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Abstract

Designing and implementing effective systems for thermal comfort management in buildings is
a complex task due to the need to account for subjective preference parameters influenced by
human physiology, bias and tendencies. This research introduces a novel approach to simulat-
ing human interactions for managing thermal comfort. Stochastic simulated humans provide
feedback in the form of thermostat interactions, from which their thermal comfort is inferred
converting these interactions into rewards, called human rewards. Control policies are obtained
from training with Human reward or PMV reward by utilizing the Proximal Policy Optimization
(PPO) algorithm. It is shown that the learning process can be guided solely by human rewards.
Experiment results assess the impact of this simulated human reward system on the adaptabil-
ity of the reinforcement learning model for single human scenarios, also comparing back to the
PMV reward case as ground truth. The policy trained with PMV reward achieves thermal control
that keeps the PMV values inside the [-0.2,0.2] range, while the policy trained with the human
reward achieves a range of [-0.6,0.6]. Simulating human feedback as an interaction with the
thermostat, the proposed model is shown to capture a rough estimate of human thermal pref-
erence. This research paves the way for using simulated humans for interactive reinforcement
learning (RL) based thermal comfort control.



Preface

Preferences define the person we are. Whether it is the simple passions and desires that drive us or
morals and rational that guide us, each person is only separated by a thin and inconsistent line called
preference. For that reason, | believe that the loss of preference is no different than the death of self.
In this modern world where it is common for the louder to suppress the silent and easy for the silent to
follow the loud, preserving one’s preferences comes with a heavy toll. Therefore, it falls on the aware
to make the silent heard. Someone can show their preferences through even the smallest gestures.
Interactive reinforcement learning makes it possible to capture preferences to an extent that surpasses
the estimates made with general assumptions.

By living and working in indoor spaces, we are constantly faced with the question of whether are we
happy with the thermal conditions even though the question is not explicit. While it is simple to adjust
the thermal conditions, it is not so simple to know what the ideal condition we should aim for is. It is
even harder to adjust for a group of people that you may not even be a part of in the case of thermal
comfort in the workspace. With this thesis, | hope to show that it is possible to capture the preferences
of people through their natural interactions with their environments.

| would like to express my heartfelt gratitude to my academic supervisor, Dr. Luciano Cavalcante
Siebert, for his invaluable support in making this thesis possible and his patience throughout the pro-
cess. | also wish to extend my thanks to my company supervisors Pim Rutgers and Adalberto Guerra
Cabrera for sharing their insights and expertise, which greatly contributed to the development of this
thesis.

Ata Korkusuz
Delft, September 2024
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Introduction

Thermal comfort refers to the state of mind expressing satisfaction with the surrounding thermal envi-
ronment, influenced by factors such as air temperature, humidity, and air movement [1]. In the context
of office environments, maintaining optimal thermal conditions is essential for ensuring the well-being
and productivity of employees. Uncomfortable thermal conditions can lead to decreased concentra-
tion, lower productivity, and increased absenteeism, significantly impacting organizational efficiency
and morale [2].

Achieving thermal comfort in office environments is further complicated by the diverse preferences of
occupants. Individual factors such as age, gender, clothing, and metabolic rate can lead to varying
thermal comfort requirements, making maintaining a uniformly comfortable environment challenging.
Additionally, personal preferences and perceptions of comfort can differ widely among employees, with
some preferring cooler conditions while others favour warmer temperatures. This variability necessi-
tates a dynamic and adaptive approach to thermal management that can adjust to the unique needs of
each occupant. Addressing these preference concerns is crucial for achieving true thermal comfort.

Heating, Ventilation, and Air Conditioning (HVAC) systems are essential for maintaining thermal comfort
in office environments. Traditional HVAC control methods often rely on thermostat-based systems,
which regulate temperature to maintain a set point. More advanced methods, such as Proportional-
Integral-Derivative (PID) controllers, provide finer control by continuously adjusting the HVAC output
based on the difference between the desired and actual temperatures. Rule-based control systems
utilize predefined logic to manage HVAC operations based on time schedules or occupancy sensors
[3]. While these methods can be effective in maintaining general thermal conditions, they often fall
short in addressing the diverse and dynamic thermal comfort preferences of individual occupants. As
a result, there is an increasing interest in developing more adaptive and intelligent control strategies,
such as RL, to better cater to the unique thermal comfort needs of office workers [4]—[8].

In light of the significant advancements achieved by reinforcement learning (RL), there is a growing
interest in applying these methodologies to address intricate real-world challenges. Thermal comfort is
one such challenge that has a significant potential to benefit from these advancements in RL. However,
the effective deployment of RL methods in a socio-technical context, particularly where human interac-
tions with artificial agents are prevalent, necessitates thoughtful consideration of individual preferences
and limitations.

1.1. Problem Statement

Despite the widespread use of traditional HVAC control systems, they exhibit significant limitations in ad-
dressing the dynamic and individualized nature of thermal comfort preferences in office environments.
While effective at maintaining a general temperature set point, thermostat-based systems and PID con-
trollers lack the adaptability to respond to the varying comfort needs of different occupants. Although
somewhat more flexible, rule-based systems still operate on predefined logic that does not account
for real-time changes in occupancy and individual preferences [3]. Current RL-based thermal control
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methods, despite working aware of occupancy, lack any adaptation to personal preference as the ther-
mal comfort metric used is limited to PMV (further discussed in section 2.3)[4]. These limitations often
result in a one-size-fits-all approach, leading to discomfort for many employees who do not fit the aver-
age thermal profile. Additionally, the inability to adjust to personal comfort preferences dynamically can
decrease overall satisfaction and productivity over time as the people utilizing the same environment
change. Consequently, there is a pressing need for more human preference-aware adaptive control
mechanisms that can dynamically and accurately maintain thermal comfort tailored to individual needs.

Maintaining thermal comfort in office environments presents several specific challenges. Firstly, the
diverse thermal preferences among occupants make establishing a universally comfortable tempera-
ture difficult. Factors such as individual metabolic rates, clothing choices, and personal sensitivities
to temperature variations contribute to these differences [1]. Secondly, occupancy patterns in offices
are often unpredictable, with fluctuations throughout the day as people move in and out of different
spaces or throughout the year as people prefer to come to the office or not. This variability requires a
responsive system that can adjust in real-time to changing conditions [2], [9]. Furthermore, the physi-
cal layout of office spaces, with varying levels of insulation, exposure to sunlight, and airflow patterns,
adds another layer of complexity to achieving uniform thermal comfort. Addressing these challenges
requires a sophisticated approach that can integrate multiple data types and dynamically adjust HVAC
thermostat operations to meet the diverse and evolving needs of office occupants[9].

RL offers a fitting solution to the variability and unpredictability of preference problems. The ability
of RL to handle problems where the solution is not known in advance and must be learned through
exploration is promising as the exploration of how to satisfy an individual's thermal preference is what
lies at the core of the problem. RL is also suitable for problems with complex, high-dimensional state
spaces where traditional methods may struggle. As the thermal dynamics of a space is quite complex,
such an approach is mandatory. RL also offers the flexibility to adapt to dynamic environments where
the conditions or rules may change. Although it might be easy enough to keep a constant accepted
temperature setpoint, such a setpoint might not always be optimal for thermal comfort. The optimal
may change depending on the surroundings (season, air circulation, unexpected temperature drops,
etc.) as well as on the individual (change of personal, sickness, activity, etc.). By being able to adapt
to such variations, RL has the potential to create smarter and more resilient control agents.

1.2. Objectives and Scope

This thesis project focuses on developing an RL model designed to regulate office air temperature
setpoints by incorporating user feedback. Recognising comfort as a subjective and personal experi-
ence, the primary objective is to create a learning system that engages with users, accounting for both
the user’s preference and the office environment’s detailed state. Utilizing an RL model is expected
to introduce adaptability to the system which is lacking in the single setpoint or the predefined logic
approaches. It is also expected to remove the need for trying to estimate the human parameters that
affect thermal comfort metrics correctly.

