current front. Changing the sequence of
backward and forward schemes in consecutive time-steps, to avoid a bias by an
eventual accumulation of errors, does not greatly improve the overall performance
of the method for this particular application.

For completeness the 2-D form of MacCormack’s scheme is given to illustrate the
similarity to the 1-D scheme and the simplicity of the transition from 1-D to 2-D.
The following 2-D six-point version of MacCormack’s scheme can be defined (with
source term Q and artificial viscosity terms D, D)):

YT n A n A n n A n
Uij =U; - A_;{Axfij] - A_;[Aygij] + ArQy; + —A*)—thx AyD
I7 n A s A — = At =
y = Uy - A_;[foij] ) Z‘yt‘[vygij] *ArQ,; + =D+ AyD (6.13)
n+ 1/= T
Ul - E(U U,

where f, = f(U,j) g,, = g(UU) and Q = Q(U,/) and where A,A, and V,V, are

i
order-1 forward and backward difference operators respectively, defined as follows
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n n no n _ _n n
Ay =fiay - 5 8,85 = 80 gy (6.14)
VX f:; = f:; - fi"*l,]' > Vy g:; = g;’]‘ - gi’:j—]

Four different versions can be written for equation (6.11) by combinations of the
one-sided differences A,,A, and V.V, on the flux components f and g. The
corresponding computational molecules are plotted in figure 6.3.

Forward-forward Forward-backward
j+l j+1
J—e—» J
Jj1 T i1
i-1 i i+1
Backward-forward Backward-backward
j+l J. |
J o= %\»
P
y 1
i+l i-1 i i+1 ,

Predictor
0 =— Corrector

Figure 6.3  Alternatives computational molecule for 2-D MacCormack’s scheme.

Again, to avoid a bias, it is often recommend to cycle between the four possibilities
during a computation.

The following sections focus on the 1-D model discretization, the associated

numerical properties of the model, the solution algorithm, boundary conditions and
the formulation of artificial viscosity terms.
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6.4 1-D model discretization using MacCormack’s scheme

6.4.1 Baroclinic flow

Starting from the equations in their (quasi-) conservative form the model can be
discretized using the proposed forward and backward difference operators. It has
been shown so far that a decoupling of the barotropic and baroclinic part can be
adopted since density differences are relatively small. The baroclinic part of a 1-D
flow is described by the width-integrated form of equations (2.19) to (2.20) etc.
and will be treated in this section. The barotropic part is treated in sub-section
6.4.2 as a much simpler method suffices.

To reformulate the internal-flow equations in a form which allows a
straightforward solution we defined a new variable

Q=u -y 6.15)

such that u, and Q, are replaced by

a, Q . -
ool f g one @19
2

As a consequence the following system makes up the 1-D internal flow model:

°Q o 1012Q . gl1-22\] . gof’a(c_&%) - lgo/a 9C, +
o &2 |aB, a ox 27 % ox 6.17)
2
+ go/CS— = ‘CDE3 W ﬂ+ﬁ
a4 a4 5
oa,B,) 90 _ Bw, (6.18)
ot Ox
/
oC, Lyu,| dC, s C.-C) 6.19)
at Ta/ ax (aZT/> se §
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g A{1-&lz*Ca) S 95, (6.20)
2 o ax  ox

Here B, = B,(x) is not a function of time as the banks are fixed, and it is not a
function of depth as we assumed a rectangular cross-section. Furthermore values
and gradients in the total discharge @ and the total reservoir depth a are
independently obtained from the external flow module (sub-section 6.4.2). In the
following the discretization of the model is presented.

Predictor step

Firstly predictor values are computed, secondly a corrector step is used to obtain
second-order accuracy. The predictor variations of U are obtained in the following
order (top to bottom) from the values of the primitive variables Q, a,, C,, z, at each
grid point at the present time level (n-Af):

- 1 r n ] [~ 7,0 n,Q
AQ, A fa; QR, iem,i Dy~ Dricve
E . n na _ pyn.a
_2,1 - ﬂ Axf;z,x Y At —W‘.:i . ﬂ Dl,nc‘/z Dl,l—c‘/z (621)
n s n,
AC; Ax1A fe, (o"-(Cs:,. —CSZ-) AXIDME,-DIS,
_A({l—ep} +C az) A, A i 0 ] 2R A

where A.f; = fi,, - f; is again the forward difference operator, which is applied to
the respective flux terms in the equations. At grid point (i+1)-Ax these fluxes are

Aafinad ctant syith 1ntinne (A 1’7\ o (& MW\ na
ML L LI UUAIJIOL\/AIL VV ALAI p\.luuuuuo \U } \\_l Lr\.l) “uo
Q7 a,, a, . C"
i+l 20 n 2,i+1 / n n 2,i Vs,i+l n_n
> B a4 *Q1-2 +80"|Cy 1@ 5 T +CiZpa
2,i+1%i+1 Qi
P "
Q,i+1 Qz,i+1
foi 1 B
. .
aitl| (6.22)
n / n
Jein u,L, c’
/ si+l
n T
_fz,i+1 a /i
n n
(Sbul + Ssﬁl)
BZ,i

There corresponding values at grid point /-Ax are obtained by replacing all
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quantities with index (i+1) with quantities at i. Note that w, * = w/(a,T,")/.

Friction and entrainment terms in (6.21) are linearized and written explicitly as

Qri = = Cplup/ay)luy, (6.23)
n n
Wi = W Qe Oy |2+ (6.24)
@2, (ai - a2,i)

Transport terms can be directly deduced from the application of transport formulae
n n n . n

Spin1 = By 'Sb(”z,i+1’a2,i+1) s Sy = By Coinzin (6.25)

From the presented discretization the predictor bed-level change can be obtained by

(1-€,)Az,, = A{-€,}2,+Ca;). - (Co+AC, )a)i+Bay) + Clay, (6.26)

5,2,

The discretization of the viscosity terms D, can be chosen afterwards and is
discussed in sections 6.5 and 6.6.

Corrector step

In the corrector step the numerical fluxes are obtained by reversing the direction of
differentiation (from forward to backward) and by using the new values of the
primitive variables obtained from the predictor step. Therefore we define the vector
of these new predicted variables as

U, - U] + AT, 6.27)

1]

Corrector variations are then computed conformal the predictor step as follows

1

AQ i VX}Q,i aR,i * ;iem,i ’-—1 A+ Ve D A-Ve
ﬁZ,i __ At ViJai oy Wi L At Dy,., D | (6.28)
A Cs,i Ax foC,i w:i@se,i - Esj) Ax ] x+‘/2 D V2

A({l ‘ep}zb * Csa2)i‘ L foz’i J L 0 ; 1 A+ Dz i-Y2)

where V. f; = f; - f., is the backward difference operator applied to the flux. A
discretization of flux terms at grid point (i-1)-Ax yields
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-1 9 2Q 5 a, = = ‘;2'6 -1, &~ =
. —=x _+Q [1-22Z||+go’|C., a, -2 21.C 7 .
70,1*1 2 BZ,i_la,'_l i-1 ai_l g 5,i-172,i-1 2 5i%bi-1
Jai- -
- Qy1/ By, (6.29)
Jei- e =
_C'l 1 (uzL:z/ T:z)ics,i—l
_fz,i—l

(Sb,id + §s,i~1)/B2,i

There corresponding values at grid point i-Ax are obtained by replacing all
quantities with index (i-1) with quantities at i. Note that predicted values of derived
variables, such as u, and S, are calculated directly from the primitive variables in
equation (6.27).

In order to preserve the order and stability of the scheme it is necessary to write
the source terms in the following linearized way

u,\" —
Op; =~ Cp|—| uy, (6.30)
a,),
u,, u, .
Wi:m,i = wie(Q?’aZr:i’Cs”) L * (6.31)
| o ( a;~ay, )
n
w

Although this linearization appears quite rough, it follows the predictor step and
satisfies consistency and stability. Sometimes semi-implicit discretizations are
proposed for this term to prevent it from causing numerical instability. However,
as is shown in section 6.9, for practical application of our model this is not
essential. Another discretization of the source terms can be based on Roe’s (1981b)
characteristic decomposition of the source terms for a better performance near
shocks. This method is used for instance by Glaister (1988) in combination with
Roe’s numerical scheme.

During the development of the baroclinic part of the model a preliminary version
was written for a two-layer flow with fixed concentration (C, = const. for all x and
1) on a fixed bed. The discretization is based on the momentum and continuity
equations as above, after eliminating gradients in C,. The algorithm written for
solving these two remaining equations was extended to the full system of equations
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after solving most programming problems and after carrying out numerous test
runs. The original fixed bed model is retained in the final model.

6.4.2 Barotropic flow

Decoupling the barotropic (external) and baroclinic (internal) part of the flow is
shown to be beneficial for the size of the computational time step. The basic
equations for the barotropic flow are the traditional Saint Venant equations for long
waves in the reservoir. Their numerical solution is classical and treated extensively
in literature. Realizing that flows in reservoirs with density currents must be
quiescent with low Froude numbers these equations can be significantly simplified
and allow for a simple numerical solution. In an attempt to speed up these
numerical calculations we have chosen for the possibility of approximating the
barotropic flow with a quasi-steady approach. This approach is commonly used in
computing bed-variations in 1-D or 2-DH subcritical open-channel flow (e.g. de
Vries, 1993).

External waves are assumed to have a propagation speed which is much higher
than that for internal waves (especially in very deep reservoirs). On the time scale
of these internal events the effects of changes in boundary conditions for external
flow (e.g. a flow hydrograph) can be assumed to be felt instantaneously over the
total reservoir. Hence they propagate with an infinite speed and the flow is
computed as a sequence of steady surface profiles. External quasi-steady flow
allows us to use an increased time step adjusted to the stability condition for
internal flow, which is much less restrictive than that for unsteady external flow.
The error in the baroclinic flow due to this approximation is of the order of the
density difference or less since the interaction between external and internal flow is
very weak and Froude numbers for external flows are small. For practical
applications this is an acceptable error.

In a 1-D approach the remaining model consists of ordinary differential equations
which can be solved quite easily for each time-level 7,

d | Q? d(a+z, 2
a[i{] ' gz”‘idx_) " BCn g

where a is the total depth, Q is the total discharge, B the width and A the cross-
sectional area (=a'B, i.e., we assumed a rectangular cross section). As boundary
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conditions for the integration we use

t=1t : Q(x=0) = Q(tn) and a(xend) = adam(tn> (6.34)

Bed-levels and widths (either irregular or smooth) are supposed to be known at
each grid point, while inflow discharge Q(z,) follows from the flow hydrograph,
and the downstream depth ay,, follows for instance from a head-discharge relation
(e.g. see sub-section 7.5.1). The differential equation is solved using a standard
fourth-order Runga-Kutta method (e.g. Sloff, 1990) starting from the lower
boundary (x..). The step-size for this integration is taken as a fraction of the
computational step-size Ax to obtain high accuracy. Still the computational effort
remains negligible compared to an unsteady external-flow computation.

In a 2-DH approach the model is more complicated since it cannot be reduced to an
ordinary differential equation. The characteristic equation of the 2-DH Saint-Venant
equations in the x,y-plane can be written as

(u - vd)[(u - vd) - gall + $?)] =0

|

where u and v are depth-averaged flow velocities in x and y direction respectively.
For this equation the following characteristics are found

¢, =ulv

This system is hyperbolic (real ¢) if the external flow is subcritical. It is parabolic
if the flow is critical and elliptic if the flow is supercritical.

Considering the possibility of extending the presented 1-D model to a 2-DH
numerical model one must realize that the straightforward discretization and
solution of these 2-DH equations on a fine mesh involves the extremely costly
solution of an enormous matrix. Therefore it is more common to use the unsteady
flow equations and let the solution iteratively converge to the steady-state solution
(e.g., to model the bed topography in river bends, Olesen, 1987). In solving the
potential flow equations this approach has been used for decades, and various
‘relaxation’ methods have been proposed (e.g., see Abbott and Basco, 1989,
Hirsch, 1990). The number of iterations can be held under control, for instance
below the order of ten, by using an implicit numerical scheme and an ADI solution
algorithm. Nevertheless, considering that the maximum time step for computing
unsteady external flow is of the order of ten times smaller than that for internal
flow, the computational effort for the quasi-steady approach is of the same order of
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that for the fully unsteady approach. Furthermore, by increasing the mesh-size for
the unsteady external flow computation relative to the original grid, a proportional
increase of the time step can be achieved, with a loss of accuracy comparable to
that induced by the steady flow approach. Consequently a quasi-steady external
flow equation is not appropriate for a 2-DH approach.

6.5 Conventional artificial viscosity approach

In sub-section 6.2.1 it is shown that near a shock the truncation error of a second-
order scheme generates dispersive errors in the form of parasitic oscillations. These
high-frequency oscillations are indicated by a large mass flux error. When using
the MacCormack scheme these oscillations can be damped by using locally near the
shock some type of artificial viscosity. The most simple methods in this respect are
the conventional artificial viscosity methods, which are based on an explicitly
addition of diffusion terms (second-order derivatives) to the flux terms. Their
diffusion coefficient is often a non-linear function of the data multiplied with an
empirical coefficient which must be calibrated. In this way the discontinuity is
smeared (smoothing according to the amount of viscosity) and continuous flow is
hardly affected. An additional advantage of artificial viscosity is the possibility to
prevent the computation of non-physical solutions (which violate the entropy
condition) during shock capturing.

There are many specific forms of the artificial viscosity method, which was firstly
introduced by Von Neumann and Richtmeyer (1950) for the 1-D gas-flow
problems. As mentioned above these additional terms should simulate the effect of
physical viscosity on the scale of the mesh near discontinuities, but should be of the
order of the truncation error in continuous regions. In 2-DH flows a complete
artificial viscosity should be of order-2 tensor form yielding both normal and
tangential stresses. However, on a rectangular grid a more simple form can also be
used by discretizing

9(, U}, 9, dU (6.38)
ox\ ¥ ox ay\ 7 ady
where
v v 2 2
E SRS A L with px = ﬂ ;P = piﬁ-pz = M_A_t (6.39)
ol pr P Ax ¥ AxAy
x y

and v is a constant or a variable, as follows from the alternatives hereafter. In a 1-
D approach this term is identical to eq. (6.38) with d/dy eliminated.
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The first alternative to introduce the artificial viscosity is the generalized version of
the original method applied by Von Neumann and Richtmeyer (1950). The addition
of these terms to the MacCormack scheme corresponds to a modification of
numerical fluxes in such a way that the conservation property of the scheme is not
distorted. The dissipation terms are generally added both at the predictor and the
corrector level. The 1-D formulation becomes

37 n A n v n
U, -U"- A—;(Axf,.) At Q" (6”1,2 AU} 5,-71/2'VXU,-)
ﬁi =0y - %(in‘i) + ArQ; + —(‘5:‘11/2 AU, - 8] SPRAY ) (6.40)

Ut = %(ﬁi + 6;)

1

which corresponds to discretization of the system of equations

90U , 9f _ g+ 9 ax-59Y (6.41)
ot ox o ox

Here A, and V, are forward and backward difference operators respectively.

When adopting the generalized Von Neumann and Richtmeyer (1950) method we
add non-linear artificial viscosity only to the momentum equations. Function é* can
then be written for the momentum equation in x-direction as

(6.42)

v v
diap = 5 Sip =«
Tius formulanion can be t:dbuy exiended o 2-DH VlbLUbll_y and eventu _y it can be
generalized for application to other equations (e.g. continuity) as well. The
coefficient « is of the order of unity, and has to be adjusted empirically.

In generally for a steep front better results can be expected using the MacCormack
and Baldwin (1975) artificial viscosity. Originally they proposed to make &
proportional to a second derivative of the pressure field to enhance the effect of
dissipation in presence of strong pressure gradients and to reduce it in smooth flow
regions. In shallow water flow it is more convenient to replace the pressure by the
flow depth to account for strong depth gradients. The factor 8 then becomes

(bmax

a,

2
8a2

dx?

8" = aAx? (6.43)

where ¢, is the maximum celerity, which can be computed numericaily in the
following discretized form
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5,~v+1/2 = max(e;, €,,) 5;’_1,2 = max(e; , ai) (6.44)

with

- 2a,) ¢
& = (0 s - 265, + el (6.45)

n + 2 n + n
Ay i Gy T Ay

The adjustable constant « is usually set to 1/4 or, especially for this model, it can
be given a higher value which will be in the order of unity.

Again the approach can be extended easily to 2-DH cases. For instance
MacCormack-Baldwin viscosity has been used by Fennema and Chaudry (1990) to
compute 2-DH transient shallow-water flow. However, they added these terms only
after a predetermined number of time steps. Jameson et al. (1981) added to the
MacCormack-Baldwin dissipation a linear fourth-order dissipation which provides
background dissipation in smooth parts of the flow (damps high-frequency modes).
Since near a shock this fourth difference generates overshoots it is usually switched
of in its neighbourhood.

Neumann-Richtmyer as well as MacCormack-Baldwin viscosity were implemented
in our numerical model in the predictor (using variables from the preceding time
level) and in the corrector step (using the predictor variables). In algorithm 6.1 this
procedure is surmmarized.

Compute : Dy, = 5::7/2(AXU?> ; Dl - 51"’—’?/2(VXU?>
= At n Aty n .
Compute : AU, = —B[Axf?] + ArQ; + X;(DM,Z—D{’,W) (predictor)
oy

Compute : D,,,, = 6i+1/2(Ain> s Diyp = 5;'71/2(va1')

. _\V Atio 5 = At =
Compute : AU, = _E[V"fi] + A1Q, + A—x<DM/2— i1p)  (corrector)
Compute : U} = U7 + %[Aﬁi + Aﬁi]

Algorithm 6.1

MacCormack algorithm (repeat this cycle for 1=0,z,_ A7)

To illustrate the performance of these respective viscosities a comparison is given
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between an analytical and numerical solution of a self-similar partial lock-exchange
flow (with constant concentration, and without friction and entrainment). The
results are generalized by using the dimensionless coordinates { and @, as defined
in sub-section 7.2.1 (equations 7.1 and 7.2). Only the part downstream of the gate
is presented here.

............. Analytical
—— Numerical

0.101

52 \,\ m

,VVE

0.00 . . . . . . .
0.00 0.20 ¢ 0.40

Figure 6.4 Partial lock-exchange flow computed without any artificial viscosity
compared to its analytical self-similar solution.

In figure 6.4 the results are given for a computation without artificial viscosity.
Large oscillations are generated near the shock, which are often affecting the
stability unfavourably, Still the front celerity is

curately resolved as a

........... 18 accurale!

consequence of the conservative property of the scheme.

Now the computation is repeated using Neumann and Richtmyer’s artificial
viscosity to the momentum equation. The results of this computation with «=0.5
and «=1.5 are presented in figure 6.5 and 6.6 respectively. They show that
oscillations are significantly damped but not fully eliminated. A further increase of
o does not significantly ameliorate the results. The results also show that the
expansion wave near {=0 is more accurately approximated. The latter evolves
from the expected convergence to entropy-satisfying weak solutions.

It was found that the best performing conventional artificial viscosity method for
our model is the MacCormack and Baldwin method. The computed results for the
particular example presented here, are plotted in figure 6.7 and 6.8. It was
necessary to replace ¢,,, in equation (6.45) by unity to limit the value of o while
retaining sufficient viscosity especially near the gravity-current front. Viscosity is
now added to all the basic equations, while allowing for attunement of each of the
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............. Analytical
——— Numerical

0.10;

(o)
(3]

0.00 , . . , . —
0.00 0.20 ¢ 0.40

Figure 6.5 Partial lock-exchange flow computed with Neumann and Richtmyer’s
viscosity with «=0.5.

............. Analytical
—— Numerical
0.10;
a, o
0.00 : : - - ' ‘ '
0.00 0.20 ¢ 040

Figure 6.6 Partial lock-exchange flow computed with Neumann and Richtmyer’s
viscosity with «=1.5.

viscosity terms by using different o values for each equation (i.e. «, for
momentum, o, for continuity, «; for suspended sediment, and «, for morphology).
In the example above o, =«,=0.25 and a;=0c,=1.0 are used respectively. Clearly
the amplitude of the oscillations near the front can be reduced satisfactory by
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~~~~~~~~~~~~ Analytical
—— Numerical

0.101
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0.00 : . . . . . LY
0.00 0.20 4 0.40

Figure 6.7 Partial lock-exchange flow computed with MacCormack and Baldwin
viscosity with ae=0.25.

............ Analytical
—— Numerical

0.101

&

0.00 . : . . \

0.00 0.20 C’ 0.40

Figure 6.8 Partial lock-exchange flow computed with MacCormack and Baldwin
viscosity with «=1.0.

-increasing «. Small differences in the height of the constant part of the solution is
due to a slight difference in initial conditions in numerical and analytical solutions

and is not due to a systematic error (e.g., in these numerical computations g0,
lower depth #0).
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o.=0.5 ------------ Analytical
! : —— Numerical
1.0
a2
0.0 , : 3 : .
-0.6 0.2 0.2 C 0.6

Figure 6.9  Self-similar full lock-exchange flow computed with MacCormack and
Baldwin’s viscosity with o, =, =0.5.

