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A configurator is a platform which serves the goal of mass customization. It contains a set of 
common components from which a stream of derivative products can be efficiently developed 
and launched. Configurators in the construction industry have the potential to help integrate the 
design-to-production supply chain. Integration is required because there is a rising complexity in 
design and construction projects due to an increased number of parties involved in each venture. 
Configurators achieve integration by ensuring that a design is within the production capacity.

(Cao et al., 2021) identified three distinct typologies of existing construction configurators: 
planning, design, and production configurators. These typologies primarily indicate the stage of 
the construction phase in which the configurator is used. An integrated configurator includes all 
typologies/phases. The application of configurators in construction is limited and immature, this 
is especially the case for integrated construction configurators.

The   application of configurators in construction is limited because current configurators lack 
scalability, many configurators may only be fit for one generation of products from one company. 
This issue originates from insufficient cross-organizational collaboration and integration with 
supply chains. Additionally, academia indicates a need for research on increasing the design 
space of modular buildings. For this reason, the research question of this thesis is: How can the 
design space of integrated construction configurators be enlarged?

The approach for developing an integrated construction configurator which increases the design 
space is inspired by games with building systems such as Valheim. It consists of a grid, modularity 
on building component level, and configuration rules which dictate how components are placed 
on the grid. However, a major limitation of these games is the lack of proper analytical tools to 
validate configurations for physical construction. A configurator was developed which overcomes 
this limitation by implementation of a structural analysis. 

The configuration process of this configurator consists of 3 parts: the grid, the components, and 
the analysis. The grid defines the design space in which components can be placed, components 
from a building product database ensure product manufacturability, and analyses ensure that 
the assembly of components is possible. In each iteration of the configuration process, the 
configuration is controlled by editing the grid and placing or removing components on the grid. 
Then, the configuration is evaluated by means of analysis, results from the analysis are the basis 
for edits to the configuration in the next iteration cycle.

The main benefits of this type of configurator compared to BIM are that by integrating the 
manufacturing and assembly constraints in the design process, early design decisions are 
evaluated on manufacturability. This can avoid design issues that require reorganisation efforts 
and put pressure on the supply chain. Consequently, the configurator reduces the time and cost 
for the design and production phases, allowing users of the configurator to develop buildings 
faster and cheaper.

Abstract
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1.1 Context on configurators

1.1.1 Mass customization
In the late 1980s, the manufacturing industry 
shifted from mass production to mass 
customization in response to the growing 
demand for product variety (Kotha & Pine, 
1994). Mass customization is a manufacturing 
paradigm which has the ability to enable design 
flexibility and therefore produce products 
which match the customer’s preference more 
closely (Barman & Canizares, 2015). It does 
this while maintaining the main advantages of 
mass production, the economies of scale. This 
means that mass-customized products are 
produced at the same price, quality, and time 
as mass-produced products (Cao et al., 2021). 
	 Mass customization requires some 
degree of standardization and is compatible 
with prefabrication strategies (Bianconi et 
al., 2019). ‘Effective implementation of mass 
customization would enable design flexibility 
that aligns with both customers’ preference 
and manufacturers’ capabilities’ (Cao et al., 
2021).

1.1.2. A definition of configurators
A configurator is a platform which serves the 
goal of mass customization. Configurators 
contain ‘a set of common components, 
modules, or parts (e.g. the kit-of-parts) from 
which a stream of derivative products can be 
efficiently developed and launched’ (Meyer & 
Lehnerd, 1997), see figure 1.1. 
	 The kit-of-parts of a configurator 
are configured based on processes, these 
are the rules and taxonomies that guide the 
placement of parts. The processes are relying 
on a knowledge base, these are the datasets 
necessary for economic evaluation of the 
configuration (Louth et al., 2024).

	 This economic evaluation can come 
in the form of a Bill-of-Materials (BOM), 
which in essence is translating the customer 
specifications into product documentation. 
Since the kit-of-parts are modelled digitally 
to represent the actual components in 
production, it provides access to the rules and 
constraints originating from production (Cao 
et al., 2021). These rules and constraints make 
sure that designs made with the kit-of-parts 
are within production capacity.
	 Three main characteristics are inherent 
in configurators (Cao et al., 2021):
•	 reusability due to kit-of-parts,
•	 intelligence driven by embedded expert 

knowledge,
•	 high automation realized by off-the-

shelf technologies, such as Application 
Programming Interface (API).

1.2 Potential of configurators in the 
construction industry

1.2.1 Opportunities for configurators
Industrialized construction is gaining more 
share in the construction market (Cao 
et al., 2021). Moreover, ‘the Architecture, 
Engineering, and Construction (AEC) 
industry encounters a rising complexity in 
the design and construction of projects due 
to the increased number of parties involved 
in each major venture’ (Abanda et al., 2017). 
Consequently, past research suggests the 
importance of a close collaboration between 
designers and manufacturers, such as a 
Design for Manufacturing and Assembly 
(DFMA) design team (Yuan et al., 2018). More 
specifically, research suggests the need to 
develop prefabricated construction building 
information models containing the production 

1. Existing configurators

Figure 1.1: Industrialised construction building components tree (Louth et al., 2024)
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is important because it means that the kit-of-
parts model and information is controlled by 
the manufacturer of that part.

