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Introduction
Throughout the past decades, air traffic numbers have been growing rapidly. Despite a
short fallback due to COVID-19, air traffic numbers are expected to recover in the next
few years and continue to increase afterwards. These high air traffic numbers result into
heavy aircraft usage, hence high aircraft maintenance costs. Airlines are desperately
searching for methods to reduce these aircraft maintenance costs (especially mainte-
nance costs related to aircraft engines, because aircraft engines contribute to a large
part of aircraft maintenance costs). A possible way to reduce these costs is to have the
ability to predict when aircraft engines are expected to fail, instead of simply replacing
the engines after a predefined number of flight hours or flight cycles.

This thesis focused on the development of a model capable of estimating the Remaining
Useful Life (RUL) of aircraft engines whilst also incorporating and modelling the corre-
sponding uncertainty of these estimations. In particular the latter part (modelling the
uncertainty of the estimations) contributes to the novelty of this thesis, as most studies
in the literature do not take into account the uncertainty of the RUL estimations. In
stead, most of the studies seem only interested in the accuracy of the RUL estimations.
As explained, the main contribution of this thesis is to provide airlines with a model to
estimate the RUL of aircraft engines, whilst providing the uncertainty of these estima-
tions. Such a model allows airlines to decrease their aircraft maintenance costs as it is
no longer required to have engine components in stock. Instead, they can be ordered
only when required which saves storage space, hence decreases costs.

The structure of this thesis report is the following: in Part I, the scientific paper is
presented. Thereafter in Part II, the literature study report is presented which contains
the relevant literature that supports the research performed during this thesis. Finally,
Part III contains the appendices from the scientific paper.

xiv
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Uncertainty Modelling in Remaining Useful Life
Estimations of Aircraft Engines

A. A. Francken

Under supervision of Dr. M. A. Mitici

Control and Operations, Faculty of Aerospace Engineering, Delft University of Technology
Kluyverweg 1, HS 2926, Delft, The Netherlands

Abstract—The largely increasing number of flights throughout
the past decades leads to high aircraft (engine) maintenance costs.
As a means to decrease these costs, models are required which are
capable of estimating the moment an aircraft engine is expected
to fail. That is, knowing the moment an aircraft engine will fail
in advance, allows airlines to decrease their maintenance costs
by being able to schedule the required maintenance personnel
and hangars more efficiently. Various models regarding aircraft
engine Remaining Useful Life (RUL) estimation have already
been proposed in the literature. However, the majority of these
models only focused on generating so-called RUL point estima-
tions without taking into account and modelling the uncertainty
of these estimations. Therefore, this study focused on the develop-
ment of a model capable of generating RUL point estimations of
aircraft engines as well as taking into account and modelling the
accompanying uncertainty of these estimations. In order to do so,
the data-driven Random Forest Regression algorithm has been
applied which generated RUL point estimations as well as the
corresponding probability distributions to show the uncertainty
of the estimations. The results show that the proposed model
competes well with existing models in the literature in terms
of accuracy, and even outperforms some of the existing models.
Moreover, the results show that the accuracy of the RUL point
estimations increases over time, whilst the uncertainty of these
estimations decreases as the aircraft engines approach their end
of life.

Index Terms—Aircraft, Engines, RUL, Random Forest Regres-
sion, Uncertainty modelling

1 INTRODUCTION

The vastly increasing number of flights throughout the
past decades causes severe increases in aircraft Maintenance,
Repair and Overhaul (MRO) costs. According to the Interna-
tional Air Transport Association (IATA), these MRO costs are
estimated to be 10.3% of an airline’s operational costs, with
aircraft engines accounting for the largest part (43%) of these
total MRO costs [1]. This illustrates the necessity for the devel-
opment of methods to reduce MRO costs as much as possible,
especially the MRO costs associated with aircraft engines.
Generally, aircraft maintenance can be divided into reactive
and proactive maintenance, where proactive maintenance can
be further divided into preventive and predictive (sometimes
called condition-based) maintenance [2], [3]. Whereas reactive
maintenance would only be performed after an engine failed
(which is highly undesirable), preventive maintenance is per-
formed after the engine operated for a predetermined number

of flight hours or flight cycles (FC). This latter method has the
drawback of "wasting" some of the engine’s Remaining Useful
Life (RUL), as maintenance is performed before the engine
has actually failed [2]. Nevertheless, preventive maintenance
is currently widely applied in the field of aircraft maintenance
as it ensures air safety [3]. On the other hand, predictive
maintenance has the potential to drastically reduce MRO costs
as it is a prognostic strategy concerned with the estimation
of an engine’s RUL before failure occurs. Using predictive
maintenance allows for engine maintenance at "the right time",
thus minimizing the waste of an engine’s RUL and thereby
reducing MRO costs. As a result, various models regarding
RUL estimation have already been proposed, both model-
based as well as data-driven. However, the majority of these
proposed models only focuses on single RUL estimations (so-
called point estimations), without taking into account and
modelling the uncertainty of those estimations. This study pro-
poses a model for RUL estimations of aircraft engines which
also takes into account and models the uncertainty of these
estimations. It uses a data-driven approach which, besides
providing the RUL point estimations, additionally generates
probability distributions of the estimated RUL values. These
probability distributions allow for determining the uncertainty
of the aircraft engine RUL estimations.

The remainder of this paper is organized as follows. In
section 2, the related work regarding currently existing RUL
estimation models is described. Section 3 thoroughly describes
the methodology that has been followed in order to construct
the proposed model. In Section section 4, the results including
RUL points estimations as well as their probability distribu-
tions are presented. Section 5 contains a discussion on the
constructed model and its broader implications on the aviation
industry, whereafter the conclusions and recommendations are
provided in section 6 and section 7, respectively.

2 RELATED WORK

This section presents related work, obtained during the
literature study, in which previously conducted studies on RUL
estimations were explored. First, a general division of RUL
methodologies into different categories is presented. There-
after, the most commonly used methodologies per category
are described.

2



Over the years, various model types have been proposed in
the literature regarding RUL estimation of industrial systems.
In most studies, these model types are divided into two main
categories: model-based and data-driven [4], [5]. However, Lei
et al. [6] made a more thorough distinction by dividing the
RUL estimation model types into four different categories:
physical models, statistical models, artificial intelligence mod-
els and hybrid models.

(a) Physical models
Physical models are usually based on an underlying math-

ematical model that represents a machine’s physical degrad-
ation process [7]. According to the literature, these physical
models are capable of generating accurate RUL estimations
in case the parameters of the underlying mathematical models
are well estimated [6]. However, this is not considered to be
a straightforward task, as these parameters are usually derived
from laboratory experiments [8]. Two of the most popular
physical models used for RUL estimation (mainly applied for
systems experiencing crack growth) are the so-called Paris-
Erdogan model and the Norton model. For example, Zhao et
al. [9] used the Paris-Erdogan model to estimate the RUL of
gears having cracked teeth from which the cracks grow over
time. Likewise, Baraldi et al. [4] employed the Norton model
to simulate creep evolution of gas turbine blades and estimate
the turbine’s RUL. Despite the fact that physical models could
create fairly accurate RUL estimations, their usage is limited
since accurately describing the physical degradation process
of complex systems is considered to be challenging [6].

(b) Statistical models
Statistical models (sometimes called empirical models) use

statistical methods which are based on empirical data to es-
timate a system’s RUL [6]. Moreover, RUL estimation models
using statistical models are created without depending on any
physics or principles. Instead, they are usually constructed
using underlying stochastic process models [6]. According to
the literature, some commonly used statistical models for RUL
estimation are autoregressive models, Wiener process models
and Proportional hazard models. Autoregressive models are
applied by several studies such as conducted by Liu et al.
[10] who used the autoregressive model to estimate the RUL
of lithium-ion batteries, or Qian et al. [11] who used it for
the modelling of the degradation process of bearings and to
estimate the failure of bearings 50 minutes ahead. Wiener
process models (and variations of it) are for example used by
Lin and Lin [12] which applied it to model the degradation
process of aircraft engines and used it for RUL estimation.

Another example is the study conducted by Huang et al.
[13] who used a variation of the Wiener process (skew-Wiener
process) to estimate the RUL of roller ball bearings, as they
found the degradation speed of industrial machines to follow a
skew-normal distribution. Proportional hazard models are also
applied for the RUL estimation of bearings by Liao et al. [14]
as well as for the RUL estimation of low methane compressors
by Tran et al. [15]. Although many applications of statistical
models for RUL estimation exist in the literature, their usage

for RUL estimations of mechanical systems experiencing
complex deterioration patterns remains a challenge [6].

(c) Artificial intelligence models
The main difference of artificial intelligence (AI) models

compared to physical and statistical models is their ability
to recognize and learn patterns in deterioration data [6].
Consequently, AI models have become very popular for
degradation modelling and RUL estimations of mechanical
systems with complex degradation processes, as these pro-
cesses are usually too difficult to be accurately described by
physical and/or statistical models [6]. However, their main
disadvantage lies in the fact that it is generally difficult to
explain how AI models obtain their results due to a lack of
transparency. Therefore, AI models are sometimes referred
to as "black-boxes" [5]. Nevertheless, AI models are known
for many successful implementations. For example, the use
of a Recurrent Neural Network (RNN) model as applied by
Heimes [16] to estimate the RUL of aircraft engines or the
use of a Long Short Term Memory (LSTM) model as applied
by Yuan et al. [17] to predict the RUL of aircraft engines
operating in complicated operational conditions. Another suc-
cessful implementation of an AI model is the application of
a Random Forest Regression (RFR) model by Chen et al.
[18] who used it to also estimate the RUL of aircraft engines.
Furthermore, Tanwar and Raghavan [19] successfully used an
AI model called Gaussian Process Regression (GPR) model
for the RUL estimation of lubricating oil of an oil lubrication
system. In this study, the RUL is estimated by predicting the
remaining number of hours before the oil is contaminated with
a certain predetermined level of wear debris [19]. Addition-
ally, Biggio et al. [20] used three different Gaussian Process
models (Stochastic Variational Gaussian Process model, Deep
Gaussian Process model and Deep Sigma Point Process model)
to estimate the uncertainty of aircraft engine RUL estimations.
This is an exceptional study as it is one of the very few studies
who attempts to model the uncertainty of aircraft engine RUL
estimations.

(d) Hybrid models
Hybrid models are combinations of the previously described

models and try to create an even better model in terms of
prediction accuracy [6]. However, hybrid models are currently
used the least in the literature. Perhaps because merging
several models into a single hybrid model might be more
challenging compared to using the models individually. Nev-
ertheless, there are some successful implementations of hybrid
models. For example, the study conducted by Tamssaouet et
al. [21] who successfully proposed a hybrid model for the
RUL estimations of aircraft engines (including a probability
density function to model uncertainty) by combining a LSTM
model with a particle filter model. Again, this is considered
exceptional as very few studies attempt to model the uncer-
tainty of aircraft engine RUL estimations. Note that since
there exist numerous RUL estimation models in the literature,
the overview of commonly used RUL estimation models as
provided above in this section, is not exhaustive.
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3 METHODOLOGY

Throughout this section, the entire methodology from the
data acquisition step to the hyperparameter tuning step is
extensively described. First, data acquisition, data description
and data processing are described in paragraph 3.1, paragraph
3.2 and paragraph 3.3, respectively. Thereafter, the process
of feature selection, RUL model implementation and hyper-
parameter tuning are extensively discussed in paragraph 3.4,
paragraph 3.5 and paragraph 3.6, respectively.

3.1 Data acquisition

This paragraph describes the data acquisition process. First,
the difficulties of obtaining adequate deterioration data are
discussed. Thereafter, a brief explanation regarding the dataset
that will be used is provided. In order to create any predictive
model, appropriate deterioration data needs to be available
not only in terms of quality, but also in terms of quantity.
However, it appears to be difficult to obtain such data because
of several reasons. For example, data acquisition is a very
expensive and time consuming process due to the fact that the
vast majority of industrial machines is characterized by long-
term degradation processes [6]. Another important reason is
concerned with commercial competition. In case a commercial
company is able to obtain deterioration data, it will most likely
not be made publicly available due to commercial competition
[6], [22].

Therefore, in 2008, the Prognostics Center of Excellence at
the National Aeronautics and Space Administration (NASA)
created a large aircraft turbofan engine deterioration dataset,
in order to allow for the development of RUL predictive
models. This dataset contains an extensive amount of so-
called run-to-failure time series data from turbofan engines
and can be downloaded from the NASA Ames Prognostics
Data Repository [23]. It has been constructed using NASA’s
high fidelity Commercial Modular Aero-Propulsion System
Simulation (CMAPSS) computer model, which is especially
developed to simulate realistic run-to-failure behaviour of
large turbofan engines [24]. More recently, in 2021, the
Prognostics Center of Excellence at NASA published a new,
even more realistic run-to-failure aircraft turbofan engine time
series deterioration dataset (also using CMAPSS), which can
likewise be downloaded from the NASA Ames Prognostics
Data Repository [25]. This dataset is an improvement of
the old dataset from 2008, as it consists of more data and
contains additional sensors monitoring the health condition of
the turbofans. Furthermore, by relating the turbofan’s engine
degradation process to its operational history, its degradation
modelling is improved [24]. Note that the new dataset pub-
lished in 2021 is the only dataset that will be considered and
described in this paper.

3.2 Data description

This paragraph provides a thorough description of the data
that will be used for the development of the RUL estimation
model. This includes, among others, the specific subsets that
will be used, the number of available turbofan engines per

subset as well as the available sensors for deterioration mon-
itoring. First, a general description for all subsets is provided,
whereafter a more specific description is given for the first
data subset (subparagraph 3.2.1) as well as the second and
third data subsets (subparagraph 3.2.2).

As can been seen from Table 1, the aircraft turbofan engine
deterioration dataset is divided into eight distinct subsets. Each
of these subsets contains a different number of data entries as
well as a certain number of turbofan engines (called units by
Chao et al. [24]). Within each subset, the data is further divided
into a development set and a test set. The development set will
be used to train, optimize model parameters and cross validate
the model, whereas the test set will be used to assess the
model’s performance on unseen data and obtain the model’s
RUL estimation accuracy and corresponding uncertainty.

Table 1
OVERVIEW OF THE NASA AIRCRAFT TURBOFAN ENGINE DETERIORATION

DATASET [24].

Data subset name Number of units Data subset size

DS01 10 7.6 M

DS02 9 6.5 M

DS03 15 9.8 M

DS04 10 10.0 M

DS05 10 6.9 M

DS06 10 6.8 M

DS07 10 7.2 M

DS08 54 35.6 M

The engines (units) in the various data subsets could be
affected by single or multiple failure modes. The definition of
a failure mode is given by Matthews [26] as follows: A failure
mode is a possible way a component can fail. An example of
a failure mode is a deformed turbine blade prohibiting the
flow to obtain its optimal velocity. This failure mode could be
caused by a variety of factors such as eroded or corroded
turbine blades (which are called failure mechanisms [27]).
Similar to real turbofan engines, various failure modes can
occur in the different components of the CMAPSS turbofan
engine. These different engine components consist of a fan,
Low Pressure Compressor (LPC), High Pressure Compressor
(HPC), High Pressure Turbine (HPT) and Low Pressure Tur-
bine (LPT) and are depicted in Figure 1. Additionally, Figure 1
also shows the combustor, Nf (a sensor measuring the physical
fan speed) as well as Nc (a sensor measuring the physical core
speed).

The failure modes (as defined and stated by Chao et al. [24])
corresponding to the various engine components are listed per
data subset in Table 2. Note that engines are referred to as units
from now on. Table 2 shows that (apart from the components
of units in DS01) each component could be affected by two
main types of failure modes: a disrupted flow F or a decreased
efficiency E. However, as mentioned previously, some units
could be affected by a combination of failure modes.
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Figure 1. Schematic representation of the CMAPSS turbofan engine [28].

Table 2
OVERVIEW OF FAILURE MODES PER DATA SUBSET [24].

Data subset
name Fan LPC HPC HPT LPT

DS01 E

DS02 E E, F

DS03 E E, F

DS04 E, F

DS05 E, F

DS06 E,F E, F

DS07 E, F

DS08 E, F E, F E, F E, F E, F

For example, a number of units in DS02 could be affected
by a decreased HPT efficiency, whilst some of the other
units in DS02 could be affected by all three failure modes
simultaneously (being a decreased HPT and LPT efficiency
plus a disrupted LPT flow). Given that only units in DS01
are affected by the exact same failure mode (a decreased
HPT efficiency), makes it the most straightforward subset.
Consequently, DS01 has been selected as the dataset for model
development (training and parameter optimization) as well as
model testing to obtain its accuracy.

Furthermore, the considerably more complex DS03 has
been selected for model verification, because the units in
DS03 contain multiple simultaneous failure modes including a
decreased HPT efficiency. Therefore, it can be assessed if the
developed model is capable of handling more complex data
whilst producing (accurate) RUL estimations. Finally, DS02
has been chosen to validate the model because the results can
be compared to the study conducted by Biggio et al. [20],
who also used DS02 for the development of a RUL estimation
model.

3.2.1 Data subset DS01

As described previously, DS01 consists of ten units and
is divided into a development set (with six units) and a test
set (with four units). Both the development and the test set
comprises five types of main variables: scenario descriptors w

Figure 2. Sensor locations of the CMAPSS turbofan engine [24].

(Table 3), physical measured signals xs (Table 4), virtual unit
health sensors xv (Table 5), unit health parameters θ (Table 6)
and so-called auxiliary data (Table 7) [24]. Note that all other
data subsets consist of the exact same variables as listed in
Table 3 - Table 7. Apart from these variables, each data subset
also contains the actual true RUL values per unit, denoted by
Y and provided in FC. A clear view of the locations of the
various sensors listed in Table 4 and Table 5 is depicted in
Figure 2.

Table 3
SCENARIO DESCRIPTORS - w [24].

# Symbol Description Units

1 alt Altitude ft

2 Mach Mach number -

3 TRA Throttle-resolver angle %

4 T2 Total temp. fan inlet °R

According to Chao et al. [24], the units are assigned to a
specific flight class depending on the flight length. Further-
more, each flight class represents a certain flight condition
(low altitude and speed, medium altitude and speed as well
as high altitude and speed for flight classes 1,2 and 3,
respectively). The official definition of the flight classes can
be found in Table 8. The authors in [24] assumed that all
flights corresponding to a certain unit are assigned to the same
flight class. Consequently, it has been decided to develop one
model per flight class due to the substantial differences in
flight conditions. As a second assumption, the authors in [24]
assumed a unit to reach its End of Life (EoL) when a certain
(unknown) health index reaches a value of zero or whenever
the unit has flown for 100 FC, whichever comes first [24].
However, this means that units having flown for 100 FC must
be discarded from the development set, as those units did
not run to failure. Instead, their degradation simulations were
simply terminated after 100 FC. As a result, units 1 and 3
have been discarded from the development set of DS01.
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Table 4
PHYSICAL MEASUREMENTS - xs [24].