«.=1.5 ------------ Analytical
! : ~—— Numerical
1.0
a2
0.0 , . ; ‘ :
-0.6 -0.2 02 s 0.6

Figure 6.10 Self-similar full lock-exchange flow computed with MacCormack and
Baldwin’s viscosity with a,=a,=1.5.

The primary disadvantage of the presented conventional artificial viscosity methods
is the necessity to calibrate w«-coefficients for each application. A most striking
example of this aspect can be obtained from the computation of a full lock-
exchange flow instead of a low discharge partial lock-exchange flow. In figures 6.9
and 6.10 an example is given of a full lock-exchange flow in dimensionless
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coordinates using the proposed form of MacCormack and Baldwin’s viscosity with

=0.5 and o,=wa,=1.5 respectively. For comparison the exact analytical
solutlon is added to these plots. The results show that «=0.5, which is sufficient
for partial lock-exchange flows, does not provide enough dissipation here. The
numerical solution does not approximate correctly the exact solution for instance
due to erraneous behaviour near {=0 near t=0. Although this problem is partially
fixed by increasing « to a value of 1.5 the results show that the rarefaction region
in the surface front (on the left) is mistaken. Most likely this effect is caused by the
Courant-number (o=¢,,,"At/Ax) dependence of the strain exerted by the viscosity
(section 6.9), and the dependence of the viscosity on the underflow depth a,
through equation (6.45). By carrying out some more experiments on this typical
case, it is was found that the contribution of the viscosity term in the continuity
equation is dominant. For instance taking «,=0 in both computations does not
significantly worsen the resuits, but by taking «,=0 the difference between
numerical and analytical results increases drastically. Clearly Neumann &
Richtmyer’s viscosity performs very poor in this example as it only acts on
momentum.

Besides the mobile-bed case the full lock-exchange flow is a rather severe test
problem which has somewhat tempered our enthusiasm on the conventional
artificial viscosity methods. Later, in section 6.9 is shown that by increasing the
time step, close to the stability range, the amount of viscosity can be reduced and
sometimes eliminated as wiggles disappear. It is also shown that the amount of
viscosity reduces the stability limit of the model (again related on the computational
time step). A careless choice of viscosity coefficients may therefore lead to
instabilities by amplification of the wiggles instead of damping. Although the
conventional artificial-viscosity approach can be extended simply to 2-DH models,

ite ‘!‘36"""’"}’ and calibration rpqnqgments are prmudlglal In the fg]]g\xnnc cection
an alternative artificial viscosity approach is presented which makes the
computations TVD and gets rid of major disadvantages of conventional viscosity

methods.

6.6 TVD artificial viscosity approach

As conventional artificial viscosity methods cannot satisfactory eliminate the
oscillatory behaviour near discontinuities, and as they require calibration, it is
-worthwhile to search for a more robust method. In sub-section 6.2.4 it is shown
that for this purpose, especially for 1-D flows, the more advanced TVD (Total
Variation Diminishing) approach can be applied. It actually prevents the occurrence
of oscillations instead of damping them afterwards. In this section is shown how
artificial viscosity terms are defined which make the MacCormack scheme TVD.
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The elaboration of the underlying theory is presented in appendix B.

It has been shown that the numerical generation of oscillations is due to the second-
order approximation, as first-order approximations are free of wiggles. It can be
shown that the second-order effect can be attributed to the slope of the state
variables or fluxes in each cell (e.g. Hirsch, 1990). If this slope exceeds the
difference of adjacent mean values oscillations are generated. By keeping these
gradients within their proper bounds it is possible to prevent the creation of new
local extremes which makes the method TVD (see sub-section 6.2.4). The control
of gradients in the solution can be accomplished by means of flux limiters.

The TVD concept is originally based on scalar equations, but can be extended to
non-linear systems by using a type of local linearization. For linear systems the
compatibility equations form a set of scalar equations. The flux limiter can then be
applied to each of these decoupled scalar problems. This is shown later in this
section.

Having a linearized problem, we can start with reformulating MacCormack’s
scheme as the Lax-Wendroff scheme. The second order Lax-Wendroff numerical
flux (equation 6.2) can be written as an first-order upwind flux plus a correction,
using the flux splitting method (equation 6.3, decompose fluxes and Jacobians into
their positive and negative parts):

* + - 1 At + + 1 At - ~

£, =% +f.,+ =|1-—A, n|Af, — =|1+—A,1n|A T,

i+1/2 i 1 2( Ag 1/2) xlivi2 2( A 1/2) Licip (6.46)
upwind flux correction

By applying the flux limiter method, the magnitude of the correction term is
limited dependent on the data. Hence, with a limiter function ¢ applied to positive
and negative components respectively, the numerical flux becomes:

g TvD At (6.47)

+ = 1 + At + + 1 _ - -
RYIEEE VL PR E‘D (I_EAHIIZ)AxfiH/Z - 5‘1) (1+EAi+1/2)Axfi+l/2

In smooth regions the limiter function & has to be close to unity to preserve
second-order accuracy, while near discontinuities ¢ should be near zero to utilize
the dissipation of the first-order scheme. Consequently the order of the scheme is
reduced near discontinuities. The difference between the original Lax-Wendroff
numerical flux and the limited flux can now be considered as an ’intelligent’
artificial viscosity term (to be added to the original flux)

«TVD *
fip = fiap - Dm/z (6.48)

where
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1 + At + + 1 _ At _ -
Diip = 5(1 - )(1 _X;Ai+1/2)Axfi+1/2 - 5(1 -0 )(1 +EAM/2) Afp (649

As stated before this result can be extended for MacCormack’s scheme for the non-
linear system, if a local linearization is applied, for instance in the neighbourhood
of each cell interface x;,,,. A very simple and popular way to achieve this is to use
Roe’s (1981) characteristic decomposition of the fluxes obtained from Roe’s
approximate Riemann solver (e.g., see also Hirsch, 1990 and Le Veque, 1990). In
appendix B is shown how Roe’s decomposition is defined, and how fluxes for our
model are decomposed. Essentially the linear-wave decomposition is used which is
the exact linear solution to Riemann problems. Any variation in U can be expressed
as a sum of simple wave contributions as follows

m

AU =Y (A 0, (6.50)
k1
where m = number of characteristic eigenvalues (celerities)
I, = right-eigenvector of the linearized Jacobian A, associated
to celerity ¢,
Wy = Riemann variable or characteristic variable associated to

celerity ¢,

The vector of characteristic variables for the linear case is defined by

o = R—IU (651)

where R is a matrix which columns are the right eigenvectors r, (k=1.m) of 4. In
terms of these characteristic variables the system of equations can be written as a
set of compatibility equations
96 A 96 _ (6.52)
ot e)

where A, is the diagonal matrix of eigenvalues. Flux limiters can now be applied to
each of these decoupled scalar equations.

The higher-order correction of Lax-Wendroff’s fluxes can also be written in terms
of these scalar equations using the proposed eigenvector expansion to these fluxes:

. At . TN A+ + At 5+ A
(1-@ )(1-3,4 )Axf* = Zd)k(l—d)k)(l—ﬂd)k)(Axmk)rk (6.53)

k=1
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_ At , . N - - At ;- .,
-(1-@ )(1+A—xA )Axt“ =y —¢k(l—®k>(1+—A;¢k)(Axwk)rk (6.54)

k=1

Here ¢* and ¢ denote positive and negative characteristic celerities respectively,
and Aw, = w,;,, - &, All quantities with circumflex (") are obtained from the
linearized Jacobian given in appendix B. Note that a flux limiter is now defined for
each decoupled wave contribution individually.

As these equations indicate a full characteristic analysis must be performed on the
linearized Jacobian A,,,,. For reasons of conservation, consistency and
hyperbolicity Roe proposed three properties of A which have to satisfied. Generally
this requires a special square root type of averaging on primitive variables, but for
our model the averaging can be linear (see appendix B). This can be traced back to
the different choice of basic equations in u,a-form (System UA), as opposed to
more classical applications which usually use equations in g,a-form (System QA).
The convective terms in the momentum equations for these two forms are different
as the latter introduces a division of conservative variables (g/a) in the Jacobian.
Roe’s linearization applied to this division results in the mentioned square-root
averaging.

In the decomposed artificial viscosity terms the flux limiters can now be defined.
Generally TVD conditions are expressed as a function of ratios of consecutive
variations of fluxes or variables. Therefore limiters should also be defined as
function of these ratios (Hirsch, 1990). For the presented model two types of ratios
# can be defined for each wave contribution associated to celerity k (k=1,m)

" At »
d)(l——d))Axw
: [6[1- 4 2fol ) A, .

Rl Y (ST e

k.1 (Axwk)iq/zj . k2

6M/z = > Yiap

( "w")i»l/z
i+1/2

where j = sign(&k) to assure that 6 is the ratio of slopes in upwind direction; v’ is
a small number (e.g. 1-10®) to prevent division by zero. The most simple ratio '
is usually applied in literamure (e.g., Le Veque 1990, Garcfa-Navarro et al. 1992),
and only accounts for differences in amplitudes of Riemann variables. An
alternative is given by ratio 6*? which considers the amplitude of the correction part
in the Lax-Wendroff flux (equation 6.46). A third alternative might be the
multiplication of the associated eigenvectors with the numerator and denominator of
either of these two types of ratios, but this option is not further studied. We
experienced that for most computations the ratio 6%? is superior to 6*' when
computing gravity-current shocks.
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There are different flux-limiter functions available in literature. One of the
additional demands following from the application of these limiters to the Lax-
Wendroff flux is symmetry (Hirsch, 1990). All limiters are non-linear functions of
the slope ratio and satisfy the following condition

0< —~ <2 and D(0) <2 (6.56)

Some of the popular limiters which are incorporated in the numerical model are
summarized in appendix B, and can also be found in Hirsch (1990) and Le Veque
(1990). The most important limiters from these are the 'minmod’ function, the
smooth limiter function by van Leer (1974), and the ’superbee’ limiter of Roe
(1985). While the superbee limiter is slightly overcompressive which makes
gradients steeper, the minmod and van Leer limiters are slightly diffusive making
gradients smoother. Choosing either one of these limiters must be based on
experience or numerical experiments since there are no additional guidelines.

In the non-linear case Roe’s decomposition is only applied to determine the
artificial viscosity term, which is added to the MacCormack fluxes at each time
step. Summarizing the theory above the viscosity term is computed at the begin of
each time for each cell interface x;.,, by

Dl = 33 (- @O b (1- 20 | By b 65D

k=1

and implemented in the algorithm as given by the algorithm 6.2.

Compute : D.,,(TVD) - %Z B,(60,)} |6 (1-_|¢k|) (8,0, F
k=1
v,
Compute : AU, = —XE[A fJ + AtQ]  (predictor)
Compute : Aﬁi [V f] + Atﬁi {corrector)
Ax

Compute : U} = U7 + 2[AT, + AT + 2—;(D,."+1,2—D,."_ )

Algorithm 6.2 TVD MacCormack algorithm (repeat this cycle for t=0,z, -Af)

sbend

In the mobile bed routine the addition of this type of viscosity increases the
computational effort drastically as the eigenvectors and characteristic variables are
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large terms, although it is worth it. Therefore, unlike algorithm 6.1 for
conventional artificial viscosity, we have knowingly chosen not to repeat the
computation of the TVD viscosity before the correction step. The model appeared
to work sufficiently well in this way. In appendix B is shown that for a fixed bed
routine with constant concentration the amount of work can be reduced
significantly.

One of the disadvantages of Roe’s linearization is the incapacity of computing
rarefaction waves. Therefore the proposed TVD method might yield entropy
violating shocks. This problem can be overcome by using an entropy fix as
proposed in literature (e.g., Hirsch 1990, Le Veque, 1990). Although relevant
numerical experiments revealed that it is rarely encountered, and even then it is
often solved by choosing a different limiter or a different slope ratio as defined in
eq.(6.55), we have implemented such an entropy fix in the model. In appendix B
the chosen method as proposed by Harten and Hyman (1983) is presented.

—— Numerical
0.10-
a, |
0.00 — O T
0.00 0.20 4 040

Figure 6.11 Partial lock-exhange flow computed with TVD scheme with superbee
limiter, compared to its analytical self-similar solution.

To illustrate the performance of the TVD scheme the two examples for a self-
similar partial and full lock-exchange flow from the previous section are
recomputed here. Figure 6.11 shows that the solution for the partial lock-exchange
is oscillation free as expected, and the rarefaction-wave region is reproduced
accurately. For this case the superbee limiter appeared to give the best fit to the
analytical profile, although the results of other limiters are hardly a match for it.
The computations of a full lock-exchange flow in figure 6.12 give even stronger
evidence for the superiority of TVD artificial viscosity over the conventional
artificial viscosity methods. In the previous section it was shown (figures 6.9 and
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Figure 6.12 Self-similar full lock-exchange flow computed with TVD scheme
using van Leer’s limiter and 6.

6.10) that, even with a large diffusion coefficient, the results did not fully converge
to the exact (discontinuous) solution. By using the TVD method this convergence
problem is eliminated, which greatly improves the accuracy and stability of the
model. In figure 6.12 results are given obtained with van Leer’s limiter and 62
Excellent results are also found if the minmod limiter is used, giving a little more
viscosity near the front. However, slightly less appropriate is the superbee limiter
since it does not provide sufficient smearing. A detail of this computation for these
three limiters is illustrated in figure 6.13.

0.5
—
\
0.4 4 \“““\_. .
S~ 034
a2
0.2 4
—— minmod
- superbee
014 .. van Leer
O T
02 04 4 0.6

Figure 6.13 Comparison of three TVD limiters applied to a lock-exchange flow.
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Not using an entropy fix for this lock-exchange flow appeared to cause failure near
¢=0 due to the development of a small entropy violating shock (more specific: an
expansion with transcritical point). The application of the TVD method presented
in this section is not restricted to our model. It can be applied to various shallow-
water type equations, for instance to fixed-bed open-channel flow as studied by
Garcia-Navarro et al. (1992). In the following chapter results are shown with
respect to mobile bed cases and turbid underflows.

Total Variation Diminishing artificial viscosity increases the accuracy and stability
of the model on a local level, but it is not sufficient to guarantee them globally.
Much more important for the total performance of the model is the boundary-value
treatment. This is the topic of the next section.

6.7 Boundary conditions

6.7.1 Type of boundary conditions and well posedness

An essential part of the numerical model is the treatment of boundary conditions
(further abbreviated as b.c.). Its effects are often underestimated, resulting in
unrealistic or unstable results. Every type of numerical model (1-D or 2-DH) used
to compute shallow-water problems has to deal with its boundaries since a
numerical grid is always bounded. The hyperbolic propagation property of these
equations causes the information from the boundaries to eventually cover the full
computational area, overriding the initial boundary values.

Using the method of characteristics it has been shown in chapter 3 that the number
of physical b.c., which have to be imposed at a certain boundary, corresponds to
the number of characteristics entering through it. On the other hand the remaining
outgoing characteristics also affect these boundaries. Here the number of
characteristics (ingoing and outgoing) exactly corresponds to the number of
dependent variables. Imposed boundary conditions may have different appearances
dependent on physical considerations: they may be values of dependent variables or
combinations of them (dirichlet type), or they may be gradients of certain variables
(Neumann type).

Although we are quite free in taking any type of b.c. (of physical origin) there is
an important limitation: the problem should be well posed such that full
information on the ingoing and outgoing characteristics can be recovered from the
imposed conditions, leading to a bounded solution. In numerical practice this means
that at least all the values of dependent variables at the boundary can be computed
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from a combination of imposed b.c. and the information coming from the interior
along the outgoing characteristics as will be shown hereafter (e.g., see Hirsch,
1990). This must be achieved in a way consistent with the physical properties of
the flow, and compatible with the discretized equations.

The types of b.c. that are appropriate and general applicable to the 1-D internal
flow model are summarized in table 6.1, where Ag,(?) = ¢""' - ¢", and ¢,
(k=1,4) are the characteristic celerities at these boundaries. Positive celerities enter
the domain through the inflow boundary, and leave through the outflow boundary,
negative celerities do the opposite.

Fixed bed Mobile bed
Inflow Subcritical (¢,>0, ¢,<0) (¢1,93,9,>0, ¢,<0)
Agy(1) Agy(1), AC(1), Az, (1)
Supercritical (¢,,90,>0) (¢1,02,8,>0, ¢;<0)
' AQZ(I) ) AaZ(I) A‘h(t) ) AaZ(t)v AC_\(t)
Outflow Subcritical ($,>0, $,<0) (¢1,93,0,>0, ¢, <0)
(e.g. dam) Aay(t) or Ag,(r) Aa,(f) or Ag,(1)
Supercritical (¢,9,>0) (1,62,8,>0, $:<0)
- Az(D)

Table 6.1  Boundary conditions for the internal-flow model.
In figure 6.14 an example is given of the theory with a x,r-diagram for an

internaily subcriiical fixed-bed flow.

inflow outflow

I
——X

Figure 6.14 Boundary conditions for a subcritical underflow on a fixed bed.
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For the chosen set of b.c, it can be shown that the numerical approach is well
posed by looking at the characteristics of the linearized homogeneous problem. In
the previous section on TVD methods the flux transport through cell boundaries is
split in simple-wave components which are transported along characteristics in a
decoupled way. These results can also be used to decouple the information from
the boundaries entering the domain, and the information from the interior leaving
the domain. Consider the model where b.c. are perturbations AU around the local
boundary values U". The perturbations can now be decomposed in characteristic
variables or simple-wave components as shown in appendix B:

U™l =U"+ AU ;A& = R"'AU (6.58)

Here R is the inverse of the eigenvector matrix with constant coefficients equal to
their value on the boundary (with U"). Each characteristic variable w, is transported
along a characteristic ¢,, and is known in advance. In table 6.1 the number of
dependent variables given at the boundary corresponds to the number of incoming
characteristics. Then the remaining variables are the numerical b.c., which can be
defined from the part of system (6.58) for outgoing characteristics if the problem is
well posed. For the mobile bed model the decomposition (6.58) is given in
appendix B, yielding
Moy = JulQ T ¥nBa * ¥uAG T vAg (6 sg)
(¢1 "¢2) <¢1 h ¢3)

Aw. = —YIZAQ B Y22Aa2 B YBZACS B Y4Azb for d) (6 60)
> .
: (D1~ Py)(0, = by)

Ao - Y13AQ + 'y23Aa2 + Y33AC5 + Y4Azb for d) (661)
3 (b, &3) (0, - &) ’

Aw, = AC, for ¢, (6.62)

where v, are coefficients computed from U" (see appendix B). Here AQ can be
written in terms of ¢, and a, as

n n n
ag, \a —a2>

n a2
(aa;)

a

n n
a, a,

AQ = Aa (6.63)

2

Using those relations associated to outgoing characteristics, together with the given
physical b.c., a system of equations is obtained which must be solvable for the
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numerical b.c. For instance in table 6.1 the physical b.c. for a subcritical outflow
may be given by Ag,, while along the outgoing characteristics equations (6.59),
(6.61) and (6.62) hold. It can now be shown easily that, in combination with
equation (6.63) and after substitution of the value of Ag,, a system of 3 linear
equations has to solved to find the numerical b.c. Aa,, AC, and Az,. Elaboration of
these results for this case, as well as for the other mobile-bed cases in table 6.1
shows that the numerical b.c. can always be solved. With these b.c. the model is
well posed.

In a fixed-bed model the number of equations in system (6.58) reduces to two and
is also given in appendix B (by replacing A, by A in equation B.35). Since both
relations for the characteristic variables (for ¢, and ¢,) contain Ag, and Aa,, it
makes no difference which of them is chosen as a physical b.c. The other one can
always be recovered from these relations, and the model is always well posed.

Some alternatives to the b.c. from table 6.1 can be defined for the dam boundary.
The outflow from the reservoir is determined by the structure: a combination of
turbines, spillways and bottom outlets can be used to manage the reservoir level
and eventually to control sedimentary processes. For these structures head-
discharge relations can be defined and implemented in the model. Most important
for venting out the turbid underflows are the bottom outlets. A type of
hydraulically short underflow gate with free outflow is given in figure 6.15 for the
external flow boundary.

f
S

Figure 6.15 Bottom outlet with free outflow (schematic).

The following head-discharge relation expresses its outflow if the u/(2g) upstream
is small (e.g. Chow, 1959):
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Q, = B, u, 4,284y, 05 < p, < 0.6 (6.64)

where a, is the depth of the gate, B, its width, Q, its discharge, and g, a discharge
coefficient. The coefficient u, depends on many factors, such as the size, entrance
geometry, slope, etc. Sometimes the bottom-outlet is a hydraulically long tunnel,
which acts as a culvert. It may flow full as a pipe flow and sediment clogging is
possible (see section 1.3). Still the head-discharge (6.64) relation can be used with
adapted p, to compute the external flow, and subsequently the internal flow. Note
that for a quasi-steady approach also holds (at both boundaries) that dg/dx=0.