The scope of this project has been narrowed down specifically in terms of the actuator and the human
feedback to better focus the research. The RL model only controls the air temperature setpoint while
optimizing for thermal comfort. This constraint is in place as the air temperature setpoint is the most
straightforward actuator parameter to both set and explain. This choice simplifies the design, installa-
tion and maintenance when deploying the model in real life while making the research applicable for
virtually all HVAC systems as it is almost always readily available. Meanwhile, human feedback re-
garding their thermal comfort is collected through thermostat interaction. Considering that occupants’
expectations of satisfaction with the indoor environment drive their interactions with devices, equip-
ment, and energy systems in buildings, one or a set of multiple possible interactions could be chosen
for interpreting their thermal comfort. Specifically, the interaction of adjusting the thermostat settings
has been chosen as it is the most direct and natural response when uncomfortable with the thermal
conditions. This choice also allows for the implementation of the proposed model with no extra setup
or time taken from the occupants’ routine.
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Research Question
This thesis aims to develop an RL model that learns to maximize thermal comfort in a way that consid-
ers individual human preferences. To do this, the following main research question is formulated:

How can reinforcement learning be effectively applied for HVAC control to enhance thermal comfort,
considering individual preference?

The following subquestions are formulated to assist with the clarity and scope of the thesis:

» How can interactive reinforcement learning be used to incorporate human interaction?
* How can thermal preferences be extracted from human interaction?

1.3. Thesis Structure

This thesis consists of 6 chapters. The introduction has explained the motivation and the research
question that drives this research. Chapter 2, background, will briefly go over the necessary background
information that the thesis builds on top of, as well as the relevant previous works in the literature that
coincide with the thesis topic. Chapter 3, methodology, first explains how the RL model architecture is
set to learn individual preferences for thermal comfort and change the thermostat setpoint accordingly
through Energyplus. Then the chapter describes the experimental setup used to obtain comparable
results fit for ablation analysis. Chapter 4, results, reveals the model’'s output in terms of its training
and control performance. Finally, chapter 5 and chapter 6 consist of the discussion and conclusion
respectively, summarizing the findings and listing possible future work.



Background and Related Works

2.1. Thermal Comfort

Thermal comfort is defined as the condition of mind that expresses satisfaction with the thermal environ-
ment. It is a subjective measure, influenced by environmental and personal factors. Achieving thermal
comfort means creating an indoor climate that occupants find neither too hot nor too cold, but just right,
allowing them to maintain their core body temperature without exerting unnecessary thermoregulatory
effort.

Factors Affecting Thermal Comfort
Several factors affect thermal comfort, which can be broadly categorized into environmental and per-
sonal factors[1], [4]:

» Environmental Factors:
— Air Temperature: The temperature of the air surrounding the occupant. It is the most direct
and influential factor in determining thermal comfort.

— Radiant Temperature: The surrounding surface temperature (walls, ceilings, floors). These
surfaces can emit or absorb heat, affecting how warm or cool a person feels.

— Humidity: The amount of moisture in the air. High humidity can hinder the body’s ability to
cool through sweating, while low humidity can cause dryness and discomfort.

— Air Velocity: The speed of air movement around the occupant. Air movement can enhance
heat loss through convection and evaporation, making a space feel cooler.

» Personal Factors:

— Clothing Insulation: The amount of thermal insulation provided by a person’s clothing. More
clothing increases warmth, while less clothing allows more heat to dissipate.

— Metabolic Rate: The rate at which the body generates heat. It varies with activity level, with
higher activity increasing heat production and lower activity reducing it.

— Age and Gender: These can influence thermal comfort preferences, as metabolic rates and
thermal sensations can differ among different age groups and between genders.

— Acclimatization: People who are acclimatized to a particular climate may have different ther-
mal comfort preferences compared to those from different climates.

Guidelines and Standards for Thermal Comfort

Several guidelines and standards have been developed to ensure that indoor environments provide
adequate thermal comfort. These provide objective criteria and recommendations for creating comfort-
able thermal conditions:
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» ASHRAE Standard 55: The American Society of Heating, Refrigerating and Air-Conditioning En-
gineers (ASHRAE) Standard 55 specifies the conditions for acceptable thermal environments and
defines the methods for measuring and evaluating thermal comfort. It considers factors such as
temperature, humidity, air speed, and personal factors, providing a comprehensive approach to
achieving thermal comfort.

» 1ISO 7730: The International Organization for Standardization (ISO) 7730 standard provides guide-
lines for determining and interpreting thermal comfort using calculation methods. Itintroduces the
Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices to quantify
thermal comfort levels.

* EN 15251: The European Standard EN 15251 specifies the indoor environmental parameters
required to achieve thermal comfort in buildings, including temperature ranges, humidity levels,
and ventilation rates. It emphasizes the importance of designing buildings and HVAC systems to
meet these parameters to ensure occupant comfort.

These guidelines and standards are crucial for designing and maintaining indoor environments that
promote occupant comfort and well-being. By adhering to these standards, buildings can provide a
more consistent and satisfying thermal environment, reducing discomfort and enhancing productivity
and health.

In this research, explicitly the ASHRAE 55 definition of thermal comfort and the PMV calculation method
suggested by ISO 7730 has been used. Therefore, PMV calculations are done such that they only
depend on the mean air temperature, mean radiant temperature, air relative humidity, relative air speed
felt, metabolic rate, and clothing insulation. This implies that when taking PMV as a measure of thermal
comfort, the factors affecting thermal comfort are assumed to be limited to those used to calculate
PMV. It is worth noting that research surrounding thermal comfort criticises the limitations of the PMV
scale suggesting that it fails to capture psychological and physiological differences between people
[4]. Different adaptive thermal comfort models have been proposed that take into consideration the
variances in tolerance to heat or cold as well as the lack of linear correlation between the PMV scale
and the voicing of dissatisfaction [10]. The specific usage of PMV as a metric of thermal comfort in this
research is explained in more detail under the section 3

2.2. Reinforcement Learning

Reinforcement learning is a type of machine learning paradigm where an agent learns to make deci-
sions by interacting with an environment to achieve a specific goal. The fundamental concepts in RL
include agents, states, actions, and rewards.

Agent is the decision-maker or learner in the RL framework. It takes actions based on the current
state of the environment to maximize some notion of cumulative reward over time. The agent continually
learns from the consequences of its actions, refining its strategy to improve performance.

State is a representation of the current situation or configuration of the environment. It encapsulates
all the relevant information that the agent needs to make a decision. States can be fully observable,
where the agent has complete information about the environment, or partially observable, where some
aspects of the environment are hidden from the agent.

Action is a set of all possible moves the agent can take in a given state. The agent’s objective is
to select actions that will lead to desirable outcomes. Actions can be discrete, such as moving in a
specific direction, or continuous, such as adjusting the speed of a vehicle.

Reward is a scalar feedback signal received by the agent after taking an action in a specific state.
The reward signals how good or bad the action was in terms of achieving the agent’s goal. The agent’s
objective is to maximize the cumulative reward, known as the return, over time. Rewards can be imme-
diate or delayed, making the learning process more complex when long-term rewards are considered.

The interaction between these components is typically modelled as a Markov Decision Process (MDP),
where the agent transitions from one state to another by performing actions, receiving rewards, and
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updating its knowledge to improve future performance. This framework provides a robust foundation
for developing algorithms that enable agents to learn optimal policies, which are mappings from states
to actions that maximize cumulative rewards.

Interactive Reinforcement Learning

Interactive Reinforcement Learning (Interactive RL) extends the traditional RL framework by incorpo-
rating interactive elements that can significantly improve the learning process [11]. In standard RL, the
agent learns solely through its interactions with the environment, typically in a trial-and-error fashion.
Interactive RL, however, introduces additional sources of information and feedback to expedite learning
and improve performance. Key components and concepts of Interactive RL include[12]:

Human-in-the-Loop: In many Interactive RL systems, human experts or users can provide, through
some input, guidance to the agent. This can take the form of demonstrations, where the human shows
the agent how to perform certain tasks, or through direct feedback, where the human provides positive
or negative evaluations of the agent’s actions. This can significantly accelerate learning, especially in
complex environments where pure trial-and-error would be inefficient or impractical.

Exploration-Exploitation Trade-off: Interactive RL often employs strategies to balance exploration (try-
ing new actions to discover their effects) and exploitation (choosing actions that are known to yield high
rewards). Human feedback can help guide exploration, making it more targeted and effective. For ex-
ample, a human can suggest promising actions or warn against risky ones, thus enhancing the agent’s
ability to discover optimal strategies.

Reward Shaping: In Interactive RL, reward shaping is a technique where additional rewards are pro-
vided by a human or an automated system to guide the learning process. These shaped rewards can
be designed to reflect intermediate goals or milestones, helping the agent to learn complex tasks more
effectively by breaking them down into simpler subtasks.

Adaptive Learning: Interactive RL systems can adapt their learning processes based on the feedback
and guidance they receive. This can involve adjusting the learning rate, altering exploration strategies,
or modifying the reward structure to better align with human input. This adaptability allows for more
efficient and effective learning, especially in dynamic or uncertain environments.

