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Abstract

The relation between the input of an ideal optical single-mode fiber and the correspond-
ing fiber output constitutes a nonlinear system that can be described using the nonlinear
Schrödinger equation. This nonlinear system has the interesting property that it can be
solved analytically using nonlinear Fourier transforms. To utilize this property, new methods
of optical communication are being developed by embedding information in the nonlinear
Fourier domain and employing fast nonlinear Fourier transforms. Many of the recent works
use a specialized form of inverse nonlinear Fourier transform to generate information-bearing
fiber inputs in the form of so-called multi-soliton pulses. Recently, multiple fast inverse non-
linear Fourier transform algorithms that can generate multi-solitons have been proposed. The
goal of this thesis is to study and improve these algorithms, in particular, with respect to
their computational complexity.

Based on the literature survey, discrete Darboux transform combined with other discrete
techniques is studied and a new algorithm is proposed. The algorithm employs a single-start
approach in which discrete Darboux matrix is computed at only one sample point and rest
of the samples are computed by evolution of the Darboux matrix. The algorithm is hence
named as discrete Darboux evolution algorithm (DDE). The errors in the generated signal and
run-time are studied by comparison with the classical Darboux transform (CDT). The DDE
algorithm is shown to have floating point operations complexity of O(KN) for K eigenvalues
and N samples. However, in a limited precision environment the number of samples that can
be generated is found to be limited. To better understand the effects of machine precision,
both the CDT and DDE algorithms are studied in a multi-precision environment. Certain
insights from the study are used to develop two modifications to overcome the limitations.
The first modification computes the signal using multiple single-start runs while the second
one uses a multi-start approach. The second modification is shown to have errors comparable
with other fast algorithms in literature. Additionally, in a qualitative comparison it is shown
to be potentially faster than existing algorithms in a certain regime.
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Chapter 1

Introduction

Fiber-optic cables are nonlinear channels for transmission of light and they form the basis of
modern communication systems. The propagation of light in the single-mode optical fibers can
be modeled using the nonlinear Schrödinger equation. However, it is important to understand
the link between the physical systems and the mathematical models. With this view in
mind, the physical phenomena occurring during light propagation are mentioned first. The
discussion on these phenomena naturally leads to the nonlinear Schrödinger equation which
governs the propagation of light. The solitons which arise from the interaction of various
physical phenomena are explained next. Once the significance of the solitons is discussed,
nonlinear Fourier transform is introduced.

1-1 The Nonlinear Schrödinger Equation

James Clerk Maxwell showed in the 1860’s that light is an electromagnetic phenomenon
and derived the celebrated Maxwell equations which model light as electromagnetic waves.
He showed that light propagates as an electromagnetic planewave. Later, in 1926, Erwin
Schrödinger formulated the Schrödinger equation to describe how the quantum state of a
quantum system changes with time. Owing to its particle-wave duality, light also obeys the
Schrödinger equation. To understand the propagation of light according to the Schrödinger
equation, it is necessary to understand the underlying linear and nonlinear phenomena.

Many of the phenomena arise due to the refractive index n of an optical medium, which is
defined as the ratio of the speed of light in vacuum c and the phase velocity v of light in
the medium (n = c/v). The phase velocity is the rate at which phase of any one frequency
component changes while it propagates. In an isotropic (same properties in all directions)
medium such as glass optical fiber, the refractive index is independent of the direction of the
electric field. The refractive index is given by (p.63 in [2])

n = n(ω, |A|2) ≈ n0(ω0) + n2|A|2, (1-1)

Master of Science Thesis Shrinivas Chimmalgi



2 Introduction

where |A|2 is the intensity of the pulse, n2 is the intensity-dependent refractive index coefficient
(generally positive), ω0 is the carrier frequency and n0 is the frequency dependent refractive
index. Such a variation in refractive index of the material proportional to the intensity of
the electric field is known as the Optical-Kerr effect and n2 is known as the Optical-Kerr
coefficient. In purely one dimensional propagation (like propagation of light along an optical
fiber), the intensity dependent refractive index (n) imposes a self-phase shift on the pulse
envelope during propagation which is given by (p.64 in [2])

∂A(x, t)
∂x

= −iγ|A(x, t)|2A(x, t), (1-2)

where γ is the self-phase modulation coefficient, A(x, t) is the complex electromagnetic field
envelope, x is the position along the wave’s direction of travel, t is the coordinate time with
respect to a frame of reference moving at the group velocity. Such a phase-shift is known as
self-phase modulation (SPM). The intensity profile does not change, only the spectrum of
the pulse changes. Energy redistribution occurs during SPM and for positive SPM, the low
frequency contributions move to the front and the high frequencies to the back of the pulse.
The other important effect to be understood is optical-dispersion. Dispersion is the phe-
nomenon in which the phase velocity of a wave depends on its frequency,

ω(k) = v(k)k, (1-3)

where k is the wavenumber. Such a variation of the phase velocity leads to a phase difference
between the different frequency components as light travels through the medium. Dispersion
is a linear effect while SPM is a nonlinear effect. The effects of positive SPM and negative
dispersion can be seen in Figure 1-1.

Figure 1-1: Linear and nonlinear effects on Gaussian pulses (modified from [1])

There are other nonlinear phenomena which affect the light propagating through a medium.
The high order nonlinear Schrödinger equation (NSE) provides a model for light traveling
through an optical fiber [5],

∂A

∂x
+ α

2A+ i

2β2
∂2A

∂t2
− 1

6β3
∂3A

∂t3
= iγ

[
|A|2A+ 2i

ω0

∂

∂t
(|A|2A)− TR

∂|A|2

∂t

]
, (1-4)

where α is the fiber loss coefficient, β2 is the dispersion (with respect to frequency), β3 is
the third order dispersion (dispersion slope), γ is the nonlinear coefficient, ω0 is the angular
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1-2 The Fundamental Soliton 3

carrier frequency and TR is the Raman term. The coefficients α, β2, β3, γ, ω0 and TR represent
the physical properties of the optical fiber.
The reduced NSE ,

∂A(x, t)
∂x

= − i2
∂2A

∂t2
+ iγ|A|2A, (1-5)

represents a scalar approximation to the light propagation i.e. it ignores polarization effects
and considers only SPM and dispersion [5].
The terms in the reduced NSE Eq. (1-5) can be normalized to obtain the normalized NSE [2],

i
∂A′(x′, t)
∂x′

= ∂2A′

∂t2
+ 2|A′|2A′, (1-6)

where A′ is the normalized field amplitude, x′ is the normalized propagation distance and t′
is the normalized time.
Under certain circumstances, the SPM due to the positive Kerr effect is canceled by the neg-
ative dispersion, leading to non dispersive wave-packets or pulses known as solitary waves.
They are also known as bound solutions or bright solitons (Figure 1-2). These solitary waves
have special shapes and properties.

Figure 1-2: Propagation of a soliton taken from p.69 of [2]

1-2 The Fundamental Soliton

Now we look at few properties of self-consistent (non-dispersive) pulses which are formed
when the effect of SPM cancels effect of dispersion. The shape of such a solitary pulse or
fundamental soliton is given by [2],

As(x, t) = A0 sech
(
t

τ

)
e−iθ(x,t) (1-7)

Master of Science Thesis Shrinivas Chimmalgi



4 Introduction

where θ(x, t) is the nonlinear phase shift of the soliton, As is the complex envelope of the
soliton pulse and sech(x) is the hyberbolic secant function. In order to achieve balance
between the nonlinear and linear effects, the nonlinear phase shift

θ = 1
2γA

2
0x, (1-8)

should equal the dispersive spreading of the pulse,

θ(x, t) = |D2|
τ2 x. (1-9)

The soliton energy fluence (energy per cross-sectional area) of such a soliton is given by,

w =
∫ ∞
−∞
|As(x, t)|2dt = 2A2

0τ. (1-10)

For a lossless fiber the energy fluence is constant and the width of the soliton (p.68 in [2]),

τ = 4|D2|
δw

, (1-11)

is proportional to the amount of negative dispersion (D2). The pulse area of the fundamental
soliton is determined by only the dispersion and the self-phase modulation coefficient,

Pulse Area =
∫ ∞
−∞
|As(x, t)|dt = πA0τ = π

√
|D2|
2δ . (1-12)

The balance between the nonlinear and linear effects occurs only at specific amplitudes of
the complex envelope. Thus the initial amplitude required for soliton propagation is fixed
uniquely in terms of the fiber dispersion, nonlinear Kerr coefficient and effective area for a
given pulse width and carrier wavelength. The distance after which the soliton acquires a
phase shift of π/4 is called the soliton period. Only the pulse area is fixed and for a certain
dispersion and SPM-coefficient, the energy fluence and the width are determined if either one
of them is specified.
The loss during transmission through real fibers is generally not modeled. Instead periodic
amplification is used and the power is averaged over the given length of the fiber. This
leads to the guiding-center soliton or average soliton. The periodic amplification acts like a
periodic perturbation. Perturbation analysis shows that the soliton energy has to be kept
small enough, so that the soliton period is much longer than the distance between amplifiers
to prevent significant loss of information (p.87 in [2]).

The NSE possesses higher order soliton solutions. Such solutions are known as multi-solitons
or N -solitons formed from N individual solitons. When all the solitons travel with the same
speed, i.e. they posses the same carrier frequency, they are known as breather solutions
(Figure 1-3). Due to the interaction of two or more solitons, the temporal shape and the
spectrum exhibit complicated but periodic behaviour with a period x = π/4. The multi-
soliton solutions which result from the interaction of solitons traveling at different speeds
break down into N individual solitons as the signals propagate through the fiber.

Shrinivas Chimmalgi Master of Science Thesis



1-3 Scattering Theory 5

Figure 1-3: Breather solution composed of two fundamental solitons, taken from p.72 of [2]

1-3 Scattering Theory

To understand solitons and their behaviour, a mechanism is required to solve the nonlinear
Schrödinger equation. More specifically, a method of solution is needed to solve initial value
problems for the nonlinear Schrödinger equation. The application of scattering theory pro-
vides an elegant method to solve such problems. Scattering theory is a framework for studying
and understanding the scattering of waves and particles. The solutions of the nonlinear PDE
can be viewed as waves and hence scattering theory can be used to understand and solve
for them. To better understand the method of solution for the Nonlinear Schrödinger Equa-
tion (NSE) Eq. (1-5), it is first applied to a linear PDE [6].
A general first order linear PDE is given as,

∂q(x, t)
∂t

= −iω
(
−i ∂
∂x

)
q(x, t). (1-13)

Given the initial (t = 0) waveform q(x, 0), the goal is to find the waveform q(x, t) for some
specified time t. The first step is to map q(x, 0) to its Fourier transform K(k, 0) where k is
the wavenumber. Then the time evolution of K(k) for each k can be traced separately as,

Kt(k, t) = −iω(k)K(k, t), (1-14)

where the subscript t represents the partial differential of K(k, t) with respect to t. It is worth
noting that the time evolution of K(k, t) is only determined by functionals evaluated at k.
This property is known as separability. Thus, knowing K(k, 0), K(k, t) can be found. The
inverse Fourier transform of K(k, t) gives the solution q(x, t).

Such a mechanism is now extended to nonlinear PDE. For ease of comparing different lit-
erature sources, the notations used in [6] will be followed from here on in the report. The

Master of Science Thesis Shrinivas Chimmalgi



6 Introduction

normalized nonlinear Schrödinger Eq. (1-6) is written as

qt − iqxx − 2iq2q∗ = 0, (1-15)

where q∗ denotes the complex conjugate of the complex valued solution q(x, t) and the sub-
scripts represent the parital derivative of q(x, t) with respect to the subscript.
It can be shown that Eq. (1-15) is associated with the linear system,

v1x + iζv1 = q(x, t)v2,

v2x − iζv2 = −q∗(x, t)v1,
(1-16)

where ζ ∈ C is a parameter which is independent of x and v(ζ, x, t) ∈ C2. The subscript
1 in v1 corresponds to first of the two terms. The solution q(x, t) is assumed to satisfy
q(x, t)→ 0 sufficiently rapidly as |x| → ∞. For q(x, t) real, the parameter ζ is a set of all real
ζ (continuous spectrum) and a finite number of distinct complex numbers ζ = Kn, n = 1, ..., N
(the discrete spectrum). The function v corresponding to parameter ζ can be computed and
in particular the asymptotic behavior may be fixed as,

v(k, x, t)→ e−ikx +R(k, t)eikx, x→ +∞,
v(k, x, t)→ T (k, t)e−ikx, x→ −∞,

(1-17)

for ζ = k, k real, and

vn(x, t)→ Cn(t)e−Knx, x→ +∞,
vn(x, t)→ Dn(t)eKnx, x→ −∞,

(1-18)

for ζ = Kn. The linear problem Eq. (1-16) is also referred to as the scattering problem
hence the name scattering theory. In this framework the function v(ζ, x, t) is scattered by
the solution q(x, t) which is analogous to the scattering potential. The scattering can be
characterized by the reflection coefficient R(k, t) and transmission coefficient T (k, t).
Essentially, the association of the solution of Eq. (1-15) with the scattering problem Eq. (1-16)
gives a mapping between q(x, t) and what shall be called as the scattering data [6],

q(x, t) 7→ S({Kn, Cn(t)}Nn=1, T (k, t), R(k, t)), (1-19)

which is composed of the spectrum ({Kn}Nn=1,−∞ < k < ∞) and the coefficients represent-
ing the asymptotic behavior of the corresponding functions (v). The process of computing
the function v(ζ, x, t) from q(x, 0) is known as forward or direct scattering. The reflection
coefficient R(k, 0) and transmission coefficient T (k, 0) at t = 0 can be computed from the
functions v(ζ, x, 0) and the complete process of computing the scattering data from q(x, t) is
known as the nonlinear Fourier transform. The scattering data corresponding to the initial
condition q(x, 0) shall be denoted by S(0). By analogy to the linear problem, the time evolu-
tion of scattering data can be found. The details will be given in a later section, but for now
it suffices to know that under such a time evolution the discrete parameters ζ = Kn remain
invariant. The evolution of the related functions v(ζ, x, t) can also be described by simple
relations. While the determination of v(ζ, x, t) at later times depends on the knowledge of
q(x, t), the asymptotic behavior of v(ζ, x → ±∞, t) does not, this is crucial for existence of
an inverse mapping. The time evolution of the scattering data S is directly related to the
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1-3 Scattering Theory 7

dispersion relation of the linearized Schrödinger equation. This will be clearer in subsequent
sections.
Given the scattering data at initial time S(0), time evolved scattering data at some future
time t denoted by S(t) can be computed. So the next question is whether this mapping can
be inverted. This question was answered by Gelfand and Levitan [2]. For sake of brevity the
mathematics is not explained here but it can be found in the paper by Ablowitz et al. [6].
Thus the solution (potential) q(x, t) can be computed from S(t). This step is known as the
inverse scattering transform.
The scheme for solving initial value problem can be summarized as follows [6].
For linear problems,

q(x, 0) 7→ K(k, 0) ω(k)−−−→ K(k, t) 7→ q(x, t), (1-20)

and for nonlinear problems,

q(x, 0) 7→ S({Kn, Cn(0)}Nn=1, T (k, 0), R(k, 0))
ω(2k)−−−→ S({Kn, Cn(t)}Nn=1, T (k, t), R(k, t))
7→ q(x, t),

(1-21)

where ω(k)−−−→ denotes the time evolution of the scattering data based on the dispersion rela-
tion. The method for solving nonlinear PDE is therefore analogous to the Fourier transform
method of linear problem and hence known as the nonlinear Fourier transform.