When the turbid underflow reaches the dam it is sucked in by the bottom outlet.
The effect of the increased gravity on the head-discharge relation is small (order of
o'-C,), hence equation (6.64) still applies for the external flow computation. The
underflow discharge at this point now has an upper limit equal to Q, since it is
unlikely that clear water is flowing back through the outlet into the reservoir.
Therefore in a subcritical outflow condition the flow b.c. should be chosen as ¢, =
Q,/B,, in a supercritical state it suffices to verify that ¢, <Q//B,.

For morphological b.c. it is possible to impose the bed-load gradient ds,/dx ()
instead of the bed-level variation. Using the discretized form of the mass-balance
equations (section 6.4) it can be shown that this gradient can be reformulated in
terms of Ag,, proving its equivalence to imposing the bed level directly. This
option is less relevant for turbidity currents as they are dominated by suspended-
sediment.

Besides these alternatives, many others can be formulated as combinations of b.c.
from table 6.1 (eventually by using the discretized basic equations). An additional
check to the well-posedness of the system can be carried out be analyzing the
energy growth of the system. In a well posed problem energy remains bounded,
which can be verified theoretically after reformulating the compatibility equations
to an energy equation. For more details we refer to Vreugdenhil (1994).

During the model development of the model we have restricted ourselves to b.c.
from this table, and applied them to attune the boundary treatment. In the following

sub-section is shown how the b.c., satisfying the well-posedness condition, have to
be formulated and have to be adjusted to the interior flow model.

6.7.2 Discretization of boundary conditions

Application of MacCormack’s space-centred scheme to the interior flow field
requires a special treatment at the boundary points (j=0, j=m) whereas values
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outside the domain (j=-1, j=m+1) are unknown. It is shown before that by giving
the correct number of physical b.c. the remaining (numerical) boundary values
should be defined from the information from the interior, transported along
outgoing characteristics. Various alternatives can be formulated to determine
numerical b.c. ranging from simple extrapolation to one-sided differences or
adoption of imaginary points outside the domain, so called *ghost’ points. A review
on this subject and the associated theory can for instance be found in Hirsch (1990)
and Vreugdenhil (1989, 1994). Although most of the alternatives perform well with
smooth flows, our experience showed that their behaviour during passage and
reflection of strong shocks is a most critical constraint.

The importance of choosing the best method is obvious with respect to global
accuracy and stability of the model. In the previous section it is shown that
information as well as discretization errors from b.c. are transported into the
interior due to the hyperbolicity of the model. This effect will eventually cover the
full computational domain, and determines the solution to the difference equation.
An erraneous boundary treatment may cause undesirable reflections of outgoing
waves, or creates a source which emanates wiggles which may grow and lead to
numerical instability. Basically the boundary discretization must be consistent and
in harmony with the physical and numerical problem (e.g., stable, conservative and
no under- or overspecification with respect to well posedness). Additionally it must
provide sufficient accuracy to maintain the global order of accuracy of the complete
model. As a rule of thumb Gustafsson’s (1975) theorem proves that, for linear
equations, the boundary scheme can be one order lower than the interior scheme.
For MacCormack’s method it may therefore be a first-order scheme.

P —P

r AU0= b.c. F AU = b.c.
_I\i At n n :I\_]-
AU - 3= (1180 + . AR

Predictor Corrector

‘Figure 6.16 MacCormack’s scheme near an inflow boundary (x,¢ diagram).

The implementation of boundary conditions is relatively simple as MacCormack’s
method is composed of forward and backward (one-sided) differences in predictor
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and corrector step respectively. In figure 6.16 is illustrated how predicted and
corrected values are computed near the inflow boundary. Values with superscript P
are prescribed boundary values, while those with superscript N are the numerical
boundary values which have to be determined. In the predictor step the numerical
boundary values follow directly from the forward difference, but in the corrector
step an extrapolation is required. At the outflow boundary the opposite situation
occurs. The various alternatives for extrapolation are discussed briefly hereafter. A
comprehensive discussion of some extrapolation methods applicable to this
approach is given for instance by Hirsch (1990).

The most simple approach to find the numerical boundary values in figure 6.16 in
the corrector step is a simple linear (first-order) variable extrapolation in space.
Firstly compute all the corrected values in the interior, secondly compute unknown
boundary values using a Taylor-series based extrapolation (e.g., see Roache, 1972,
Hirsch, 1990):

Uyt = 2.0 - U or AT - 2-AT, - AT, (6:65)

Similarly a predictor solution for numerical boundary values at the downstream
boundary can be defined by means of a space extrapolation of predicted values
from the interior:

U =2:UY, -UY, or AUY=2-AUY, - aUY, (666

Numerical experiments showed that this approach worked well for our model, but
during passage of shocks a large overshoot (or undershoot) occurs which results in
a strong reflection and sometimes a break down of the computations. Higher-order
(non-linear) space extrapolations do not noticeably improve the approach.
Nevertheless for a majority of the experiments the (first-order) method seemed to
be sufficiently stable and accurate.

To improve these results we attempted to extend this simple variable extrapolation
to a characteristic extrapolation method. Recalling that the numerical boundary
values are determined by the information (simple-wave components) carried along
outgoing characteristics it is possible to decompose them into characteristic
variables after linearization. In the previous sub-section a simple-wave component
Aw, is formulated for each characteristic ¢, as function of physical variables (eq.’s
6.59 10 6.63). It has been shown that if those relations associated to outgoing
waves in combination with the impose b.c. is solvable, the problem is well posed.
If we consider the example of figure 6.16 with a subcritical inflow we have one
equation (6.60) (after rewriting AQ in terms of Ag, and Ag,) for the outgoing
characteristic Aw, and three imposed boundary values Ag,”, ACS, and Az,”:
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where

— . - — . o (6.68)
Ag, = 2-Aq)(0) - Ag,(0) ; AC,(0) = 2-ACS©) - AC(0) etc.

Coefficients +; are defined in appendix B and are obtained from the flow state
U"(0). The solution for a,(0) can now be obtained from this equation using
extrapolation of Aw, for instance by

ﬁ; ©) = 2'ﬁ2(1) - ﬁ2(2) or ﬁ;’ 0) = Aw,0) (6.69)

A similar result can be written for the outflow boundary. Note that the system is
linearized around the values at the previous time level (1) but these can be replaced
by values from the predictor level. For more details on this elaboration see for
instance Hirsch (1990). Again the performance of the method is studied
experimentally. For continuous flows the behaviour is comparable to the previously
presented variable extrapolation method, but with rapid flow changes notably at
shocks the approach is failing. Again over- and undershoots occur and near critical
flow (Froude numbers near unity) the method often converges to the wrong
solution. The overall performance to our model is slightly worse than a simple
variable extrapolation.

Seme methods which are more comprehensive can be based on first-order one-
sided differences of the basic equations at the boundary. Most natural with respect
to the example of figure 6.16 is replacing the backward difference in the corrector
step by a forward difference to obtain the corrector boundary value. However, this
is incorrect since the final boundary scheme is unstable. This can easily be shown
by applying a Neumann stability analysis to a forward difference of simple
frictionless 1-D shallow water equations with convection and pressure included
(e.g. section 6.9). For this elementary model, which is essentially similar in
behaviour as our model, the following stability criterion must hold for all celerities
¢
At

At
— <0 or uryga)— <0 (6.70)
¢1,2 Ax ( Vg )Ax

Clearly this condition is satisfied for the negative celerity (with # < /{ga} ), but
never for the positive celerity.
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The correct procedure in this case is to split the system into its compatibility
equations which express the upwind propagation of simple waves along the
characteristics. Such a decomposition of the model has been presented in appendix
B (section B.1). The equations corresponding to outgoing characteristics are
discretized using the forward (or backward) difference, which is then a correct
upwind scheme. As a matter of fact the characteristic extrapolation method
presented before is an equivalent (simplified) formulation of this approach, and the
computational performance is therefore comparable. Again the computation of
strong shocks and near critical flow (when characteristics change sign and other
compatibility equations become operative) is insufficient. Theoretically the use of
compatibility equations for this model is dissuaded as the equations are non-
conservative and require a strong linearization which makes the discretization
inconsistent with the internal model. A significant effort is required to ameliorate
the behaviour round discontinuities. Note that if the TVD artificial viscosity
method is used in the computation (section 6.6) the characteristic decomposition of
the model is already implemented.

So far the presented methods are operative but lack robustness with respect to
computing discontinuities. Various alternatives were defined to improve the
boundary treatment. For instance: higher-order variable extrapolation methods to
include more points from the interior, using Roe’s (1981) first-order upwind
scheme at the boundary (using the information available from the TVD algorithm),
upwind differencing of compatibility equations rewritten in terms of U instead of
w, iterative solution of Riemann invariants along outgoing characteristics, etc.
However, most of them were rejected quickly as their performance did not justify
the effort if compared to simple first-order variable extrapolation methods.

—_P —
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Figure 6.17 MacCormack’s scheme using ghost points near an inflow boundary
(x,t diagram).

Robustness of the computations could only be obtained using additional points
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outside the region such that MacCormack’s scheme can be used including the
boundary. Numerical values at these ’ghost’ points (j=-1 upstream, and j=m+1
downstream) are obtained from linear extrapolation from the boundary and the
interior (according to eq.’s 6.65 and 6.66) or a zero-order extrapolation (U,=U).
Every time that new values at the boundary are computed (as well as in the
predictor as in the corrector step) they are corrected according to the specified
boundary conditions. Ghost-point values can also be adjusted at each level to newly
computed interior values. In figure 6.17 this procedure is illustrated for the inflow
boundary similarly to figure 6.16. With the proposed extrapolation the resulting
boundary scheme is at least first-order accurate, hence global accuracy remains
second-order. The solution near the boundary is free of wiggles and undesirable
reflections of strong shocks are significantly reduced. These good resuits came up
to the expectation as the boundary discretization is fully consistent with the interior
scheme, which is stable and accurate. In this way the boundary treatment is
composed of three steps, to be applied at both the predictor and the corrector level:

1. Extrapolate boundary values to ghost points (linearly: U* = 2-U," - U/").
Compute predictor or corrector values (algorithm 6.1 or 6.2) of the interior
flow field, and include in this computation the boundary points.

3. If necessary then rewrite the computed boundary values according to the
prescribed b.c.

With respect to step 3 it has been shown in the previous sub-section that different
boundary conditions have to be prescribed depending on the flow type, i.e.,
internally sub- or supercritical flow. Since the flow type at the boundary may
change during a computation a detector routine is added to the model. A well
functioning approach was found to be a check of near-boundary internal Froude
numbers computed from the preceding computational level. At the predictor step
we compute Froude numbers from the preceding time-level; at the corrector step
we compute them from the predictor level. Changes in flow type at the boundary
usually occur rapidly by the passage of shocks, which were located in the first
mesh cell next to the boundary at the previous time level. To conduct the shock
through the boundary it is necessary to check the densimetric Froude numbers of
the mesh point on either side of the boundary cell for the choice of b.c. It is found
that this can be achieved by taken a subcritical inflow b.c. only if

Frl(j=0) + Fri{j=0) <1 or Fr}(j=1) + Fri j=1) < 1 (6.71)
and a subcritical outflow b.c. only if

2. 2. 2. 2. (6.72)
Frp(j=m) + Frp(j=m) < 1 and Frp(j=m+1) + Frp(j=m+1) < 1

on a computational mesh with m+1 gridpoints in x-direction (x=j-Ax, j=0 to m).
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If the conditions above are not satistied then an internally supercritical b.c. is
chosen. The type of b.c. is taken from table 6.1.

Experimental results show that the numerical computation is stable and accurate for
various types of underflows. Although this conclusion is entirely empirical, it can
be supported by theoretical consideration. For instance tools to prove stability of
the computation with the chosen boundary discretization can be obtained by using
an energy method or an normal mode analysis (as described by Vreugdenhil,
1994). The latter can be considered as an (complicated) extension of Von
Neumann’s stability analysis (section 6.9) to non-harmonic normal modes generated
at the boundaries.

Reviewing these results it has been shown that the boundary treatment imposes
severe demands to the numerical model, especially when dealing with shocks. With
respect to well posedness of the model the type of b.c. is best taken from table 6.1,
while sufficient stability and accuracy can be obtained if ghost points are used in
combination with a Froude number check. In the following section the boundary
treatment is completed by considering the initial state which may be considered as
a special type of boundary.

6.8 Initial conditions

The solution of the hyperbolic system has been shown to be determined by the
information carried along the characteristics starting from an initial state and from
the boundaries. For the time integration the initial state can therefore be considered
as an additional boundary which determines the final solution of the model. In case
of a Riemann problem it can be shown easily that the evolution of the solution into
multiple shocks is mainly dependent on the initial (single) discontinuity prescribed.
Only in very long runs the effect of (erroneous) initial conditions is overridden by
the effect of boundaries and of external forces.

The fully coupled unsteady internal-flow model requires prescription of values of
all dependent variables at each grid point. In fact, for every computational step, all
previously computed variables can be considered as the initial condition. The
choice of an appropriate initial condition must be made from physical
considerations. At least we are looking for the state which evolves into the physical
one we are interested in.

As an example we computed two comparable cases of an underflow over a

forward-facing step with height Az, = 1 m (frictionless flow over a fixed bed with
a fixed concentration C;=0.005). The first starts with a constant depth @, = 2.2 m,
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Figure 6.18 Density current over a forward facing step with two-different initial
states: left a,=constant, right #,=a,+z,=constant.

the second with a constant level A, = 2.2 m. In both cases a constant ¢, = 0.5
m?/s is used such that in the constant depth case the initial flow is internally
subcritical, while in the constant level case the flow is internally subcritical on the
left but supercritical on the right. The results show, figure 6.18, that (after 500 s)
these initial Riemann problems are significant different, which can be directly
traced to the initial state. For instance the flow type (internally sub- or
supercritical) on both sides of the step remains unchanged, and the resulting
underflow velocities u, in the affected regions are larger in the constant level case.

Although this example illustrates the relevance of choosing a correct initial
condition it is not a physically realistic initial state as it cannot occur in laboratory
or field. A more appropriate state is a steady underflow with a prescribed bed-
level, or a 'zero’-flow depth can be taken as initial condition. The interface profile
of a steady underflow can be obtained by means of (numerical) integration of the
system of basic equation with 8/d¢ terms equal to zero. Therefore it is necessary to
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prescribe an initial bed profile, and sufficient boundary conditions on the upper and
lower boundary. When shocks (e.g. internal hydraulic jumps) are present in the
steady underflow it is often more convenient to run the unsteady model with an
arbitrary initial state (with correct b.c. and a fixed bed) until it converges to the
steady solution. From that point the actual computations can commence. It should
be remarked that this is sometimes a time-consuming procedure as it may take a
long period to establish a steady profile. For example the previously described
example (fig. 6.18) with a constant initial depth needs at least two hours (physical
time) to stabilize (with a constant level this is even worse). In figure 6.19 the
computed steady state for this example is plotted, which shows that the final state is
far from the initial condition. A faster convergence can be achieved by choosing an
initial condition closer to the final steady state.
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Figure 6.19 Steady state for a dense underflow on a forward step.

The choice of a ’zero’ underflow depth as initial state is usually the best alternative
when computing the development of a turbidity current into a reservoir. More
specifically this state consists of a very small uniform underflow layer with a
prescribed bed profile, considering the necessity of a finite depth along the full
section to use a shock-capturing technique. Depths a, and concentrations C; of this
layer are much smaller than those of the expected turbidity current, and its
discharge is preferably taken in such a way that the densimetric Froude numbers
along the section remain below unity. It is an essential requirement that this layer is
much smaller than the following turbidity current front (generated by the b.c and
running over the layer) to prevent significant violation of the ’dry’-bed front
relation. Most of the calculations during this research are carried out using this
approach.

Figure 6.20 gives an example of a front running over such a small layer together

with a summary of the properties of this particular initial state. To preserve this
state in the undisturbed region (before passage of the front) conditional statements
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Figure 6.20 Example of an initial state with ’zero’ underflow depth.

are added to the model which force the flow to maintain its initial properties.
Without these statements there can be a small but noticeable increase of depth and
discharges travelling rapidly ahead of the gravity-current front, changing the
initially internal subcritical flow into an internal supercritical one. Through this
effect the gravity-current front can be significantly flattened and accelerated, again
distorting the robustness of the model. A simple solution lies in the fact that any
discontinuity always travels slower than the largest celerity. The CFL-condition
(section 6.9), which applies to this model, states that the information on this
characteristic may not travel over more than one space step Ax during one time
step Az. Clearly also a gravity-current front moves over a distance which is less
than Ax, and regions outside this range remain undisturbed. A conditional statement
then follows from the values of the previous time level. Values on the new time

level are undisturbed if the former flow situation one step Ax upstream (and
downstream) is also undisturhed, e g,

- n 0 n 0 n+1 0
if {a2,,-_1 =a, and a,,,, = a2} then a,; =a, (6.73)

In order to fully eliminate the non-physical propagation phenomena ahead of the
front a second condition must be satisfied:
0 0 0
Gy 2 @70y 5 Gy, 2 0,09, 5 Cppzo00C (6.74)

otherwise the flow is assumed undisturbed and equal to the initial state. Here o is
a coefficient slightly larger than unity (e.g o; = 1.01). This condition does not only
settle with small disturbances on the initial state, but also guarantees positivity of
all computed values. In this way automatically the stability of the model is
improved since the occurrence of negative variables causes a break down of the
computations. Coefficient o;; must be chosen as close to unity as possible, but large

enough to preserve the initial state. An intermediate check during the computations
is recommended.
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Although the small-layer initial condition is most practical, there are other initial
conditions possible determined by the physical state. For instance a lock-exchange
flow (full or partial) requires a finite underflow depth on one side, and a ’zero’-
depth on the other side of the gate. Even a wider range of general initial Riemann
problems can be defined as the initial state is composed of two (or more) different
states separated by a discontinuity. Note that every initial state yields different
computational results, disregarding the influence of boundaries and wave damping
by friction. As an extension of the conclusions of the previous section, it can
therefore be concluded that the accuracy and stability of the solution is for a
significant part determined by the correct treatment of the initial condition. Of
course the treatment is only correct if the condition selected from those presented
in this section reproduces the expected physical state. If an incorrect initial
condition is deliberately prescribed, it is for instance necessary to run the model
until the influence of these data is sufficiently reduced (check it) before the actual
calculations may commence.

So far it has been concluded that the accuracy and stability of the computational
results are greatly determined by the treatment of boundary and initial conditions.
However, for this conclusion assumptions are used considering the accuracy and
stability of the numerical scheme applied to our model. In the next section a short
treatment of this subject is given.

6.9 Stability and accuracy

Using finite difference techniques to solve the original system of differential
equations only an approximative solution can be obtained. Therefore, to ensure
some level of accuracy, the numerical results must converge to the exact ones as
close as possible. This can be achieved by satisfying certain concepts of numerical
analysis in order to control and minimize the errors. In this section the application
of a few of the most relevant methods and their results for our model are
discussed, which can be used for a qualitative analysis of computations and a
reliable operation of the model. The error is assessed by examination of the local
truncation error, as well as by examination of exact and numerical wave-like
solutions of a simple advection equation in terms of Fourier series.

Assuming that the problem is well posed (e.g., satisfies existence, uniqueness) the
numerical approach can be examined for instance on consistency, convergence,
global errors, truncations errors, and stability. Qualitatively and quantitatively this
can be carried out by comparing the original (exact) and the discretized equations
and by comparing their respective solutions. For this, various approaches are
available for both the linearized and non-linearized system. A first good indication
of the behaviour of errors can be obtained for instance from the local truncation
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error of the discretized equations. This is usually the first classical step in
analyzing the model and provides valuable information as will be shown hereafter.

The local truncation error is obtained by substituting the exact solution into the
finite difference equations (e.g. Hirsch 1990, Vreugdenhil, 1989). By expanding all
terms of each (non-linear) difference equation into Taylor series relative to a
central point i, the modified equation is obtained. The difference between the
original differential equations and the modified equations is the local truncation
error E(x,7). It is the error in the equation, not in the solution although there is an
analogy. Note that the numerical method is shown to be consistent if

fIE,(x,t) |dx ~ 0 as Ax,At - 0 (6.75)

For MacCormack’s scheme applied to the model without source terms the
truncation error is found to be of second order in Ax and Ar. This can be seen by
expanding the local truncation error for our model. After assuming a deep reservoir
(®=u,) and neglecting entrainment, the truncation error for the momentum
equation can be summarized after some effort in the following form

E - -1ap
2

i

3
AN c, (. .C? ) _1 Clul + o, CAON o o),
ox3 ox? dx 3 ox? ox

3 } (6.76)
P 0,80, PO } - hout

C1p2 80 %Amx

2 ox3

ox x? ox?