Interactive Queries: The agent can actively query humans for specific information or clarification when
faced with uncertainty. This interactive querying can help the agent resolve ambiguities or make better-
informed decisions, further enhancing the learning process.

Interactive RL leverages the synergy between human expertise and machine learning capabilities, lead-
ing to faster and more robust learning. This approach is particularly beneficial in complex, real-world
applications where traditional RL methods may struggle to achieve optimal performance within a rea-
sonable timeframe. By incorporating human knowledge and interactive feedback mechanisms, Inter-
active RL provides a powerful tool for developing intelligent agents capable of handling intricate tasks
in dynamic environments.

Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) [13] is an RL algorithm that has gained popularity due to its robust-
ness, efficiency, and ease of implementation. Developed by OpenAl, PPO strikes a balance between
the need for complex optimisation techniques and the simplicity required for practical use. It is partic-
ularly well-suited for environments with continuous action spaces and has been effectively applied to
various complex control tasks[14].

PPO is an actor-critic method, utilizing two primary components: the actor, which determines the actions
to be taken, and the critic, which evaluates the actions by computing value functions. The algorithm’s
key innovation lies in its approach to policy updates, ensuring stable and reliable learning[13].

PPO has a clipped surrogate objective. The primary purpose of PPO is to improve the policy in a
way that prevents drastic updates, which can destabilise the learning process. PPO uses a clipped
surrogate objective function to achieve this. The function incorporates a clipping mechanism that limits
the change in policy between updates, ensuring that the new policy does not deviate excessively from
the old one. Mathematically, the objective is expressed as follows:
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L(s,a,0k,0) = min ( A" (s,a), clip ( -6 1+ e) A”(s,a)) (2.1)

While the PPO-clip updates policies via:
Orpy1 = arg max Esanmo, [L(s,a,6f,0)] (2.2)

PPO does advantage estimation through the advantage function, which measures how much better or
worse a particular action is compared to the average action taken from a given state. This helps the
algorithm focus on actions that are better than expected, reinforcing good behaviour, and discouraging
poor choices.

PPO often includes an entropy bonus in the objective function to encourage exploration and prevent
premature convergence to suboptimal policies. This promotes a certain level of randomness in action
selection, ensuring that the agent continues to explore the state space.

The algorithm steps are as follows:

+ Initialize Policy and Value Networks: Start with initial parameters for the policy (actor) and value
(critic) networks.

Collect Trajectories: Run the policy in the environment to collect trajectories (sequences of states,
actions, rewards, and next states).

Compute Advantages: Use the value network to compute the advantage estimates for each action
taken during the trajectories.

Optimize Surrogate Objective: Use the collected data to perform multiple epochs of optimization
on the clipped surrogate objective, updating the policy network parameters.

» Update Value Network: Simultaneously, update the value network to better estimate the value
function using the collected rewards.

* Repeat: Repeat collecting trajectories and optimizing the policy and value networks until conver-
gence.

PPO has been successfully applied in various domains, including robotics, playing games, and auto-
mated control systems [15], [16]. It is preferred due to its stability, reliability, sample efficiency, and
ease of implementation [16]. PPO is used in this thesis for training the agent controlling the thermostat
setpoint for these reasons.

2.3. Related Works

The previous literature on temperature and thermal control revolves around HVAC systems. Model
predictive control for HVAC systems was initially classified into three categories: classical control, soft
control, and hard control[3]. PID controllers and similar subsystems that do modulation of controlled
variables according to error dynamics fall under classical control. Particle swarm optimization [17],
adaptive self-tuning Pl controllers [18], [19] and dynamic building simulation [20] expand on classical
control while still only controlling the room air temperature. While it is not that common to see advanced
extensions of Pl or PID controllers in literature deployed in the field except for specialized temperature
critical systems, most industry-grade HVAC systems do utilize a basic PID controller option through sim-
ple hardware implementations. Hard controllers, meanwhile, cover methods based on gain scheduling,
nonlinear control, robust control, optimal control and model predictive control. Gain scheduling on its
own for temperature control is limited to mostly instrumentation and machinery [21], [22]. Similarly,
nonlinear control research focuses on its applications for chemical processes, reactors and engines
[23]27].

While the research surrounding hard and classical control lacks any focus on thermal comfort controlling
the temperature, soft control that is based on either fuzzy logic [28], [29] or neural networks [30]—[34]
does delve into the human aspect. Methods used under the soft control category do training under
previous data approaching the problem as a supervised classification or regression task [4]. Hybrid
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controllers that combine soft and hard control methods also exist, but the scope of the research for
such methods does not extend to the thermal comfort case.

When focusing on the research done for thermal comfort, RL control is a prominent control method
which does not fit under the three main categories mentioned in the standard sense. Compared to
other machine learning methods applied for thermal comfort, RL does learning in context [4].

Earlier RL research for thermal comfort used methods such as SARSA and Q-Learning [35]-[38].
These two methods, despite being outdated and outperformed, are still used commonly as a base-
line for comparing newer algorithms. More recently, due to the complexity of thermal building systems
due to various factors that influence the environment’s state, deep learning has been a popular choice
to deal with the complexity. Deep RL approaches for thermal comfort utilize algorithms containing a
deep neural network at some stage (most commonly for the environment observation encoding) of the
reinforcement learning loop. Such algorithms including deep Q-learning and deep DPG [5], [6] have
been shown to perform well in optimizing for thermal comfort, with thorough investigation of their per-
formance for variations in the applied environment, controlled variables that affect thermal conditions,
and reward function [7], [39]-[45]. The main focus of most deep RL research for thermal comfort aims
to optimize thermal comfort and energy consumption simultaneously, striking a balance according to
some defined objective.

Another way to approach classifying RL research for thermal comfort is in terms of their handling of
the thermal comfort index. The distinction between group-based comfort models and personal comfort
models constitutes the base of this research. A review of the current literature reveals that a majority
of methodologies are group-based comfort models, estimating the group’s thermal preference, even
though personal comfort models dominantly outperform them [4]. When narrowing down this review
to just reinforcement learning research rather than all machine learning research, the dominance of
using group-based comfort metrics is even more significant. To do human-in-the-loop learning, Cicirelli
et al. produce separately and then combine environmental and human rewards when training a deep
g-learning agent for controlling the HVAC and windows [46]. Liang et al., on the other hand, approach
capturing individual preferences by simulating thermal comfort as a multi-agent problem [8], [47].

Overall, a personal RL comfort model has been chosen to be focused on due to its high potential with
a lack of extensive analysis and research surrounding it. Unlike other research, the model proposed in
this thesis shall capture and operate solely based on individual preference.



Methodology

This chapter explains the system architecture proposed for interactive RL for adaptive thermal comfort.
This architecture offers two types of approaches: utilizing human feedback or utilizing PMV for thermal
comfort. Each section explores the proposed model by describing the function of and rationale behind
a block in the system architecture.

State Reward
4{ Reward }7
¥

State

Environment Agent
Action

Figure 3.1: Classic interactive RL system overview block diagram

As seen in figure 3.1 the system consists of the environment, agent, and reward blocks. As a general
overview, the environment block simulates the room environment in terms of the HVAC system and
the building’s thermal flow. The agent block determines and sets the temperature setpoint according
to the RL model to optimize thermal comfort based on the observed state. Finally, the reward block
provides an appropriate reward for the received state. The provided reward can be the PMV reward
or the human reward. This block is designed in a way that allows it to be replaced by actual human
interaction when deployed in real-life scenarios when using the human reward.

3.1. Environment Block

The environment block is responsible for simulating the thermal conditions of a space according to a
provided action (the temperature setpoint) and the previous state. The environment then provides the
thermal state of the space to the other blocks after simulating for the timestep, a set amount of time,
with the given action.

The thermal simulation of the space is handled by EnergyPlus. EnergyPlus [48] is a whole building

9
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energy simulation program that is used to model energy consumption for heating, cooling, ventilation,
lighting and plug, and process loads. It provides a detailed simulation of the thermal dynamics within
buildings, allowing for precise analysis and optimization of HVAC systems and energy usage.

EnergyPlus offers a comprehensive suite of tools for modelling building energy performance. It inte-
grates advanced heat balance algorithms and considers various factors such as weather data, building
geometry, materials, and occupancy schedules. The program can simulate complex interactions be-
tween different building components and systems, providing detailed energy consumption and thermal
distribution outputs. Integration of EnergyPlus is valuable as it allows for a far more sophisticated
simulation of the thermal conditions of a space, matching the industry standard.

Key features of EnergyPlus include:

» Thermal Modeling: EnergyPlus uses a heat balance method to simulate the thermal behaviour of
buildings, accounting for conduction, convection, and radiation heat transfer.

