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Abstract

Since the 13! of October 2017, the Tropospheric Monitoring Instrument (TROPOMI) aboard ESA’s Sentinel
5-Precursor (S5-P) satellite enables daily global measurements of carbon monoxide (CO) total column con-
centrations at an unprecedented spatial resolution of 7x5.6 km. TROPOMI has the ability to detect distinct
pollution plumes, arising from point source emissions, from which emission rates can be derived. We in-
vestigate the potential of CO column concentrations observed by TROPOMI to estimate the CO emissions of
point sources on an operational level. This study developed a Python framework that for pre-defined point
sources automatically detects pollution plumes and from which it estimates CO emissions using a mass bal-
ance approach directly from single overpass CO observations. The algorithm is based on concepts from the
computer vision to identify the plume and extract the plume center line while respecting the plume orienta-
tion. The emission rate is approximated from flux profiles through multiple plume cross-sections following
the plume center line. The performance of the developed framework and its potential is demonstrated by
the application on 132 identified steel plant facilities over a time period of more than 2.5 years. Currently
the lack of accessible and quality-wise good data limits spatial or even temporal comparison of CO emissions
from steel plants. Therefore the control and understanding of emission rates could greatly benefit from the
proposed approach. In total we obtained 1,774 emission estimates for 97 facilities. Up to 119 measurements
per facility are derived where for the majority of the facilities the average number of measurements is around
10. The obtained time series showed large variation in the distribution of measurements over time as well
as the emission values itself. For a number of higher emission values, that exceeded up to 2 times the aver-
age emission, measured for e.g. the Bhilai Steel Plant, India, the outliers corresponded with interference of
another source. Although individual plumes could be identified for two sources (~35 km apart) in the same
Bhilai area, no non-merged plumes were detected for the Schwelgern and Huttenheim sites (~18 km apart) in
Duisburg, Germany. Moreover, we tested the agreement of our measurements with recorded or stated events:
i) The emission estimate from the afternoon of the 24t of May 2019, Bhilai site, confirmed the manufacturers
statement that the operations had continued that day despite a reported fire in the morning. ii) Our results
did not match the significant global drop noted in steel production during the first period of 2020 as a result of
the pandemic. The scattered distribution of measurements and their emission values over time seem to limit
the representation of a small time frame needed for such analysis. iii) We found a positive correlation with a
Pearson Coefficient of 0.76 between the European Pollutant Release Transfer Register (E-PRTR) and our data.
For all examined facilities our obtained emissions were greater than reported by the facilities to E-PRTR. This
might indicate an underestimation of the data registered. This first evaluation emphasizes the potential of
TROPOMI observations to improve our understanding of point source emissions and to compliment existing
data such as the E-PRTR. However, to be able to interpret the data from TROPOMI indeed structurally and to
develop a reliable validation method extensive data-analysis on plant and area-level is required, especially to
be able to rule out interfering factors.
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1. Introduction

Since the 13 of October 2017, TROPOMI (TROPOspheric Monitoring Instrument) contributes to space-born
atmospheric measurements by enabling daily global observations at an unprecedented spatial resolution.
TROPOMI is a multispectral grating spectrometer measuring the reflected solar radiance by the Earth surface
and atmosphere from the ultraviolet (UV), visible (VIS) to the near-infrared (NIR) and shortwave infrared
(SWIR) [Veefkind et al., 2012]. The instrument is the single pay-load of ESA’s Sentinel-5 Precursor (S5-P)
satellite dedicated to support policy-makers as part of Europe’s Earth observation program Copernicus [As-
chbacher and Milagro-Pérez, 2012]. Carbon monoxide (CO) is one of the main targets from TROPOMI and
is retrieved from the shortwave infrared (SWIR) range (2.3um) enabling sensitivity to boundary layer level
[Landgraf et al., 2016]. TROPOMI provides daily global CO measurements with a spatial resolution of about,
recently, 5.5x7 km? (across x along track) [Van Kempen et al., 2019]. In addition, the high signal to noise
ratio allows the use of data from single overpasses for the detection of CO enhancements [Borsdorff et al.,
2018]. The data quality of TROPOMI improves significantly on the SWIR measurements offered by predeces-
sor SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY) with a spatial
resolution of 30x120 km and global coverage cycle of 3 days [Bovensmann et al., 1999].

Continuous frequent global measurements of carbon monoxide concentrations are of great importance to
improve the understanding of tropospheric chemistry and for the purpose of air quality monitoring. Carbon
monoxide (CO) is mainly released through incomplete combustion and concerns public health [Levy, 2015,
Nigam et al., 2010, Raub et al., 2000] and in-directly radiative forcing by affecting the oxidation capacity of the
atmosphere as a result of reacting with dominant sink [Holloway et al., 2000] hydroxyl radical (OH) [Khalil and
Rasmussen, 1984, Wofsy et al., 1972]. Monitoring of CO provides valuable information regarding pollution
trajectories of CO emitted sources due to the relatively long preservation of the trace gas, ~1-3 months, and
low background concentration [De Laat et al., 2001, Holloway et al., 2000, Shindell et al., 2006].

From the first CO space-born measurements in 1989 by MAPS [Connors et al., 1999], satellite observations
accelerated the understanding of spatial and temporal trends in CO concentrations (e.g. seasonal biomass
burning) [Mallik and Lal, 2014, Spichtinger et al., 2004, Yadav et al., 2017]. TROPOMI facilitates the detec-
tion of small scale emissions, e.g. cities [Borsdorff et al., 2018, 2019], roads [Borsdorff et al., 2019], industries
[Reuter et al., 2019] and fires [van der Velde et al., 2020] and therefore enables new opportunities for air pol-
lution monitoring. Atmospheric satellite measurements provide the integrated concentration over a vertical
column. The interpretation of plumes and the assigning to the specific source is a critical step to estimate
emissions with the help of satellite observations [Varon et al., 2018]. Recent studies [Kuhlmann et al., 2019,
Lorente et al., 2019] demonstrated the possibilities of the use of inversion techniques to obtain emission es-
timates using satellite measurements.

The amount of incoming data together with the large number of detectable sources make visual inspection
to distinguish plumes limit operational applicability as a result of its computational expense [Kumar et al.,
2020, Thompson et al., 2017]. An automatic approach will be necessary to reach the full potential of the data
and contribute to mapping of CO emissions.

Steel plants are a primary example of anthropogenic point sources detectable by TROPOMI [Reuter et al.,
2019, Schneising et al., 2019] which could benefit from an automatic operational system that estimates car-
bon monoxide emissions. Accessible high quality data is sparse and the inconsistency of applied measure-
ments or estimation techniques limits the incomparability of CO emissions among steel facilities or even over
time [Dios et al., 2013, Mennen et al., 2008, Pulles, 2008]. The European Union regulates emissions by setting
integral permits based on Best Available Techniques (BAT) as key protocol of the Integrated Pollution Pre-
vention and Control (IPPC) guidelines set by the United Nations Framework Convention on Climate Change
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(UNFCCQ). Even though the BAT is implemented widely [Mennen et al., 2008, Shatokha et al., 2020], the emis-
sion efficiency of plants worldwide deviates strongly with the difference in recycling of CO-rich gasses as one
of the causes [Streets et al., 2006, Wang et al., 2016].

This study aims to contribute to the development of operational emission estimation systems by the develop-
ment of a framework that automatically identifies pollution plumes and interprets the emission rate using the
plume enhancement from single overpass TROPOMI CO data. We will focus specifically on the monitoring
and analysis of CO emissions from worldwide steel plants. To our knowledge, this is the first study to map CO
emissions from a large number of globally distributed steel plants directly interpreted from space-born CO
data using an automatic detection system. This work consists of two main steps: (1) the development of a ro-
bust framework that enables carbon monoxide emission estimates over time from a pre-defined point source
and (2) the analyses of the potential of such framework to improve the understanding of CO emissions from
steel plants worldwide. We propose a new plume detection method utilizing computer vision concepts that
particularly targets at the segmentation of small individual plumes as opposed to statistical approaches used
by previous studies [Kuhlmann et al., 2019, 2020, Varon et al., 2018]. The emission estimation is computed
through the mass-balance approach, which integrates the CO mass flux over plume transects perpendicular
to the flow [Krings et al., 2013, Lavoie et al., 2015, Reuter et al., 2019]. The framework is applied on a large
number of steel plants and processed for over 2.5 years, between mid-November 2017 and mid-August 2020,
of total CO column concentrations observed by TROPOMI. The analysis of the potential of the new obtained
data will mainly focus on the ability to compare emissions, detect changes over time and the agreement with
known events or emission records for validation purposes.

An overview of the field concerning emission estimations from satellite observation is provided in chapter 2.
The used data sets and methods, including the developed framework, are covered, respectively, in chapters 3
and 4. The results covering the performance of the framework as well as the analysis are presented in chapter
5, whereafter the discussion and conclusion are covered in chapter 6.
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Consistent and solid measurements of trace gas emissions into the atmosphere are necessary to efficiently
manage and utilize policies and protocols aiming at reducing anthropogenic emissions to act on the recent
concerns regarding global warming and air pollution [Janssens-Maenhout et al., 2020, Mennen et al., 2008,
World Health Organization, 2016]. Over the last decade, the use of satellite observations emerged into a
promising approach to compliment conventional bottom-up emissions [Kourtidis et al., 2018, Streets et al.,
2013]. Space-borne measurements of the atmospheric composition rose as an important resource that could
improve emission quantification of multiple trace gases [Streets et al., 2013]. The strength of satellite ob-
servations lies in the providing of continuous global measurements. Frequent global measurements allow
capturing of rapidly changing emission patterns due to e.g. fast growing economies [Kourtidis et al., 2018],
application of emission reducing techniques [Li et al., 2010], occurring of a crisis [Krotkov et al., 2016, Liu
et al., 2020] or sudden events such as volcanic eruptions [Ge et al., 2016] and gas leakages [Pandey et al.,
2019]. With the revolutionary development of high resolution measurements in combination with high sig-
nal to noise ratio from instruments such as TROPOM]I, single overpasses can reveal plume structures without
the need for temporal averaging [Beirle et al., 2019, Broquet et al., 2018, Kuhlmann et al., 2020], as presented
in figure 2.1.

Satellite based atmospheric measurements cover the trace gas concentration over a vertical column of
air. In order to verify the use of the columnar concentrations for emission quantification, transport mech-
anisms and chemical activity should not greatly affect the concentration in the plume [Streets et al., 2013].
Inversion techniques are used to convert the observed vertical integrated concentrations to emission rates
through simulations and assumptions of the transport that distributed the incoming flow. The approaches
could be distinguished into the application of transport simulation models and techniques solely based on
the observed enhancement. The latter, are especially appropriate and used for the interpretation of distinct
plumes such as the steel plant plumes presented in figure 2.2. The unknown wind field is a common factor of
uncertainty [Varon et al., 2018].