# Symbol Description Units

1 Wf Fuel flow in
combustor pps

2 Nf Physical fan
speed rpm

3 Nc Physical core
speed rpm

4 T24 Total temp. LPC
outlet °R

5 T30 Total temp. HPC
outlet °R

6 T48 Total temp. HPT
outlet °R

7 T50 Total temp. LPT
outlet lbm/s

8 P15 Total pressure in
bypass-duct psia

9 P2 Total pressure fan
inlet psia

10 P21 Total pressure fan
outlet psia

11 P24 Total pressure LPC
outlet psia

12 Ps30 Static pressure HPC
outlet psia

13 P40 Total pressure
burner outlet psia

14 P50 Total pressure LPT
outlet psia

An overview of all units in the development and test sets
in DS01 (including the discarded units 1 and 3), with their
corresponding flight classes and total life from start to EoL
(expressed as total FC till EoL), can be found in Table 9.
More information regarding the variables and the full details
of the complete dataset, with all its subsets, can be found in
the paper by Chao et al. [24].

3.2.2 Data subsets DS02 and DS03

As explained earlier, DS02 and DS03 will be used for
validation and verification, respectively. An overview of the
units in DS02 and DS03 together with their corresponding
flight classes and total number of FC till EoL, can be found
in Table 10 and Table 11, respectively. Investigation of DS02
revealed that all training units in the development set belong to
flight class 3. Additionally, it has been found that training units
2, 5 and 10 are affected by a single failure mode (deteriorated
HPT efficiency), whilst the remaining training units (as well as
all test units) have three different simultaneous failure modes
(deteriorated HPT and LPT efficiency, and disrupted a LPT
flow). As a consequence, only training units 16, 18 and 20 are
suitable for model development in DS02.

3.3 Data processing

This paragraph describes two methods which are applied
for the process of noise removal, data smoothing and data
downsampling in order to increase model accuracy and reduce
computation time. Noise removal and data smoothing are

Table 5
VIRTUAL HEALTH SENSORS - xv [24].

# Symbol Description Units

1 T40 Total temp. burner
outlet °R

2 P30 Total pressure HPC
outlet psia

3 P45 Total pressure HPT
outlet psia

4 W21 Fan
flow pps

5 W22 Flow out of
LPC lbm/s

6 W25 Flow into
HPC lbm/s

7 W31 HPT coolant
bleed lbm/s

8 W32 LPT coolant
bleed lbm/s

9 W48 Flow out of
HPT lbm/s

10 W50 Flow out of
LPT lbm/s

11 SmFan Fan stall
margin -

12 SmLPC LPC stall
margin -

13 SmHPC HPC stall
margin -

14 phi Ratio of Wf
to Ps30 pps/psi

Table 6
ENGINE HEALTH PARAMETERS - θ [24].

# Symbol Description Units

1 fan_eff_mod Fan efficiency
modifier -

2 fan_flow_mod Fan flow
modifier -

3 LPC_eff_mod LPC efficiency
modifier -

4 LPC_flow_mod LPC flow
modifier -

5 HPC_eff_mod HPC efficiency
modifier -

6 HPC_flow_mod HPC flow
modifier -

7 HPT_eff_mod HPT efficiency
modifier -

8 HPT_flow_mod HPT flow
modifier -

9 LPT_eff_mod LPT efficiency
modifier -

10 LPT_flow_mod LPT flow
modifier -

necessary as the raw data from the sensors listed in Table 4
and Table 5 is greatly affected by noise. An example of
this noisy raw sensor data can be seen in Figure 3, which
shows the raw data of the SmLPC sensor for unit 6 of flight
class 2 (DS01) over its entire lifetime (from start to EoL).
The noise can be clearly observed and must be reduced and
smoothed as much as possible, since noisy data can have a
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Table 7
AUXILIARY DATA [24].

# Symbol Description Units

1 unit Unit number -

2 flt-class Flight class -

3 hs Health state -

Table 8
OVERVIEW OF FLIGHT CLASSES [24].

Flight class Flight length [hrs]

1 1 - 3

2 3 - 5

3 > 5

Table 9
OVERVIEW OF UNITS IN THE DEVELOPMENT AND TEST SETS OF DS01,

WITH THEIR TOTAL NUMBER OF FC TILL EOL AND CORRESPONDING
FLIGHT CLASSES.

Unit Flight
class

Total FC till
EoL

Development
set

Test
set

1 1 100 ✓ -

2 3 75 ✓ -

3 2 100 ✓ -

4 1 95 ✓ -

5 3 89 ✓ -

6 2 94 ✓ -

7 1 90 - ✓
8 2 89 - ✓
9 1 80 - ✓
10 3 82 - ✓

severely negative influence on prediction results [29]. Apart
from noise reduction and data smoothing, the degradation
data requires downsampling (to a single sensor value per
FC) in order to drastically decrease computation time, as
the amount of recorded degradation data is enormous due to
the high 1Hz sampling rate. Moreover, this high sampling
rate is redundant since degradation occurs gradually over
time. Hence, suitable methods being capable of effective noise
removal, data smoothing and data downsampling, to a single
sensor value per FC, are required. The first applied method is
the so-called FC average smoothing method, which working
principle as well as an example showing a smoothed sensor
with this method, are described in subparagraph 3.3.1. The
working principle of the second applied smoothing method,
Locally Weighted Scatterplot Smoothing (LOWESS), is shown
in subparagraph 3.3.2 also together with an example showing
a smoothed sensor using this method.

Table 10
OVERVIEW OF UNITS IN THE DEVELOPMENT AND TEST SETS OF DS02,

WITH THEIR TOTAL NUMBER OF FC TILL EOL AND CORRESPONDING
FLIGHT CLASSES.

Unit Flight
class

Total FC till
EoL

Development
set

Test
set

2 3 75 ✓ -

5 3 89 ✓ -

10 3 82 ✓ -

11 3 59 - ✓
14 1 76 - ✓
15 2 67 - ✓
16 3 63 ✓ -

18 3 71 ✓ -

20 3 66 ✓ -

Table 11
OVERVIEW OF UNITS IN THE DEVELOPMENT AND TEST SETS OF DS03,

WITH THEIR TOTAL NUMBER OF FC TILL EOL AND CORRESPONDING
FLIGHT CLASSES.

Unit Flight
class

Total FC till
EoL

Development
set

Test
set

1 1 72 ✓ -

2 2 73 ✓ -

3 2 67 ✓ -

4 2 60 ✓ -

5 1 93 ✓ -

6 3 63 ✓ -

7 2 80 ✓ -

8 3 71 ✓ -

9 1 84 ✓ -

10 3 66 - ✓
11 3 59 - ✓
12 1 93 - ✓
13 3 77 - ✓
14 1 76 - ✓
15 2 67 - ✓

3.3.1 FC average smoothing method

The first applied method for noise reduction, data smoothing
and data downsampling whilst preserving the original data
characteristics, i.e. data deterioration trends, is called the FC
average smoothing method. As the name implies, it consists
of computing the average value for a given sensor per FC.
Hence, this method produces a single smoothed sensor value
per FC. The main benefit of using this method is the little
required run time as well as the fact that the same ’amount’
of data will be used to smooth a sensor value, regardless a
unit’s lifetime.
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Figure 3. Raw data of SmLPC sensor for unit 6 of flight class 2 (DS01) in
the development set.

To be precise, when smoothing a unit’s sensor values for
a specific FC, only the data corresponding to this specific
FC is required (not data from a previous or future FC).
This is considered beneficial as data from a future FC would
obviously be not available when smoothing sensor data from
a test unit in reality. The reason the FC average method can
be used is because the vertical lines in the raw data shown
in Figure 3 (the range of sensor values obtained during a FC
is shown as a vertical line per FC), have approximately the
same vertical length throughout a unit’s lifetime. In case the
length of the vertical lines would have increased or decreased
considerably over a unit’s lifetime, it would not have been
possible to compute a sensor average per FC (as that would
result into unfair comparisons).

Naturally, the FC average method has been applied for
all 28 sensors listed in Table 4 and Table 5. An example
of applying this method on the exact same SmLPC sensor
(of unit 6, flight class 2 (DS01)) as used in Figure 3, is
depicted in a scatter plot and shown in Figure 4. The thin
vertical black line denotes the moment a particular failure
mode becomes active and causes a unit’s degradation state
to transform from normal degradation, caused by regular wear
and tear, to abnormal degradation. Figure 4 reveals a clear
decreasing trend as the unit degrades over time. During its
early lifetime, the smoothed sensor value indicates a shallow
deterioration trend (normal degradation), whereas this decreas-
ing trend exponentially grows after the abnormal degradation
has started. The few distant smoothed values, in the beginning
of the unit’s lifetime, are expected to be flights which behaved
slightly different in comparison to the other ’regular’ flights,
hence the slightly different smoothed values.

3.3.2 LOWESS smoothing method
The second applied method for noise reduction, data

smoothing and data downsampling is the commonly used Loc-
ally Weighted Scatterplot Smoothing (LOWESS) method [30],

Figure 4. Smoothed data of SmLPC sensor for unit 6 of flight class 2 (DS01)
after applying the FC average smoothing method.

[31], [32]. LOWESS is a novel nonparametric data smoothing
method which uses locally weighted least squares to obtain for
each point ((xi, yi), i = 1, ..., n), a single smoothed y-value
(ŷi) per corresponding x-value (xi) [33]. Here, the y-values
are the sensor values belonging to the corresponding FC (x-
values). Its main benefit is obtaining highly smoothed sensor
values per FC.

In essence, its working principle can be described as fol-
lows. For each xi, certain weights wj(xi) are defined for all
xj , with j = 1, ..., k (k-nearest neighbor data points) using
a weight function W [33]. The weights are large in case xj

is close to xi and small in case it is not. The primary fitted
y-value, ŷi, per corresponding xi-value is obtained by fitting
a dth degree polynomial function to the k-nearest neighbor
points using weighted least squares with weights wj(xi) [33].
This initial fitting of smoothed ŷi-values is called locally
weighted regression [33]. In order to prevent outliers from
distorting the initially smoothed points, an additional weight
δj is assigned per (xj , yj) based on the residual yj − ŷi [33].
The weights are large if the residual is small, and small in case
the residual is large. The new smoothed y-values are fitted
the same way as previously described, however, the weights
wj(xi) are replaced by δjwj(xi) [33]. This process is called
robust locally weighted regression [33]. For more information
regarding the mathematics of LOWESS, a detailed LOWESS
calculation procedure is provided in Appendix A.

The LOWESS method has been applied for all 28 sensors
listed in Table 4 and Table 5. Figure 5 depicts a scatter plot
with the results of applying LOWESS on the same SmLPC
sensor as shown previously in Figure 3 for unit 6 of flight
class 2 (DS01). Again, the thin vertical black line denotes the
moment a particular failure mode becomes active and causes a
unit’s degradation state to transform from normal degradation,
caused by regular wear and tear, to abnormal degradation [24].
As can be seen from Figure 5, an even clearer deterioration
trend becomes visible (compared to Figure 4) after the severe
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Figure 5. Smoothed data of SmLPC sensor for unit 6 of flight class 2 (DS01)
after applying LOWESS smoothing method.

noise has been removed and a single smoothed SmLPC-
value per FC has been obtained. Besides the clearly visible
deterioration trend, Figure 5 also shows the linear normal
degradation trend transitioning into an abnormal degradation
trend as the impact of the failure mode develops over time.

Nevertheless, this clearer deterioration trend does not auto-
matically imply more accurate RUL point estimations on the
test units. This is explained by the fact that during model
training, a unit’s entire lifetime can be used for LOWESS
to obtain smoothed sensor values per FC. However, when
obtaining smoothed sensor values per FC for test units during
their initial life, the entire amount of data (from its start to
EoL) is obviously not available. Therefore, such a smoothed
sensor value per FC is likely to be slightly different from the
value it would have had in case the entire amount of data
would have been available for data smoothing. This slight
difference in smoothed sensor values obtained at FC during
a unit’s initial life, might influence the accuracy of the RUL
point estimations.

Due to this reason as well as to prevent an overwhelming
number of tables and graphs, the results of feature selection
(paragraph 3.4) and hyperparameter tuning (paragraph 3.6) ob-
tained for sensor data that has been smoothed with LOWESS,
will be shown in Appendix B and Appendix C, respectively.
Hence, only the results of feature selection and hyperparameter
tuning obtained for sensor data that has been smoothed using
the FC average method will be shown in paragraph 3.4 and
paragraph 3.6, respectively.

3.4 Feature selection

Throughout this paragraph, the process of feature selection
using Python’s Recursive Feature Elimination with cross val-
idation (RFECV) method (from the Scikit-learn package [34])
is described together with the selected features (sensors) that
will be used for the algorithm performing the RUL estimations.
Note that this paragraph only contains the results for data that

has been smoothed using the FC average method described
in subparagraph 3.3.1, as explained above. Besides discussing
the selected features throughout this paragraph, an additional
brief physical meaning is provided for the selected features of
DS01 in subparagraph 3.4.1.

Feature selection is defined as the process of selecting the
most relevant features required to predict the target variable (a
unit’s RUL) [35]. It is an essential step required to increase the
model’s prediction accuracy and decrease its training time by
eliminating redundant and irrelevant features [35]. RFECV is
a so-called wrapper method as it determines the most relevant
features based on the performance of an underlying algorithm
[36]. It has been decided to use RFR as the underlying
algorithm, which working principle is explained in paragraph
3.5.

Generally, given an initial set of features, RFECV recurs-
ively performs the following steps until one feature remains
[37]:

1) For every fold of data (generated by a cross validation
(CV) method), train an untuned RFR algorithm on the set
of features and compute the feature importance (concept
explained in paragraph 3.5) for every feature in this set.

2) Test the trained RFR algorithm on a test fold and repeat
this process of training and testing on folds (with the
features in step 1) to calculate an average CV score
(expressed as the Root Mean Squared Error, RMSE
shown in Equation 1).

3) Store this average CV score (obtained in step 2) belonging
to this specific number of features on which the RFR al-
gorithm has been trained and tested. Additionally, remove
the least important feature in every train fold of the data.

After recursively performing the steps above until one
feature is left in the initial given set of features, the number
of features having the lowest CV score (computed as RMSE
according to Equation 1 [34]) is selected by RFECV. In
Equation 1, N denotes the number of samples, yj the true
(RUL) value of the j-th sample and ŷj the corresponding
estimated (RUL) value. Therefore, RMSE is expressed in FC.

RMSE =

√√√√ 1

N

N−1∑

j=0

(yj − ŷj)2 (1)

Note that RFECV does not "know" the names of the actual
features, but only the number of features having the lowest CV
score. Thus, a Recursive Feature Elimination (RFE) method
(also from the Scikit-learn package [34]) is run to obtain the
actual feature names that belong to the number of features
having the lowest CV score. The RFE method is very similar
to RFECV, except this method does not perform CV and runs
on the entire development set. It performs the following steps
until the number of features remaining in the set is equal to
the number of features obtained by RFECV (which has the
lowest average CV score):

1) Train an untuned RFR algorithm with all features from
the feature set.
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2) Compute the feature importance of each feature.
3) Discard the least important feature from the feature set.
4) Perform steps 1 - 3 until the number of features in the

feature set equals the number of features obtained by
RFECV.

After performing these steps, the most relevant features to
estimate a unit’s RUL are obtained. Therefore, RFECV is able
to automatically select the optimal number of relevant features
and obtain their accompanying feature importances.

The average CV score is obtained using Python’s Time
Series Split (also from the Scikit-learn package) which is a
variation of the commonly used K-fold CV [34]. Although K-
fold CV is considered to be one of the most frequently used
methods for CV and often applied to time series data such
as done in [38], [39] and [40], it is inappropriate for time
series data [41]. K-fold CV assumes the data to be independent
and identically distributed, which is an invalid assumption for
time series data as future observations might depend on past
observations [41].

Time Series Split however, does take into account time-
dependence of observations, as it splits a given time series data
into so-called train and test subsets, where in each test subset,
the test indices must be higher than in the training subset [34].
Figure 6 depicts a representation of the Time Series Split with
a total of four iterations.

Figure 6. Representation of Time Series Split with four iterations [34].

As can be seen in Figure 6, in order to have four iterations,
the total dataset must be split into five equal parts. Then,
during the kth iteration, k-folds are used for training whereas
the (k+1)th fold is used as the test set to evaluate the model
and obtain a RMSE score [34]. It has been decided to use
nsplits = 5 (parameter for total number of splits) for the Time
Series CV as this results into the same number of equally sized
subsets in case the commonly used K-fold CV with k = 5
would have been applied as done in [37], and [39].

The selected features for DS01, after performing RFECV,
with their corresponding feature importances (concept ex-
plained in paragraph 3.5) can be seen per flight class RFR
model in Table 12. Table 13 and Table 14 contain the se-
lected features with corresponding feature importances per
flight class RFR model for DS02 and DS03, respectively.
Furthermore, the associated CV scores per flight class RFR
model in DS01, DS02 and DS03 can be seen in Table 15.

These CV scores are considered as the baseline errors that
need to be reduced through hyperparameter tuning (explained
in paragraph 3.6). Note that these tables (showing the selected
features, feature importances and CV scores) obtained for
data that has been smoothed using LOWESS can be found
in Appendix B. Also note that Table 13 and Table 15 only
contain a single flight class RFR model for DS02 because the
development set of DS02 only consists of units from flight
class 3.

Table 12
SELECTED FEATURES WITH CORRESPONDING FEATURE IMPORTANCES OF

DS01 FOR FLIGHT CLASS RFR MODELS 1,2 AND 3.

Flight class
RFR model Selected features Feature importance [-]

1

T50 0.3156

SmLPC 0.2802

SmHPC 0.2698

Nc 0.0844

SmFan 0.0500

2
SmLPC 0.8399

SmHPC 0.0935

SmFan 0.0666

3

SmLPC 0.6838

SmHPC 0.1792

SmFan 0.1370

Table 13
SELECTED FEATURES WITH CORRESPONDING FEATURE IMPORTANCES OF

DS02 FOR FLIGHT CLASS RFR MODEL 3.

Flight class
RFR model Selected features Feature importance [-]

3

phi 0.2707

SmLPC 0.2652

SmHPC 0.2224

Nc 0.0856

Nf 0.0629

T50 0.0594

T24 0.0338

3.4.1 Physical meaning of selected features

Apart from the fact that RFECV selected features that
yielded the lowest CV scores, it can also be explained why
the selected features in DS01 are relevant from a physical
perspective. Given that all units from DS01 are suffering from
HPT efficiency deterioration, it is likely that it could result
into the HPT being incapable of efficiently transforming the
hot gas into energy, thus generating less power [42]. As a
consequence, the fuel flow Wf must be increased in order to
still generate the same amount of power, hence causing the
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Table 14
SELECTED FEATURES WITH CORRESPONDING FEATURE IMPORTANCES OF

DS03 FOR FLIGHT CLASS RFR MODELS 1,2 AND 3.