1.3 Categorisation of configurators

1.3.1 Levels of mass customization
One way of categorizing configurators is by 
their level of mass customization. The level 
of mass customization indicates the level 
of freedom that the configurator enables 
for the product design. It also relates to the 
degree of which the customers’ needs are 
incorporated into the product development. 
This means that a product with a low level of 
mass customisation doesn’t give the customer 
a lot of options to customise the product to 
their desire.

details (Hamid et al., 2018). 
	 Designers do not have sufficient 
knowledge on production to understand the 
rules and constraints that come with building 
components and assemblies. This results in 
design issues which put pressure on the supply 
chain and requires reorganization efforts and 
expert resources from the design company 
(Cao et al., 2021).
	 Configurators offer an opportunity 
to help integrate the design-to-production 
supply chain but require more efforts from 
manufacturers to develop kit-of-parts and 
configurators. Configurators ensure that a 
design is within the production capacity, this 
reduces estimated cost deviation caused by 
redesign. The reuse of the library of kit-of-
parts in future projects will lead to continuous 
improvements of project quality and return of 
investment made initially inside a single project 
(Tetik et al., 2019). Other benefits of applying 
configurators in industrialized construction 
are shown in figure 1.2.

1.2.2 Comparison with BIM
Current BIM software can support 
collaboration among different stakeholders 
including planners, architects, engineers, and 
contractors. However, the complexity of BIM’s 
technical workflow limits the possibility of 
engaging with clients, end-users, and other 
non-engineering professionals in the decision-
making processes due to the so-called “black-
box effect”, which refers to a system without 
transparency (Potseluyko et al., 2022). 
	 Moreover, few studies give attention 
to the possibilities of developing a product 
platform based on BIM contents (Piroozfar et 
al., 2019). Instead, ‘most of the projects are 
built from scratch in the BIM environment’ 
(Cao et al., 2021).
	 The benefit of a configurator based 
on BIM contents is that the contents can be 
used for analyses such as a Bill-of-Material 
(BOM) analysis. ‘Such a shift can enable 
configuration lifecycle management built on 
BIM, and thus extend the application of BIM 
across all lifecycle phases of a product’ (Cao 
et al., 2021). Decoupling the configurator from 
the dataset of BIM contents guarantees that 
the kit-of-parts is edited in one place. The 
kit-of-parts are modelled in BIM software 
and the configuration of the kit-of-parts 
happens in the configurator. This decoupling 

Existing configurators

Figure 1.2: Benefits of configurators applied in 
industrialized construction (Cao & Hall, 2019)
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typologies of existing construction 
configurators, see figure 1.3. These typologies 
are based mainly on when the configurator 
is used in a project. But the typologies also 
include information on who the main users are, 
how the configuration is performed, what the 
targeted products are, and what the expected 
output is of the configurator. The typologies 
are: 
•	 Planning configurator, the targeted product 

for this stage could be a conceptual building 
model created by architectural firms for 
early planning. The configurator helps real 
estate developers by allowing customers 
to interactively design their desired house 
by offering available selections. Moreover, 
intelligent algorithms can identify more 
feasible or advantageous plans using 
embedded configuration rules.

	 Hvam and Forza similarly classify 
product development to four levels of mass 
customisation based on the Consumer Order 
Decoupling Point (CODP) (Forza & Salvador, 
2006) (Hvam et al., 2008). The CODP is ‘the 
point in the supply chain at which consumer 
orders are converted into production orders or 
schedules’ (Cao et al., 2021). The four different 
CODP scenarios are:
•	 Engineer to order, define design and 

manufacturing rules.
•	 Modify to order, edit design parameters.
•	 Configure to order, select scalable modules 

and module interfaces.
•	 Select variant, select off-the-shelf products. 

1.3.2 Typologies of existing construction 
configurators
(Cao et al., 2021) identified three distinct 

Existing configurators

Figure 1.3: Configurator typologies (Cao et al., 2021)
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•	 Design configurator, this is the most 
common typology for configurators in the 
market. The targeted product could be a 
detailed building model configured with 
predefined modules, such as timber panels. 
The generated output can be converted to 
BIM models to serve as a starting point for 
designers and engineers.

•	 Production configurator, this typology is 
mostly used by engineers and fabricators. 
The targeted products can be buildings 
planned, produced, and assembled by 
a vertically integrated firm. These types 
of configurators have the potential 
benefit of integrating manufacturing and 
assembly constraints in the design phase 
by adopting design for manufacturing and 
assembly principles. The outputs include 
BIM models, G-codes for NC (numeric 
control) machines, permit drawings, and 
bill of materials. 

1.3.3 Integrated configurator
The last configurator typology is an integrated 
configurator, where the planning, design, and 
production is all included in the configurator. 
This type of configurator evaluates (early) 
design choices on manufacturability. Other 
benefits include the reuse of process and 
technical solutions, and that the formation 
of a stable supply chain can be facilitated 
(Cao et al., 2021). Integrated configurators 
enable stakeholders to maintain a common 
environment to control the project data. 

