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A B S T R A C T

Modern cars are increasingly being equipped with automated driving functions. For governments it is important
to gain insight in the mobility impacts of automated vehicles. This is important as the introduction of automated
vehicles affects current investment decisions about infrastructure projects and other policy measures like road
pricing. Quantitative literature with respect to the impact of automated vehicles focuses mostly on capacity
implications. Literature about large scale mobility impacts is mainly qualitative. This paper introduces a System
Dynamics model (SD-model) to quantitatively explore the impacts of early forms of automated vehicles (level 1, 2
and 3) on mobility. The model is explorative and can be used to evaluate different scenarios in a short time. This
model is applied in a case study for the Netherlands to assess the impact of automated vehicles on mode choice,
time of day choice and travel times on characteristic relations in the Netherlands. In contrast to other studies the
SD-model is able to simulate the effects of AVs over time, can simulate mixed automated vehicle types and has a
constant feedback between the assignment and the demand side of the model. A scenario for autonomous driving
and a scenario for cooperative driving is considered. The simulations show that car traffic will increase and the
level of congestion does not necessarily decrease and might even increase on some relations, especially in the
autonomous scenario. Furthermore, in the cooperative scenario the increase in number of trips by car is larger, the
average speeds are higher and there is less congestion compared to the autonomous scenario.
1. Introduction

Modern cars are increasingly being equipped with automated driving
functions. The SAE (SAE International, 2014) defined 6 levels of auto-
mation, in which level 0 is a vehicle without automation and level 5 a
fully self-driving vehicle capable of automated driving under any con-
dition. First versions of automated vehicles (AV) are already on the road:
in new luxurymodels adaptive cruise control and lane keeping are widely
available (level 1/2). A key distinction is between level 2, where the
human driver performs part of the dynamic driving task, and level 3
(conditional automation), where the automated driving system performs
the entire dynamic driving task. In level 3, the driver is expected to be
available for occasional control of the vehicle, while in high and full
automation (level 4 and 5) he or she is not.

The implementation path of automated driving is highly uncertain in
the sense that it is unknown when different levels of AV will be intro-
duced, what the penetration rate of the different levels will be in the
r.nl (S. Puylaert).
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coming decades and how that varies per region and country. Expected
impacts of automated driving on car ownership, car usage, value of time,
driving costs, road capacity etc. are also uncertain. By consequence, the
expected impacts on demand, vehicle kilometers driven and congestion
are uncertain as well. For governments it is important to have insights in
these mobility impacts because they affect current investment decisions
about infrastructure projects and other policy measures like road pricing.

According toMilakis et al. (2016) and Fagnant and Kockelman (2015)
the scarce quantitative literature with respect to the impact of AV that is
available, focuses on local implications on traffic flows such as impact on
capacity, capacity drop, stability and shockwaves. Literature about large
scale mobility impacts is mainly qualitative (Litman, 2014; Raspe et al.,
2015; KPMG and CAR Group, 2012). National and regional governments
often use macroscopic traffic and transport models to assess the impact of
different policy measures. These models have not been designed to model
the impact of automated vehicles. They are often highly detailed in order
to capture as many demand decisions as possible. Besides that, the level
February 2018
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1 The Randstad is a Dutch term for the western part of the country. The
Randstad has the highest population density, all 4 large cities are there and
economic activities take place in the Randstad.
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of service of the different modes is modelled as accurate as possible. The
first AV-studies with these models (Snelder et al., 2015; Tetraplan, 2015),
(Childress et al., 2014) or unpublished work (Gucwa, 2014) indicate that
the high level of detail results in high computation times which makes
them less suitable for explorations with many uncertainties. Further-
more, they do not distinguish different vehicles types for automated
driving, but instead are based on and only allow for changing the attri-
butes of the average vehicle. Snelder et al. (2015) for instance adapted
the Dutch countrywide model LMS, by changing the road capacity and
the general value of time parameters.