Flight class
RFR model Selected features Feature importance [-]

1

SmLPC 0.4550

T50 0.2530

Nc 0.1057

SmHPC 0.1040

W25 0.0822

2

SmLPC 0.5742

SmHPC 0.1067

T50 0.0787

SmFan 0.0641

Nc 0.0480

phi 0.0380

Nf 0.0318

T48 0.0230

T24 0.0285

3

SmLPC 0.5352

SmHPC 0.1528

SmFan 0.0860

Nc 0.0749

T50 0.0546

Nf 0.0347

phi 0.0325

T48 0.0292

Table 15
BASELINE CV SCORES FROM RFECV OF DS01, DS02 AND DS03 FOR

FLIGHT CLASS RFR MODELS 1,2 AND 3.

Data subset Flight class
RFR model

Baseline CV score (RMSE)
[FC]

DS01

1 22.1953

2 20.6365

3 20.1936

DS02 3 16.2246

DS03

1 17.9665

2 17.9310

3 16.4581

temperature T50 to increase [42]. As a result, the entire unit
will rotate faster (Nc will eventually increase). An effect of
a faster rotating unit is a decrease in stall margins SmLPC,
SmHPC and SmFan [42]. Note that this explanation can
only be provided for units in DS01 as those units have only
one single failure mode. For units in DS02 and DS03, this can
not be explained as they are affected by multiple simultaneous
failure modes.

These multiple simultaneous failure modes make it too
complex to explain why the selected features are relevant from
a physical perspective.

3.5 RUL estimation algorithm

This paragraph explains the working principle of the RFR
algorithm that is used to generate the RUL estimations.
Furthermore, a brief explanation on how the RFR algorithm
is used to model the uncertainty of the RUL estimations is
provided in subparagraph 3.5.1.

RFR is a decision tree-based ensemble machine learning
algorithm which grows individual trees using bootstrapping
and aggregates the outcomes of the trees into a single es-
timation [43], [44]. Bootstrapping ensures randomized trees
since individual trees are grown using a bootstrap sample of
the dataset [44]. In order to randomize the growing of decision
trees even further, random subsets of a given set of features are
used when creating splits in the trees [44]. During the creation
of such a split, RFR attempts to maximize the decrease in
impurity for that split [44]. Generally for regression, this
decrease in impurity is measured using the Mean Squared
Error (MSE) (with the MSE being the impurity value of a
certain node m) as given in Equation 2 [45].

MSE(m) =
1

Nm

Nm∑

j=1

(yj − ȳj)
2 (2)

With Nm being the number of samples in the considered
node m, yj denotes the sample value of the jth sample, and
ȳj representing the average value of the Nm samples in node
m. Sometimes, the MSE is referred to as the variance of
the samples in a node [45]. Since RFR aims to maximize
impurity decrease when creating splits (growing a tree), it is
also capable to provide a measure of feature importance [46].
Feature importance describes the contribution of an individual
feature to the target (i.e. RUL estimation) when splitting a node
[47]. This measure of feature importance is usually given as
the Mean Decrease of Impurity (MDI) [44].

In order to calculate the MDI, the general working principle
of RFR to generate RUL estimations (which is implemented
using Python’s Scikit-learn package [34]) must be explained.

Let N represent the bootstrapped samples available to build
a decision tree H . Also, let m be a node having Nm samples
and let yj denote the jth sample of Nm. Furthermore, let
θ = (k, z), with feature k and threshold z, be candidate splits
for node m. Moreover, let node m be written as m(θ) when
considering a certain candidate split.

Each decision tree H is grown by recursively performing
the following steps for every node m. At first, a subset
of randomly selected features (from the bootstrapped data
available to build tree H) is created [48]. Then, for each
candidate split of node m (m(θ)), this subset of randomly
selected features is split into a left child node (m(θ)left)
if yj ≤ z and a right child node (m(θ)right) if yj > z ,
respectively [48].
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Hereafter, the optimal split for node m (opt(m)) is obtained
by maximizing the impurity decrease which given by Equa-
tion 3:

∆I(m(θ)) = C(m(θ))−
N left

m(θ)

Nm(θ)
C(m(θ)left)

−
Nright

m(θ)

Nm(θ)
C(m(θ)right)

(3)

Where C(m(θ)) denotes the impurity measure (given by
Equation 2) of node m for a specific θ, whilst C(m(θ)left) and
C(m(θ)right) represent the same for the left and right child
nodes of node m, respectively. Furthermore, Nm(θ) denotes
the samples in node m, whereas Nm(θ)left and Nm(θ)right

are the samples for the left and right child nodes of node m,
respectively. Finally, the decrease in impurity of node m for
a specific θ is given by ∆I(m(θ)).

The growing of trees stops in case one of the following
situations occurs: 1) all nodes are pure (impurity does not
decrease anymore), 2) the child nodes of node m contain less
samples than a certain threshold called min_samples_leaf, 3)
the number of samples in node m (Nm) is less than a certain
threshold called min_samples_split, 4) the maximum depth of
a tree reached a certain threshold called max_depth [34], [48].

Then, the MDI (feature importance) for a certain feature w,
obtained for a single decision tree H , is given by Equation 4
as [48]:

MDI(w,H) =
∑

m∈H,opt(m)=w

Nm(θ)

N
∆I(m(θ)) (4)

In which opt(m) = w means that only nodes m for which
the maximum impurity decrease is obtained when splitting on
feature w, will be considered. Therefore, Equation 4 sums
the maximum impurity decreases for all nodes in a single
decision tree that have been split using a particular feature,
and multiplies that by a ratio [44]. This ratio decreases for
splits ’deeper’ in the tree, causing those splits to be of less
importance compared to splits made in the beginning of the
tree.

Finally, the global feature importance of feature w on the
entire RF (MDIglobal(w)), having a number of trees equal to
nestimators, can be calculated by Equation 5:

MDIglobal(w) =
1

nestimators

nestimators∑

b=1

MDI(w,Hb) (5)

Where Hb denotes the bth decision tree. After creating an
entire RF (i.e. growing a number trees equal to nestimators

with each generating an estimated RUL value) and determining
the feature importance for all given features, the RUL estim-
ations will be aggregated into a single RUL point estimation
by computing the average of all estimations.

3.5.1 Modelling RUL estimation uncertainty

In order to obtain the uncertainty of the RUL point estim-
ations generated with RFR, the general working principle of
RFR must be slightly modified. Instead of aggregating the
RUL estimations of all individual decision trees together into
a single point estimation, the RUL estimations of all individual
trees must be obtained separately. Hereafter, these individual
tree RUL estimations will be visualized in a histogram in order
to display the probability distribution with the probabilities of
these individual tree estimations and hence, the uncertainty of
the RUL point estimations.

3.6 Hyperparameter tuning

This paragraph discusses the need for hyperparameter tun-
ing as well as the tuning method that has been used. Further-
more, it describes the specific hyperparameters that have been
tuned and the results of the tuning (hyperparameter values and
CV score). Note that this paragraph only contains the results
for data that has been smoothed using the FC average method
described in subparagraph 3.3.1, as explained previously. The
results of the hyperparameter tuning for data that has been
smoothed using LOWESS is provided in Appendix C.

Hyperparameter tuning is an important step as it allows
for better overall performance by revealing the optimal hyper-
parameter values of the RFR model [49]. A hyperparameter
is a parameter which value must be set before training the
model. This is in contrast with a general model parameter,
where its value is learned during model training [50]. The
hyperparameter tuning is performed using the popular random
grid search with CV as well as the exhaustive grid search with
CV (both from the Scikit-learn package [34]) [49]. Given a
defined search grid for certain hyperparameters, random grid
search will randomly pick a value per hyperparameter from
the search grid, whereafter it will train a RFR model [34].

Then, CV is performed using Time Series Split to obtain
a cross validated RMSE score for the specific parameter
values. The number of random searches is determined to
be 10% of the total number of combinations that can be
obtained in the search grid. Hereafter, the hyperparameter
values that yield the lowest CV score are used to define a new
search grid around those values. With this new search grid,
exhaustive grid search with CV is performed in which every
combination of hyperparameter values is used and a CV score
obtained for each combination [34]. Finally, the combination
of hyperparameter values yielding the lowest CV score are
considered to be the optimal values for the RFR model.

Table 16 shows the hyperparameters that have been tuned
(as well as their tuned values) for the RFR of flight class RFR
models 1, 2 and 3 of DS01, DS02 and DS03. The tuned RFR
hyperparameters of the flight class RFR models of DS01,
DS02 and DS03 obtained for data that has been smoothed with
LOWESS is shown in Appendix C. The ranges stated in the
caption of Table 16 are defined based on the ranges used in
[39], [43] and [51]. The remaining RFR parameters are left at
default in accordance with [39], [43] and [51].
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Table 16
RFR HYPERPARAMETERS FOR FLIGHT CLASS RFR MODELS 1, 2 AND 3 OF DS01, DS02 AND DS03. THE (INITIAL) RANGES OF THE SEARCH GRID ARE
THE FOLLOWING: NUMBER OF TREES [100, 300, 500, 800, 1000, 1200], SPLIT CRITERION [MSE, POISSON], MAXIMUM TREE DEPTH [4, 6, 8, 10, 15,
25, 40, 100, NONE], MINIMUM SAMPLES PER SPLIT [2, 4, 8, 10], MINIMUM SAMPLES PER LEAF NODE [1, 3, 5, 7, 9] AND FRACTION OF FEATURES PER

SPLIT [0.25, 0.50, 0.75, AUTO].

Data subset Flight class
RFR model

Number
of trees Split criterion Maximum

tree depth

Minimum
samples
per split

Minimum
samples

per leaf node

Fraction
of features
per split

DS01

1 100 MSE 100 2 1 0.8

2 290 MSE 98 3 1 Auto

3 90 MSE 100 2 1 Auto

DS02 3 90 MSE 100 3 1 Auto

DS03

1 320 MSE 98 2 1 Auto

2 280 MSE 23 3 1 Auto

3 90 MSE 100 2 1 Auto

Table 17
FINAL CV SCORES AFTER HYPERPARAMETER TUNING FOR FLIGHT CLASS

RFR MODELS 1,2 AND 3 OF DS01, DS02 AND DS03.

Data subset Flight class
RFR model Final CV score (RMSE) [FC]

DS01

1 22.1067

2 20.4486

3 20.1148

DS02 3 16.0536

DS03

1 17.8219

2 17.8616

3 16.4225

Note that for the hyperparameter "Fraction of features per
split" the value "Auto" means that the RFR model will con-
sider all available features when determining the best feature
to split on. When examining the tuned values in Table 16,
it can be seen that some of these are different compared to
the values listed in the (initial) ranges in the caption. This
is explained by the fact that the ranges have been refined
for the exhaustive grid search based on the results of the
random grid search, as explained previously. The new (final)
CV scores obtained on the development sets of DS01, DS02
and DS03 (with the optimal hyperparameter values) for all
flight class RFR models are listed in Table 17. It can be
seen that the final CV scores improved for all flight class
RFR models in all data subsets, which implies hyperparameter
tuning to be an important step with respect to increasing model
performance. However, the CV scores only slightly improved,
which indicates that hyperparameter tuning does not have a
substantial effect on these specific data subsets.

4 RESULTS

Throughout this section, the results of the various flight
class RFR models for DS01, DS02 (validation data subset)
and DS03 (verification data subset) are discussed. These

results consist of the RUL point estimations and accompanying
probability distributions (depicting the uncertainty of the RUL
point estimations), and are discussed in paragraph 4.1 for data
smoothed with the FC average smoothing method. The results
for data smoothed with LOWESS can be found in Appendix
D. Furthermore, in paragraph 4.2, various evaluation metrics
such as the RMSE and Mean Absolute Error (MAE, shown
in Equation 6 [34]) are used to compare the results of the
different flight class RFR models in DS01, DS02 and DS03
(both for data smoothed with the FC average method as well as
with LOWESS). In Equation 6, N denotes a unit’s total num-
ber of RUL point estimations (since a RUL point estimation
per FC is generated for a given unit), yj the true RUL value of
the jth RUL point estimation and ŷj the corresponding RUL
point estimation value itself. Consequently, MAE is expressed
in FC.

MAE =
1

N

N−1∑

j=0

|yj − ŷj | (6)

In order to obtain the RUL point estimations and prob-
ability distributions, the exact same steps with respect to
noise removal, data smoothing and data cleaning (as described
in paragraph 3.3) have been performed on the test datasets
of DS01, DS02 and DS03. Thereafter, the RFR flight class
models of DS01, DS02 and DS03 were trained on the entire
corresponding development sets (using the hyperparameter
values in paragraph 3.6). With these tuned models, RUL point
estimations have been obtained for all available test units per
flight class RFR model in DS01, DS02 and DS03. Given that
the total number of test units equals 11 (four test units in DS01,
one test unit in DS02 and six test units in DS03), it has been
decided to present the graphs of the RUL point estimations
and accompanying probability distributions for a selection of
units per flight class RFR model for DS01 and DS03. That
is, per flight class RFR model, these graphs are shown for a
particular test unit from DS01 as well as a particular test unit
from DS03. The remaining RUL point estimation graphs and
corresponding probability distributions of test units in DS01,
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DS02 and DS03, together with a brief analysis, can be found
in Appendix E.

4.1 RUL point estimations and corresponding uncertainty
(DS01 and DS03)

This paragraph thoroughly discusses the RUL point estima-
tions and accompanying probability distributions obtained with
the flight class RFR models in DS01 and DS03.

For a selection of test units in DS01 and DS03, a graph
is generated depicting the RUL point estimations (which are
generated per FC and start from a unit’s 10th FC) as well
as three histograms showing the probability distributions of
the first, middle and last RUL point estimations, respectively.
The RUL point estimations for all test units are started at the
10th FC due to two reasons. Firstly, starting estimations at
the 10th FC allows the test units to accumulate some data
before starting the estimations. Secondly, starting estimations
at a unit’s very first flight is meaningless as there would be an
insufficient amount of available data for data smoothing with
LOWESS. The reason to produce the probability distributions
of the first, middle and last RUL point estimations of each
test unit is to provide an accurate overview of the uncertainty
of the point estimations, without creating an overwhelming
number of histograms. Figure 7 and Figure 8 depict the RUL
point estimations and associated probability distributions of
test units 7 and 14 (both flight class RFR model 1), respect-
ively. The RUL point estimations and associated probability
distributions of test units 8 and 15 (both flight class RFR
model 2) as well as test units 10 and 11 (both flight class
RFR model 3) are depicted in Figure 9, Figure 10, Figure 11
and Figure 12, respectively. When examining these figures,
numerous interesting results can be observed.

First of all, the overall results of all test units are considered
to be satisfactory, both in terms of RUL point estimations as
well as the shapes of the probability distributions. Neverthe-
less, the overall results (in terms of RUL point estimations)
of test units of DS01 are found to be less accurate compared
to the results of test units of DS03, especially during the first
half of the RUL point estimations. The main reason for these
overall less accurate results is believed to be the exceptional
low number of training units. As a matter of fact, test units
7 and 8 in DS01 (Figure 7 and Figure 9, respectively) had
only a single training unit available, whereas test unit 10
in DS01 had two training units available during training of
their corresponding flight class RFR models. Moreover, it
is understandable that especially the first half of the RUL
point estimations is less accurate because the test units might
follow a slightly different deterioration trend compared to the
deterioration trends on which the units have been trained.
These possible slightly different deterioration trends during
the test units initial lives could result into largely different
RUL point estimations, due to the way in which thresholds
were created by RFR when constructing the forests.

Furthermore, it is generally found to be more difficult to
obtain accurate estimations during the test units initial lives,
as their estimation windows (time from a certain estimation

to a unit’s EoL) are still large. This is supported by the
observation that the RUL point estimations of all test units in
DS01 converge to the true RUL values as the units approach
their EoL. Additionally, it is supported by the shape of the
probability distributions corresponding to the last RUL point
estimations (true RUL of zero FC) as shown in Figure 7,
Figure 9 and Figure 11. As can be observed, the main peaks
of these probability distributions are located at, or close to a
RUL value of zero FC which is in line with the expected peak
locations of these distributions. Furthermore, when comparing
the individual test units in DS01, it can be seen that test unit
7 (Figure 7) has the most accurate overall results in terms
RUL point estimations, despite the fact it has been trained on
a single training unit. This is a remarkable result and expected
to be caused by the test unit fairly accurately following the
training unit.

Another remarkable outcome is found for the results of test
units in DS03 (units 11, 14 and 15), as they are noticeably
better (especially the RUL point estimation graphs) compared
to those of the test units in DS01 (units 7, 8 and 10). This
is remarkable given the complexity of DS03 compared to
DS01 (three different simultaneous failure modes affecting the
units versus one failure mode affecting the units, respectively).
The likely explanation for these more accurate RUL point
estimations is the fact that the test units of DS03 have been
trained on a larger number of training units compared to the
test units of DS01 (test units of DS03 were trained on a
total of nine units, whereas test units of DS01 were trained
on a total of four units). Nevertheless, these generally more
accurate results for test units in DS03 verify that the developed
model as a whole is capable of being used on simple as
well as considerably more complex datasets. Here, complexity
refers to the number of different simultaneously failure modes
present in the units of a dataset. Moreover, comparing the
overall RMSE and MAE scores (obtained using the FC average
method as the data smoothing method) that are computed
by producing RUL point estimations for every FC starting
from a unit’s 10th FC (these scores are shown in the FC
average entries of Table 18 that is discussed in paragraph
4.2), shows that these scores are approximately equal to or
sometimes lower than the scores obtained for test units in
DS01. This is considered as an additional way of verifying that
the developed model is capable of correctly handling various
types of datasets.

However, further analysis of the RUL point estimation
graphs of test units in DS03 shows that, especially test units
15 (Figure 10) and 11 (Figure 12), also have fairly large
deviations from the corresponding true RUL values during
the first half of the estimations (and tend to converge to
the true RUL values as the units approach their EoL). As
explained, this might be caused by the test units initially
following a slightly different deterioration trend, which could
lead to largely different RUL point estimations due to the way
in which thresholds were created by RFR. Additionally, in
general, obtaining accurate estimations during test units initial
lives is more difficult because of the large estimation windows.
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Besides this aspect of test units having fairly large devi-
ations compared to their true RUL values during the first half
of the estimations, two other interesting aspects can be noticed
when comparing the results of test units in DS03. Firstly,
the RUL point estimations of test unit 14 (Figure 8) are the
closest to the true RUL values. Although a specific extensive
explanation of the behaviour of this single unit cannot be
given due to the complex nature of RFR, it is likely that
the test unit is adequately following the degradation patterns
as learned by the RFR flight class model during training.
Secondly, the RUL point estimations of test unit 15 (Figure 10)
show relatively large deviations between a true RUL of 30
FC and 20 FC. Again, a specific extensive explanation can
unfortunately not be provided. However, it is likely that those
specific flights behaved slightly different (in terms of throttle
setting) compared to the other flights of test unit 15. This
different throttle setting might have been required due to
for example different wind speeds (jet streams) during these
specific flights. In case tail jet streams were present because
of a certain storm, it could have been required to set a lower
throttle setting, hence resulting into different smoothed values
(and ultimately different estimated RUL values).