Inverse modeling is a commonly used method where atmospheric observations are combined with Chemical
Transport Models (CMTs) to quantify emissions to the atmosphere. In the case of a long lifetime compared
to the transportation, e.g. CO in sub-city scale [Borsdorff et al., 2020, Dekker et al., 2017], chemical degrada-
tion is often assumed negligible and only the transportation processes are taken into account. The models
simulate the affect of atmospheric processes on the emitted gas, whereas the observation data is used to ad-
just the priori input set as emission rate. Brunner et al. [2019] studied the sensitivity of inversion modeling
to the vertical allocation of CO, emissions. According to Brunner et al., the placement of the source should
be represented in all three-dimensions and an incorrect assumption of surface emission could lead to un-
certainties in the modeled concentration. Emissions from most point sources are emitted from stacks The
effective emission height depends on the stack height of point sources as well as the rise of the plume after
its release into ambient air. The ability to rise depends on the thermal buoyancy as well as the supplied ver-
tical moment [Seinfeld and Pandis, 2016]. The importance of source properties for atmospheric dispersion
modeling was also indicated by other studies, e.g. Pregger and Friedrich [2009] and Matthias et al. [2018].
Furthermore, Borsdorff et al. [2019] mentioned the difficulty of the application of the WRF model on small
sub-city scales.

Besides the application of complex or simplified inversion models, the flow rate can be estimated directly
from the satellite observations by methods such as the mass balance approach. Following the approach, the
emission rate must equal the mass discharged through the cross-sectional area per unit of time under the
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Figure 2.1: Plume structures visible in TROPOMI CO data, originated from (left) wild fires in Australia at 18-11-2020 and (right) steel

plant facilities located in Benxi (China) at 02-06-2018.
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Figure 2.2: Representation of plume dynamics. The left image illustrates the rise of the plume after the injection in the atmosphere from
the stack. After the final plume rise the plume follows the wind direction. The right images illustrates the concentration profile of the

cross-sections of a plume.



assumption of a steady-state condition [Gordon et al., 2015, Kuhlmann et al., 2020, Reuter et al., 2019]. In the
literature the mass balance is frequently applied, both on in situ (e.g [Cambaliza et al., 2015, 2014, Trainer
etal., 1995, White et al., 1976]) and remote sensing (e.g. [Krings et al., 2013, Reuter et al., 2019]) observations,
for emission estimations from cities [Kuhlmann et al., 2020] as well as from single point sources [Lavoie et al.,
2015]. The application of the approach on space-borne observation benefits from the capturing of the total
plume concentration in the columnar measurements [Varon et al., 2018]. An estimated wind speed is used to
describe the advection.

However, the unknown wind speed remains a large uncertainty factor. The parameterization of the wind
speed as the plume driving force (advection) neglects the diffusion by turbulent eddies. Therefore interpreta-
tion of the emission rate by the mass balance approach is only appropriate for advection-dominated plumes
under steady-state condition According to Reuter et al. [2019], discrepancy between the true and interpreted
source rate could arise from variation in the wind speed and direction from the time of emission until the
plume observation. The method should not be applied on low wind conditions, smaller than 2 m/s accord-
ing to literature (e.g. Denmead et al. [1998], Sharan et al. [1996], Varon et al. [2018]), due to high variability
and possible occurrence of vertical plumes. In addition, the influence of chemical reactions on the balance
should be taken in to account for chemical active trace gases such as NO, [Reuter et al., 2019].

To locate the plume and its path, Varon et al. [2018] and Kuhlmann et al. [2020] detected the enhanced
pixels, identifying as plume, using statistical tests.



3. Description of Data Processing

3.1. CO Column Concentrations observed by TROPOMI

This study uses the TROPOMI Level-2 CO product from November 2017 to mid August 2020. The vertical
integrated CO density from TROPOMI is inferred from solar backscatter measurements in the Shortwave
Infrared (SWIR) spectral range at 2.3 um [Landgraf et al., 2016].

TROPOMI is a nadir viewing push broom image spectrometer with a swath (across-track) covering 2600
km and a two-dimensional detector plane. The instrument slit is imaged on the two-dimensional detector
and sampled in spectral and spatial dimension [Veefkind et al., 2012]. The ground view of the SWIR spec-
trometer covers 3.4x7 km? respectively in flight and across flight direction [Landgraf et al., 2016]. Temporal
integration over 1 s in the flight direction results in ground pixel sampling of ~7x7 km? [Landgraf et al., 2016].
From the 6th of August 2019, the ground pixel resolution is improved to 5.5x7 km? due to a decreased readout
time of the detectors [Borsdorff et al., 2020]. Figure 3.1 provides an overview of the principle.

Finally, the Shortwave Carbon Monoxide Retrieval (SICOR) [Landgraf et al., 2018, 2016, Vidot et al., 2012]
algorithm is deployed to infer the total columns from the 2324-2338 nm window (covering absorption band
of CO). From this spectral range, the interference of atmospheric scattering is limited under clear-sky con-
ditions enabling sensitivity to the boundary level [Landgraf et al., 2016]. Prior to the retrieval of the CO total
column, observations that are strongly contaminated by optically thick clouds or that have a too low solar
radiance signal are rejected [Landgraf et al., 2018]. Large inland waters or oceans may not scatter enough
light necessary for the retrieval under clear sky conditions.

Across track (swath)

Two—dimensional detector

Figure 3.1: The two-dimensional detector and instrument split with respect to the ground pixels. Image altered from [Veefkind et al.,
2012] and [Landgraf et al., 2016].

From the nominal operation phase (E2) [Van Kempen et al., 2019], since 1 May 2018, the processing of the
TROPOMI L2 data is operational and comprises 14 orbits per day with a repeat cycle of 16 days. The original
data product is structured per satellite orbit or per granule (section of an orbit) and stored in NetCDF4 files.
We restructured the data in equal blocks distributed over space (using cylindrical equal-area projection) and
time to allow rapid extraction of data covering the geographical area of interest. Figure 3.2 illustrates the data
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structured per orbit and as proposed by this study. We only selected sub-data (e.g. CO total column concen-
trations, geolocation information of ground pixels, time) necessary for processing for storage in the DDS. The
selected data was limited to observations over clear-sky or mid-level cloud (<5,000 m) conditions and with a
Solar Zenith Angle (SZA) smaller than 80°. The strong influence on the light path due to interference of clouds
or under low sun conditions (§2ZA<80°) (longer light path) could result in higher errors in the data. Clear sky
and mid-level cloud scenario’s are indicated by the aerosol optical depth (7 4.,) and cloud layer height (z.;,,4)
as shown in equation 3.1 [Landgraf et al., 2019]. Furthermore, the most westward pixels were masked due to
unresolved calibration issues [Landgraf et al., 2019]. The columnar CO data obtained from the TROPOMI L2
product consisted of stripes occurring in the flight direction. These stripe patterns are deemed erroneous
(<5%) [Borsdorff et al., 2018, Landgraf et al., 2019]. It was noted that the false elongated pattern of the stripes
could hamper the plume detection, therefore we corrected for the stripes by applying a median filter as sug-
gested by Landgraf et al. [2019].

Clear Sky  Tger <0.5 & z¢79yq < 500m

(3.1)
Mid-level  Tger =0.5& Z¢oud < 5,000m

Distributed Data Structure

Orbits Blocks of equal area

Time

\/

Spatial

Figure 3.2: Representation of the data stored per orbit (TROPOMI L2 files) and structured in blocks distributed equally over space and
time as done in this study. The left image was extracted from https://sbphub.copernicus.eu/

3.2. Detection of Steel Plant Facilities

A list of steel plants and their specific coordinates to use as case studies and input was obtained through sev-
eral searching techniques. First of all, we searched for steel work locations using information provided on
larger steel manufacturers websites (e.g. ArcelorMittal, Steel Authority of India Ltd. (SAIL) and Nippon Steel
Corporation) and international emission inventories (e.g. National Emissions Inventory (NEI) and European
Pollutant Release Transfer Register (E-PRTR)). Not all countries register emissions or indicate the emissions
per individual facility in inventories (or in accessible inventories). The detection of plumes using the ob-
tained algorithm was found to be limited and difficult for steel plants with a noted annual CO emission be-
low ~30,000 tonnes. Therefore, steel plants with accessible annual CO emission and emissions above the
threshold of 30,000 tonnes were listed. Notice that the activity of steel plants could change over time and
therefore could deviate from what is stated in the inventories when the data corresponds to a previous year.
Both approaches were limited and time consuming as a result of language-barriers and lack of information.
Therefore, we detected most steel plant locations visually using the VIIRS I Band 375 m Active Fire Prod-
uct (VNP14IMG) [Schroeder and Giglio, 2018] from the Fire Information for Resource Management System
(FIRMS). Thermal anomaly products, e.g. VNP14IMG, reveal prominent heat sources such as combustion ac-
tivities at steel works [Liu et al., 2018, Ma et al., 2018, Zhou et al., 2018]. The product from VIIRS / Suomi NPP
(Suomi National Polar-orbiting Partnership) was used, rather than VIIRS / NOAA-20, because of the benefit
of flying in close formation of S5-P with S-NPP [Veefkind et al., 2012]. To optimize the visual inspection of
steel work locations the VNP14IMG data with a temporal coverage of several weeks, preferably outside the
fire seasons, has been viewed on a background of World Imagery [ESRI et al., 2018] as illustrated in figure 3.4.
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The obtained locations were verified as steel plants by using recent Google Earth images (figure 3.5).

Obtained and Used Steel Plant Locations

— 50
©
©
2
2 0
o
-
-50

-150 -100 -50 0 50 100 150
Latitude [°]

Figure 3.3: Locations of the 132 steel plants listed and analyzed by this study.

Figure 3.4: Visual detection of steel plants with help of VNP14IMG data plotted on World Imagery map from FIRMS (https://firms.
modaps.eosdis.nasa.gov/map/). Example shows steel plant located in Tula, Russia (54.16°, 37.73°) with VNP14IMG data covering
from 15-08-2020 until 11-09-2020.

The identification of plume structures over time relies on the occurrence depending on meteorological con-
ditions as well as the operational cycle of the specific source. In order for TROPOMI to capture the plume
information the occurrence of the plume should align with the time of overpassing. Furthermore, the en-
hancement of the plume among the background needs to be in the range of the precision of the instrument.
This study did not focus on the detection limits. To obtain the number of overpasses (from November 2017 -
Mid August 2020) for each location, all lit sides of orbits overpassing the 1°x1° area around the source point
were counted. Figure 3.6 shows the number of overpasses over each steel plant and the percentages of the
overpasses suitable for the detection. The suitability of an overpass for plume detection depends on the
number of masked pixels (due to cloud contamination or clear conditions over sea) and the ground pixel
sizes (maximum 15 km in swath direction). A minimum of 16 pixels covering the 1°x1° area is required to
run the algorithm. Notice that the threshold of 16 pixels is not necessarily the amount of pixels from which
plumes can be detected from the area. From figure 3.6, the gradual increase in number of overpasses toward
the higher latitudes (N and S) is apparent. Whereas, the percentages of accepted overpasses were more spa-
tially scattered. The facility located in Fjardabyggod(Iceland), a region known for the high annual cloud cover
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Figure 3.5: Google Earth imagery was used to validate the obtained locations of steel plants. A)Galati steel works, Romania (45.42°,
27.98°), B) Vanderbijlpark steel works, South-Africa (-26.66°, 27.82°), C) Bhilai steel plant, India (21.19°, 81.39°) and D) Indiana Harbor
steel facility (East Chicago), USA (41.67°, -87.45°)

fraction, counted the highest number of overpasses (3602) and at the same the lowest rate (~0.50%) of cases
suitable for the detection algorithm.