1.4 Existing construction 
configurators

1.4.1 Construction configurator review
Figure 1.5 shows 15 configurators, they include 
both commercially deployed configurators 
and configurators developed for academic 
purposes.  According to (Louth et al., 2024) 
‘configurators have seen a rise in web-enabled 
apps as exploration for property search and 
acquisition, residential test fitting, site planning 
and land utilisation as early-stage planning 
toolkits’, the most notable commercially 
deployed web-based configurators being 
HiStruct, AGACAD, Creatomus, and 
MyProjectFrog. 
	 Research from (Cao et al., 2021) 

Existing configurators

Figure 1.4: Supply chain integration
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	 There are a few configurators that span 
across multiple typologies and therefore can 
be called integrated configurators. However, 
none of these configurators manage to 
integrate all typologies. Most of the integrated 
configurators integrate across the planning 
and design process. These configurators 
include commercial configurators Testfit, 
PRISM, Hypar, and academic configurators 
Beyabu by (Louth et al., 2024), and the 
modular apartment configurator by (Cao et 
al., 2021). Only the commercially deployed 
configurators MyProjectFrog, and Uuthuuske 
configurator by The New Makers integrate 
across the design and production process. 

points out that the most popular typology is 
typology 2, design configurators. Typology 3, 
production configurators, seems to be the least 
common. For the CODP scenarios configure 
to order is the most common and engineer to 
order is the least common. Thus, configurators 
with complex production requirements and 
information available on production are 
especially rare. 

Existing configurators

Figure 1.5: Categorisation of existing construction configurators in CODP and typologies  
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1.4.2 Beyabu configurator
The Beyabu configurator was developed at 
Zaha Hadid Architects (Louth et al., 2024). The 
configurator produces a planned community 
arrangement for a charter city development. 
Prospective home buyers and investors get to 
make decisions collaboratively on where their 
unit should be placed and the typology of their 
unit. After multiple configuration sessions, 
the configuration options of each user were 
submitted to generate a unified system grid 
to position within. Then the users make their 
first placements and decide on unit details, 
together a multi-family residential design is 
developed.

Existing configurators

Figure 1.7: Beyabu configurator’s variations in a system grid (Louth et al., 2024)

Figure 1.6: Beyabu configurator’s visualisation of a 
configuration (Louth et al., 2024)

Figure 1.8: Beyabu configurator’s gameboard grid. (Louth et al., 2024)
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1.4.3 PRISM configurator
PRISM is an open-source app which is 
developed to deal with London’s housing 
crisis by accelerating the design process for 
‘Precision Manufactured Housing’. It works by 
choosing a site, then adjusting parameters 
that define what type of building the program 
generates. The user is given real-time analytical 
feedback and is alerted to potential planning 
issues, guiding the user to make appropriate 
decisions.

Existing configurators

Figure 1.9: PRISM’s analytics dashboard

Figure 1.11: MyProjectFrog’s configurator (Cao et al., 2021)

Figure 1.10: PRISM’s analytics dashboard

1.4.4 MyProjectFrog configurator
MyProjectFrog is a commercial configurator 
for timber panelised structures. It is built upon 
a library of panel products coupled with rules 
from local building regulations (Cao et al., 
2021). This configurator is able to provide both 
design and fabrication deliverables.
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1.4.5 Uuthuuske configurator
Uuthuuske is a product developed by The New 
Makers which offers a solution for residential 
housing by making use of temporarily available 
locations. The product consists of modular 
building blocks that can be linked to create a 
range of floor plan layouts, these configurations 
can be explored in their configurator.

Existing configurators

Figure 1.14: PRISM’s analytics dashboard

Figure 1.12: Uuthuuske’s modules Figure 1.13: Uuthuuske’s configuration options
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1.5 Problem statement
Why isn’t the application of configurators 
in construction common practice?

1.5.1 Integration
The application of configurators in construction 
is limited and immature (Cao & Hall, 2019). More 
research is required to see if the benefits of 
configurators apply to construction (Cao et al., 
2021). Especially more research on integrated 
construction configurators is required, as the 
research by (Cao & Hall, 2019) indicates that 
many configurators may only be fit for one 
generation of products from one company due 
to the lack of scalability. There are a limited 
number of configurators with ‘an integrated 
approach supporting design-to-production’ 
(Cao et al., 2021), despite stakeholders in the 
construction industry seeking for such an 
integrated configurator (Cao & Hall, 2019).
	 Integration and successful application 
of configurators depends on cross-
organizational collaboration (Myrodia et al., 
2018)  and supply chains (Cao et al., 2021). 
(Potseluyko et al., 2022) indicate that for 
many architectural and construction practices 
in the UK, collaboration with clients happens 
through email as primary communication 
medium. Configurators offer the opportunity 
for active real-time collaboration between 
multiple stakeholders, for example through 
participatory decision-making. Research by 
(Louth et al., 2024) offers a precedence as 
they developed a multi-user platform for 
the configuration and customization of a 