When considering the histograms of the test units from
DS01 as well as DS03, it can be seen that the majority of the
histograms has a wide spread, but with clear peaks centered at
certain RUL values (this wide spread is especially visible in
histograms corresponding to the first and middle RUL point es-
timations). This behaviour is considered to be natural for RFR
as its power lies in using "wisdom of the crowd". As explained,
in RFR, single uncorrelated decision trees are built which
might be under or overestimating the true RUL. However, by
averaging the estimations of all trees (using "wisdom of the
crowd") RFR is generally able to perform fairly accurate RUL
point estimations. This is also supported by closely examining
the probability distributions of all test units, as it is found that
the probabilities of correctly estimating the true RUL values
are generally found to be low. Nevertheless, inspecting the
accuracy of the corresponding RUL point estimations shows
that combining the RUL estimations of all trees into a single
RUL point estimation results into more accurate RUL point
estimations, which converge towards the true RUL values as
the units approach their EoL. Additionally, it can be observed
that the wide spread of the probability distributions decreases
over time (hence the uncertainty decreases) as the units reach
their EoL. This shows that the flight class RFR models are
capable of converging to the true RUL values, not only in
terms of accuracy, but also in terms of uncertainty.

4.2 RUL point estimation errors (DS01, DS02 and DS03)

This paragraph discusses the results of the RUL point
estimations (in terms of errors) obtained with the flight class
RFR models in DS01, DS02 and DS03. Note again that these
RUL point estimations are obtained for every FC (starting from
a unit’s 10th FC). Also, note again that the results for DS02 are
only obtained for test unit 11 from flight class RFR model 3, as
this is the only present flight class RFR model in DS02 (with

solely this single corresponding test unit). Finally, note that
this paragraph contains both the results for test units which
used the FC average method for data smoothing as well as
units which used LOWESS for data smoothing.

For each test unit per flight class RFR model in the data
subsets, the RMSE, MAE, Minimum Absolute Error (Min.
Abs. Error) as well as Maximum Absolute error (Max. Abs.
Error) are computed based on the RUL point estimations. This
is clearly shown for the FC average as well as LOWESS
entries in Table 18. The utmost remarkable result shown in
Table 18 is the fact that the errors (especially the RMSE,
MAE and Minimum Absolute Error) for the far majority of
the test units, from which their data has been smoothed using
the FC average method, is considerably lower compared to the
errors of the test units of the LOWESS entries. Consequently,
it can be concluded that using the FC average as a smoothing
method, has a large positive effect on the developed model as
a whole.

This is also supported by the fact that the Maximum
Absolute Errors, obtained when using LOWESS, are gener-
ally substantially larger, compared to the Maximum Absolute
Errors obtained when using the FC average method. Thorough
analysis reveals that only for test unit 8 of DS01, the Maximum
Absolute Error for which the data has been smoothed with the
FC average method is slightly higher (0.3 FC), compared to
the Maximum Absolute Error of this unit for which the data
has been smoothed with LOWESS, as can be seen in Table 18.
Although a precise explanation for this minor difference can
not be provided due to the complex nature of RFR, it has been
found that these particular Maximum Absolute Error values for
test unit 8 of DS01 (for the FC average entry and the LOWESS
entry, respectively), are obtained for estimations corresponding
to different true RUL values. To be precise, the Maximum Ab-
solute Error corresponding to the FC average entry is obtained
at a true RUL of 31 FC, whilst the Maximum Absolute Error
corresponding to the LOWESS entry is obtained at a true RUL
of zero FC.

Hence, it additionally indicates that using LOWESS yields
less accurate results since it is expected to provide better
results as the unit approaches its EoL, due to the fact that
more data becomes available for smoothing with LOWESS.
As a result, the remainder of this paragraph will exclusively
focus on the errors corresponding to the FC average entries
in Table 18. Thorough examination of the FC average entries
in Table 18 shows that test unit 8 of DS01 has the overall
highest RMSE score (where it also has the overall highest
Maximum Absolute Error, as mentioned previously). Having
this highest overall RMSE score is expected to be caused by
the fairly large difference between the RUL point estimations
and corresponding true RUL values in the interval between a
true RUL of 50 FC and 30 FC (as can be seen in Figure 9).
These fairly large deviations are believed to be caused by the
test unit following an initially less steep deterioration pattern,
in comparison to the pattern learned from its single training
unit.
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Figure 7. RUL point estimations and probability distributions of first, middle
and last RUL point estimations of unit 7, DS01.

Figure 8. RUL point estimations and probability distributions of the first,
middle and last RUL point estimations of unit 14, DS03.
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Figure 9. RUL point estimations and probability distributions of first, middle
and last RUL point estimations of unit 8, DS01.

Figure 10. RUL point estimations and probability distributions of the first,
middle and last RUL point estimations of unit 15, DS03.

17



Figure 11. RUL point estimations and probability distributions of first, middle
and last RUL point estimations of unit 10, DS01.

Figure 12. RUL point estimations and probability distributions of the first,
middle and last RUL point estimations of unit 11, DS03.
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Table 18
RESULTS OF RUL POINT ESTIMATIONS (FOR EACH FC STARTING FROM 10TH FC) OF TEST UNITS FOR FLIGHT CLASS RFR MODELS 1, 2 AND 3 IN DS01,

DS02 AND DS03.

Data subset FC average /
LOWESS

Flight class
RFR model

Test unit
number RMSE [FC] MAE [FC] Min. Abs.

Error [FC]
Max. Abs.
Error [FC]

DS01 FC
average

1 7 10.1090 8.4136 0.1500 28.5100

1 9 10.9003 9.0736 0.0700 32.7900

2 8 14.2437 9.9091 0.0123 42.3261

3 10 10.4777 7.7062 0.0667 32.4444

DS01 LOWESSS

1 7 21.2952 17.3712 0.4545 55.1882

1 9 24.4653 20.5472 0.6818 46.3455

2 8 27.9983 25.2246 2.2667 42.0167

3 10 22.2084 18.5335 1.2226 54.9677

DS02 FC average 3 11 7.4630 5.5295 0.0427 18.8648

DS02 LOWESS 3 11 10.9586 8.9191 0.0633 24.3300

DS03 FC
average

1 12 13.5063 10.3939 0.0406 34.8312

1 14 10.6102 7.6266 0.0125 11.3813

2 15 9.5315 7.2841 0.0004 25.5427

3 10 13.0331 10.4942 0.2556 31.0556

3 11 11.2808 8.6007 0.1889 23.4444

3 13 12.5605 9.5952 0.4333 36.1333

DS03 LOWESSS

1 12 18.0241 11.9780 0.0750 46.0875

1 14 17.0300 12.2588 0.2875 36.7250

2 15 16.2781 13.7128 1.0667 37.9556

3 10 14.0664 11.2966 0.5316 43.5569

3 11 15.4393 12.5263 0.2108 33.0392

3 13 14.5313 11.5381 0.4438 42.2990

Moreover, another interesting result is obtained when
considering the FC average entries in Table 18. It can be
seen that test unit 11 of DS02 has the lowest overall errors
in terms of RMSE and MAE. This is interesting given the
fact that this test unit (as well as the test units in DS03) is
affected by three different simultaneous failure modes, whilst
the test units in DS01 are only affected by a single failure
mode. Having a unit being affected by a larger number of
different simultaneous failure modes is expected to have a
decreased RUL point estimation accuracy, as this yields a
more complex deterioration pattern. Nevertheless, test unit 11
of DS02 has been trained on more training units (three units)
in comparison to the test units in DS01. As a matter of fact,
test unit 10 of DS01 is trained on only two training units,
whereas units 7 and 9 have been trained together on solely a
single training unit. Moreover, also unit 8 of DS01 has been
trained on solely a single training unit. Another explanation
for unit 11 of DS02 having these lowest RMSE and MAE
scores is that this test unit happened to adequately match
the degradation pattern of its training units. Furthermore,
Table 18 shows that also the errors (in terms of RMSE,
MAE, Minimum Absolute Error and Maximum Absolute
Error) for test units in DS03 are approximately equal to

or sometimes even smaller than the errors obtained for test
units in DS01. Moreover, the overall lowest Minimum and
Maximum Absolute Errors are obtained for test units 15
and 14 in DS03, respectively. Additionally, besides test unit
15 of DS03 having the overall lowest Minimum Absolute
Error, it also has the second lowest overall RMSE as well
as MAE scores. The above are considered to be equally
interesting results, given that the test units in DS03 are also
affected by three simultaneous different failure modes (which
is expected to decrease the estimation accuracy of the RUL
point estimations). Again, these accurate results are believed
to occur due to the overall higher number of available training
units compared to the number of available training units in
DS01. As a result, it verifies that the developed model is
capable of correctly handling various types of datasets in
terms of complexity as well as in terms of the total number of
units they contain. Furthermore, it has been demonstrated that
using the FC average method for data smoothing, generally
results into the lowest errors in terms of RMSE, MAE,
Minimum Absolute Error and Maximum Absolute Error.
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5 DISCUSSION

In reality, the implications of an airline being able to estim-
ate a unit’s (engine’s) RUL with accompanying uncertainty
are twofold. Firstly, it allows for optimized planning of the
required maintenance personnel to replace the specific unit that
is estimated to fail once it has been affected by a certain failure
mode. Secondly, it allows for an optimized planning and usage
of the available hangers as it will be known in advance how
many units are estimated to fail. Hence, the total required
time to replace the unit(s) can be estimated more accurately,
compared to preventively replacing all of an aircraft’s units
after a predefined number of FC or flight hours.

Apart from the implications of this study, it has been found
that developing three separate flight class RFR models (one per
flight class) was necessary due to the fundamentally different
operational flight conditions. In case a single model would
have been developed to estimate the RUL of units from all
three different flight classes, the accuracy would have been
considerably lower (and corresponding uncertainty consider-
ably higher) compared to the results obtained in section 4.
This also illustrates the limitation of the proposed models in
this study. That is, the proposed flight class RFR models are
only suitable to handle units that exclusively operate in the
flight class for which the models are developed. In case a unit
would have been used for short as well as medium or long-
haul flights, it would be difficult to produce accurate RUL
estimations with low uncertainty.

Besides this, one of the most remarkable aspects that
has been found when considering all steps of the applied
methodology (as discussed in section 3) is concerned with
the use of the K-fold CV method on time series data by other
studies. As described, K-fold CV is highly unsuitable for time
series data. That is, K-fold CV assumes data to be independent
and identically distributed, whilst this assumption is clearly
violated for this type of data. Time series data cannot be
considered to be independent, as future observations (feature
values) are dependent on past observations. In case one does
use K-fold CV for time series data, it will almost certainly give
’biased’ results in terms of RMSE scores on the test dataset
and especially CV scores on the development dataset.

Finally, comparing the results obtained for the test unit of
the validation data subset (DS02) to existing literature (that
also used DS02), leads to the conclusion that the proposed
developed model competes well with the proposed models
by Biggio et al. [20]. As a matter of fact, out of the five
RUL estimation models proposed by Biggio et al. [20], the
proposed model of this study outperforms two of those models.
However, given that the study of Biggio et al. [20] does not
provide RUL point estimation graphs, only the RMSE scores
can be compared. The proposed model of this study has a
RMSE score of 7.4630 FC (which is obtained by performing
a RUL estimation for every FC, starting from the 10th FC
of test unit 11). This RMSE score is lower than the two
highest RMSE scores of the five models proposed by Biggio
et al. [20], which are 8.7000 FC and 7.7100 FC, respectively.

Furthermore, the RMSE score of 7.4630 FC is only slightly
higher (0.1530 FC) than the lowest RMSE score of the five
models proposed by Biggio et al. [20], which is 7.3100 FC.
However, it is unknown how the RMSE scores of the study by
Biggio et al. [20] have been calculated. More precisely, it is
unknown how many training units were used, which test unit
has been used to obtain these RMSE scores as well as how
many RUL point estimations were used to obtain the scores.
Nevertheless, it has been demonstrated by comparing the
RMSE scores that the proposed model of this study performs
well compared to the proposed models of the study by Biggio
et al. [20], especially because those models have a higher
complexity as they are based on Gaussian Process models as
well as Deep Neural Network models.

6 CONCLUSION

Whilst the majority of studies regarding Remaining Useful
Life (RUL) estimation of aircraft units (engines) solely focused
on the accuracy of so-called RUL point estimations, this
study additionally focused on modelling the corresponding
uncertainty of those RUL point estimations. The data-driven
Random Forest Regression (RFR) algorithm has been applied
in order to obtain the RUL point estimations as well as the
probability distributions for a selection of those RUL point
estimations. Before the application of RFR, the data has
been processed using the flight cycle (FC) average smoothing
method as well as the Locally Weighted Scatterplot Smoothing
(LOWESS) method. Hereafter, for both individual smoothing
methods, Recursive Feature Elimination with cross validation
(RFECV) has been applied to determine the required features
that yielded the most accurate RUL point estimations. The
above mentioned steps (data processing, the use of RFECV
and the use of RFR) have been performed per flight class
due to the substantially different operational flight conditions.
In other words, a model has been developed per flight class.
Therefore, the models are referred to as flight class RFR
models. As a consequence, it can be concluded that the main
limitation of this study is the fact that the flight class RFR
models are only capable of accurately estimating the RUL of
units that exclusively operate in the flight class for which the
models are developed.

Besides this conclusion, it has been found and can be
concluded for all flight class RFR models that using the FC
average smoothing method for data smoothing, yielded consid-
erably more accurate RUL point estimations for all test units
(compared to using LOWESS as data smoothing method). The
main reason for this substantial difference is caused by the
amount of available data for LOWESS to provide accurately
smoothed data. During training of the flight class RFR models,
data corresponding to the entire lifetimes of training units has
been available for smoothing with LOWESS, whilst this was
obviously not available for test units. In practice, only past data
will be available for test units instead of the data corresponding
to their entire lifetimes. Hence, this lack of available data
for smoothing with LOWESS resulted into different smoothed
data compared to the smoothed training data.
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This different smoothed data eventually caused largely
different RUL point estimations in comparison to the RUL
point estimations obtained with the FC average data smoothing
method. Furthermore, a conclusion can be obtained regarding
the uncertainty of the RUL point estimations. It has been found
that the probability of accurately estimating a single RUL
point estimation is generally relatively low, as most probability
distributions show rather large tails (hence the uncertainty is
relatively high). However, the true power of RFR is found in
combining all estimations into a single average estimation, as
this compensates for single trees under or overestimating the
true RUL value. Moreover, it has been found that the RUL
point estimations of the majority of the test units, especially
from which the data has been smoothed with the FC average
smoothing method, converged towards the true RUL over time
as the units approached their end of life (hence the accuracy
improved). As a matter of fact, not only the RUL estimation
accuracy improved over time, the corresponding uncertainty
decreased as well. This latter part is concluded due to the fact
that the width of the tails of the majority of the probability
distributions decreased over time.

Furthermore, it has been found that despite data subset
DS03 is considerably more complex as its units were affected
by three different simultaneous failure modes, the results (in
terms of errors) of the test units were approximately equal to
or even lower compared to the results obtained for test units
in data subset DS01 (which is substantially less complex as
those units were affected by only a single failure mode). This
is explained by the fact that DS03 contained more training
units than DS01, hence the flight class RFR models were able
to learn enhanced degradation patterns and eventually obtain
these approximately equal or even lower errors compared
to DS01. Therefore, it can be concluded that increasing the
number of training units even more, is expected to improve
the accuracy of the RUL estimations even further. Finally
when considering data subset DS02 (which corresponding test
unit has also been affected by three different simultaneous
failure modes, but has been trained on more training units
than the test units in DS01), it has been shown that the
proposed model even outperformed two out of the five models
from existing literature. As a result, it can be concluded that
the proposed model effectively competes with the currently
proposed models in the literature.

7 RECOMMENDATIONS

In order to further investigate the dataset with its subsets, as
well as to further improve Remaining Useful Life (RUL) es-
timation accuracy and decrease the corresponding uncertainty,
it is recommended to investigate the following aspects in future
work. First of all, it would be interesting to explore the possib-
ility of using a more advanced algorithm for RUL estimations,
as it might be able to further improve the RUL estimations
and decrease the accompanying uncertainty. Therefore, it is
recommended to investigate the use of an advanced algorithm
such as a neural network for the RUL estimations and their
corresponding uncertainty. Furthermore, it is recommended to

explore the use of data subset DS08 whenever it becomes
fully available (all five parts within DS08), as this data subset
contains the most training units. Consequently, it is expected
to improve the accuracy of the RUL point estimations as it has
been found that an increased number of available training units
seems to yield more accurate RUL point estimations. Another
recommendation regarding the number of available training
units is concerned with the development of methods which
are capable of generating accurate RUL estimations, despite
having a very limited number of training units available. This
is useful as in general, a limited number of training units is
expected to be available for RUL estimation in practice.

Finally, this study focused on estimating the RUL of a unit
as a whole (without considering which specific component
would fail). Therefore, it is recommended to conduct research
into the development of a method which is also capable of
identifying which specific component within the unit will fail.
This is considered to be valuable information since knowing
in advance which specific component will fail, allows one to
decrease the number of spare components in stock. That is, the
specific component could then be ordered only when required,
thereby further reducing the necessary storage space, hence
further reducing costs.
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1 Introduction
Throughout the past decades, the aviation industry has been growing rapidly. In 2019,
the International Civil Aviation Organisation (ICAO) announced that a total of 4.5 bil-
lion passengers have been transported by scheduled services, which is a 3.6% increase
compared to 2018 [1]. In that same year, the increase of transported passengers is ac-
companied by a 1.7% increase of departed aircraft to 38.3 million, compared to 2018 [1].
Despite the fact that passenger demand currently experiences an extraordinary decrease
due to the COVID-19 pandemic [2], it is estimated that global passenger demand will
recover within 2.4 years to numbers equal to the demand in 2019 [3], and will continue
to grow afterwards to approximately 5.6 billion passengers by 2030 according to the
International Air Transport Association (IATA) [4]. In order to transport these pas-
sengers whilst ensuring safe operation of the aircraft, aircraft maintenance is essential.
However, Maintenance, Repair and Overhaul (MRO) costs correspond to 10.3% of the
airline’s operational costs on average, according to IATA [5]. Within these MRO costs,
aircraft engines account for the largest maintenance cost being equal to 43% of the total
maintenance costs [5]. Therefore, airlines try to decrease the MRO costs as much as
possible, especially the maintenance costs associated with aircraft engines.

In general, maintenance can be divided into reactive and proactive maintenance (see Fig-
ure 1.1), in which the latter can be further divided into so-called preventive maintenance
and predictive maintenance [6]. Reactive maintenance is maintenance only carried out
after a component has failed. A preventive maintenance strategy (currently widely ap-
plied in the aircraft maintenance sector [7]) focuses on scheduled replacement of specific
components after a predetermined number of flight hours or flight cycles [6], thereby
’wasting’ some of the component’s Remaining Useful Life (RUL) since the component
will be replaced before failure occurs. Predictive maintenance is a prognostic strategy
concerned with the prediction of component failure (taking into account it’s health con-
dition) and therefore allows one to predict when maintenance should be performed and
thus estimates the component’s RUL [6]. Note, the terms predictive maintenance and
condition-based maintenance are regularly used as synonyms in literature [7],[8] and
[9]. Furthermore, predictive maintenance is considered as being part of the so-called
Prognostics and Health Management (PHM) process [10].

