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Abstract
Kernel estimators are proposed for estimating the cumulative distribution functions
and the probability density functions of several quantities of interest in a stereological
oriented cylinder model. This oriented cylinder model was developed to represent
anisotropic microstructural features in materials. The asymptotic properties of these
estimators are studied, and the estimators are applied to two banded dual phase steel
microstructures. The estimation method is quite general and can also be applied to
distributions of other univariate quantities of interest.

Keywords Nonparametric estimation · Asymptotics · Materials science · Inverse
problem · Stereology

Mathematics Subject Classification 62G05 · 62G20 · 62P30

1 Introduction

The so-called Wicksell problem introduced in Wicksell (1925) is a classical inverse
problem in statistics. The original motivation was medical. A postmortem examina-
tion of spleens containing approximately spherical tumors was performed. Based on
cross sections of the spleens (showing circular profiles of the tumors), the aim was
to estimate the distribution of tumor sizes based on the observed circle radii. Wick-
sell’s problem is a typical example of a stereological problem, where one aims to infer
‘three-dimensional properties’ from ‘two-dimensional information’. Not only within
the field of anatomy, but also in materials science and astronomy, this type of problem
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is frequently encountered. See, e.g., Sen and Woodroofe (2011) for an astronomical
application of the model. Over the years, quite some stereological problems related
to Wicksell’s problem have been introduced and studied; see, e.g., Ohser and Mück-
lich (2000) for problems related to different shapes of the three-dimensional objects
and Feuerverger and Hall (2000) for a problem where the data are obtained slightly
differently.

In this paper, we study another related model, specifically designed for a materials
science problem. In this model, circular cylinders (all with the same orientation, say
vertical axes) are distributed within an opaquemediumwhich is cut vertically (parallel
to the axes). The problem then is to estimate distributional properties of various three-
dimensional quantities related to size (volume, surface area, e.g.,) only based on data
obtained from the two-dimensional section. This model was introduced in McGarrity
et al. (2014),where also the relations between the distributions of (unobservable) three-
dimensional quantities and (observable) two-dimensional quantities are derived. These
will be reviewed in Sect. 2. In that paper, estimators of the distribution functions are
defined and studied asymptotically. These estimators are step functions. Especially
in the metallurgical context, such cumulative distribution functions are considered
undesirable, as they are harder to interpret for practitioners than density functions that
give more direct visual information on the relative occurrence of the various sizes
in the material. Section 3 discusses smooth estimators for cumulative functions in
the oriented cylinder model. A particular feature of these smooth estimators is that
their pointwise asymptotic behavior does depend on the rate at which the bandwidth
vanishes (rate n−1/4 is optimal), but not on the constant in front of this rate.

Estimates of density functions can be obtained from these via differentiation. In
Sect. 4, these density-like functions are defined and studied asymptotically. It turns out
that for estimating these, the bandwidth should vanish at rate n−1/6 in order to let the
MISE vanish at rate n−2/3. The choice of the constant in front of n−1/6 is important,
and we describe a reference family method to obtain data driven bandwidths based on
the expressions for the asymptotically MISE-optimal bandwidths. Finally, in Sect. 5
we apply the proposed estimators to a real microstructural dataset obtained at TATA
Steel.

2 An oriented cylinder model

In the process of representing microstructural features of interest like those mentioned
in Sect. 1, a first (simple) model was proposed in McGarrity et al. (2014). We describe
this model briefly here. Consider a large box in 3D, that is cut by a vertical plane.
Throughout the box, points are distributed according to a low-intensity Poisson process
that is homogeneous in the direction perpendicular to the cutting plane. At these
points, circular cylinders are placed, all oriented in the same way, with vertical axes of
symmetry. See Fig. 1 for an illustration of the situation. The squared radius X (which
we consider rather than the radius itself, following the example of Hall and Smith
(1988) in Wicksell’s problem) and height H of the cylinders are generated as i.i.d.
bivariate random vectors (X , H) drawn from the bivariate density f , corresponding
to the 3D microstructural features of interest. Note that f is a joint density and X and
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Fig. 1 Impression of the
cylinders randomly distributed
in a box, with the cutting plane
where rectangular intersections
can be observed

Fig. 2 Function K̄ given in (11)
based on the biweight kernel
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H are not assumed independent. The data consist of the rectangular profiles of the
cylinders cut by the plane.

The height of the rectangle is equal to the height of the cut cylinder, and the width
of the rectangle is a fraction of the diameter of the cylinder. Taking into account that
the probability of cutting a cylinder by the plane depends on the radius of the cylinder,
the relationship between the joint density g of the observed rectangle pairs (Z , H),
the squared half-width Z and height H , and the joint density f of (X , H) is derived
in McGarrity et al. (2014):

g(z, h) =
∫∞
x=z(x − z)− 1

2 f (x, h) dx

2
∫∞
x=0

√
x fX (x) dx

= 1

2m+
F

∫ ∞

x=z
(x − z)−

1
2 f (x, h) dx . (1)

123



508 G. Jongbloed et al.

Fig. 3 Numerical approximation
of the function φ11,7
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Here,m+
F = E f [

√
X ] < ∞. This equation can be inverted to express the joint density

f in terms of g:

f (x, h) = − 1

m−
G

∂

∂x

∫ ∞

z=x
(z − x)−

1
2 g(z, h) dz. (2)

Here m−
G = Eg[Z−1/2] < ∞. For the derivation of these relations, see Sect. 2 in

McGarrity et al. (2014).
Based on these relations, it is possible to estimate the distribution of univariate

quantities related to the distribution of (X , H). In this paper, we restrict ourselves to
the squared radius (X ) and the volume V = πXH .