To obtain more understanding regarding the CO emitted by steel processes, we contacted steel facilities of
Arcelor Mittal and thyssenkrupp respectively located in Gent (Belgium) and Duisburg (Germany). Further-
more, information about the production processes facilitated at each steel plant and the annual production of
crude steel were mainly found from annual reports published by steel manufactures. Notice that the amount
of easy accessible information regarding the facilities deviated strongly per manufacturer and country.
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Figure 3.6: Number of overpasses, under day conditions, over each steel plant area and the percentage of those overpasses that met
the criteria, maximum ground pixel width (across track) of 15 km and minimum of 16 non-masked pixels, for the applicability of the
framework. The steel plant area is defined as 1°x1° around the steel plant. Data from November 2017 - Mid August 2020 is covered.

3.3. ERA5 Wind Fields

ERAS5 [C3S, 2017] contains global reanalysis data covering 4D atmospheric data produced through data as-
similation by the European Centre for Medium-Range Weather Forecasts (ECMWF) [ECMWEF, 2020]. In this
study the hourly single level, 10 and 100 meter, wind component data at the high resolution of 0.25°x0.25°
(~27.75%27.75 km) will be used.

3.4. Pollutant Release and Transfer Register (PRTR)

This study makes use of the European Pollutant Release and Transfer Register (E-PRTR) for validation pur-
poses. The European Commission implements the Pollutant Release and Transfer Register (PRTR) protocol
through the E-PRTR. The register contains reported data pollution by over 30,000 industrial facilities from the
27 European Union Member States as well as the UK, Iceland, Liechtenstein, Norway, Serbia and Switzerland
and is accessed through https://prtr.eea.europa.eu/. The latest E-PRTR data refers to the year 2017.
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It should be noted that the emissions could have changed over time since the last reporting. The E-PRTR
only provides information regarding the annual emissions of the point sources and the dominant activity.
Information regarding the amount of production, specific facilities or site location is not given.

The United Nations Economic Commission for Europe (UNECE) Pollutant Release and Transfer Register
(PRTR) protocol to the Aarhus convention facilitates public access to the release and transfer of 86 substances
from 64 activities [United Nations, 2007]. The protocol was adopted in Kiev on 21 May 2003 and signed
by 36 countries and the European Community. It is designed as an open global protocol. All members are
required to collect reported data from facilities in national registers and to establish public access to the
annual emissions per substance, activity and facility [European Commission, 2006, United Nations, 2007].

The PRTR supports insight into emissions from the participating countries [Kolominskas and Sullivan,
2004, Tang and Mudd, 2014]. However, the PRTR data is policy oriented and could diverge from national
inventories and the true scientific emission rates [Pulles, 2008]. The quality is difficult to asses due to varying
reporting methods and assumptions per facility and over time [Dios et al., 2013, Saarinen, 2003]. Therefore,
limitations arise from the quality and the incomparability of emissions among facilities or over time [Dios
et al,, 2013, Mennen et al., 2008, Pulles, 2008]. Despite the unknown scientific quality of the data, the PRTR
are the only more or less complete free available data sets [Pulles, 2008].



4. Methods

This study developed a framework that automatically detects and thereafter estimates the emission from
point sources directly from satellite observations. The emission estimation makes use of the mass balance
approach. The framework is designed and tested on numerous case studies covering plumes from steel plants
facilities around the world using TROPOMI L2 CO data. The framework makes use of several fixated thresh-
olds with values empirically found. Figure 4.1 illustrates the steps taken in the framework. Where the white
and grey blocks, respectively, refer to the input data and individual algorithms. The framework is written in
python and designed to rapidly detect plumes from a pre-defined point source over each overpass. To al-
low rapid processing, the L2 CO data (originally stored per orbit) is restructured in the form of data blocks
distributed over space and time.

The framework returns the CO source rates of a specific point source over time. The first step covers
the detection and segmentation of the plume area from a 1x1 ° area around the source location (subsection
4.1). Whereafter, the center line of the plume area is extracted (subsection 4.2). The center line is used to
find the plume transects perpendicular to the plume direction. The methods applied for the segmentation
and center line extraction are commonly used for blob detection purposes, such as the detection of retinal
vessels [Bankhead et al., 2012, Kumar et al., 2016], pathology detection [Kong et al., 2013] and land-water
boundary detection [Gonzalez-Jorge et al., 2018]. The identification of plumes as a coherent group of pixels
significantly enhanced among the background enable the use of blob detection. Once the center line is found,
multiple transect perpendicular to the line are obtained. Using, on quality selected, transects, the source rate
is estimated by the mass balance approach using ERA-5 re-analysis 100 m wind data (section 4.3). Once the
emissions over time are estimated, the plume enhancement will be tested among the general background
variation and post-processing will be done to eliminate falsely or poor quality detected cases (section 4.4).
The discarding of cases/measurements takes place during the iteration process over all orbits and after the
processing. Although, the testing of the plume enhancement is seen as last part of the detection algorithm
rather than a post-processing step, the criteria was tested after the running for all orbits since the location
specific threshold is estimated from the time series.

Wind Field
CO product Distributed
from »  Data
TROPOMI Structure Y
Emission
Al Estimation:
Segmentation »  Center ylne > [ — » Post-Processing
Extraction
Approach
Steel Plant
Coordinates

Figure 4.1: Overview of the obtained automatic detection and emission estimation algorithm. Level 2 CO data from TROPOMI is struc-
tured to allow rapid reading and together with steel plant coordinates used as input. ERA-5 reanalysis wind data is used as input for the
emission estimation.
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4.1. Plume Detection Algorithm

Key to the developed framework is the plume detection algorithm. The algorithm consists of three main steps
(as shown in figure 4.2) and combines the application of image processing techniques and a statistical test.
Prior to the actual detection, the CO total column concentrations and data covering the geolocation of the
pixels are read from the data structure (discussed in 3.1). The data is transformed to a 2D matrix, with the
position of the pixels representing the order of recorded ground pixels over the orbit. The rows and columns
represent the swath (across track), consisting of 215 pixels [KNMI, 2019], and the covered orbit (see figure
3.1). A selected area of 1x1° with the source point as its center is used. The small area limits the capturing
of adjacent sources and spatial patterns. Furthermore, the variation of ground pixel sizes in the swath will
be minimal. Figure 4.3 presents a selected area of 1x1° (~111x111 km) around a source point of interest
transformed to a 2D matrix.

Segmentation
Pre-processing » Identification »|  Verification
| Background | Threshold L Student T-test
extraction
L Laplacian of | Identification
Gaussian plume
L Closing
Morphology

Figure 4.2: Overview of the processes used for segmentation of the image into surrounding and plume pixels linked to a specific source
point.
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Pixels Across Track

Pixels in Flight Direction

Figure 4.3: Extracted area of 1x1° around the source point represented as a 2D matrix respecting the order of recorded ground pixels.
The x-axis refers to the number of pixels across the track with a total of 215 pixels covering the entire swath. The y-axis refers to the pixels
in the flight direction. The red dashed square represents the area that will be cropped to limit the matrix to the region of interest.

The algorithm for the plume detection, or segmentation, starts with the pre-processing step. In this step the
contrast between plumes and the background is intensified to ease thresholding. Figure 4.4 presents the steps
taken. First of all, the local enhanced areas are eliminated by subtracting an estimated background from the
image. The background is approximated by the application of a median filter. The mean filter replaces each
pixel value by the median of the pixels values captured by the sliding window, such that:

I’(x,y) =median({I(x+ i,y + j)I(i,j) e W}) 4.1)

where I and I’ represent the original and filtered image, (x,y) are the indices of a specific pixel and (x+i,y+j)
are the indices of the neighboring pixels captured by window W. If the window size exceeds the size of the
anomalies the enhanced structure is removed and leaving the background values. Note that the window size
may not exceed the spatial variation of the background as I’ (x,y) will deviate from the true background value.
A window size of 11x11 pixels has been empirically found by this study to work for most tested steel plant
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Figure 4.4: Pre-Processing applied on TROPOMI CO data to eliminate enhanced areas from the background. The example case shows
the existence of a plume adjacent to the plume corresponding to the Steel Plant at Kryvyi (47.87°, 33.39°), Ukraine (6685.46).

cases. Once the background (I') is estimated, it is subtracted from the original image (I).

In the next step, convolution by a 2D Laplacian of Gaussian (LoG) filter is used to intensify rapid change
in value. Prior to the filtering, the data has been linearly interpolated to fill missing pixels required for the
convolution. Laplacian strengthens regions of local extremes by taking the second derivative of the image
[Kong et al., 2013, Kumar et al.,, 2016, Vermeer et al., 2004]. In order to account for the high sensitivity to
noise of the Laplacian convolution, the Laplacian was combined with a Gaussian smoothing filter; forming
a Laplacian of Gaussian (LoG) filter (equation 4.2) [Kong et al., 2013]. The use of the LoG filter increases the
contrast between the enhanced plume pixels and the bordering pixels (Figure 4.5). This is especially useful
to ease the masking of a plume close to an adjacent plume as the contrast between the plume pixels and
the space between the two plumes will be increased. This step is only done for masking and is not used for
interpretation.

2 2

G(x,y;0) = ! exp(— ty ) (Gaussian)
VO g P 207 ’
0° 0%
V2= a—x]; + 57 (Laplacian) , (4.2)
2., .2 2 2., .2
2 _X“+y -20 xX“+y
VeG(x,y) = o, exp(— 552 ) (LoG)

In the second step the pixels are segmented into potential plume and background pixels. The Otsu algorithm
is used to find a threshold that separates the strong enhanced potential plume pixels from the background
pixels from the LoG image. Note that the pixels masked in the original CO image are not taken into account.
Otsu is a threshold selection method that dichotomizes the pixels, into foreground and background, based on
minimizing the intra-class variation of the gray scale histogram [Otsu, 1979]. The method is global threshold
method, meaning that only pixel value information is taken into account leaving out information regarding
spatial distribution [Dong, 2014]. Although its one-dimensional approach, Otsu thresholding is largely ap-
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Figure 4.5: The thresholding algorithm is illustrated on the Bhilai plume. The first step consists of obtaining a threshold through the
application of the Otsu algorithm on the LoG image with only taking the original un-masked into account. The median of the subset of
pixels exceeding the Otsu threshold is used as the final threshold.

plicable due to its simplicity and robustness [Goh et al., 2018]. The true background is not homogenous due
to fluctuating CO concentration. To separate the significant enhanced plume pixels from the 'higher’ back-
ground values, the median of the thresholded foreground pixels is defined as new threshold. In equation 4.3,
T stands for the global threshold value and A presents the set of pixels from image f(x,y) with a value greater
or equal to T. The binary image g(x,y) results from thresholding f(x,y) using the median of A (A). Figure 4.5
illustrates the thresholding procedure.