* HVAC Simulation: The software models various HVAC systems, including conventional and ad-
vanced configurations, allowing for detailed system performance analysis.

* Flexible Customization: Users can customize their simulations with detailed input data and control
strategies, making them suitable for a variety of research and design applications.

» Weather Data Integration: EnergyPlus can incorporate detailed weather data, enabling accurate
simulations of building performance under different climatic conditions.

The EnergyPlus Python API facilitates interaction with EnergyPlus through Python scripts, allowing
for more flexible and automated control over simulations. This API enables users to perform tasks
such as modifying input parameters, running simulations, and extracting output data through Python
programming.

EnergyPlus API provides 4 types of API to interact with the environment:

+ State API: enables a client to create and manage state instances for using EnergyPlus API meth-
ods. Nearly all EnergyPlus APl methods require a state object to be passed in, and when call-
backs are made, the current state is passed as the only argument.

» Functional API: enables accessing structures and functionality inside EnergyPlus from an outside
client. It is just an organizational class that provides access to nested functional classes through
member functions.

* Runtime API: enables a client to hook into EnergyPlus at runtime and sense/actuate data in a
running simulation through callback functions. Inside the callback function, the client can get sen-
sor values and set actuator values using the DataTransfer APl methods, and also look up values
and perform calculations using EnergyPlus internal methods via the Functional API methods.

» DataTransfer API: enables data transfer between EnergyPlus and a client. Output variables and
meters are treated as “sensor” data while some specific variables in EnergyPlus are controllable
as actuators. There are also some static data members exposed as “internal” variables.

In this thesis, a custom gymnasium (gym) environment that uses the EnergyPlus Python APl is used for
the environmental simulation, due to the compatibility of the gymnasium as a single agent environment
with multiple RL algorithm libraries including Stable-Baselines3. The repository by Galatoud [49] has
been used as a starting point for the gym environment that utilizes EnergyPlus.

The EnergyPlus Runner which handles the data exchange is implemented heavily utilizing the Runtime
APl to run an instance of EnergyPlus for a given space with a provided weather file and the DataTransfer
API to interact with this instance. Both APIs make use of the State and Functional APIs as they are built
on top of them. The instance of EnergyPlus is run in a separate thread. Actions going into the simulation
and observations coming out of the simulation are passed through the action and observation queues
of size one respectively as only one timestep is processed at a time. EnergyPlus allows for getting the
values of any number of defined variables or meters at each timestep. These variables are defined by
their zone identifiers, node identifiers and variable names. Any number of actuators can be set at a
timestep similarly. Both of these operations are done through the DataTransfer API by initializing an
exchange channel and calling the set or get function for the exchange with the unique identifier tuple.
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EnergyPlus allows for 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, or 60 timesteps per hour. At each time step, an
EnergyPlus episode (not to be confused with RL episodes)is completed, for which the output, info and
error files are written. Four timesteps of 15 minutes have been chosen for our purposes as too long
timesteps reduce the accuracy of control and simulation results while too short timesteps unnecessarily
increase simulation runtime.

The EnergyPlus Runner is then wrapped with a gymnasium class to ensure compatibility with the RL
training setup. During initialization, the gym takes in input the environment configuration which defines
the verbosity of the environment and the EnergyPlus episode output path. The path to the train or test
weather file as well as the reward choice between PMV or human is also indicated here. Reset and Step
functions are the two main functions that handle the interface with the RL algorithm. Inside the Reset
function, the initial temperature setpoint for the new episode is selected through random sampling of
the action space and set. This allows for needed variation during the training as consecutive days can
have the same or too similar weather file data. Then the observation, PMV and reward history are
cleared for a new episode and the new action and observation Queues are created. In the case that
the simulation has stopped at the end of the last episode, the simulation is also restarted. In the step
function, the timestep is incremented and the simulation is checked to make sure it is accessible. If the
simulation is stopped, this is identified by the timeout mechanism or a None value in the observation
queue. In those cases, the simulation episode is stopped early with the last observation passed for
the current timestep once. If the simulation is running without any issues, then the episode is stopped
at the determined episode length. The PMV is calculated here as well but only for keeping history. At
the end of an uninterrupted episode (this is always the case if the total number of timesteps simulated
is divisible by the episode length) the history containing the observations, rewards and PMVs at each
timestep of the episode is stored, being appended to the pickle file containing histories until then.

| Observation | Range | Unit |
Site Outdoor Air Drybulb Temperature | [-40,45] | °C
Zone Mean Air Temperature [0,45] °C
Zone Air Relative Humidity [0,100] | %
Zone Mean Radiant Temperature [0,45] °C

Table 3.1: Environment Observation Space

The observation space consists of 4 different observations with their ranges and units seen in table 3.1.
11 variables have been identified to be accessible and directly related to the thermal conditions of a
zone in EnergyPlus. Of these variables, the heating and cooling setpoints fall under the action category
while the People Occupant Count is only a static variable set at the beginning of the simulation with no
measured impact dynamically during the simulation. Windows Total Transmitted Solar Radiation Rate,
while informative and relevant, is not available for the chosen experiment space. These variables
have therefore been excluded from the observation space provided by the custom gym. Operative
Temperature, Electric Equipment Total Heating Rate, and Zone Infiltration Air Change Rate have been
considered to be included in the observation space. However, the increase in dimensionality has been
shown to hinder the precision of the trained model rather than improve it. The unnecessary expansion
of the observation space has also shown repeated catastrophic forgetting during training in preliminary
experiments. In light of these experiments, a reduction in the observation space to the sole parameters
of PMV has been pursued, lowering the number of variables from 11 to 4. EnergyPlus offers the tracking
of many other variables, but as this research focuses on the thermal comfort aspect, all variables related
just to energy consumption have been intentionally not considered.

3.2. Agent Block

The agent block is responsible for determining an action, the temperature setpoint, for a provided state
(thermal observations). For a single setpoint HVAC setup this action controls the one setpoint while for
a dual setpoint setup like the one being used for this study, both the heating and the cooling setpoint
need to be controlled. To significantly reduce the dimensionality of the problem, a design choice has
been made to have the two setpoints offset apart from one another. This design choice, on top of
the dimensionality benefits, mimics the one setpoint setup while still reducing the number of switches
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between heating and cooling. The offset in our case has been chosen as 0.5 as keeping inside a
temperature range of 0.5 is enough to satisfy the acceptable PMV ranges. Some preliminary testing
with larger offsets has shown that the heating setpoint stays as the active temperature target the majority
of the time. This reinforces the validity of using a single action to determine both setpoints.

| Variable | Range \
Normalized Action [-1,1]
Zone Thermostat Heating Setpoint Temperature | [18,36]
Zone Thermostat Cooling Setpoint Temperature | [18.5,36.5]

Table 3.2: Action Space

The temperature values that range from 18 to 36 are normalized to a range of -1 to 1. As the PPO
implementation used relies on a Gaussian distribution (initially centred at 0 with std 1) for continuous
actions, making this normalization avoids harming the learning process.

3.3. Reward Block

This reward block is responsible for providing a reward for the current state of the environment at each
timestep. We implemented two possible types of reward, PMV reward and Human reward. These
two rewards allow for comparing the more informative PMV ground truth case to the less informative
but applicable in real-life interactive Human reward. The PMV reward is taken as the true metric of
thermal comfort. Assuming that the clothing insulation and metabolic rate for the PMV calculation are
accurately provided, the PMV represents the ground value for thermal comfort. The logic behind this
decision follows from the fact that the Human reward uses an underlying PMV value which is hidden
from the agent block. As such, using the PMV reward models the case where the agent has access to
the true thermal preference of the human while the human reward models the case where the agent
has to interpret the thermal preference from just the human feedback. The state received for the reward
calculation is a subset of the full state for both reward cases.

The PMV reward is defined as:

—|PMV(state)|, if not NaN

. (3.1)
—4, otherwise

Reward = {

As PMV values range from -3.5 to 3.5, a linear relationship exists between the reward values and
the optimal temperature as long as the thermal conditions are not extreme. In the extreme thermal
discomfort case, PMV calculation produces NaN values which are handled by a -4 reward. Since 0
PMV represents the ideal state for thermal comfort and being further away from 0 represents thermal
discomfort, taking the absolute value of PMV conveys the distance to 0 and hence the distance to the
state of ideal thermal comfort. Finally, this value is multiplied by -1 to make it an appropriate reward
as being further away from the ideal state needs to be punished more. Returning to the handling of
the NaN case, a -4 reward is a worse reward than any not NaN PMV scenario as the minimum reward
received with a not NaN PMV is -3.5. Even though a sense of direction can be lost with a fixed reward
for the NaN region, the choice of a narrower action space forces the RL algorithm to experience some
states in the not NaN PMV region, negating the effect.