In order to save space in notation, define for h, t > 0 the function

q(h; t) =
{

t squared radius: T = X ,
t

πh
volume: T = πXH .

(3)

These quantities are chosen such that the random variable of interest, T , satisfies
T > t if and only if X > q(H ; t). Hence, using (2) we obtain the general form of the
distribution functions for these quantities

FT (t) = 1 −
∫ ∞

h=0

∫ ∞

x=q(h;t)
f (x, h) dx dh = 1 − N (t)

N (0)
(4)

where

N (t) =
∫ ∞

h=0

∫ ∞

z=q(h;t)
[z − q(h; t)]− 1

2 g(z, h) dz dh. (5)

Note that N (t) ≤ N (0) = m−
G = Eg[Z−1/2]. The distribution functions of the

unobservable cylinder quantities are expressed now in terms of N which can in turn
be derived from the joint density g of the observable pairs (Z , H).

In practice, one is often also interested in an estimate of the probability density
functions of the various univariate quantities mentioned in (3). Taking the derivative
of (4) yields

fT (t) = d

dt
FT (t) = d

dt

(

1 − N (t)

N (0)

)

= −
d
dt N (t)

N (0)
. (6)
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Now N can be estimated empirically, replacing the integral with respect to the joint
density g in (5) by the integral with respect to the empirical distribution of the observed
pairs (Xi , Hi ), 1 ≤ i ≤ n. This leads to

Nn(t) = 1

n

n∑

i=1

[Zi − q(Hi ; t)]− 1
2 1[Zi>q(Hi ;t)]. (7)

While this estimator will provide an estimate for the function N given in (5), it can
have some undesirable properties. One is that it is not a decreasing function, in fact
it has discontinuities of infinite size. Indeed, taking the squared radius as example,
such discontinuity appears at t = Zi , for any value of i . In McGarrity et al. (2014),
an isotonization procedure is used to obtain an estimator that is a decreasing step
function.

Another, related issue is that the estimate Nn will not be smooth. Often one wants to
assume that N is smooth and estimate its derivative. This function gives insight in the
relative probabilities with which certain values of the quantities of interest occur. In
Sects. 3 and 4, we introduce kernel estimators for the functions N and their derivatives.

3 Estimators for the function N

In view of the function N defined in (5) and its empirical estimator Nn given in
(7), there are various approaches one can take to obtain smooth estimators for N .
One approach is to substitute a smoothed empirical distribution of the observed pairs
(Xi , Hi ) for g in (5) rather than the empirical distribution itself. In the (univariate)
context ofWicksell’s problem, this approachwas originally proposed in Taylor (1983).
A related estimator (based on squared radii rather than radii) was introduced in Hall
and Smith (1988).

Still in Wicksell’s problem, van Es and Hoogendoorn (1990) suggest an alternative
smooth estimator, obtained that by kernel smoothing of the function Nn .

Following the latter approach, we define a smooth estimator of N , based on smooth-
ing the empirical plug-in estimator Nn defined in (7). For this, we use a smoothing
kernel K , having the usual properties (symmetric continuously differentiable proba-
bility density supported on [−1, 1]). To make it more concrete, we use the biweight
kernel K , defined as

K (u) = 15

16

(
1 − u2

)2
1[−1,1](u) (8)

although this particular choice is not essential. Take a sequence of bandwidths (bn)
with bn ↓ 0 as n → ∞ and define for t > 0

Ñn(t) = 1

bn

∫ t+bn

s=t−bn
K

(
t − s

bn

)

Nn(s) ds

= 1

nbn

n∑

i=1

∫ t+bn

s=t−bn
K

(
t − s

bn

)

[Zi − q(Hi ; s)]− 1
2 1{Zi>q(Hi ;s)} ds. (9)
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For this estimator, the mean squared error for estimating N (t) (for fixed t) is defined
by

MSE(Ñn(t)) = (E [Ñn(t)
]− N (t)

)2 + Var
(
Ñn(t)

)
.

In order to study the asymptotic behavior of this MSE at fixed location t > 0, we
impose the following condition:

Condition 3.1 The function N is twice continuously differentiable at t .

Now, under Condition 3.1 and fixing t > 0, for n tending to infinity the expectation
of Ñn(t) is given by

E
[
Ñn(t)

] = 1

bn

∫ t+bn

s=t−bn
K

(
t − s

bn

)

E [Nn(s)] ds

= 1

bn

∫ t+bn

s=t−bn
K

(
t − s

bn

)

N (s) ds =
∫ 1

u=−1
K (u)N (t − ubn) du

=
∫ 1

u=−1
K (u)

[

N (t) − ubnN
′(t) + 1

2
(ubn)

2N ′′(ξu,n)

]

du

= N (t) + 1

2
b2nN

′′(t)
∫ 1

u=−1
u2K (u) du + o

(
b2n
)

for n → ∞,

(10)

where ξu,n denotes a point between t and t − ubn . For the squared bias part of the
MSE this yields, for n → ∞,

(
E
[
Ñn(t)

]− N (t)
)2 = 1

4
b4nN

′′(t)2
(∫ 1

u=−1
u2K (u) du

)2
+ o(b4n).