A={fx,):fx,y) =T}

|1 fx,yeAnfx,y)=A (4.3)
g(x,y)—{o flx,y) <A

The potential plume pixels are indicated by the value "true" in the binary image. All connected potential
plume pixels are assumed to belong to the same plume and a group specific integer value is assigned to all
potential plume pixels. A connectivity of one is used, meaning that pixels connecting horizontally or verti-
cally are considered connected. The image now consists of groups of potential plume pixels, each indicated
by a unique value, and background pixels (labeled as 0 or "False"). The smallest distance, measured from pro-
jection point to center points, between the projection point and each group is obtained. Finally, the group
closest to the projection point and meeting the set maximum distance of 14 km is assigned to the specific
source.In addition, the assigned group may not originally consist of more than one third of originally masked
pixels. The originally masked pixels do not contain information about the CO concentrations. As a result of
the necessary interpolation prior to the LoG filter, originally masked pixels could be flagged as plume pixel
after the thresholding. Plumes that have "holes’ will benefit from this, however for areas with a large number
of masked pixels the true value and interpolated value could deviate strongly. Through trial and error of dif-
ferent set variables, we found that setting the threshold at one third seemed to both limit detection of false
plumes and also limit discarding good plumes by allowing plumes to have originally masked data.

Once a specific plume pixel group is assigned to the source point, the plume mask image is obtained.
The plume mask image is a binary image where the plume pixels and background pixels are indicated with,
respectively, "True" and "False".

To account for holes in the plume due to masked data or weak local enhancement, morphological closing
is performed on the binary image. Morphological operations concerns the processing of the image by the
interaction with a structuring element. Closing comprises dilution prior to erosion of the image by the same
structuring element, illustrated in figure 4.6. [Laganiere, 1998]. The used structuring element has square con-
nectivity of one.

The final step of the plume detection algorithm includes the verification of significant enhancement of the
assigned plume area among the surrounding pixels by the application of a student-t test. The student-t test
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Figure 4.6: Closing morphology consists of dilution of the binary image by structuring element followed by erosion.

The earlier described Otsu method separates the image into two groups of pixels regardless of the pres-
ence of a striking intensified area. Thus, testing the significant difference of the obtained groups limits the
false identification of background pixels as plumes. A confidence interval of 95% has been used.

4.2. Plume Center Line Identification

The second step in the framework consists of the identification of the plume center line. The extraction of the
center line is necessary to in later steps compute the cross sections of the plume from (Section ?2) as well as
the approximated plume direction. The center line is obtained using the earlier found plume mask (section
4.1). Using the plume mask, the natural slightly curved path of the plume is taken into account. Skeletoniza-
tion of the binary image is performed to get a skeleton of unitary thickness centered within the original blob.
The skeletonized image is a binary image, with the skeleton pixels being labeled as 1. The algorithm by Zhang
and Suen iterates over the image, removing boundary and corner pixels while reserving the endpoints until
only the skeleton remains. Details regarding the iteration process of the thinning method are found in Zhang
and Suen [1984]. The skeleton serves as the base of the center line. Figure 4.9 presents the results of the steps
followed for center line extraction.

Plume Center Line Extraction

Skeletonization Pruning and
Plume Mask Smoothing

Y

— Obtain Plume angle

| lteration Pruning
Process

L— Smoothing

Figure 4.7: Overview of the process, consisting of two main steps, to extract the plume center line from the plume mask.

The extracted skeleton may contain side-branches besides the main branch as the result of either pertur-
bation of the contour [Kruszynski et al., 2006, Saha et al., 2017] or falsely segmented pixels neighboring the
plume. An obtained pruning method based on the discrepancy between the angle from one skeleton point
to another and the main plume angle is applied. The main angle of the plume is determined by the median
of the angles between the projection point and selected plume pixels weighted by their CO concentration.
Prior to the calculation, the plume pixels are binned in groups based on their angle with the projection point
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Figure 4.8: The starting point, or projection point, of the plume is estimated by the projection of the source point on the skeleton. The
portrayed case, steel facility in Kryvy Rih (47.87°, 33.39°), Ukraine (01-08-2018), shows a distance between the source point and the
identification of the plume.

where each group covered 30°. The pixels part of the group with the highest number of pixels are used to
calculate the main angle from. The selection is necessary to increase robustness to multiple (or parts of) high
concentration areas being identified as one.

Iterative transformations are applied to the skeletonized image following the points of the skeleton until
an end-point is reached. Figures 4.10 and 4.11 present an overview of the pruning method decision scheme
and the principle. The first iterative process starts at the determined starting point of the plume. The starting
point is identified as the projection of the source point on the skeleton (see figure 4.8). The angle between
the analyzed point and the neighboring skeleton pixels is determined, ignoring neighboring pixels analyzed
in a preceding iteration. In the case of bifurcation, the neighboring pixel with the smallest difference in angle
compared to the main plume angle is selected as part of the main branch. Skeleton pixels that are not part
of the main branch are deleted. If the majority of the main branch pixels deviate strongly from the plume
direction according to the main plume angle, the case is discharged. We defined the latter threshold as ex-
ceeding the empirically found value of 40° for more than half of the total skeleton pixels. The pruned skeleton
is smoothed using spline interpolation. The small length of some plumes make that the lines only consist of
limited (~5-15) coordinates. Therefore, the number of coordinates that define the line was increased prior to
the interpolation. Increased information on the line in the form of coordinate points, improved the quality of
smoothing.
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Figure 4.9: Processes to extract the center line of the segmented plume illustrated on the example of the Bhilai Steel Plant at 04-06-2019.
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Figure 4.10: Decision scheme of the obtained skeleton pruning method.
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Figure 4.11: Selection of neighboring skeleton pixel in the case of bifurcation based on the angle between the centre pixel and each
neighboring pixel in relation to the main angle of the plume.

4.3. Emission estimates: mass balance approach

The emission is estimated with the aid of the mass balance method on transection lines perpendicular to and
following the extracted center line (described in section 4.2) in the downwind direction. Finally, the source
rate of the plant is approximated by the mean value from the source rates of the different transects along
the plume. The overview of the framework is shown in figure 4.12. First of all, the CO column data (X), with
units in molecules/cm?, is converted to the mass column (Q), with units in kg/m?. The conversion is done
through multiplication by the molecular mass (M¢o) and the inverse of the Avogadro number (N 4) as shown
in equation 4.4. The Avogadro number (representing number of units per mole) and molecular mass of CO
are used to convert from the unit of number of molecules to the unit of mass.

_ X-Mco
=

Q 10* 4.4)
To obtain the CO mass column value at the transection line locations, the irregular data is interpolated by
performing triangulation.

The plume is assumed to be advection driven and thus the transportation of the plume is solely inter-
preted by the wind speed. The wind speed and the effective plume height are unknown. We interpret the
wind speed by ERA5 re-analysis data at the single level of 100 meter. The wind speed is computed from the
wind components using the Pythagorean Theorem. To allow collocation with the TROPOMI CO data at a spe-
cific location, we interpolated the ERA5 data. Due to the regular grid of the data, linear interpolation is used.
Prior to the creation of the interpolation function, the computed wind speed data has been corrected to fit
the observation time per pixel. The overpass time from the L2 TROPOMI CO data has been used and a linear
relation over time was assumed. The wind direction is derived using trigonometric functions.

The rate through the cross-section at downwind distance x is obtained by the product of enhanced mass CO
column (AQ) and the wind speed (U):

yn
Q= Ux, y)AQ(x, y)dy (4.5)
Yio

The source rate of the plant is approximated by the median value from the source rates of the different tran-
sects along the plume (see figure 4.12). The limits y;o and y;; (equation 4.5) refer to the boundary of the
plume in the cross-wind direction. The concentrations at the limits are used to determine a reference for the
background along the specific cross-section assuming a linear relation, illustrated in figure 4.13. The second
background subtraction balances the background to zero to approach the true enhanced column value. The
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Figure 4.12: Overview of the processes and data used for the emission estimation using the mass balance approach.
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Figure 4.13: Calculation of the flux profile through transects perpendicular to the extracted plume centre lines. The dashed transection
lines are rejected due to deflection in direction in comparison to the wind direction (indicated by the black arrows). The dotted line parts
indicate cropping of the fixed transection line width due to the occurrence of a through in the flux profile (indicated by a black dot in
the flux profile). As an example the flux profiles, before and after background subtraction, of a cropped and non-cropped transect are
delineated, respectively, in yellow and red lineation. The case illustrated concerns the Bhilai Steel Plant (BSP), India, at 16/06/2018.

transition of background to plume, and vice versa, is identified by locating the throughs in the transection
profile. The transection line is initially fixed at an empirical found width of 30 km by this study. Significant
throughs occurring from + 5 km, seen from the centre point, are identified as transition point. If no negative
peaks are found, the limits are set at -15 and +15 km in the cross-wind direction from the centre point. The
detection of negative peaks is especially important for limiting potential emission overestimation or under-
estimation caused by higher concentrations from adjacent sources.

To assure the quality of the estimated source rate from the integrated fluxes through the transects, the tran-
section lines taken into account will be selected. To verify the use of the wind field at 100 m height, the dis-
crepancy between the wind direction from the interpolated ERA5 data set and the direction indicated from
the extracted plume centre line serves as criteria. The transection line is discarded when the difference be-
tween the wind and plume angle comprises 30°. Figure 4.13 presents the rejection of transection lines due to
exceeding the set threshold indicated by dashed lines. Furthermore, the analogy of the maximum flux and
the centre point of the transection line act as a proxy of the transection line quality. The segmentation and
extraction of the centre line do not necessary limit the coverage of the plume to the high enhanced values
of the plume. Taking into account emission rates determined from transection lines covering transition val-
ues might lead to an emission underestimation. In ideal cases the extent of the plume can be identified in
the downwind emission profile by the presence of a plateau-shaped feature. The fanning of plume values is
identified as a 'tail’ like feature with emissions significantly lower than the plateau. The tail is characterized
as the occurrence of a significant large amount of points (more than one-third of the total) below the median
of the downwind emission profile as presented in figure 4.14.
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Figure 4.14: Example of segmented plume (BSP, India ,24-06-2018) containing a significant amount of points at the end of the plume
that do not correspond to the enhanced plume values. The so-called 'tail’ transects are deselected (indicated by the dashed lines). The
downwind emission profile illustrates the difference between taking into account all transects and only taking into account the selected
transection lines. Inclusion of the lower emission will result in a lower total emission depending on the value and number of 'tail’
transects.