Here C, and w,=w/(a,T,") are associated to the source terms in momentum and
concentration equation respectively. Dots in parentheses denote terms which are
combinations of dependent variables, while higher-order terms (h.o.t) are terms of
the order three and higher in Ax and Arz. A similar truncation error can be written
for the other equations as well. Note that this result proves that the method is
consistent since E; disappears for vanishing step size. Without the source terms
(e.g., Cp=w,=0) the truncation error only contains second-order terms with Ax2,
Ar?, Ax-At or higher order. The third-order derivatives to x appearing in these
terms cause dispersion which have been shown to cause wiggles near
discontinuities. The dispersion coefficients depend on flow and step-size as
expected. On the other hand, if source terms are not discarded, lower-order
derivatives to x appear in the truncation error causing more dispersion (odd-order
derivative) and diffusion (even-order derivative). This combination may cause a
distortion of the solution. However, the coefficients of these terms are proportional
to C, and w,, which are usually quite small so that the generated error is limited.

The truncation error does not provide direct information on the error in the
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solution, i.e. the discretization error. Whether the solution is accurate can be
evaluated experimentally by computing the solution with different step sizes, or
analytically by studying harmonic wave propagation with linearized equations.
Although the latter can give a good indication of the discretization error, as will be
shown later in this section, it does not provide information on the accuracy of non-
linear cases with discontinuities relevant to our case. Therefore we checked the
accuracy experimentally after various numerical test. For smooth flows the error is
only a fraction of the result and therefore sufficiently accurate. When computing a
front the error is usually increased by the extrapolation of concentrations near the
jump (section 6.10), hence it is not due to the numerical scheme. This may cause
relative errors of a few percent in amplitudes and propagation speeds, but usually
these errors remain within acceptable bounds. In all cases the total mass of the
system remains conserved according to the in and outflow of mass through the
boundaries. Mass-conservation is of fundamental importance for the model and
leakage or accretion of mass would lead to high inaccuracy.

Of course stability of the numerical scheme must be guaranteed for accuracy and
convergence of the computation. Since MacCormack’s scheme is an explicit
numerical scheme stability criteria impose time-step limitations. Generally these
criteria are obtained using a von Neumann analysis on the linearized differential
equations for which MacCormack’s scheme corresponds to Lax-Wendroff’s
scheme. For Lax-Wendroff’s scheme without artificial viscosity this theory is well
elaborated in literature, e.g. Lax & Wendroff (1960,1964), Hirsch (1990),
Finlayson (1992). In the following an extension is given for the model with
artificial viscosity. Although the approach can be applied to the full system it
usually suffices to consider only a scalar-type linear advection equation for the
exact solution and a linear convection-diffusion equation for the numerical solution
with artificial viscosity. The problem, excluding source terms, is defined as
du Fu

ou .
= 4+ d,— - Ax-d8"— =0 ,0) = u,-explikx (6.77)
py ¢, F™ I u(x,0) = u,-exp(ikx)

where ¢, is the wave celerity and &’ is the artificial viscosity coefficient as defined
in section 6.5 and taken as a constant here. Changes of a single general Fourier
component are considered (initial oscillation) since any wave-like solution can be
composed by linear superposition of these terms. Here we define -k-x = -k jAx
= 2mx/L = j£ (0<{ <7) where k is the wave number for a wave with length L.

The amplification factor of MacCormack’s scheme applied to eq. (6.71) becomes
R =1 - (0%+Ay[1-cos(®)] + %Afv[cos(za ~dcos(E) +3] +

(6.78)
- io{sin(g) . %XN[sin(ZE)—Zsin(E)}}
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where

At At At
= Aty - A2t ; Ay = 28V (6.79)
° Ax¢° Ax!(bmax| N Ax

Here A, is a viscosity parameter and ¢ is the Courant number, which is for general
models (systems of advection equations) usually determined with the largest
eigenvalue of the system (¢,,). Every time step the numerical solution is
multiplied with this complex factor. To illustrate the result we plotted R in the
complex plane in figure 6.21 with 0=0.6 with and without viscosity term. If \¥=0
the diagram is elliptical, and if A¥>0 it is deformed and egg-shaped.
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Figure 6.21 Amplification factor (R) and stability region (|R|{<1) of

MacCormack’s schieine i a compiex piane.

Since amplification causes instability (the exact solution does not suffer
amplification or attenuation) the stability criterium is |R| < 1. From figure 6.21
and equation (6.78) follows that for the wave with the largest amplification factor
(i.e., £ = m) this leads to

0<os<yAy-Ay+1 or Osos<l if A,=0 (6.80)

This corresponds greatly to the CFL condition (Courant et al., 1928) which can
also be viewed as the demand that the characteristics must fall within the
computational triangle, or that for the computation of a point at level n+1 the
domain of dependence on the previously level n must fall within the computational
stencil of the scheme (e.g. Vreugdenhil, 1989). It is important to notice that by
using artificial viscosity the Courant number limit is lowered instead of increased
(e.g., Ay = 0.2 then ¢ < 0.9). In smooth areas with very small viscosities this is
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hardly noticeable, but it becomes pronounced near discontinuities. Later in this
chapter we will show how this effect is reflected in the accuracy of the solution.

A similar result can be found if a linearized friction term fr,u is added to the basic
equation (6.77) instead of the viscosity term. Here fr, is for instance defined as
Cp(Uy/ay) which is usually a small factor. By approximation (small fr,) the CFL
condition can be written as

0< o< (froA)* - 12(froALf + 16fr A1 -8
4[(froA )’ - d(froAty + 4 fr AL 2]

or O0<o<l if fr,=0 (6.81)

Only with large source terms or large time steps this condition becomes
significantly restrictive, but this is generally not the case.

In smooth flows the presented CFL conditions are sufficient for stability as
linearization is justified. However, this is not necessarily true in discontinuous
flows where non-linear instability can become important. This type of instability
can for instance be triggered by the wiggles near the front or by the non-linear
source terms in the basic equations, but a theoretical prove can only be given for
simple cases (such as scalar problems, Le Veque 1990). A major part of this
instability is automatically taken care of by the addition of artificial viscosity and
notably the TVD type which ensures total-variation stability (section 6.6). Another
part, that from the source terms and notably from friction, can be considered as
one of the drawbacks of the explicit formulation. The appearance of lower-order
derivatives in the truncation error and the limitation to the CFL condition already
warn for difficulties. For instance Huang and Song (1985) showed for flood waves
in a river that a bottom-friction term in an explicit model imposes a severe
limitation to the maximum time step. For an underflow in a deep reservoir this
limitation can be approximated by

”l + 2Fr0 - 1 (6.82)

At < a
2 CpuyFr,

Fortunately a check of this condition for a wide range of possible underflows
revealed that this condition is far less restrictive than the presented CFL conditions.
Therefore an implicit treatment of the friction term to relax this condition is not
required. Also numerical experiments did not indicate any problems. It should be
noted that the friction term can also be responsible for physical non-linear
instabilities such as roll waves (Sloff, 1993), but these cannot be simulated
correctly with the presented model and are therefore irrelevant. Other sources of
instability such as those generated by boundary scheme and initial condition are
already discussed and removed in the previous sections.
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When pushing the previous Fourier analyses somewhat further it is possible to get
more information on accuracy for initial value problems by looking at differences
in exact and numerical (wave-like) solutions (Vreugdenhil, 1989). The exact
(convection) and numerical (convection-diffusion) solutions for equation (6.77)
become respectively

ulx,t) = uyexplik(x-dot)] ;  u(x;t,.,) = uo|R|"explikx +niy] (6.83)

where 1, = nAt, x; = j-Ax and ¥ = arg(R), all based on equation (6.78). To
compare the performance of the numerical to the exact solution two parameters can
be defined (e.g. Vreugdenhil, 1989, Finlayson, 1992). The ratio of amplitudes can
be defined as a damping factor which approaches unity for increasing accuracy:

d = IR| (6.84)

The ratio of phase angles can be defined as a relative (dimensionless) velocity of
propagation or a relative phase error, also approaching unity for increasing
accuracy:

6 - ¥ _ ¥ _ -y'm (6.85)

" kAxo 23 2o

Here m is the number of grid points per wave length, for which the lowest values
of m correspond to the shortest waves in the system. In figure 6.22 plots are given
to illustrate the effect of the Courant number (o) on the damping factor. In this
figure the damping error is greatest at the low m-values, with a maximum error
(without artificial viscosity) if the Courant number satisfies

G = % /2 (6.86)
The error gradually decreases for lower or higher values of ¢. Damping errors

fully disappear for ¢ = 1 and ¢ = 0, as the method then exactly integrates along
the characteristic ¢ = ¢, (e.g. Finlayson, 1992).

In figure 6.23 the effect of artificial viscosity (8") is added to illustrate the effect on
the damping factor. These plots verify that all modes are damped depending on the
magnitude of 8”. The right-hand side of figure 6.23 shows that, if ¢ is increased
(here ¢ = 0.9) and the stability criterium is approached, an increase in viscosity
yields a decrease of damping at the shortest waves. This may eventually lead to
instability when the damping factor exceeds unity, appearing as oscillations on the
grid scale (wave length 2-Ax).

In the same way plots are given of relative velocities of propagation in figure 6.24.
Again the errors (i.e., differences from unity) are greatest for the shortest waves.
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Figure 6.22 Amplitude factor as function of points per wave length (m) for various
low (left) and high Courant numbers (right).
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Figure 6.23 Amplitude factor as function of points per wave length for various
viscosity coefficients (both low and high values of o).

The relative velocity of propagation for Courant numbers ¢ < 1/2+/2 lies mostly

below unity, which indicates a dominating lagging phase error (numerical waves
lag compared to analytical waves). This effect tends to accumulate the high-
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Figure 6.24 Relative velocity of propagation as function of points per wave length

for various Courant numbers (left) and various viscosities (right).

frequency errors generated at a discontinuity, and causes the wiggles. For Courant
numbers ¢ > 1/24/2 (and §'=0) the relative velocity of propagation is much closer
to unity or just above it, resulting in just a small leading phase error. Fortunately
the damping factor imposes a stronger damping on the shortest waves than on long
waves, preventing a total collapse of the wiggles.

The effect of artificial viscosity on the phase error is illustrated in the right part of
figure 6.24. Comparing the left plot (sensitivity to o) and the right plot it can be
seen that an increase of viscosity 8" has an equivalent effect to the phase error as an
increase of the Courant number ¢. To prevent an increase of wiggle production
compensation of this phase error must follow from an increase of damping at these
high modes, but figures 6.22 and 6.23 show that this is not a trivial fact for high
viscosities.

To conclude this analysis it can be assumed that with respect to the accuracy of the
numerical scheme the time step should be chosen that the expected Courant number
is as close to unity as possible to minimize the damping and phase errors.
Furthermore to avoid large errors in relevant physical waves (e.g. internal waves)
it is necessary to choose the spatial step Ax significantly smaller than their wave
length, e.g. m > 5 to 10. To illustrate and verify these conclusions we have
computed a density current entering a deep reservoir without friction, entrainment
and deposition. The inflow conditions are: ¢, = 1 m?/s, a, = | m and C, = 0.01.
In figure 6.25 the effect of the Courant number is illustrated for a numerical
computation with Ax = 1 m after 50 s. Time step At = 0.2 yields near the shock o
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Figure 6.25 Accuracy of a density current front computed without artificial
viscosity, with varying time step and Ax = 1 m.

= 0.56, Ar = 0.7 yields ¢ = 0.97, and Ar = 0.8 yields ¢ = 1.1. On the left is
clearly shown how phase errors, generating wiggles, disappear as ¢ = 1 is

approached. On the right is shown that violation of the CFL condition generates
instabilities of the shortest waves on the grid.

For the previous case the computations are also carried out with MacCormack and
Baldwin’s (1975) artificial viscosity as presented in section 6.5. The viscosity
coefficient in this method is scaled using the adjustable coefficient « (eq. 6.45).

At=05s Ar=02s
.0 3.0
3 a=(1)'8?) a=(3).88
------- a=1. --=—=- o =0.
z [m] v g=153 | 2 [m]
2.0

2.0 /

1.0

0 20 x [m] 40 0 20 X [m] 40

Figure 6.26 Accuracy of a density current front computed with artificial viscosity,
with varying time step and with Ax = | m.

For the Ar = 0.5 s (6 = 0.7) the effect of an increasing viscosity (increasing o)
results in a suppression of the wiggles, until @« = 1.53 when the equation breaks
down as predicted by the adapted CFL condition (6.80). This condition also proves
that for a lower Courant number a higher viscosity coefficient is allowed, which is
shown in the second plot in figure 6.26 for Ar = 0.2 (¢ = 0.56). However, at

these lower Courant values the wiggles are more pronounced, so that the net effect
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is not more significant then for high Courant numbers.

Although these results are derived for the simple linear advection equation it can be
shown that they are similar to results from a more complete analysis of the full
turbidity-current model. For the 1-D baroclinic flow model on a mobile bed it is
shown in section 6.6 that the solution can be decomposed into four characteristic
waves advected with their corresponding celerity ¢,. The analyses above can
therefore be repeated for each of these waves, all having their own Courant
number ¢,. Since the celerities and Courant numbers of these waves usually differ
significantly in magnitude the different waves are subjected to different phase and
damping errors according to figures 6.22 and 6.23. Especially when dealing with
bed-morphology the Courant number related to bed-disturbances is very low (if Az
is chosen such that the fastest waves have a Courant value near unity). As an
example the numerical results for the bed-evolution of a backward-facing step due
to bed-load transport in a subcritical (Fr = 0.4) open-channel flow are presented
qualitatively in figure 6.27. Due to the low Courant-number of the bed-disturbances
(0, = 4-107) large phase errors yield large oscillations in z,, while the time-step is
adjusted to the largest celerity (o, =0.9). Likewise the computed results with
TVD artificial viscosity are added to this figure (using the Superbee limiter). Using
the TVD concept the amount of viscosity added to each characteristic wave
component is adjusted to the respective Courant number and can therefore fully
eliminate the wiggles.

— No viscos.
77777 TVD viscos.

Figure 6.27 Morphological computation of a backward-facing step in an open
channel with subcritical flow using MacCormack’s scheme.

These results prove that, especially in case of morphological computations with a
fully coupled model, the use of an adjusted (or self-adjusting) artificial viscosity
term is essential to obtain physically realistic results with a Lax-Wendroff type
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numerical scheme.

6.10 Shock tracking

Using MacCormack’s scheme with artificial viscosity, the intruding front of a
conservative density current (i.e., with a constant density) can be computed with
sufficient accuracy. However, when the current is not conservative, for instance
due to entrainment and settling, the approach is failing. This problem is caused by
the application of the shock-capturing technique to the concentration equation and
can only be solved by a correction of the solution near the front, or by using a
shock-fitting technique. In this section is shown how this failure arises, and how
the model can be fixed by tracking the shock.

04 variable concentration

0.3
Z [m]
02/

ol i 5 4 T ,
x [m]
Figure 6.28 Computation of turbidity current experiment TK1306 (Altinakar et al.,
1990) illustrating the large overshoot at the front if C, is variable.
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In figure 6.28 computed results are presented of a turbidity current developing on a
slope in a laboratory flume (experiment TK 1306) as reported by Altinakar et al.
(1990). In this figure a comparison between results computed with a fixed
concentration (Cfx] = C,[0]) and a variable concentration (Galappatti’s equation)
clearly shows how the latter is characterized by a large overshoot near the front.
While the front with variable concentration is running over the small low-density
layer, the concentration requires a certain length to adapt to the new situation. The
system responds to the low density by a significant overshoot of the underflow
depth and a decrease of front speed. This phenomenon is not to be mistaken with
the increased head height observable in nature, as this is purely a computational
matter. The strong gradients and rapid flow variations at the front do repudiate the
use of Galappatti’s model which is only valid in relatively smooth flows. Instead
another approach must be applied which extends the information about density into
the front without sensing the low concentration ahead of the front. For instance in
the constant concentration case in figure 6.2 the front maintains it original density
irrespective of the downstream conditions, and therefore its height and celerity are
greatly preserved. The correct average front speed u, measured by Altinakar et al.
(1990), which was 0.047 m/s, lies exactly between the variable concentration result
(4, = 0.027 m/s) and the fixed concentration result (4, = 0.057 m/s).

To solve the overshoot problem an upwind extrapolation of concentrations is used
to replace Galappatti’s equation locally at the front. The exact location of the front
must be known, for instance by tracking it during the computation. Defining a
slope parameter

5. = Rt~ %in (6.87)
fi

@i
the front is located in the section where this parameter exceeds a certain value >
(e.g., 9;; > 2), indicating the large gradient associated with the shock. Note that
wiggles do not affect 6,; by considering a section of 2-Ax. Furthermore, in any
numerical approach the front is slightly smeared such that we are dealing with a
front section rather than a point.

After the front section is traced the most important part of this procedure is the
determination of its concentrations. Different approaches are examined and finally a
choice is made for a very simple upwind zeroth-order extrapolation of the upstream
concentration into the front section:

>0 (6.88)

i o

where 6, is the value of the slope parameter above which the flow is assumed

discontinuous. The algorithm now computes concentrations starting from the
upstream boundary until the front section is reached. From that location the
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concentration is extrapolated down to the downstream boundary. Other approaches
such as upwind discretization and solution of concentration terms or higher-order
extrapolation methods appeared to be unsuccessful and resulted in inaccurate
solutions. Also from a physical and mathematical point of view the zeroth-order
extrapolation is most meaningful. In section 4.2 we already showed how the frontal
region is characterized by increased turbulence opposing settlement of sediment
particles. Consequently, while neglecting the effect of entrainment locally on the
shock, it is justified to assume that the density in the front section equals that of the
gravity current just upstream. In a mathematical context, when Ax and A¢ vanish
and the front section reduces to a point, this is indeed the only correct shock
solution. The concentration at this point is only determined by upstream conditions
since Galappatti’s equation always has a positive characteristic.

In figure 6.29 the new shock-tracking algorithm is applied to recompute the
previously described experiment. The computed front speed (¢, = 0.049 m/s) now
corresponds very well to the measured speed (4, = 0.047 m/s). Accuracy of the
results is very good and the overshoot is fully eliminated.

0.2

Z [m]

"0 ' 2

x [m]
Figure 6.29 Computation with shock-tracking of turbidity current experiment
TK1306 (Altinakar et al., 1990).

It is also recommendable to use the shock-tracking approach if dilution by
entrainment is considered into an otherwise conservative gravity current. Here the
downstream depth has a concentration equal to the inflow, which (due to adaptation
as mixing occurs over a certain distance) results in overestimated concentrations in
the front region. This is illustrated in figure 6.30 for the TK1306 experiment, now
without sediment deposition. Clearly the front is flattened and moves too fast.
Applying the shock-tracking technique to this example correct results are obtained
as presented in figure 6.31.
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Figure 6.30 Erraneous results of a conservative density current with entrainment
(based on the data for run TK1306).
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Figure 6.31 Computation using shock-tracking of a conservative density current
with entrainment (based on the data for run TK1306).

This technique yields results which are practically equivalent to those computed
with shock-fitting techniques. However, it is a very simple approach and sometimes
it is necessary to adjust the critical slope parameter 6, for accuracy. With respect
to accuracy it must be remarked that a small decrease in the front speed is found if
the positivity coefficient «; in equation 6.74, necessary to preserve the small
downstream layer, is varied while using the shock-tracking approach. This is
clearly not occurring when fixed-concentration and conservative entraining gravity
currents are computed.

192




6.10 Conclusions

In this chapter a 1-D numerical model is presented to simulate gravity currents
intruding into a reservoir. It is designed to compute the two-layer flow including its
discontinuities, notably gravity-current fronts, and to achieve this in a robust and
accurate way. Therefore a choice is made for an appropriate finite difference
scheme, after a literature survey of various methods with shock-capturing abilities
which have been developed during the last decades. From these methods
MacCormack’s (1969) space-centred approach is chosen for its accuracy in smooth
flows, and its robustness and simplicity in dealing with discontinuous flows.

MacCormack’s method is explicit and consists of a predictor and corrector step,
such that it is a special form of the classical Lax-Wendroff (1960, 1964) scheme.
For a good performance it is advisable to cycle between forward and backward
differences which compose the two steps of MacCormack’s method. The
discretization is applied to the baroclinic (internal) flow and sediment equations.
Also source terms are discretized explicitly. The barotropic (external) flow
equations are decoupled and solved in a quasi-steady manner without significantly
affecting the accuracy. This means that they are computed as a steady-flow profile
at each baroclinic time step using a standard fourth-order Runga Kutta integration
method. For 1-D flows the quasi-steady approach is efficient, but it is shown that
in 2-DH flows it is better to solve the full unsteady barotropic flow equations with
a smaller time step than baroclinic flow.