Note that this asymptotic bias can be derived for both choices of q listed in (3)
simultaneously. For the asymptotic variance of Ñ (t), both choices for q need to be
dealt with separately. We follow the approach adopted in Hall and Smith (1988) for
Wicksell’s problem and express Ñn as a convolution of two functions.

First for the volume, we get (using that t > bn for sufficiently large n because
t > 0)

Ñ vol
n (t) = 1

bnn

n∑

i=1

∫ ∞

s=−∞
K

(
t − s

bn

)[

Zi − s

πHi

]− 1
2

1[
Zi>

s
πHi

] ds

= 1

bnn

n∑

i=1

∫ ∞

u=0
K

(
t − πHi (Zi − u)

bn

)

u− 1
2 πHi du

= 1

n

n∑

i=1

∫ ∞

u=0
K

(
πHiu

bn
+ t−πHi Zi

bn

)(
πHiu

bn

)− 1
2
(

πHi

bn

) 1
2

d

(
πHiu

bn

)
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= 1√
bnn

n∑

i=1

√
πHi

∫ ∞

u=0
K

(

u + t − πHi Zi

bn

)

u− 1
2 du.

For the squared radius, also using that t > 0 and so t > bn for sufficiently large n,
we obtain

Ñ sr
n (t) = 1

bnn

n∑

i=1

∫ ∞

s=−∞
K

(
t − s

bn

)

[Zi − s]− 1
2 1[Zi>s] ds

= 1

bnn

n∑

i=1

∫ ∞

u=0
K

(
t − (Zi − u)

bn

)

u− 1
2 du

= 1

n

n∑

i=1

∫ ∞

u=0
K

(
u

bn
+ t − Zi

bn

)(
u

bn

)− 1
2

b
− 1

2
n d

(
u

bn

)

= 1√
bnn

n∑

i=1

∫ ∞

u=0
K

(

u + t − Zi

bn

)

u− 1
2 du.

For smooth kernel functions supported on [−1, 1], such as the biweight function
given in (8), define the function

K̄ (v) =
∫ ∞

u=0
u− 1

2 K (u + v) du =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for v ≥ 1,
∫ −v+1

0
u− 1

2 K (u + v) du for − 1 < v < 1,
∫ −v+1

−v−1
u− 1

2 K (u + v) du for v ≤ −1.

(11)
See (30) for the explicit expression andFig. 2 for a visualization of the function K̄ based
on the biweight Kernel function defined in (8). Then, the function Ñn corresponding
to the volume can be expressed as

Ñ vol
n (t) = 1√

bnn

n∑

i=1

√
πHi K̄

(
t − πHi Zi

bn

)

. (12)

In a similar fashion, we get for the function Ñn corresponding to the squared radius
distribution

Ñ sr
n (t) = 1√

bnn

n∑

i=1

K̄

(
t − Zi

bn

)

. (13)

Now note that for v < −1,

(−v + 1)−
1
2 ≤ K̄ (v) ≤ (−v − 1)−

1
2 . (14)
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This leads to the following asymptotic behavior of K̄ (v) for v → −∞
√ −v

−v + 1
≤ √−v K̄ (v) ≤

√ −v

−v − 1
⇒ √−v K̄ (v) → 1 for v → −∞. (15)

To pin down the asymptotic variance of Ñn(t), we also need the function

τq(z) =
∫ ∞

h=0
g(q(h; z), h) dh (16)

on [0,∞)

Lemma 3.2 Let K be a symmetric and continuously differentiable probability density
on IR, supported on [−1, 1]. Let N satisfy Condition 3.1. and Eg[H ] < ∞. Let t > 0
and choose 0 < bn → 0 as n → ∞. Assume that the function τq defined in (16) is
bounded and right continuous at t . Then,

Var
(
Ñn(t)

) = τq(t) n
−1 ln

(
b−1
n

)
+ O(n−1), (17)

for both the squared radius and volume.

Proof Consider Ñ vol
n (t). Using representation (12) and the definition of τq(z) at z = t ,

for the volume we have

nVar
(
Ñ vol
n (t)

)
= π

bn
Var

(√
H1 K̄

(
t − πH1Z1

bn

))

= π

bn

{

E

[

H1 K̄

(
t − πH1Z1

bn

)2]

−
(

E

[√
H1 K̄

(
t − πH1Z1

bn

)])2}

.

Using continuity of N vol at t yields

E

[√
H1 K̄

(
t − πH1Z1

bn

)]

=
√
bn
π

E
[
Ñ vol
n (t)

]
=
√
bn
π

N vol(t) + o
(√

bn
)

,

giving, for n → ∞,

nVar
(
Ñ vol
n (t)

)
= π

bn
E

[

H1 K̄

(
t − Z1

bn

)2]

− N vol(t)2 + o(1).