Figure 1.1: Different types of maintenance [6].
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The use of predictive maintenance allows for component removal at ’the right time’ thus
minimizing the waste of the component’s RUL and thereby reducing costs. As a result,
one of the possibilities to decrease the maintenance costs associated with aircraft en-
gines whilst preserving flight safety, as components are replaced before the occurrence of
actual failure [11], is to implement predictive maintenance [7]. In fact, using predictive
maintenance does not only allow one to estimate a component’s RUL, it also allows for
the identification of a component’s current health state as well as to predict its future
health state [12]. This is achieved by firstly examining component deterioration data in
order to estimate its current health state and reveal deterioration trends [13]. There-
after, these deterioration trends will be provided as input for algorithms suitable for the
prediction of the component’s future health state and estimate its corresponding RUL
[13].

1.1 Motivation

Since aircraft engines consist of multiple components which could fail separately and
thus require maintenance, it is useful for an airline to know in advance which engine
components are going to fail. To be more specific, it is useful for an airline to know
which engine components are going to fail together with the engine’s associated RUL as
well as the corresponding uncertainty of this RUL estimation. Having a model capable
of achieving these requirements is believed to be a solution to seriously decrease aircraft
maintenance costs. However, such a complete model does not exist yet and thus reveals
the need for the development of such a model. Therefore, this research focuses on the
development a model being able to analyse deterioration data of multiple aircraft en-
gines, identify individual engine components that will fail (so-called faulty components),
determine degradation trends in this deterioration data and produce aircraft engine RUL
estimations with the probability distributions of these estimations in order to model the
uncertainty.

1.2 Report outline

The remainder of this literature study report starts with an extensive literature review in
Chapter 2. This chapter thoroughly describes the general phases of a PHM process, along
with the most commonly used methods and techniques as described in the literature
in each phase. Furthermore, proposed techniques to identify faulty components have
been addressed in this chapter as well as the literature gap that has been identified.
Finally, Chapter 3 describes the research proposal which follows from the previously
described problem description and the identified literature gap. This chapter contains
the research’s objective, main research questions, sub-questions as well as the research
scope.
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2 State-of-the-art literature review
This chapter thoroughly describes the extensive literature review which has been con-
ducted regarding RUL estimation as well as faulty component identification. It describes
the most widely used methods and techniques proposed in previous research studies along
with the cutting edge techniques i.e. the state-of-the-art. The chapter starts with the
division of the four main phases within a general health prognostic process for machinery
components as described in Paragraph 2.1. From this division, the various techniques
and methods as described in literature will be discussed per process phase (Paragraph
2.2, Paragraph 2.3, Paragraph 2.4 and Paragraph 2.5). Thereafter, Paragraph 2.6 ad-
dresses techniques described in literature to identify faulty components within aircraft
engines. Finally, Paragraph 2.7 contains a discussion regarding the extensively described
literature review and describes the identified literature gap.

2.1 General phases of a PHM process

According to the literature, a PHM process can generally be divided into four main
phases (assuming one has access to sensor data from the system or component of inter-
est): 1) Data cleaning phase, 2) Health indicator construction phase, 3) Health stage
division phase and 4) RUL estimation phase [14]. An elaborate explanation on the
purpose of each individual phase together with their corresponding most widely used
techniques and methods as described in the literature, is provided in Paragraph 2.2,
Paragraph 2.3, Paragraph 2.4 and Paragraph 2.5, respectively.

2.2 Data cleaning phase

Assuming one has access to deterioration data from sensors which are installed on the
system or component of interest, the first step in the PHM process is to clean this data
as sensor data is usually contaminated with noise [15]. Noisy data can have a severely
negative influence on prediction results [16]. In order to reduce this noise as much as
possible, several techniques have been proposed throughout the years. In the literature,
one of the most commonly used techniques for noise reduction is the moving average
filter algorithm [17], [18], [19] and [20], because of its easy implementation and satisfying
results. The moving average filter algorithm is an optimal algorithm for the reduction
of random noise in data whilst maintaining the original data characteristics, i.e. data
deterioration trends [21]. The mathematical form of the moving average filter algorithm
as described by Smith [21] can be seen in Equation 1, where x[ ] contains the input
sensor data, M denotes the window size (number of points considered when calculating
the average) and y[ ] contains the average value of the data points considered in the
window size. In principle, the algorithm calculates the average of a certain number
of data points (specified by the window size M) from the sensor data and stores this
average value as one output data point for the points included in the window size [21].
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y[a] =
1

M

M−1∑

b=0

x[a+ b] (1)

As an example, suppose one wants to use the moving average filter starting from sensor
data entry 25, with a window size of 4 . Then, the output of the algorithm for data
entry 25 is given by Equation 2.

y[25] =
x[25] + x[26] + x[27] + x[28]

4
(2)

Besides using algorithms to reduce noise in data, sometimes a very simple, yet effective
method which does not require the use of any specific noise reduction algorithm is
applied. For example, a study conducted by Ghorbani and Salahshoor states that they
simply cleaned the dataset (consisting of deterioration data from multiple sensors) from
noise by discarding sensor data which showed a constant value over time [22]. However,
it can be argued that this method of ’noise removal’ actually should be described as a
method belonging to sensor selection.

2.3 Health indicator construction phase

After the deterioration data has been cleaned sufficiently, Health Indicators (HIs) must
be constructed to be able to identify the degradation trend of the component of inter-
est [14] as well as to obtain its current health status [23]. According to Lei et al., the
construction of suitable HIs is important as it is expected to improve the prediction
accuracy of the RUL estimations [14].

Before one can actually construct HIs, it must be determined which sensors will be used
in case the dataset contains data from multiple sensors. In the literature, a commonly
used method for relevant sensor selection is to include only sensors which data shows
non-constant values over time, as applied by Zhang et al. [24], Yang et al. [25] and
Coble and Hines [26] (which also considered the correlation between sensors as a mea-
sure of a sensor’s suitability). Another widely used technique in literature is Principal
Component Analysis (PCA). PCA is a dimension reduction technique used for data
which has multiple dimensions (e.g. multiple different sensor measurements per time
step) and is also suitable to handle white noise [27]. As described by Lasheras et al.
[28], PCA transforms the original variables in a dataset (the sensors) x1, x2, ..., xn into
a different dataset q1, q2, ..., qr, by linear mapping, in which r ≤ n. By applying PCA,
one is able to reduce the number of sensors in the dataset whilst preserving the data
characteristics [14]. According to Ghorbani and Salahshoor [22], PCA is only considered
to be an appropriate method in case the data is linearly separable. In case of nonlinear
data, Kernel PCA (KPCA) might be used to overcome the limitations of PCA [22].
KPCA uses nonlinear mapping for converting the high dimension input space to a low
dimension output space [22].
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After selecting the relevant sensor data, HIs can be constructed. Hu et al. found that
two types of HIs can be distinguished: the physical HIs (PHIs) and the virtual HIs
(VHIs) [23]. The PHIs are HIs which are constructed directly from sensor data which is
related to the physics of specific failures [23]. On the other hand, VHIs are created by
combining several PHIs or the use of multi-sensor data [14]. A variety of PHIs as well
as VHIs were constructed and described in literature, from which the most important
ones are described in Subparagraph 2.3.1 and Subparagraph 2.3.2, respectively.

2.3.1 Physical health indicators

Root Mean Square PHIs
Throughout the years, one of the most commonly used PHIs is the Root Mean Square
(RMS) value of a signal [14]. It appears to be especially applied for the analysis of
bearings. In 2011, Malhi et al. calculated the RMS value from vibration signals of
bearings and used it as a PHI for the prediction of bearing defect progression [29]. A
study conducted by Huang et al. in 2017 used the RMS value of vibration signals of
ball bearings as a PHI to reveal the bearing’s degradation trajectory [30]. Liao and
Tian decided to take the logarithm of the RMS value of the vibration signals of bear-
ings as a means to measure the degradation behaviour [31]. A slightly different version
of RMS has been proposed by Meng et al., which is the RMS with cumulative sum
(RMS-CUMSUM) [32]. It has been found that it is able to show the tendency of the
bearing’s degradation process [32]. Besides these bearing application, the RMS value is
also used as a PHI for health state monitoring of turbine cutting tools (which are used
to manufacture turbine blades) in a study conducted by Yingchao et al. [33]. In 2021,
Mitici and de Pater employed the moving average of the maximum RMS as a PHI for
the health status monitoring of aircraft cooling units [34]. Večeř et al. used the RMS
value to observe and track the health status of gearboxes [35].

Kurtosis PHIs
According to the literature, another popular conventional PHI is the kurtosis (KUR)
value [36]. Kurtosis can be best explained as a means to describe a distribution’s ’tailed-
ness’ (e.g. it’s peakness or flatness) [37]. In the literature, a KUR value higher than
three indicates a sharp peak in the signal [38]. Imagine one is monitoring vibrations of
gearboxes. At some point in time, a fault may arise in a specific component which in
turn could cause a peak in the amplitude distribution of the gearbox’s vibration signal.
As a result, this would cause an increasing KUR value which can be used to detect this
fault at an early stage [39]. Elasha et al. employed the KUR value as a PHI to monitor
the health status of wind turbine gearboxes [38]. However, it has been found that KUR
is only able to identify an initial fault at an early stage in time [39]. Barszcz and Randall
used Spectral Kurtosis as a PHI for the identification of strong peaks in the frequency
signal caused by planetary gear moving over cracked tooth in a wind turbine [40]. Unlike
the KUR value, Spectral Kurtosis is able to identify non-Gaussian components (e.g., a
different frequency in the gearbox due to suddenly cracked gear teeth) in a vibration
signal [40].
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Additional and new PHIs
Other commonly used conventional PHIs as described in the literature to monitor the
health status of machines are the skewness, peak-to-peak value and Crest Factor [41].
Apart from these conventional PHIs, some researchers constructed new PHIs. For exam-
ple, Hananchi et al. [42] constructed two new PHIs in order to monitor the performance
deterioration of gas turbine engines. The first PHI is the heat loss index which is a mea-
sure for the loss of thermal power in comparison to the engine’s healthy condition [42].
Their second PHI is the power deficit index which has been defined by Hananchi et al.
as: "the deficiency ratio of the gas turbine engine output power due to the performance
deterioration" [42].

2.3.2 Virtual health indicators

PCA and SOM-based VHIs
As explained previously, VHIs can be constructed using multi-sensor data or by com-

bining PHIs. When examining the literature, sometimes PCA is used when construction
VHIs [14]. For example, Widodo et al. [43] first employed PCA to reduce the dimen-
sionality of the features in the dataset. Then, quantization errors (deviation between
unknown health condition and healthy state condition) were computed and used as a
VHI. Li et al. applied PCA to reduce the data dimensionality and constructed a VHI
from multi-sensor data (four sensors) in a dataset from gas turbine engines [44]. Besides
using PCA to construct VHIs, some researchers applied the Self Organising Map (SOM)
for VHI construction. The SOM is a non-supervised neural network that organises the
data into two-dimensional map units, thereby reducing the number of initial features
[45]. Hong et al. proposed a VHI being the so-called Confidence Value, which is ob-
tained from the SOM to represent the health state of a bearing [45].

Sensor-fused VHIs
However, not all studies employed PCA or SOM to construct VHIs. For example, Guo
et al. proposed a recurrent neural network based VHI which fuses multiple features in
order to monitor the health state of bearings [46]. Zhao et al. [47] merged 21 sensors
from gas turbine engine data together into one single VHI using linear regression. The
authors stated that using linear regression, the weight of each sensor (indicating if it
contains relevant deterioration data) would be automatically determined [47]. Using a
linear regression model to construct a VHI out of an gas turbine engine degradation
dataset is also employed by Xinxin et al. [48]. However, the authors chose to only select
sensors showing monotonously degradation behaviour, which lead to the selection of five
sensors as input for the linear regression model to construct the VHI [48]. Bechhoefer
created a VHI by merging six different features of gears which are based on heavily tailed
Probability Density Functions (PDFs) or so-called Rayleigh PDFs [49].
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Mahalanobis Distance VHIs
The Mahalanobis Distance (MD) is another frequently employed VHI. It is a distance
measure which takes into account correlation between variables in data [50]. Therefore, it
is able to identify abnormal data in a dataset [51]. Meng et al. used the so-called Growth
Rate of Real-time Mahalanobis Distance with Cumulative Sum (GRRMD-CUMSUM)
as a VHI to monitor the performance degradation of bearings [32]. Li et al. used a
similar VHI based on the MD and CUMSUM for the estimation of several bearing per-
formance degradation health stages [52]. In 2016, Wang et al. employed the MD to fuse
14 statistical features into one VHI representing the degradation process of bearings [53].
Using this VHI, the authors found the degradation process to be approximately linear,
which in turn contributes to being able to more accurately determine the moment at
which the bearing transfers from a healthy state to an unhealthy state.

Nevertheless, it should be noted that neither of the aforementioned studies selected sen-
sors and/or HIs which identifies the failure of a specific component (a faulty component)
in a system consisting of multiple components. The studies seemed to be only interested
in selecting suitable sensors and HIs which accurately represent the degradation process
of a system as a whole, without taking into account failure of specific components.

2.4 Health stage division phase

During a machine’s degradation process, the constructed HIs might show changing degra-
dation trends as a certain failure develops over time [14]. Therefore, Health Stage (HS)
division (two-stage or multi-stage) is required as it divides the degradation process into
HSs related to the obtained degradation trends from the HIs [14].

Two-stage HS division
A two-stage HS division distinguishes between a healthy state and an unhealthy state
[54]. Such a HS division from a bearing degradation process using vibration data is
depicted in Figure 2.1, where tFPT denotes the First Prediction Time (FPT) and tEoL

the End of Life (EoL) time. Note, tFPT starts as soon as the degradation process is
considered to enter the unhealthy state.
Multiple studies used the two-stage HS division approach. Often in the literature, the
FPT (the moment the component is considered to transition from a healthy to an un-
healthy state) is determined by defining a predefined threshold at which the unhealthy
stage starts. However, no consensus is reached yet on a general method to determine
these thresholds. As a matter of fact, the determination of the thresholds is considered
to be a huge challenge as these thresholds should not be set to soon (will raise false
alarms) or too late (will result in not enough time to take precautionary actions [54])
[55]. Researchers proposed different approaches as a means to define thresholds in a
two-stage HS division process. For example, Wang et al. adopted the two-stage HS
division in a bearing degradation process and selected the 3σ interval of the MD as the
threshold for the FPT [53]. In 2016, a study conducted by Jin et al. first used Box-Cox
transformation to transform the HIs from bearings into Gaussian distributed data and
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Figure 2.1: Example of two-stage Health Stage division of bearing degradation process
[54].

then also employed 3σ interval as the threshold to distinguish between the healthy and
unhealthy state [56]. Zhang et al. also focused on the degradation process of bearings
in combination with a two-stage HS division and proposed the use of a predefined confi-
dence threshold value of 90% as a means to determine that a bearing contains a certain
fault (and is therefore considered to be in the unhealthy state), in order to decrease the
number of false alarms [57]. Mitici and de Pater used the two-stage HS division as well
and set a 2σ interval as an alarm threshold to define the start of the unhealthy state of
aircraft cooling units [34].

Multi-stage HS division
Besides a two-stage HS division, there exists the so-called multi-stage HS division. A
multi-stage HS division, as the name already implies, distinguishes between multiple HSs
in case the degradation trend of the component of interest does not have a consistent
unhealthy stage (e.g. the unhealthy state could be split into a degradation and a critical
stage), and thereby cannot be expressed by a single degradation model [14]. An exam-
ple of a degradation process with a non-consistent unhealthy stage is shown in Figure 2.2.

Multi-stage HS division through changing points
Some researchers chose to divide the degradation process into multiple substages using
certain changes in HIs as a means to define a change from a HS to another [14]. For
example, a study conducted by Kimotoho et al. proposed to utilize the peak amplitude
shifts in frequency obtained from the power spectral density analysis of ball bearings to
divide the degradation process into five different stages [58]. Another approach has been
adopted by Hu et al. which used changing points of confidence levels as a means to split
the degradation process of wind turbine generator bearings into four separate HSs [59].
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Figure 2.2: Example of multi-stage Health Stage division of bearing degradation process
[14].

Multi-stage HS division through clustering
Apart from using changes in HIs to distinguish between multiple HSs, clustering has
also been applied to categorize different HSs. In 2019 and more recently in 2021, Wang
et al. applied the Fuzzy C-means clustering algorithm to obtain four different HSs for
aircraft engines [20], [18]. The Fuzzy C-means algorithm is popular because it has the
ability to assign data points to more than one cluster together with its corresponding
probability score [60]. However, according to the literature, a drawback of the Fuzzy
C-means algorithm is that its performance heavily depends on the initial selection of the
cluster center at initialisation of the algorithm [61]. Ren et al. also used clustering for
the division of HSs and applied the widely known k-means clustering algorithm which
also resulted in the distinction of four different HSs of aircraft engines [62]. Liu et al.
employed the k-means clustering algorithm to obtain three, four and even five different
HSs in the degradation process of multiple aircraft engines [63]. A large difference with
the Fuzzy C-means algorithm is that the k-means algorithm belongs to the so-called
hard clustering group in which a data point will either be considered to fully belong to a
certain cluster or not at all [60]. As a result, this algorithm will only assign data points
to a cluster if it fully belongs to that cluster. Nevertheless, at initialisation, the k-means
algorithm as well as the Fuzzy C-means algorithm both require a specific number of
clusters that it should produce which is generally unknown [64], [60].

Multi-stage HS division through Autoencoders
It can be observed that for all the aforementioned techniques, the construction of HIs
is required to be able to perform HS division. Therefore, a different approach for HS
division is by means of an Autoencoder. An Autoencoder is an unsupervised artificial
neural network which is able to learn and extract useful features from a high-dimensional
dataset [65] and is also capable of transforming this into a low-dimensional representa-
tion of the original dataset [66]. Therefore, Autoencoders seem to be promising since

33



their main advantage is the fact that they are able to extract relevant features from
high-dimensional data via an unsupervised manner, thereby circumventing the need for
manual construction of suitable HIs [66], [54]. However, Autoencoders are still subjected
to the previously described pre-specified threshold problem as they require a predefined
threshold to function properly [54].