The human reward option, as the name suggests can simulate a human with varying thermal prefer-
ences. A human model has an underlying probability distribution based on PMV which indicates the
individual’s probability of interacting with the thermostat. While the PMV formula and the environment
variables such as humidity, air temperature and radiant temperature are the same for all individuals in
the room, the clothing insulation and metabolic rate vary.

Picking a probability distribution for the probability of complaint is less than straightforward as supported
by research surrounding PMV and adaptive thermal comfort covered under chapter 2. We propose a
five-parameter approach that attempts to better align with modern adaptive thermal comfort models by
allowing for more flexibility and making the study more future-proof. The probability distribution itself is
a sum of two exponentials with moving parameters as represented in the following formula:
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Figure 3.2: Probability Distribution over PMV with Varying s and ¢ Parameters (default values: k, s1, c1, s2,c2 =0.2,1,2,1, 2)

P(2pmoy) = min(k(exp(s1 X Tpme — 1) + €xp(—52 X Tpmo — €2)),1) (3.2)

The calculated PMV value from the environment and individual variables are then input into this proba-
bility function in place of x,,,,. The s; and s, values control the slopes on the two sides of the function,
which corresponds to an individual’s tolerance to too-hot or too-cold sensation. The ¢; and ¢, values
on the other hand control the shift of the centres of the two exponentials, corresponding to how much
a person likes or complies with hotter or colder sensations. The four parameters in unison allow for
modelling symmetric and non-symmetric preferences towards hot and cold sensations, squeezing, ex-
panding, shifting and skewing the shape of the probability distribution if needed.

Any scaling in the probability axis can be explained with a scalar multiplication of the same function,
where the scalar multiplier represents the general willingness of the individual to complain. Hence, an
additional variable, k, has been introduced to multiply with the rest of the function as suggested to
adjust the willingness of the individual to complain. The human block returns a -1 reward if a complaint
happens for that timestep and a 0 reward otherwise.

In this research, only symmetric probability distributions centred on the 0 PMV value (i.e. s; is equal
to s, and ¢; is equal to ¢;) have been considered. Choices of skewed or uncentered probability distri-
butions introduce a change in the optimal PMV value away from 0. While this has been intentionally
made possible to allow for modelling more unique and nuanced thermal preferences in the probability
distribution defined in equation 3.2, in this use case, non-zero centred probability distributions make a
sound comparison to the PMV case impossible.

A zeroed-out version of the probability distribution has also been used defined by the equation:
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Figure 3.3: Probability Distribution over PMV with Varying & Parameters (default values: s1, c1, s2,c2 =1, 2,1, 2)

1.0 1

0.8 1

0.6

0.4 1

0.2 1

0.0 1

Figure 3.4: Zeroed Probability Distribution over PMV with Varying s and ¢ Parameters (default values: k, s, c= 0.2, 1, 2)

P(zpme) = min(k(exp(s X Tpmy — ¢) + eXp(—$ X Tpme — ¢) — 2 X exp(—c)), 1) (3.3)

This equation is only applicable in the symmetric case where the ¢ values are equal and s values are
equal. This Probability distribution assumes that no complaint is made in the ideal 0 PMV case. This
distribution helps with experimenting in a scenario with fewer unnecessary complaints.

As seen in figure 3.4, by zeroing out the distribution such that the probability at PMV = 0 is 0, variations
in the s, ¢ and k parameters result in almost identical distributions. Therefore only variations in the &
parameter have been experimented with to avoid redundancy.

The internal calculations including the underlying PMV model are not directly reachable by the agent or
environment to stay consistent with the assumption that the RL model does not have any information
about the human except from what is inferred from the human’s interaction.



Results

This chapter covers the experimental setup used and the results of the training and testing. The PMV
reward case results and the human reward case results are given separately under the training and
test result sections. All training uses the seed value 42 and all test runs use deterministic policy True
which chooses the most probable action at each timestep for reproducibility.

4.1. Experimental Setup

The model training is run on the Energyplus modelling of an existing space called BRIGHT lab in Amster-
dam [50]. This single-room space has an HVAC capable of both heating and cooling and the modelling
can be edited to allow for both ideal and non-ideal thermal element setups. In our experiments, a
close-to-ideal setup has been used which allows for a delta of 10 degrees in 2-3 timesteps.

The Stable-Baselines3 implementation for PPO is used to train the RL agent that controls the thermostat
setpoint [51]. While this library supplies a variety of other RL algorithms, PPO was specifically chosen
as it works well with continuous action spaces and handles complex observation spaces as well.

The PMV reward case and the human reward case are trained separately and are then tested. The
training data consists of a weather file of Amsterdam, which is the original location of the BRIGHT lab.
As for test data, a weather file of Groningen is used. Both weather files are a year long.

The episode length has been chosen as 96 timesteps (1 whole day). A day represents the shortest
period that is repeating a similar scenario. The whole day is used rather than just the working hours
as, even though a working space might only be occupied inside the working hours, the rest of the day
is still valid and valuable training data. This choice is expected to not jeopardize the thermal conditions
of the space during working hours but would also introduce the model to a wider range of scenarios
potentially improving its generalizability.

Both the training and testing are run for a full year (365 days) and therefore the full weather file each.
This means a total of 35040 timesteps per training and per test run.

In the Human reward case, the human has been initialized to have a metabolic rate of 1.4 and a clothing
insulation of 1.1. As a metabolic rate of 1.0 represents the resting metabolic rate, a metabolic rate of
1.4 is chosen to model a human doing a very minor activity such as typing with an occasional walk
around the office space. This of course carries the assumption that this is an average human with
an average basal metabolism as defined by ASHRAE. Similarly, the clothing insulation value chosen
also carries an assumption that the human we are modelling wears thicker-than-average clothing with
added insulation from the chair being sat on year-round. This results in the optimal temperature for the
modelled human to linger around 20-22°C.

15
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4.2. Training Results

4.2.1. PMV Reward

The PPO training configuration for the PMV reward case uses the hyperparameter settings seen in
table 4.1.

| Hyperparameter [ Value |
Gamma 0.95
Learning Rate 1e-5

Entropy Coefficient | 0.1
Training Batch Size | 96
SGD Minibatch Size | 96
Number of Epochs 10

Table 4.1: PMV Reward PPO Configuration Hyperparameters

These values have been chosen after hyperparameter tuning to find a stable learning curve. Higher
learning rates caused unstable reward and loss curves while the PMV reward was informative enough
that 10 epochs proved to be sufficient. The entropy coefficient helps with avoiding catastrophic forget-
ting with the added randomness stopping extreme convergence.

Mean Reward
| | |
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Figure 4.1: PMV Reward Case Training Mean Rewards over Timesteps
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Figure 4.2: PMV Reward Case Training Losses over Timesteps

Figures 4.2 and 4.1 show the mean episodic rewards and losses over the training duration using the
PMV reward. Both the losses and the rewards show a smooth convergence over time. The mean
reward is converging to above -20 which means a mean absolute PMV below 0.2 at each timestep.

4.2.2. Human Reward

The PPO training configuration for the PMV reward case uses the hyperparameter settings seen in
table 4.2.
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| Hyperparameter [ Value |
Gamma 0.95
Learning Rate 1e-5

Entropy Coefficient | 0.1
Training Batch Size | 96
SGD Minibatch Size | 96
Number of Epochs 100

Table 4.2: PMV Reward PPO Configuration Hyperparameters
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Figure 4.3: Human Reward Case Training Mean Rewards over Timesteps

Compared to the PMV reward, the human reward exhibited less tendency to exhibit catastrophic forget-
ting due to the reward’s inherent stochasticity. Combined with how the human reward is less informative,
the use of higher epochs proved to have slightly better results. It is worth noting that the improvement
in the learned policy due to different epochs is observed to be marginal and the final performance relies
heavily on the stopping point of the learning. The training curves with different epochs can be seen in
the Appendix in section B.1.3.

Figures 4.4 and 4.3 show the mean episodic rewards and losses over the training duration using the
Human reward. The mean reward using the human reward fluctuates quite a lot, showing only a slight
convergence around the [-3.0, -2.8] range. This suggests that a complaint happens 2 to 3 times per
day, or a mean of 0.012 times every hour. The value loss also fluctuates which follows from how the
reward itself is stochastic. The entropy loss shows a stable decreasing trend which makes the total
loss carry a similar downward trend over the trend despite the fluctuations.