Figure 1-4: Schematic representation of the inverse scattering theory for the solution of integrable
nonlinear partial differential equations, taken from p.74 of [2].

From a physical perspective, the discrete parameters correspond to the solitons (bound states)
and the real parameters correspond to a continuum of scattering states. The continuum states
disperse during propagation while the solitons do not, and hence only the solitons can be rec-
ognized after a while i.e. as t � 0. It is found that the speed of the soliton is function of
ζ. In general there is a locus of ζ in the complex plane such that the solitons corresponding
to the values of ζ on such a locus have the same speed. If the initial solution contains two
or more solitons moving at the same speed, then a multi-soliton bound structure is formed
termed as the breather solution (so called because it pulsates as it travels)(Figure 1-3). If
the speed of the solitons is not the same, then as t → ∞ the multi-soliton solution breaks
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8 Introduction

up into solitons arranged in such a way that the fastest soliton is in front and the slowest at
the rear. In Figure 1-5 a multi-soliton is shown to break up into four individual solitons as
it travels through the fiber. The solitons always recover completely after an interaction but
acquire a phase shift. The total soliton phase shift is equal to the algebraic sum of its shifts
during paired collisions, so that there is no effect of multi-particle collisions.

Outline

Starting from the basic physical phenomena and building up to the concept of nonlinear
Fourier transform makes it easier to comprehend the significance of multi-solitons. The non-
dispersive nature of these types of signals make them appealing to be used for information
transmission. The association of solitons with the discrete nonlinear Fourier spectrum is
fascinating. In Chapter 2, essential details about nonlinear Fourier transform will be covered.
The classical Darboux transform which is a special form of inverse NFT for generating multi-
solitons is then introduced. Chapter 3 covers NFT in a discrete setting. An analogy between
continuous and discrete time NFT is drawn. In Chapter 4 a new algorithm based on discrete
Darboux transform is proposed. In Chapter 5 the newly proposed algorithm is tested and
modifications are introduced to overcome limitations found during testing.

Figure 1-5: Multi-soliton breaking into four separate solitons
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Chapter 2

Nonlinear Fourier Transform

Having introduced the notion of nonlinear Fourier transform (NFT) in Chapter 1, the un-
derlying assumptions and other relevant details will be covered in this chapter. The classical
Darboux transform which is an inverse NFT method for generating multi-solitons is also
explained.

2-1 Forward Nonlinear Fourier Transform

Obtaining the spectral data from the potential is known as the forward NFT. In this section,
the most important question of the relationship between a particular nonlinear partial differ-
ential equation PDE and the associated eigenvalue problem will be addressed. More details
about the method of computing the scattering data and its properties will be covered.

2-1-1 Relation of Eigenvalue Problem to Evolution Equations

The technique of inverse scattering transform was first discovered by Gardner et al. [7] and
applied by them to the Korteweg de Vries (KdV) equation. It was initially speculated to
be a fluke [8] and specific to only the KdV equation. But in 1972, Zakharov and Shabat [9]
applied the scattering problem Eq. (1-16) to find the initial value solution for the nonlinear
Schrödinger equation. In 1974, Ablowitz et al. [6] developed a systematic method which
allows one to identify certain important classes of evolution equations which can be solved by
the method of inverse scattering. The central point of their paper is that given a dispersion
relation ω(k) meromorphic1, and real for real k, there is a nonlinear evolution equation whose
linearized version has this dispersion relation and for which appropriate initial value problems
can be solved exactly (p.253 [6]). All the equations under this subclass are integrable2 and
can be shown to have infinite sequence of conservation laws [9]. Ablowitz et al. also showed

1 A meromorphic function on an open subset D of the complex plane is a function that is holomorphic on
all D except for a set of isolated points, which are the poles of the function

2Liouville Integrability
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10 Nonlinear Fourier Transform

the relationship between the scattering theory and Bäcklund transformations. Details of a
special type of Bäcklund transformation known as the Darboux transform will be discussed
in Section 2-2-2.

The systematic method referred to as the ’AKNS formalism’ which was developed by Ablowitz
et al. [6] will now be detailed further.
They started by considering the eigenvalue problem,

v1x + iζv1 = q(x, t)v2,

v2x − iζv2 = r(x, t)v1,
(2-1)

on the interval −∞ < x < ∞, where the parameter ζ plays the role of the eigenvalue, the
potentials q(x, t) and r(x, t) are the solutions of a coupled pair of special nonlinear evolution
equations and v(ζ, x, t) ∈ C are the eigenfunctions. The subscript 1 in v1 corresponds to first
of the two terms in the eigenfunction while subscript x in vx means the partial derivative of
v with respect to x. The eigenvalues and eigenfunctions evolve with time as the potentials
evolve according to some evolution equation.
Eq. (2-1) is known as an eigenvalue problem because the eigenvalues of the system of equations
are constants over all space x and for all time t if q(x, t) and r(x, t), are the complex valued
solutions of a coupled pair of nonlinear evolution equations. This scattering problem was first
mentioned by Zakharov and Shabat [9]. The terms scattering problem and eigenvalue problem
will be used interchangeably throughout this report. The eigenvalue problem Eq. (2-1) when
combined with equations describing the time dependence of v(ζ, x, t), results in the nonlinear
evolution equations. The time dependence of v1(x, t) and v2(x, t) is chosen to be,

v1t = A(x, t, ζ)v1 +B(x, t, ζ)v2,

v2t = C(x, t, ζ)v1 +D(x, t, ζ)v2,
(2-2)

where different functions A(x, t, ζ), B(x, t, ζ), C(x, t, ζ) and D(x, t, ζ) result in different cou-
pled nonlinear differential equations.
Eq. (2-2) and Eq. (2-1) can be written for a more general case as,

vx = Xv,

vt = Tv,
(2-3)

where v ∈ Cn and X,T ∈ {Cn x Cn}. By cross-differentiating X and T , and equating the
results we get

Xt − Tx + [X,T ] = 0, (2-4)
where [X,T ] is the commutator bracket [X,T ] = XT − TX. Eq. (2-4) is also known as the
zero-curvature condition or compatibility condition.
For the scattering problem Eq. (2-1) to be meaningful, the eigenvalues of X, ζ should be
constant i.e. ζt = 0 (spectrum should be time invariant). Applying compatibility condition
Eq. (2-4) to Eq. (2-1) and Eq. (2-2), and taking ζt = 0 gives

D = −A+ d(t).

Without loss of generality d(t) ≡ 0, then for A(x, t, ζ), B(x, t, ζ) and C(x, t, ζ) (p.257 of [6]),
Ax = qC − rB,

Bx + 2iζB = qt − 2Aq,
Cx − 2iζC = rt + 2Ar.

(2-5)

Shrinivas Chimmalgi Master of Science Thesis



2-1 Forward Nonlinear Fourier Transform 11

The set of Eq. (2-5) can be solved for A,B and C which will ensure that Eq. (2-2) and Eq. (2-
1) are compatible. Solving for A,B and C results in the evolution equation. Eq. (2-1) is
used to find the discrete eigenvalues (which are time invariant). The asymptotic behaviour of
all eigenfunctions v(x, 0, ζ) at the initial time can be found as it is known that the solutions
q(x, t), r(x, t)→ 0 sufficiently rapidly as |x| → ∞. The sufficient rate of decay of the potentials
can be found on p.268 of [6].
To find simple solutions which are still representative of a very broad variety of evolution
equations, the functions are chosen as

A =
N∑
0
A(n)ζn, B =

N∑
0
B(n)ζn, C =

N∑
0
C(n)ζn. (2-6)

It is found (p.257 of [6]) that A(N) = aN and B(N) = C(N) = 0, where aN is a constant which
is independent of x but can depend on t. Now Eq. (2-5) can be used to compute rest of the
coefficients. As a special case,

a0 = a1 = a3 = 0, a2 = −2i,

leads to the nonlinear Schrödinger equation,

r = −q∗, qt − iqxx − 2iq2q∗ = 0. (2-7)

In Section 3 of their paper [6], they show how a broader class of equations can be derived
and how each is related to its linearized dispersion relation. The AKNS formalism provides
a systematic method for arriving at evolutions equations which can be solved using inverse
scattering transform.

2-1-2 Computing Scattering Data

The rest of the report will focus on the nonlinear Schrödinger equation but similar steps can
be applied to other nonlinear evolution equations as well. In the previous section it was shown
how the scattering problem Eq. (1-16) is related to the nonlinear Schrödinger equation Eq. (2-
7). So the next step is to compute the scattering data given the initial (t = 0) potentials
q(ζ, x, 0) and r(ζ, x, 0).
If v(ζ1, x, t) and w(ζ2, x, t) are eigenfunctions of the system Eq. (2-1) then by substitution
and some simplification gives,

d

dx
(v1w2 − w1v2) + i(ζ1 − ζ2)(v1w2 + v2w1) = 0. (2-8)

Also if v is an eigenfunction of the system at ζ1 = ξ1 + iη1, let the adjoint of v be defined as

v̄ =
[
v∗2
−v∗1

]
. (2-9)

The adjoint v̄ satisfies the system Eq. (1-16) at ζ2 = ζ∗1 = ξ1 − iη1.
Assuming q(x, t) and r(x, t)→ 0 sufficiently fast [6] as |x| → ∞ in Eq. (2-7), the eigenfunctions
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12 Nonlinear Fourier Transform

(v(ζ, x, t)) of Eq. (2-1) are chosen to have the asymptotic forms (p.260 in [6]),

φ→
(1

0

)
e−iζx x→ −∞,

φ̄→
( 0
−1

)
eiζx x→ −∞,

ψ →
(0

1

)
eiζx x→ +∞,

ψ̄ →
(1

0

)
e−iζx x→ +∞,

(2-10)

where v(ζ, x, t) = ψ(ζ, t) and v(ζ, x, t) = φ(ζ, t) are known as Jost functions.
Two vectors or functions are linearly independent if their Wronskian is non-zero. The Wron-
skian for two dimensional vectors f and g is defined as,

W (f, g) = f1g2 − g1f2.

Applying the Wronskian to Jost functions in Eq. (2-10),

W (ψ, ψ̄) = −1, W (φ, φ̄) = −1. (2-11)

Hence the Jost function ψ(t) and its adjoint ψ̄(t), and the pair ψ(t), ψ̄(t) are linearly indepen-
dent vectors. However, Eq. (2-1) is a two-dimensional system and hence can have a maximum
of two independent eigenfunctions. Therefore (ψ(t),ψ̄(t)) are arbitrarily chosen to form the
basis. Hence φ and φ̄ can be expressed as a linear combination of ψ and ψ̄. These can be
expressed as,

φ = aψ̄ + bψ →
(
ae−iζx

beiζx

)
x→ +∞,

φ̄ = b̄ψ̄ − āψ →
(
b̄e−iζx

−āeiζx

)
x→ +∞.

(2-12)

The coefficients a(ζ, t), b(ζ, t), ā(ζ, t) and b̄(ζ, t) are complex valued functions. They are given
by the Wronskian relations,

a = W (φ, ψ),
b = −W (φ, ψ̄),
ā = W (φ̄, ψ̄),
b̄ = W (φ̄, ψ).

(2-13)

Applying Eq. (2-8) to φ and φ̄ gives

|a(ξ)|2 + |b(ξ)|2 = 1. (2-14)

For sufficiently fast decaying potentials, the Jost functions φ and ψ are analytical in the upper
half-plane [6] and from Eq. (2-8)

a(ζ) = (φ1ψ2 − φ2ψ1)(x, ζ). (2-15)
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2-2 Inverse Nonlinear Fourier Transform 13

Hence a(ζ) is also analytical in the upper half-plane. It is now possible to see that,

a(ζ)→ 1 as |ζ| → ∞, Im ζ ≥ 0. (2-16)

In general b(ζ, t), b̄(ζ, t) are defined only on the real axis but if q(x, t) and r(x, t) have sufficient
decay as x→ ±∞, the regions of analyticity can be extended (p.268 [6]).
The points ζ = ζj , j=1,...N, with Im(ζ) > 0, in the upper half-plane where a(ζ) = 0,
correspond to the eigenvalues of the system. At these points,

φ(x, ζj) = bjψ(x, ζj), j = 1, ..., N. (2-17)

where bj will be termed as the norming constants throughout this report. However, it was
found that some authors use different term for the same quantity. For real q(x, t)

φ(x,−ξ) = φ∗(x, ξ), ψ(x,−ξ) = ψ∗(x, ξ), (2-18)

and consequently
a(ξ) = a∗(−ξ).

Continuing this in the upper half-plane,

a(ζ) = a∗(−ζ∗).

Hence the zeros of a(ζ) lie on the imaginary axis for real q(x, t) [6]. It can be shown (p.63
[9]) that a(ζ) does not depend on time and

b(ζ, t) = b(ζ, 0)e4iζ2t, bj(t) = bj(0)e4iζ2
j t. (2-19)

Thus by associating the NSE with the eigenvalue problem Eq. (2-1) it is possible to reduce
the evolution in time to just a phase change in the nonlinear Fourier domain.

2-2 Inverse Nonlinear Fourier Transform

The inverse NFT addresses the problem of reconstructing the potential q(x, t) from the non-
linear Fourier spectrum. As the evolution of the nonlinear Fourier spectrum with time is
known, it suffices to be able to reconstruct the potential q(x) at a particular time instant.
For the NSE equation, this was shown by Zakharov and Shabat (p.63 of [9]) but, a general
method for a class of integrable evolution equations was given by Ablowitz et al. (p. 271 of
[6]). The details of this method will not be mentioned here.

Another method of solution was developed by Hirota [10] where he assumed the solution to
be formed by the interactions between several decaying plane waves. This method gives more
insight into the physical meaning of the solution but is not numerically efficient (p.9 in [11]).

Neugebauer and Meinel [12] gave a systematic procedure to obtain the auto-Bäcklund trans-
form for the AKNS class of equations and used it to compute the multi-soliton solutions. Lin
[13] showed the evolution of scattering data under the classical Darboux transform and his
work will be briefly mentioned here. The Darboux transform for integrable system has been
explained in detail by Gu et al. in their book [3].

Master of Science Thesis Shrinivas Chimmalgi



14 Nonlinear Fourier Transform

2-2-1 Brief Introduction to Bäcklund Transformations

Bäcklund transforms or Bäcklund transformations (named after the Swedish mathematician
Albert Victor Bäcklund) relate partial differential equations and their solutions. A Bäcklund
transform is typically a system of first order partial differential equations relating two func-
tions, and often depending on an additional parameter [14].
A Bäcklund transform which relates solutions of the same equation is called an invariant Bäck-
lund transform or auto-Bäcklund transform. There is no systematic way of finding Bäcklund
transforms in general, but there is a systematic way of finding auto-Bäcklund transforms for
special classes of systems. The Darboux transform is a auto-Bäcklund transform with the
classical Darboux transform being the most convenient form.