Now, for ε > 0 and n sufficiently large such that bn < ε,

π

bn
E

[

H1 K̄

(
t − πH1Z1

bn

)2]

123



Smooth estimation of size distributions in an oriented… 513

= π

bn

∫ ∞

h=0
h

(∫ t+ε
πh

z= t−bn
πh

+
∫ ∞

t+ε
πh

)

K̄

(
t − πhz

bn

)2
g(z, h) dz dh = I1 + I2.

For I2, squaring the upper bound on K̄ given in (14) and using that for πhz > t + ε >

t + bn , we have (t − πhz)/bn < −1

I2 ≤ b−1
n

∫ ∞

h=0
πh
∫ ∞

z= t+ε
hπ

bn(zhπ − t − bn)
−1g(z, h) dz dh

≤
∫ ∞

h=0
πh(t + ε − t − bn)

−1
∫ ∞

z= t+ε
hπ

g(z, h) dz dh

= 1

ε − bn

∫ ∞

h=0
πh
∫ ∞

z= t+ε
hπ

g(z, h) dz dh ≤ 2

ε
πEg[H ]

for all n sufficiently large. Since Eg[H ] < ∞, I2 is bounded as n → ∞. For I1, we
have for any c < −1 and n sufficiently large

I1 = b−1
n

∫ ∞

h=0
πh
∫ t+ε

πh

z= t−bn
πh

K̄

(
t − zhπ

bn

)2
g(z, h) dz dh

=
∫ ∞

h=0

∫ 1

v=− ε
bn

K̄ (v)2 g

(
t − bnv

πh
, h

)

dv dh

=
∫ ∞

h=0

[∫ c

v=− ε
bn

+
∫ 1

v=c

]

K̄ (v)2 g

(
t − bnv

πh
, h

)

dv dh.

For any fixed c, the second term is clearly bounded by a constant. Taking c < −1
sufficiently small, by right continuity of τq at t , the first term becomes

∫ ∞

h=0

∫ c

−ε/bn
K̄ (v)2 g

(
t − bnv

πh
, h

)

dv dh =
∫ c

−ε/bn
K̄ (v)2τq(t − bnv) dv

=
∫ ∞

h=0
g

(
t

πh
, h

)

dh
∫ c

−ε/bn

1

−v
dv + O(1) = τq(t) ln

(
b−1
n

)
+ O(1)

using (15), the fact that ε canbe chosen arbitrarily small in this argument anddominated
convergence. The exact same method can be used for the squared radius. The result
for I2 is 2/ε since there is no πh term in the integral. The result for I1 will be exactly
the same as the result for the volume where τq(t) is gZ (t). Together, these again lead
to (17). 
�

We can now prove the following theorem.

Theorem 3.3 Under Condition 3.1 and the assumptions of Lemma 3.2, for b = bn ↓ 0
as n → ∞, for t > 0

MSE(Ñn(t)) = 1

4
b4nN

′′(t)2
(∫

u2K (u) du

)2
+ τq(t) ln

(
b−1
n

)

n
+ O(n−1) + o(b4n).
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Moreover,

√
n

ln n

(
Ñn(t) − N (t)

)→D N (0, τq(t)/4) as n → ∞.

This holds for both the squared radius and the volume distribution.

Proof The MSE part immediately follows from the asymptotic bias derived in (10)
combined with Lemma 3.2. The asymptotic distribution result follows by also using
the central limit theorem for i.i.d. random variables with infinite variance; see Chow
and Teicher (1988) Theorem 4 on p. 305). 
�

As a consequence, the asymptotically MSE optimal bandwidth is given by

bn = n− 1
4 τq(t)

1
4

(

|N ′′(t)|
∫

u2K (u) du

)− 1
2

,

yielding

lim
n→∞

n

ln n
MSE(Ñn(t)) = 1

4
τq(t).

The MSE of the initial plug-in estimator Nn defined in (7) is infinite, because its
variance is infinite. A notable property of the estimator Ñn(t) is that as long as the
bandwidth tends to zero at rate n−1/4, the asymptotic MSE does not depend on the
constant that is chosen in the bandwidth. In Sect. 5.4 ofMcGarrity (2013), a numerical
simulation illustrates the difference between the initial plug-in estimator Nn and the
smoothed estimator Ñn and how the bandwidth impacts the estimates of the distri-
bution functions of the squared radius and volume. In other contexts, including the
estimation of the density function that will be considered in Sect. 4, choosing this
constant optimally is often a delicate matter.

Another notable fact is the value of the asymptotic MSE in relation to asymptotic
distribution results of the empirical (non-smoothed) estimator Nn and the isotonic
inverse estimator studied by McGarrity et al. (2014). Both estimators are asymptoti-
cally unbiased, and normalwith variance τq (t) and τq(t)/2, respectively (both rescaled
with rate

√
n/ ln n).

In view of Theorem 3.3, these estimators are comparable to smoothed estimators
with bandwidths of order n−1 and n−1/2, respectively. Taking these small bandwidths
results in asymptotically unbiased estimators. Smoothing a bit more (using bn ∼
n−1/4) decreases the variance but still results in an (asymptotically) unbiased estimator.
Taking a larger bandwidth will make the bias term in the MSE the dominating one,
and increase the asymptotic MSE.