2.5 Remaining Useful Life estimation phase

The RUL estimation phase involves the actual models which are capable of performing
an estimation of the RUL of a system or component based on the previously obtained
degradation trends from the HIs before it reaches its ’failed phase’. In literature, it is
generally assumed that a component degrades according to a stochastic process and it
is considered to be failed once it exceeds a certain failure threshold [67]. For exam-
ple, Mitici and de Pater [34] assumed that a component degrades over time following a
stochastic process {Xt, t ≥ 0} and defined component failure as follows:

Definition: A component following a stochastic degradation process {Xt, t ≥ 0} is con-
sidered to be failed if Xt ≥ D, t > 0 (where D > 0 denotes the failure threshold)

Furthermore, RUL is generally defined in literature as the remaining time before a
machine’s health state exceeds a certain failure threshold [34], [67], [14]. A mathematical
definition is given by Mitici and de Pater and is expressed in Equation 3 as:

RUL = inf{t : Xfcur+t ≥ D|X0, ..., Xfcur} (3)

In which f cur denotes the current time, inf() describes the limit inferior and Xfcur+t

describes the component’s health state at f cur + t [34]. A variety of methodologies have
been proposed for RUL estimation over the years and most studies divide them into two
main categories: model-based approaches and data-driven approaches [68]. However,
a more thorough distinction has been made by Lei et al. who distinguished between
four different categories of RUL estimation models: physical models (Subparagraph
2.5.1), statistical models (Subparagraph 2.5.2), artificial intelligence models (Subpara-
graph 2.5.3) and hybrid models (Subparagraph 2.5.4) [14].

2.5.1 Physical models

Physical models usually employ a mathematical model which represents the machine’s
physical degradation process [69]. The parameters of these models are generally obtained
from laboratory experiments or sometimes derived from conducted historical measure-
ments of the physical degradation process [70]. Physical models are able to create
accurate RUL estimations if the parameters of the underlying mathematical models are
well estimated [14]. According to the literature, the most applied physical model is the
Paris-Erdogan model which is mostly used to estimate the RUL of systems experiencing
crack growth [14]. This crack growth model has been proposed already in 1963 by Paris
and Erdogan [71]. Thereafter, several studies adopted this Paris-Erdogan model for the
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RUL estimation of systems subjected to crack growth. For example in 2012, Coppe et
al. employed this Paris-Erdogan model for a system which has fatigue crack growth,
estimated its RUL and showed it can even be used for complex geometries [72]. Besides
Coppe et al., the Paris-Erdogan model is utilized for RUL estimation of systems which
experience crack growth in several other studies [73], [74] , [75].

Besides the Paris-Erdogan model, another common physical model utilizes the Norton
law as the mathematical underlying model. In 2013, Baraldi et al. used the Norton
law model to simulate the creep evolution of turbine blades [68]. More recently in 2016,
Hu et al. applied the Norton law model as well for the simulation of creep evolution
of turbine blades [76]. Even though physical models are able to create accurate RUL
estimations, their applications are limited since it is usually a challenge to accurately
describe the physics of a degradation process of complex systems [14].

2.5.2 Statistical models

Statistical models or sometimes called empirical models use statistical methods which
are in turn based on empirical data to estimate the RUL of systems or components [14].
As one can imagine, there exist numerous statistical models. Therefore, only the most
common ones will be described and discussed.

(a) Autoregressive models
Autoregressive models (AR) are widely used for the forecasting of near-future values of
a variable in a time series [77]. Its a linear model which obtains this forecasting using
previous signal values to forecast the future value [78]. To be more specific, the variable
of interest is forecasted with the use of a linear combination of past values of this specific
variable of interest [79]. The number of previous values which are taken into account for
the forecasting is referred to as the model’s order [78]. A general p-order AR model is
given by Equation 4 [80]:

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + ...+ ϕpyt−p + ϵt (4)

In which subscript t denotes the current time, ϵt represents a random error (white noise),
yt−1 corresponds to the value of time series at time t − 1, and ϕ0, .., ϕp are AR model
parameters [80], [79]. These model parameters must be estimated using for example the
well-known least-squares method [78]. Among AR models used for forecasting of time
series data, the most popular ones are the Autoregressive Moving Average (ARMA) and
the Autoregressive Integrated Moving Average (ARIMA) [81]. According to Sikorska et
al., the ARMA model should only be applied for stationary data (in which the mean
and variance should are constant over time) as this model might remove a temporary
trend [69]. An ARIMA model on the other hand, is not subjected to this problem and
is therefore suitable for data which posses trends [69].
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For all AR models, its development generally consists of three different phases as de-
scribed by Skikorska et al. [69]:

1. Model identification: values for the order of the model as well as the moving average
parts of the model’s equation are hypothesized.

2. Parameter estimation: the parameters of the model’s equation are estimated with
non-linear optimization techniques such as the least-squares method.

3. Model validation: in order to validate the adequacy of the developed AR model,
new unseen data is fed to the model and it’s performance is analysed.

AR models are used by several studies such as Liu et al. which adopted the AR model
for the RUL estimation of lithium-ion batteries [82]. In 2014, Qian et al. used the AR
model for the modelling of the degradation process of bearings and the prediction of
bearing failure 50 minutes in advance [83]. Another example of a study who employed
the AR model is conducted by Escobet et al. which used it for the RUL estimation of
an AC electric motor of a conveyor belt system [84].

(b) Wiener process models
The Wiener process is another frequently used statistical model for the modelling of
degradation processes. A general Wiener process (γ(t), t ≥ 0) can be mathematically
written as seen in Equation 5, where B(.) denotes a standard Brownian motion, σ > 0
is the diffusion coefficient, Λ(.) denotes a monotone increasing function which represents
a time scale and λ denotes the drift parameter [85].

γ(t) = λΛ(t) + σB(Λ(t)) (5)

The first passage time (required time for a variable to obtain a certain threshold value)
of the degradation path to a predetermined failure threshold described by the Wiener
process is given by an inverse Gaussian distribution [85]. The Wiener process has many
applications in RUL estimations. For example, Wang used the Wiener process model for
the degradation modelling of bridge beams due to chloride ion ingression [86]. Another
application of the Wiener process model is the optimal scheduling of burn-in policies for
LED lights which are based on the continuous degradation path that is in turn modelled
by the Wiener process model [87]. Huang et al. used a variation of the Wiener process
which is the so-called skew-Wiener process to estimate the RUL of roller ball bearings,
as they found that the degradation speed of industrial machines can be described by a
skew-normal distribution [30]. Lin and Lin adopted the Wiener process model for the
modelling of the degradation process of aircraft engines and used it for RUL estimation
[17].

Despite these positive applications, the Wiener process can only be used for degradation
processes which are time homogeneous. For example, the degradation process of crack
growth due to fatigue is inhomogeneous as it can grow faster or slower throughout the
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crack propagation process [88]. Another drawback of using the Wiener process for degra-
dation modelling is the fact that it possess the Markov property. This Markov property
means that its future state only depends on the current state. As a result, this implies
that given a current state, the future state of a degradation process only depends on
this current state and is independent of the past [88].

(c) Random coefficient models
Random coefficient models are used to describe degradation processes which posses a
certain degree of stochasticity [14]. This stochasticity is modelled by including random
coefficients to degradation models and are typically assumed to be normally distributed
[14]. The parameters of these models are usually estimated by utilizing a historical
database of degradation data [89]. An example of a random coefficient model in which
a random slope is estimated through a covariate z which in turn controls the effect of a
covariate x on the dependent variable y is described by Muthén et al. [90] and given by
Equation 6:

yi = α + β0xi + β1xizi + δixi + β2zi + ϵi (6)

In which β denotes varying slopes (called random slopes), x and z are covariates of
the dependent variable y, ϵ and δ are residuals and allowed to covary [90]. Random
coefficient models are often used for RUL estimation. Hu and Tse combined two expo-
nential functions into a random coefficient model for the RUL prediction of field pump
impellers [91]. Lu and Meeker proposed a random coefficient model for RUL estimation
of machines using nonlinear mixed-effects to represent the degradation processes [92].
Additionally, this model also estimated the PDF of the RUL [92].

Given a discrete random variable, a PDF shows the probability distribution (that is, the
probability of this discrete random variable having a specific value) [93]. Therefore, the
fact that random coefficient models are able to estimate the PDF is very useful as it
allows one to see the complete distribution of RUL values with corresponding probabili-
ties instead of just a single RUL value without a probability (and thus thereby reducing
uncertainty). On the other hand, their applications might be limited since the random
coefficient model uses the assumption that the random coefficients follow a Gaussian
distribution [14].

(d) Gamma process models
Another type of statistical models for RUL estimation which is commonly used and de-
scribed in the literature is the gamma process model. The main assumption in a gamma
process model is that the increments of the degradation process at disjoint time intervals
are independent random variables following a gamma distribution [14]. Gamma process
models are found to be especially useful when a certain degradation process develops
gradually (monotonic) over time whilst having positive increments [88]. The RUL of
systems or a component can be estimated using the gamma process probability distri-
bution in combination with a certain predefined threshold value (to denote a component
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to be failed) [94]. The PDF of a gamma process is given by Equation 7 [95]:

Ga(f |α, λ) = λ(α)

Γ(α)
f (α−1)e−λf (7)

Where f denotes a random quantity following a gamma distribution with scale param-
eter λ ≥ 0 and shape parameter α > 0. Furthermore, Γ(α) represents the gamma
function of α and Γ(α) = (α − 1)! [95]. According to the literature, Gamma process
models are found to be effective when determining maintenance decisions and for RUL
prediction [88]. This is mainly due to the relatively easy mathematical calculations as
well as the fact that the underlying physics are easy to understand [88]. In 2010, Wang
et al. used the gamma process model in order to provide better maintenance schedules
of machinery [96]. A gamma process with random effects has been employed by Peng et
al. as a degradation model for a lubrication system of a machine tool’s spindle system
[97]. Furthermore, a gamma process has been used to represent the degradation process
in a model to predict the RUL of batteries [98]. Yan et al. applied it to predict the
degradation PDF of a milling machine [99]. However, the applicability of gamma process
models is limited as the noise in such a model is assumed to follow a gamma distribution
[14]. Furthermore, it can only be used for monotonic processes. Moreover, likewise to
the Wiener process model, it posses the Markov property [88].

(e) Inverse Gaussian process models
The Inverse Gaussian (IG) process model assumes a degradation process to have mono-
tone independent increments which follow an IG distribution [14]. It has been first
proposed by Wang and Xu and found to be a flexible model to represent degradation
processes [100]. A simple IG process model (as defined by Peng et al. [101]) having a
function Λ(t) with parameter λ (shape parameter) and µ (mean) has been defined for
a general degradation process {Ys(t), t ≥ 0}, if for any t ≥ s ≥ 0 and Ys(0) = 0 the
following holds:

1. The degradation process Ys(t) has independent increments. In other words, Ys(t2)−
Ys(t1) and Ys(s2)−Ys(s1) are completely independent for ∀ t2 > t1 ≥ s2 > s1 [101].

2. Ys(t)− Ys(s) is following an IG distribution IG(µ, λ) [101].

The IG process model is widely used in literature. Qin et al. employed the IG process
model for the modelling of the development of metal-loss corrosion defects on energy
pipelines [102]. Pan et al. applied the IG process model with random effect to describe
the degradation process of a deteriorating laser system [103]. More recently, Huang et
al. applied the IG process model with random effects for the wear modelling of cutting
tools which is in turn used for the RUL estimation of these cutting tools [104]. One of
the main advantages of using IG process models lies in the fact that they are capable of
handling different kind of random effects [14]. Nevertheless, these models also possess
the Markov property and can only be applied to monotonic degradation processes [14].
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(f) Markov models
In 2003, Kharoufeh introduced Markov models to perform RUL estimations [105]. Kharoufeh
described that a Markov model assumes a certain degradation process of a system or
component to develop over time, whilst adhering to the Markov property within a finite
state space [105]. Besides the assumption that a Markov model adheres to the Markov
property, it is also generally assumed that one can directly reveal a system’s HS using
its sensor data [88], [14]. However, it is usually a challenge or impossible to observe a
system’s HS directly [14].

In order to overcome this obstacle and thus be able to reveal the degradation process of
a hidden HS of a system, a Hidden Markov Model (HMM) has been introduced [14]. As
described by Si et al. [88], a HMM consists of two stochastic processes:

1. A hidden Markov chain {Zn, n ≥ 0}. This hidden Markov chain describes the
real deterioration state and is unobservable. It is assumed that this deterioration
process transforms according to a hidden Markov chain on a finite state space [88].

2. An observable stochastic process {Yn, n ≥ 0}. This represents the obtained sensor
data of the system or component of interest.

Applications of this HMM in the literature are for example to identify the HSs of cutting
tools together with an estimation of their RULs [106]. Zhou et al. also employed the
HMM to reveal relationships between hidden failures and analysed observation data of
a continuous stirred tank reactor [107]. Bunks et al. constructed a HMM and applied
it to a Westland helicopter gearbox dataset and were able to classify torque-levels of
the gearbox as well as different defect types (such as planetary bearing corrosion), since
each specific defect relates to a specific vibration frequency [108].

However, as mentioned before, a HMM assumes that the state transformation adheres to
the Markov property which might not be a valid assumption for all degradation processes
in general. Additionally, since the true state transformation is unknown, models which
assume the Markov property should be considered to be an approximation [88]. In order
to generalize the HMM, a Hidden Semi-Markov model (HSMM) has been proposed[88].
In light of this generalization, the unobserved state is allowed to be a semi-Markov chain
instead of a full Markov chain as with the HMM [88]. An example of an application
of a HSMM is the use of the HSMM for online degradation state estimation as well as
the evolution of the RUL distribution [109]. A general drawback of all Markov models
is that for the estimation of the transition probabilities between HSs a large number of
training data is usually required [14].

(g) Proportional Hazard models
Another type of statistical models are Proportional Hazard (PH) models. They were
introduced in paper by Cox [110] in 1972. Over the years, this paper became one of the
most cited papers in statistical sciences because of its simplicity and generality [88].
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Cox assumed a system’s hazard rate to consist of two factors: a covariate function and
a certain baseline hazard function [14]. The general Cox proportional hazard model as
described by Hahshim and Weiderpass [111] is given by Equation 8:

γ(t) = γ0(t) exp(β1x1 + β2x2 + ...+ βkxk) (8)

Where γ0(t) denotes the baseline hazard function (with all covariates being equal to
zero), β being the regression coefficient of the covariate x and γ(t) being the total haz-
ard function that gives the probability of occurrence that a certain event (e.g. component
failure) happens before time t [111].

PH models are used in many applications, for example for the RUL prediction of bear-
ings [112], [113]. Another application of the PH model is the RUL estimation of low
methane compressors by Tran et al [114]. Besides using the PH models for RUL esti-
mations of machinery, other applications are for example in the medical field in which
PM models are used to model survival probabilities of patients having a certain disease
[111]. PH models are believed to produce increasingly accurate RUL estimations in case
large amounts of event data (actual failure data) as well as condition monitoring data
becomes available, since PH models use both data types [14]. Nevertheless, in practice,
it is generally a challenge to obtain both types of data simultaneously [14]. A second
drawback relates to the PH model’s covariate function which must be described by a
different type of stochastic model (for example a Markov model). This adds to the com-
putational complexity of the model as a whole [14].

(h) Particle filter models
Particle Filter (PF) models have recently been developed for PHM applications, i.e., RUL
estimations and are considered to be the state-of-the-art models for RUL estimations
[115]. PF models are based on a statistical method so-called Bayesian inference [116].
This Bayesian inference is based on the Bayes’ theorem [117] as described in Equation 9:

p(Θ|z) ∝ L(z|Θ)p(Θ) (9)

In which z denotes a vector containing observed data, Θ represents a vector containing
unknown parameters, p(Θ) denotes the prior PDF of Θ, p(Θ|z) represents the posterior
PDF of Θ which is conditional on z and L(z|Θ) denotes the PDF value of z which is
conditional on the provided Θ [116]. A general PF model consists of a measurement
function h (Equation 11) and a state transition function f (Equation 10), a.k.a. the
degradation model [116], [118]:

xk = f(xk−1,θk, vk) (10)

zk = h(xk, ωk) (11)

In which xk represents the degradation state of the system, k denotes the time step,
zk denotes the measured data and θk represents a vector containing model parameters.
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Furthermore, ωk and vk denote the measurement and process noise, respectively [116].
A graphic representation of the general PF model given by An et al. is depicted in
Figure 2.3 [116].

Figure 2.3: Graphic representation of a general PF model [116].

Imagine, at time k = 1, one wants to draw n samples (particles) of the parameters of a
degradation model from an initial (prior) distribution [116]. In order to be able to this,
the following four steps will be performed:

1. Initialisation
N samples are taken from the system’s initial state (i.e., parameters values of the
degradation model) at time step k − 1 [115]. This is represented by the posterior
distribution.

2. Prediction
The posterior distribution of the degradation model parameters (at the k−1th step)
is utilized as the prior distribution at the kth step [116]. Then, the degradation state
of the system (xk) at current time step k, is predicted by filling in the parameter
values (the samples) of the previous time step (k − 1) in the degradation model.
These samples are denoted by p(Θ) [116].

3. Updating
The update step is associated with likelihood function which evaluates if the parti-
cles are getting close to the measured data point at time step k and assigns weights
to each particle [116]. The likelihood function (L(z|Θ)) takes as arguments: zk
and θi

k (which also contains the system’s degradation state xi
k, given by the degra-

dation model) with i = 1, ..., n [116]. Particles with a high likelihood will receive
a higher weight than particles with a relatively low likelihood.
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4. Resampling
During the resampling step, particles with low weights are removed whereas parti-
cles with high weights will be duplicated [116]. Thereafter, n new samples will be
selected with a resampling method. Finally, these n resampled particles represent
the posterior distribution at time step k, p(θk|z1:k), and also represent the prior
distribution at the next time step (k + 1) [116].

This process is generally repeated until satisfactory parameter values are obtained for
the degradation model. Thereafter, RUL estimation can be performed by inserting the
model parameters into the degradation model and evaluating the model for future time
steps until a certain failure threshold is reached [116]. Besides obtaining a single RUL
estimation value when using PF models, it is possible to obtain a RUL probability dis-
tribution.

Several studies already successfully used PF models such as for RUL estimation of air-
craft cooling units [34], for the RUL estimation of turbine blades being affected by creep
growth [119], but also for the RUL estimation of Lithium-ion batteries [120], [121] as
well as to estimate the RUL of LED light sources [122]. One of the main advantages of
PF models is that it can be used for nonlinear systems with non-Gaussian characteristics
[121]. Furthermore, PF models can be used for the modelling of multivariate dynamic
processes. On the other hand, a drawback is that PF models are computationally in-
tensive [69]. Another drawback is that PF models require a large number of samples in
order to avoid the degeneracy problem [69]. The degeneracy problem can be described
as the case that after a while, only very few particles will still remain with a significant
weight, whilst all other particles will have small weights [123].

2.5.3 Artificial intelligence models

Artificial Intelligence (AI) models differ from the physical and statistical models as they
are able to learn patterns in data (in this case degradation patterns from sensor data)
[14]. Over the years, AI models have become more attractive to model degradation
processes and perform RUL estimations of machines, because these models are able to
handle mechanical systems with complex deterioration process, which are usually too
difficult to be accurately described by physical and/or statistical models [14]. However,
a general drawback of AI models is that, due to the lack of transparency, it is difficult to
explain their results which is why AI models are referred to as "black-boxes" [14], [34].
Since a lot of different AI models are described in literature for degradation modelling
and RUL estimation, only the most commonly used models will be described and dis-
cussed.