multifamily residential design, see figure 1.15.
	 Lack of integration of supply chains 
causes many construction companies to be 
unwilling to apply configurators in projects. 
The reasons are uncertainties and potential 
disturbance to their original project delivery 
processes and technical environments (Cao & 
Hall, 2019). Although, these barriers seem to be 
disappearing due to important advancements 
in digital technologies and configuration 
platforms (Goulding & Rahimian, 2019).
	 An advancement which may help with 
the integration of supply chains lies in the 
management of the kit-of-parts database. 
A flexible data structure for editing and 
exchanging kit-of-parts is required as a 
common environment (Cao et al., 2021). 
This would allow for the coordination of 
the parts during creation. This is especially 
important if the kit-of-parts are procedurally 
generated as opposed to being static 
geometry. Additionally, automatic database-
to-configurator synchronisation of the kit-
of-parts would be beneficial, because the 
‘manual maintenance and coordination of 
the configuration kit components are not a 
scalable protocol’ (Louth et al., 2024)

1.5.2 Modularity on component level
‘The configurator content could present a 
local marketplace of digital assets licensed to 
different regional or local suppliers and artisans 
who could commercialise their products in 
the platform’ (Louth et al., 2024). This means 
a transition from configurators with modules 

Existing configurators

Figure 1.15: Unit position analysis of a multi-user platform (Louth et al., 2024)
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1.6 Objectives

Solving the lack of scalability in configurators 
requires an integrated construction 
configurator. Both the integration and the 
enlargement of the design space can be 
solved by using building components and 
assemblies as the kit-of-parts. For this reason, 
the objective of this research is to discover how 
an integrated construction configurator which 
enlarges the design space should function, 
and to develop (part of) the integrated 
construction configurator. This objective leads 
to the following main research question and 
sub-question:

Research question:
How can the design space of integrated 
construction configurators be enlarged?

Sub-question:
What are the benefits of this type of integrated 
construction configurator compared to 
prevalent BIM software?

Existing configurators

which are room sized or larger, to modules 
which are building component or sub-
assembly sized, see figure 1.16. Transitioning to 
smaller modules increases the design space of 
modular buildings. Which according to (Cao et 
al., 2021) is a topic which needs more research 
on, as there are currently few research studies 
regarding ‘the flexible spatial arrangement of 
components to achieve design variations’. 
	 ‘Previous studies have suggested that 
modularization strategies can be used to 
group components for offsite fabrication to 
ensure the ease of assembly and flexibility of 
building maintenance’ (Peltokorpi et al., 2018). 
Another opportunity lies in the consideration 
of reusability when developing a kit-of-parts, 
but research on this topic is scarce (Cao et al., 
2021).
	 Modularity on component level may 
also lead to a reduction in material use and 
lifecycle management complexity compared 
to concepts with room-sized modules. This 
is due to additional structural requirements 
to self-support room-sized modules during 
transportation and handling, and due to 
additional implications for modular design 
(Benjamin et al., 2022).
	 In contrast, modularity on component 
level offers the opportunity to fully automate 
the iterative process to find the optimal types 
and sizes of structural elements. (Benjamin et 
al., 2022) calls for such a structural analysis 
which is adapted to the singular characteristics 
for every structural system to test modular 
structures.

1.5.3 Problem statement summary
In summary, the application of configurators 
in construction is limited because current 
configurators lack scalability. This 
issue originates from insufficient cross-
organizational collaboration and integration 
with supply chains. Academia indicates a need 
for research on the management of the kit-of-
parts database, increasing the design space of 
modular buildings, the reusability of the kit-of-
parts, and an approach to structural analysis 
for modular structures.

Figure 1.16: Transitioning from room-sized modules to 
building component sized modules
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Existing configurators

1.7 Approach & methodology

Literary research on existing configurators
First, literary research is conducted on current 
construction configurators and research 
on construction configurators. This literary 
research is utilized to understand what a 
construction configurator is, how it compares 
to BIM, how they can be categorized, which 
ones are currently available, and what is 
missing in current construction configurators.

Software proposal and development for 
current project’s configurator
Secondly, the literary research and inspiration 
from the game industry is used to propose a 
new construction configurator with features 
and improvements over current construction 
configurators.
	 Then, the theory and plan for the 
proposed construction configurator will get 
tested by translating it into code and software. 
For this step, Unreal Engine will be used to 
serve as the backbone for the software, it is 
the 3D environment in which the software 
development happens. Within Unreal Engine, 
code specific to the project will get written. 