2-2-2 Classical Darboux Transform

Lin [13] showed that the solutions of su(2) systems can be related by classical Darboux
transformation (CDT). A su(2) system is of the form,

su(2) =
{(

α −β∗
β α∗

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
. (2-20)

The Zakharov and Shabat eigenvalue problem Eq. (1-16) belongs to this class of systems.
Let

Φ =
(
v1(x, t, ζ) w1(x, t, ζ)
v2(x, t, ζ) w2(x, t, ζ)

)
, (2-21)

be the eigenfunctions of the su(2) system at ζ = ζ0 and q(x, t) = q0. Let its norming constant
be b0. Then by defining

β(x, t, ζ0, b0) = v2(x, t, ζ0) + b0w2(x, t, ζ0)
v1(x, t, ζ0) + b0w1(x, t, ζ0) , (2-22)

the Darboux matrix is then given by

D =
[
ζ 0
0 ζ

]
+

−i(ζ∗0 |β|2+ζ0)
(1+|β|2)

−i(ζ∗0−ζ0)β∗
(1+|β|2)

−i(ζ0−ζ∗0 )β
(1+|β|2)

−i(ζ∗0 +ζ0|β|2)
(1+|β|2)

 . (2-23)

It can be proved that Φ′ = DΦ satisfies the su(2) system with

q = q0 + 2βx
(1 + |β|2) . (2-24)

The transformation from {q0,Φ} to {q,Φ′} is then known as the CDT.
If q0 was a solution of NSE with 1/a0(ζ) as reflection coefficient, then,

• If ζ0 is not a zero of a0(ζ), the eigenvalue gets appended to solution.

a1(ζ) = (ζ − ζ0)
(ζ − ζ∗0 )a0(ζ). (2-25)
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2-2 Inverse Nonlinear Fourier Transform 15

• If ζ0 is a zero of a0(ζ), the eigenvalue gets erased from the solution. The following
change is seen to the scattering data.

a1(ζ) = (ζ − ζ∗0 )
(ζ − ζ0)a0(ζ). (2-26)

Let

Φ0 =
(
e−iζx 0

0 eiζx

)
, (2-27)

which satisfies the system Eq. (1-16) for q = 0 which is a trivial solution of the NSE. Hence
by taking Φ0 as the fundamental solution (also known as seed or vacuum solution), we can
obtain several new solutions by successive application of CDT. All such solutions will be pure
multi-solitons.
The number of eigenvalues added by a Darboux transformation is known as the degree of
the Darboux transformation. The classical Darboux transform has degree one. The Darboux
transformation has the important property of permutability (Theorem 1.13, p.29 in [3]). This
means that not only a r degree Darboux transformation can be performed as r successive
degree one Darboux transformations, the order of those r transformations is not fixed. This
can be expressed by the diagram in Figure 2-1. It shows that starting from (P,Φ), both paths
lead to the same solution.

Figure 2-1: Permutability expressed as a Bianchi diagram, taken from p.29 of [3]

The CDT as described in [13] is not efficient for numerical implementation. Exploiting prop-
erties of norming constants allows for faster implementations such as Algorithm 2 in [15].
Permutability of CDT allows the addition of the eigenvalues in any order but the round-off
errors can be minimized if the eigenvalues are added in the decreasing order of the magnitude
of their imaginary parts [16]. Combining this idea with Algorithm 2 in [15] leads to a very
fast and well-conditioned implementation of CDT.

Summary

Relating the NSE with the Zakharov-Shabat eigenvalue problem allows for systematic compu-
tation of the scattering data. It also reduces evolution of scattering data in time to a simple
phase change. Inverse NFT can then be used to obtain the potential from the scattering data.
The CDT is a special form of inverse NFT which is well suited for computing multi-soliton
potentials. The ideas mentioned for continuous time NFT in this chapter can be extended to
certain discrete evolution equations. This will be explored in detail in Chapter 3.
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Chapter 3

Discrete Nonlinear Fourier transform

It is remarkable that the ideas developed in the preceding chapter also apply to certain types of
discrete evolution equations. Flaschka [17] showed that the Toda lattice equation is related to
a discretized Schrödinger eigenvalue problem. By employing inverse scattering analysis similar
to that of Case and Kac [18] and Kac [19], he was able to solve the equation. Similar results
were found by Manakov [20]. Motivated by these results, Ablowitz and Ladik [21] proposed
a generalization for a discretized version of the eigenvalue problem of Zakharov and Shabat
[9], as a basis for generating solvable discrete equations. Ablowitz and Ladik [8] later showed
that starting from the same eigenvalue problem, a larger class of discrete evolution equations
can be derived. Such a discrete eigenvalue problem not only helps solve discrete evolution
equations, but also helps in formulating nonlinear Fourier transform algorithms which may
be better suited for numerical implementation. In this chapter the work of Ablowitz and
Ladik is mentioned briefly and then some other discretizations of the eigenvalue problem are
derived. Some of the fast algorithms available in literature that utilize these discretizations for
generating multi-solitons are discussed. Finally, the discrete Darboux transform is introduced.

3-1 Discretization of Eigenvalue Problem

The procedures mentioned in [21] and [8] will be paraphrased in this section.
A general linear differential-difference equation is given by,

Unt = −iω(E)Un, (3-1)

where E is the shift operator, EUn = Un+1. The dispersion relation in the discrete domain is
given by ω(E). Eq. (3-1) is the discretized version of Eq. (1-13). The equation is discretized
with respect to x alone and hence is known as a differential-difference equation. Taking
ω(E) = (E + E−1 − 2) makes Eq. (3-1) equivalent to

iUnt = Un+1 + Un−1 − 2Un. (3-2)
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18 Discrete Nonlinear Fourier transform

This represents the linear part of the discrete nonlinear Schrödinger equation. As was shown
in Chapter 2, the dispersion relation of the associated linearized problem plays a crucial role
in deriving specific evolution equation.
To arrive at the discrete NSE we start with a scattering problem in the discrete domain:

V1n+1 = zV1n +Qn(t)V2n + Sn(t)V2n+1 ,

V2n+1 = (1/z)V2n +Rn(t)V1n + Tn(t)V1n+1 ,
(3-3)

where Qn, Rn, Sn and Tn are the real or complex valued discrete potentials, z ∈ C is the
eigenvalue in discrete domain and Vn ∈ C2 are the discrete eigenfunctions. The discrete
step-size h is defined as (xn+1 − xn = h). The discrete eigenvalue z is defined as z = e−iζh.
Taking the first order approximation, z ∼ 1 − iζh. The discrete potentials are given by
Qn = qnh,Rn = rnh, Sn = snh and Tn = tnh. The detailed derivation of the discrete
eigenvalue problem Eq. (3-3) can be found on p.117 of [22]. The terms in Eq. (3-3) are hence
analogous to the terms in Eq. (2-1).
The associated time dependence of the eigenfunction is given by,

V1nt
= AnV1n +BnV2n ,

V2nt
= CnV1n +DnV2n .

(3-4)

The integrability condition (also known as zero-curvature condition) is then given by E(Unt) =
(E(Un))t which corresponds to a specific nonlinear evolution equation for a certain set of func-
tions An, . . . , Dn (depending in general on discrete potentials Qn, Rn, Sn, Tn) with ∂z/∂t = 0.
Typically, the differential-difference nonlinear Schrödinger equation is given by (Eq. 1.7 in
[8])

iUnt = Un+1 + Un−1 − 2Un ± U∗nUn(Un+1 + Un−1) (3-5)
where U∗n is the complex conjugate of Un.
To arrive at Eq. (3-5) it is sufficient to start with the simpler case Sn = Tn = 0 [8] and setting
(∂/∂t)(EVin) = E(Vint

), i = 1, 2 in Eq. (3-3) and Eq. (3-4) leads to,

z∆nAn +RnBn+1 −QnCn = 0,
1/zBn+1 − zBn +Qn(An+1 −Dn) = Qnt ,

zCn+1 − 1/zCn −Rn(An −Dn+1) = Rnt ,

1/z∆nDn +QnCn+1 −RnBn = 0,

(3-6)

where ∆nAn = An+1 − An etc. It can be shown that for sufficiently fast decaying potentials
Qn, Rn, Sn, Tn → 0 as |n| → ∞, lim

n→∞
(An − Dn) = −iω(z2) (Sec. 3 in [8]). The linearised

version Eq. (3-2) of the nonlinear Schrödinger equation Eq. (3-5) has the dispersion relation
ω(z2) = z2 + 1/z2− 2. This is achieved by the following finite expansions in z for An, . . . , Dn

[8].

An = A(2)
n z2 +A(0)

n , Bn = B(1)
n z +B(−1)

n /z,

Cn = C(1)
n z + C(−1)

n /z, Dn = D(0)
n +D(−2)

n /z2.
(3-7)

Substituting these expansions into Eq. (3-6) and solving for the coefficients reveals that
∆nA

(−2)
n = ∆nD

(−2)
n = 0, A(2)

n = A
(2)
− = const and D

(−2)
n = D

(−2)
− = const. Solving fur-

ther shows that,

A(0)
n = −Rn−1QnA

(2)
− +A

(0)
− ,

D(0)
n = −Qn−1RnD

(2)
− +D

(0)
− .

(3-8)
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3-1 Discretization of Eigenvalue Problem 19

Then Qn, Rn satisfy (p.1013 in [8])

Rnt = (1−RnQn)(Rn+1D
(−2)
− −Rn−1A

(2)
− )−Rn(A(0)

− −D
(0)
− ),

Qnt = (1−RnQn)(Qn+1A
(2)
− −Qn−1D

(−2)
− ) +Qn(A(0)

− −D
(0)
− ).

(3-9)

The solutions for An, . . . , Dn are summarized below

An = A
(2)
− (z2 −Rn−1Qn) +A

(0)
− ,

Bn = A
(2)
− Qnz +D

(−2)
− Qn−1

1
z
,

Cn = A
(2)
− Rn−1z +D

(−2)
− Rn

1
z
,

Dn = D
(0)
− +D

(−2)
−

( 1
z2 −Qn−1Rn

)
.

(3-10)

The nonlinear Schrödinger equation is obtained by taking A(2)
− = D

(−2)∗
− = −i, A(0)

− = D
(0)∗
− =

i and requiring that Rn = ∓Q∗n. Then the coupled system Eq. (3-10) are mutually consistent
leading to,

iQnt = Qn+1 +Qn−1 − 2Qn ±QnQ∗n(Qn+1 +Qn−1), (3-11)

which is the same as Eq. (3-5).
As mentioned earlier,

lim
n→∞

(An −Dn) = −i(z2 + 1/z2 − 2) = −iω(z2). (3-12)

Another choice of finite expansions in z for An, . . . , Dn can be found on p.599 of [21].

An = A(1)
n z +A(0)

n , Bn = B(0)
n +B(−1)

n /z,

Cn = C(1)
n z + C(0)

n , Dn = D(0)
n +D(−1)

n /z.
(3-13)

Solving for An, . . . , Dn for a more general case of Eq. (3-6) results in,

An = A
(1)
− z − Tn−1QnA

(1)
− −

n−1∑
−∞

ΛKt
ΛK

+A
(0)
− ,

Bn = QnA
(1)
− + Sn−1D

(−1)
− /z,

Cn = Tn−1A
(1)
− z +RnD

(−1)
− ,

Dn = −RnSn−1D
(−1)
− −

n−1∑
−∞

ΛKt
ΛK

+D
(0)
− +D

(−1)
− /z,

(3-14)

where Λn ≡ 1− SnTn. The time evolution of the potentials are then given by

Rnt = (1−RnQn)(TnD(−1)
− − Tn−1A

(−1)
− ),

Snt = (1− SnTn)(Qn+1A
(1)
− −QnD

(−1)
− ),

Qnt = (1−RnQn)(SnA(1)
− − Sn−1D

(−1)
− ),

Tnt = (1− SnTn)(Rn+1D
(−1)
− −RnA(1)

− ),

(3-15)
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20 Discrete Nonlinear Fourier transform

where A(1)
− , A

(0)
− , D

(−1)
− , D

(0)
− are all constants obtained as n → −∞. For convenience A(0)

− =
D

(0)
− is chosen. Letting Rn = ∓Q∗n, Sn = ∓T ∗n and D(−1)

− = −A(1)
− = i the above evolution

equations Eq. (3-15) reduce to

Rnt = i(1±RnR∗n)(∓S∗n ∓ S∗n−1),
Snt = i(1± SnS∗n)(±R∗n+1 ±R∗n).

(3-16)

This is known as a discretized “second order in time nonlinear Schrödinger equation" [21].

3-1-1 Scattering Data in Discrete Domain

It is interesting to look at the scattering data and its time evolution for the discrete eigenvalue
problem Eq. (3-3). The procedure is very similar to the one mentioned for continuous domain.
Assuming that Qn, Sn, Rn and Tn vanish sufficiently rapidly as |n| → ∞. The asymptotic
eigenfunctions of Eq. (3-3) are chosen to have the forms,

φn ∼
(

1
0

)
zn,

φ̄n ∼
(

0
−1

)
z−n, as n→ −∞

ψn ∼
(

0
1

)
z−n,

ψ̄n ∼
(

1
0

)
zn, as n→ +∞.

(3-17)

These are the Jost solutions equivalent to Eq. (2-10). For appropriately decaying potentials,
z−nφ, znψ are analytic for |z| > 1, and znφ̄, z−nψ̄ are analytic for |z| < 1. φ and ψ are the
asymptotic forms of the eigenfunction v of Eq. (3-3) at z,

v =
(
v1n

v2n

)
. (3-18)

Therefore, when Qn = ∓R∗n, Tn = ∓S∗n, the adjoint

v̄ =
(
v∗2n

∓v∗1n

)
, (3-19)

is a solution at z = 1/z∗.
The Wronskian relation obeys the equation

Wn+1 = 1−RnQn
1− SnTn

Wn, (3-20)

where Wn(w, v) = (w1nv2n − w2nv1n). This on the unit circle gives (p.600 in [21]),

Wn(ψ̄, ψ) =
∞∏
n

1− SiTi
1−RiQi

,

Wn(φ̄, φ) =
n−1∏
−∞

1−RiQi
1− SiTi

.