4.4. Filtering
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Figure 4.15: The detected plumes are validated over two steps. First of all, the plume enhancement must exceed the variation occurring
in the background. The limit is derived from the collection of standard deviations of the surrounding pixels covering all processed orbits.
The post-processing consists of an unsupervised and manual filtering step.

To test the occurrence of the detected plume area to a significant release of CO into the atmosphere from
the specific point source, a signal threshold is set. The threshold is defined as the boundary distinguishing
background variability and enhancement declared as a positive CO surface flux. If the enhancement of the
plume surpasses the threshold, the detected plume area is accepted. The plume enhancement is determined
by the median value of the maximum CO concentrations over each line transect. The threshold is set as
the upper limit, using bootstrapping with a confidence interval of 97.5%, of the standard deviation of the
surrounding pixels over the entire time series. For each location a new threshold is computed to account
for the strong deviation of accumulated CO spatially (Figure 4.16). Besides the spatial variation of the CO
background, a seasonal variation is clearly visible. However, the set threshold remains constant over time to
limit uncertainty caused by the temporal irregularity of the data. Notice that the obtained threshold could
overestimate the true variability of the background if the majority of the considered data contains signals of
multiple plumes.

The unsupervised post-processing step consists of application of several thresholds to secure desired criteria
concerning the following:

* Correspondence plume and wind direction
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Figure 4.16: Time series of the standard deviation of CO signals from surrounding pixels, all pixels not identified as the plume corre-
sponding to the source point, of the (left) Visakhapatnam, (centre) Salzgitter and (right) Cherepovets steel plant. The upper and lower
limit represent the confidence intervals at 2.5 and 97.5% ,respectively, obtained through bootstrapping.

¢ Flux profile over each transect

* Wind conditions

e Variation Emission profile in the downwind direction

* Number of selected transection lines to interpret the emission from

The selection of thresholds for the specific criteria were mainly empirically obtained. Several locations, using
the entire time series, were used as test cases (e.g. Bhilai, Kryvyi Rih, Rourkela, Duisburg, Vanderbijlpark,
Cherepovets, Lipetsk, etc.) to determine and optimize the selection of criteria and their thresholds. An itera-
tive manual trial and error approach was used.

Similar to the procedure used for the selection of the transection lines, the discrepancy between the plume
and wind field angle as well as the deviation of the flux peak along the transects are used as criteria. The
median value of the properties covering the collection of selected plume transects should not exceed the
threshold, rather than the focus on individual lines during the procedure described in section 4.3. The em-
pirically obtained thresholds for the difference among the obtained plume directions and location of the flux
maximum among the plume cross-sections are set, respectively, at 20° and 6 km. The combination of looser
and stricter thresholds for individual transection lines and the overal plume (represented as the collection
of selected transects) optimize the detection of proper cases. As can be seen in figure 4.19, the proxy for the
quality of the defined plume centre line successfully discards cases with a misplaced centre line.

To confirm the application of the mass balance approach, as previously described in more detail in section
2, the wind field should be more or less homogenous and not consist of low wind speeds. We define the largest
difference in wind angles found along the centre line as proxy for the homogeneity of the wind field. We
empirically determined the homogeneity threshold and it was defined at 10°. Figures 4.17 and 4.18 present
discarded cases due to the exceeding of the wind fit and wind variation criteria respectively.

Although the emission over the extent of the plume will vary due to fanning, a major variation could
indicate false detection. The coefficient of variation (CV), standard deviation (o) relative to the mean (X)
(see equation 4.6), is used to define the variation of the emission over the plume extent. A large variation of
estimated flow rates over the plume could. We empirically set CV at a ratio of 0.4 since it appeared to set fit the
balance best for respecting the natural variation of the emission profile (fanning out will cause lower values)
and filtering bad cases. Note that the set value of CV is critical for the balance between limitation of false
detected plumes and optimizing the detection of true plumes. It is advised to revise the variation threshold
when the framework is applied on different cases.

o
X

In order to verify and assure the quality of the source point’s emission rate estimation from the emissions
interpreted over each transects, a minimum number of transection lines ( 6) was set as a requirement.

CVv= (4.6)

A manual filtering step is applied to verify the quality of the obtained emissions of the remaining cases after
the post-processing step. The quality of the emissions estimated from each overpass is assessed through
inspection of the located plume centre line and the transects among the mapped CO signals. Through the
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Figure 4.17: Examples of cases discarded due to major discrepancy between the wind direction and the plume direction obtained from

the extracted plume centre line.
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Figure 4.18: Examples of cases discarded due to large variation of the wind direction over the plume area and thus nonuniform advection.
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Bokaro, 19-07-2019
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Figure 4.19: Rejected plumes based on exceeding the allowed deviation of the flux peak from the centre line. The criteria aims at detecting
mis-located centre lines, such as in the Bokaro (19-07-2019) plume, caused by the covering of two plumes by the plume mask, and the
Visakhapatnam (09-03-2018) plume.
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Figure 4.20: Examples of cases, AlNoor (08-02-2020) and Rourkela (06-05-2020), respectively, meeting and exceeding the criteria set for
the emission variation among the downwind direction. The variation is defined as the coefficient of variation (CV). A single enhanced
pixel caused the false detection of the plume at Rourkela.
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manual filtering, the detected plumes are divided over three groups by labeling each case with one of the
following flag values:

0. False detected plume or poor quality
1. Good quality
2. True detected plume with suspicion of interference of one or multiple nearby plumes

Plumes flagged as 0 will be eliminated from the dataset used as input for time series analysis. Figure 4.21
illustrates examples of frequent cases labeled with flag values 0, 1 and 2.
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Figure 4.21: Examples of cases manually labeled as 0, 1 and 2. Plumes are flagged as 0 if, e.g., a plume is falsely detected (Butler, left), the
quality of the plume is poor (Dunkerque, centre) or a potential plume could not be properly identified (Fos-sur-Mer, right) due to the
presence of an excessive number of masked pixels. The middle row presents examples of correct identified plumes. The emissions of
plumes flagged as 2 are potentially influenced by other plumes from nearby sources. This could be seen through visual inspection, as the
alignment of two plumes as in the Benxi (left) or Ma’anshan (right) plume causing accumulation of CO or as the capturing of multiple
plumes due to failed identification of the plume path (Bokaro, centre).
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4.5. Performance Quality of Algorithm

To filter false detected plumes and plumes not meeting the requirements, the significance of the plume en-
hancement was tested whereafter post-processing, unsupervised filtering followed by manual filtering, was
applied. Where the requirements set for desired plumes emerged from the assumptions made for the appli-
cation of the mass balance approach. Figures 4.22, 4.23, 4.24 and 4.25 illustrate the results and performance
of the filtering processes. The overview in figure 4.22 presents the results of the entire dataset. The figure
reveals the rejection of measurements obtained by the main part (segmentation, line extraction and emis-
sion estimation) of the framework through the enhancement testing and post-processing steps. From all
measurements, only 5.8% was ultimately accepted. The ratio of plumes meeting the minimum enhancement
criteria found for all plumes (60%), figure 4.22, corresponds with the ratio’s found per individual steel plant
(58.4%1.4 %). The consistency in the ratio, for most steel plants, can be seen in figure 4.23. Furthermore, the
strong correlation between geographical location and number of cases, as was noticed in figure 3.6, appeared
to be less apparent in the results of the first filtering process. From the three filtering steps, the unsupervised
post-processing step discards the most cases with an average acceptance rate per plant of 9.7+0.8% and 12%
acceptance rate of the measurements from significantly enhanced plumes.

Plume Enhancement

Below Above
Threshold Threshold Unsupervised Filterin Rejected Accepted -
g Manual Filterin
40.0% 60.0% 87.5% / 52.5% 12.5% 17.5% 9

Flag 0
23.1% /1.6%

Flag 1
71.7% | 5.4%

Flag 2
5.2% 1 0.4%

Total = 30.682 Total = 18.412 Total = 2.307

Figure 4.22: Overview of the results from the three filtering processes: plume enhancement test, unsupervised post-processing and
manual post-processing. The bold percentages refer to the number of measurements in the sub-group relative to the total measurements
used as input for the filtering process (output detection algorithm)
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Figure 4.23: Number of discarded (bottom, light blue) and accepted (top,yellow) emission estimations by the enhancement test, the
first filtering process. The total stack height for each facility represents the total number of measurements processed by the detection
algorithm.

The unsupervised filtering was, besides limiting false detection, designed to discard plumes that did not
meet the assumptions made in the mass-balance approach (e.g. uniform advection, no low wind speeds).
The number of plumes not meeting any or multiple of the six criteria can be seen in figure 4.24, with the
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red lines indicating the occurrence of discarded cases solely based on not meeting the specific criteria. The
majority of the discarded plumes did not meet the criteria regarding the required analogy between the wind
and plume direction. Over 18% of the discarded plumes, were solely discarded based on this criteria. Besides
the verification of the use of the 100 meter wind field, the agreement between the wind field and plume angle
appeared to be of great importance for identifying false detected plumes. Insight into whether a discarded
case was a not desired detected plume or false detected plume appeared difficult to obtain without visual
inspection.
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Figure 4.24: Insight into the number of measurements not meeting the requirements for each criteria set for the unsupervised post-
processing step.

After the unsupervised step, the remaining detected plumes were verified through visually inspection.
Measurements indicated with flag 1 (good plume) or 2 (true detected plume but with possible interference)
were accepted as true plumes, respectively, 5.4 and 0.4 % of the total measurements. We found that the
amount of measurements rejected through manually filtering, deviated strongly per facility. Figure 4.25 shows
the distribution of the accepted and rejected, through unsupervised and manual filtering, for steel facilities
in Europe. From the figure, it was noted that for the steel plants located in coastal area’s, e.g. the Netherlands,
France, Belgium, UK and Spain, relatively a large amount of measurements were rejected through manual
filtering. The occurrence of masked plumes near coastal area’s increases due to the inability to retrieve mea-
surements above clear-sky waterbodies (not enough light is received to fulfill the retrieval). Furthermore, it
was found that most rejected measurements corresponded to facilities with a small number of measurements
(see figure 4.26). The rejection of measurements from plants with over 60 remaining measurements after the
unsupervised filtering accounts for only 10.5% of the total elimination through the manual filtering step.
However, 76.2% of the rejected measurements correspond to plants with less than 40 emission estimations
over time with the accepted measurements consisting of measurements flagged as 1 (true detected plume)
or 2 (true detected plume but with suspicion of interfering signal from adjacent plumes). The distribution of
the number of accepted measurements, for both only taking into account measurements flagged as 1 and all
true detected for all steel facilities is presented in figure 5.2.
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Figure 4.25: Number of discarded plumes by the post-processing steps, unsupervised (bottom, light blue) and manual filtering (centre,
yellow), and accepted (top, dark blue) cases from in Europe located steel plants.
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Figure 4.26: Relation between the number of rejected measurements and the number of total measurements per steel plant. The blue
fillings separate the points based on the number of total of measurements (num): num=20,20<num=40,40<num=60 and num>60. The

percentages above the plot indicate the number of rejected measurements per group relative to the total rejected measurements (of all
steel plants) through the manual filtering process.
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5.1. Time Series and Validation

The characteristics of the individual time series differ on facility level. In figure 5.1 a representative collection
of carbon monoxide emission estimations obtained with the framework is shown for 8 facilities over the time
period of mid November 2017 to mid August 2020. The number of CO measurements per plant varied be-
tween 0 and 119, where the majority of the series consisted of 10 estimations (Figure 5.2). Table 6.1 presents
all listed steel plants facilities including the found number of estimates and the average emission. The emis-
sions measured vary over steel plants from ~2.5 up to over 40 kg/s. From Figure 5.2 it can be seen that the
scattering of measured emissions changes per plant. In some time series apparent groups of clustered emis-
sion values are present.