A value of 0.1 has been used for the k value in the Human reward case. To investigate if the lack of
complaints due to the low probability of complaints is causing an increase in the fluctuations during the
learning, training has been done with higher & values. The training plots for these experiments can be
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Figure 4.4: Human Reward Case Training Losses over Timesteps
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Figure 4.5: Human Reward Case with Zeroed Probability Training Mean Rewards over Timesteps
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Figure 4.6: Human Reward Case with Zeroed Probability Training Losses over Timesteps

found in the Appendix under section B.1.1. Seeing as higher k values resulted in similar training trends
with just a lower mean reward proportional to the increase in the probability of complaint, the & value
has been kept as 0.1.

A separate experiment has been done to investigate if the suboptimal mean reward convergence is
caused by false complaints that happen even in close to optimal thermal conditions. In these experi-
ments, the zeroed probability distributions have been used, making the human never complain in the
optimal 0 PMV case and less likely the complain around that region.

Figures 4.6 and 4.5 show the mean episodic rewards and losses over the training duration using the
Human reward with a zeroed probability distribution for complaint. The mean reward in this case still
fluctuates quite a lot, showing a slight convergence around the [-0.15, -0.13] range. The value loss still
also fluctuates a bit but a convergence trend is quite more visible. The entropy loss shows a stable
decreasing trend similar to the non-zeroed-out probability case.

A value of 0.1 has been used for the k value in the zeroed-out probability distribution Human reward
case as well. To investigate if the lack of complaints due to the low probability of complaints is causing
an increase in the fluctuations during the learning, training has been done with higher & values parallel to
the classic Human reward case. The training plots for these experiments can be found in the Appendix
under section B.1.2. Seeing as higher k values resulted in similar training trends with just a lower mean
reward proportional to the increase in the probability of complaint or even a loss of convergence in the
value loss in too high & values, the k value has been kept as 0.1.

4.3. Test Results

4.3.1. PMV Reward
Figure 4.7 shows how the agent using the learned policy from the PMV reward sets the temperature
setpoint over a day and how the mean air temperature inside the space follows it. The mean temper-
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Figure 4.7: PMV Reward Case Test Mean Setpoint and Temperature over a Day
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Figure 4.8: PMV Reward Case Test Mean Reward over a Day

ature setpoint is set higher during the initial timesteps as the mean starting temperature is lower than
the targeted optimal temperature. After stabilizing the temperature around the targeted range, the tem-
perature setpoint is kept quite stable making only small adjustments. There is only a small deviation
in the temperature setpoints and the temperature itself over the whole year, which is caused by the
randomized initial temperature of each day. The policy converges to the same temperatures quickly at
the start and then follows a constant trend afterwards. The mean temperature is kept around 21°C.

Looking at Figure 4.8, the policy learned by the agent with the PMV reward has a mean reward higher
than -0.2 after. As the reward is just the negative of the absolute PMV in the PMV reward case, this
implies that the PMV values stay between the [-0.2, 0.2] range. The mean reward is quite stable and
does not have much variation between episodes except for the one caused by the initial temperature.

4.3.2. Human Reward

Figure 4.9 shows how the agent using the learned policy from the Human reward sets the temperature
setpoint over a day and how the mean air temperature inside the space follows it. The mean temper-
ature setpoint is set higher during the initial timesteps as the mean starting temperature is lower than
the targeted temperature by the policy. After stabilizing the temperature around the targeted range, the
temperature setpoint is kept quite stable making only small adjustments. There is only a small deviation
in the temperature setpoints and the temperature itself over the whole year, seemingly only caused by
the randomized initial temperature of each day. The policy converges to the same temperatures quickly
at the start and then follows a constant trend afterwards. The policy sets and keeps the temperature
around 25°C.
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Figure 4.9: Human Reward Case Test Mean Setpoint and Temperature over a Day
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Figure 4.10: Human Reward Case Test Mean Absolute PMV over a Day

Looking at Figure 4.10, the policy learned by the agent with the Human reward has a mean absolute
PMV lower than 0.6 so the PMV values stay between the [-0.6, 0.6] range. The PMV value converges
to a suboptimal that does not quite accurately represent the Human’s preference. Nevertheless, the
policy stays near the [-0.5, 0.5] range which is the accepted range for satisfaction. The PMV does not
show much variation between episodes except for the start of the day.

The policies learned from the Human reward case with zeroed probability distribution are also tested
in an unseen year as they have shown promise in terms of training stability. Figure 4.11 shows how
the agent using the learned policy from the zeroed probability distribution Human reward sets the tem-
perature setpoint over a day and how the mean air temperature inside the space follows it. The mean
temperature setpoint is set higher during the initial timesteps as the mean starting temperature is lower
than what seems to be the targeted temperature by the policy. After stabilizing the temperature around
the targeted range, the temperature setpoint is kept quite stable with no adjustments afterwards. There
is even a smaller deviation in the temperature setpoints over the whole year, seemingly only caused
by the randomized initial temperature of each day. The policy converges to the same temperature at
the start slower than the previous two cases as the target temperature is quite high. The policy sets
the temperature around 28°C while the temperature itself spends some time around the [24,28] while
reaching that setpoint.

Looking at Figure 4.12, the policy learned by the agent with the zeroed probability distribution Human
reward has a mean absolute PMV lower than 1 so the PMV values stay between the [-1, 1] range. The
PMV value converges to a suboptimal that does not represent the human’s preference but the initial
one-third of the day spent on reaching the temperature setpoint does stay inside the accepted PMV
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Figure 4.11: Human Reward Case with Zeroed Probability Test Mean Setpoint and Temperature over a Day
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Figure 4.12: Human Reward Case with Zeroed Probability Test Mean Absolute PMV over a Day
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margin. The PMV does not show much variation between episodes except for the start of the day.



Discussion

The optimization using the PMV reward for thermal comfort assuming that the PMV accurately reflects
the indoor thermal environment’s alignment with occupant comfort levels, successfully sets the thermo-
stat setpoint in a way that minimizes the absolute PMV. By utilizing the PMV directly, the PMV reward
function successfully ensures the system prioritizes maintaining optimal thermal conditions, which is
crucial in HVAC control. This shows the model’s capability to adapt and maintain environments that
align well with established thermal comfort standards given that the reward is informative enough. The
PMV reward model consistently maintains PMV values within a tighter range of -0.2 to 0.2, which sur-
passes the commonly accepted range of -0.5 to 0.5. This narrower band signifies a high level of control
over the thermal environment, improving the occupants’ overall comfort experience. Such precision re-
flects the model’s effectiveness in fine-tuning the system to avoid PMV values that, while technically
acceptable, could still be perceived as uncomfortable by users.

The human reward model’s performance is not so sensitive to the selection of hyperparameters but
is sensitive to the stopping point, which introduces instability in the acquired policy after training. The
model’s instability is mainly caused by the stochastic nature of the training process. Stochastic environ-
ments inherently introduce variability in outcomes, which complicates the training and optimization of
the reward model. This sensitivity suggests that a series of misleading experiences during the training
before the policy is acquired can lead to significant fluctuations in outcomes. The reliance on stable
training episodes limits the model’s robustness and generalizability if deployed in the real world, requir-
ing further refinement to achieve consistent performance.

Another source of instability stems from the relatively low informativeness of the Human reward, which
hampers sample efficiency. The -1 reward signal lacks any direction or scale of how bad the current
state of the environment is at that timestep. The complaint can also be made much later for a thermal
state that is far from optimal even though the probability of complaint is high for each timestep. When
rewards are sparse or inadequately informative, the model struggles to learn effective control strategies,
leading to unstable or slow convergence. Enhancing the richness of the feedback would improve the
system’s ability to stabilize and more quickly converge on optimal policies.

Despite the instability and suboptimal policy learned by the Human reward case, the PMV values remain
close to the accepted comfort range of [-0.5, 0.5]. This indicates that while the model may not always
achieve the optimal PMV target, it still ensures conditions that may be considered comfortable by a
significant amount of people. The fact that the system maintains comfort despite instabilities highlights
its overall effectiveness, though there is room for improvement in optimizing thermal control further.