(3-21)
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3-1 Discretization of Eigenvalue Problem 21

For Ti = −S∗i , Qi = −R∗i , Eq. (3-21) are positive definite hence {ψ̄, ψ}, {φ̄, φ} are, respectively,
linearly independent. Hence on the unit circle, using notation as used in [23],

φ̄n(z, t) = −āD(z, t)ψn + b̄D(z, t)ψ̄n,
φn(z, t) = aD(z, t)ψ̄n + bD(z, t)ψn,

(3-22)

where aD, bD, āD and b̄D depend parametrically on time through the potentials. Substituting
these in Eq. (3-21), on the unit circle,

aDāD + bD b̄D =
n−1∏
−∞

1−RiQi
1− SiTi

, (3-23)

and in the special case of Ti = −S∗i , Qi = −R∗i

|aD|2 + |bD|2 =
∞∏
−∞

1 + |Ri|2

1 + |Si|2
, (3-24)

since āD = aD∗, b̄D = bD∗.
Assuming that āD(z) and aD(z) have finite number of simple zeros (zk) inside and outside
the unit circle, respectively [i.e., |z̄k| < 1, āD(z̄k) = 0 and |zk| > 1, aD(zk) = 0], at these zeros,

φ̄n(z̄k) = b̄Dk ψ̄n(z̄k) ≡ b̄Dk ψ̄n,k = φ̄n,k,

φn(zk) = bDk ψn(zk) ≡ bDk ψn,k = φn,k,
(3-25)

where z̄k = 1/z∗k, b̄k = bD∗k .
The time dependence of the scattering coefficients for the dispersion relation ω(z2) = z2 +
1/z2 − 2 is given by (p.222 in [23]),

āD(t) = āD0 ,

b̄D(t) = b̄D0 exp
(
i
(z2 + 1/z2 − 2)t

∆x2

)
,

b̄Dk = b̄Dk,0exp
(
i
(z̄2
k + 1/z̄2

k − 2)t
∆x2

)
,

(3-26)

where ∆x = h is the step-size.
The discrete eigenvalue problem Eq. (3-3) has scattering data analogous to the continuous
eigenvalue problem. The similarities between the continuous and discrete scattering problems
makes it interesting to look at other discretizations of the Zakharov-Shabat problem. The
procedure followed by Vaibhav in [4] is mentioned here. For ease of reading, the derivation
starts by compactly representing the Zakharov-Shabat Eq. (2-1) problem as

vx = −iζσ3v + Uv,

vt = 2iζ2σ3v + [−2ζU + iσ3(U2 − Ux)]v,
(3-27)

where

U =
(

0 q(x, t)
r(x, t) 0

)
, r(x, t) = −q∗(x, t), (3-28)
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22 Discrete Nonlinear Fourier transform

and
σ3 =

(
1 0
0 −1

)
. (3-29)

The spectral domain-approach will be used to obtain couple of other discrete scattering prob-
lems. The first step is to apply the transformation q̃ = eiσ3ζxv so that Eq. (3-27) becomes

∂x[eiσ3ζxv] = eiσ3ζxUe−iσ3ζx[eiσ3ζxv], (3-30)

or,
ṽx = Ũ ṽ,

Ũ = eiσ3ζxUe−iσ3ζx =
(

0 qe2iζx

re−2iζx 0

)
.

(3-31)

The linear-step methods [24] can be applied to Eq. (3-31) to obtain a recurrence relation.
The discretizations obtained are known as exponential integrators based on linear one-step
methods. One of the advantages of Eq. (3-31) is that the "vacuum" solution obtained from
the discrete problem is exact.

Trapezoidal scheme

For the discretization scheme, an equispaced grid is defined by xn = L0 +nh, n = −N,−N +
1, . . . , N , with x−N = L1, xN = L2 and L0 is midpoint between L1 and L2. The grid spacing
(step-size) is h and let z = eiζh. For the potential sampled on the grid, set qn = q(xn, t), rn =
r(xn, t) where the time dependence is suppressed. Using the same convention, Un = U(xn, t)
and Ũn = Ũ(xn, t). The discretization of Eq. (3-31) using the trapezoidal rule gives

Ṽn+1 =
(
I − h

2 Ũn+1

)−1(
I + h

2 Ũn
)
Ṽn

Vn+1 =
(
I − h

2Un+1

)−1
e−iσ3ζh

(
I + h

2Un
)
Vn.

(3-32)

Setting 2Qn = hqn, 2Rn = hrn and Θn = 1 − QnRn, the discrete one step scheme can be
stated as:

Vn+1 = 1
Θn

(
z−1 + zQn+1Rn zQn+1 +Qnz

−1

Rn+1z
−1 + zRn Rn+1Qnz

−1 + z

)
Vn. (3-33)

Split-Magnus Integrator

Applying the Magnus method with one-point Gaussian quadrature ([25]-[26]) to the Zakharov-
Shabat problem in Eq. (3-27),

Vn+1 = e−iζσ3h+Un+1/2hvn (3-34)

The exponential operator can be computed exactly as

e−iζσ3h+Un+1/2h =
(

cosh(Γ)− iζh
Γ sinh(Γ) Qn+1/2

Γ sinh(Γ)
Rn+1/2

Γ sinh(Γ) cosh(Γ) + iζh
Γ sinh(Γ)

)
, (3-35)
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3-1 Discretization of Eigenvalue Problem 23

where Γ =
√
Qn+1/2Rn+1/2 − ζ2h2 , Qn+1/2 = hq(xn + h/2, t) and Rn+1/2 = hr(xn + h/2, t).

This is the Magnus integrator with one-point Gauss quadrature. This method is also referred
to as the exponential mid-point rule and has order two. It has been shown to be consistent
and stable [4]. It retains the su(2) structure and is specially suited for highly oscillatory
problems. It has been used by several authors to solve forward scattering problems[27],[28].
Applying Strang-type splitting [29] to the exponential,

e−iζσ3h+Un+1/2h = e−iζσ3h/2eUn+1/2he−iζσ3h/2 +O(h3). (3-36)

The order of the approximation is determined by applying the Baker-Campbell-Hausdroff
(BCH) formula to the exponential operators ([30], Chapter 4). Setting Γ =

√
Qn+1/2Rn+1/2,

eUn+1/2h =
(

cosh(Γ) Qn+1/2
sinh(Γ)

Γ
Rn+1/2

sinh(Γ)
Γ cosh(Γ)

)

= 1√
1− tanh2Γ

(
1 Qn+1/2

tanh(Γ)
Γ

Rn+1/2
tanh(Γ)

Γ 1

)

= 1√
1− Γ2

(
1 Qn+1/2

Rn+1/2 1

)
+O(h3).

(3-37)

Hence the discretization scheme works out to be

Vn+1 = 1
Θ1/2
n+1/2

(
z−1 Qn+1/2

Rn+1/2 z

)
Vn, (3-38)

where Θ1/2
n+1/2 = (1 − Qn+1/2Rn+1/2) > 0. The integration scheme obtained is referred to as

the Split-Magnus (SM) method.

Properties of scattering data

The scattering data has two helpful properties. These are given more elaborately as Remark
II.1 and II.2 in [4].

Conjugation and reflection

The inverse scattering problem for the right-sided profile can be transformed to that of a
left-sided profile in the following way: putting y = −x, we have

vy(−y; ζ) = iζσ3v(−y; ζ)− U(−y)v(−y; ζ)
wy = −iζσ3w + U∗(−y)w,

(3-39)

where w(y) = σ1v(−y; ζ). The new system with the potential U∗(−y) will have the same
discrete eigenvalues but the norming constants change as Bk = 1/bk. Therefore, an imple-
mentation for the case of left-sided profile is sufficient to solve problems of general nature
encountered in forward and inverse NFT.
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24 Discrete Nonlinear Fourier transform

Translation

The whole potential can be translated on account of the translational properties of the dis-
crete spectrum. Considering the transformation x = y + x0 corresponding to translation of
potential by x0, the new potential U(y + x0) has the same discrete eigenvalues, however, the
norming constants change as Bk = bke

−2iζkx0 .

Based on the discretizations of the eigenvalue problem, various algorithms for forward and
inverse NFT have been published. Some methods are superior than others either in robust-
ness or computational speed or both. Yousefi and Kschischang have consolidated some of the
algorithms in [31] and [11]. In [31] they cover most of the standard forward NFT algorithms
and in [11] they cover inverse NFT. In their paper [32], Wahls and Poor proposed fast NFTs
and specifically discussed the NFT with respect to the NSE. They made use of the Ablowitz-
Ladik dicretization but their approach has been adapted for other discretizations as well.
The inverse NFT involves two steps. First is the computation of the scattering coefficients
from the nonlinear Fourier spectrum and the second step is the retrieval of the potential
from the scattering coefficients. Layer peeling algorithm has been applied in various fields
for inverting nonlinear spectrum. Brenne and Skaar [33] applied conventional layer peeling
to the NSE. Wahls and Poor in [34] applied layer peeling specifically to the Ablowitz-Ladik
discretization. They concluded that the layer peeling algorithm was the computational bot-
tleneck and hence they proposed the fast layer peeling algorithm (Figure 3-1) in [35] based
on the work of McClary [36]. Currently layer peeling is the most computationally efficient
method for computing the potential from the scattering coefficients. In [35], Wahls and Poor,
proposed and demonstrated a method to compute the discrete polynomial representation of
the eigenfunctions directly from the nonlinear Fourier spectrum. Their approach is currently
the fastest algorithm in literature for generating multi-solitons with a floating point oper-
ations complexity (FLOPS) of O(N log2N) for N samples. However, their approach does
not give precise control over the norming constants. Combining the advantages of CDT and
layer-peeling, Vaibhav has proposed a new approach in [4]. For the case of multi-solitons, this
algorithm has a FLOPS complexity of O(N(K + log2N)) for K eigenvalues and N samples.
The CDT is a continuous algorithm while layer peeling is a discrete algorithm. This makes
the calculation of the scattering coefficients the computational bottleneck. The discrete Dar-
boux which is analogous to CDT was first studied with the hope that it will help circumvent
the bottleneck. However, a slightly different approach was finally used to propose a new
algorithm as will be seen in Chapter 4.

3-2 Discrete Darboux Transform

Ablowitz and Ladik and others before them showed that the inverse scattering problem for
nonlinear differential-difference equations that can be derived using the scheme mentioned in
Section 3-1, can be solved. The details for the same can be found under Section 3 in [8]. The
current study is focused on the multi-soliton case and as shown in Section 2-2, the inverse
problem for multi-solitons can be solved efficiently using the Darboux transform. Xianguo
[37] in 1989 derived the Darboux transformation for the discrete Ablowitz-Ladik eigenvalue
problem Eq. (3-3). The same is introduced in this section.
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3-2 Discrete Darboux Transform 25

Figure 3-1: The figure shows the binary-tree structure obtained as a result of applying a divide-
and-conquer strategy to the conventional layer-peeling method. The node label depicts the range
of indices of the layers ordered from left to right in the computational domain, taken from p.72
of [4]

The eigenvalue problem Eq. (3-3) scaled by a factor (1−SnTn) can be compactly represented
as,

Vn+1 = LnVn, Ln =
[
z +RnSn Qn + z−1Sn
Rn + zTn z−1 +QnTn

]
. (3-40)

The time dependence of the eigenfunction Vn is given by substituting Eq. (3-14) in Eq. (3-4)
and can be written as,

Vnt = NnVn, Nn =
[
A

(1)
− z −A(1)

− Tn−1Qn A
(1)
− Qn +D

(−1)
− z−1Sn−1

A
(1)
− zTn−1 +D

(−1)
− Rn D

(−1)
− z−1 −D(−1)

− RnSn−1

]
. (3-41)

The compatibility condition then gives the evolution equation,

Lnt = Nn+1Ln − LnNn, (3-42)

which is equivalent to equations Eq. (3-15). This becomes the discrete NSE Eq. (3-16) for

Rn = ∓Q∗n, Sn = ∓T ∗n , D
(−1)
− = −A(1)

− = i. (3-43)

Let
Vn =

[
v1n w1n

v2n w2n

]
, (3-44)

be a fundamental matrix of solutions to Eq. (3-40). Then let the Darboux matrix in the
discrete domain be Mn which gives the linear transformation Vn → V ′n:

V ′n = MnVn, Mn =
[
An Bn
Cn Dn

]
=

zk +
∑k−1
j=−k A

(j)
n zj

∑k−1
j=−k B

(j)
n zj∑k

j=−(k−1)C
(j)
n zj z−k +

∑k
j=−(k−1)D

(j)
n zj

 . (3-45)

The choice of structure of Mn is based on the eigenvalue problem Eq. (3-40). The ’ indicates
the terms after a Darboux update.
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26 Discrete Nonlinear Fourier transform

Let zi(zi 6= zj , i 6= j), bi(bi 6= 0)(i = 1, 2, ..., 4k) be 8k parameters. Let zi(i = 1, 2, ..., 4k) be
the roots of the 4k − th order polynomial z2kdetMn. Then at z = zi , the columns vectors
of V ′n will be linearly independent. Let its dependent coefficients be bi(i = 1, 2, ..., 4k), then
from the definition Eq. (3-45),

k−1∑
j=−k

(A(j)
n +B(j)

n α−1
i (n))zji = −zki ,

k∑
j=−(k−1)

(D(j)
n + C(j)

n αi(n))zji = −z−ki ,

(3-46)

where
αi(n) = v1n(zi)− biw1n(zi)

v2n(zi)− biw2n(zi)
. (3-47)

The formulation of the discrete Darboux transform is very similar to the continuous case. The
definition of αi in the discrete domain is analogous to the definition of β in the continuous
domain (Eq. (2-22)). For appropriately chosen 8k parameters and corresponding eigenfunc-
tions Vn, the system of equations Eq. (3-46) has a solution which allows calculation of Mn.
Suppose v′n is any column of V ′n. Then from definition of the Darboux matrix,

v′n = Mnvn, (3-48)

from which Eq. (3-40) is transformed into an eigenvalue problem of v′n in the case z 6= zi as

v′n+1 = Mn+1LnM
−1
n v′n = L′nv

′
n, (3-49)

where
L′n = Mn+1LnM

−1
n . (3-50)

Requiring L′n to have the same form as Ln

L′n ,Mn+1LnM
−1 =

[
z +R′nS

′
n Q′n + z−1S′n

R′n + zT ′n z−1 +Q′nT
′
n

]
, (3-51)

the transformation formulae from old potentials into new ones are then given by (Eq. 2.10 in
[37]):

Q′n = 1
D

(k)
n

Qn −
B

(k−1)
n

D
(k)
n

, R′n = 1
A

(−k)
n

Rn −
C

(−k+1)
n

A
(−k)
n

,

S′n = A
(−k)
n+1 Sn +B

(−k)
n+1 , T ′n = D

(k)
n+1Tn + C

(k)
n+1.

. (3-52)

For the trivial solution Rn = −Q∗n = 0 and Sn = −T ∗n = 0 of Eq. (3-40), the fundamental
solution matrix can be chosen as:

Vn =
[
zn 0
0 −z−n

]
(3-53)

Again the analogy between the discrete and continuous domain is clear when comparing the
seed solution Eq. (3-53) and Eq. (2-27). The discrete Darboux transform also displays the
property of permutability. Hence starting from the seed solution Eq. (3-53), the multi-soliton
solution can be obtained through repeated degree one discrete Darboux transforms.
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3-2 Discrete Darboux Transform 27

Summary

In this chapter the NFT was extended to discrete evolution equations through association
with the discrete eigenvalue problem. The procedure to arrive at various discrete evolution
equations and scattering data in discrete domain was mentioned. Analogies were drawn at
each step between the continuous and discrete time NFTs. Some of the current fast algorithms
were mentioned and finally the discrete Darboux transform was introduced. In Chapter 4, the
discrete Darboux transform will be extended to other discretizations and a new fast inverse
NFT algorithm will be proposed.
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Chapter 4

Discrete Darboux Evolution Algorithm
(DDE)

The existence of exactly solvable discrete evolution equations is interesting in itself but the
ease with which the continuous domain techniques extend to the discrete domain is fascinating.
Although the discrete Darboux transform (DDT) discussed in Chapter 3 is very useful in
finding multi-soliton solutions of discrete evolution equations, for the case of the NSE, it has
no advantages over CDT. However a new approach for generating multi-solitons based on
DDT will be proposed in this chapter.
In Section 4-1 the new approach is demonstrated first for the Ablowitz-Ladik discretization
and then extended to other discretizations. Later, in Section 4-2 computational complexities
of the algorithms are compared.