The derivative of this smooth estimator may be taken to give an estimate of the
density. This will be explored further in the next section.
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4 Smooth density estimators

In order to obtain estimators for the densities f , we study the derivative of Ñn as
given in (9). Contrary to the non-smoothed estimator Nn , the estimator Ñn can be
differentiated to obtain an estimator for the derivative ν = N ′. We define the estimator
of this derivative as

ν̃n(t) = d

dt
Ñn(t) = 1

nb2n

n∑

i=1

∫
K ′
(
t − s

bn

)

[Zi − q(Hi ; s)]− 1
2 1[Zi>q(Hi ;s)] ds.

(18)
Note that just as in the setting of estimating N (t), the expectation of the estimators
for the function ν related to the two choices of q in (3) can be dealt with at once. To
this end, we need

Condition 4.1 The function N is three times continuously differentiable at t .

Under Condition 4.1, we can write:

E [̃νn(t)] = 1

bn

∫
N (t − bnu)K ′(u)du = ν(t) + 1

2
b2nν

′′(t)
∫

u2K (u) du + o(b2n)

(19)
for n → ∞. In order to obtain the asymptotic variance of the estimators for the squared
radius and volume, we use representations (12) and (13) to write

ν̃srn (t) = 1

nb
3
2
n

n∑

i=1

K̄ ′
(
t − Zi

bn

)

, ν̃vol
n (t) = 1

nb
3
2
n

n∑

i=1

√
πHi K̄

′
(
t − πHi Zi

bn

)

.

(20)
For the variances of the estimators, we have the following lemma.

Lemma 4.2 Fix t > 0 and suppose Condition 4.1 holds and function τq defined in (16)
is right continuous at t . Let K be a continuously differentiable symmetric probability
density with support [−1, 1]. Then, as bn ↓ 0,

Var(̃νn(t)) = τq(t)

∫
K̄ ′(u)2 du

nb2n
+ O

(
(nbn)

−1
)

. (21)

This result holds for the squared radius as well as the volume.

Proof Considering the volume, by (20), nb2nVar(̃ν
vol
n (t)) equals

π

bn

{

E

[

H1 K̄
′
(
t − πH1Z1

bn

)2]

−
(

E

[√
H1 K̄

′
(
t − πH1Z1

bn

)])2}

.

Using the asymptotic bias (19) and Condition 4.1, it follows that the second term in
the above expression is o(1) for n → ∞. Because K (±1) = K ′(±1) = 0 for the
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kernel function we consider, for v < −1

K̄ ′(v) = 1

2

∫ −v+1

−v−1
K (u + v)u−3/2 du,

implying that for v < −1

1

4
(−v + 1)−3 ≤ K̄ ′(v)2 ≤ 1

4
(−v − 1)−3.

This bound, with boundedness of K̄ ′, imply that K̄ ′ is square integrable. Now note
that

π

bn
E

[

H1 K̄
′
(
t − πH1Z1

bn

)2]

= π

bn

∫ ∞

h=0
h
∫ ∞

z=0
K̄ ′
(
t − πhz

bn

)2
g(z, h) dz dh

=
∫ ∞

h=0

∫
K̄ ′(u)2g

(
t − bnu

πh
, h

)

du dh =
∫

K̄ ′(u)2τq(t − bnu) du

= τq(t)
∫

K̄ ′(u)2 du + o(1),

where we use dominated convergence and right continuity of τq at t . 
�

As in Sect. 3, we can define the mean squared error of the estimator by

MSE(̃νn(t)) = (Eg [̃νn(t)] − ν(t)
)2 + Var (̃νn(t)) .

As the global behavior of the density estimator as a function is maybe even more
of interest than its local behavior (more so than for the estimator of the distribution
function), the mean integrated squared error,

MISE(̃νn) =
∫

MSE(̃νn(t)) dt

is also interesting for ν̃n . We have the following result.

Theorem 4.3 Fix t > 0. Under the assumptions of Lemma 4.2 and Condition 4.1, as
n → ∞ and bn ↓ 0,

MSE(̃νn(t))=τq(t)

∫
K̄ ′(u)2 du

nb2n
+ 1

4
b4nν

′′(t)2
(∫

u2K (u) du

)2
+o

(
1

nb2n

)

+o(b4n)

for the squared radius and volume. If ν has a uniformly bounded third derivative and
f bounded support in [0,∞)2, then
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MISE(̃νn) =
∫

τq(t) dt ·
∫
K̄ ′(u)2 du

nb2n
+ 1

4
b4n

∫
ν′′(t)2 dt ·

(∫
u2K (u) du

)2

+o

(
1

nb2n

)

+ o(b4n).