This paper presents a macroscopic model to explore the impacts of
early forms of automated vehicles (level 1, 2 and 3) onmobility. A System
Dynamics model (SD-model) is introduced which is based on the struc-
ture of the ScenarioExplorer (Malone et al., 2001). It combines scenario
and transportation modelling on an abstract network. The main contri-
bution of this paper is that the existing method is extended in such a way
that the impact of level 1, 2 and 3 automated vehicles can be modelled on
a macroscopic level. In contrast to other macroscopic studies to auto-
mated vehicle impacts (Snelder et al., 2015; Tetraplan, 2015; Childress
et al., 2014; Gucwa, 2014) the SD-model is able to simulate different
vehicle classes, has a feedback loop from the assignment to the demand
and simulates the introduction of automated vehicles over time.

The SD-model is strongly explorative and does not make use of an
explicit road network. The goal of this model is to capture the most
important effects of automated vehicles, but not to model all the details.
As the structure is simple and the run time is short, the model can be used
to assess different scenarios. Literature indicates two development paths:
an autonomous and a cooperative path. Autonomous vehicles only
monitor the driving environment, whereas cooperative vehicles also
communicate with other vehicles or roadside systems. Both development
paths are simulated in a case study for the Netherlands. The model is
validated and can be used for explorative research.

Section 2 describes the developed SD-model. The case study for the
Netherlands is described in section 3, just as the results of the simula-
tions. The conclusions are presented in section 4.

2. Method

2.1. Scope/expected impact

Our model will focus on mixed traffic of level 0, 1, 2 and 3 (SAE In-
ternational, 2014). Milakis et al. (2016) have created a ripple model in
which they link the different levels of SAE to expected impacts on both
the supply and demand side of the transportation system. In this paper
level 1 and 2 are seen as a single form of automated vehicles as their
expected impacts are similar. Freight transport is modelled exogenously.
Only the capacity impact of truck automation is taken into account.

Research of Milakis et al. (2016), Litman (2014) and Snelder et al.
(2015) name several effects that AVs have on mobility: capacity effects
(maximum capacity, shockwaves, capacity drop, network effects), an
effect on the value of time (for the driver), monetary costs (fuel economy,
insurance costs), trip length, parking, modal split for freight trips, travel
times, congestion, safety and travel time reliability. This paper focuses on
the impact of changes in capacity, value of time and monetary costs on
the modal split, time of day choice and travel times. These effects are
chosen because they are most direct and literature is most explicit about
these effects.

The capacity effect is an outcome of four factors from literature
(Snelder et al., 2015; Malone et al., 2001): a higher capacity of a road
stretch, a lower capacity drop, less shockwaves and a better distribution
of vehicles over the network. The second effect is a lower value of time
for AVs than for regular vehicles as the driver can do something else
while driving. This plays a role in the utility functions used in time of day
and mode choice. The third effect is that the monetary cost per driven
kilometer of the vehicle decreases, as automation can lead to a higher
energy efficient driving, less insurance costs or less maintenance (Snelder
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et al., 2015; Litman, 2014).

2.2. System dynamic model (SD-model)

For this explorative phase of forecasting many model runs with
different settings are needed, therefore an explorative model is favored
over a more detailed model. As explained in the introduction traditional
macroscopic models are complex and detailed, which makes them less
suitable to deal with uncertainties. In this paper System Dynamics is
chosen as method because System Dynamics makes it possible to explore
many different scenarios which makes this method suitable for dealing
with the uncertainties automated vehicles bring with them (Pruyt, 2013;
Sterman, 2000; Abbas, 1990). System Dynamics makes use of causal
relationships between elements of a system. By quantifying these re-
lations, the behavior of a system over time can be researched (Pruyt,
2013). System Dynamics can be applied in a variety of cases, from simple
systems like one company to more complicated ones like the climate
effects of a planet (Meadows et al., 1972; Sterman, 2000). The structure
of our model (SD-model) is based on the ScenarioExplorer (Malone et al.,
2001).

The method is extended in such a way that the impact of level 1, 2 and
3 automated vehicles can be modelled endogenously. The Vensim-soft-
ware is used to implement the model.