4-1 Derivation of DDE

To understand the motivation for the new approach, it helps to look again at the schematic
representation of the classical Darboux transform shown in Figure 4-1. In CDT, at each
sample point the computationally expensive Darboux transform is carried out with the only
difference being the information regarding position of the sample. For K eigenvalues the
FLOPS complexity at each sample point is O(K2), which means the overall complexity is
O(K2N) for N sample points. Instead, if some transformation could be used to transform
the Darboux matrix at some point xn to the Darboux matrix at xn−1, the potential can be
computed more efficiently. Unfortunately such a transformation is not trivial in case of the
continuous Darboux transform. Discretizing the eigenvalue problem helps in realizing such a
transformation.
The discrete time NFT is defined using the discrete eigenvalue problem Eq. (3-40),

Vn+1 = LnVn. (4-1)
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Eigenfunction
ɸ(K) (xn, ζ)

qn
(K)

Eigenfunction
ɸ(K) (xn+1, ζ)

qn+1
(K)

Eigenfunction
ɸ(K) (xn-1, ζ)

qn-1
(K)

xnxn-1 xn+1

Classical 
Darboux

Transform

Classical 
Darboux

Transform

Classical 
Darboux

Transform

Figure 4-1: Schematic representation of CDT.

Again letMn be the discrete Darboux matrix as defined in Eq. (3-45). Starting from the seed
solution Eq. (3-53), after solving for the coefficients of Mn the eigenfunction can be updated
(addition of eigenvalues) as

V ′n = MnVn. (4-2)

Eq. (3-49) can be written as,

V ′n+1 = Mn+1Vn+1 = L′nMnVn, (4-3)

where L′n is again required to have the same form as Ln,

L′n =
[
z +R′nS

′
n Q′n + z−1S′n

R′n + zT ′n z−1 +Q′nT
′
n

]
. (4-4)

For the case of multi-solitons, the seed solution Vn at any point n is to be trivially known.
Hence, if all the updated potentials Q′n,R′n,T ′n and S′n can be computed fromMn alone, Eq. (4-
3) can then be used to compute the Darboux matrix Mn+1. Such a procedure can then be
repeated to compute the potential at all points to the right of the arbitrary starting point xn.
The complete algorithm will have three parts.
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4-1 Derivation of DDE 31

1. The discrete part of the continuous-time nonlinear Fourier spectrum is transformed
according to the chosen discrete eigenvalue problem.

2. Discrete Darboux transform is used to compute the discrete eigenfunctions V ′n at one
sample point.

3. The potential at all the sample points is computed by alternating between potential
update and eigenfunction update.

The complete procedure can be schematically represented as shown in Figure 4-2. The details
of the steps will be discussed in the following subsections. This procedure is based on the
assumption that Q′n,R′n,T ′n and S′n can be computed fromMn alone. This is not obvious from
Eq. (3-52). To derive the update equations for the potential, substitute

Mn+1 =
[
An+1 Bn+1
Cn+1 Dn+1

]
=

zk +
∑k−1
j=−k A

(j)
n+1z

j ∑k−1
j=−k B

(j)
n+1z

j∑k
j=−(k−1)C

(j)
n+1z

j z−k +
∑k
j=−(k−1)D

(j)
n+1z

j

 , (4-5)

in Eq. (4-3). Also substituting Vn and Vn+1 from Eq. (3-53) in Eq. (4-3) gives[
An+1z

n+1 −Bn+1z
−(n+1)

Cn+1z
n+1 −Dn+1z

−(n+1)

]
=
[
z +R′nS

′
n Q′n + z−1S′n

R′n + zT ′n z−1 +Q′nT
′
n

] [
Anz

n −Bnz−n
Cnz

n −Dnz
−n

]
(4-6)

Solving the system of equations Eq. (4-6) for Q′n, R′n, Sn and T ′n, it is found that,

R′n = −C
(−k+1)
n

A
(−k)
n

,

Q′n = −(R′n)∗,

T ′n = −C
(−k+2)
n −R′nA

(−k+1)
n

A
(−k)
n +Q′nC

(−k+1)
n

,

S′n = −(T ′n)∗.

(4-7)

and,

T ′n = C
(k)
n+1,

S′n = −(T ′n)∗,

R′n =
C

(k−1)
n+1 − T ′nA

(k−1)
n+1

1− T ′n−S′n
,

Q′n = −(R′n)∗.

(4-8)

Comparing Eq. (4-7) and Eq. (3-52) reveals that the update equation is the same for R′n
starting from null potential Rn = 0. In Eq. (4-7), T ′n depends only on the coefficients of
Mn. Similarly comparing Eq. (4-8) and Eq. (3-52) reveals that the update equation is the
same for T ′n starting from null potential Tn = 0. Again in Eq. (4-8), R′n depends only on
the coefficients of Mn+1. The Q′n and S′n terms can be easily computed due to symmetry
(Eq. (3-43)) from R′n and T ′n respectively.
The implication of these relations is that, starting at any sample point xn, using Eq. (4-7)
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32 Discrete Darboux Evolution Algorithm (DDE)

the updated potentials at that point can be computed (Potential update). The updated
eigenfunction V ′n+1 at the next sample point xn+1, can then be computed using the relation
V ′n+1 = L′nV

′
n (Eigenfunction update). By alternating between the potential update and

eigenfunction update, the potential can be computed at all grid points xn+1, xn+2, ... right
of the starting point xn. Similar to the forward case, starting from xn, using Eq. (4-8) the
updated potentials can be computed at the point xn−1 (Potential update). The relation
V ′n−1 = L

′−1
n−1V

′
n, where L′−1

n−1 is the inverse of the matrix L′n−1, then gives the updated
eigenfunction V ′n−1 (Eigenfunction update). The procedure can then be repeated to obtain
the potential at all grid points xn−1, xn−2, ... left of the starting point xn. The algorithm
can be visualized as Figure 4-2.
Later, in Section 4-2, a complexity analysis will reveal that this scheme requires less FLOPS

Figure 4-2: Schematic representation of proposed algorithm.

than classic Darboux. The lower complexity comes with a cost of slightly higher error which
will be discussed in Chapter 5. The scheme shown in Figure 4-2 will be referred to as the
discrete Darboux evolution (DDE) scheme from here on.

Other Discretizations

It is interesting to explore the approach further by applying it to the other discretizations men-
tioned in Section 3-1-1. The complete derivation is repeated for the case of the Split-Magnus
discretization(SM) Eq. (3-38) for sake of clarity. The first step is to find the appropriate
discrete Darboux matrix. Taking a hint from the structure used in [38], the discrete Darboux
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4-1 Derivation of DDE 33

matrix Mn of degree k is chosen to be

V ′n = MnVn, Mn =

An Bn

Cn Dn

 =


z−k +

∑
j={−k+2,−k+4,...,k}

ajnz
j ∑

j={−k+1,−k+3,...,k−1}
bjnz

j

∑
j={−k+1,−k+3,...,k−1}

cjnz
j zk +

∑
j={−k,−k+2,...,k−2}

djnz
j

 ,
(4-9)

where V ′n is the updated eigenfunction. The eigenfunction is chosen as,

Vn =
[
φn,1 ψn,1
φn,2 ψn,2

]
, (4-10)

where φn and ψn are the Jost solutions. For a null potential, i.e. Qn = Rn = 0, the Jost
solutions can be solved exactly and these can be used as the seed solutions:

φn =
[
z−n

0

]
, ψn =

[
0
zn

]
. (4-11)

Substituting Vn in Eq. (4-9) leads toφ′n,1 ψ′n,1

φ′n,2 ψ′n,2

 =


z−k +

∑
j={−k+2,−k+4,...,k}

ajnz
j ∑

j={−k+1,−k+3,...,k−1}
bjnz

j

∑
j={−k+1,−k+3,...,k−1}

cjnz
j zk +

∑
j={−k,−k+2,...,k−2}

djnz
j


φn,1 ψn,1

φn,2 ψn,2

 .
(4-12)

The columns of the updated eigenfunction V ′n are linearly dependent whenever z = zi is an
eigenvalue, i.e. φ′n = biψ

′
n (see Section 3-1-1), where bi is the norming constant. Let

αn,i = φn,2(zi)− biψn,2(zi)
φn,1(zi)− biψn,1(zi)

, i = 1, 2, . . . , 2k. (4-13)

Rewriting φ′n = biψ
′
n using the expressions from Eq. (4-12) gives(

z−k +
∑

j={−k+2,−k+4,...,k}
ajnz

j

)
φn,1 +

( ∑
j={−k+1,−k+3,...,k−1}

bjnz
j

)
φn,2

= bi

((
z−k +

∑
j={−k+2,−k+4,...,k}

ajnz
j

)
ψn,1 +

( ∑
j={−k+1,−k+3,...,k−1}

bjnz
j

)
ψn,2

)
, (4-14)

( ∑
j={−k+1,−k+3,...,k−1}

cjnz
j

)
φn,1 +

(
zk +

∑
j={−k,−k+2,...,k−2}

djnz
j

)
φn,2

= bi

(( ∑
j={−k+1,−k+3,...,k−1}

cjnz
j

)
ψn,1 +

(
zk +

∑
j={−k,−k+2,...,k−2}

djnz
j

)
ψn,2

)
. (4-15)

Eq. (4-14) and Eq. (4-15) can be rearranged to give(
z−k+

∑
j={−k+2,−k+4,...,k}

ajnz
j

)(
φn,1−biψn,1

)
+
( ∑
j={−k+1,−k+3,...,k−1}

bjnz
j

)(
φn,2−biψn,2

)
= 0,

(4-16)
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34 Discrete Darboux Evolution Algorithm (DDE)

( ∑
j={−k+1,−k+3,...,k−1}

cjnz
j

)(
φn,1−biψn,1

)
+
(
zk+

∑
j={−k,−k+2,...,k−2}

djnz
j

)(
φn,2−biψn,2

)
= 0.

(4-17)
Using the definition of αn,i from Eq. (4-13), simplifying Eq. (4-16) and Eq. (4-17) results in
the following equations,∑

j={−k+2,−k+4,...,k}
ajnz

j
i + αn,i

∑
j={−k+1,−k+3,...,k−1}

bjnz
j
i = −z−ki

1
αn,i

∑
j={−k+1,−k+3,...,k−1}

cjnz
j
i +

∑
j={−k,−k+2,...,k−2}

djnz
j
i = −zki

(4-18)

The Darboux coefficients could in principle be calculated by solving Eq. (4-18) using zi, 1/z∗i ,
bi and −1/b∗i for i = 1, . . . , k. However, owing to permutability of Darboux transform (see
Section 2-2-2), the higher order Darboux matrix is more easily obtained by repetitive degree
one Darboux updates. In degree one case, the matrix Mn in Eq. (4-9) reduces to

Mn =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
. (4-19)

Using Eq. (4-18) the coefficients a1
n, b

0
n, c

0
n and d−1

n can be expressed in terms of αn,i as follows,

a1
n = αn,2z2 − αn,1z1

z1z2(αn,1z2 − αn,2z1) ,

b0n = z2
1 − z2

2
z1z2(αn,1z2 − αn,2z1) ,

c0
n = αn,1αn,2(z2

1 − z2
2)

(αn,1z2 − αn,2z1) ,

d−1
n = z1z2(αn,2z2 − αn,1z1)

(αn,1z2 − αn,2z1) .

(4-20)

The updated potentials Q′n+1/2 and R′n+1/2 can be computed from these coefficients. The
scaled discrete eigenvalue problem Eq. (3-38) after an update,

L′n =
(

z−1 Q′n+1/2
R′n+1/2 z

)
, (4-21)

satisfies V ′n+1 = L′nV
′
n. However, V ′n+1 can also be found by (see Section 3-2)

V ′n+1 = Mn+1Vn+1, (4-22)

where

Mn+1 =


z−k +

∑
j={−k+2,−k+4,...,k}

ajn+1z
j ∑

j={−k+1,−k+3,...,k−1}
bjn+1z

j

∑
j={−k+1,−k+3,...,k−1}

cjn+1z
j zk +

∑
j={−k,−k+2,...,k−2}

djn+1z
j

 . (4-23)

Hence,
Mn+1Vn+1 = L′nMnVn. (4-24)
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4-1 Derivation of DDE 35

Substituting the seed solutions from equation Eq. (4-11) for the degree one Darboux matrix
Eq. (4-19), Eq. (4-24) gives[

z−n−2 + a1
n+1z

−n b0n+1z
n+1

c0
n+1z

−n−1 zn+2 + d−1
n+1z

n

]

=
(

z−1 Q′n+1/2
R′n+1/2 z

)[
z−n−1 + a1

nz
−n+1 b0nz

n

c0
nz
−n zn+1 + d−1

n zn−1

]

=
[

z−n−2 + (a1
n +Q′n+1/2c

0
n)z−n Q′n+1/2z

n+1 + (b0n +Q′n+1/2d
−1
n )zn−1

R′n+1/2z
−n−1 + (R′n+1/2a

1
n + c0

n)z−n+1 zn+2 + (R′n+1/2b
0
n + d−1

n )zn

]
. (4-25)

Equating the coefficients of zn+1, z−n−1, zn−1 and z−n+1 yields

Q′n+1/2 = b0n+1, R′n+1/2 = c0
n+1,

Q′n+1/2 = −b
0
n

d−1
n
, R′n+1/2 = −c

0
n

a1
n

.
(4-26)

Similarly, substituting the seed solutions from equation Eq. (4-11) and the degree k Darboux
matrix Eq. (4-9) in Eq. (4-24) and equating the coefficients of zn+k yields

Q′n+1/2 = b
(k−1)
n+1 , (4-27)

whereas equating coefficients of z−n−k gives,

R′n+1/2 = c
(−k+1)
n+1 . (4-28)

Similarly equating the coefficients of zn−k yields,

Q′n+1/2 = −b
(−k+1)
n

d
(−k)
n

, (4-29)

while from z−n+k gives,

R′n+1/2 = −c
(k−1)
n

a
(k)
n

. (4-30)

For the first case i.e. computing the potential at xn+1/2 using the Darboux coefficients at
xn+1, the relation

V ′n = L
′−1
n V ′n+1, L

′−1
n = 1

(1−Q′n+1/2R
′
n+1/2)

(
z −Q′n+1/2

−R′n+1/2 z−1

)
(4-31)

can be used for the eigenfunction update. For the second case i.e. computing the potential
at xn+1/2 using the Darboux coefficients at xn, the relation,

V ′n+1 = L′nV
′
n, L′n =

(
z−1 Q′n+1/2

R′n+1/2 z

)
. (4-32)

can be used. The potential at all the grid points can be computed by alternating between
the potential update and eigenfunction update.
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36 Discrete Darboux Evolution Algorithm (DDE)

Following the same set of steps as in the case of the Ablowitz-Ladik discretization, it was
possible to arrive at the potential update and eigenfunction update equations for the Split-
Magnus discretization. The procedure can be extended similarly to other discretizations. The
structure of the discrete Darboux matrix is crucial for arriving at the appropriate potential
update equations. For the trapezoidal discretization (TR) Eq. (3-33), the degree one Darboux
matrix should be chosen as

Mn =
[
anz + z−1 −z + bnz

−1

cnz + z−1 z + dnz
−1

]
, (4-33)

The coefficients an, bn, cn and dn can be found by solving a system of equations similar to
Eq. (4-20). Starting again with the recurrence relation,

Mn+1Vn+1 = L′nMnVn, (4-34)

and comparing the powers of z yields,

R′n+1 =
C−kn+1

A−kn+1
, R′n = X

1 +
√

1 + |X |2
,

Q′n+1 = −(R′n+1)∗, Q′n = −(R′n)∗,

(4-35)

where

X =
C−k+2
n+1 −R′n+1A

−k+2
n+1

A−kn+1 −Q′n+1C
−k
n+1

(4-36)

The equations Eq. (4-35) can be used to compute the potential at all points left of the arbitrary
starting point xn. Alternative to finding potential update equations for the points to the right
of xn, the reflection property (Section 3-1-1) can be used. By repeating the procedure used for
the points left of xn with new norming constants br = 1/b, the potential can be computed at
all points right of xn for the original norming constants b. Such an alternative scheme requires
the DDT to be performed twice which adds small complexity to the overall fast scheme.