(a) Artificial Neural Network models
An Artificial Neural Network (ANN) model is a machine-learning model which mimics
the working process of the human brain through the connection of a large number of
nodes [124], [14].
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It is used for several purposes such as pattern recognition, clustering and prediction us-
ing a large amount of training data [124]. Therefore, ANN models are the most widely
used models within AI models for the estimation of RUL [14]. ANN models typically
consist of an input layer, a hidden layer and an output layer [125]. First, the input layer
uses raw input data from the sensors, after which the hidden layer receives and processes
this raw data [125]. Thereafter, the output layer will receive the obtained value from
the hidden layer and will finally produce an output (RUL value) [125].

A graphical representation of a simple node from an ANN model is depicted in Figure 2.4.
In this figure, the inputs of the model are denoted by A(N), which are multiplied with
their corresponding weights W (N) representing the ’impact’ of this input node [125].
Thereafter, the so-called weighted inputs and a bias are sent to a summation function.
This bias (has a value of 1 in the figure) is usually required to create a better fit to
the data (means better RUL estimation) by being able to shift the activation function
[126]. Finally, the value obtained by the summation function is fed into the activation
function (which determines if this node should be activated depending on the value of
the summation function) to eventually produce the output value [127], [125]. This acti-
vation function (sometimes called transfer function) can be defined as any mathematical
function, but the most commonly used ones are the Linear function, Nonlinear (Sigmoid)
function and the Step function [127].

Figure 2.4: Simple node from ANN [125]

A general mathematical representation of an ANN model is provided by Krenker et al.
[127] and is given by Equation 12:

y(k) = F (
m∑

i=0

wi(k) · xi(k) + b) (12)

In which xi(k) represents the input values at the input nodes at discrete time step k,
wi(k) are the weights corresponding to each input node, b represents a bias, F denotes
the activation function and y(k) denotes the output of the ANN model [127]. Among
the ANN models, the Feed-forward Neural Network (FFNN) model and the Recurrent
Neural Network (RNN) model are the most applied for RUL estimations [14].
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FFNN models
In a FFNN model, data always ’flows’ in one direction from the input layer to the output
layer without any back-loops [127]. The list of studies who employed FFNN is almost
endless, therefore only a few studies and their applications will be mentioned. Exam-
ples of studies who used FFNN are for the RUL estimation of aluminium plates being
affected by fatigue cracks [128], the RUL estimation of Lithium-ion batteries [129], but
also to learn a relationship between the RUL and constructed HIs of electrical motors
[130].

RNN models and improved RNN models
As already mentioned, RNN models are also popular for RUL estimations. This is mainly
due to its capability of being able to handle explicit time-series data [14]. A RNN model
differs from a FFNN model as data can ’flow’ forwards as well as backwards between
different nodes and layers [127]. Some examples of studies who employed RNN are Guo
et al. who proposed a RNN based on a HI for the RUL prediction of bearings [46] and
Heimes who applied RNN to estimate the RUL of aircraft engines [131]. Besides the
standard RNN, several improvements are proposed such as by Song et al. who used a
modified version of the RNN (RNN with Gated Recurrent Unit) for the RUL estimation
of Lithium-ion batteries [132]. Another improvement of the RNN model is the Long
Short Term Memory (LSTM) model which is for example applied to predict the RUL of
aircraft engines having complicated operational conditions [133], [134].

Generally, ANN models are capable of learning nonlinear complex relationships in data
which allows for accurate RUL estimations [14]. Nevertheless, as explained previously,
ANN models are considered as "black-boxes" since they are not transparent [14]. Fur-
thermore, in order for ANN models to function properly, large amounts of training data
must be available (which is generally not available in practice) [14].

(b) Neuro-fuzzy models
Neuro-fuzzy (NF) models are fuzzy logic systems and use ANN optimized membership
functions as well as expert knowledge based membership functions to determine their
inference structures [135]. Figure 2.5 [136] shows a schematic representation of a general
NF model. In this figure, the ANN creates neural outputs which are the fuzzy inputs
for the fuzzy inference. During the training, the weights within the ANN are changed
in order to match the output of the ANN with its target [136]. These weights represent
the parameters for the membership functions as well as for the fuzzy if-then rules [136],
[135].
NF systems are frequently used for RUL estimation applications as described in the
literature. A NF model has been adopted by Wang et al. to predict the RUL of gears
in a gearbox being affected by wear as well as cracks [137]. NF models have also been
applied for the prediction of the health condition and RUL estimation of bearings [138].
Also slightly different versions of the NF models are employed such as the adaptive
NF inference system to predict the trend of a vibration based HI of gearboxes of wind
turbines [139].
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Figure 2.5: Schematic representation of a general NF system [136]

The main advantage of NF systems is that they combine knowledge from experts with
ANN intelligence which is believed to be a powerful tool according to the literature [14].
On the other hand, it also requires a large amount of training data in order to create
accurate predictions [14].

(c) Random Forest Regression models
Random Forest Regression (RFR) models are part of decision trees, which in turn are
machine learning algorithms [140]. A RFR model uses an ensemble method which means
that the model consists of many individual trees whose corresponding predictions are
combined into an average point estimate for the target variable (e.g. RUL value) [141],
[140]. A graphical representation of the structure of a general random forest model is
depicted in Figure 2.6.
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Figure 2.6: Structure of a general random forest model [140].

RFR models have so-called hyperparameters such as for example the number of esti-
mators considered in a tree when splitting a node, or the maximum number of trees
which will be built in the overall forest [141]. An example of a study who employed a
RFR-based approach is conducted by Chen et al. who used RFR to predict the RUL of
aircraft engines using engine deterioration data [142]. However, this RUL prediction is
a single value, i.e. a single point estimate. Nevertheless, besides producing single RUL
point estimates with the RFR model by computing the average value of all decision
trees (as is usually done when computing a single RUL value), some studies collected
all of them instead and applied a kernel density estimation to obtain a normalized PDF
[141], [143]. The study conducted by Zoutendijk and Mitici used the RFR model plus
kernel density estimation to estimate the PDF of flight delays using deterministic values
of the considered features, thereby circumventing the need for stochastic variables [141].
Whilst other studies such as Schlosser et al. employed RFR to estimate the probability
distribution of perception forecasts in a mountainous region, and used stochastic vari-
ables for the construction of the decision trees [144], [141].

The main advantage of RFR models is that, given a set of variables, RFR computes the
relative importance of each variable on the prediction created in the decision trees [145].
Therefore, it provides a useful inside in the importance of variables to the prediction
(RUL value). On the other hand, the main disadvantage of RFR models is that the run-
time of the algorithm becomes large as an extensive number of decision trees is required
to create accurate predictions, thereby making it less suitable for real-time forecasting
applications [145].
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(d) Gaussian Process Regression models
Gaussian Process Regression (GPR) models are considered as effective models for esti-
mating predictions and the development of forecasting models according to the litera-
ture [146]. A GPR model performs regression based on a Gaussian process [14], [146].
A Gaussian process has been described by Lei et al. as "a cumulative damage process
consisting of random variables having joint multivariate Gaussian distributions" [14].
Only a covariance function and a mean function are required to be able to completely
describe a Gaussian process [147]. The mathematical representation of the Gaussian
process, mean function and covariate function, as described by Hong and Zhou, is given
in Equation 13, Equation 14 and Equation 15, respectively [147]:

f(x) ∼ GP
(
µ(x), C(x, x′)

)
(13)

µ(x) = E[f(x)] (14)

C(x, x′) = E[
(
f(x)− µ(x)

)(
f(x′)− µ(x′)

)
] (15)

Where x, x′ ∈ X represent random variables and E(.) denotes the expected value of
the random variables [147]. The mean value that will be predicted in a Gaussian pro-
cess consists of a linear combination of the covariance function (Equation 15) [147].
As explained, GPR models are based on the Gaussian process and are described as a
probabilistic method suitable for nonlinear regression [147]. It is capable of calculating
estimations of the posterior degradation through means of constraining the prior distri-
bution in order to fit the training data [147]. To be able to use the GPR model, the
covariance function needs to be specified by the user, whilst the training data will be
used to learn the required hyperparameters [147].

Examples of applications of the GPR model are for example to estimate the RUL of bear-
ings as performed by Hong et al. in 2014 [45]. A GPR based model for RUL estimation
of batteries has been applied by Saha et al. [148]. In 2020, Tanwar and Raghavan even
used the GPR model to estimate the RUL of lubricating oil of a general oil lubrication
system by predicting how many hours are remaining before the oil is contaminated with
a certain predetermined level of wear debris [149]. The main advantages of using GPR
models is that they are generally found to be suitable in case of high dimensional data,
but also for small sample sizes and nonlinear dynamic systems [45], [150]. The largest
disadvantage of GPR models is their high computational demand [14], [150].

(e) Support Vector Machine and Relevant Vector Machine models
Support Vector Machine (SVM) models, also called maximum margin classifiers [150],
are a type of AI technique which use the statistical learning theory that is introduced by
Vapnik [151]. In general, a SVM model has samples which have two different classes (a
positive and a negative class) [150]. A SVM model tries to optimize a boundary curve
through maximization of the distance of the closest point to this boundary curve [150].
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The number of support vectors (this is a subset of the available training data for the
two different classes) define this boundary curve [150]. SVM models are able to produce
predictions in terms of a linear combination of kernel functions (the support vectors)
which are centred on a particular subset of the training data [152].

In the beginning, SVM models were only used for pattern recognition applications [153].
Only after Vapnik introduced an insensitive loss function, SVM models were also applied
to time series forecasting, nonlinear regression applications and RUL estimations [14],
[150]. As described in the literature, several types of SVM models have been used for
RUL estimation such as the one-class SVM model [154], multi-class SVM model [155],
[156] and the least squares SVM model [157]. However, according to Benkedjouh et al.,
Support Vector Regression (SVR) models are the most widely used form of SVM models
for RUL estimations [158]. SVR models are suitable to build empirical models using
available training data [159]. An application of the SVR model is a study conducted
Wang et al. who applied the SVR model for the estimation of the RUL of Lithium-ion
batteries [160]. Another application is the study conducted by Liu and Zio who employed
the SVR model for the RUL estimation of components in a nuclear power generation
system [159].

Besides the large number of applications of SVM models, its main disadvantage is that
they can only generate point predictions instead of a complete probability distribution
[152]. In order to overcome this main disadvantage, the Relevant Vector Machine (RVM)
model has been proposed, which function form is the same as that of the SVM [152].
However, RVM models are capable of producing a complete predictive distribution [152].
Examples of applications of the RVM model in literature are mostly for RUL estimation
of Lithium-ion batteries [161], [162] and RUL estimation of bearings [43]. According to
Lei et al., SVM models and RVM models might be more applicable for RUL estima-
tions than other AI models in cases where a limited amount of data is available [14].
Nevertheless, the selected kernel functions highly influence their performance, whereas
a standard method for selecting kernel functions does not exist yet [14]. In addition,
estimation of the parameter values is considered to be a challenge for both SVM and
RVM models [14].

2.5.4 Hybrid models

Hybrid models try to combine the advantages of several RUL estimation models into
a single model, thereby trying to create an even better model in terms of prediction
accuracy [14]. However, hybrid models are the least used and reported models for RUL
estimation throughout the literature. An explanation for this might be that it is more
difficult and complex to fuse multiple methods together into one single hybrid model,
than to use the single models individually. An example of a study who did apply a
hybrid model is a study conducted by Tamssaouet et al. who proposed the combination
of a LSTM model with a PF model to perform RUL estimations of aircraft engines and
also produced the PDF associated with the RUL estimation [163].
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Some other applications of a hybrid model to estimate the RUL of aircraft engines is
the study conducted by Khan et al. [164] who proposed a hybrid model through the
integration of a neural network with a PF model for aircraft engine RUL estimation and
the study conducted by Ji et al. [165]. who fused PCA with a bidirectional LSTM to
learn the relationship between RUL and the HS monitoring data. Besides using hybrid
models for RUL estimation of aircraft engines, some papers proposed hybrid models for
other applications such as the prediction of the HS of bearings by fusion of a HMM
with a NF model [166] or the RUL estimation of a milling machine through combining
a LSTM model with a HMM into a hybrid model [167].

2.6 Faulty component identification

Faulty component identification is concerned with the identification of components that
will fail within a system or machine, but does not include information on what causes
the component to fail. Whereas the previous sections (Paragraph 2.2, Paragraph 2.3,
Paragraph 2.4 and Paragraph 2.5) focused on studies who proposed methods for the
PHM process, this paragraph will address studies who explicitly tried to identify faulty
components, as that appeared to be of little interest to the researchers who focused on
RUL estimations in the previous sections.

Faulty component identification should not be confused with failure mode identification.
A failure mode is defined by Matthews as [168]:

Definition: A failure mode is a possible way the component can fail.

An example of failure mode of the compressor in an aircraft gas turbine engine could
be that at a certain point in time, the gas flow through the compressor is unable to
reach the initially designed velocity. Such as failure mode could be caused by a variety
of factors such as wear or corrosion of the compressor blades (which are called failure
mechanisms [169]). Common methods as described in the literature to identify failure
modes in systems or machinery components are: Fault Tree Analysis (FTA), Failure
Modes, Effects and Criticality Analysis (FMECA), Failure Modes and Effects Analysis
(FMEA) as well as expert knowledge [170].

However, suitable data must be available to be able to apply these failure mode iden-
tification methods. Nevertheless, another possibility is to identify faulty components
within a system, rather than the specific failure modes of a particular component. An
example of this approach is proposed by Schwartz et al. who used a SOM model together
with a kernel density estimator on a dataset consisting of deteriorating aircraft engines
operating under different operational conditions (such as a varying Mach number and
altitude) [171].
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First, the SOM model has been applied to create clusters which correspond to the differ-
ent operational conditions of the engines. Then, the kernel density estimator has been
applied to produce PDFs that relate to the number of faulty components per operational
condition [171]. The kernel density estimator was capable of correctly identifying the
number of faulty components in the considered different datasets (some datasets had
only one faulty component, whilst others had two faulty components) [171].

2.7 Discussion and literature gap

It becomes evident from the extensive literature review from the previous sections, that
most research has focused on techniques to construct HIs which can be used to divide
HSs and eventually perform accurate RUL estimations. However, these RUL estima-
tions usually just provide a single value (such as 50 remaining hours before the system
of interest will fail), with a consequently unknown probability of this RUL value. Very
few studies have given the complete probability distribution of the RUL estimation,
thereby including the corresponding probabilities to the provided RUL values and thus
taking into account uncertainty. Additionally, little to no research has been conducted
into methods which reveal which specific component(s) will fail within a system. Let
alone a model that first identifies which component will fail in a system and additionally
provides a complete probability distribution of the RUL of this system, thus taking into
account RUL estimation uncertainty.

Since this thesis will focus on aircraft gas turbine engines and given the fact that aircraft
engines consist of multiple components which could fail separately and thus require
maintenance, it is useful for an airline to know which components inside the engine are
going to fail along with the engine’s associated RUL and the corresponding certainty of
this RUL estimation. This is valuable information as it allows airlines to order specific
engine parts only when required (thereby reducing storage costs) instead of being forced
to have these parts in stock continuously because the engine parts have to replaced
preventively after a predefined number of flight hours or flight cycles. Furthermore,
knowing in advance which component will fail along with the engine’s RUL and its
corresponding probability will also allow for more efficient maintenance operations, as the
required personnel to remove and install the component as well as the hanger (which is
required to perform the maintenance) can be allocated and planned in advance. Finally,
it can be argued that the most valuable part might even be that the uncertainty of the
RUL estimations will be provided. One can understand its importance since knowing
the corresponding probability of a certain estimated RUL value is really beneficial when
scheduling aircraft engine maintenance. Therefore, the need arises for the development
of a model that is capable to identify which components of an aircraft gas turbine engine
will fail, along with its corresponding RUL and associated probability.
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3 Research proposal
This chapter thoroughly describes the research proposal of this thesis project. It uses
the extensively discussed state-of-the-art literature review together with the described
literature gap as well as the problem statement in the introduction to establish a well
defined research objective (Paragraph 3.1) together with its associated research questions
(Paragraph 3.2). Furthermore, the research scope will be defined in Paragraph 3.3 since
a clearly predefined scope is required in order to be able to finish this thesis within the
nominal time.

3.1 Research objective

After performing the extensive literature review, obtaining the literature gap and us-
ing the problem definition as described in the introduction, the research objective has
been established and defined. Taking into account the RUL estimation of aircraft en-
gines having one or multiple faulty engine components and considering the accompanied
uncertainty of this RUL estimation results in the following research objective:

The research objective of this thesis is to develop a model which
is capable of identifying faulty components of aircraft engines and
estimate their remaining useful life, whilst taking into account and
modelling the corresponding uncertainty of this remaining useful
life estimate by using the NASA engine degradation data set.

3.2 Research questions

From this research objective, the following main research question has been formulated:

What type of model must be developed to identify faulty components
of aircraft engines and estimate their corresponding remaining use-
ful life, whilst taking into account and modelling the uncertainty of
this remaining useful life estimate using the NASA engine degra-
dation data set?

In order to be able to answer this main research question, the following sub-research
questions have been defined:

1) Which sensor data is relevant for identifying faulty aircraft en-
gine components in the NASA engine degradation data set?

2) How to identify these faulty components of aircraft engines in
the NASA engine degradation data set and when are they consid-
ered to be in a faulty state?

51



3) How to estimate the remaining useful life of aircraft engines
having an identified faulty component along with the correspond-
ing uncertainty of this estimate?

4) How to verify and validate the model’s identification of faulty
engine components as well as its remaining useful life estimations
of these aircraft engines and corresponding uncertainties of these
estimations?

5) Does considering an aircraft engine’s faulty component when
estimating the remaining useful life lead to a statistically signifi-
cant improvement compared to not taking into account an engine’s
faulty component?

3.3 Research scope

It is important to clearly define the research scope of this thesis and thereby describe
what aspects will be included in the thesis and what aspects will be excluded. First of
all, only the first and third data set (FD001 and FD003, respectively) within the NASA
engine degradation data set [172] will be used. These data sets both have the same op-
erational condition, that is, all engines are simulated to operate at sea level. The reason
to select these two data sets is that it is easier to compare different aircraft engines with
each other if they all operate in the same conditions. Hence, it is believed to produce
more accurate RUL estimations. The second reason to select only these data sets is that
these data sets contain one and two faulty components, respectively.

Another part of the scope of this thesis is that only the faulty components within the
engine will be identified. As a result, no analysis will be performed on the failure
modes or failure mechanisms that cause these components to become classified as faulty.
Lastly, when estimating the RUL the aircraft engines, not only a single RUL value will
be provided without any associated probability. Instead, a complete RUL probability
distribution will be provided, therefore also providing the probability that a certain
predicted RUL value will actually occur.
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Appendix A LOWESS detailed calculation procedure
This appendix contains a detailed calculation procedure of the LOWESS method used
for noise removal, data smoothing and data downsampling.