Proof The asymptotics of the MSE immediately follows from (19) and Lemma 4.2.
For the MISE, note that bounded support of f implies bounded support of g which in
turn implies bounded support of τq and ν. 
�

From Theorem 4.3, we infer that the asymptotic M(I)SE- optimal bandwidth cor-
responds to a balance of the two terms, leading to bn ∼ n−1/6. Taking bn = αn−1/6,
the asymptotically MISE-optimal choice for α is given by

αopt =
[

2
∫

τq(t) dt
∫
K̄ ′(u)2 du

∫
ν′′(t)2 dt

(∫
u2K (u) du

)2

] 1
6

. (22)

Taking the asymptotically optimal bandwidth leads to

lim
n→∞ n

2
3MISE(̃νn)

= 3

[
1

4

∫
τq(t) dt

(∫
(ν′′(t))2 dt

)1/2 ∫
K̄ ′(u)2 du

∫
u2K (u) du

] 2
3

.

Unlike the asymptotically MSE-optimal bandwidth for estimating N (t), which is
dependent only on the sample size, finding theMISE-optimal bandwidth for estimating
the pdf must be done more carefully. This bandwidth also depends on the second
derivative of the function being estimated, as well as on integrals related to the kernel.

For the kernel-dependent constants in (22) based on the biweight kernel,

∫
u2K (u) du = 1

7
and

∫
K̄ ′(u)2 du = 25

8
. (23)

Details on the latter are given in the appendix. Furthermore, note that for the squared
radius (to which we restrict ourselves for the moment)

∫ ∞

0
τq(t) dt =

∫ ∞

0

∫ ∞

0
g(t, h) dhdt = 1,

so that considering the squared radius and using the biweight kernel, the asymptotically
MISE optimal bandwidth is given by

bn =
[

1225

4
∫

ν′′(t)2 dt

] 1
6

n−1/6.

123



518 G. Jongbloed et al.

Wepropose a reference familymethod to come to a concrete choice of the bandwidth
parameter. This method actually imposes a parametric model for the observations to
estimate the unknown quantity

∫
(ν′′(t))2 dt . As a rather natural (and as will be seen

convenient) choice for the underlying density f , we take

f (x, h) = 1

σXσH
e−h/σH−x/σX 1[0,∞)2(x, h).

This means that X and H are independent and exponentially distributed. It is straight-
forward to show that then

g(z, h) = 1

σXσH
e−h/σH−z/σX 1[0,∞)2(z, h)

so (X , H) =D (Z , H). This is a very specific property of the underlying density f . It
also immediately givesMLE’s for σX and σH : the respective sample means of the Zi ’s
and Hi ’s. Using the joint exponential distribution, the function N and its derivatives
can be derived (for details see the appendix), leading to

∫
ν′′(t)2 dt = π

2
σ−6
X . (24)

Estimating σX by Z̄n , the final automatic bandwidth choice becomes

bn =
[
1225

4π/2

] 1
6

σXn
−1/6 ≈ 2.4Z̄nn

−1/6. (25)

For the volume density, we take a similar approach, taking as reference family again
a set of product densities with scale-family marginals to be chosen later, i.e.,

fσX ,σH (x, h) = 1

σXσH
fX (x/σX ) fH (h/σH ).

Using that m+
f = σ−1

X

∫ √
x fX (x/σX ) dx = √

σX
∫ √

x fX (x) dx , we have

gσXσH (z, h) = 1

2σ 3/2
X σH

∫ √
x fX (x) dx

∫ ∞

x=z

fX (x/σX ) fH (h/σH )√
x − z

dx

= 1

σH
fH (h/σH )

1

2
∫ √

x fX (x) dx
√

σX

∫ ∞

x=z/σX

fX (x)√
σX

√
x − z/σX

dx

= 1

σH
fH (h/σH )

1

σX
fZ (z/σX )

where

fZ (z) = 1

2
∫ √

x fX (x) dx

∫ ∞

x=z

fX (x)√
x − z

dx .
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This yields EgσX σH
[H ] = σH

∫
h fH (h) dh and, using Fubini,

EgσX σH
[Z ] = σX

∫

z
z fZ (z) dz

= σX Beta(2, 1/2)

∫
x3/2 fX (x) dx

2
∫ √

x fX (x) dx
= σX

2
∫
x3/2 fX (x) dx

3
∫ √

x fX (x) dx
,

immediately leading to moment estimators for σH and σX :

σ̂H = H̄n∫
h fH (h) dh

and σ̂X = Z̄n
3
∫ √

x fX (x) dx

2
∫
x3/2 fX (x) dx

.

Also note that
∫

t
τq(t) dt =

∫

t

∫

h
gσXσH (t/(πh), h) dh dt =

∫

h
πhgσH (h) dh = πσH

∫

h
h fH (h) dh.

In the appendix [see (32) and (33)], it is shown that

∫ ∞

0
ν′′(t)2 dt =

∫
u

(∫
x x

−3 fX (x) f ′′
H

( u
x

)
dx
)2

du

4π3σ 6
X (
∫ √

x fX (x) dx)2σ 5
H

(26)

From this expression, it is clear that the exponential marginal densities as used for the
squared radius density will not lead to a useful method, because the integral in the
numerator will be infinite. The densities should tend to zero sufficiently fast near zero.
For practical reasons, we take Gamma distributions for both marginals:

fX (x) = 1

�(α)
xα−1e−x and fH (h) = 1

�(β)
xβ−1e−x .