Proposing future developments
Lastly, the developed configurator will be 
contextualised by envisioning a more fully 
developed form. This includes examining 
how the configurator’s building product 
database and configuration process should 
function. Moreover, the potential benefits 
of the configurator are discussed and the 
configurator is compared with prevalent BIM 
software.
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2.1 Inspiration and theoretical 
framework for configurators

2.1.1 Inspiration from game industry
The inspiration for this project came from 
video games, specifically those with building 
systems like Minecraft, Fortnite, The Sims, 
and Valheim. These games make building 
structures easy and enjoyable, a stark contrast 
to the complexity found in CAD/BIM software 
used by architects. This disparity raises the 
question: why hasn’t the construction industry 
adopted similar principles from these games 
to simplify the design process?
	 Research from Potseluyko et al., 2022, 
concluded that a game-like platform combined 
with BIM could provide simplified data delivery 
to a client. Another research project by Louth 
et al., 2024, utilises gamification principles 
to improve the user’s problem-solving skills 
in a cooperative setting. Gamification is the 
process of turning a function-focused design 
into a human-focused design (Louth et al., 
2024). This happens by ‘employing concepts 
of behavioural science to engage human 
emotions through human psychology to 
motivate and incentivise users’ (Louth et al., 
2024). Figure 2.3 shows the strategy that 

2. Current project’s configurator

Figure 2.1:  Sidney Opera House built in Minecraft by 
player

Figure 2.2:  Player-made wooden structure in Valheim

Figure 2.3:  Configurator gamification analysis using octalysis framework (Louth et al., 2024)

Louth et al. used to implement gamification 
principles in their configurator through the 
Octalysis framework.
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2.1.2 Theoretical framework for 
configurators
Video games provide several key lessons for 
construction configurators. These games 
typically use a uniform grid system, which 
ensures building components snap and 
connect properly, reducing errors.
	 Each game features different building 
components or modules, varying in size, 
geometry, and materials. Despite these 
differences, all games utilize a database of 
diverse building components, which can 
include linear, planar, and volumetric elements, 
see figure 2.4.	
	 The process of placing these 
components on the grid, known as the 
configuration process, varies among games. 
A crucial aspect of the configuration process 
is the User Interface (UI), which dictates 
how building components are selected from 
the database and placed. Video games have 
highly developed configuration processes, 
with significant effort invested in making the 
interaction with the software engaging and 
enjoyable.
	 Configuration rules determine where 
and how many building components are 
allowed to be placed. (Cao et al., 2021) 
proposes four types of configuration rules:
•	 Composition rules, they define which 

building components are mandatory or 
optional in the product architecture.

•	 Compatibility rules, they define which 
building components cannot exist 
simultaneously in the product.

•	 Dependency rules, they define which 
building components must belong together 
in a product.

•	 Cardinality rules, they define the required 
or limited number of building components 
under certain circumstances.

Games primarily use composition and 
cardinality rules, while compatibility and 
dependency rules are less common.
	 The building systems in these games 
encompass all fundamental features of a 
configurator: a kit-of-parts product structure 
and a configuration rule engine. While the goal of 
these games is not to create physical products, 
they effectively function as configurators 
within the digital realm. Unique features such 
as grids, modular components, and engaging 

linear planar volumetric

Figure 2.5: Composition rules

Figure 2.4: Linear, planar, and volumetric elements

Figure 2.6: Compatibility rules

Figure 2.7: Dependency rules

Figure 2.8: Cardinality rules
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configuration processes demonstrate potential 
for creating an integrated configurator with an 
expanded design space. These engaging and 
user-friendly configuration processes could 
enhance cross-organizational collaboration.
	 However, a major limitation of these 
games is the lack of proper analytical tools 
to validate configurations for physical 
construction. This gap needs to be addressed 
to adapt these game-inspired principles for 
use in the construction industry.

2.2 Configuration process

2.2.1 The proposed configurator
As part of this project a configurator is 
developed that adapts a common building 
system in games to be able to develop designs 
which are validated for physical construction. 
The developed configurator takes the essential 
parts of the games’ building system, the grid, 
and modular components. These features allow 
for the creation of configurations of building 
components (buildings). The configurator 
is extended with a structural analysis which 
validates the configurations made in the 
configurator. 
	 This configurator sets itself apart from 
existing configurators by adopting modularity 
on building component level. Existing 
configurators mostly use larger modules and 
parametric systems for configuration. In this 
configurator, planar components such as 
floors and walls, and linear components such 
as beams and columns, are placed in a grid to 
create configurations. By reducing the module 
size, there is a greater degree of variation that 
can be achieved by configuring the modules. 
In other words, the design space is enlarged.
	 The second objective of the project 
has to do with integrating the supply chains 
involved in the construction process. This 
goal can be achieved by having building 
components as modules which refer to building 
products from manufacturers. The creation 
of such a database of building products and 
linking the database with the configurator is 
out of the scope for this project, but more on 
this topic in chapter 3.

2.2.2 Development in a game engine
The configurator was developed using 
Unreal Engine 5.3, a 3D computer graphics 
game engine by Epic Games. Game engines, 
including Unreal Engine, offer a comprehensive 
software development environment for 
creating games, providing essential tools for 
graphics, sound, and physics. Perhaps the 
most important tool is real-time computer 
graphics or real-time rendering. It focuses on 
producing and analysing images in real-time, 
meaning without delay. The game engine 
provides the developer with a 3D environment 
which the game engine’s renderer visualises 
on your computer screen. Then, it is up to the 
developer to decide what should exist, what 
should happen, and how to interact with this 
3D environment.
	 Unreal Engine was chosen as tool 
to develop the configurator because it is 
a software development environment for 
creating games. Configurators are software, 
and this project’s proposed configurator is 
in many ways similar to games. Additionally, 
a game engine facilitates the development of 
user interaction, unlike other 3D graphics or 
CAD software like Rhino which only support 
parametric design. Having control over the 
interaction with the software allows the 
software to support the enlargement of the 
design space through a flexible and direct 
configuration process.