The scheme derived above is now summarized as an algorithm. Owing to the symmetry prop-
erty Rn = −Q∗n of the NSE, it suffices to compute either the Qn or the Rn. This immediately
halves the number of computations required by the algorithm. For the numerical implementa-
tion, the first step is to define an equidistant grid of 2N+1 points xn, n = −N,−N + 1, ..., N,
over the support [x−N , xN ] = [L1, L2]. The computation of the Darboux coefficients is typi-
cally well conditioned at n = 0 and hence it is chosen as the starting point.
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4-2 Complexity Analysis 37

The fast scheme independent of the underlying discretization can be summarized as follows.

DDE

Input: Eigenvalues ζk, norming constants bk (Eq. (2-17)), step-size h (Section 3-1) and number
of samples N
Output: Qn u hq(nh), where Qn is the discrete potential and q(x) is the continuous potential
(Section 3-1)

• Transform the eigenvalues according to the chosen discretization. Ex. z = e−iζh for
Ablowitz-Ladik discretization (Section 3-1).

• Find the discrete eigenfunction V ′n (Ex. Eq. (3-45)) at n = 0 using discrete Darboux
transform.

• For n = 0, · · · , N do:

– Q′n = f(V ′n), where f(V ′n) is a relation specific to the discretization. Ex. Eq. (4-7)
for Ablowitz-Ladik discretization.

– R′n = −Q′∗n
– V ′n+1 = L′nV

′
n, where Ln is the discrete eigenvalue problem. Ex. Eq. (3-40) for the

Ablowitz-Ladik discrerization.

• For n = 0, · · · ,−N do:

– Q′n−1 = g(V ′n), where g(V ′n) is a relation specific to the discretization. Ex. Eq. (4-8)
for Ablowitz-Ladik discretization.

– R′n−1 = −Q′∗n−1

– V ′n−1 = L
′−1
n−1V

′
n

The DDE scheme specific to the Split-Magnus discretization is given in Appendix B.

4-2 Complexity Analysis

An efficient implementation of the classical Darboux transform (Algorithm 2 in [15]) and
the DDE scheme derived in the previous section were implemented in MATLAB. Each of
the elementary operations, addition, subtraction, multiplication, division and complex con-
jugation are assumed to require one floating point operation (FLOP). The FLOPS required
for higher operations such as matrix manipulations follow directly from the elementary op-
erations. Through manual counting, for K eigenvalues and N samples, the CDT algorithm
requires NK(15 + 11K)/2 FLOPS. For the DDE algorithm with Split-Magnus discretiza-
tion (DDE-SM in Appendix B), the discrete Darboux transform requires 35K2 + 17K − 36
FLOPS while the fast computation of the potential requires N(20K+19) FLOPS. Therefore,
the DDE-SM algorithm requires a total of 17K + 19N + 35K2 + 20KN − 36 FLOPS. The
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38 Discrete Darboux Evolution Algorithm (DDE)

DDE algorithm thus has a computational complexity of O(KN) while CDT has O(K2N).
Both Ablowitz-Ladik and Trapezoidal discretizations have longer execution times compared
to the Split-Magnus discretization due to the higher number of FLOPS involved at each sam-
ple point.

Summary

A new scheme for fast computation of multi-solitons based on discrete Darboux transform was
proposed. The relevant equations specific to different discretizations were derived. Simple
FLOPS analysis shows that the algorithm has a complexity of O(KN). This claim will be
proved using numerical tests in Chapter 5.
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Chapter 5

Analysis and Modifications of DDE

Several tests were carried out to evaluate the performance of the DDE algorithm proposed
in the previous chapter. Various observations and results from those tests are presented in
Section 5-1. In Section 5-2 the effect of limited precision on the algorithms is discussed.
Finally in Section 5-3, based on the insights from the multi-precision study, two modifications
are proposed.

5-1 Error and Run-Time Analysis

The performance of CDT and DDE algorithm with different discretizations will be compared
in the following using the analytically known example of the secant-hyperbolic potential
q(x) = A sech(x) [39]. For integer values of A, A sech(x) is a multi-soliton with the eigenvalues
ζk,

ζk = i(Ã− k), k = 1, 2, . . . ,K, (5-1)

where K is the largest integer smaller than Ã = (A + 1/2). The corresponding norming
constants are given by bk = (−1)k. The relative L2 error is used as the measure of accuracy
and is defined as,

rel. L2-error = ‖qactual − q‖
2

‖qactual‖2
(5-2)

For low number of eigenvalues (K < 10), the CDT can compute the multi-soliton potential
with very small errors (rel. L2-error<10−15) and the computed potential can be assumed to
be the actual potential. Hence, the error in the potential computed by CDT is not presented
in this section. For Figure 5-1, Figure 5-3 and Figure 5-2, the support chosen was [-10,10].
Figure 5-1 shows the error in the potential computed by DDE with different discretizations for
two eigenvalues. Figure 5-3 shows the error in the potential computed by DDE with different
discretizations for eight eigenvalues. In Figure 5-1 and Figure 5-3 it can be observed that the
error decreases as a function of the step-size. This is true for all algorithms employing discrete
eigenvalue problems. DDE algorithm with Ablowitz-Ladik being a first order method shows
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Figure 5-1: Error in constructed potential 2 sech(x)
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Figure 5-2: Run-time for construction of 2 sech(x) potential

first order behaviour (p = 1). This means that if the error for N1 samples is e1, then the
error for N2 samples is given by e2 = e1(N1/N2)p where p is the order of convergence. The
Split-Magnus and Trapezoidal discretizations show second order behaviour (p = 2). The error
using the Trapezoidal discretization is significantly lower than Ablowitz-Ladik method as is
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Figure 5-3: Error in constructed potential 8 sech(x)

expected from a higher order method. The algorithm has linear complexity in the number of
samples as can be seen in Figure 5-2. For Figure 5-4 and Figure 5-5, the sech(x) potential was
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Figure 5-4: Run-times for different number of eigenvalues

used with support of [-10,10] and step-size 0.02. Figure 5-4 shows the comparison between
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Figure 5-5: Variation of error with number of eigenvalues

the speeds of the algorithms. Figure 5-5 shows the error in the computed potential as a
function of the number of eigenvalues. As foreseen from the complexity analysis in Section
4-2, the DDE algorithm has linear complexity in number of eigenvalues. The error increases
with increasing number of eigenvalues which is seen in Figure 5-5. The error of second order
methods increases steeply compared to the first order method. In Figure 5-5, for more than
16 eigenvalues the error is significant. During further tests it was observed that the algorithm
breaks-down in the limit h→ 0. An example of failure to construct the potential can be seen
in Figure 5-6. The step-size h for which the DDE algorithm fails to compute the potential is
a function of the number of eigenvalues as will be revealed in the next section. To understand
this better, simple perturbation experiments were carried out.

5-1-1 Perturbation Experiment

In order to investigate different possible sources of error which cause the failure, experiments
have been carried out. The first possible source were the round-off errors in the eigenfunction
computed at n = 0. To quantify the effects, test cases of hyperbolic-secant signal for which
DDE could construct the potential were used. Increasing amount of error Emax was added
to the computed eigenfunctions till a failure of the algorithm was confirmed visually. Such
an experiment was carried out for increasing number of eigenvalues and decreasing step-size
h. Close inspection of the observations led to the empirical relationship for the error Emax
which leads to failure of the algorithm.

Emax = 10−4−k log10( 0.1
h

), (5-3)

where h is the step-size and k is the number of eigenvalues. Eq. (5-3) is valid only for a
fixed support of [-10,10]. Working in a limited precision environment introduces the round-off
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Figure 5-6: 5 sech(x) with step size of 0.0001.

errors which are equivalent to the error added externally for the tests. Hence using Eq. (5-3)
an estimate for the machine precision required to prevent failure can be determined. The
machine precision (ε) required to compute a multi-soliton potential for a given number of
eigenvalues with a particular step-size is visualized in Figure 5-7. Figure 5-7 is specific for
the sech(x) potential over a support of [-10,10].
Further experiments showed that in a limited precision environment (Eq. (4-1)),

V ′n+1 u L′nV
′
n. (5-4)

Thus, at each sample point errors are introduced eventually causing failure. The magnitude
of error increases with increasing number of eigenvalues. Hence, the relation Eq. (5-3) does
not tell the whole story. The required precision depends on the number of samples rather
than the step-size. For a fixed support, step-size and number of samples are related and this
led to the relation Eq. (5-3).
To estimate the limits, the step-size was set to h = 0.0001 and the number of samples of
the DDE-SM algorithm that are correctly (|qDDT − q| < 0.001) computed was recorded. As
mentioned earlier, the error depends on the number of eigenvalues and hence the number of
correctly computed samples decreases steeply Figure 5-8. It should be noted that Figure 5-8
gives only the trend and not the exact values as they also depend on the discrete spectrum
and the step-size.
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Figure 5-7: Eq. (5-3) plotted for varying number of eigenvalues and step-sizes.
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Figure 5-8: Number of correctly computed samples as a function of number of eigenvalues.
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5-2 Study of Limited Precision Effects 45

The error in the potential constructed by CDT although small, is also a function of the
number of eigenvalues. This can be seen in Figure 5-9. Further experiments show that the
error does not depend significantly on the number of samples. No studies of CDT under
varying precision were found in literature. This was the motivation to study both CDT and
the DDE algorithm under varying precision.
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Figure 5-9: Error in the potential constructed using CDT

5-2 Study of Limited Precision Effects

To study behaviour under different precisions, both the CDT and the DDE algorithm were
implemented in Julia language. Julia uses the GNU MPFR library to implement arbitrary
precision arithmetic very efficiently. The Split-Magnus discretization was used. As the be-
haviour of DDE algorithm for all the discretizations is comparable in standard double machine
precision, the observations for the SM discretization can be extended to other discretizations.
The algorithms were tested for increasing number eigenvalues for varying precision. The po-
tential computed by the CDT with 256 bit precision was chosen as the ideal solution. The
algorithms were run for precisions of 16, 32, 64 and 128 bits. The support was fixed to [-25,
25] with 5001 samples.
The discrete spectrum used in [4] will be utilized for the tests. This will allow for comparison
of DDE scheme with the algorithm published in [4]. A sequence of angles was defined as
θj = θ0 + (j − 1)∆θ, j = 1, 2, . . . , J with ∆θ = (π − 2θ0)/(J − 1). Then the eigenvalues for
the numerical experiment were chosen as

ζj+J(l−1) = leiθj , l = 1, 2, . . . , L, j = 1, 2, . . . , J.

Master of Science Thesis Shrinivas Chimmalgi



46 Analysis and Modifications of DDE

The norming constants are chosen as

bj = eiπ(j−1)/(LJ−1), j = 1, 2, . . . , LJ.

For the tests θ0 = π/3, J = 4 and L = 19. Then the sequence of discrete spectra considered
is defined as

S = {(ζk, bk), k = 1, 2, . . . ,K},K = 4, 8, . . . , 76.

The test was done for a maximum of 64 eigenvalues. Using the error data for 128 bit and
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Figure 5-10: The relative L2 error of the CDT algorithm is plotted against number of eigenvalues
for varying precision.

32 bit runs, a linear fit between the log10(rel. L2-error), number of eigenvalues and working
precision was obtained. In figure 5-10 this fit was used to estimate the error for precision of
90 bits and was plotted against the actual error. The simple linear function describes the
error well for arbitrary precision and number of eigenvalues. Such a relation is independent
of the step-size. For standard double machine precision, the CDT algorithm can compute
potentials with more than 50 eigenvalues with low errors (< 10−10).
The error in the computed potential for algorithms based on the discrete eigenvalue problem
has two components. One is due to the discretization and cannot be avoided, while the other
is due to finite-precision and is implementation-specific. Comparing the potential computed
by DDE with that of the the CDT gives the combined error which is shown in 5-11. Unlike the
case of CDT, the error is primarily a function of the step-size in presence of sufficient precision.
Thus, to isolate the implementation-specific error, the solution computed by discrete Darboux
transform (DDT) for the Split-Magnus discretization using 256 bit precision was taken as the
actual solution instead of CDT (Figure 5-12). The error seen in Figure 5-12 is the result of
error introduced at each sample point Eq. (5-4). The trend in the error is similar to the case of
CDT, but the dependence on precision is much more pronounced i.e. limited precision affects
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Figure 5-11: The relative L2 error of DDE-SM algorithm compared with CDT is plotted against
number of eigenvalues for varying precision.
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Figure 5-12: The relative L2 error DDE-SM algorithm compared with DDT is plotted against
number of eigenvalues for varying precision.

the fast algorithm much more than CDT and DDT. Other data from the multi-precision runs
is documented in Appendix A.

Master of Science Thesis Shrinivas Chimmalgi



48 Analysis and Modifications of DDE

5-3 Modifications of DDE Algorithm

In this section two modifications to the DDE scheme are introduced which can compute the
potential as h → 0 without breaking down. These modifications are engineering solutions
rather than improvements based on additional mathematical theory. Both the modifications
allow the algorithm to achieve slightly different goals which will become clearer in the following
subsections.

5-3-1 Modification 1

It is assumed that the computational domain of the potential is known a priori. With some
abuse of notation this domain is termed as the support of the potential. Figure 5-7 provides
an estimate for the minimum step-size hkmin at which the algorithm can correctly reconstruct
the potential with the support [-10,10]. The error in the computed potential is a function of
the step-size and using the minimum step-size hkmin will yield the least error. This information
can be used by scaling the support and eigenvalues. Let S be the set of eigenvalues, ho be
the chosen step-size and [LL,LR] be the support. Let qo be the corresponding potential. Let
S denote the scaling factor,

S = |LR− LL|/20. (5-5)

The scaled set of eigenvalues will be Ss = SS and scaled step-size hs = ho/S. The new po-
tential qs is related to the original potential qo as qo(x) = qs(x/S)/S. The norming constants
B remain invariant under the scaling [48].
For step-size hs lower than hkmin, the idea is to reconstruct the potential using multiple
staggered runs with step-size hkmin. The modified algorithm can be divided into three main
sections.