This choice leads to concrete expressions for the various quantities derived. Indeed,

∫

t
τq(t) dt = πβσH , σ̂H = H̄n

β
and σ̂X = Z̄n

3�(α + 1/2)

2�(α + 3/2)
= 3Z̄n

2α + 1
. (27)

Also using (23),

bn =
[

1225πβσH

4
∫

ν′′
α,β(t)2 dt

] 1
6

n−1/6.

In the Appendix, it is shown that taking α = 11 and β = 7 (these values will be chosen
for the data example in the next section) leads to the numerical approximation

∫ ∞

0
ν′′
11,7(t)

2 dt ≈ 1.4σ−6
X σ−5

H × 10−11.
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Fig. 4 Bounding boxes taken to be the rectangles around the observable 2D features of interest in the
microstructure. Sample size is n = 175

Fig. 5 Scatter plot of the 171
pairs (Zi , Hi )

0 100 200 300 400 500

5

10

15

20

25

Substituting (27) and for α = 11 and β = 7, this leads to the following bandwidth
choice:

bn =
[

1225πβσH

4
∫

ν′′
11,7(t)

2 dt

] 1
6

n−1/6 ≈ 280σXσHn
−1/6 ≈ 5.2Z̄n H̄nn

−1/6. (28)

5 Application to a steel microstructure

Figure 4 shows the binary image of a steel microstructure obtained at TATA Steel. The
grey rectangles correspond to the bounding boxes of the features of interest and are
used as the observed rectangles on the cut plane within the oriented cylinder model.
Bounding boxeswere chosen because they arewell-defined rectangular objects around
the interesting structures in the image, which themselves are certainly not perfectly
rectangular. From these bounding boxes, the pairs (Zi , Hi ) are distilled. As such, a
total of 175 pairs are obtained, of which 4 are ignored because the corresponding Z -
values are way out of range. Figure 5 shows the scatter plot of the data obtained. For a
complete discussion on the choice and effects of the bounding box on the estimation
results, see Sect. 5.4 in McGarrity (2013).
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Fig. 6 Probability histogram of
the 171 measured heights with
maximum likelihood fitted
Gamma density
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Fig. 7 Estimates Nn and Ñn of N for the squared radius (left, bn = 30) and volume (right, bn = 900). The
data correspond to those depicted in Fig. 5

Figure 7 shows the empirical plug-in estimator Nn defined in (7) aswell as the kernel
estimator Ñn for N based on the microstructure data. In Fig. 8, the isotonic estimators
as well as the kernel estimators for the distribution functions F of the squared radius
and the volume are given. For these estimates, we use relation (4), taking

1

n

n∑

i=1

Z−1/2
i (29)

as (consistent) estimator of N (0). From these pictures, it is clear that the isotonic and
kernel smoothed estimators are quite close.

As indicated before, special interest is in the estimates of the functions ν for both
the squared radii and the volumes. For the squared radii, Zn ≈ 99.7, leading via (25)
to bandwidth choice

bn = 2.4Z̄nn
−1/6 ≈ 102.

The left panel of Fig. 9 shows the resulting kernel estimate for the probability density
f (related to ν via (6), also using (29) as estimator for N (0)).
For the volume density, the reference family with Gamma densities requires an

a priori choice for the respective shape parameters α and β. As the independence
between H and Z in the reference family implies that the observed H -values could
be viewed as sample from the Gamma distribution of interest, we computed the MLE
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Fig. 8 Smooth kernel estimate for the distribution function F of the squared radius (left, bn = 30) and
volume (right, bn = 900). The step functions are the isotonic estimates studied in McGarrity et al. (2014).
Data are those of Fig. 5
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Fig. 9 Estimates for the density f of the squared radius (left, bn = 102) and volume (right, bn = 2130).
Data are those of Fig. 5

based on the observed values, resulting in β ≈ 7. See Fig. 6, showing a surprisingly
good Gamma fit to the observed heights. For the squared radii, we more arbitrarily
choose a Gamma density that guarantees convergence of the needed integrals, α = 11.
Based on the measured data (H̄n = 9.7, Z̄n = 99.7), we obtain via (27)

σ̂H = H̄

β
≈ 1.4 and σ̂X = 3Z̄

2α + 1
≈ 13,

leading via (28) to bandwidth choice

bn = 5.2Z̄n H̄nn
−1/6 ≈ 2130.

Figure 9 shows the resulting kernel estimate of the probability density of the volume.

6 Discussion

We consider estimation of distributions within the oriented cylinder model. This is an
extension of the classical Wicksell model. The estimators considered up till now in the
oriented cylinder model do not include estimators that can be differentiated to obtain
estimators of the probability densities. In this paper, we introduce smooth estimators
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that can be used in that way. We restrict attention to the estimation of the distribution
of the (squared) radius of the cylinder base and the volume of the cylinders. Other
aspects can also be of interest and studied in the same way based on relation (2).
For example, the distributions of the aspect ratio R = √

X/H and the surface area
S = 2π(X + √

XH). The corresponding functions q are given by

q(h; t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h2t2 aspect ratio: T =
√
X

H
,

⎡

⎣

√
h2

4
+ t

2π
− h

2

⎤

⎦

2

surface area: T = 2π(X + √
XH).