Comparing the test results with higher and lower probability of complaint in the Human reward case with
both zeroed and non-zeroed probability distributions, the increase in the probability of user complaints
does not necessarily result in improved control. Having less probability of complaint even produces a
better learning curve in the zeroed probability distribution Human reward case, although the resulting
policies are not better with less complaint probability in the test cases.
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Both Reward cases demonstrate a reasonable ability to handle delayed rewards, which is a crucial
aspect of managing HVAC systems where feedback on actions may not be immediate. Policy learned
in both cases adjusts the away from the unwanted temperatures immediately at the beginning of the
day. This is a nice surprise as it shows that a history or frame stacking is not necessary and that the
policy can be activated at any time to control the temperature setpoint immediately. The system’s ability
to adjust and learn from these delayed responses suggests that it can accommodate the inherent time
lag in real-world thermal environments, enhancing its practical applicability.

The limitations of this study reveal possible directions for future work. A possible way to handle the
issue of sample efficiency is to increase the information available in the reward. Keeping with the theme
of producing rewards from thermostat interaction as the complaint, expanding the model to increase
the number of simulated humans can make the reward more informative. An increase in the number
of complaints per timestep introduces a sense of distance to the optimal conditions. Also, the reward
becomes more stable as the number of people increases.

The use of EnergyPlus for simulating the thermal environment requires daily simulations, which include
non-working hours. This forces the model to learn a wider range of cases. While this might help
increase the generalizability of the model, it might not be helpful coming to the real-life case as the model
must account for periods where thermal control is less critical. A more targeted approach, focusing on
working hours, could streamline the training process and lead to more efficient and real-life applicable
model development.

The weather data used in the simulations has been averaged, which reduces the variation in environ-
mental conditions encountered during training. This can be observed from how the temperature does
not vary much during the day in the test data in a day over the year. This lack of diversity in the train-
ing data could limit the model’s ability to generalize to real-world scenarios, where weather conditions
fluctuate significantly. Incorporating more dynamic and varied weather data would likely improve the
robustness and adaptability of the model.

Testing the model with uncentered and skewed probability distributions could provide valuable insights
into its behaviour under different thermal preference conditions. However, this approach requires a
clearer definition of ground values to ensure accurate comparisons and evaluations which is why it
was avoided in this study. The proposed model offers a good amount of flexibility in defining how
human thermal comfort complaint is stochastically simulated. Working with more adaptive definitions
of thermal comfort, the proposed model makes it possible to further research into areas of thermal
control where other physiological and psychological factors not captured by PMV are not overlooked.

Future research could explore scenarios involving multiple humans with varying thermal preferences,
which would more closely mirror real-world conditions. However, this introduces challenges related to
fairness, as the system must balance competing preferences equitably. Investigating methods for fair
allocation of thermal comfort could lead to more inclusive and adaptable HVAC control strategies.



Conclusion

This thesis aimed to answer how RL could be utilized to incorporate individual preferences while con-
trolling the HVAC for thermal comfort. It has been shown that human feedback can be collected through
human interactions with the HVAC, specifically through setting the thermostat setpoint. It has also been
shown that this interaction can be exploited to gather individuals’ thermal preferences. Models that de-
pend on human interactions with the thermostat as a form of complaint have been shown to successfully
infer the underlying thermal preference of the occupants to some extent. This task which was handled
with PMV estimations before can now be estimated with human interaction collection. This has the
benefit of dynamically adjusting to the preferences of the occupants without needing to wait on a new
manual PMV estimation. Since the system architecture has been developed with real-life deployment
in mind from the start, the proposed system can directly be used to replace the current fixed thermal
control systems.

This thesis has also produced a system architecture which is well-integrated with EnergyPlus, modifi-
able in terms of the RL algorithm and flexible in the modelling of human simulated. This implies that
without any changes to the proposed system architecture, simulated humans can be tested with differ-
ent RL algorithms, simulated humans can be adjusted to be more in line with adaptive thermal comfort
models that consider physiological and psychological differences, and the full spectrum of variables
and actuators available in the Energyplus suite can be accessed according to any need. The proposed
method of stochastically simulating human complaints with an underlying comfort metric is also us-
able in other architectures and contexts, making RL thermal control personalized without the need for
real-life data. This thesis therefore paves the way for individual preference extraction for thermal com-
fort, taking the first step in showing that thermal preference inference is possible. The use of RL can
substantially improve the current capabilities of HVAC systems beyond scheduled control, allowing for
rapid and automatic adaptation to occupant and environmental changes and removing the dependency
on planning analysis and estimations.
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Source Code Snippets

A.l. Human Class

import numpy as np

pythermalcomfort.models import pmv_ppd
pythermalcomfort.utilities import v_relative, clo_dynamic
pythermalcomfort.utilities import met_typical_tasks
pythermalcomfort.utilities import clo_individual_garments

from
from
from
from

class Human:

def

def

__init__(self, icl:float=1.1, met:float=1.4,

exp_a:float=1.0, exp_b:float=2.0, exp_c:float=1.0, exp_d:float=2.0) -> None:

# pmv parameters
self.icl = icl # total clothing insulation, [clo]
self .met = met # activity metabolic rate, [met]

interaction parameters

self.dist_skew = 0.0 # skewness of the probability distribution
self.dist_loc = 0.0 # location of the probability distribution
self.dist_scale = 1 # scale of the probability distribution

H H H®

# interaction probability parameters

self .prob_func = "exp_zeroed" # Probability function to use. Options:

", "exp_zeroed"

# P(pmv) = exp(ax-b) + exp(-cx-d)

self.exp_a = exp_a
self.exp_b = exp_b
self.exp_c = exp_c
self.exp_d = exp_d
self .normalizer = 1.0

calcpmv(self, tdb: float, tr: float, v: float, rh: float) -> float:

nnn

Calculate the Predicted Mean Vote (PMV) based on the input variables.

Parameters:

- tdb: Dry bulb air temperature, [°C]
- tr: Mean radiant temperature, [°C]
- v: Average air speed, [m/s]

- rh: Relative humidity, [%]

Returns:
- pmv: Predicted Mean Vote.

nnn

vr = v_relative(v=v, met=self.met)
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clo = clo_dynamic(clo=self.icl, met=self.met)

results = pmv_ppd(tdb=tdb, tr=tr, vr=vr, rh=rh, met=self.met, clo=clo, standard="

ASHRAE")
return results['pmv']

def temp2pmv(self, min_tdb = 10.0, max_tdb = 40.0, step_tdb = 0.5, tr = 256, v = 0.1,

=50) -> dict:
mnn
min_tdb: min dry bulb air temperature, [°C]

max_tdb: max dry bulb air temperature, [°C]
step_tdb: step of the dry bulb air temperature, [°C]
tr: mean radiant temperature, [°C]

v: average air speed, [m/s]

rh: relative humidity, [%]

pmvs = {"pmv": [], "tdb": []}

vr = v_relative(v=v, met=self.met)

clo = clo_dynamic(clo=self.icl, met=self.met)

for tdb in np.arange(min_tdb, max_tdb, step_tdb):

Uniformly samples the pmv values varying the temperature

results = pmv_ppd(tdb=tdb, tr=tr, vr=vr, rh=rh, met=self.met, clo=clo, standard="

ASHRAE")
pnvs ["pmv"].append (results['pmv'])
pmvs ["tdb"].append (tdb)
return pmvs

def calcprobability(self, pmv: float, ) -> float:

nnn

Calculate the probability of complaint based on the current pmv.

Parameters:
- pmv: Current pmv.

Returns:
- probability: Probability of complaint.

nwun

if self.prob_func == "exp":

probability = np.exp(self.exp_a * pmv - self.exp_b) + np.exp(-self.exp_c * pmv -

self.exp_d)
elif self.prob_func == "exp_zeroed":

probability = np.exp(self.exp_a * pmv - self.exp_b) + np.exp(-self.exp_c * pmv -
self.exp_d) - np.exp(-self.exp_d) - np.exp(-self.exp_b)

else:
probability = 0.0
# limit probabilities between 0 and 1

probability = max(0.0, min(1.0, self.normalizer * probability))

return probability

A.2. EnergyPlus gym Abstract Class

class EnergyPlusEnv(gym.Env, metaclass=abc.ABCMeta):

"""Base, abstract EnergyPlus gym environment.
This class implements the OpenAI gym (now gymnasium) API. It must be subclassed to
implement the actual environment.
nnn
def __init__(self, env_config: Dict[str, Any]l, reward_type: str = "pmv", w_file: str
Train'):
self.spec = gym.envs.registration.EnvSpec(f"{self.__class__.__name__1}")

self.env_config =
self.episode = -1
self.timestep = 0

env_config

self.observation_space = self.get_observation_space ()
self.last_obs = {}

self.action_space = self.get_action_space()

self.default_action = self.post_process_action(self.action_space.sample())
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self .energyplus_runner: Optional [EnergyPlusRunner] = None
self.obs_queue: Optional [Queue] = None

self.act_queue: Optional [Queue] = None
self.reward_history = []

self.obs_history = []
self.pmv_history = []

if reward_type in ["pmv", "human", "zero"]:
self.reward_type = reward_type

else:
raise ValueError (f"Invalid,reward type: {reward_type}")

# each day is 96 timesteps (15 minutes)
self.episode_length = 96

self.w_file = w_file

self .runner_config = RunnerConfig(
epw=self.get_weather_file(),
idf=self.get_idf_file(),
output=self.env_config["output"],
variables=self.get_variables (),
meters=self.get_meters(),
actuators=self.get_actuators(),

csv=self.env_config.get("csv", False),
verbose=self.env_config.get("verbose", False),
eplus_timestep_duration=self.env_config.get("eplus_timestep_duration", 0.25),

Qabc.abstractmethod
def get_weather_file(self) -> Union[Path, str]:
"""Returns the path to a valid weather file (.epw).