The calculation procedure to perform noise removal, data smoothing and data down-
sampling with LOWESS can be explained in the following way.
Let i = 1, ..., n and j = 1, ..., k. The goal of LOWESS is to obtain a smoothed ŷi-
value per xi-value which is mathematically formulated by Cleveland [173] as shown in
Equation A.16:

ŷi =
d∑

l=0

β̂l(xi)x
l
i (A.16)

Where d denotes the degree of the polynomial function, β̂l(xi) represents the unknown
coefficients of the dth degree polynomial function and xi is the x-value for which a
smoothed y-value, ŷi, must be obtained.

For each i, calculate estimates of these unknown coefficients β̂l(xi) of the dth degree
polynomial regression function for yj on xj [173]. To be precise, these unknown coeffi-
cients β̂l(xi) are obtained through minimizing a sum S (Equation A.17) which is given
by Smolik et al. [174] as:

S =
k∑

j=1

ωj(xi) · (yj − P(d)(xj))
2 (A.17)

In which P(d)(xj) = β̂0(xi)+β̂1(xi)xj+...+β̂d(xi)x
d
j is the dth degree polynomial function

with the unknown coefficients β̂ = [β̂0(xi), β̂1(xi), ..., β̂d(xi)]
T . Furthermore, yj denotes

the original (unsmoothed) y-value at point (xj, yj) and wj(xi) denotes the weight [173].
Equation A.17 can be rewritten in matrix form as given in Equation A.18:

S = (b−Aβ̂)T ·W · (b−Aβ̂) (A.18)

With b = [y1, y2, ..., yk]
T being a vector containing the actual y-values [174], matrix A

being a matrix consisting of the actual x-values which is defined as:

A =




1 x1 xd
1

1 x2 · · · xd
2

... . . . ...
1 xk · · · xd

k




and matrix W being a diagonal matrix containing the weights which is defined as:

A



W =




w1(xi) 0
w2(xi)

. . .
0 wk(xi)




The weights, wj(xi), are scaled from zero to one (see Equation A.19) by, for each xj,
dividing the distance between xj and xi by the maximum observed absolute distance
between xi and the furthest xj (where the furthest xj is the most distance k-nearest
neighbor with respect to xi). Therefore, the closest point to xi gets a scaled value (r) of
zero, whilst the furthest point to xi gets a scaled value (r) of one.

wj(xi) = W

(∥∥∥∥
xj − xi

max(|xi − xj|)

∥∥∥∥
)

(A.19)

After scaling the distances, the actual weights are calculated using a tricube weighting
function W (r) which is defined by Cleveland [173] and expressed in Equation A.20 as:

W (r) =

{
(1− r3)

3
r ∈ ⟨0; 1⟩

0 r > 1
(A.20)

In order to minimize Equation A.18, it must first be expanded which leads to the ex-
pression as given in Equation A.21 [174]:

S = bTWb− bTWAβ̂ − (Aβ̂)TWb+ (Aβ̂)TWAβ̂

= bTWb− bTWAβ̂ − β̂TATWb+ β̂TATWAβ̂
(A.21)

Equation A.21 can be minimized by taking the partial derivative of S with respect
to β̂ and equating the outcome equal to zero. This leads to the result as given in
Equation A.22 since W = W T [174]:

∂S

∂β̂
= −

(
bTWA

)T −ATWb+ 2ATWAβ̂ = 0 (A.22)

Hence, the coefficients β̂l(xi) can be calculated by expanding Equation A.22 and solving
for β̂ as shown in Equation A.23 [174]:

ATWAβ̂ = ATWb

β̂ =
(
ATWA

)−1
ATWb

(A.23)

Note that these equations result in explicit coefficients per xi. However, these coeffi-
cients might change since as an additional weight δj is assigned per (xj, yj), based on
the residual yj − ŷi, to account for outliers.

Next, let ei = [yj − ŷi] denote a vector containing the residuals between the ’original’
y-values (of the k-nearest neighbor points) compared to the currently fitted ŷi-value.

B



Furthermore, let q denote the median of |ei|. Then, the additional weight is defined by
Cleveland [173] as expressed in Equation A.24:

δj = C(
eij
6q

) (A.24)

With eij denoting the jth element of the ei vector and C(r) being the bisquare weighting
function (Equation A.25) defined by Cleveland [173] as:

C(r) =

{
(1− r2)

2
r ∈ ⟨0; 1⟩

0 r > 1
(A.25)

Finally, the new smoothed y-values, ŷi, are calculated for each i in the same way as
described previously. However, the weights for the weighted least squares are replaced
by δjwj(xi) for (xj, yj). More information regarding the full details of the LOWESS
method can be found in the paper by Cleveland [173].

The LOWESS method as described above has been implemented using the Python pack-
age called statsmodels.nonparametric.smoothers_lowess.lowess [175]. This package
uses a first degree polynomial function (d = 1), which is in accordance with the findings
obtained in [173]. It has been found that using a first degree polynomial yields adequately
smoothed data whilst maintaining computational ease [173]. Furthermore, the package’s
two most important parameters, except from the x-values (flight cycles) and y-values
(sensor values), are the number of iterations it and the window frac (which determines
the number of k-nearest neighbor points that will be considered when smoothing the
data). The number of iterations used to reweigh weights and recompute smoothed y-
values has been left at the default value of it = 3, as it provides satisfactory results.
The value of the window frac (with 0 < frac ≤ 1) has been left at the default value of
frac = 2/3, as it yields satisfying smoothed y-values. Choosing this relatively high frac
default value is desired, as it is required to select a value as large as possible without
altering the underlying data pattern in order to obtain the finest smoothing [173]. Con-
sequently, these parameter settings have been used when applying the LOWESS method
for all 28 sensors listed in Table 4 and Table 5 of the paper.
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Appendix B Feature selection results (obtained using
LOWESS for data smoothing)

This appendix contains the results of feature selection using RFECV for data that has
been smoothed with LOWESS. It comprises the selected features (with corresponding
feature importances) of the flight class RFR models in DS01, DS02 and DS03. Addi-
tionally, the accompanying CV scores are provided as well.

Table B2 shows the selected features with their accompanying feature importances of
the flight class RFR models for DS01 and DS02. Note that for DS02, only flight class
RFR model 3 is listed in this table since the development set of DS02 only consists of
units from flight class 3. The selected features and corresponding feature importances
of flight class RFR models for DS03 are shown in Table B3.

When considering the selected features for flight class RFR models in DS01, it can be
explained why the selected features in DS01 are also relevant from a physical perspec-
tive. Given that all units from DS01 are suffering from HPT efficiency deterioration, it
is likely that it could result into the HPT being incapable of efficiently transforming the
hot gas into energy, thus generating less power [176]. As a consequence, Wf is increased
in order to still generate the same amount of power, thus causing the temperatures T50
and T48 to rise and phi to increase [176]. As a result, the entire unit will rotate faster
(Nf will increase) causing the LPC to compress more air, hence produce a higher Ps30.
A side effect of compressing extra air is an increased T24 [176]. Furthermore, a faster
rotating unit results into decreased stall margins SmLPC and SmHPC [176]. Note that
this explanation can only be provided for units in DS01 as those units are experiencing
the effect of only a single failure mode. For units in DS02 and DS03, this can not be
explained as they are affected by multiple simultaneous failure modes. These multiple
simultaneous failure modes make it too complex to explain why the selected features are
relevant from a physical perspective.

Furthermore, apart from the tables showing the selected features for the data subsets,
Table B4 is showing the CV scores obtained for the selected features per flight class
RFR model for DS01, DS02 and DS03. These CV scores are considered as the baseline
errors that need to be reduced through hyperparameter tuning (from which the results
are shown in Appendix C). When comparing the CV scores in Table B4 to the CV scores
obtained for data that has been smoothed using the FC average smoothing method, it
becomes evident that the scores in Table B4 are considerably lower. This is expected to
be caused due to the better smoothing results of LOWESS.
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Table B2: Selected features with corresponding feature importances of DS01 (for flight
class RFR models 1,2 and 3) and DS02 (for flight class RFR model 3).

Data subset Flight class
RFR model Selected features Feature importance [-]

DS01 1

T50 0.2136
T48 0.2098
Ps30 0.2012
Phi 0.1899
T24 0.1855

DS01 2 SmLPC 0.6312
Nf 0.3688

DS01 3
T50 0.7791

SmHPC 0.1256
Wf 0.0953

DS02 3

SmLPC 0.3466
phi 0.2979

SmHPC 0.1408
T50 0.0900
T48 0.0633

SmFan 0.0194
T40 0.0100
Nf 0.0082
Wf 0.0050
Nc 0.0049
T30 0.0029
P45 0.0023
W50 0.0023
W25 0.0019
W31 0.0018
Ps30 0.0014
P2 0.0011
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Table B3: Selected features with corresponding feature importances of DS03 for flight
class RFR models 1,2 and 3.

Data subset Flight class
RFR model Selected features Feature importance [-]

DS03 1
SmLPC 0.7327
SmHPC 0.1414

T24 0.1259

DS03 2

T48 0.3695
T40 0.3197

SmLPC 0.1098
Nf 0.0503

SmHPC 0.0424
P2 0.0384
phi 0.0309

SmFan 0.0197
P15 0.0079
T24 0.0045
W21 0.0043
P50 0.0026

DS03 3

SmHPC 0.3386
phi 0.3361
Nc 0.1465

SmLPC 0.0880
T48 0.0213

SmFan 0.0174
T50 0.1380
Nf 0.0097

T40 0.0088
T30 0.0069
W21 0.0033
T24 0.0026
W25 0.0025
W22 0.0025
Ps30 0.0020
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Table B4: Baseline CV scores from RFECV of DS01, DS02 and DS03 for flight class
RFR models 1,2 and 3.

Data subset Flight class RFR model Baseline CV score (RMSE) [FC]

DS01
1 12.2754
2 11.2924
3 10.2639

DS02 3 10.5136

DS03
1 13.1764
2 11.1559
3 11.0989
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Appendix C Hyperparameter tuning results (obtained
using LOWESS for data smoothing)

This appendix contains the results of the hyperparameter tuning for all flight class RFR
models in DS01, DS02 and DS03 for which the data has been smoothed with LOWESS.
To be precise, it shows which specific RFR hyperparameters are tuned as well as their
tuned values in Table C5. Additionally, the corresponding new (final) CV scores obtained
on the development sets of DS01, DS02 and DS03 (with the optimal hyperparameter
values) for all flight class RFR models are listed in Table C6. It can be seen that the
final CV scores improved for all flight class RFR models in all data subsets compared
to Table B4. However, the CV scores only slightly improved, thereby indicating that
hyperparameter tuning does not have a substantial effect on these specific data subsets.

Table C5: RFR hyperparameters for flight class RFR models 1, 2 and 3 of DS01, DS02
and DS03. The (initial) ranges of the search grid are the following: Number of trees
[100, 300, 500, 800, 1000, 1200], Split criterion [MSE, Poisson], Maximum tree depth
[4, 6, 8, 10, 15, 25, 40, 100, None], Minimum samples per split [2, 4, 8, 10], Minimum
samples per leaf node [1, 3, 5, 7, 9] and Fraction of features per split [0.25, 0.50, 0.75,
Auto].

Data
subset

Flight
class
RFR
model

Number
of trees

Split
criterion

Max.
tree

depth

Min.
samples
per split

Min.
samples

per
leaf
node

Fraction
of

features
per split

DS01
1 110 MSE 13 2 1 0.4
2 120 MSE 8 2 1 0.5
3 310 MSE 98 2 1 Auto

DS02 3 300 MSE 98 2 1 Auto

DS03
1 80 MSE 100 2 1 Auto
2 90 MSE 100 2 1 Auto
3 1020 MSE 8 2 1 Auto
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Table C6: Final CV scores after hyperparameter tuning of DS01, DS02 and DS03 for
flight class RFR models 1,2 and 3.

Data subset Flight class RFR model Final CV score (RMSE) [FC]

DS01
1 12.2432
2 11.2861
3 10.2110

DS02 3 10.4192

DS03
1 13.1562
2 11.1465
3 11.0170
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Appendix D RUL point estimations and correspond-
ing uncertainty (obtained using LOWESS
for data smoothing)

This appendix discusses the RUL point estimations and corresponding uncertainty of
these estimations, displayed via probability distributions, of all test units in DS01 (units
7, 8, 9 and 10), DS02 (unit 11) and DS03 (units 10, 11, 12, 13, 14 and 15).

Figure D.1 and Figure D.2 depict the RUL point estimations and associated probabil-
ity distributions (of the first, middle and last RUL point estimations) of test units 7
and 9 (both flight class RFR model 1), respectively. Figure D.3 and Figure D.4 depict
equivalent information for test units 12 and 14 (both flight class RFR model 1 as well),
respectively. In Figure D.5 and Figure D.6, the RUL point estimations and associated
probability distributions are shown for test units 8 and 15 (both flight class RFR model
2), respectively. Finally, Figure D.7, Figure D.8, Figure D.9, Figure D.10 and Fig-
ure D.11 show the same for flight class RFR model 3 test units 10 (DS01), 11 (DS02), 10
(DS03), 11 (DS03) and test unit 13, respectively. When analyzing all figures, it becomes
apparent that the results (RUL point estimations as well as the accompanying prob-
ability distributions) are considerably less satisfactory compared to those of test units
for which their data have been smoothed with the FC average data smoothing method.
These considerably less satisfactory results are believed to be a result of unpreventable
smoothing issues with LOWESS. As explained, a scarce amount of test data is available
for smoothing with LOWESS when generating the RUL point estimations, especially for
RUL point estimations during a unit’s initial life.

Due to this scarce amount of available smoothing data, the eventual smoothed data is
expected to be slightly different from the smoothed (training) data on which the RFR
flight class models have been trained. Because the training data on which these RFR
flight class models were trained, comprised of a unit’s entire lifetime. Consequently, a
larger fraction of data has been available for LOWESS when smoothing the data in the
development set, possibly leading to slightly different smoothed values. Unfortunately
in reality, having a test unit’s entire lifetime of data available during its early life is
impossible (otherwise one would have already known when it failed, thereby eliminating
the necessity for RUL estimation models in the first place). As a result, it is likely
that this slightly different smoothed data during a unit’s early life causes the RFR flight
class models to generate considerably different RUL estimations due to the way in which
thresholds were created by the RFR when constructing the forests.

Additionally, it can be observed that the RUL point estimations for most test units do
not converge towards the true RUL values, as the units approach their end of life. A
possible explanation for this behaviour is concerned with the deterioration patterns of
the test units. Because in case the deterioration patterns differ slightly from the pat-
terns learned during training of the flight class RFR models, their smoothed data will be
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different. Hence, it can yield wildly different RUL point estimations, as explained previ-
ously. Only the RUL point estimations of test units 12 (Figure D.3), 14 (Figure D.4) and
11 (Figure D.8) converge towards the true RUL values as they approach their end of life.
This is expected to happen due to the test units (eventually) following the degradation
patterns of their training units fairly well. Furthermore, it can be seen that test unit 12
(Figure D.3) has the highest accuracy in terms of RUL point estimations (that is, the
estimations are close to the corresponding true RUL values, especially after 40 FC).

Overall, it can be concluded that the test units of DS03 generally yield the best results
is terms of RUL point estimations as well as probability distributions. This is believed
to be a direct effect of having more training units available for the test units in DS03
compared to the test units in DS01, even though DS03 has a higher complexity than
DS01. Finally, when considering the probability distributions of all test units, it is found
that the probabilities of correctly estimating the true RUL values are generally found
to be low. However, it can be also observed that for five out of the 11 test units, the
uncertainty of the estimations decreases as the units approach their end of life, because
the spread of the probability distributions decreases. Also, inspecting the accuracy of
the corresponding RUL point estimations shows that combining the individual tree RUL
estimations into a single RUL point estimation is generally found to increase RUL point
estimation accuracy.
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Figure D.1: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 7, DS01.

Figure D.2: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 9, DS01.
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Figure D.3: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 12, DS03.

Figure D.4: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 14, DS03.
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Figure D.5: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 8, DS01.

Figure D.6: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 15, DS03.
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Figure D.7: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 10, DS01.

Figure D.8: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 11, DS02.
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Figure D.9: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 10, DS03.

Figure D.10: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 11, DS03.
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Figure D.11: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 13, DS03.
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Appendix E RUL point estimations and correspond-
ing uncertainty (obtained using FC aver-
age for data smoothing)

This appendix discusses the RUL point estimations and probability distributions (which
show the corresponding uncertainty of these estimations) of the remaining test units in
DS01 (unit 9), DS02 (unit 11) and DS03 (units 10, 12 and 13).

Figure E.1 and Figure E.2 depict the RUL point estimations and corresponding proba-
bility distributions (of the first, middle and last RUL point estimations) of test unit 9
and test unit 12 (both flight class RFR model 1), respectively. The RUL point estima-
tions and associated probability distributions of test units 10 and 13 (flight class RFR
model 3) are depicted in Figure E.3 and Figure E.4, respectively. Figure E.5 presents
this same information for test unit 11 (flight class RFR model 3). Approximately the
same type of results as discussed in paragraph 4.1 of the paper can be observed in these
graphs. First of all, it can be seen that the results in terms of RUL point estimations
of test units 9 and 12 (Figure E.1 and Figure E.2, respectively) appear to be the closest
to the true RUL. Furthermore, for these test units as well as test unit 11 (Figure E.5),
a converging trend towards zero RUL can be identified. This is expected as it generally
becomes easier to produce estimations as the estimation window decreases over time.
However, this converging trend is not identified for test units 10 and 13 (Figure E.3 and
Figure E.4, respectively). As a matter of fact, the estimated RUL values of test unit 10
(and test unit 13 to a lesser extend) seem to be parallel to the true RUL values, except
for some individual estimations. The expected reason for this parallel behaviour is that
the training units for these test units (both test units were trained on the exact same
training units) followed a less steep deterioration pattern, compared to these two test
units. The expected reason for the individual estimations of test units 10 and 13 which
do not follow the overall parallel trends (especially visible during the last 20 FC), is that
the flights of these estimations operated slightly different (in terms of throttle setting)
compared to the overall flights. This possibly slightly different throttle setting could
result into slightly different smoothed data values, which in turn can lead to largely
different RUL point estimations due to the way thresholds were created by RFR when
constructing the trees.

Finally, when considering the probability distributions of all test units, it can be observed
that for the majority of the test units, the uncertainty of the estimations decreases over
time because the width of the probability distributions decreases (especially for the
distributions corresponding to a true RUL value of zero FC). This is very useful as it is
especially important to have a low uncertainty for the RUL estimations corresponding
to a unit’s end of life, because a high uncertainty of those estimations would endanger
flight safety.
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Figure E.1: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 9, DS01.

Figure E.2: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 12, DS03.
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Figure E.3: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 10, DS03.

Figure E.4: RUL point estimations and
probability distributions of the first,
middle and last RUL point
estimations of unit 13, DS03.
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Figure E.5: RUL point estimations and
probability distributions of first,
middle and last RUL point
estimations of unit 11, DS02.
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