

PROGRAMMABLE DEPLOYABLE STRUCTURES

Exploring the Potential of Mechanical Metamaterials and Large-Scale 3D Printing for Fast Production and Assembly of Deployable Structures.

Pepijn Feijen Thesis Project Building Technology

PREVIOUS PROJECTS

PREVIOUS PROJECTS

METAMATERIAL

MECHANICAL METAMATERIAL

PROGRAMMABLE METAMATERIAL

ADAPTIVE STRUCTURES

ENGINEERING CHALLENGE

INTERACTIVE

INVERSE DESIGN PROBLEM

INVERSE DESIGN PROBLEM

INVERSE DESIGN PROBLEM

INVERSE DESIGN PROBLEM

PREDICTIVE DESIGN TOOL

INVERSE DESIGN PROBLEM

MAIN RESEARCH QUESTION

 How can the principles of mechanical-metamaterial be scaled up to design deployable structures?

SUB-QUESTIONS

 How can a computational tool be developed to support the design of adaptive deployable structures?

SUB-QUESTIONS

- How can a computational tool be developed to support the design of adaptive deployable structures?
- To what extent can programmable mechanical metamaterials be scaled to enable the creation of large, safe, and stable structures?

SUB-QUESTIONS

- How can a computational tool be developed to support the design of adaptive deployable structures?
- To what extent can programmable mechanical metamaterials be scaled to enable the creation of large, safe, and stable structures?
- In what ways can the developed computational tool be applied to design a functional, deployable shelter for events?

PROCESS

- Approach
- Kinematic system

FORM-FINDING

- Development of the tool
- Computational part

LARGE SCALE PRINTING

 Challenges manufacturing Scaling up

CASESTUDY

- Application
- Structural analysis

PROCESS

EXPLORATION PHASE

ROTATING POLYGON STRUCTURE

DoD: -90

DEGREE OF DEPLOYMENT:

KINEMATIC SYSTEM

 PROCESS
 FORM-FINDING
 LARGE SCALE PRINTING
 CASE STUDY

KINEMATIC SYSTEM

DoD top layer: 15° DoD bottom layer: 0°

Distance between

Layers: 12 mm DoD structure: 0° - 32 °

KINEMATIC SYSTEM

DoD top layer: 60° DoD bottom layer: 45°

Distance between

Layers: 12 mm DoD structure: 0° - 39 ° DoD top layer: 15°
DoD bottom layer: 0°
Distance between

Layers: 12 mm DoD structure: 0° - 32 °

EXPANDING STRUCTURE

CONTRACTING STRUCTURE

01/07/2025

24

PROCESS MODEL 4

 $DoD = 48^{\circ}$ at top

PHYSCAL MODEL 4

 $DoD = 0^{\circ}$

in rotation

rigid element tickness: 4,2 mm

hight: 13 mm

PROCESS MODEL 5

Input mesh with original configuration DoD = 0°

Two layered latices DoD = 44° at bottom DoD = 64° at top

In this model the panels are not locked and free to rotated

materialization hinge thickness: 0.7 mm rigid panels tickness: 3 mm hight: 13 mm

PHYSCAL MODEL 5

FORM-FINDING

DYNAMIC RELAXATION

FORM-FINDING

CONSTRAIN BASED SOLVER

CASE STUDY

PROCESS

CASE STUDY

CASE STUDY

32

FORM-FINDING

TEST SHAPES

MONOCLASTIC SYNCLASTIC ANTICLASTIC

MONOCLASTIC SYNCLASTIC ANTICLASTIC

Form-Finding

INPUT

MONOCLASTIC SYNCLASTIC ANTICLASTIC

CONSTRAINTS

GLOBAL EQUAL LENGTH CONSTRAIN

INTERNAL CONSTRAINS

KINEMATIC CONSTRAINS

STATE CONSTRAINS

EQUAL LENGTE

- Global Equal length Constraint
- every node-to-node link
- Between two states
- Ensure elements to stay similar
- While allowing deformation

01/07/2025

40

INTERNAL CONSTRAINTS

Centre axis

PROCESS

Ensuring rotation between panels

Diagonals

Keep the center in its place, the panels square

Panel edges

Are allowed limited deformation

KINEMATIC CONSTRAINTS

- Constrains between the elements
- Applied on negative area
- Encourage the kinematic system from rotating
- Prevent collision