This method can be used to randomize training data by providing different weather
files. It's called on each reset()

nun

Q@abc.abstractmethod
def get_idf_file(self) -> Union[Path, str]:
"""Returns the path to a valid IDF file."""

Q@abc.abstractmethod
def get_observation_space(self) -> gym.Space:
"""Returns the observation space of the environment."""

Q@abc.abstractmethod
def get_action_space(self) -> gym.Space:
"""Returns the action space of the environment."""

Qabc.abstractmethod
def compute_step_reward(self, obs: Dict[str, float]) -> float:
"""Computes the reward for the given observation."""

Q@abc.abstractmethod
def get_variables(self) -> Dict[str, Tuplelstr, strll:
"""Returns the variables to track during simulation."""

Qabc.abstractmethod
def get_meters(self) -> Dictl[str, str]:
"""Returns the meters to track during simulation."""

Q@abc.abstractmethod
def get_actuators(self) -> Dict[str, Tuplel[str, str, strl]:
"""Returns the actuators to control during simulation."""

def post_process_action(self, action: Union[float, List[float]]) -> Union[float, List[
float]]:
"""Post-processes the action(s) before sending it to EnergyPlus.
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This method can be used to implement constraints on the actions, like rescaling.
Default implementation returns the action unchanged.
nnn
return action
def reset(self, *, seed: Optional[int] = None, options: Optional[Dict[str, Any]] = Nomne):

def

print ("Episode:", self.episode, ", finised at_ Timestep:", self.timestep)

self.episode += 1
# self.last_obs = self.observation_space.sample ()

# reset history
self.reward_history = []
self.obs_history = []
self.pmv_history = []

if self.energyplus_runner is not None:
self.energyplus_runner.stop ()

# observations and actions queues for flow control
# queues have a default max size of 1
# as only 1 E+ timestep is processed at a time

self.obs_queue = Queue(maxsize=1)
self.act_queue = Queue(maxsize=1)
self.energyplus_runner = EnergyPlusRunner (

episode=self.episode,

obs_queue=self.obs_queue,

act_queue=self.act_queue,

runner_config=self.runner_config,
)

self.energyplus_runner.start ()

# wait until E+ is ready.

# self.last_obs = obs = self.energyplus_runner.init_exchange(default_action=self.

default_action)
_random_action = self.post_process_action(self.action_space.sample() [0])
# print ("Reseting with Random Action:", _random_action)

self.last_obs = obs = self.energyplus_runner.init_exchange(default_action=

_random_action)
return np.array(list(obs.values())), {}

step(self, action):
self.timestep += 1
done = False

# check for simulation errors
if self.energyplus_runner.failed():

raise RuntimeError(f"EnergyPlusufaileduwithu{self.energyplus_runner.sim_results['

exit_code']}")

# simulation_complete is likely to happen after last env step()
# is called, hence leading to waiting on queue for a timeout
if self.energyplus_runner.simulation_complete:

done = True

obs = self.last_obs
else:

# post-process action

action_to_apply = self.post_process_action(action)

# do not post-process action

# action_to_apply = action

if not isinstance(action_to_apply, np.float32):

raise ValueError(f"Invalidjaction type: {type(action_to_apply)l}")

Enqueue action (sent to EnergyPlus through dedicated callback)
then wait to get next observation.

not consuming anymore) .
Timeout value can be increased if E+ timestep takes longer
imeout = 2

o H oH OH OH O

Timeout is set to 2s to handle end of simulation cases, which happens async
and materializes by worker thread waiting on this queue (EnergyPlus callback
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def

def

try:
self.act_queue.put(action_to_apply, timeout=timeout)
obs = self.obs_queue.get(timeout=timeout)
except (Full, Empty):
obs = None
print ("Timeout_waiting for ,observation")
pass

# obs can be None if E+ simulation is complete
# this materializes by either an empty queue or a None value received from queue
if obs is None:
done = True
obs = self.last_obs
else:
self.last_obs = obs

# finish episode if episode_length is reached

if self.timestep % self.episode_length == 0 and self.timestep > O:
done = True
# print("Last action:", action_to_apply)

# compute reward
reward = self.compute_step_reward(obs)

# compute pmv

= pmv (tdb=obs["air_tmp"], tr=obs["rad_tmp"], vr=0.1, rh=obs["air_hum"], met=1.4,
clo=1.1)

# store history

self .reward_history.append(reward)
self.obs_history.append(obs)

self .pmv_history.append(_pmv)

if done:

self.save_history("./tmp/history_"+self.w_file+".pkl")

obs_vec = np.array(list(obs.values()))
return obs_vec, reward, done, False, {}

close(self):
if self.energyplus_runner is not None:

self.energyplus_runner.stop ()

save_history(self, filepath):
# combine the dicts in obs_history to single dict
comb_history = {key: [obs[key] for obs in self.obs_history] for key in self.

obs_history [0]}

comb_history['reward'] = self.reward_history
comb_history['pmv'] = self.pmv_history

# append the combined history to a pickle file
with open(filepath, 'ab') as f:

pkl.dump (comb_history, f)

A.3. Step Reward Calculation

def compute_step_reward(self, obs: Dict[str, float]) -> float:
"""A reward function that penalizes on human complaints and rewards no complaints."""

if self.reward_type == "zero":

return 0.0

elif self.reward_type == "pmv":

# calculate the pmv value

_pmv = pmv(tdb=obs["air_tmp"], tr=obs["rad_tmp"], vr=self.pmv_dict["vr"], rh=obs
["air_hum"], met=self.pmv_dict["met"], clo=self.pmv_dict["clo"])

# return negative distance of pmv from O

reward = -1*abs(_pmv)

# if reward is nan, return -4

if np.isnan(reward):
return -4
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else:
return reward
elif self.reward_type == "human":
# no complaint counter and threshold
no_complaint = 0

no_complaint_threshold = 4

# cumulative reward for timestep
step_cum_reward = 0

# iterate over humans
for human in self.humans:
# calculate pmv value for the current human
temp_pmv = human.calcpmv(obs["air_tmp"], obs["rad_tmp"],
obs["air_hum"])

# get probability of complaint
prob = human.calcprobability(temp_pmv)

# generate random number between O and 1
rand = np.random.rand ()

# check if the human complains
complaint = rand < prob

if complaint:
step_cum_reward += -1
no_complaint = 0
else:
no_complaint += 1

if no_complaint >= no_complaint_threshold:
step_cum_reward += 0.2
return step_cum_reward

self.pmv_dict ["vr"],
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B.1.3. Change in Epochs
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Figure B.26: human k 0.2 mean heating setpoint and temperature over day
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Figure B.28: human k 1.0 mean heating setpoint and temperature over day
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B.2.2. Zeroed Human Change in Probability (k)
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Figure B.32: zeroed probability human k£ 2.0 mean abs(PMV) over day
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Figure B.33: zeroed probability human k& 0.1 mean heating setpoint and temperature over day
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Figure B.34: zeroed probability human k& 0.5 mean heating setpoint and temperature over day
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Figure B.35: zeroed probability human &k 1.0 mean heating setpoint and temperature over day
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Figure B.36: zeroed probability human k£ 2.0 mean heating setpoint and temperature over day
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B.2.3. Change in Epochs
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Figure B.37: human 5 epochs mean abs(PMV) over day
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Figure B.38: human 10 epochs mean abs(PMV) over day
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Figure B.39: human 20 epochs mean abs(PMV) over day
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Figure B.40: human 250 epochs mean abs(PMV) over day
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Figure B.41: human 5 epochs mean heating setpoint and temperature over day
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Figure B.42: human 10 epochs mean heating setpoint and temperature over day
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Figure B.43: human 20 epochs mean heating setpoint and temperature over day
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