Figure 2.9: Unreal Engine 5’s interface
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2.2.4 The configuration process
The configuration process is made up from 
three parts: the grid, the components, and the 
analysis. It is an iterative process in which each 
iteration usually starts with the grid and ends 
with the analysis.

Figure 2.11: Configuration process’ iteration cycle

Figure 2.12: Flowchart of configuration process

2.2.3 Unreal Engine
Within Unreal Engine, a project encapsulates 
all information for a piece of software or a 
game through project files. These files include 
objects that exist in the 3D environment, such 
as 3D models and materials, as well as files that 
define the software’s logic and interactions. 
In Unreal Engine, these logical files are 
called Blueprints, see figure 2.10. A Blueprint 
contains information about a specific part of 
the project. Communication between these 
Blueprints allows the Blueprints to interact 
with each other. Blueprint interaction is the 
most important mechanism for software  
development in Unreal Engine.

Figure 2.10: Unreal Engine 5’s blueprints.
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2.2.5 Grid
The grid in this configurator has its own 
Blueprint.  Fundamental to the grid is a 3D 
grid of vertices based on input parameters for 
the number and spacing of vertices in the X, Y, 
and Z directions. These input parameters can 
be adjusted to fit the project’s requirements.

Figure 2.13: Configurator’s grid parameters

Figure 2.14: Configurator’s grid

Figure 2.15: Configurator’s grid slots

	 These vertices are used to create slots, 
where components can be placed, see figure 
2.15. The slots come in the form of planar and 
linear elements, faces and edges. Four vertices 
make up one face. Face slots are created for the 
foundations, floors, and walls. Next, edges are 
created. Only two vertices are required to form 
one edge. Edge slots are created for columns 
and beams.	 The grid is visualised by the use 
of sprites, 2D images that are displayed in the 
3D environment. These sprites visualise the 
vertices and lines connecting the vertices.
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2.2.6 Components
The configurator utilizes five types of 
components: foundation, floor, wall, column, 
and beam, see figure 2.16. These components 
are stored in a database, and users can 
select the desired component type using the 
keyboard’s number keys. Once the correct 
component is selected, users can navigate the 
grid, and the component snaps to relevant 
slots within the grid. A left click places the 
component at the selected location. By 
placing these components, a configuration for 
a structure or building is created.

Figure 2.16: Configurator’s building components

Figure 2.17: Placement of a component when slot is 
missed

Figure 2.18: Placement of a component snapping to a slot

Figure 2.19: Spawning of a component at slot location

Figure 2.20: Configuration made in the configurator

2.2.7 Analysis
The structural analysis validates configurations 
by finding how the forces of each component 
flow through the entire configuration. This 
information is used to determine the maximum 
stress occurring at each component.
	 This begins with the configurator 
understanding how components are  
connected. When components are placed 
adjacent to each other, they may be considered 
as neighbours if they share vertices. Each 
component type has specific connection 
conditions. For example, a floor component can 
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only connect to beam components, and they 
need to share two vertices. A network graph is 
created where each building component is a 
node, and the connections between them are 
edges, see figure 2.21 and 2.22.
	 This network information is used 
to determine the shortest path from the 
foundation to each component. This process 
is repeated for each foundation, resulting 
in a list of paths for each component, with 
distances associated with each path. Then, the 
foundation is selected that gives the shortest 
path, see figure 2.23.
	 The shortest path determines the route 
of force travel, as per statics in structural 
mechanics, which states that loads should 
follow the shortest route to the foundations in 
statically determinate structures.
	 The next step involves passing the 
dead load and live load of one component to 
the next component in the path. Information 
about the path and loads is then used to 
calculate the stress resulting from axial forces 
and bending. Which in turn determines the 
required dimensions for each component of 
a given material. The components are then 
scaled up or down to the required dimensions.

Repeat
Information from the analysis can be used 
to reconsider the current configuration. 
Adjust the grid parameters, remove placed 
components, and place components to form a 
new configuration.

Figure 2.21: A simple flow network with directed weighted 
edges

Figure 2.22: Configurator’s network graph showing 
component connections

Figure 2.23: Configurator’s Dijkstra shortest path 
algorithm comparing paths to foundations

Figure 2.24: Configurator’s structural analysis
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2.3 Software development process

2.3.1 Blueprint interaction
This subchapter on the software development 
process is going to explain how the 
configurator was developed. The subchapter is 
divided into subsections for the configurator’s 
most important blueprints: the grid, the build 
component, and the structural analysis. See 
figure 2.25 for a UML diagram which explains 

how these blueprints interact with each 
other. The user character is the blueprint 
that the user controls, through this blueprint 
the user initiate processes in the grid, build 
component, and structural analysis. Through 
the build component, the user can choose 
the component type and place the building 
component on the grid. When a component 
is placed, it exchanges information with the 
grid. Next, the user can run the structural 

Figure 2.25: UML diagram of configurator’s simplified blueprint interaction
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analysis, which takes information from the 
building component to make calculations on 
and changes to the building component.