On plant level the distribution of measurements over time is not constant. Long gaps of up to multiple
months alternate with periods of more frequent subsequent measurements as visible in Rourkela, India and
Dabrowa Gornizca, Poland. Not all outliers corresponded with measurements possible interfered by adjacent
sources (indicated by the red bullets in Figure 5.1).

Validation of the necessary, especially with the found fluctuations of emissions measured. The correlation
between European Pollutant Release and Transfer Register (E-PRTR) data and emission estimations obtained
through the framework was tested. To compare our data with the E-PRTR data which is provided in tonnes
per year, we transformed the data to kg/s by assuming a constant emission [Mortier, 2020]. The analysis was
limited to facilities of whom information regarding the CO emissions was found in registers and had at least
15 measurements over the obtained time series. Although this study collected information on facilities using
another accessible inventory, the National Emissions Inventory (NEI) from the United States Environmental
Protection Agency (EPA), no representative amount of emission estimations of the corresponding plants were
obtained. A Pearson coefficient of 0.76 found for the correlation between E-PRTR data and the framework
results. Furthermore, it should be noted that our measurements had a higher emissions than registered in
the E-PRTR. Given that our comparison was done on a limited number of facilities, care should be taken with
drawing conclusions.

31
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Figure 5.1: Collection of 8 time series representing CO emission estimates obtained using the proposed framework over a time period of
mid-November 2017 until mid-August 2020. The shaded area indicates the mean and standard error of the measurements.
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Figure 5.2: Histogram presenting the distribution of the total emission estimations, taking into account all true cases (blue, flag 1 and 2)
or only the high quality cases (yellow, flag 1), obtained over a period of more than 2.5 years for 133 steel plants.
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Figure 5.3: Relation between the emission rates estimated by this study and the emission rates documented by facilities in the E-PRTR.
Only steel plants with 15 measurements are presented. The x-axis and y-axis respectively, represent the value of the plant as registered in
the E-PRTR and the average estimated emissions over time. The error bars indicate the standardized error from the obtained emission
estimations per steel plant by this study. Note that the PRTR rates are obtained from an annual emission value by assuming a constant
emission rate.
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5.2. Uncertainty

The developed framework was used to determine emission estimation uncertainties through testing of dif-
ferent variable settings. The potential biases from the used background extraction method, to obtain only
the enhanced plume concentration, and the selected effective wind height were examined. The analyses
were done through comparing the results obtained using different settings with the results obtained using
the setting as initiated in framework (here referred to as the reference’). First of all, no correlation (Pearson
coefficients ~0) was found between the estimated emissions using the proposed framework settings and CO
background variation. Figure 5.4 presents the examination for two steel facilities located in Tsjeljabinsk and
Lipetsk.

No striking difference between the emissions obtained using our 'reference’ settings and the alternative
background extraction methods was found (Figure 5.5). The alternative methods made use of the extraction
of an overal estimated background as done in the plume elimination step described in Section 4.1 or approx-
imated by the median value of background pixels. The relative comparison for each alternative method with
the reference case showed only small variation over different steel plants (bottom graph in Figure 5.5). Over
all steel plants the average relative value was found to be 98.20+0.49%.

A significant bias was found for the wind height. Both subsets, wind field at 10 and 100 meter (reference
case), from the ERA-5 reanalysis data were used. Higher emissions were found for the use of the (higher
velocity) 100 meter wind field (Figure 5.6). Interestingly, the number measurements rejected
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Figure 5.4: On the left (for each case), correlation between the standardized surrounding pixels (non-plume) and emission estimation
interpreted from the plume. On the right, the mean of the surrounding pixels of the total 1°x1° over time. PN refers to the Pearson
Number between the standardized concentration of the surrounding and the estimation CO emissions.
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Figure 5.5: Results of running the framework for several steel plant locations using different background extraction techniques applied
during the emission estimation step. The used techniques concern no overall background extraction from the CO columns, overall
background approximated by mean smoothing filter and overall background approximated by the median of the non-plume pixels. The
techniques are combined with a background extraction only applied at each transects or only the overall background extraction method
is used. We refer to the measurement resulted from the run using the 'Transects Correction’ method (method applied in this study) as
the 'reference measurements’. The bottom graph presents the results relatively to the reference’ measurements. The steel plants listed
all have 40 or more measurements for all runs. The Duisburg facility concerns the Bruckhausen plant.
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Figure 5.6: Results of running the framework for several steel plant locations using the wind profiles from 10 and 100 meter. We refer
to the measurement resulted from the run using the 100 meter wind (used in this study) as the reference measurements’. The bottom
graph presents the results relatively to the reference’ measurements. The steel plants listed all have 40 or more measurements for all
runs. The Duisburg facility concerns the Bruckhausen plant.
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5.3. Data interpretation and analyses

The applicability of the obtained emission estimates to detect change over time was tested. Care should be
taken with the interpretation of perceived emission deviation. Steel plants are often accompanied by nearby
carbon monoxide emitting sources that could potentially affect the measurements. Therefore, we started with
the interpretation of emission measurements over time. The analyses were done using the measurements
from the Bhilai Steel Plant (India) and the ThyssenKrupp steel works Huttenheim and Schwelgern located
in the Duisburg area (Germany). The Bhilai plant is surrounded by multiple steel processing facilities as
well as cement plants (Figure 5.7). Correspondence was found, through visual inspection, between clear CO
enhancements (plumes) and the location of steel facilities and a pelletization plant (indicated by A and B
in Figure 5.7) in the North-East direction from Bhilai (e.g. images A, C and D in Figure 5.11). The distance
between the facility located in Bhilai and the apparent large CO emitting source or sources (from A/B) totals
roughly 35 km. Higher density of sources were found in the surrounding area of Duisburg. ThyssenKrupp’s
Huttenheim and Schwelgern sites, roughly 18 km apart, are the largest CO emitters in the area according to
E-PRTR (Table 5.1).

The obtained time series of the Bhilai facility, Huttenheim and Schwelgern site showed alternation of
emission value. The measurements were clustered using Kmeans on plant base to ease visual interpretation
and inspection of the occurrence of higher and lower emissions. The measurements were grouped based
on emission value in respectively 3 and 4 clusters for the India case (Figure 5.9) and Germany cases (Figure
5.10). The number of clusters were selected to fit and represent variation in the emission. To assess a possible
correlation between higher values and the wind direction, the CO emissions were plotted against the wind
direction. For the Bhilai Steel Plant, the higher emissions value seem to equally occur for each wind direction
(see the right image in Figure 5.9). However, no large variation in wind direction (north-east to east) was
found over all Bhilai measurements. The Huttenheim site emission estimates corresponding to a north-west
to north-east wind direction coincide with higher emissions. Almost all other measurements with higher
values (clusters 2 and 3) occur at the opposite wind direction (south-west to south-east). A large amount
of the cluster 2 and 3 values estimated for the adjacent Schwelgern site do correspond with the prominent
north-east to north west and south-west wind directions as well.

The plots in Figures 5.11,5.12 and 5.13 represent plumes and their emission profile belonging to different
clusters. First of all, the emission profiles for most cases represent more or less a 'plateau’ shape (e.g. plots 1
and 2 in Figure 5.11 and plots 1 and 3 in Figure 5.13. The occurrence of two peaks (at around the same peak
values) is another recurrent emission profile shape (see plot 3 in Figure 5.12).

The interpretation of the outliers is challenging. Visually, no interpretation for the 'reason’ of the lower
emission estimated for 13-04-2019 in comparison to the measurements done at 04-10-2019 and 28-02-2019
over Bhilai can be done (Figure 5.11). However, in plot 1, 22-12-2018, the plume from source A/B ends in the
plume corresponding to the Bhilai steel plant. The merging of the two plumes seem to affect the emission
measured. The ACO of the interfered case is around the same value found for the cluster 1 cases presented
in plots 2 (04-10-2019) and 4 (28-02-2019). Although two plumes structures, for source A/B and Bhilai Steel
Plant (~35 km apart), are found in the Bhilai cases, no complete individual plumes are visible for the detected
cases over the Schwelgern and Huttenheim sites (~18 km apart). In plot 4 of Figure 5.13, it can be seen that
two plumes merge after beginning separately. Furthermore, two different scenario’s can be distinguished: (1)
broad merged plumes and (2) the alignment of the two sites with respect to the wind direction (one plume
following into the other plume.) For the first scenario, the fixed transects lines of 30 km width do not seem to
cover the entire plume width (plots 2 and 4 in Figure 5.13).

The influence of measurements flagged as potentially interfered (flag 2) did not appear to be significant
on the overall value obtained from the entire time series (Figure 5.14).

The results were used to test the agreement with stated events. First of all, we test the statement made by
Steel Authority of India (SAIL) concerning the continuity of steel operations on the day of a fire incident at
8:30 local time in the coke oven. According to SAIL, there was no disruption of the operations [Drolia, 2019].
Figure 5.15 presents the detected plumes and emission profiles for the 24" of May 2019 (observed CO field at:
~12:42) and 25" of May 2019 over the Bhilai Steel Plant. Activity is detected on the day of the fire and no signs
of the occurred fire are seen. The emission estimate for the 24™ (clustered as Cluster 0) with 6.61+0.31 kg/s is
slightly lower than the overall time average (8.58+0.43). The measurement for the 25™ containing 9.05+0.68
kg/s (clustered as Cluster 1) corresponded with the overall average at Bhilai.

Next, an analysis has been done on the first half year 2020 to see the possible effect of the COVID-19 pan-
demic on the steel plant estimates. The major abrupt decline in global steel production from early 2020 as a
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Figure 5.7: Sources located around Bhilai Steel Plant area. Bhilai steel plant (case study by this study) is indicated by red.
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Figure 5.8: Location of ThyssenKrupp sites, both case studies, Huttenheim (indicated by red) and Schwelgern (indicated by blue) (~ 35
km apart). Other sources are indicated by letters (A-I).
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Symbol | Type Company | site CO Emission (t/yrog17)

. Integrated Steel Plant | thyssenkrupp | Huttenheim 185,000
Integrated Steel Plant | thyssenkrupp | Schwelgern 117,000

* Coke Oven Prunk Betreiber GmbH 600

A. Power Plant Siemens Energy -

B. Integrated Steel Plant | thyssenkrupp | Beeckerwerth | 7,300

C. Chemical Processes Solvay GmbH 10,700
Chemical Proccesses | IMERYS Minerals GmbH 1,110

D. Integrated Steel Plant | thyssenkrupp | Bruckhausen | 3,890
Integrated Steel Plant | thyssenkrupp | Hamborn 4,350

E. Steel Processing ArcelorMittal -

E Coke Oven ArcelorMittal | Bremen 3,130

G. Aluminium Recycling | Trimet Aluminium SE 13,600

H. Refinery BP -

L. Cement Plant Rheinkalk GmbH 3,920

Table 5.1: Sources in the Duisburg area with the symbols corresponding to the locations as indicated in Figure 5.8. The CO Emissions
refer to emission as registered in the E-PRTR in tonnes per year.