1. Determination of number of runs
The number of runs required to reconstruct a potential with step-size hs approximately
using step-size of hkmin is given by F =

⌊
hkmin/hs

⌋
. bxc means the floor of x, i.e. the

largest integer less than or equal to x. An array C is then defined as Ck = −bF/2c +
(k − 1), k = 1, 2...,F .

2. Multiple runs with step-size hkmin
The fast algorithm needs to be run F times with grids shifted by hs. Such translation
is achieved by changing the norming constants (see Section 3-1-1) as follows

bk = Bke
(2iSkCjho),

where Sk denotes the kth element of S and Cj is the jth element of C.

3. Interweaving of potentials
The potentials generated from all the runs are interweaved to obtain a single potential
corresponding to the step-size hs.

For the purpose of demonstration the example of 12 sech(x) potential with a step-size ho =
0.01 and support of [-10,10] is chosen. Hence the scaling factor S = 1 and hs = ho. From

Shrinivas Chimmalgi Master of Science Thesis



5-3 Modifications of DDE Algorithm 49

Figure 5-7, hkmin is taken as 0.05, hence F =
⌊
hkmin/h

⌋
=5. In Figure 5-13, the subplot P1

shows all the runs resulting in the multi-soliton. Interweaving the data from the five individ-
ual runs with step-size hkmin = 0.05 results in the potential with step-size hs = 0.01. This
can be seen in subplot P2. It is important to note that this modification only allows for fast
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Figure 5-13: Potentials from all the runs are interweaved.

computation of a potential with higher number of samples while the error is more or less
constant and is a function of the step-size hkmin. This is seen in Figure 5-14, which shows the
error in reconstruction of 8 sech(x) potential over a support of [-10,10]. The base step-size
hkmin is 0.01 which corresponds to only 2001 samples over the support [-10,10].
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50 Analysis and Modifications of DDE

The modified algorithm referred to as Mod1 can be summarized as,

Mod1

Input: Eigenvalues S, norming constants B (Eq. (2-17)), step-size ho (Section 3-1) and
support [LL,LR]
Output: Qn u hoq(nho), where Qn is the discrete potential and q(x) is the continuous
potential (Section 3-1)

• Compute the scaling factor S = |LR− LL|/20 (Eq. (5-5)).

• Compute the scaled parameters as Ss = SS and hs = ho/S.

• Look-up hkmin from Figure 5-7.

• Calculate number of required iterations F =
⌊
hkmin/hs

⌋
and let Ck = −bF/2c+ (k− 1),

k = 1, 2, . . . ,F . The number of samples per run N = F20/hkmin.

• Transform the scaled eigenvaluesSs according to the chosen discrete eigenvalue problem
and step-size hkmin. Ex. z = e−iζh for Ablowitz-Ladik discretization (Section 3-1).

• For j = 1 to F do:

– bk = Bke
(2iSkCjho), where subscript k denotes the kth element.

– Find the discrete eigenfunction V ′n (Ex. Eq. (3-45)) at n = 0 using discrete Darboux
transform.

– For n = 0, 1, . . . , N do:

∗ Qj′n = f(V ′n), where f(V ′n) is a relation specific to the discretization. Ex.
Eq. (4-7) for Ablowitz-Ladik discretization.
∗ Rj′n = −Qj′∗n
∗ V ′n+1 = L′nV

′
n, where Ln is the discrete eigenvalue problem. Ex. Eq. (3-40) for

the Ablowitz-Ladik discrerization.
– For n = 0,−1, . . . ,−N do:

∗ Qj
′

n−1 = g(V ′n), where g(V ′n) is a relation specific to the discretization. Ex.
Eq. (4-8) for Ablowitz-Ladik discretization.
∗ Rj

′

n−1 = −Qj
′∗
n−1

∗ V ′n−1 = L
′−1
n−1V

′
n

• Interweave and scale Q1′
n to QF ′n by defining vector

Qn = 1
S (Q1′

1 , Q
2′
1 , . . . , Q

F ′
1 , Q1′

2 , Q
2′
2 , . . . , Q

F ′
2 , . . . , Q1′

n , Q
2′
n , . . . , Q

F ′
n )

The Mod1 scheme specific to the Split-Magnus discretization is given as Mod1-SM in Ap-
pendix B.
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Figure 5-14: Error in potential constructed by modified algorithm
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Figure 5-15: Run-times of modified algorithm

Through manual counting it can be seen that each iteration of the modified algorithm with
Split-Magnus discretization (Mod1-SM) requires 17K+19N/F+35K2+20KN/F−36 FLOPS.
Hence the total FLOPS complexity of Mod1-SM is found to be 17KF + 19N + 35K2F +
20KN − 36F . For the cases in consideration K < N and F < N and hence the modified
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52 Analysis and Modifications of DDE

algorithm also has a FLOPS complexity of O(KN). The linear complexity in N can be seen
in Figure 5-15. For the modified algorithm, due to the overhead of computing the discrete
Darboux matrix for each run, the hidden constant in the O(KN) increases. For Figure 5-16
and Figure 5-17 the hyperbolic-secant potential was computed over a support of [-10,10] and
step-size h = 0.01. In Figure 5-16 the comparison in the run-times of the modified algorithm
for the different discretizations can be seen. While in Figure 5-17 the relative error in the
computed potentials is shown. In Figure 5-16 a jump in the run-times is observable after eight
eigenvalues. This is the point at which the modified algorithm starts to use multiple runs
(F > 1) for the chosen step size of 0.01. The significant increase in the run-time of Mod1-AL
can be attributed to naive implementation of the underlying discrete Darboux transform.
The error also increases after eight eigenvalues but is still acceptable.
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Figure 5-16: Averaged run-times of modified algorithm for increasing number of eigenvalues
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Figure 5-17: Variation of error of modified algorithm with number of eigenvalues
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54 Analysis and Modifications of DDE

5-3-2 Modification 2

The modification mentioned in Section 5-3-1 allows fast computation of the potential but
is limited in the base step-size which ultimately leads to a lower bound on the achievable
error. The goal of Modification 2 is to find a fast algorithm that is not limited in error. To
motivate this approach it helps to look at the propagation of error in the discrete Darboux
coefficients obtained from the DDE algorithm compared to the conventional discrete Darboux
transform. For a set of 12 eigenvalues as defined in Section 5-2, the actual potential and the
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Figure 5-18: Error in Darboux coefficients (Bn in Eq. (4-9))

one constructed by the DDE-SM algorithm are plotted in the top subplot of Figure 5-18. The
fast algorithm is successful at reconstructing the potential only upto to x = −0.5 starting from
x = 0. The error in the Darboux coefficients (Bn in Eq. (4-9))is plotted in the lower subplot
of Figure 5-18. As explained in Section 5-1-1, the DDE algorithm accumulates round-off
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5-3 Modifications of DDE Algorithm 55

errors which eventually leads to failure. If the coefficients can be corrected before the errors
become significant, the DDE algorithm can still be used to compute the complete potential.
This observation motivated a multi-start approach. In the DDE scheme described in Section
4-1, the discrete Darboux transform is performed at only one point n = 0. In the multi-start
approach it will be performed atM points (M < N), where N is the total number of samples.
The DDE scheme will then be used to compute the samples between these M points. The
number of such seed points M depends on the number and location of eigenvalues, norming
constants and step-size. By performing tests on multiple sets of eigenvalues, M = KN/500
was chosen as a conservative value for N samples and K eigenvalues. The algorithm can be
summarized as,

Mod2

Input: EigenvaluesS, norming constantsB (Eq. (2-17)), step-size h (Section 3-1) and support
[LL,LR]
Output: Qn u hq(nh), where Qn is the discrete potential and q(x) is the continuous potential
(Section 3-1)

• Transform the eigenvalues S according to the chosen discrete eigenvalue problem and
step-size h. Ex. z = e−iζh for Ablowitz-Ladik discretization (Section 3-1).

• Total number of samples N = |LR− LL|/h. Define Nmax = d250/Ke. Number of
required seed pointsM = dKN/500e, where dxe means the ceiling of x, i.e. the smallest
integer larger than or equal to x.

• Let l be the location of M seed points. lj = LL+ (250h/K) + j − 1, j = 1, 2, . . . ,M .

• For j = 1 to M do:

– Translate the norming constants bk = Bke
2iSklj .

– Find the discrete eigenfunction V ′n (Ex. Eq. (3-45)) at n = 0 using discrete Darboux
transform.

– For n = 0, 1, . . . , Nmax do:

∗ Qj′n = f(V ′n), where f(V ′n) is a relation specific to the discretization. Ex.
Eq. (4-7) for Ablowitz-Ladik discretization.
∗ Rj′n = −Qj′∗n
∗ V ′n+1 = L′nV

′
n, where Ln is the discrete eigenvalue problem. Ex. Eq. (3-40) for

the Ablowitz-Ladik discrerization.
– For n = 0,−1, . . . ,−Nmax do:

∗ Qj
′

n−1 = g(V ′n), where g(V ′n) is a relation specific to the discretization. Ex.
Eq. (4-8) for Ablowitz-Ladik discretization.
∗ Rj

′

n−1 = −Qj
′∗
n−1

∗ V ′n−1 = L
′−1
n−1V

′
n
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• Combine Q1
n to QMn by defining vector

Qn = (Q1
−Nmax

, Q1
−Nmax+1, . . . , Q

1
Nmax

, Q2
−Nmax

, Q2
−Nmax+1, . . . , Q

2
Nmax

, . . .

. . . , QM−Nmax
, QM−Nmax+1, . . . , Q

M
Nmax

)

Analysis of a particular implementation using Split-Magnus discretization (Mod2-SM in Ap-
pendix B) shows FLOPS complexity of 19N−36M+35K2M+17KM+20KN . Substituting
the choice ofM = KN/500 gives a FLOPS complexity of 19N− 9964

500 KN+ 35
500K

3N+ 17
500K

2N
which in O notation is O(K3N) The error and run-time tests were conducted using q(x) =
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Figure 5-19: Error of modified algorithm for 20 sech(x) potential

20 sech(x) potential which corresponds to 20 eigenvalues (Section 5-1). For Figure 5-20 and
Figure 5-19 the support was chosen to be [−10, 10]. Figure 5-19 shows the error in the
potential computed by Mod2-SM algorithm. Figure 5-20 shows the run-times of CDT and
Mod2-SM algorithms. The error shows second order behaviour unlike the case of Mod1-SM
(Figure 5-14). Hence the Mod2 algorithm achieves the goal of being a fast algorithm that is
not limited in error. The run-time is linear in N (Figure 5-20) as expected from the FLOPS
analysis for the choice of M = KN/500. The complexity may not remain linear if some other
choice ofM is used. For Figure 5-21 the hyperbolic-secant potential was used with a step-size
h = 0.01 over a support of [−10, 10]. The run-time is not linear in K anymore as seen in
Figure 5-21.
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Figure 5-20: Run-times of modified algorithm for 20 sech(x) potential
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Figure 5-21: Run-times of modified algorithm for different number of eigenvalues
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5-4 Comparison of Algorithms

In this section the DDE, Mod1 and Mod2 algorithms are compared against CDT for a nu-
merical example taken from literature. Their advantages and disadvantages when compared
to the algorithm in [4] are discussed.

For comparing the algorithms proposed in this report, the discrete spectrum from the exper-
iment conducted in [40] was chosen. The set of seven eigenvalues is given by,

S = (0.45i− 0.6, 0.3i− 0.4, 0.45i− 0.2, 0.3i, 0.45i+ 0.2, 0.3i+ 0.4, 0.45i+ 0.6). (5-6)

The spectral amplitude of each eigenvalue in S, has Quadrature Phase Shift Keying (QPSK)
constellation, qd(Sk) = |qd(Sk)| exp

{
iπ2 j

}
with,

ln(|qd(Sk)|) = (11.85, 7.06, 7.69, 3.81, 1.93,−0.62,−5.43). (5-7)

QPSK is a form of Phase Shift Keying in which two bits are modulated at once, selecting one
of four possible carrier phase shifts (0, 90, 180, or 270 degrees). The phase shifts correspond
to j = 0, 1, 2, 3. The data was arbitrarily chosen as the set D = (3, 2, 0, 1, 0, 3, 1). The spectral
amplitudes are then found to be,

qd = (−25.73x10−12 − 140.08x103i,−1.16x103 + 142.60x10−15i, 2.19x103,

2.76x10−15 + 45.15i, 6.89,−98.82x10−18 − 537.94x10−3i, 268.39x10−21 + 4.38x10−3i).

The norming constants are then given by [9],

bk = qd(Sk)
Sk −S∗k

∏
j=1,2,...,7,j 6=k

Sk −Sj

Sk −S∗j
(5-8)

The set of norming constants,

B = (1.45x103 + 5.45x103i, 18.90− 42.53i, 17.73− 1.34i, 995.90x10−3 + 134.83x10−18i,

− 55.87x10−3 − 4.23x10−3i, 19.65x10−3 − 8.73x10−3i− 45.30x10−6 + 170.45x10−6i).

The support was chosen to be [−22, 22]. In experimental setups the number of samples is
limited by the speed of the digital-to-analog converter (DAC). In [40] a DAC capable of
88GSa/s (88x109 samples per second) was used. They also mention that the multi-soliton
signal scales down to 2ns on their setup. This would mean that the multi-soliton signal would
have only 176 samples. CDT was used to compute the potential in [40].
Error and run-time tests were performed for a wide range of number of samples to compare
the performance of DDE-SM, Mod1-SM and Mod2-SM with CDT. It should be noted that
the results presented in this thesis are from specific implementations of all the algorithms in
MATLAB. The error in the potential computed by each algorithm can be seen in Figure 5-
22. To better visualize the difference in run-times, the run-time per sample is plotted in
Figure 5-23. All the three algorithms have very similar errors for less than 103 samples. For
higher number of samples the DDE-SM algorithm fails to compute the potential correctly
and this leads to the diverging error seen in Figure 5-22. For the Mod1-SM algorithm the
error remains constant once the base step-size gets fixed. The error continues to decrease as
a function of number of samples for Mod2-SM.
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Figure 5-22: Variation of error of modified algorithm with number of eigenvalues
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Figure 5-23: Variation of error of modified algorithm with number of eigenvalues

The run-time per sample of CDT is almost constant as expected from the scheme Figure 4-
1. DDE-SM is slower (higher run-time per sample) than CDT for low number of samples
but becomes faster (lower run-time per sample) for more than 500 samples. Mod1-SM has
run-times very comparable to CDT at low number of samples and becomes faster as the
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number of samples increases. The cross-over around 5x103 samples between the run-times of
DDE-SM and Mod1-SM is the result of overhead from multiple runs required by the Mod1
scheme (Section 5-3-1). For seven eigenvalues, Mod2-SM is slower than CDT for any number
of samples. However for more than eight eigenvalues Mod2-SM is found to be faster than
CDT for more than 1000 samples (Figure 5-21).