As a consequence of the second-order accuracy of MacCormack’s scheme
dispersion errors are generated near discontinuities, resulting in oscillations or
wiggles. Since these wiggles can result in strongly distorted solutions without any
physical relevance it is necessary to add artificial viscosity to the numerical method
in order to damp them out or fully eliminate them. Therefore two different types of
artificial viscosity are implemented in the model. The first type is the conventional
artificial viscosity which is based on an explicit addition of diffusion terms to the
flux terms. Unfortunately these terms contain empirical coefficients which require
calibration and diminish the robustness of the model. It is shown that wiggles
cannot satisfactory be eliminated, especially in mobile-bed cases. To get round
these disadvantages the second, more advanced, type of viscosity is implemented in
the model. This total variation diminishing (TVD) viscosity prevents the occurrence
of wiggles rather than damping them out afterwards and can therefore effectively
eliminate all oscillations. Its definition is based on flux limiters which suppress
automatically that part of the numerical flux which generates the oscillations. For
our non-linear model a linearization and characteristic decomposition introduced by
Roe (1981) is used. Experience showed that the flux-limiters must be based on
ratios of flux differences rather than on ratios of variable differences (as in
literature). When using the TVD viscosity method an entropy fix must be added to
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enable a correct computation of rarefaction waves with a transcritical flow point.
Clearly the results are superior to those computed with conventional viscosity, and
more than counterbalancing the increase in computational effort.

Due to its importance for accuracy and stability of the model the type and
discretization of boundary conditions (b.c.) is given special attention. The
requirement of well posedness of the problem (based on in- and outgoing
characteristics) is used to define the required number and possible types of physical
b.c. on in- and outflow boundaries (table 6.1). The remaining numerical boundary
conditions (variables not given by the physical b.c.) have to be computed explicitly
from the interior flow field. To accomplish this, different alternative discretizations
are studied ranging from variable extrapolation to backward differences applied to
compatibility equations. Experiments revealed that when shocks pass through or
reflect against the boundary the most robust approach is the introduction of
additional (’ghost’) points outside the computational domain. Boundary values are
solved with the interior scheme in a consistent and accurate way. Additionally to
conduct the shock through the boundary a Froude number check is implemented
which enables an automatic choice of correct boundary conditions.

Initial conditions also have a significant affect on the computed gravity current,
especially in the developing stage. From the different proposed initial states the
"zero’ underflow depth is most appropriate for computing the gravity current
development. Here the front runs over a small initial layer (with internally
subcritical flow) which preserves its shape in undisturbed regions by means of a
conditional statement, and simultaneously acts as a lower limit for flow variables to
preserve their positivity.

To gain morc insight in the numerical errors inherent in the chosen approach, the
local truncation error as well as an extended von Neumann analysis are used.
These results indicate that a distorting effect is due to source terms (e.g., friction)
but it remains acceptable since these terms are usually small. By comparing exact
and numerical results it is shown that damping errors increase for shorter waves,
with a high dependence on the Courant number ¢ (no damping at 0=0 and o=1).
Introducing artificial viscosity to the model increases the damping, but at high
values of o excessive viscosity may lead to amplification of the shortest waves
resulting in instability. Phase errors in convected waves (dispersion errors) become
more pronounced at low Courant numbers. The associated wiggles can therefore be
controlled by using high ¢ values (large Af). In computations with significant
differences in characteristic speeds (e.g., in a mobile bed case) wiggles always
occur when artificial viscosity is not adopted to the associated Courant numbers.
Again this pleas for the use of the TVD artificial viscosity which automatically
adjusts its value to the appropriate celerities.

In case of a non-conservative gravity current, e.g., with interfacial mixing and
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settling of sediment particles, a correction near the front is required to compensate
the adaptation effect. Due to this effect the concentration cannot instantaneously
adjust to the new flow state appearing directly after passage of the front, which can
result in a non-physical overshoot. This problem is repaired by using a shock-
tracking approach in which the front is tracked and in which its density is replaced
by values extrapolated from the current just upstream of the front. The front is
detected on basis of gradients for which an additional empirical coefficient is
introduced.

By applying the proposed algorithms, considering the presented limitations, the
model can be used to simulate a wide range of gravity-current events. Its merits are
the possibility of dealing with discontinuous underflows in reservoirs with finite
depths and the robustness and simplicity of the chosen approach. By means of some
examples and verifications this is illustrated in the following chapter.
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Chapter 7

Test cases

7.1 Introduction

The proposed two-layer model can be considered as a blend of conventional
approaches and state-of-the-art techniques. For instance the use of the proposed
shock-capturing techniques and the application of Galappatti’s approach (section
2.3) has not been shown yet. To test and verify the chosen approach it is essential
to compare the calculations with real physical data, or with exact analytical
solutions. Therefore, especially during the development of the numerical model, a
large number of numerical experiments were carried out. Often these tests resulted
in a revision of the code which finally led to a reasonably general research model.
Some comparisons between numerical and analytical similarity solutions have been
given in chapter 6. They motivated us to adopt the TVD artificial viscosity
approach through which the numerical solution appeared to correspond excellently
with the analytical solution (see the examples in section 6.6).

In this chapter some test cases are presented based on data-sets from laboratory and
field studies reported in literature. With the help of these examples we will try to
summarize the possibilities and limitations of the model as we encountered during
these and various other tests. It should be emphasized that the primary difficulty in
this study was the lack of appropriate and detailed data on turbidity currents in
reservoirs. This forced us to introduce schematizations which may look rigorous,
but certainly do not devaluate the model. They merely provoke new topics for
further research.

7.2 Laboratory experiments of turbidity currents in Minnesota

Laboratory experiments in a flume in St. Anthony Falls Hydraulic Laboratory,
University of Minnesota, were carried out by Garcia (1989, 1990, 1993). The
measurements of these steady turbidity currents and saline underflows with
relatively low densities have been shown to be quite useful for the derivation of our
model in chapter 2. Experiments were conducted in a sloping flume, as well as in
the flume schematized in figure 7,1. The latter facility consists of an inclined bed
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(4.6°) and a horizontal bed with a width of 0.3 m and a total length of 11.6 m.
The dense fluid (either salt or sediment) was prepared in a mixing tank and
released through a submerged sluice gate into the flume. During the experiment the
water level was maintained constant, while at the end of the horizontal section the
dense fluid dropped into a damping tank such that this downstream end acted as a
submerged overfall.

U mixture

VL damping
0 2 4 6 8 10 12 tank
x [m]
Figure 7.1 Experimental setup for Garcia’s (1990) laboratory study.

For the verification of the computational model we have simulated several of
Garcia’s experiments. For the saline currents we found that a fair amount of
friction is needed, i.e., C,=0.01 and C,,;=0.002 to calibrate depths and velocities.
In figure 7.2 velocity profiles for experiment SAL11 at two locations are plotted.
These are computed with the semi-empirical relations from section 2.4.

x=4m x=10m
0.2, 0.2 } -
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0+ — o —.’,’f;.} ! —'—""/r’ . i
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u [cm/s] u [cm/s]

Figure 7.2 Measured (crosses) and computed (lines) velocity profiles for a saline
underflow experiment SAL11, internal super- and subcritical flow.

In this experiment a saline mixture with a density p,=1013 kg/m? is discharged
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with a rate ¢,(0)=0.0033 m?/s under the sluice with initial depth of 3 cm. In the
resulting equilibrium situation (after about 10 min.) it can be shown that on the
sloping floor the flow is internal supercritical, while in the horizontal floor the flow
becomes internal subcritical. Fitting the relations for the vertical structure as
presented in section 2.4 (only for velocity since the salt distribution is not
equivalent to a sediment distribution), we found from the profiles at x=4 m that
a,=8.5 cm, u,=9.2 cm/s, and at x=8 m that a,=18 cm, u,=5.5 cm/s (while
Garcia, 1990, 1993, reported a,=6.4 cm, u,=11.8 cm/s and a,=15.1 cm, u,=5.9
cm/s respectively, obtained from the slab approximation in sub-section 2.4.5). The
calculations of this experiment are conducted with Ax=0.12 m, Ar=0.6 s using the
minmod (TVD) limiter. Computed depths after 20 minutes (equilibrium state) are
plotted in figure 7.3.

= e computed from profiles
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Figure 7.3 Computed and measured depths for experiment SAL11 (salt water).

In this figure measured interface values are defined as the level where the velocity
becomes zero. To obtain these results the entrainment rate computed with the
Parker et al. (1987) relation is reduced with 30% to obtain a reasonable agreement
between measured and computed depths and velocities. On the sloping floor
(internal supercritical flow) the depths and velocities correspond to those reported
by Garcia (1993), e.g., at x=4 m we computed @,=6.8 cm and u,=11 cm/s with a
density of p,~1005.6 kg/m3. This is consistent with the model equations. Near the
transition to the horizontal bed an internal hydraulic jump is found. Although this
jump is computed as a shock it can be seen from the figure that on the
experimental scale the jump extends over a section of 2 to 3 m. Again an excellent
agreement between computed and measured depths and velocities exists
downstream of the jump (at x=8 m we computed a,=18 c¢m and u,=5 cm/s with a
density of p, = 1004.8 kg/m?).

The computation of these saline currents confirmed that friction and entrainment
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are the primary calibration parameters. For this problem the effect of interfacial
friction can be superimposed on bed friction since u, is small compared to «, (e.g.,
taking C,=0.012 and C,;=0 does not change the result significantly). This is in
agreement with physical considerations in sub-section 2.4.3 where it was shown
that near the ’zero-velocity’ interface turbulent shear stresses become negligible.
These results also apply for the turbidity-current experiments of Garcia.
Computations of these experiments showed that the flow can be fitted again on
basis of friction and entrainment. However, compared to the saline underflows the
computation of turbidity currents required a larger bottom friction. Various
phenomena can be responsible for this deviation, for instance the presence of bed
forms and bed-load transport as reported (in mobile bed conditions) by Garcia
(1990) and Garcia and Parker (1993). By means of the computation of experiment
DAPER?2 the results are illustrated.

In this experiment DAPER2 a sediment-fluid mixture with a concentration
C,=1.33-103 of silt particles with Ds,=9 um is discharged in the flume with a rate
q,(0)=0.0025 m?/s (with initial sluice depth of 3 cm). Again an equilibrium state is
established (after at least 20 minutes) with an internal hydraulic jump comparable
to experiment SAL11. Nevertheless, here the jump seems to extend over a longer
distance. Fits of velocity and concentration profiles in sub- and supercritical
sections (using the semi-empirical relations from section 2.4) are given in fig. 7.4.

0.2 1 0.2
E Subcr. E
N AN &N
0.1+ \ . 0.1
Supcr.
0 T T | T I T T [ T O
0O 2 4 6 8 10 4
u [cm/s] c-107[-]

Figure 7.4 Computed (lines) and measured velocity and concentration profiles
(symbols) of turbidity-current experiment DAPER?2.

The calculations of this experiment are conducted with Ax=0.12 m, Ar=0.6 s
using the minmod (TVD) limiter. Computed depths after 20 minutes (equilibrium
state) are plotted in figure 7.5. Here measured interface values correspond again to
levels of zero velocity. For these computations friction coefficient were taken
Cp,=0.02 and C,;=0 without reduction of the Parker et al. (1987) entrainment
relation. Again, with only minor changes to the solution, part of this large bed
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Computed and measured depths for experiment DAPER?2 (turbidity).

friction can be transferred to interfacial friction (e.g., C,=0.015, C,=0.005). The

proposed combination of friction and entrainment was necessary to obtain a good
fit with the measured flow conditions.
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Figure 7.6 Computed and measured velocities of experiment DAPER2.
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Figure 7.7 Computed and measured concentrations of experiment DAPER2.

Computed velocities and concentrations are given in figures 7.6 and 7.7. With
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smaller friction coefficients (e.g., those of the SAL11 computation) the velocities in
the turbidity current are highly overrated. Alternative combinations with better
results are not precluded.

The decrease of concentration along the flume is primarily due to entrainment. The
small sediment particles in this experiment remain in suspension, hence the current
is practically conservative within the length of the flume. Deposition is insignificant
as was already noticed by Garcia (1990, 1993). Furthermore some small variations
in depth, velocity and concentration can be found if the underflow is computed in
an infinitely deep reservoir. In general a very deep reservoir results in faster
propagation speed of the front, higher concentrations, and lower depths. These
effects are more noticeable during the development of the flow than in its
equilibrium state.

=10 min =20 min

12

Figure 7.8 Development of the turbidity current in experiment DAPER2.

The progression of the turhidity current during the initial stage of the experiment is
plotted in figure 7.7. It clearly shows how the front advances through the reservoir,
and how an internal bore (moving jump) develops near the slope transition. During
the first 5 minutes the current is internal supercritical over its complete length (it is
critical at the downstream end). Only due to the rise of interface downstream of the
jump the final state in this region will become internal subcritical. Experiments
with coarser sediments (i.e., 30 um and 65 um) appeared to be so strongly
depositional in this region that an internal subcritical state could not be reached as
the current quickly disintegrated, often before reaching the downstream end
(Garcia, 1993).

To validate the computed velocities and depths another turbidity current experiment
NOVA7 is computed with Dy=4 um and inflow conditions C(0)=7.3-103,
a,(0)=3 cm, ¢,(0)=0.033 m?/s using the same friction coefficient (C,=0.02) and
entrainment relation. The numerical computations resulted (after 20 minutes) in the
following depths and velocities: at x=3 m (internal supercritical) a,=6.1 cm and
4,=9.9 cm/s; at x=8 m (internal subcritical) a,=17.4 cm and u,=4.5 cm/s.

202




Subsequently these values are used to compute the vertical profiles using the model
of chapter 2. From the results, plotted as lines in figure 7.9, compared to measured
data, can be concluded that in the supercritical region the depths are slightly
underrated while the velocity is slightly overrated. In the subcritical region the
agreement is striking.
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Figure 7.9 Validation of velocity profiles for experiment NOVA7.

The internal hydraulic jumps in these experiments are relatively weak (Garcia,
1993). Therefore entrainment is at the discontinuity is small and the shock-relation
for the non-entraining hydraulic jump is applicable. This is illustrated in section 4.4
(fig. 4.6) by comparing measured and computed depth-ratios as function of the
downstream Froude number. The insignificance of entrainment in the weak jump
are confirmed by the findings of Wood and Simpson (1984).

Summarizing these results it was found that experiments reported by Garcia (1990,
1993) can be modelled satisfactory if appropriate values for friction coefficients and
entrainment are adopted. Also vertical profiles for sediment and concentration can
be modelled accurately. All examples discussed in this section (experiment SAL11,
DAPER2, and NOVA7) exhibit conservative behaviour with dilution effects
primarily caused by entrainment. Therefore the turbidity current hardly deposits
any sediments. Near the transition in bottom slope eventually a non-entraining
internal hydraulic jump is formed where the flow changes from an internal sub- to
supercritical state (initially the current is completely internal supercritical). Quite
similar experiments were carried out in the fluid mechanics laboratory of Delft
University. This is the topic of the following section.
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7.3 Laboratory experiments of turbidity currents in Delft

Laboratory experiments in a flume in the laboratory of fluid mechanics of the Civil
Engineering department of Delft University of Technology were carried out by
Cordi and Ophem (1994) under supervision of Kranenburg and Van Tessel. Some
of these fluid-mud experiments were laminar but also a number of turbulent
underflows was established. From the latter experiments we have chosen turbidity-
current experiment RUNS5, with the lowest concentration for further examination.
The experimental setup and initial conditions for this experiment are summarized in
figure 7.10.

mixture Cg = 0.0337

0-8 E QZ = 0.004 m3/8
'E 0.6
v 04
0.2
0
I T T T T T T T T T I T T T 1
0 2 4 6 8 10 12 14
x [m]

Figure 7.10 Experimental setup in Fluid Mechanics laboratory: Run 5.

Comparing this with figure 7.1 it is clear that the facility is similar to that of
Garcia (1990) except for the downstream end and the milder slope. Different to
Garcia’s experiments are also the high concentrations released in the flume (for
RUNS about 25 times the concentration of DAPER2).

x=543m
0.12 0.12
- o measured
z[m] o T —— computed
0.08 0.08 ¢
- - <
<©
0.04 0.04 o
0F——r——’ 04—
0 02 04 0.0 0.02 0.04
u [m/s] csl-l

Figure 7.11 Measured and computed velocity and concentration profiles.
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At two locations in the sloping region the velocity and concentration profiles are
measured: x=1.27 m and x=5.43 m from the inflow sluice. A fit of the
computational profiles (obtained from the relations in section 2.4) to those
measured in x=5.43 is given in figure 7.11. A reasonable fit for profiles at
x=1.27 m could not be found, most likely due to the adaptation of the profiles at
the inflow boundary. At this point the underflow is not fully developed and
equilibrium relations are not valid. Also application of Galappatti’s model at this
point becomes arguable since the inflow concentration profile (almost uniform)
differs significantly in shape from the equilibrium profile. Note that Galappatti’s
adaptation length near the entrance is about 30 to 40 m which is much higher than
the length of the flume.

The numerical computations were carried out with Ax=0.033 m and Ar=0.06 s.
Friction coefficients were taken C,=0.006 and C,,=0, while entrainment is
computed with the entrainment relation of Parker et al. (1987) increased with 50
%. A particle size of Ds;=14 um is used in the model. Computed and measured
depth, velocities and concentrations are plotted in figures 7.12 to 7.14.
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Figure 7.12 Computed underflow depth, dashed line t=20 s, drawn line =40 s,
dotted line t=72 s, triangle: measured depth.
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Figure 7.13 Computed concentration; legenda: see figure 7.3.
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Figure 7.14 Computed velocity; legenda: see figure 7.3.

Again other combinations of friction and entrainment are not precluded (e.g.,
higher C, might reduce the required amount of entrainment). Furthermore it can be
shown that the current is practically conservative due to small fall velocities, and
that the presented dilution effects are primarily due to entrainment. Therefore

deposition is insignificant (less than 1 mm). These results are comparable to the
outcome of the previous section.
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Figure 7.15 Sensitivity to bottom-friction coefficient.

By means of varying C, and the amount of entrainment (Parker’s relation
multiplied with a factor C,) the sensitivity of the computations is illustrated in
figures 7.15 and 7.16. Clearly depths and concentrations (and velocities) in the
current are highly dependent on the choice of these parameters. On the other hand

the sensitivity to the reservoir depth a and sediment-transport related parameters is
very small.

The computed front celerity is about 0.2 m/s which is only slightly smaller than the
measured front celerity of 0.24 m/s. Figures 7.15 and 7.16 indicate a dependence
on the chosen combination of friction and entrainment. This celerity remains almost
constant throughout the complete flume (irrespective of the change in slope). When
the front reaches the downstream end it is reflected, resulting in an important
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Figure 7.16 Sensitivity to interfacial mixing.

increase of underflow depth.

The computational results for this experiment showed that for these relatively high
concentrations the model is less suitable. Although the calculations fit well to the
data the agreement is less distinct than in the low concentration experiments of
Garcia (1990) in the previous section. It was found that in another experiment
RUNI10 with a higher slope (1:20) the computation, calibrated for RUNS, appeared
to give inaccurate values. Therefore in the following section only laboratory
experiments for low-concentration currents are used to verify the front celerity.

7.4 Experiments of turbidity-current fronts in Lausanne

Turbidity-current and saline-current experiments in a 16.55 m long, 0.5 m wide,
and 0.8 m high flume were reported by Altinakar et al. (1990). For a large number
of low-concentration density currents on different bed slopes the measured gravity-
current front celerities and dimensions were summarized. Using the two-layer
model with Ax=0.06 m, C,=0.005, C,,;=0, and using the entrainment relation of
Parker et al. (1987) several of these experiments were simulated numerically.
During the experiments two sediment grain sizes were used (K-06: Ds,=32 um, K-
13: Dyy=14 pm). Bed slopes in these computations varied between i,=0 and
i,=0.03, with inflows varying from ¢,(0)=22-10* m?/s to 72-10* m?/s, and with
inflow concentrations varying from C(0)=1.1-103 to 6.5:10°. An example of
such a computation is given in section 6.10 for experiment TK 1306 (i,=0.01,
C;=2.24-10°, ¢,=22-10* m?/s). It was shown that a very accurate approximation
of the front celerity is possible by using a numerical shock-tracking technique.

A comparison of the calculated and measured front celerities in figure 7.17 is used
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Figure 7.17 Comparison of measured and computed front celerities from the
experiments of Altinakar et al. (1990).

to summarize the results. A first glance at this figure shows that a majority of the
computed front celerities is too large, which agrees with earlier conclusions in
chapter 5 (the mathematical approach cannot always provide sufficient energy
losses). Furthermore the figure shows some scatter, particularly for the turbidity-
current experiments. By using different (empirical) shock relations in combination
with a numerical shock-fitting technique the compmted front-celerities can he
reduced. However, this cannot diminish the observed scatter as the analyses by
Altinakar et al. (1990) clearly demonstrate. For instance the erratic behaviour of
the front is demonstrated by the deviations in front celerities of five identical
experiments EXPO1 to EXPOS (i,=0.0114, ¢,=26-10* m?/s, C,=1.58-10° and K-
13 sediment). For each experiment a different front celerity was measured ranging
from 3.0 to 3.6 cm/s (the computations yielded ¢;=4.3 cm/s).