Besides the ones considered in this paper, there are other natural choices to estimate
N . One would be to use the isotonic estimator of Groeneboom and Jongbloed (1995)
as initial estimator and smoothing this. The other is to isotonize the estimator Ñn . The
asymptotic theory for the first type of estimator will be much harder to develop. More-
over, the conjecture is that the resulting estimators will not be better asymptotically
than Ñn . See Groeneboom et al. (2010) for a study of smoothed isotonic estimators
in the current status model, where such ‘smoothed isotonic’ and ‘isotonized smooth’
estimators are studied and shown to have similar asymptotic behavior.

Acknowledgements This research was carried out under the project number M41.10.09330 in the frame-
work of the Research Program of the Materials innovation institute M2i (www.m2i.nl). We thank Piet Kok,
Koen Lammers and Karin de Moel (TATA steel) for fruitful discussions. René Swarttouw we thank for his
help with Maple. We also thank the referees and (associate) editor for their beneficial comments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Computational details

In this section, we give some details on the computations needed to apply the described
reference family method to choose the bandwidth. Based on the biweight kernel, the
integral of the squared second derivative of the function K̄ defined in (11) is needed.
Note that

K̄ (v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for v ≥ 1,
4(4v2 + 10v + 7)(1 − v)5/2

21
for |v| < 1,

4(4v2 + 10v + 7)(1 − v)5/2

21
− 4(v + 1)2(4v2 − 10v + 7)

√−v − 1

21
for v ≤ −1.

(30)

123

http://creativecommons.org/licenses/by/4.0/


524 G. Jongbloed et al.

Its derivative K̄ ′ is given by

K̄ ′(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for v ≥ 1,
2(12v3 + 6v2 − 13v − 5)

√
1 − v

7
for |v| < 1,

2(12v3 + 6v2 − 13v − 5)
√
1 − v

7
− 2(12v2 − 18v + 5))(v + 1)

√−v − 1

7
for v ≤ −1.

(31)
Although it is not immediately clear from this expression, some algebra shows that for
v → −∞, K̄ ′(v) ∼ v−3/2/2, implying square integrability. Moreover, using explicit
expression (31), it follows that

∫
K̄ ′(u)2 du = 25/8 as stated in (23).

For deriving (24), note that ν′′ = N ′′′ and for the squared diameter we have for
t > 0

N (t) = 1

σXσH

∫ ∞

h=0

∫ ∞

z=t
(z − t)−1/2e−z/σX−h/σH dz dh

= 1

σX

∫ ∞

t
(z − t)−1/2e−z/σX dz

= 1

σX
e−t/σX

∫ ∞

0
z−1/2e−z/σX dz = σ

−1/2
X �(1/2)e−t/σX = σ

−1/2
X

√
πe−t/σX .

Therefore, for t > 0

ν′′(t) = −σ
−7/2
X

√
πe−t/σX , yielding

∫ ∞

0
ν′′(t)2 dt

= πσ−7
X

∫ ∞

0
e−2t/σX dt = π

2
σ−6
X .

For the volume distribution, (26) follows by first noting that

N (t)

N (0)
= Pf (πXH > t) =

∫ ∞

x=0

∫ ∞

h=t/(πx)

fX (x/σX ) fH (h/σH )

σXσH
dh dx

=
∫ ∞

x=0
fX (x)

∫ ∞

h=t/(πσHσX x)
fH (h) dh dx = 1 − φ

(
t

πσHσX

)

with

φ(u) =
∫ ∞

0
fX (x) FH (u/x) dx so that φ′′′(u) =

∫ ∞

0
x−3 fX (x) f ′′

H (u/x) dx (32)

This leads to

ν′′(t) = N ′′′(t) = − N (0)

(πσHσX )3
φ′′′
(

t

πσHσX

)
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Noting that

N (0) = π

2
∫∞
0

√
x fσX (x) dx

= π

2
√

σX
∫∞
0

√
x fX (x) dx

we obtain

∫ ∞

0
ν′′(t)2 dt =

∫∞
0 φ′′′

(
t

πσHσX

)2
dt

4π4σ 7
X (
∫ √

x fX (x) dx)2σ 6
H

=
∫∞
0 φ′′′(t)2 dt

4π3σ 6
X (
∫ √

x fX (x) dx)2σ 5
H
(33)

Choosing fX and fH Gamma with respective shape parameters α and β (making φ

dependent on α and β) and unit scale parameters, this results in

∫ ∞

0
ν′′
α,β(t)2 dt = �(α)2

∫∞
0 φ′′′

α,β(u)2 du

4π3σ 6
X�(α + 1/2)2σ 5

H

.

Note that

φ′′′
α,β(u) = 1

�(α)�(β)

∫ ∞

0

(
(β − 1)(β − 2) − 2(β − 1)

u

x

+
(u

x

)2)(u

x

)β−3
xα−4e−x−u/x dx

The integral in this expression can be further evaluated to make its dependence on
α and β more explicit, but as we will choose specific α and β, we will approximate
the integral numerically. Taking β = 7 and α = 11, Fig. 3 shows the numerical
approximation of φ11,7, resulting in

∫∞
0 φ′′′

11,7(u)2 du ≈ 1.9 × 10−8. This leads to
∫∞
0 ν′′

11,7(t)
2 dt ≈ 1.4σ−6

X σ−5
H × 10−11.
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