PROCESS

STATE CONSTRAINS

PROCESS

- Constrain that differ per state
- Ensures panels stays flat/ stays on input surface
- Fix boundary points

FORMFINDING PROCESS

PROCESS

SOLVER

INPUT

MONOCLASTIC SYNCLASTIC ANTICLASTIC

SOLVER

OUTPUT

MONOCLASTIC SYNCLASTIC ANTICLASTIC

VALIDATION

MONOCLASTIC SYNCLASTIC ANTICLASTIC

DEPLOYMENT

MONOCLASTIC

SYNCLASTIC

ANTICLASTIC

PRINTING PROCESS

THE TOOL

LARGE SCALE PRINTING

HINGES

SEPARATE COMPONENTS

MECHANICAL HINGES INPLACE

SINGLE MATERIAL COMPLIANT HINGES

PROTOTYPE CONFIGURATIONS

SELECTED CONFIGURATIONS

MATERIAL

- Thermoplastic elastomers
- Young's modulus: 0.01 5 Gpa
- Adding glass fiber can make TPU stiffer
- Alternative = TPC 70D

MATERIAL

ESTANE® 3D TPU F98A-030 CR HC PL

Property	Value
Young's (Elastic) Modulus	35 kN / cm² ≈ 350 MPa
In-plane Shear Modulus	12 kN / cm² ≈ 120 MPa
Transverse Shear Modulus	4.8 kN / cm² ≈ 48 MPa
Specific Weight γ	10.7 kN / m³
Coefficient of Thermal Expansion (linear)	0.9 - 1.1 × 10 ⁻⁴ / °C
Tensile Strength (XY build)	2.8 kN / cm² ≈ 28 MPa
Compressive Strength (yield)	1.5 kN / cm² ≈ 15 MPa est.

Ensoft SO-161-70A

PRINTING PROCESS

1:1 PROTOTYPES

PROTOTYPE 1

FLAT STATE $DoD \approx 0^{\circ}$ DEPLOYED STATE $DoD \approx 90^{\circ}$ OVER DEPLOYED $DoD \approx 180^{\circ}$

1:1 PROTOTYPES

PROTOTYPE 2

DoD ≈ 0° DoD ≈ 90° DoD ≈ 180° **FLAT STATE DEPLOYED STATE OVER DEPLOYED**

IMPROVEMENTS

DUAL MATERIAL 3D PRINTING

Structure 3D printed in two different materials. Requires dual nozzle

IMPROVEMENTS

STIFFENING BY PANELS

Thin printed elements stiffened by panels of a stiff light weight material

CASE STUDY

CASE STUDY

PROCESS

Small structure for festival events

- Build with the knowledge and technology right now
- Demonstrate the ability to span a small distance
- Evaluate whether the system can be deployed quickly and easily

APPLICATION

NETWORKING STAND

01/07/2025 65

BAR

WARDROBE

OPTIMIZATION

PROCESS

- Optimization Geometry
- Optimization mesh/grid density
- Fitness landscape
 - 2 parameters for x and y
- Deformation as objective
 - Simplified Karamba model
 - Gravity and a vertical load

OPTIMISATION PARAMETERS

01/07/2025

PROCESS

CASE STUDY GEOMETRY

Optimization Geometry

MESH DENSITY DENSITY U: 0 DENSITY V: 0 MAX DISPLACEMENT 0.795583 cm

Optimization Geometry

CHOSEN CONFIGURATION

CASESTUDY CURVATURE U: 0,7 CURVATURE V: 0,1 MESH DENSITY DISTORTION U: 0 DISTORTION V: 0 MAX DISPLACEMENT 0,351 cm

Optimization Mesh Density

PROCESS

Optimization Mesh Density

CASESTUDY
CURVATURE U: 0.7
CURVATURE V: 0.1

MESH DENSITY DENSITY U: 0 DENSITY V: 0 MAX DISPLACEMENT 0.351222 cm

PROCESS FORM-FINDING LARGE SCALE PRINTING

Optimization Mesh Density

LOWEST MAX DISPLACEMENT

CASESTUDY CURVATURE U: 0,7 CURVATURE V: 0,1 MESH DENSITY DENSITY U: 2,722 DENSITY V: 1,556 MAX DISPLACEMENT 0,334 cm

CASE STUDY

STRUCTURAL ANALYSIS

PROCESS

LARGE DISPLACMENT **ANALYSIS**

- Simulate deployment
- Effect of compliant hinges and other material deformation during deployment