2.3. Structure of the SD-model

The goal of the model is to evaluate the mobility effects of early forms
of automated driving in the Netherlands from 2013 to 2050. From 2050
onward level 4 is expected to have an impact on most roads (Nieu-
wenhuijsen et al. (2018)). Every time step (one week), the modal split,
the number of people traveling by car in the peak hours and the travel
times of cars on 42 relations are calculated.

Fig. 1 shows the four steps of the model. There are three main ele-
ments in the model: mode choice, time of day choice and travel time
calculation (assignment). Section 2.3.1 to 2.3.3 describe these elements
in more detail.

As System Dynamics works with aggregated relations, the model does
not make use of an explicit network, but models characteristic relations
between zones instead. For these relations the model takes the demand,
supply and feedback between them into account. As feedback the mode
choice and time of day choice models use the exponentially smoothed
travel times of the past half year. This assumes that people have habits
which gradually change over the past half year. The time step of the
model is a week.

The mobility impacts are analyzed in two simulation environments: a
‘Ceteris Paribus environment’ and a ‘Real World environment’. In the
Ceteris Paribus environment all factors except the introduction of auto-
mated vehicles stay equal. In the ‘real world environment’ changes in
population, car ownership, variable costs for the car and public transport,
speeds of public transport, the number of trucks and the road infra-
structure are considered as well.

2.3.1. Mode choice model
The base year of the mode choice model is 2013. Estimation of the

choice model is based on data of the mobility survey OViN (CBS, 2014).
The number of trips will stay constant till 2050 in the ‘Ceteris Paribus
environment’, and will rise according to PBL forecasts (PBL, 2013) in the
‘real world environment’. Six types of areas are distinguished: 1) Large
cities in the Randstad,1 2) Satellite towns of large cities in the Randstad,
3) Cities in the Randstad, 4) Rural areas of the Randstad, 5) Cities in the
rest of the Netherlands and 6) Rural areas of the Netherlands. This results



Fig. 1. Four steps of the model.

2 For the off-peak trips the value of the constant is zero.
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in 36 relations of which 6 relations are split in local traffic (i.e. within
cities) and traffic between cities, leading to a total of 42 relations. The
SD-model does not make use of user or age classes, only of car type class
(level of automation).

To calculate the number of people traveling with a certain mode a
logit model is used (equation (1)). The utility function is shown in
equation (2). The utility functions are calibrated based on OViN data
(mobility survey in the Netherlands) of 2010–2013. For cars of level 1, 2
and 3 the monetary costs per kilometer are expected to be lower than for
normal cars (energy efficiency, insurance costs and maintenance). For
level 3 also the value of time differs.

Tm;r ¼ Pr
eVm;r

e
P

Vm;r
(1)

Vm;r ¼ �μmðTTm;r*VoTm þ Varm;r*dm;r þ Cm;rÞ (2)

Where:

V¼ Utility [�]
μ¼ Scale factor [1/€]
TT¼ Travel time [hour]
Var¼ Variable costs [€/km]
P¼ Production [# trips]
R¼ INDEX RELATION
VoT¼ Value of time [€/hour]
C¼ Constant [€]
d¼Distance [km]
T¼ Trips [#]
M¼ INDEX MODES

In the mode choice model the trips are categorized into 4 groups:
people who have no car available for their trip, people having a regular
car available (level 0), people having a level 1 or 2 vehicle available and
people having a level 3 vehicle available. The first category (no car) can
choose between traveling as car passenger, by train, by BTM or by active
modes (cycling and walking). The other three categories can also choose
to travel as a driver of the available vehicle. The distinction of no car
available is made based upon OViN data, the number of people per SAE-
level is based on research of Nieuwenhuijsen et al. (2018). In the real
world scenario, the percentage of people owning a vehicle differs per
year.

For trucks the mode choice and time of day choice are set constant.
The number of trucks is 8% of the normal traffic in 2013, this assumption
is made based on loop detector data on main roads in the Netherlands
(NDW, 2016). 6% of these trucks drive in the peak hours (NDW, 2016).
The number of trucks per level of automation is based on the same per-
centages as for passenger cars.