5-4-1 Comparison with Current State-of-the-Art Algorithm

The algorithm reported in [4] is currently the fastest algorithm in literature for generating
multi-solitons with accurate control over norming constants. The algorithm will be referred to
as FDT in the following discussion. FDT has a FLOPS complexity ofO(N(K+log2N)). FDT
could not be implemented in MATLAB for comparison due to time constraints. However, a
qualitative comparison can still be done by assuming that the implementation of CDT used in
[4] is the same as the one used in this thesis (Algorithm 2 in [15]). Such an assumption allows
for a relative comparison of run-times irrespective of the computing environment (MATLAB
in this thesis and C in [4]) and specific computing power. It is fair only to compare the results
for Mod2 with the results in [4] as the other schemes DDE and Mod1 have some limitations on
achievable error. For ease of reading, Figure 5-24a, Figure 5-25a and Figure 5-26a have been
taken from [4]. Figure 5-24a shows the error for different variants of FDT for 20 eigenvalues.
In Figure 5-25a the run-times per sample for 20 eigenvalues can be seen. In Figure 5-26a the
run-time per sample as a function of number of eigenvalues is plotted.
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Figure 5-24: (a) Convergence analysis of FDT algorithm for multi-solitons (20 eigenvalues),
taken from Figure 8.c in [4]. (b) Error of Mod-SM for 20 eigenvalues (Figure 5-19)

The fastest variant of FDT i.e. TR-TR-PF and Mod2-SM will be compared. From Figure 5-
24 it can be seen that the errors achieved by Mod2-SM and FDT are very similar. The FDT
algorithm is faster than CDT for less than 214 samples (Figure 5-25a) while Mod2-SM is
always faster than CDT (Figure 5-25b). In Figure 5-26a, FDT is faster than CDT for more
than 20 eigenvalues while from Figure 5-26b it can be seen that Mod2-SM is faster than CDT
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Figure 5-25: (a) Run-time behaviour of FDT algorithm for multi-solitons (20 eigenvalues), taken
from Figure 8.f in [4]. (b) Run-time of Mod-SM for 20 eigenvalues (Figure 5-20)

for more than 8 eigenvalues. Hence from such a relative comparison it can be concluded that
Mod2-SM is potentially faster than FDT for generating multi-solitons although more thor-
ough run-time tests on same platform are needed for conclusive proof. It is important to point
out that FDT will be faster than Mod2-SM after certain number of eigenvalues. The author
in [4] has demonstrated multi-soliton generation for 32 eigenvalues but does not mention an
upper bound on the number of eigenvalues that FDT can handle. Mod2-SM has been tested
for generating 3x105 samples over a support of [-15,15] for 76 eigenvalues using the discrete
spectrum defined in Section 5-2 (Figure 5-27).

In conclusion, CDT was found to be faster than other multi-soliton generation algorithms for
low number of eigenvalues (K<4). DDE can be used for fast computation of multi-soliton
potentials with acceptable errors when number of samples required is low (N < 500). Mod1
scheme is useful for applications which do not have hard requirements on error. Mod2 scheme
can be used for generating large number of samples of multi-solitons with high number of
eigenvalues. It was shown to be potentially faster than other algorithms currently available
in literature.
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Figure 5-26: (a) Run-time of FDT algorithm for multi-solitons as a function of number of eigen-
values (212 samples), taken from Figure 9.a in [4]. (b) Run-time of Mod-SM for 20 eigenvalues
(Figure 5-20)
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Figure 5-27: Potentials computed by CDT and Mod2-SM for 76 eigenvalues
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Chapter 6

Conclusion and Future Work

Fast algorithms for inverse nonlinear Fourier transforms (NFT) are essential in making NFT
based fiber-optic communications systems a reality. The use of discrete time methods for
deriving such fast algorithms has already been demonstrated in literature. One such discrete
time method is the discrete Darboux transform (DDT). It is an inverse NFT algorithm for
computing multi-soliton solutions of discrete evolution equations. Exploiting properties of
multi-solitons using the discrete Darboux transform led to an algorithm with a FLOPS com-
plexity of O(KN) for K eigenvalues in the discrete part of the NFT and N samples. The
algorithm is based on the evolution of the discrete Darboux matrix over the samples and
is hence referred to as the discrete Darboux evolution (DDE) scheme. Error and run-time
tests were conducted for the DDE by comparison with an efficient implementation of classical
Darboux transform (CDT). It was shown to have acceptable errors while having run-time
linear in K and N . The working precision of the underlying floating point number format
however imposes some restrictions. The effects of working precision on the CDT, DDT and
DDE were studied by implementing the algorithms in Julia language. It was found that the
error in the potential computed by CDT is a simple function of the working precision and
number of eigenvalues. For DDT and DDE, the error is primarily a function of step-size when
the working precision is sufficient. The DDE scheme was found to have higher dependence
on precision compared to DDT. Two modifications of DDE were introduced to overcome the
restrictions arising from limited precision. The first modification (Mod1) uses the idea of
building the potential in multiple runs instead of a single one. Mod1 can be used for fast
computation of the potential but the approach leads to a lower bound on the achievable
error. The second modification (Mod2) tries to overcome the limitation on error by using
a multi-start approach instead of the single-start approach used by DDE. The error in the
computed potential is shown to be comparable with algorithms currently found in literature.
The run-time does not remain linear in K due to the additional computation time required
for multiple starts.

The CDT was found to be faster than other multi-soliton generation algorithms for low num-
ber of eigenvalues (K<4). DDE can be used for fast computation of multi-soliton potentials
with acceptable errors when number of samples required is low (N < 500). Mod1 is useful for
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applications which do not have hard requirements on error. Mod2 can be used for generating
large number of samples of multi-solitons with high number of eigenvalues. In a qualitative
comparison it was shown to be potentially faster than the algorithm in [4] till 24 eigenvalues.

The modifications described in Chapter 5 may be extended further in the future. The ideal
approach would be to either find an estimate for the errors in the Darboux coefficients at
each sample point or measure the errors between two sample points and track their evolution.
The error estimates could then be used to correct Darboux coefficients which might allow for
computation of large number of samples without significant additional cost. In the multi-start
approach of Mod2 (Section 5-3-2), the choice of the seed points can be made dynamic. An
easily computable parameter should be used to measure the error in the Darboux coefficients
and the coefficients should be corrected when the errors become significant. Such an algorithm
will not have to rely upon a lookup table and can therefore work for any number and set of
eigenvalues. The algorithm in [4] may be improved further by using the discrete Darboux
transform instead of CDT. The discrete eigenfunctions can be used to efficiently compute
the scattering coefficients and fast layer-peeling can then be used to compute the potential.
Working completely in a discrete environment will perhaps help reduce the complexity.
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Appendix A

The data on the maximum absolute errors collected during the multi-precision study is plotted
here.
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Figure A-1: The maximum absolute error of CDT algorithm is plotted against number of eigen-
values for varying precision.
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Figure A-2: The maximum absolute error of DDE-SM algorithm compared to CDT is plotted
against number of eigenvalues for varying precision.
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Figure A-3: The maximum absolute error of DDE-SM algorithm compared to DDT is plotted
against number of eigenvalues for varying precision.
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Appendix B

Pseudocode

Specific implementations of the DDE, Mod1 and Mod2 algorithms with the Split-Magnus
discretization are mentioned here.

DDE-SM

Input: Eigenvalues ζk, norming constants bk (Eq. (2-17)), step-size h (Section 3-1-1) and
number of samples N
Output: Qn u hq(nh), where Qn is the discrete potential and q(x) is the continuous potential
(Section 3-1-1)

• Arrange eigenvalues in decreasing order of magnitude of their imaginary parts.

• Transform the eigenvalues z = eiζh (Section 3-1-1).

• For j = 1, . . . ,K do:

– Let za = zj , zb = 1/z∗j , βa = −bj and βb = 1/b∗j

– an = (βbzb−βaza)
(zazb(βazb−βbza)) , bn = (z2

a−z2
b )

(zazb(βazb−βbza)) , cn = −b∗n and dn = a∗n (Eq. (4-20))
– For k = j + 1, · · · ,K do:
∗ bk = −(cn−bk(zk+dn/zk)

(anzk+1/zk−bkbn) (Darboux transform)
– If j=1

M0 =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
Eq. (4-19).

else

M =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
, M0 = MM0.

• V ′0 = M0V0 (Eq. (4-9))
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• For n = 0, 1, . . . , N do:

– Q′n+1/2 = −b(−K+1)
n

d
(−K)
n

(Eq. (4-29))

– R′n+1/2 = −Q′∗n+1/2

– V ′n+1 = L′nV
′
n (Eq. (4-32))

• For n = 0,−1, . . . ,−N do:

– Q′n+1/2 = b
(K−1)
n+1 (Eq. (4-27))

– R′n+1/2 = −Q′∗n+1/2

– V ′n−1 = L
′−1
n−1V

′
n (Eq. (4-31))

Mod1-SM

Input: Eigenvalues S, norming constants B (Eq. (2-17)), step-size ho (Section 3-1) and
support [LL,LR]
Output: Qn u hoq(nho), where Qn is the discrete potential and q(x) is the continuous
potential (Section 3-1-1)

• Arrange eigenvalues in decreasing order of magnitude of their imaginary parts.

• Compute the scaling factor S = |LR− LL|/20 (Eq. (5-5)).

• Compute the scaled parameters as Ss = SS and hs = ho/S.

• Look-up hkmin from Figure 5-7.

• Calculate number of required iterations F =
⌊
hkmin/hs

⌋
and let Ck = −bF/2c+ (k− 1),

k = 1, 2, . . . ,F . The number of samples per run N = F20/hkmin.

• Transform the eigenvalues z = eiζh (Section 3-1-1).

• For f = 1 to F do:

– bk = Bke
(2iSkCfho), where subscript k denotes the kth element.

– For j = 1, . . . ,K do:
∗ Let za = zj , zb = 1/z∗j , βa = −bj and βb = 1/b∗j
∗ an = (βbzb−βaza)

(zazb(βazb−βbza)) , bn = (z2
a−z2

b )
(zazb(βazb−βbza)) , cn = −b∗n and dn = a∗n (Eq. (4-

20))
∗ For k = j + 1, . . . ,K do:
· bk = −(cn−bk(zk+dn/zk)

(anzk+1/zk−bkbn) (Darboux transform)
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∗ If j=1

M0 =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
Eq. (4-19).

else

M =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
, M0 = MM0.

– V ′0 = M0V0 (Eq. (4-9))
– For n = 0, 1, . . . , N do:

∗ Qf
′

n+1/2 = −b(−K+1)
n

d
(−K)
n

(Eq. (4-29))

∗ Rf
′

n+1/2 = −Qf
′∗
n+1/2

∗ V ′n+1 = L′nV
′
n (Eq. (4-32))

– For n = 0,−1, . . . ,−N do:

∗ Qf
′

n+1/2 = b
(K−1)
n+1 (Eq. (4-27))

∗ Rf
′

n+1/2 = −Qf
′∗
n+1/2

∗ V ′n−1 = L
′−1
n−1V

′
n (Eq. (4-31))

• Interweave and scale Q1′
n to QF ′n by defining vector

Qn = 1
S (Q1′

1 , Q
2′
1 , . . . , Q

F ′
1 , Q1′

2 , Q
2′
2 , . . . , Q

F ′
2 , . . . , Q1′

n , Q
2′
n , . . . , Q

F ′
n )

Mod2-SM

Input: EigenvaluesS, norming constantsB (Eq. (2-17)), step-size h (Section 3-1) and support
[LL,LR]
Output: Qn u hq(nh), where Qn is the discrete potential and q(x) is the continuous potential
(Section 3-1)

• Arrange eigenvalues in decreasing order of magnitude of their imaginary parts.

• Transform the eigenvalues z = eiζh (Section 3-1-1).

• Total number of samples N = |LR− LL|/h. Define Nmax = d250/Ke. Number of
required seed points M = dKN/500e, where de denotes rounding up to nearest integer.

• Let l be the location of M seed points. lj = LL+ (250h/K) + j − 1, j = 1, 2, . . . ,M .

• For f = 1 to M do:

– Translate the norming constants bk = Bke
2iSklf .

– For j = 1, . . . ,K do:
∗ Let za = zj , zb = 1/z∗j , βa = −bj and βb = 1/b∗j
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∗ an = (βbzb−βaza)
(zazb(βazb−βbza)) , bn = (z2

a−z2
b )

(zazb(βazb−βbza)) , cn = −b∗n and dn = a∗n (Eq. (4-
20))
∗ For k = j + 1, . . . ,K do:
· bk = −(cn−bk(zk+dn/zk)

(anzk+1/zk−bkbn) (Darboux transform)
∗ If j=1

M0 =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
Eq. (4-19).

else

M =
[
z−1 + a1

nz b0n
c0
n z + d−1

n z−1

]
, M0 = MM0.

– V ′0 = M0V0 (Eq. (4-9))
– For n = 0, 1, . . . , Nmax do:

∗ Qf
′

n+1/2 = −b(−K+1)
n

d
(−K)
n

(Eq. (4-29))

∗ Rf
′

n+1/2 = −Qf
′∗
n+1/2

∗ V ′n+1 = L′nV
′
n (Eq. (4-32))

– For n = 0,−1, . . . ,−Nmax do:

∗ Qf
′

n+1/2 = b
(K−1)
n+1 (Eq. (4-27))

∗ Rf
′

n+1/2 = −Qf
′∗
n+1/2

∗ V ′n−1 = L
′−1
n−1V

′
n (Eq. (4-31))

• Combine Q1
n to QMn by defining vector

Qn = (Q1
−Nmax

, Q1
−Nmax+1, . . . , Q

1
Nmax

, Q2
−Nmax

, Q2
−Nmax+1, . . . , Q

2
Nmax

, . . .

. . . , QM−Nmax
, QM−Nmax+1, . . . , Q

M
Nmax

)

Animations

In this section some interesting animations are presented. Such animations add the dimen-
sion of time which makes understanding complex processes easier. The animations can be
controlled using the control options below each one. Pressing . begins the animation. They
have been tested and found to be working correctly using Adobe Acrobat Reader.
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Figure B-1: Propogation of breather solution formed by interaction of two solitons moving at
the same phase velocity

Figure B-2: A multi-soliton splits into two individual solitons as it propagates through the fiber
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Figure B-3: Visual representation of the DDE scheme generating 2 sech(x) signal

Figure B-4: Visual representation of failure of the DDE scheme while generating 12 sech(x)
signal
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Figure B-5: Visual representation of the Mod1 scheme generating 12 sech(x) signal

Figure B-6: Visual representation of the Mod2 scheme generating 12 sech(x) signal
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Glossary

List of Acronyms

NSE Nonlinear Schrödinger Equation

PDE Partial Differential Equation

SPM self-phase modulation

NFT nonlinear Fourier transform

KdV Korteweg de Vries

CDT classical Darboux transformation

List of Symbols

Abbreviations
ω0 Angular carrier frequency
φ, ψ Jost solutions
ζ Eigenvalue
A Field amplitude
c Speed of light in vacuum
D(x, t, ζ) Darboux matrix
E Shift operator
Mn(t, z) Discrete Darboux matrix
n Refractive index
n0 Frequency dependent refractive index
q(x, t) Complex valued potential
R(k) Reflection coefficient
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80 Glossary

t Time
T (k) Transmission coefficient
v(x, t, ζ) Two dimensional eigenfunction
Vn Discrete two dimensional eigenfunction
x Propagation distance
z Discrete eigenvalue
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