Kmeans Clustering, Bhilai

Bhilai Steel Plant

90°

18
+ Cluster
16 + + o 0 135° 45°
o 1
7 + ++ o 2 N
< 0qg® o E
2 ° o > Direction
2 10 s b 0 } ¢ 180 o @l , 0
L2 o
LI% ik (&) 50
g8 &"J—* 8581043 kgs @ o 8o
6 8% L % $ °
@ o © ° 225° 15 315°
(0]
) ¢ 270° o
06-2018  12-2018  06-2019  12-2019  06-2020 CO Emission [kg/s]

Figure 5.9: Measurements from Bhilai clustered based on emission value using k-means plotted over time (left) and on a polar plot
against the wind angle (right). The blue shaded area represents the mean and standard error of the emissions values over the entire time
series.
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Figure 5.12: Plumes alongside with their emission profile on the right. The blue shaded area corresponds to the mean and error interval from the overall Huttenheim site. The mean and error of the emission
from the specific case is indicated with the color of the corresponding cluster number (as indicated in figure 5.10). Letters indicate the sources as presented in Figure 5.8.
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Figure 5.14: CO emissions measured for each facility when accounting only for plumes flagged as 1(true detection and no suspicion of
interference by nearby source after visual inspection) or for all true detected plumes. The red numbers indicate the amount of plumes
flagged as 2 for each plant. The steel plants listed all have 40 or more measurements and have at least one case flagged as 2. The Duisburg
facility concerns the Schwelgern site.

EU ACIS India China Developed Asia (DA)

Production with respect to | -19.2% +24.7% -23.9% +3.1% -12.8%
2019 Q1-Q2

Table 5.2: Difference in steel production of the first half year (Q1-Q2) of 2020 relative to the same period in 2019. Data obtained from
[ArcelorMittal, 2020].

result of the COVID-19 pandemic [ArcelorMittal, 2020] (see table 5.2), provided a unique opportunity to test
the capability of capturing sudden change in emission patterns using the time series. The regions mentioned
by [ArcelorMittal, 2020] concern EU (EU-28), Arcelor Mittal’s ACIS segment (e.g. Kryviy Rih in Ukraine, Temir-
tau in Kazakhstan and Vanderbijlpark in South-Africa), India, China and Developed Asia (Japan, South-Korea
and Taiwan). In order to analyze the changes per region, the emission estimates are standardized per facil-
ity before converging. We used Median and Median Absolute Deviation based normalization [Kappal et al.,
2019] for the standardization: .
g=tm=% (5.1)
Om
where z is the Z score, fi,, refers to the median of the set x (emission estimates of a specific steel plant) and
0 m concerns the median absolute deviation. We normalized using the median rather than the mean in order
to be more robust to outliers and variation in emission values. Only steel plant with at least 5 measurements
over each half year time frame for 2018, 2019 and 2020 were taken into account. A minimum measurements
per period was set to better represent each period and to limit bias. A minimum number of 5 was empirically
found to both limit the bias by outlier while taking into account the limited number of emission estimates ob-
tained. Figure 5.17 presents the comparison between Q1-Q2 for the periods 2018-2019 and 2020 for the EU,
ACIS, India, China and DA regions (corresponding to the regions used in Table 5.2 using different settings for
the minimum total amount of emission estimates (covering the first 6 months of 2018-2020) over each plant.
Using different combinations of steel plants (due to setting different minimum amount of measurements) to
represent the region impacts the overall value (and sign) of the specific region (Figure 5.17). The significant
drop as seen in the steel production is not present in Figure 5.17.
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Figure 5.15: Plumes and emission estimates of Bhilai Steel Plant for 24-05-2019 and 24-05-2019. At the 24" hof May a fire in the coke oven
occurred [Drolia, 2019].
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Figure 5.16: Collection of standardized measurements from steel facilities from EU (EU-28), Arcelor Mittal’s ACIS segment (e.g. Kryviy
Rih in Ukraine, Temirtau in Kazakhstan and Vanderbijlpark in South-Africa), India, China and Developed Asia (Japan, South-Korea and
Taiwan) for the first half-year (January - June) of 2018 and 2019 compared to 2020. The dashed lines indicate the quantiles. From top
to bottom the images portray the results using a collection of steel plants with more than 15, 20 and 25 measurements. In order to limit
influence by potential interference of other sources, we only used measurements flagged as 1.
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Figure 5.17: The amount of crude steel production plotted against the by this study found CO emissions from several steel plants. The
facilities of the portrayed steel plants consist of a Coke oven, Sintering plant and Blast Furnace. Only steel plants with 15 measurements
are presented. The error bars indicate the standardized error from the obtained emission estimations per steel plant by this study. he
dashed line indicates a linear relation between the crude steel produced in 10% tonnes per year and the estimated emission in kg/s,
whereas the dashed line portrays an emission of 2 kg/s per 108 tonnes crude steel produced per year.

Finally, we analyzed the relation between crude steel production and the obtained emission estimates (Fig-
ure 5.17). In order to have a fair comparison, the steel facilities used for the analysis were selected on the
(prominent CO emitting) processes. Here we selected steel plants that facilitated the following processes on
site: coke oven, sintering and blast furnace. The annual production per steel plant including the source of is
presented in Table 6.2. This combination of processes was selected due to high occurrence at integrated steel
plants. Furthermore, it should be noted that not all steel plants do report their production numbers publicly.
The Pearson Number of 0.32 indicates that there is no clear correlation. The three steel plants (Jharkhand,
Cherepovets and Gent) with the largest annual crude steel production ( closest to the 'y=x’ line) had the lowest
emission relative to the production.



6. Discussion and Conclusion

This study was designed to establish the potential of an automated plume detection and emission estima-
tion framework applied on TROPOMI CO data. The framework and its resulting time series were evaluated
through the tracking CO emissions from steel plants. Due to limited knowledge of CO emissions from steel
plants, great potential could arise. We processed and analyzed the emissions from 132 steel plants world-
wide over more than 2.5 years using the developed automatic framework. It was investigated whether the
framework could fill the gap of recent registers by enabling comparison among steel plants and insight into
fluctuations over time with the needed data quality.

The first step of this work consisted of the development of the operational framework. The final product,
as presented in this report, proved to be robust in the meaning that it enabled the detection of plumes over
a variety of conditions of e.g. the background variation, plume signal strengths and presence of adjacent
plumes. However, the performance of the algorithm was not found constant for all regions. Of the 23.1%
through visual inspection discarded measurements, the majority corresponded to steel facilities with a low
number of returned measurements. Indicating a lower rate of false detected plumes of facilities with clear
and high plume signals. In addition, it was noted that for steel facilities located near coastal area’s a large
number of measurements had to be manually filtered. A possible explanation could be that the test cases
used all did consist of multiple good quality plumes. Thus the empirically found variables to work best as
threshold variables may be biased. Finding the right general value for the thresholds to at the same time limit
detecting false plumes as well as limiting the rejection of good plumes that applies for all cases appeared to
be challenging. From the performance of the algorithm it could be concluded that the framework relies, for a
large part, on the execution of the unsupervised filtering step. The filtering steps are applied after the entire
processing (detection of plume mask, extraction of the center line and the emission estimation). Thus, a large
reliance on the filtering points at a low efficiency of the framework. Optimizing the rejection of undesired
cases during the processing steps could lead to a higher efficiency of the framework.

The framework utilizes a mass balance approach to estimate emissions from the detected plume. Fol-
lowing the mass balance approach, the emission rate should equal the discharged mass through the cross-
sectional area per unit of time under the assumption of a steady state. Furthermore, the approach can only
be applied on wind speed is not smaller than 2 m/s. The double peaks found in the emission profile, could
however be the result of a changed wind speed over time causing rapid transportation of the signal farther
downwind. The unknown wind height, and thus field, appeared to be the largest uncertainty. This study used
the wind field at the height of 100 m above the ground. To validate the use of the assumed effective wind
height of 100 meter this study tested the analogy of the wind direction and direction computed from the ex-
tracted plume center line. The only small number of measurements that aligned with the 100 meter wind field
but not with the 10 meter wind field, indicate the inability of the method to estimate the wind height based
on the set requirement. Furthermore, there is a significant difference in the overall steel plant emission that
resulted from the 100 m or 10 m wind height assumption. Although the noted uncertainty in the selection of
wind speed measurement height, the bias seems systematic allowing the differentiation in overall emissions
found at various steel plants.

The second step of this work covered the analysis of the potential of TROPOMI CO observations to map emis-
sions. For a total of 132 tested globally distributed plume facilities, a total of 1,774 plumes were found over
119 facilities. Steel plant facilities are often clustered and/or surrounded by other CO emitters (e.g. cement
plants and power plants). This study examined the emission estimates and their variation over time into
more depth for a steel facility located in Bhilai, India, and two steel facilities located in Duisburg, Germany,

48



49

that are only ~18 km apart. We found that for a distance of 35 km between two plants the individual plumes
could be extracted. However this was not the case for the two steel plants that were only 18 km apart.

We were able to find some interesting future applications of our approach. One example is the ability

to find back the manufacturer’s statement of continuing the operations during a site fire (24th of May 2019
in Bhilai). Our found emission estimate did confirm this statement. We also did an attempt to confirm the
significant global drop in steel production during the period of 2020 as the result of COVID-19. It seems that
the scattered distribution of measurements and their emission values over time do in fact limit the possi-
bilities to find back this kind of rather detailed difference in a small time frame. One of the main questions
we had prior to the start of the analysis was if we could be able to represent the annual data of manufactur-
ers, registered in Pollutant Release Transfer Registers (PRTR). We did analyze the E-PRTR data and compared
them for a selection of plants with our estimates. A positive correlation (r = 0.76) between the E-PRTR and
our data was found. In fact we did see that for all our plants our estimates were significantly higher than the
numbers registered by the facilities in the E-PRTR. This might indicate a structural underestimation by the
manufacturers.
We only applied the framework on plumes emerging from steel plants. The framework could be utilized for
the emission estimation of other CO emitting point sources with a detectable CO signal, such as bushfires.
With the development of the plume detection we aimed to reach a certain robustness to different sizes of
plumes. Although the unsupervised filtering (post-processing step) and initial fixated transect width (emis-
sion estimation step) were especially designed to fit the characteristics of steel plant plumes, the same or
slightly adapted parameters may hold true for other plumes.