2.3.2. Time of day choice model
For the trips made by car, a time of day choice is made with a logit

model having two alternatives: driving during peak hours and driving
outside peak (off-peak). The logit model uses the value of time, the travel
time in and off-peak and a constant. The constants and travel times are
estimated based on OViN data from 2010 to 2013. The value of time can
173
be adapted per level of automation. The utility function is shown in
equation (3).

Vp;r ¼ �μ
�
TTp;r*VoT þ Cr

�
(3)

Where:

V¼Utility [�]
μ¼ Scale factor [1/€]
TT¼ TRAVEL TIME [HOUR]
r¼ Index relation
VoT¼ Value of time [€/hour]
C¼CONSTANT2 [€]
P¼Index period (peak or off-peak)

2.3.3. Assignment - travel time calculation
For the trips made in the peak hours the travel time is calculated. This

is not done via a traditional assignment to a network, but by making use
of a BPR-function (speed flow relation) as shown in equations (4) and (5).
This level of detail is appropriate for system dynamics models and is also
appropriate for long term forecasting with many uncertainties. The re-
sults of more detailed micro simulations of the impact of automated
driving are included as an input to the SD-model on an aggregate level as
is described below.

Sr ¼ S0r
1þ βr�ðICrÞ4

(4)

ICr ¼
P

lðIrl þ HGVIrl�PCUÞ�PCUAl

Capr
�OF (5)

Where:

S¼Speed in period p [km/h]
S0¼Free-flow speed [km/h]
I¼Flow passenger cars [veh/hour]
Hgvi¼ Flow trucks [veh/hour]
Cap¼ Capacity [veh/hour]
P ¼Index period (peak or off-peak)
Pcu¼ Passenger car unit for trucks
Pcua¼ Passenger car unit for automated passenger vehicles
β¼Urbanization factor
L¼ Index level of automation {l є 0, 1/2, 3}
Of¼Overlap factor
R¼ Index relation

This BPR-function is derived from the ScenarioExplorer (Malone
et al., 2001). The free flow speed S0 is derived from nightly trips from
OViN. β is taken from the ScenarioExplorer. Per level of automation a
different PCU factor is used. If automation has a positive effect on ca-
pacity this factor has a value lower than 1, if it is expected that auto-
mation has a negative effect, this factor will be higher than 1. For trucks



Fig. 2. PCUA value for different penetration rate for autonomous and cooperative driving (van Arem et al., 2006; Arnaout and Bowling, 2011; Ngoduy et al., 2009;
Hoogendoorn et al., 2014).

S. Puylaert et al. Transport Policy 72 (2018) 171–179
the same PCU values for automation are used. A regular PCU value of 1.8
is used to transfer the trucks to passenger cars, this is the same value as
the LMS (Dutch national model system) uses.

Literature indicates that (for the cooperative scenario) the PCUA per
level is not constant over time, but depends on the penetration rate of
cooperative vehicles. Fig. 2 shows the assumed relation based on latter
micro simulation (van Arem et al., 2006; Arnaout and Bowling, 2011;
Ngoduy et al., 2009) studies between the penetration rate and PCUA for
the autonomous and cooperative driving scenario. PCUA combines two
effects: the effects of automated driving (arising from the first car on the
road) and cooperative effects (arising from a certain threshold and
increasing afterwards). This PCU graph differs for level 1& 2 and 3 as for
level 3 higher impacts are expected.

The travel time calculated with the BPR-function is fed back to the
mode choice and time of day choice.
Fig. 3. Map of the Netherla
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2.4. Validity of the model

The validity of the model is tested by performing several tests. Among
others the internal validity, the structure, extreme values, boundaries and
comparisons with ‘classical’ models are made for the real world scenario
and an automated vehicle scenario. These tests are the most relevant ones
from the book Business Dynamics of Sterman (2000). The main conclu-
sion over all tests is that the model can be used to make explorative
forecasts for early forms of AV.