2.3.2 Grid
Initially, the configurator worked without 
a grid. However, the decision was made to 
implement a grid to make the placement of 
building components more accurate. The 
grid was developed to be parametric so that 
it is flexible and can be adjusted to fit the 
requirements of the building that is to be 
developed inside the configurator. The grid is 
implemented in such a way that component 
placement snaps to the edges and faces of the 
grid, the grid slots. This implementation was 
chosen because it resembles the way that the 
structures of buildings are being designed in 
current practice. In current practice, structural 
components such as columns and beams are 
aligned to the grid lines and intersections of 
grid lines. Additionally, in the configurator, the 
grid slots are created from vertices so that 
neighbouring grid slots can be recognised 
based on the vertices, more on this in the 
section in the building process.
	 The grid is initialised before the software 
is executed. The algorithm showcased in figure 
2.26 is ran every time an input parameter 
is adjusted. As mentioned in the previous 
subchapter, a 3D matrix of vertices is made 
based on input parameters. From the vertices, 
grid slots are made for the grid’s faces and 
edges. The correct vertices are selected 
by choosing specific indices based on the 
parameter for the number of vertices in the X, 
Y and Z direction. For the foundation faces for 
example, sets of 4 indices on the bottom layer 
of the grid are chosen. The sets of indices are 
used to get sets of vertices. At the average 
coordinates of the set of vertices, a grid slot 
is spawned. The grid slot is associated with 
the vertices and vice versa. Next, the indices 
are used to make a slot ID for the grid slot. 
Finally, a box collision is made for the grid slot. 
This box collision is an invisible box which is 
meant to collide with the line trace. This allows 
for component placement, more on this in the 
next paragraph.

Figure 2.26: Flowchart of configurator’s grid’s creation 
process

user 
initiated
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2.3.3 Building process
The building process concerns itself with 
component placement on the grid. The 
configurator’s building process is based 
on building processes found in the games 
that served as inspiration. The reason being 
that those games are easy and intuitive to 
use, and easy to develop in Unreal Engine. 
The building process is set up in such 
a way that the user is allowed to place 
components in the grid wherever they 

want, there are as few configuration rules 
as possible. The configurator allows users 
to make unconventional configurations that 
are usually undesired, because sometimes 
unconventional configurations may actually 
be the best performing configurations. 
Instead of predefining how the user should 
configure components, the configurator gives 
feedback on the configuration and allows 
users to discover for themselves what kind 
of configurations they think are appropriate.  

Figure 2.27: Flowchart of configurator’s building process.

user 
initiated
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Additionally, by snapping components to the 
grid slots neighbouring components can be 
found. Identifying neighbouring components 
and checking connection conditions allows 
us to create a component connectivity graph. 
Information on component connection is 
required to be able to perform a structural 
analysis. 

Process explanation
The building process starts when the ‘build 
mode’  is launched. The build mode is launched 
by a keyboard button press by the user. If the 
build mode is off, the software enters build 
mode, if it is already on, the software exits 
build mode. Once in build mode, the build 
cycle is entered. It starts with selecting the 
appropriate line trace channel, this is based 
on the selected building component type. 
Because the line trace should only collide with 
the box collisions of grid slots that belong to 
the selected building component type. This 
determines in which grid slots a building 
component can be placed. Next, the line trace 
is sent out. A line is sent out straight forward, 
wherever the line ends or hits something, the 
spawn location is set. This is where the build 
ghost will appear. If the line hits a box collision 
of the grid slot, the spawn location is set to that 
of the grid slot. This allows the components to 
snap to that location. A green build ghost is 
spawned. If the line doesn’t hit a grid slot, a 
red build ghost is spawned. This build cycle 
is continuously repeated so that the location 
and colour of the build ghost keeps getting 
updated. The build cycle ends when the build 
mode is exited. 
	 User can choose to change the building 
component type, options for component types 
exist in a database of building components. 
Changing the building component type affects 
the selected line trace channel, the build ghost 
mesh, and the building component that can 
be spawned.
	 The command for spawning a building 
component is executed when the user left 
clicks. If the build mode is on and the build 
ghost is green, a building component is 
spawned at the targeted grid slot. The building 
component inherits the vertices from the grid 
slot it occupies. Then, the building components 
that are already placed are checked to see 
if they have any shared vertices with the 
building component that was just spawned. 