STATIC ANALYSIS

- On the deformed model
- Load cases
- Stress/Deformation

LARGE DISPLACMENT ANALYSIS

DETAILS FLAT STATE TARGET SHAPE

Material:

ESTANE® 3D TPU F98A-030 CR

THK rigid elements: 60 mm THK hinge: 10 mm lengte hinge: 30 mm

01/07/2025 77

LARGE DISPLACMENT ANALYSIS

20 TENSION POINTS 10 TENSION POINTS 5 TENSION POINTS

TENSION SYSTEM

CONTOUR PLOT

DEPLOYMENT CASE STUDY

STATIC ANALYSIS

 Wind load simplified to a two-sided sloping canopy with free airflow

Tabel NB.5 — Extreme stuwdruk in kN/m² als functie van de hoogte

Ultimate limit state:								
ULS 1	1,22	Selfweight						
ULS 2	1,08	Selfweight	+	1,35	Wind 0°			
ULS 3	1,08	Selfweight	+	1,35	Wind 90°			
Serviceability limit state:								
SLS 1	1,0	Selfweight						
SLS 2	1,0	Selfweight	+	1,0	Wind 0°			
SLS 3	1,0	Selfweight	+	1,0	Wind 90°			

Hoogte	Gebied I			Gebied II			Gebied III	
m	Kust	Onbebouwd	Bebouwd	Kust	Onbebouwd	Bebouwd	Onbebouwd	Bebouwd
1	0,93	0,71	0,69	0,78	0,60	0,58	0,49	0,48
2	1,11	0,71	0,69	0,93	0,60	0,58	0,49	0,48
3	1,22	0,71	0,69	1,02	0,60	0,58	0,49	0,48
4	1,30	0,71	0,69	1,09	0,60	0,58	0,49	0,48
5	1,37	0,78	0,69	1,14	0,66	0,58	0,54	0,48
6	1,42	0,84	0,69	1,19	0,71	0,58	0,58	0,48
7	1,47	0,89	0,69	1,23	0,75	0,58	0,62	0,48
8	1,51	0,94	0,73	1,26	0,79	0,62	0,65	0,51
9	1,55	0,98	0,77	1,29	0,82	0,65	0,68	0,53
10	1,58	1,02	0,81	1,32	0,85	0,68	0,70	0,56
15	1,71	1,16	0,96	1,43	0,98	0,80	0,80	0,66
20	1,80	1,27	1,07	1,51	1,07	0,90	0,88	0,74

STATIC ANALYSIS

MATERIAL: ESTANE® 3D TPU F98A-030 CR

STATIC ANALYSIS

MATERIAL: ESTANE® 3D TPU F98A-030 CR

STATIC ANALYSIS

MATERIAL: ESTANE® 3D TPU F98A-030 CR

NOTES

PROCESS

Important notes/further research:

- Stresses from the deployment process (during load cases).
- No material safety factors have been applied (none exist for the selected material).
- Material is assumed isotropic, despite 3D printed parts typically being anisotropic.

MODEL DETAILS

A. CASE STUDY DESIGN D. TOP VIEW

MODEL DETAILS

MODEL DETAILS

ADJUST FLAT STATE

STRUCTURE OPTIMISED FOR PRINTING

DIVISION IN PANELS

PROCESS

01/07/2025

91

CONNECTION ELEMENTS

PANELS SEGMENTS ASSEMBLED STRUCTURE

CONNECTION ELEMENTS

CONNECTION ELEMENTS

CONNECTION ELEMENTS

PROCESS

THE TOOL

- Predictive design tool/ inverse design
- Tested on a variety of surfaces
- Methode shows potential for other kinematic structures/patterns

SCALING UP

- Possible to manufacture on a larger scale
- Weight issue/ alternative designs
- Further research in materials balance structural stiffness and complaint hinges

CASE STUDY

- Design shelter on a architectural scale
- More research on stresses during deployment

END

Questions?