3. Case study the Netherlands

The SD-model is applied in a case study for the Netherlands to model
the expected impact of automated vehicles from 2013 till 2050. Fig. 3
shows the allocation of municipalities to the six area types. These six
nds with 6 area types.
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types are the same as the ScenarioExplorer uses.
The focus of this paper is on 4 characteristic relations:

1. Within the 4 large cities in the Randstad (In large cities). The Rand-
stad is a megalopolis in the central-western Netherlands consisting
primarily of the four largest Dutch cities (Amsterdam, Rotterdam, The
Hague and Utrecht) and their surrounding areas. The results of this
relation are easy to interpret as the results cover only 4 cities.

2. Between a city in the Randstad and the rest of the Randstad
(Regional). This relation focuses on regional roads.

3. From the rest of the Netherlands to rest of the Netherlands (Rural).
This relation is chosen because of its magnitude. At least 40% of all
trips are made on this relation.

4. Between the 4 large cities (Between large cities). This relation is very
insightful as it consists of a limited amount of motorways, but still has
quite some volume. This is also a relation where impacts of automated
vehicles are expected.
Table 1
Model Input for the Autonomous and Cooperative Scenario for the Value of Time, Ca

Level Relation type Penetration rate

Value of time
0 All [0%–100%]
1 and 2 All [0%–100%]
3 In large cities [0%–100%]
3 Rural/regional [0%–100%]
3 Between large cities [0%–100%]

PCU (Capacity)
0 All [0%–100%]
1 AND 2 IN LARGE CITIES [0%–100%]
1 AND 2 RURAL [0%–100%]
1 AND 2 REGIONAL [0%–100%]
1 AND 2 Between large cities [0%–40%]
1 and 2 Between large cities [40%–100%]
3 In large cities [0%–100%]
3 Rural/regional [0%–40%]
3 RURAL/REGIONAL [40%–100%]
3 Between cities [0%–40%]
3 Between cities [40%–100%]

Fuel Economy
0 All [0%–100%]
1 AND 2 ALL [0%–40%]
1 AND 2 ALL [40%–100%]
3 In large cities [0%–100%]
3 Rural/regional [0%–40%]
3 Rural/regional [40%–100%]
3 Between large cities [0%–40%]
3 Between large cities [40%–100%]

-¼ no bandwidth (i.e. not included in sensitivity analyses).
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3.1. Penetration rate automated vehicles

The most important input for the model with respect to AV is the
penetration rate of different levels of AVs. As explained before the
penetration rate of different levels of AVs is highly uncertain. Fig. 4
shows the assumed mix of level 0, 1/2, 3 AV for the years 2013–2050 for
both scenarios. These penetration rates are taken from Nieuwenhuijsen
et al. (2018). As far as known to the authors this is the only study in
which a quantitative model is used to calculate the diffusion of auto-
mated vehicles for different SAE-levels. His model is underpinned with
expert opinions and literature.

The results of Nieuwenhuijsen et al. (2018) are shifted 10 years in
time to compensate for the fact that his model presents a too optimistic
view for 2015, namely 30% level 2 vehicles, where this appeared to be
less than 1%. There is enough evidence to trust the curves, but not to trust
the starting point. Secondly, the model of Nieuwenhuijsen estimates the
percentage of automated vehicles owned in the Netherlands and not the
pacity and Fuel economy effects.

Autonomous Cooperative

Base Bandwidth Base Bandwidth

100% – 100% –

100% – 100% –

100% – 100% –

90% 80%–100% 90% 80%–100%
80% 70%–90% 80% 70%–90%

1 – 1 –

1 1.1–0.9 1 1.1–0.9
1 1.05–0.95 1 1.05–0.95
1 1.05–0.95 1 1.05–0.95
1 1.05–0.95 1 –

1 1.05–0.95 0.95 1.1–0.9
0.95 1.1–0.9 0.95 1.0–0.9
1 1.05–0.95 1 –

1 1.05–0.95 0.95 1.0–0.9
1 1.05–0.95 1 –

1 1.05–0.95 0.9 1.0–0.7

1 – 1 –

0.95 – 0.95 –

0.95 – 0.85 –

0.95 – 0.95 –

0.95 – 0.95 –

0.95 – 0.85 –

0.95 – 0.95 –

0.95 – 0.85 –



Table 2
Model input for the real world scenario.