Some of the calculations appeared to break down due to settling of the single-size
particles, while in the experiments the turbidity currents persisted since finer
fractions remained in suspension. This can be fixed by using a graded-sediment
model (definition of Galappatti’s equations for different fractions). For instance
extensions of the sediment-mass balance for more than one fraction were given by
Stacey and Bowen (1988b) and Garcia (1990). Garcia’s (1990, 1994) measurements
on poorly sorted turbidity currents indeed showed a decrease in average grain-size
in longitudinal as well as in vertical direction, which indicates that further research
to this grading effects is worthwhile.
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Despite these inaccuracies and crudeness of the approach, it can still be concluded
that for practical applications the front celerities of turbidity currents can be
computed satisfactory with the present model. For approximating the travel
distance before break-down of a poorly-sorted turbidity current it seems useful to
study a further extension of the model for multiple sediment fractions. An example
of such a break-down of the computed underflow is shown in the following section
in a particle-driven lock-exchange experiment.

7.5 Laboratory experiments of lock-exchange flows

Turbidity currents generated in lock-exchange experiments in two different flumes
with horizontal bottom in the University of Cambridge (UK) were reported by
Bonnecaze et al. (1993). In such an experiment a gate separating two fluids of
different density in a flume is suddenly removed. The design of Bonnecaze’s
experiments greatly coincides with the saline lock-exchange experiments of
Rottman and Simpson (1983) illustrated in section 5.2 (also performed in
Cambridge). To introduce Bonnecaze’s experiments numerical computations of
Rottman and Simpson’s small-scale saline currents are illustrated in figure 7.18.

010 Rottman and Simpson (1983)
' Gate
z [m] =
005{\ - .- .1, 470 s
0.0 . , , -1
0.05 o B 770 s
00— : , , — ,\
0'05< N R Y 1()‘70 S
00 ——F— — . , ,
0.0 0.4 08 x[m] 12 1.6

Figure 7.18 Computed and measured depths (from shadowgraphs) for a saline
lock-exchange experiment of Rottman and Simpson (1983).

In this figure the measured interface levels are obtained from shadowgraphs.
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Consequently they correspond to an approximate visual interface which is less
accurate for the two-layer model than theoretical depths obtained from velocity
profiles. Computations were carried out with Ax=3.75 mm, A¢r=0.014 s, minmod
limiter, Parker et al. (1987) entrainment, C,=0.02, and p,=1047.9 kg/m’
(equivalent to C;=0.029). It should be remarked that the density of the saline
underflow is large, and that we applied a high value for C,. Shortly after removing
the gate a bottom and surface front are travelling in opposite directions, with, as
expected, a somewhat overrated front celerity (which cannot be fixed by increasing
entrainment and friction). If the surface front reaches the upward end of the flume
it is reflected and continues as an internal bore, only leaving a small layer of dense
fluid behind. In a very deep reservoir this behaviour is not seen as is illustrated for
the identical numerical experiment in deep water in figure 7.19.

0.1

z [m]
0.051

0.0 0.4 0.8 x[m] 1.2 1.6
Figure 7.19 Rottman and Simpson’s lock-exchange experiment computed in a very
deep reservoir (with entrainment and friction).

It can be shown that in deep water the computed front celerity is larger.

Also in Bonnecaze’s experiments with a lock-exchange flow of turbid water a
similar behaviour was seen. The experiments were carried out in a small and a

al alanla
]'“'g"‘ flume with different gram sizes. 115‘uu numcrical calculations arc bUlll}JdlCu

to depths obtained from shadowgraphs given in Bonnecaze et al. (1993) for a lock-
exchange flow in the small flume with Dy =53 pym. In the 1.6 m long flume with a
width of 0.27 m and a water depth of 0.14 m the gate is located 0.08 m from the
upper end of the flume. The computations are carried out with an initial
concentration of C,=9.4-10°, Ax=0.002 m, Ar=0.006 s, and with C,=0.01
(Cp;=0). Results for three time levels are plotted in figures 7.20 to 7.22.
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Figure 7.20 Measured and computed turbidity current 3 s after release.
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Figure 7.21 Measured and computed turbidity current 7 s after release.
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Figure 7.22 Measured and computed turbidity current 7 s after release.
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Figure 7.23 Development of the computed concentration during the experiment.

Differences in the behaviour of the turbidity current compared to a saline current
are caused by settling of sediments, notably in the thin flow layer remaining after
passage of the reflected internal bore. For this example the loss of buoyancy in this
section due to insignificance of turbulence (i.e. of wu.) results in instability of the
two-layer model and the numerical solution. Here condition (3.12) is violated.
Physically this means that the two-layer flow becomes a ordinary open-channel
suspension flow with a non-equilibrium concentration profile. Since the numerical
computation does not completely break down it can be shown that the stable region
(near the gravity-current front) can travel a relatively long distance before loosing
its buoyancy. In figure 7.23 is shown how the concentration develops during the
experiment. The physical break-down of the two-layer flow due to sedimentation
was also reported by Garcia (1993) for experiments with 30 um sediment and was
already mentioned in the previous section. Also in Bonnecaze’s experiments the
failure can be delayed by using a graded-sediment model (see section 7.3).
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Figure 7.24 Turbidites deposited by a lock-exchange with 23 um sediment; drawn
line: shallow water, dashed line: deep water, triangles: measurements.

Turbidites deposited by an experiment with 23 uym sediment in the larger flume (10
m long, 0.26 m wide, and 0.3 m deep) were weighed by Bonnecaze et al. (1993)
and compared with their numerical results. The stable results computed with our
model are presented in figure 7.24. The densities of deposits given by Bonnecaze
are translated to bed levels using a porosity of 30% (as was used in the model).
The agreement between computations and measurements is very good, especially
when realizing that we did not calibrate this experiment. Only at the upper
boundary a large ’overshoot’ is computed which develops directly in the initial
stage of the experiment due to deposition in the section left of the gate. This defect
is most likely enhanced due to the boundary treatment, but it is irrelevant for the
turbidity current (bed-dimensions are much smaller than depth of the flow). During
propagation of the underflow the bed forms a wave propagating downstream. Itg
speed reduces rapidly until the concentration of the underflow becomes very low
(after one or two minutes). Then it ceases and results in the profile as plotted in
figure 7.24. If the experiment is computed with an infinite deep ambient the shape
of the profile clearly does not fit the shape of the observed bed. The results in
figure 7.24 agree with the findings of Bonnecaze et al. (1993).

The smooth morphological computations in this section do not require sophisticated
shock-capturing techniques. Therefore they cannot be used for verifying these
techniques implemented in our numerical model. Instead we studied propagation of
a bottom step due to bed-load transport in an open-channel flow. In the following
section this is shown by using a simple adaptation of input data in the two-layer
model.
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7.6 Morphological computation of a bed front in a channel

To verify the bed-evolution predicted by the model some detailed data sets are
required. However, only some limited bed measurements from turbidity currents
are reported in literature. Mainly they were obtained by measuring the remaining
deposits after a turbidity-current experiment (e.g., Bonnecaze et al., 1993, Garcia,
1990, Liithi, 1981, and Middleton and Neal, 1989), or in the field by geological
survey of turbidites from former events (e.g., Edwards, 1993). An example is
shown in section 7.4. None of these studies report discontinuities and propagation
effects in the bed, which would be particularly heavy test cases for the model.
Therefore we have chosen to use morphological data from an experiment in open-
channel flow which does reveal these phenomena. It was shown in chapter 3 that
propagation of bed-disturbances (celerities) is determined by the bed-load transport
rate. It is primarily bed-load, not suspended load, which for instance determines
the propagation rate of a delta front, or the rate of retrogressive erosion during
flushing operations in a reservoir. A typical experiment which illustrates these
features is reported by Brush and Wolman (1960) who carried out flume
experiments with a steady flow over a forward-facing step in a sand bed. Later
Bhallamudi and Chaudry (1991) tried to simulate one of the experiments (Run 1)
numerically using MacCormack’s scheme and Jameson’s (1981) artificial viscosity
with a model not quite different to ours. However, their results could only
qualitatively fit the experiment, which we suppose to be caused partially by the
typical (erroneous) formulation of the sediment-transport rate.

Brush and Wolman (1960) carried out their experiments in a 15.8 m long, 1.2 m
wide flume in which they molded a trapezoidal channel of 21 cm width and about 3
cm deep in non-cohesive sand with Ds,=0.67 mm and Dy, =1 mm. At about 10.8
m from the entrance the reach was oversteepened to create a drop of about 3 cm,
with the intention to study the knick-point behaviour. With a discharge of 5.95-10*
m?*/s in Run 1 no bed-load transport occurred in the mildly sloping reaches (slope
=~ 0.1-10?) due to the low Shields values (coarse grains and low shear stress). The
most suitable transport formula for this experiment was found to be that of Meyer-
Peter and Miiller (1948), which accounts for initiation of motion as well.

To compute this experiment we use the analogy between a conservative underflow
(C,=const.) in an infinitely deep reservoir and a regular open-channel flow. In fact
it can be seen quite easily that by taking g’ (=go’'C,) equal to g. By means of
computed results the development of the bed front and the flow during the
experiment is represented. For the numerical computations a spatial step Ax=0.16
m is used, which needs a time step Ar=0.15 s for stability (using the van Leer
TVD-limiter). As (numerical) initial condition we started with a uniform depth of
a,=0.0305 m and a steady inflow discharge is imposed of ¢,(0)=0.002787 m?/s.
The computational results for r=2.7 h, with C,=0.0103 and after reducing
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Figure 7.25 Computed and measured bed-levels for the open-channel flow
experiment of Brush and Wolman (1960).

sediment transport with 30%, are compared with the observed bed levels in figure
7.25.
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Figure 7.26 Computed flow and bed evolution for different time steps.
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The results of this computation are very good, even when realizing that due to
incision of the eroding parts the average width of the channel may vary. At certain
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parts of the channel no sediment is transported since shear stresses drop below their
critical value for initiation of motion. In figure 7.26 is shown how the computed
bed develops, and how the bottom front is eventually arrested by this effect of low
shear. This explains the advantage of Meyer-Peter and Miiller (1948) formula.

The fully coupled computation of flow and morphology in this example with
various discontinuities illustrates the power of the MacCormack scheme in
combination with TVD artificial viscosity to deal with mobile bed problems. Brush
and Wolman’s experiment shows a large analogy with draw-down flushing
operations in a reservoir with processes as retrogressive erosion and propagation of
the delta front. Also the formation of the delta by back-water deposition can be
computed successfully with this approach as is illustrated in figure 1.2 in chapter 1.
Considering these results, it seems worthwhile to study this relatively simple
numerical approach more careful in future studies and compare them with other 1-
D models.

The computations in this section and all previous sections are all verified by means
of laboratory data. This is a consequence of the unavailability of detailed and
accurate field data. Only data presented by Chikita et al. (e.g., 1991) are
sufficiently comprehensive to be used for verification purposes. This is the subject
of the following section.

7.7 Turbidity current in glacier-fed Peyto Lake, Alberta, Canada

The occurrence of turbidity currents in the glacier-fed Peyto Lake has been
reported by Chikita et al. (1991) during a snow-melt period. Peyto Lake is located
in Alberta, Canada. It is fed by the braided inflowing Peyto Creek which has a
drainage area of about 45 km? of which an area of about 13 km? is glacier-covered
(Peyto Glacier). Extensive field measurements were obtained during high inflows at
9-15 July 1987 (melting water produced at the glacier surface), and in this section
we intend to simulate (at least qualitatively) the observed phenomena.

To illustrate the typical geometry a bathymetric map from Chikita et al. (1991) is
given in figure 7.27 On the south-side, a delta front of pebble and cobble-gravels
advances into the lake with a speed of about 1.45 m/a. Near the foreset slope
(sloping down at about 11°) the inflow with concentrations of mud and silt plunges
below the lake surface to form a bottom current (just before point C). The plume
advances northward to the central part of the lake where it meets a sub-aqueous
sill. Whether it passes the sill and enters the northern sub-basin (point E) depends
on the magnitude of the underflow and lake circulation.
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Figure 7.27 Bathymetric map of Peyto Lake (from Chikita et al., 1991) and the
schematized geometry for the two-layer model.

During the high inflow at the 14th and 15th of July 1987 velocity and concentration
profiles were measured and analyzed at station C, D and E. These profiles, and
subsequent measurements carried out by Chikita and co-workers (in 1993, to be

hla t~
published later) clearly reveal the presence of turbidity currents which were able to

pass the sill. Before crossing this narrow elevation they observed that the
underflow builds up in front of it while reducing its velocity. At this point only
reasonably strong underflows can maintain there stability to cross the sill. Chikita
et al. also noticed that due dominantly northward katabatic winds a lake-circulation
is generated with a northward surface current compensated by a deep-water
southward current opposing the underflow (especially when the underflow is weak).
On the other hand this current provides additional energy (turbulence) for
maintaining suspension which can contribute to the possibility of passing the sill.

To simulate the observed phenomena in order to validate the 1-D numerical model
we have computed the turbidity event of July 14 and 15. The unsteady inflow of
'water and sediment at station C (x=0, x"=100 m) is used as the inflow boundary
and extrapolated from the recorded inflow hydrograph of Peyto Creek and the
measured profiles as shown in figure 7.28.

Furthermore the geometry is adopted from figure 7.27 (schematization to
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Figure 7.28 Inflow boundary condition for the undertlow at point C.
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rectangular cross sections) and a constant concentration of 60 mg/l is imposed at
the upper boundary. Interfacial friction is neglected compared to entrainment, while
the latter is obtained from the Parker et al. (1987) formulation reduced with 80%
(to prevent instability). The bottom friction coefficient is taken C,=0.005. The fall
velocity of the cohesionless silt and clay particles (Chikita et al., 1991, 1992) was
taken 2.8-10° m/s (Stokes law). We realize that the actual situation is simplified
noticeably for the computation, for instance by the choice of a rectangular cross-
section and by neglecting the effect of the wind-driven circulation currents.
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Figure 7.29 Measured and computed profiles at station D, 14 July 1987.

Quantification of the measured profiles in station D (14 July, time 17:02 to 19:12),
using the model of section 2.4 is given in figure 7.29. To the measured profiles,
which were corrected for the direction of the underflow velocity, corresponds a
computed value of a,=16 m, u,=5 cm/s, and C=30.5 mg/l (which is internal
subcritical). In this plot the negative velocity above the underflow is the sum of
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return flow and wind-driven circulation. A similar profile with similar depth
(a,=15 m) can be plotted for station E (15 july, time 10:07-12:28), but with a
lower velocity and concentration (#,=1 to 2 cm/s, C=10 to 15 mg/l). In this figure
the velocities transversally to the underflow are not plotted, but they were found to
be of the same order of magnitude as the velocities along the underflow.

The 1-D numerical computation is carried out with Ax=5 m, Ar=15 s, using the
minmod flux limiter. The total discharge Q is taken very small to obtain a return
flow which approaches the observed one. The resulting depth, velocities and
concentrations are plotted in figures 7.30 to 7.32 relative to station C.

Note that the development of the current is not computed at E since we assumed an
open end at the downstream boundary. In reality only surface outflow is possible,
hence all sediments reaching E will eventually settle out. The computational results
indicate that the measured profiles at station D correspond to a time-average
situation at approximately three hours after the passage of the front through the
inflow boundary C. After this period the velocity drops and interface rises quickly
in this southern sub-basin, resulting in a subcritical flow situation due to the
backward propagation jump. Furthermore it was found that the computed gravity
current front at the bed moves with a quite constant speed of ¢,=6.5 cm/s
downstream as is shown in figure 7.33. Unfortunately there is no data which can
support this result.
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Figure 7.30 Computed development of the underflow in Peyto Lake (depth).

Due to the low settling velocity the dilution effects observable in figure 7.32 are
primarily caused by entrainment. Computed bed-levels only show deposition of the
order of 0.1 mm during the development of the current which is negligible.
Obviously sedimentation does not occur during propagation, but occurs afterwards
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Figure 7.31 Underflow velocities for the computed turbidity current.
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Figure 7.33 Computed propagation of the turbidity-current front.

when the current is dissolved (as it cannot be sluiced from the lake). Although the
concentrations seem small during this event, still about 200-10° kg sediment enters
the lake in a period of 12 hours. Chikita (1992) shows that the total contribution of
underflows to yearly sedimentation is about 61% (primarily in the period June to
September). Another 32% of the total sedimentation is due to the delta propagation
(which corresponds to 30-10° kg/a). Still the life span of Peyto Lake with this
sedimentation rate was estimated to be about 600 years.

Further to this computation the effects of counter-currents and increased
entrainment and interfacial friction have been studied as well. A counter-current
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(impose a negative Q) only slightly decreases the front celerity and only slightly
affects the underflow, primarily due to a modified entrainment rate. Also interfacial
friction does not qualitatively change the results. Increasing the entrainment rate
without counter-current appeared to be more forceful. By doubling the entrainment
rate a noticeable dilution effect after some time at the crest of the siil resulted in a
local breakdown of the two-layer model. At this point the flow locally becomes an
ordinary suspension flow (still part of the underflow reaches point E).

It is likely that the computational results qualitatively represent the actual observed
phenomena in the lake. New continuously recorded data during some events in
Peyto Lake in 1993 by Chikita et al. confirm this conclusion. However, due to the
limitations of the reported data, a complete quantitative verification is not possible.
In most field studies this is the primary deficiency. Although observations prove
the existence of turbidity currents in lakes and reservoirs, it is virtually infeasible
to survey the complete turbidity-current development in detail. It was found that
other data sets in literature (for instance from China, Fan, 1986, 1991) cannot
provide a better validation than Chikita’s measurements, and these computations
are therefore not presented in this thesis.

7.8 Conclusions

The integral behaviour and performance of the 1-D computational model in the real
world is studied by means of laboratory and field data reported in literature. The
limitations of the model, primarily induced by schematization to one dimension and
empiriciem, are set against the uncertainties and inaccnracies of the observations.
Some detailed data sets from laboratory flumes are used to verify the behaviour of
steady intruding gravity currents and lock-exchange flows. Furthermore a flume
experiment with open-channel on a sediment bottom-step are used to verify the
power of the morphological computations. To conclude the validation of the model
it is applied to an comprehensive data set from field measurements of an unsteady
turbidity current in a glacier lake.

For the test cases it can be concluded that the overall behaviour consisting of
different physical processes are satisfactory represented by the model. This is true
for the two-layer numerical model as well as for the velocity and density profiles.
The best quantitative results are obtained for low concentration turbidity currents
(e.g, C,<0.01) or low density saline currents. Turbidity currents in reservoirs are
usually of a low density type as confirmed by the presented field case and by other
field observations mentioned in literature (e.g., Fan, 1991). For calibration of the
model it is sufficient to tune primarily on bottom friction and the entrainment
parameter for interfacial mixing. Due to small upper-layer velocities in the upper
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layer it is allowed in many cases to superpose interfacial friction to bottom friction
which eases the calibration. Furthermore, due to an insensitivity to the near-bed
concentration c,, it is often justified to neglect this concentration in depositing low-
concentration turbidity currents.

In agreement with the conclusions in chapter 5 it is shown that the application of
the new shock-capturing technique still results in a slight overestimation of front
and bore celerities. Nevertheless for turbidity-current fronts, in combination with
friction, deposition and entrainment in the following current, the accuracy of the
computations is acceptable for practical purposes. That is when compared to the
irregularity of the observed celerities. Here an important contribution in a correct
prediction of the front and current is due to the finite reservoir depth, which
appears to be especially important for lock-exchange flows (presence of a reflected
bore). Generally the often applied deep-water model or one-layer model
overpredicts the concentrations and front celerities of an intruding turbidity current,
while it underrates the depths, and is therefore inferior to a two-layer approach.

During some computations we found a break down of the current due to a loss of
density by particle settling. However, due to the presence of very fine sediment
fractions in the flow the actual turbidity current continued over a longer distance.
To fix this deficiency it is recommended to extend the sediment balance equation
for multiple fractions when dealing with graded sediment. Furthermore it is
worthwhile to study in more detail the excellent performance of the MacCormack
scheme in combination with TVD artificial viscosity to compute the morphology of
discontinuous sediment beds as shown in section 7.5. In the context of reservoir
sedimentation its merits lie in the prediction of delta-front advance and erosion of
deposits during draw-down flushing. Although in most of the presented test cases
the amount of deposition was of negligible magnitude, it can be concluded that the
morphology and development of turbidites are also well predicted by the model.

A one-dimensional computation of the unsteady turbidity current in Peyto Lake in
Canada suffers from more uncertainties since the uncontrolled conditions and 3-D
processes require a more radical schematization. Furthermore the data is less
detailed than in a laboratory experiment. The observed behaviour of this rather
heavy test case is still satisfactory represented by the model, for instance by the
computed built up of dense fluid against a subaqueous sill, and the overflow of the
current over the sill. Again the current is mainly sensitive to bottom friction and
entrainment (for instance enhanced by wind-generated turbulence). The analysis of
the present data set, as well as other field data, shows that it is not worthwhile to
apply more refined approaches to compute turbidity currents in reservoirs. This
conclusion justifies the use of a simple 1-D model, or alternatively a 2-DH model
(for cases with rapid width changes such as in Peyto Lake), for practical
applications.
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Chapter 8

Conclusions

The performance of reservoirs designed to store river runoff is seriously threatened
by sedimentation processes. As the demand for storage, and the constraints on
replacement of lost storage increase, a growing effort is therefore made to
maximize long-term storage volume and to minimize the trap efficiency of these
reservoirs. To design techniques for capacity maintenance it is necessary to
understand and to quantify the hydrodynamic and morphological processes
involved. For instance, to support decisions regarding design and operation of the
reservoir it is preferable and most promising to use 1-D and 2-D mathematical
models. On the other hand, it is the lack and inaccuracy of available data on the
flow in the reservoir, and the sediment entering the reservoir from the catchment
or the river, which limits the accurate prediction of the long-term storage loss due
to reservoir sedimentation.