We have not been able to interpret all outliers or apparent groups present in the emission estimate values
over time for our case studies. We indicated interpretation difficulties through more in depth inspection
of the emissions estimated over time for the Bhilai Steel Plant (SAIL), India, and neighboring sites (~18 km
apart) Schwelgern and Huttenheim located in Duisburg (ThyssenKrupp), Germany. More understanding
regarding factors that could influence a single estimated emission other than the actual production itself will
be necessary. Ultimately the gained understanding could help to implement filtering targeted at limiting the
interference effect to further optimize the framework.

Our research concerned a first evaluation of utilizing CO observations from TROPOMI to detect and fi-
nally estimate the emissions from a large number of steel plants through an automated approach. No exten-
sive analysis was done on identification of properties that allowed or limited the detectability of the carbon
monoxide plumes by our framework. Therefore, no complete assessment has been done on, for instance,
what regions could benefit most from such an approach. The algorithm was developed through an iterative
trial and error approach using multiple steel plant locations that were selected to represent most geographical
location.

Unfortunately, the unequal distribution of emission estimates over time limit the analysis over small pe-
riods of time. Although, the measurements for multiple plants seemed to be clustered, the identification was
difficult. The lack of information regarding production variation over time or the operation of nearby facil-
ities, limited the explanation of higher values. More in depth studies of the emission per steel plant will be
necessary. High potential lies in the use of thermal anomalies data for indicating processes.

We show that TROPOMI CO observations enable mapping of pollution from point sources. We conclude
that TROPOMI CO observations and the framework proposed in this study illustrate the potential of high
resolution space-based instruments to monitor emissions from point sources on an operational level and
eventually map global emissions from e.g. industries including those of uncharted sources.

Several recommendations follow from this study:

¢ Theinterference of adjacent sources was found to affect the estimated emission. Enabling the detection
of interference by the framework itself will limit the amount of outliers. A possible way to implement
this in the algorithm is through test the overlapping of other known sources in the area with the specific
plume of interest. This could be done in combination with testing of the activity or comparison of the
ACO of the emission profile in order to assure the potential presence of interference. Detecting the
interference is of great importance for the interpretation of detected change in emissions.

* Improving the detection algorithm could improve the resolution over time.

» This study detected 1,774 plumes and demonstrated the potential for the detection of plumes over
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various condition. The large number of plumes could be used as training data for the development of
a detection algorithm utilizing a machine learning approach.

¢ The FIRMS fire counts used to manually identify steel plants could be used to automatically detect
sources.



Appendix

Table 6.1: Information regarding the listed steel plants by this study: the latitude, longitude, country. Furthermore the results from the
framework, number of estimates and mean emission value estimated plus minus the standard error, are presented as well.

Steel Plant Latitude Longitude Country Num. Estimates | Emission Estimate [kg/s]

Bethioua 35.773114  -0.258498 Algeria 0

PortKembla -34.4668 150.8886 Australia 1 7.02+0.00
Linz 48.279226 14.3268 Austria 5 13.10+1.57
Donawitz 47.0338 15.0678 Austria 0

Chakda 23.670907 90.454820 Bangladesh 6 5.61+0.41
Shahariar 23.717 90.446 Bangladesh 15 5.30+0.36
Gent 51.1767 3.8144 Belgium 23 5.46+0.26
VoltaRedonda -22.5116 -44.1143 Brasil 0

OuroBranco -20.5467 -43.7640 Brasil 0

Jeceaba -20.585365 -43.961878  Brasil 0

RioDeJaneiro -22.9167 -43.7477 Brasil 0

SaultSteMarie 46.5247 -84.3681 Canada 0

Hamilton 43.2694 -79.8247 Canada 0

Beijing 39.9017 116.158 China 0

Benxi 41.2329 123.6370 China 42 35.55+£1.93
Tangshan 39.7304 118.4667 China 29 47.60+3.41
Huangshi 30.204 115.150 China 1 14.0940.00
Xiangtan 27.8118 112.8974 China 23 10.58+0.64
Huaian 33.557629  118.993680 China 13 7.90+0.65
Suzhou 31.977203 120.630473 China 62 21.00+0.83
Shizuishan 39.43 106.7 China 11 27.14+4.90
Wuhan 28.2242 112.9881 China 4 9.48+1.50
Chongqing 29.807402 107.066503 China 3 9.83+2.39
Taiyuan 37.9192 112.5387 China 5 18.33+3.70
Nanjing 32.1892 118.7453 China 42 15.48+1.08
Maanshan 31.7425 118.4754 China 32 16.23+1.20
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Rizhao 35.1610 119.3578 China 21 38.45+3.23
Lubumbashi -11.580589 27.487375  Congo 8 13.03+4.57
Ostrava 49.7959 18.3058 CzechRepublic 12 7.29+0.56
Trinec 49.6881 18.64728 CzechRepublic 4 6.80+0.85
Suez 29.641905  32.278939  Egypt 0
Dunkerque 51.03 2.36 France 12 5.54+0.22
FosSurMer 43.45 4.9 France 1 3.28+0.00
Seremange-Erzange 49.3238 6.0948 France 3 5.99+1.24
GrandeSynthe 51.034523  2.283082 France 11 6.33+0.51
Eisenhuttenstadt 52.1661 14.61768 Germany 1 2.57+0.00
Dillinger 49.3572 6.7541 Germany 30 5.76+0.20
Hennigsdorf 52.649108 13.211126 Germany 1 6.47+0.00
Salzgitter 52.1548 10.4031 Germany 19 4.70£0.25
Volklingen 49.2459 6.8462 Germany 22 5.61+0.25
Bremen 53.1249 8.6867 Germany 9 4.65%0.29
Dessau 51.50369 6.7359 Germany 49 8.49+0.34
Duisburg 51.36823 6.71227 Germany 31 7.97+0.45
Dunaujvaros 46.9395 18.9389 Hungary 3 5.68+1.14
Fjaroabyggo 65.0338 -14.0997 Iceland 0
Rourkela 22.2209 84.7605 India 20 11.49+0.68
Jharkhand 22.7897 86.1985 India 26 11.39+0.60
Asansol 23.6624 86.1985 India 36 13.60+0.94
Bhadravati 13.8369 75.7020 India 0
Durgapur 23.4986 87.3712 India 24 9.72+0.89
Dolvi 18.6926 73.0366 India 0
Tadipatri 14.8778 78.044 India 0
Visakhapatnam 17.617 83.193 India 11 17.30+2.15
Bamunari 22.7175 88.306 India 5 7.79+0.80
KurruBhantha 21.981 83.241 India 9 7.74+0.92
Gujarat 23.1062 70.1868 India 7 4.19+0.44
Kalinganagar 20.9704 86.0082 India 6 6.21+1.23
Bhilai 21.2189 81.4727 India 47 8.58+0.43
Bokaro 23.7857 85.883712  India 13 11.76+0.72
Salem 11.6617 78.0279 India 1 7.76+0.00
Fatufia -2.831 122.168 Indonesia 0
Samangraya -6.003915 105.9947 Indonesia 0
BandarAbbas 27.1562 56.0845 Iran 0
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Chadormalu
Muroran
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3.17+0.00

7.09+0.75
17.19+£1.22
8.14+1.01
10.53+1.23
10.17+£2.07
13.22+1.71
15.58+1.26
9.79+0.29
9.94+2.50

13.46+0.95
5.41+0.00
8.63+£0.49
12.34+0.41
7.25+0.84
9.05+1.06
8.09+0.86
3.74£0.35
2.79+0.00
8.09+0.35
6.71+£0.11
5.60+0.61
11.12+0.55
3.81+0.33
5.10+0.43
6.29+1.43
9.79+0.35
4.76£0.00
3.93+£0.59
4.05+0.35
12.44+1.56

10.32+1.83
6.64+0.47
10.54+3.75
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Pohang 36.0077 129.3930 South Korea 5 13.66+2.71
GeumhoDong 34.933638  127.735654  South Korea 24 22.39+1.67
Dangjin 36.990199 126.695899 South Korea 45 11.13+0.54
Gijon 43.55611 -5.9111 Spain 1 5.3540.00
Taranto 40.5167 17.2 Spain 0
Kaohsiung 22553400  120.356293 Taiwan 1 41.76%0.00
DarEsSalaam -6.761 39.240 Tanzania 0
BangPakong 13.495210  100.972 Thailand 0
Hatay 36.742129  36.203880  Turkey 0
Scunthorpe 53.586377 -0.6143 UK 10 5.40+0.37
PortTalbot 51.5679 -3.7595 UK 0
Gary 41.6125 -87.3144 us 6 9.53+1.85
Ashland 38.4978 -82.6689 [ON] 0
Bourbonnais 41.182737  -87.855009 US 0
Butler 40.8482 -79.9204 us 0
Cartersville 34.244684  -84.797188 US 0
Charlotte 35.340624 -80.827009 US 0
Coshocton 40.2076 -81.8821 usS 3 2.3940.30
BurnsHarbor 41.634 -87.131 us 6 9.84+1.13
EastIndianaHarbor  41.6619 -87.4418 us 6 10.12+1.61
Memphis 35.050258 -90.163344 US 0
Midlothian 32.462176 -97.028404 US 1 10.42+0.00
Marietta 39.37028 -81.5236 [ON] 0
Ferndale 48.8455 -122.7055 us 0
WestIndianaHarbor  41.651165  -87.45917 us 6 11.08+1.48
Cleveland 41.472421  -81.66779 [ON] 0
Crawfordsville 39.975871  -86.822788 US 0
Zaporizhstal 47.8621 35.1663 Ukraine 74 7.89+0.27
Donetsk 47.103812  37.585712 Ukraine 41 14.48+0.98
Dniprovazhmash 48.475020  34.960459  Ukraine 21 8.16+£0.91
Kryvy 47.873923 33.416452 Ukraine 114 8.34+0.25
Mariupol 47.0953 37.5944 Ukraine 45 14.75+0.97
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Table 6.2: Crude steel production per steel facility. The steel plants all facilitate a coke oven, sintering plant and blast oxygen furnace.

Steel Plant Country Company Crude Steel Production Year Source

[103 xtonnes/year]
Jharkhand India Tata Steel 10,175 2019 [Ministry of Steel , 2019]
Rourkela India SAIL 3,658 2019 [Ministry of Steel , 2019]
Bhilai India SAIL 4,447 2019 [SAIL, 2020a]
Durgapur India SAIL 2,219 2019 [SAIL, 2020b]
Temirtau Kazakhstan ArcelorMittal 3,300 2018 [ArcelorMittal, 2019]
Cherepovets Russia Severstal 10,700 2013 [Severstal, 2020]
Gent Belgium ArcelorMittal 5,400 2018 [ArcelorMittal, 2020b]
Kryvyi Rih Ukraine ArcelorMittal 4800 2018 [ArcelorMittal, 2020a]
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