Input Change per year Source

Population
growth

Between 0.1%
and 0.4%

PBL (2013)

More car
ownership

0.2 %-point extra
cars available

LMS assumption (Ministerie van
Infrastructuur en Milieu, 2015)

Higher PT
costs/km

0.5% extra €/km

Decrease car
costs/km

0.7% less €/km

More trucks 1.4% extra trucks
Faster trains 0.3 min

(between 2017
and 2030)

Program High Frequency Rail (Mansveld,
2014)

Extra road
capacity

Between 0.8%
and 1.3% extra

Assumed based upon highway expansion
between 2014 and 2017 (Rijksoverheid,
2015)
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percentage of trips made with automated vehicles. Litman (2014) de-
scribes that in the first 10 years of the lifespan of a vehicle more than
double the number of kilometers is driven compared to the years there-
after. This effect can lead to a steeper introduction curve. However, this
effect is not taken into account in our model as this would lead to much
more complexity because vehicles should be divided in age classes. The
forecasts of Nieuwenhuijsen are for passenger cars. We use the same
introduction graphs for trucks, as there is currently no other literature
available.
Fig. 5. Simulations of the 4 relations in the Ceteris Paribus for the cooperative and
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3.2. Assumptions on capacity, value of time and monetary costs of
automated vehicles

Table 1 shows the other model inputs for the autonomous and
cooperative scenario. For different variables an upper and lower bound is
derived from literature. Not only the base case, but also these upper and
lower bounds are simulated. To do so, 2000 simulation runs are carried
out with a uniform distribution between the bounds.

Table 2 summarizes the changes in the ‘real world environment’. In
the Ceteris Paribus environment these factors are not taken into account.
3.3. Results Ceteris Paribus environment

Fig. 5 shows the expected impact of AV for the autonomous (A) and
cooperative (C) scenario in the Ceteris Paribus. The blue line indicates
the expected changes over time (base case). The uncertainty bandwidths
are indicated in grey. Note that the Y-axis has different scales. As in large
cities (relation 1) no cooperative functions are simulated the autonomous
and cooperative scenario are the same.

In general, it can be expected that the number of trips by car increases
due to the reduction in value of time. As a result, the level of congestion
increases, which has a small damping effect on the increase of car traffic.
In most scenarios, a lower PCUA value (i.e. increase of capacity) is
assumed which reduces the level of congestion which again attracts car
traffic (changes in modes and departure time). The opposite effect hap-
pens when a PCUA value higher than 1 is chosen. This explains why the
impact of AV on the number of car trips, the average speed for cars and
autonomous scenario. A larger version of the figure is shown in the appendix.
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the level of congestion can both be positive and negative.
In large cities (relation 1), the number of car trips increases with 1%

up to 2050 in both scenarios. The average car speed increases as well
with 1% and the total delay decreases with 3% in the base case. However,
the uncertainty bandwidth is quite large in large cities. There is a large
probability that the average speeds decrease instead of increase. Simi-
larly, the total delay may be 40% higher or 20% lower compared to the
base case.

On regional relations (relation 2), the number of car trips is expected
to increase with respectively 1% and 2% up to 2050 in the autonomous
and cooperative scenario. In the autonomous scenario, the level of con-
gestions (total delay) is expected to increase with 2% with a reduction of
1% in average car speed as a result. In the cooperative scenario the level
of congestion is expected to decrease with 2%, which results in a very
small increase of average car speeds (stays nearly the same). In this case
the uncertainty bandwidths are smaller and more or less equally posi-
tively and negatively spread. This is a consequence of the Assumptions
made.