Since it affects directly the active storage part of the reservoir it is delta formation
which gains much attention in these studies. The exact distribution of these deposits
is complex and irregular, and the highly empirical predictions are still uncertain.
For rather narrow reservoirs the use of 1-D in which the delta is computed as a
shock are known to yield promising results (e.g., Hotchkiss and Parker, 1991). By
means of an example it is shown that simple numerical shock-capturing schemes of
the Lax-Wendroff type can be used in combination with an appropriate artificial
viscosity term. This type of viscosity, preferably the TVD type presented in
chapter 6, is necessary to suppress the significant oscillation (wiggles) appearing
near the bottom shock during the morphological computation. In future extensions
of these ideas on delta computation, graded material and unsteady flow sequences
(in combination with sound predictions of the sediment yield) must be included.

Also (reservoir-sedimentation) mitigating measures have become an important
research topic. Apart from reducing the sediment inflow and the mechanical
removal of deposits, methods based on hydraulic flushing and sluicing of sediments
(reservoir operation strategies) have proven to be very effective and attractive ways
to increase the reservoir life in many cases. Therefore design of new reservoirs
should if possible accommodate large bottom sluices or other constructions which
enable these sluicing and flushing operations. More research is required to methods
for computing flushing operations. Important prior conditions for this research are
the formulation of the formation of a flushing channel by retrogressive erosion, the
unsteadiness of the flow and sorting effects of sediment particles. Theoretical
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approaches stand or fall with the formulations of these erosion processes (so far no
satisfactory theory exists for the formation of a channel). Overall can be concluded
that investments in sedimentation mitigation measures must become an integral part
of the cost-benefit analyses for the design of dams.

Turbidity currents in reservoirs can be an important transport medium for sluicing
fine sediments. This type of low velocity density current has been observed in
many reservoirs and can be used to sluice the fine sediments without significant
water losses, since they are capable of carrying large quantities of sediments over
long distances. Time and length scale of these underflows correspond roughly to
the scale of the flood wave entering the reservoir. From the various sedimentation
and transport processes we have chosen to consider the development of these
turbidity currents in more detail. A mathematical two-layer (depth-averaged) model
has been developed to study their behaviour and to predict their development.
Therefore the original two-layer concept, which has proven its applicability for a
wide range of stratified phenomena, is reformulated in a 2-DH form for turbidity
currents. It was found that the most crucial difficulty in modelling the underflow is
the delicate sediment/fluid interaction which governs its behaviour.

For the studied low concentration (C;<0.01) depositing turbidity currents the
interaction between flow turbulence and sediment concentration can be expressed
by means of the depth-integrated form of the convection-diffusion equation
proposed by Galappatti (1983). This approach based on a theoretically exact
asymptotic solution of the 3-D convection-diffusion equation for the suspended
sediment is very robust and suitable for turbidity-current parts where the shape of
the actual concentration profile does not deviate to much from the equilibrium
profile (for the local flow state). The adaptation length and time of the

concentration redistribution expressed by this Galappatti’s model are dependent on
shape functions for equilibrium concentration and velocity profiles. They can be
well expressed by the presented semi-empirical approach, that is based on
empirically indicated similarity of these profiles for different flow conditions

combined with the mixing-length concept and the convection-diffusion equation.

The validity and behaviour of the solutions of this two-layer model can be analyzed
mathematically by means of the method of characteristics. It gives insight in the
development of wave fronts in the solution, by which this hyperbolic model is
characterised. In a 2-DH model the wave-like solutions originating from a point
disturbance are circular or elliptic (typical for surface and interfacial waves) and
star-shaped (typical for bed waves and vorticity disturbances). Differences in model
behaviour are found for internal subcritical flow (low densimetric Froude numbers)
and internal supercritical flow (high densimetric Froude numbers, at least larger
than unity). In a critical and supercritical 2-DH two-layer flow the computation of
bed morphology and baroclinic flow cannot be decoupled, contrary to a smooth
internal subcritical flow. In a 1-D two-layer flow this restriction on decoupling is
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only present in a near-critical situation. On the other hand, for small density
differences between the layers, it is always possible to decouple morphology and
barotropic-flow computation. Barotropic (external) flow in a reservoir can be
computed in a quasi-steady approach.

The method of characteristics shows how the two-layer model looses its stability
(its hyperbolicity, or stability of internal waves) in situations with high velocity
differences between layers and low density differences. Practically this limitation
can be associated to the breakdown of the turbid underflow, a phenomenon for
which 2-DV or 3-D computational models are probably more appropriate. Further,
the method of characteristics provides us with rules for imposing the number and
type of boundary conditions. They are also shown to play an evident role in
computing shocks and jumps in the solutions. These discontinuities form where
characteristics intersect. For instance the formation of a leading front and internal
bores and hydraulic jumps are regular phenomena for turbidity currents in the
field, and must be accounted for in the computational model.

Such a turbidity-current front advancing into the reservoir is modelled as a shock-
wave solution of the two-layer model in a way that also the classical steady state
solutions are satisfied. This can be achieved either by adding an internal boundary
condition or a resisting force locally at the discontinuity. However, from a
computational point of view it is preferred to rewrite the momentum equations
(originally with gradients of discharge ¢, and depth a,, the g,a-form) into a
formulation with gradients of the velocity u, and depth a, (the u,a-form), and
computing the front as an internal bore running over a very thin dense layer. The
weak solutions and jump conditions of fronts and bores for the system of equations
in u,a-form were found to correspond very well to the classical steady-state
solutions (e.g., Benjamin, 1969) and the available data sets. The primary advantage
of this property is the possibility to use shock-capturing schemes for 1-D and 2-DH
numerical computation which precludes the necessity of using difficult shock-fitting
techniques with moving internal boundaries to compute the gravity-current front.

The observation that the weak solutions of the equations in u,a-form satisfy the
shock relations of real gravity-current fronts implies that velocity is conserved
rather than momentum. When the basic equations are expressed in terms of
momentum conservation (equations in ¢,a-form) therefore an additional dissipating
force must be added locally at the front to simulate the loss of momentum and
energy. This approach is followed to define a conceptual model for fronts in 2-DH
developing plumes where the effect of a tangential velocity along the front is used
to allow for arresting of side fronts. The present theory for 2-DH fronts is not
further elaborated since we expect that the use of shock-capturing techniques in
combination with u,a-equations will yield satisfactory results.

To compensate for the scarcity of appropriate and accurate data, analytical
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similarity solutions can be used to verify 1-D and 2-DH numerical results and to
analyze their sensitivity. These self-similar solutions can be formulated for slightly
simplified intruding gravity currents into an ambient flow on a horizontal bed. In
this thesis they are determined for 1-D and 2-DH lock-exchange flows (analogous
to dam-break flows) and for 1-D sluicing operations. Self-similar solutions have
been shown to reveal many insights in the complex physical and mathematical
behaviour of the developing two-layer flow. For instance the transformation from
an nternal subcritical to an internal supercritical state due to the effect of a limited
ambient flow depth in a 1-D approach is a result with significant mathematical and
physical significance as it determines the controlling conditions. Essentially these
solutions are composed of shock waves (compression shocks and expansion waves)
and uniform flow sections and are therefore quite simple to construct. In a 2-DH
radially developing flow a self-similar solution is derived which shows how such a
plume is composed of a narrow rim behind the front, followed by a spreading
highly internal supercritical region. This supercritical region is subject of intensive
interfacial mixing and friction, and is therefore an important argument to switch to
a more complete numerical solution for 2-DH flows.

Due to this increased interfacial-mixing intensity in spreading underflows, the self-
similar (or numerical) solution shows that these jet and plume-type currents rapidly
loose their driving force and transport capacity by dilution (and successive settling).
Therefore the presence of a river or flushing channel in the reservoir bed, which
confines the spreading of the underflow is favourable for sluicing operations. Also
in narrow (run-of-the-river) reservoirs the probability that turbidity currents reach
the dam is much higher. It is obvious that obstacles in the bed (such as small or
large roughness elements) are also unfavourable for the propagation of the turbidity
current.

To obtain a more complete solution for developing turbidity currents in a reservoir
a numerical model is developed. So far the numerical approach is 1-D, but during
its development an eventual future extension to 2-DH is continuously anticipated.
The numerical solution method is chosen from established approaches which has
proven their robustness, applicability for similar models, and capability to deal with
shock waves. The simple and accurate MacCormack (1969) shock-capturing
scheme was found to be the most appropriate scheme for our model (that means for
its baroclinic part). It is an explicit predictor-corrector scheme of the family of
Lax-Wendroff schemes, and it can easily be extended to two dimensions.

In the numerical computations the turbidity front is computed as an internal bore,
but due to 2-nd order accuracy oscillations (wiggles) are formed near such shocks.
To reduce and prevent these errors it is necessary to add artificial viscosity.
Wiggles and physically incorrect solutions cannot be fully prevented with
conventional artificial viscosity methods, and calibration is required. However, it is
found that complete oscillation-free and correct solutions are computed with
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artificial viscosity terms based on flux limiters (which make the scheme Total-
Variation Diminishing, TVD). This advanced technique requires an increased
computational effort, but prevents the need for calibrating diffusion coefficients. In
a 2-DH model these TVD-techniques are less successful (due to a reduction to first-
order accuracy) such that enhanced forms of the conventional artificial viscosity
terms may become superior. Further, fronts computed in a non-conservative
gravity current, e.g., with interfacial mixing and settling of sediment particles,
need a correction in density to prevent a large overshoot. This effect is not caused
by the numerical scheme but is caused by the adaptation scales for the sediment
concentration. To correct this problem a shock-tracking technique is defined in
which the front is tracked during the computation, and where its density is replaced
in a physically correct upwind manner.

Even more important for the stability and accuracy of the numerical solution is the
correct treatment of boundary- and initial conditions. Difficulties arise when shocks
pass through, or reflect against the boundary. Most extrapolation techniques
appeared to fail here. Instead a ’ghost’-point approach is used in which the
computational grid is extended one additional point outside the boundary. A
Froude-number check is added to guarantee the correct choice of number and type
of boundary conditions. The number and type of imposed boundary conditions are
defined from the results of characteristic analyses and characteristic wave
decomposition. Also the initial condition is chosen such that realistic solutions are
computed. Often this is a very small dense layer which can be overrun by the
front.

Although these results imply that stability and accuracy of the solutions can be
controlled greatly by means of artificial viscosity and the treatment of conditions,
the Courant number (o=c-At/Ax) and its interaction with artificial viscosity and
source terms (friction and entrainment) is still dominating the numerical errors. A
numerical analysis of general Lax-Wendroff type numerical methods (including
MacCormack’s scheme) shows that a stable solution can be found for a Courant
number less than unity. However, this criterium is lowered if the amount of
artificial viscosity or the effect of source terms increases. On the other hand it is
shown that by decreasing the Courant number(e.g., decreasing the time step) an
increase of wiggle formation occurs near shocks. If different characteristic
celerities occur simultaneously in the problem (e.g., a fully coupled hydraulic and
morphological computation) this effect always results in oscillations in the slowest
travelling short-wave phenomena. Only with TVD artificial viscosity we were able
to eliminate these errors from our Lax-Wendroff type discretization.

So far the overall behaviour of turbidity (and saline) currents are satisfactory
represented for low-concentration turbidity currents (e.g. C, < 0.01). Primary
difficulty in this study was the lack of appropriate and detailed data on turbidity
currents in reservoirs. This forced us to introduce seemingly rigorous
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schematizations, which, on the other hand, do not devaluate the model. They
merely provoke new topics for further research. Numerical computations of
measured saline and turbid underflows confirmed that bed friction and entrainment
are the primary calibration parameters (interfacial friction is usually negligible).
Compared to saline currents a larger bed friction is needed in turbidity currents,
presumably due to bed forms and bed-load transport. In a shallow reservoir the
effect of ambient-flow depth also becomes more noticeable, compared to an
equilibrium state. In a deep reservoir fronts move faster, concentrations are higher,
and underflow depth is lower. Nevertheless, in a majority of numerical experiments
the computed front celerities (internal jumps and gravity-current fronts) are slightly
too large, but sufficiently accurate for engineering purposes.

Sediment gradation may prevent a quick breakdown of the underflow due to a
diminishing density difference by settling of grains. Whereas the uniform-sediment
model predicts a breakdown, the finest grains in the actual current may remain in
suspension providing sufficient density for maintaining the stratification. A
reformulation of the model for different sediment fraction for natural poorly sorted
turbidity currents seems worthwhile when reviewing several test cases.

Other points of research are the effects of discrepancies in the definition of
interface level when comparing various studies, and the location and characteristics
of the plunge point. The definition of the interface level is for instance essential for
the magnitude of interfacial friction and mixing. The plunge point, where the turbid
water plunges below the clear reservoir water, is an important control to the turbid
underflow. It is characterised by a complex and rapid 3-D flow variation.
Empirically it is shown that at the plunge point the densimetric Froude number is
near unity in a depth-averaged approach, whereas the variation around this
condition is usually expressed by empirical relations. Plunge point relations are not
studied here, but further research is necessary for a more complete simulation of
the processes. In practice the plunge point is usually located near the foreset slope
of the delta.

In the present study we were not able to derive general operation rules for sluicing
turbidity currents through reservoirs. Therefore too many parameters are involved,
and too many limitations exist. For design purposes the chosen approach is more
useful to investigate the propagation and distribution of turbidity currents and their
sensitivity to various parameters in the considered project. It can also be helpful for
real-time operation decisions in existing practical situations.
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total flow velocity = V(1,2 +v,2)

shear velocity in direction of velocity vector

shear velocity in x-direction = 7, /(7,0,)"*

fluid entrainment velocity at the density interface
discretized entrainment term

normalized fluid entrainment coefficient = w,/w,
fall velocity of sediment particles (relative to z-axis)
spatial coordinates (x,y = horizontal, z = vertical)
transformed dimensionless horizontal x-coordinate
suspension parameter

corrected suspension parameter = Z + ¢

reference level for suspended-sediment concentration
bed level

interface level

coefficients

unit vector =(a,,c,)

dimensionless depth downstream of density-current front
factor in suspension parameter Z

discrete artificial viscosity term

bottom-turbulence generated energy loss

energy loss associated to flow in a gravity-current head
numerical time step

layer velocity difference in x-direction = u,-u,
numerical space step

density difference = o’C, (where g, = g-¢)
gradient parameter in artificial viscosity term
porosity of the bed material
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fluid-mixing coefficient in x-direction
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normalized vertical-diffusion coefficient = ¢ /(w,a,)
damping coefficient in suspension parameter Z
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characteristic celerity 1-D = dx/dt (j=1,2,..)
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coefficients
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dimensionless level at which u(z) is maximal
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dimensionless depth parameter = a,/q, [
numerical viscosity parameter -]
bottom friction effect [-]
discharge coefficient for a gate [-]
kinematic viscosity [L%/T
artificial viscosity coefficients [L?/T]
angle [-]
slope parameter (critical value 6,) (-]
slope ratios for TVD limiters (k=1,2,...) [-]
average bottom slope in x- and y-direction [-]
local fluid density [M/L3]
density of water [M/L3]
density of water-sediment mixture [M/L3]
density of sediment particles M/L]
density of lower layer = p(o'C,+1) [M/LY]
Courant number = ¢, "At/Ax -]
relative sediment density = (o,-0)/p, [-]
normalized time coordinate -1
bed shear-stress vector = v/ (142 47,7 [M/(LT?)}
bed shear-stress in x- and y-direction IM/(LT?)]
interfacial shear-stress in x- and y-direction [M/(LT?)]
Riemann variable or characteristic variable associated to celerity ¢, [.1
internal flow variable (velocity difference) = u,-u, [L/T}
normalized horizontal coordinate (x-direction) [-]
components of vector _{k normal to corresponding charact. surface [L,T,T]
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non-linear limiter function

similarity parameiers {or 1-D underfiow

similarity parameter for 2-DH underflow

similarity parameter for 1-D underflow based on layer depth
normalized horizontal coordinate (y-direction)

dimensionless matching location 1-D self-similar solution
similarity parameter for front location

similarity parameter for reverse flow, or for near field boundary
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Appendix A

Conceptual model for front propagation in a
2-DH 2-layer model

We consider the Boussinesq equations for 2-DH baroclinic flow (decoupled internal
flow) in g,a form as presented by Sloff (1994). Similarly to the 1-D decoupled model
these equations can be written in a quasi-conservative form :

oU oG @ dH

— + — +

oq Al
&  ax 2 D

Now consider a discontinuity in the flow as schematized in figure A.1 (i.e. its
projection on the x,y-plane). The flow and the front motion is from left to right.
Coordinate axes s and n are the axes transversal and normal to the front in the
considered point respectively. The angle between the local s-axis and the x-axis is 6.
Clearly this angle, and hence the direction of the local s,n-coordinate system varies
along the front.

Front h

Figure A.1 Discontinuity in a 2-DH model

By analogy with the 1-D case we can derive a shock relation which has to be satisfied
at the discontinuity. For the shock in fig.A.1 we obtain (e.g., Tan Weiyan, 1992):

N(U,-U) + N,(G,-G) + N(H,-H,) = -F (A.2)

where N, N,, N, are components of a normal vector N at that point on the
discontinuity. We normalize this vector by
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N = (=¢ns Voo V) ; lv] =1 (A.3)
With this normalized vector equation (A.2) is the Rankine Hugoniot condition for the

discontinuity. The right-hand side is a scalar product of vector v and vector ([G,-
G)],[H,-H))) similarly to eq.(6.5) for the 1-D case.

If =y(x,y) is the equation for the discontinuity surface in the #,x,y-space then in the
physical space (x,y-space) its normal vector is (-1,0y/dx,dv/dy) or

Y, (aw)
ox Jy
The Rankine Hugoniot conditions can be reduced to an equivalent 1-D formulation

after transformation to s,n coordinates. We define the following transformation of
independent variables:

-1
vx = CN 3 ; vy = CN 5 ; N

(A.4)

x = n-cos(f) + s'sin(@) ; y = n-sin(@) - s-cos(6) (A.5)
9 o)L s sin@ ;2 - sin0)2 - cos0)l  (A6)
ox on Os dy n os

Gy = G, C0S(0) + g, °sin(6) g, = q,,sin(B) - g, -cos(6) (A7

and similarly for ¢, g, and forces in the

m
system of Boussinesq equations for baroclinic flow then becomes

Oy, (@00, o[ dn| (@) 3[qk|, o(dadu) ()8 ( %),
o \a) o 0s|a, a1 as a, ) on| a, a,|on| a, (A.8)
2

0z, ac’t

2 2
o (%1, 3(292n) (%) 3(T1sTin), 0|92 | (%) 3| dmn],
ot a ) o Os\ a, a,|os{ a, on\ a, a,)on| a, (A.9)
) )
g

omentum balance. The transformed

Z T,
lzo 2+gza20/Cs—”:£l—ﬂJrgaoC
2 on on a, p; Ps
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9, |, %% % _ (A.10)
ot as on e

which can be written again in the following ’conservative’ form

o, oG W oy (A.11)
a*  as  onm

Since variables are only discontinuous in n-direction, while they are continuous in s-
direction, the corresponding Rankine Hugoniot conditions follow from

/ / / /

cy(U-U)) = (U;-U)) - ¥/ (A.12)
with ¢, is the front celerity in n-direction (normal to the front). The continuous
derivative dG'/dx adds up to the forces on the right-hand side of the equation. We

assume that the effect of these terms on frontal motion is small compared to the strong
discontinuous terms in the equations.

From these we obtain for a front at the bottom:

a

aT?<qlsl B qlsr)] =

Cn|9ast

L

quiqZItl _ é[qlslqlnl _ ql.vrqlnr] _ FS// (A13)

a a\ 4y a,,

2 —( 2 2

a
_ Aam _ _2 9in _ Dinr + lgzra;l _ F,:/ (A.14)
a,, a\a 2

nldom ~ = @i~ 9im)
| a 1 a,,

NGy ~ @) = Gy~ Gy (A.15)

Variables with a bar (d,,a,) are the respective quantities linearly averaged over the
discontinuity.

From the conditions above the variables associated to the upper layer can be
eliminated using the (continuous) values of g, g, and a from the barotropic (external)
flow computation. If the stream-lines of upper and lower layer flow are primarily
normal to the front (q,,=q,, = ¢24=q,,=0) then only the conditions (A.14) and
{A.15) remain, which are identical to the 1-D Rankine Hugoniot conditions which
were derived in section 6.4. This situation occurs near the foremost point of the
advancing plume, but not necessarily at its (sometimes arrested) sides.