On rural relations (relation 3), the number of car trips is also expected
to increase with respectively 1% and 2% up to 2050 in the autonomous
and cooperative scenario. In the autonomous scenario, the level of con-
gestions (total delay) is expected to increase with 1% whereas in the
cooperative scenario the total delay is expected to decrease with 3%. The
average speed stays more or less the same in both scenarios. This is
explained by the fact that the level of congestion on rural roads is quite
low. Therefore, small changes don't have an impact on the average speed.
In this case the uncertainty bandwidths indicate that the probability on
lower speeds compared to the base case is larger than the probability of
higher speeds.
Fig. 6. Results of simulations for the real world environment – a) average speed of a
growth in trips related to 2013.
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Finally, between large cities (relation 4) respectively 6% and 9% extra
car trips are expected in the autonomous and cooperative scenario. The
level of congestion is expected to increase with 12% and 4% respectively.
In the autonomous case this can be explained by an increased number of
cars on the road, but few capacity benefits. In the cooperative case, the
capacity increases, but due the large increase in number of trips, there is
more congestion expected. The average speeds are expected to reduce
with 3% and 1%. In the autonomous scenario the uncertainty bandwidths
are small and more or less equally positive and negative biased. In the
cooperative scenario there is a large probability that the effect will be
more positive.

3.4. Results real world environment

Fig. 6 shows the results of the simulations between large cities
(relation 4). Only the base case simulations are shown (no uncertainty
bandwidths).

The same effects which can be seen from the Ceteris Paribus envi-
ronment can be seen here. In the case of autonomous vehicles the car
becomes more attractive (less costs and lower value of time) which re-
sults in an increase of car trips. As autonomous vehicles have few ca-
pacity benefits the average speed is lower than without the technology.
The total delay also increases. In contrast with the Ceteris Paribus envi-
ronment, in the cooperative scenario the extra car trips made do not lead
to a longer delay because of the capacity benefits. In 2021 the 40%
threshold is reached and it can be seen that the extra cooperative benefits
start. From this point the cooperative and autonomous simulations show
differences.
car trips in peak hours; b) total travel time delay cars (VoT corrected); c) relative
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4. Conclusions and recommendations

4.1. Expected effects of automated vehicles

Simulations with the SD-model show that the introduction of auto-
mated vehicles is expected to cause an increase in car trips in both the
autonomous and cooperative development path. The level of congestion
is expected to increase on some trip types. For the motorways this in-
crease in congestion is the most severe although the uncertainty band-
widths indicate that there is a probability that the level of congestion on
motorways might decrease instead of increase. In the cooperative sce-
nario the increase in number of trips is larger than in the autonomous
scenario. Furthermore, the average speeds are higher in the cooperative
scenario and there is less congestion compared to the autonomous
scenario.

If distribution effects are considered as well, it can be expected that
automated vehicles cause an increase in trip lengths and therewith an
increase vehicle kilometers travelled, because travel time is valued less
negative and the cost per kilometer are lower. This might result in an
additional increase in the level of congestion.

4.2. Policy implications

The simulations show that automated vehicles do not inherently lead
to less congestion. In all scenarios the number of trips by car increases
and in most autonomous scenarios and some in cooperative scenarios the
congestion increases as well. From a societal point of view, the govern-
ment should invest in the cooperative path, as this brings most societal
178
benefits with it.
The focus of this paper was on regular congestion. It should be noted

that AVs are expected to reduce incident risks and therewith irregular
congestion caused by incidents. This results in travel time and travel time
reliability benefits. It is recommended to analyze the implications of AV
on irregular congestion in more detail.

4.3. The method – further research

The tests and simulations with the SD-model show that this model can
be used for explorative research. The model can help researchers and
policy makers to get a grip on the effects that automated vehicles have on
different trip choices. The main advantages of the method compared to
traditional models are that the method is quick, adaptable, explorative
and automated vehicles are modelled endogenous. Next to this there is a
constant feedback loop from the assignment to the demand and the total
introduction path can be simulated over time. Where traditional models
show a ‘picture’ of automated vehicles, the SD-model provides a forecast
in the form of a ‘movie’.

Still, the model needs improvements to be able to answer all policy
questions. At this moment, not all effects of automated vehicle can be
simulated with the model and the model is not detailed enough to draw
conclusions upon all levels. An important improvement would be to
consider distribution effects in the model; however, this is not straight-
forward in a system dynamic approach. Furthermore, it is recommended
to extend the model with travel time reliability and robustness (irregular
congestion and safety). In next versions ride sharing or road pricing can
also be incorporated in the model.
Appendix 1. Larger version of Fig. 5
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