We assume the force F,’’ is again a function of relative celerity and ambient flow
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velocity. Although now the appropriate components of the flow velocity have to be
chosen to express the energy loss in terms of (velocity)?/2g (equivalent to
Kranenburg’s approach). Therefore, as an additional equation for closure of the
system, we adopt the Bernoulli equation along a stream line passing through the front
as proposed by Benjamin (1968) for the 1-D front. A transformation of the s,n
coordinate system to a s',n’ coordinate system moving with the front is useful for this
purpose. In figure A.2 an example is given of the transformation and how stream lines
may pass the front.

Figure A.2 Coordinate transformation and streamline (dashed line) passing through
the front at a small distance above the bottom.

Along these stream lines the following Bernoulli equation is formulated:
1 _ a2 a2l _
pfgzalr + Epf[((l A‘s)ulnr CN) + (l A‘s) ulsrl AEl - (A16)
= P&y + g1 +0/Cs)gza2l - AE,

where A is introduced to account for the effect of bottom shear on the velocity profile

of the ambient flow. The energy loss AF, is caused by bottom generated turbulence
in the ambient flow, and AE, is associated to the flow in the head of the turbidity
current. In the 1-D approach we used a parametrization as proposed by Kranenburg
(1978, 1993a). For a 1-D front advancing into a stagnant ambient fluid:

AE, - AE, - %pfkc:, (A.17)

For a 1-D front advancing into an ambient flow:

AE, - AE, = %pf[k(cN_ulnr>2 * k/(CN_ulnr)ulnr * k//ulznr} (A.18)

where k, k', and k'’ are energy-loss coefficients and u,,,=gq,,/a,,,.

In a 2-DH front these parametrizations do not fully apply or need some correction.
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Physical considerations indicate that processes associated to tangential velocities
generate forces which counteract the net pressure force normal to the arrested front
on the side of the plume (additional to gravity, friction and entrainment forces). These
effects are introduced into the parametrization of the energy losses of the front by a
coefficient k,. This is shown in the following.

If q,,, = q,;, = 0 we parametrize the energy loss in the Bernoulli equation as

AE, - AE, = 1/2-p/(kcy + kyuzy) (A.19)

where u,,=q,q/a,. For a 2-D front into an ambient flow we parametrize the energy
loss as

AE, - AE, = 1/2 'pf{kl ("1\/“‘1rzr>2 * k1/<CN7ulnr>u + kjug, + k, upy| (A-20)

1nr
where ki, k', k"', k, are energy-loss coefficients. Alternatively in equation (A.20)
U= Gaqlay can be replaced by the velocity difference between the layers u, -u,,, but
this is not further elaborated here. Note that these parametrizations are similar to those
in 1-D flow except for the presence of a loss term due to «,,. The results are therefore
also similar to those for 1-D fronts.

For further elaboration we use the following transformations to make the relevant
variables dimensionless

4 q q q
~ N . ~ _ 1sr . ~ _ 1nr . ~ _ 2sl
¢ = y 4y = 4y, T v Gy T

/ / / 7
g,a ayg.a ayg,a ayg,a

and
"
- Gy . a4y ~// F,
a=-= ,; a — 3 F =
f 1 n /
a a 2
g, a

where g, = g..0'°C,

Now the dimensionless front celerity can be expressed in terms of the energy loss
coefficients, the dimensionless front depth, and the dimensionless flow discharges near
the front. Corresponding to the 1-D approach the four Rankine Hugoniot conditions
following from the momentum and mass equations for the coupled 2-DH model are
combined with the Bernoulli equation (A.16) to eliminate q,,, G,y» Gom»> @1» F,”’ and
F'’. Then the remaining equation (in dimensionless form) expresses the front celerity.
This result can be used to express the forces F,’’ and F,’’ acting on the front as a

function of §,,.
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For the case with no ambient flow (using eq.61) we obtain (if C,<1 and §,, is small)

;= J (L-4)[(2 - 4)a/ - kax] (A.23)
a’la (1 - k) +1+k]|

and

pr LG (L k)(1-3)R - 4) - 2hdy | (A.24)

By substituting the results into equation (A.13) a similar relation for F,’’ can be found.
The maximum value of &, for which ¢ = 0 is

k

2,max

42 - 829

For the case with ambient flow (using eq.62) we follow Kranenburg’s (1993a)
derivation for the 1-D front celerity. We obtain (if C,<1 and §,, is small)

1 +a
(€~ él—af)) s k|t (E-G) (K + 2s) + Gk + %)+ (A26)
f

+ ‘112:(1 - s? + (q"?_gldf)zk2 - [if(2 - df) =0

To eliminate some of the coefficients we followed Kranenburg by stating that ¢&-g
reduces as § increases, and ¢ must go to zero if @ goes to zero. The latter case for
instance corresponds to the foremost tip of an arrested sait wedge bui not to the
arrested sides of a plume. By approximation we obtained

gL %) GG
(c_qln)2 W * kll T (C_qln)qln(l + kl) + (A27)
" i+ (83 hy — 8,2 - d) = 0
And the force acting normal on the front becomes
x _ A \2
Pl Loicatly g - 207w (A.28)
S ! (1 -4

where ¢ follows from eq.(A.27) (again a similar relation is found for F,’’). The
maximum value of k, for which ¢ remains real follows from the solution of eq.(A.27)
and is a function of ambient flow and transversal discharge.
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Appendix B

Total variation diminishing (TVD) artificial viscosity

B.1 Roe’s linearization of the non-linear system

The scalar TVD concept can be extended to non-linear systems by using an
appropriate local linearization of the Lax-Wendroff fluxes. A most popular and
effective method can be obtained from Roe’s (1981) approximate Riemann solver. It
uses the exact solutions of a linear (constant coeft.) Riemann problem and applies this
to the non-linear case. To illustrate this we start with a simple description of the
solution to a linear Riemann problem by means of a wave decomposition.

A linear Riemann problem

Assume the Riemann problem for a 1-D linear homogeneous model with two
dependent variables, U=(u,,u,), is written as

S AU S -0

with initial condition

U, x<0

r

Assume that the system of two equations is hyperbolic with two constant (in time) real
eigenvalues:
dx dx

G S B(UsU) >0 T 90U <0 (B.3)

As they are dependent on U, and U, they are different on both sides of the jump. In
figure B.1 is shown how characteristic celerities (eigenvalues of A,) depart from =0
with the ¢,-family as dotted lines and ¢,-family as dashed lines. The initial jump split
up into two shocks, which are located at the intersection of the characteristics of one
of the two families starting from either side of the initial jump. Below and above the
x,t-diagram impressions are given how these jumps can look like in the real world.

The classical solution to this problem can be found by means of a characteristic
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(A) (B) ©

U

left right

Figure B.1 Characteristic celerities ¢, in a x,7-diagram for a linear Riemann problem
with two dependent variables.

decomposition (e.g., see Le Veque, 1990). Since the system is hyperbolic its Jacobian
A, can be diagonalized by the decomposition

¢, 0

Ay = RAR' ; A, =
0 o,

e

] ; R=(r | r,) (B.4)

Hence R is a matrix with columns formed by the right eigenvectors r, of A, defined
as

Agr, = o, , k=12 (B.5)

Characteristic variables or Riemann variables can now be defined as (since R is
constant)

®,

w
G>=( l)=R‘1U : U=R& (B.6)
Elaborating the right part of (B.6) it can be seen quickly that

U(x,t) = ¥ o x,0)r, (B.7)

k=1

which is an eigenvector expansion of vector U and represents the solution of the
Riemann problem. Clearly this solution is a superposition of two single waves
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advected independently, with no change of speed (¢,) along the characteristics. Each
wave has constant shape w(x,)) T, = w(x-¢,;#,0)T,, and is represented by the scalar
compatibility equation

+¢$,— =0 (B.8)

Looking at figure B.1 the solution of the problem in each point of the three regions
(A), (B) and (C) is defined by the departure point of the characteritics at #=0. For
instance in region (B) ¢, characteristic carry information from the left state, while ¢,
characteristics carry infromation from the right state. Due to equation (B.7) the final
solution is a superposition of these states.

This observation can be summarized by writing the solution as

U+ Y (0, =@ )Ty
x -, t<0

Ulx,1) = (B.9)
U, - E (@, =@ )T,

x-¢ <0

which satisfy the Rankine Hugoniot conditions (e.g., Le Veque, 1990). The derivation
above has shown that this solution evolves from the decomposition of the initial jump,
e., linear wave decomposition, which can also be written in a more general form as

2

E (@, =0 )T, (B.10)
k=1

Note that this solution only consists of discontinuities. Rarefaction waves cannot be
computed or approximated, using this approach without some entropy correction.

Linearizing the discrete Jacobian matrix

To get round the time consuming iteration method involved with solving non-linear
Riemann problems, Roe (1981) proposed an ingeneous linearization technique based
on the solution of the linear Riemann problem as presented above. Since this method
has proven its good performance in discontinous flows it has become quit popular. For
defining TVD methods its merits lie in the wave-decomposition of the flux-differences.
Using this decomposition the system reduces to a set of decoupled scalar equations,
on which the scalar TVD method can be applied. Hence flux limiters act on each
simple-wave component.

Consider the linearised form of a general non-linear system of m (homogeneous)
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equations with m dependent variables (forming state vector U):

X, Au,u )aU (B.11)
o ox

The solution of this system can now be found from the previously described linear
Riemann problem by using the following decomposition on the computational mesh

m

Ui+1 - E ((‘)k i+l (‘)k 1) Z (A wk) (B'12)

k=1

It represents the decomposition of a single discontinuity on mesh cell i+1/2, where
I, is the right eigenvector of A associated to its eigenvalue ¢,. Also a similar
eigenvector decomposition of flux-differences can be defined.

The most important part of the theory is the linearization applied to the Jacobian
matrix A. Roe presented three conditions which has to be satisfied by A:

cond.1) AU, U)U,, -U) = f(U, ) - f(U) to ensure that the problem is
conservative and it satisfies the Rankine Hugoniot relations.

cond.2) A(U,,,,U) is diagonizable with real eigenvalues to ensure hyperbolicity.

cond.3) If U,, = U, = U then A(U,U) = A(U) = 3f/dx  to ensure good
behaviour on smooth solutions.

Matrix A was derived for 1-D shallow-water equations for instance by Glaister (1988).
Different to our approach the general type of shallow-water equations is of the g,a-
form (i.e. aqlat + 2-{q/a} aq/ax + . ) representing conservation of momentum and
ass. Tie 1model plcseutt‘:u here is of the i,a- forim \1 c., Qi/dt + udu/dx + )
representing conservation of velocity and mass, which results in a different Jacobian
A. In g,a-form the convective flux in the momentum equation yields a division g/a in
the Jacobian matrix, while in #,a-form this flux only yields a linear term u. To satisfy
condition (cond.1) given above, this division g/a originating from the convective flux
can only be linearized using a square-root averaging. Also the Euler equations in gas
dynamics require the square-root averaging to fractions of dependent variables.

The construction of the linearized Jacobian matrix under the three presented conditions
can be elaborated for the constant concentration fixed bed, and for the full mobile bed
baroclinic model. The basic equations for this model are presented in section 6.4.
- Taking the vector of dependent variables as

U=(Qa,C.z] 5 Q-=u-u (B.13)

it is convenient to rewrite the sediment-mass equation (6.20) in an explicit formulation
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by eliminating time derivatives of C, and a,:

az, /o 9C, s,
e ) %

(5%, e -
32 ax e s

Although this equation is not in conservative form, the Rankine Hugoniot conditions
and characteristics of the system are still unchanged. With respect to discontinuities
the right-hand side of this equation is of minor importance, and other non-conservative
terms can be linearly averaged over the shock (e.g., section 4.3, shock rel.). The bed-
load transport rate per unit of width s, is considered to be a function of u, and its
gradient can therefore be formulated as

(B.14)

Js, (u ou o}
g;(c ) fb(”Z)a_xz - fb(Q,az)a[Q (I-a,/a) + Q/(B,a)]

The baroclinic part of the 1-D model now consists of four equations; equation of
motion, continuity, suspended-sediment and sediment mass. The flux vector and
Jacobian of this system become respectively, after bringing gradient of B, to the right
side (to the the source term):

%(uzz -uf) +g0'C.a, —%gc’CsE2 +gc’C_szb
f(U) — u2a2 (B16)
(Lawy T,)C,
(s, + a1 -LT)C ] (1-e)”

Qa, 02 , 1
_ 2 L C = / /C
u, ; p; +g0a'C 2go a, ga'C,
a Qa
az(l —i) u2~—2 0 0
A(U) = a a (B.17)
0 0 Llu,/T. 0
1-a,/a 1,0 1-L)T!
o 1_2 - b~ S|~
€ a(l € ) l-€
P P P

Here overbars represent arithmetic averages, e.g., d, = 1/2<a,,,, + a,)).
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To elaborate the right-hand side of the condition (cond.1): A(U,,,,U)(U,,, - U) =
f(U.,,) - f(U)), the following identity for quadratic functions is applied:

Aab) = a(Ab) + b(Aa) (B.18)

where overbars denote arithmetic averages again. Since the flux vector eq.(B.15) only
contains linear and quadratic terms eq.(B.17) shows that flux-vector difference can be
expanded directly in terms of differences of U times these averages. Elaboration of
condition (cond.1) in this way yields the following Jacobian A:

Uy~ ——2 ->—+ga'C, lgo/E2 ga'C,
a a 2
(, a _ Qa
a2(1——2) A — 0 0
A - a a (B.19)
0 0 Llu,|T, 0
;(l-ﬁz/a) 70 W(l—L;/T;] o
b 272
1-¢, a(l-e,) l-¢,

which corresponds exactly to the original Jacobian, except that all values with
overbars are averaged. This results remains unchanged for multi-dimensional flows.

Eigenvectors and eigenvalues for this matrix are identical to the original non-linear
system hence the new system automatically satisfies conditions (cond.2) and (cond.3).

thn Fiect +h ol { + +
Tor the numerical model the first three cigenvalues {or characteristic celerities) follow

from the following characteristic polynomial

£ a,a, -
L +a2]—1‘2— 2Q?

fraiy _

g O/ES_I /5 (B.20)
a

1—€p a

which can be solved analytically for é,, k=1,3. Here parameter T is defined as

I - Qa, (B.21)

A fourth characteristic originating from Galappatti’s equation can be written as

b, - LT ®.22)

The right eigenvectors follow from A+ = ¢+t and can be written (with subscript k
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referring to eigenvalue ¢,):

Lo 1 i}
5152/0 2 Tau
1 =
Tall
rk=1,3 = 0 M f‘4 = (B23)
1
(cbk_F)Z_AlalEZ/a 1 T,
go'C,a,a)/a 2|71,
where
0’ = ——— &,
Al = —g + go/CS ; A2 - (1 _La//Ta/) 272 (B.24)
“ (l_ep)
= =
3 2 - |80'Cify s .
T = /(b T)b,a - al{Te—”(%—r)mlazw} (8.25)
p
; = - C.u,Qf
T, = go/(¢4—l‘>a a(2CSA2+a2¢4> - 2_3Ti€—fbl (B.26)
P
| = = C,i,Qf,
T, = go'a,a, a(ZCSA2+a2¢4> - Z—il ie bl (B.27)
14

. - __=[d,-T
[a<d)4—F)2—a1a2A1] + go'aa,a,f [—(11)4_6 ] (B.28)
P

In equation (B.4) is shown how a matrix R can be formed with the right eigenvectors
as colums. If this matrix is inverted it can be used to define the difference of the
characteristic variables as function of the difference in components of vector U:

(4,6) = R7'(AU) (B.29)
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Matrix R! is written as

Y11 Y21 a1 AL
(b 8a)(bs-0) (b-0a)(b1-0) (b1 -0s)(b 0] (B1-5)(6 )
Y2 Y2 RE Y4
o 002 0) o abs ) oy b)) (b bfbad)| B
Y13 Y23 Y33 ¥4
bbb 8) (b bbs 8] (0 e b) (b )fer-0)
0 0 1 0
where
aa.
Yy = %(BH—B:’Z)
B 51‘72A .
Yy = o BisBi (B.31)
o T e G )00
Y, = g0'C.a,a,la
in which

s da=2 o Ti=r o [i=1 B.32)
By =T-0; 3 1—1{i2=3 ; 142{1‘2:3 > I {i2=2

The splitting process is concluded if these results are substituted in equation (B.11).
TVD artificial viscosity terms can now be formulated using these results to decompose
flux differences in a similar way. Clearly this theory requires a large computational
effort, but that can be significantly reduced for fixed bed computations with constant
concentration. Then the number of equations, as well the number of eigenvalues and
eigenvectors reduces to two. The linearisation of the Jacobian as presented above still
holds. The eigenvalues can now be written explicitely as

. _ Qa 3,a _
Gp = Uy Zié ;¢ = \l%(gcfcsa_gf) (B.33)

with associated right eigenvectors
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N T
£, = (i . 1] (B.34)

A) 1
) ., Liaa) (B.35)

B.2 Flux limiters

The application of the TVD method to define an artificial viscosity term for the
MacCormack scheme is treated in section 6.6. It is shown that the second-order
correction term of the Lax-Wendroff flux (MacCormack’s flux for the linearized
system) can be limited by multiplying it with a limiter function. Near discontinuities
with large flux differences the limiter must approach, in a non-linear way, to zero to
reduce the scheme to first order, while in smooth regions the limiter must go to unity
to obtain second-order accuracy.

Several appropriate limiters are reported in literature (e.g., see Sweby, 1984, Le
Veque, 1990, Hirsch, 1990). The limiters are dependent on associated upwind ratios
6 of characteristic variables or fluxes, and satisfy the conditions (section 6.6)

0 < %6) <2  and  ®(6) <2 (B.36)
with
~ At
N P U e L
i = s Bl = . 12 (B.37)

( x“”‘)p]}z

by

5 A
L~

)(Ax“’k)}

ie1/2

where j = sign(¢,) to assure that § is the ratio of slopes in upwind direction; v’ is a
small number (e.g., 1-10%) to prevent division by zero. An additional condition to
obtain second-order accuarcy is that the function ¢ must pass through the point
®(1)=1 since in smooth parts, where & should go to unity, values of § are close to
one. Furthermore it must lie between $(8)=6 and ®(8)=1 (Sweby, 1984). This is
illustrated in figure B.2.
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®(0)
2 b=2
1 o=1
0

0 1 2 43
Figure B.2  Second-order TVD region (shaded).

Limiter functions which satisfy equation (B.36) but lie below the shaded region in
figure B.2 give to smoothening, while those which lie above this region give to much
compression (turning a sine-wave into a square wave in time).

The upper boundary of this region is expressed by the ’superbee’ limiter of Roe
(1985):

®(8) = max[0, min(1,26), min(6,2)) (B.38)

The lower boundary of this region is expressed by the minmod’ function:

®(0) = max/ 0, min(1,0)) (B.39)

All other limiters are located within these two bounds. Well known is van Leer’s
(1974) limiter which is a continuous function of 6:

6 + 18]

0) = [+ 6

(B.40)
A general family of limiters can be defined as (Sweby, 1984)
®(6) = max[0, min(a 0, 1), min(0, ) | l<a <2 (B.41)

which also contains the boundaries of the TVD region. Smoother than van Leer’s
limiter is that of van Albeda et al. (1982):
8> +0

(B.42)
1 + 6%

®(6) =
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Alternatively a monotonized centred limiter can be used:

®(0) = min[|«|, 2, 2|0|] sign(l,a) ; « = =(1+6) (B.43)

B | =

For application of these limiters to the Lax-Wendroff flux Hirsch (1990) showed that
they must satisfy a symmetry property

20) _ q)(l) (B.44)
0 0

which can be shown to hold for all the presented limiters above.

More details on these limiters can be obtained from the mentioned references. The list
of limiter functions given above is implemented in the numerical mode].

B.3 Entropy fix

A disadvantage of using the solution to the linear Riemann problem, in order to define
the numerical fluxes, is the impossibility to compute rarefaction waves. The
difficulties occur only when the expansion contains a transcritical point, i.e., a change
from subcritical to supercritical flow. Details on this problem are for instance well
described by Hirsch (1990) and Le Veque (1990). The most popular solution to this
deficiency is an entropy fix introduced by Harten and Hyman (1983). Effectively it
introduces a local expansion fan in the approximate Riemann solution when it is
required. Therefore it is necessary to modify the modulus of eigenvalue ¢, in the
computation of the viscosity term (algorithm 6.2) and the slope ratio 6 (eq. B.37).
Following Harten and Hyman this is realized by

b, | = Ié""‘*‘ﬂ’ if “f’k,mzzl 2 € (B.45)
¢k,1+1/2‘ . R
& i deiinl <€,
where
€ = max[ 0, (‘ﬁk,m/z - (bk,i) , <¢k,i+1 - (i)k,i>1/2> ] (B.46)

When there is no transcritical point the formulation above yields the original moduli,
otherwise the formulation yields an entropy fix to Roe’s approximate Riemann
solution.
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