If they have shared vertices, the neighbouring 
building components are checked to see if the 
connection conditions are met. 
	 The connection conditions determine 
which building components can be connected 
to which, and how many shared vertices are 
required to connect them. If the connection 
conditions are met, the components are 
considered as structurally connected. 
	 In the case of floor type building 
components, two vertices are required to 
connect the floor to a beam. One beam is 
insufficient for supporting a floor, but currently 
the software doesn’t require two beams to 
structurally support a floor. Moreover, in the 
case of a unidirectional spanning floor, all 
vertices of the floor need to be supported 
by beams, and the beams should lay cross 
directional to the span direction. The lack of 
these structural considerations for floors is a 
current limitation. 
	 Structurally connected components 
have a reference to each other. An edge is 
created between the building components 
which resembles the connection between 
them. The edge stores data on what building 
components are part of this connection, and 
what the centre-to-centre distance is between 
the components. The edge is stored in the 
edges list, and the building component is 
stored as a node in the nodes list. The edges 
and nodes in both lists make up a graph. This 
graph is a network which shows how all of the 
building components are connected to each 
other. The last step is setting the building 
component label. The building component 
uses the slot-ID from the grid slot it occupies 
and a type-label which refers to the building 
component type, to create a unique label for 
the building component, or node. 
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2.3.4 Structural analysis: load paths
Different methods of structural analysis were 
considered for the configurator, Finite Element 
Analysis, Boundary Element Analysis, and 
statics of structural mechanics. Finally, a method 
relying on statics of structural mechanics 
was chosen because both the Finite Element 
Analysis and Boundary Element Analysis 
methods were deemed as computationally 
too expensive. These methods divide the 
configuration and components up in voxels 
and determine stresses at each voxel. This 
information is relevant if you want to optimize 
the design of components, but in this case 
the components do not need to be altered. 
The only information that is necessary is the 
maximum stress occurring in a component, 
so that the strength of that component can 
be tested against the maximum stress to see 
if the component yields or not. Calculating 
just one stress instead of many stresses 
per component saves time and computer 
processing expenditure. 

Process explanation
The user can run the structural analysis by 
pressing a keyboard button. The first step 
of the structural analysis is retrieving all the 
foundation type nodes in the nodes list. For 
each of the foundations, the Dijkstra shortest 
path algorithm is run. This finds the shortest 
path from each of the nodes to the foundation. 
These paths are saved to the nodes. Then, the 
Dijkstra algorithm is run again for the next 
foundation. The result is for each node, paths 
from that node to each of the foundations. 
These paths are compared to find the path(s) 
with the shortest distance from the node to 
the foundation. These path(s) are saved as 
the load path(s) of the node. A new graph 
emerges from the nodes and their load paths 
as edges. The edges in this graph are directed, 
showing how the loads are transferred to the 
foundation. 

Figure 2.28: Flowchart of configurator’s structural 
analysis, process of creating load paths.

user 
initiated
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482.84. Adding them up leads to a distance 
of 1682.84, so the algorithm calculates the 
distance correctly once more. Out of all the 
foundations, FO_1-2.0-1.0 has the shortest 
path, which means the next node should 
move towards the foundation. In this case, the 
next node is the foundation FO_1-2.0-1.0. This 
means the algorithm is working correctly.

Validation
Figure 2.30 shows an example of a 
configuration. Figure 2.29 shows the nodes of 
that configuration, distances to foundations 
with number of nodes to that foundation, 
and the next node(s) in the load path. The 
dimensions of the grid in this example is 
400x400x400 cm. That means the node-to-
node distances are multitudes of 200 cm and 
282.84 cm for diagonal parts of the load path. 
In figure 2.29, the first node is CO_1.0.0-1, it is 
the most left column in figure 2.30. The print 
statement tells us that the distance from FO_2-
3.2-3.0 is 2082.84 cm. This can be validated 
by manually checking the shortest path to 
FO_2-3.2-3.0. This path moves through nodes: 
CO_1.0.0-1, BE_1.0-1.1, FL_1-2.0-1.1, BE_2.0-
1.1, BE_2.1-2.1, CO_2.2.0-1, FO_2-3.2-3.0. The 
node-to-node distances are: 400, 200, 200, 
400, 400, 482.84. By adding these distances, 
the total distance is found to be: 2082.84. That 
means the shortest path algorithm calculated 
this distance correctly. The print statement 
shows the distance from CO_1.0.0-1 to FO_1-
2.0-1.0 to be 482.84. The shortest path moves 
directly from CO_1.0.0-1 to FO_1-2.0-1.0, with 
the node-to-node distance of 482.84. So, the 
shortest path is also correctly calculated in 
this case. The last path is between CO_1.0.0-
1 to FO_0-1.2-3.0, the print statement shows 
a distance of 1682.84. This shortest path 
moves between nodes: CO_1.0.0-1, BE_1.0-
1.1, BE_1.1-2.1, CO_1.2.0-1, FO_0-1.2-3.0. The 
node-to-node distances are: 400, 400, 400, 

Figure 2.30: A configuration and load paths made in the configurator

Figure 2.29: Print statement of configuration’s nodes, 
distances to foundations with number of nodes to that 
foundation, and the next node(s) in the load path



Current project’s configurator

30

Process explanation
Next, the nodes list is sorted based on the 
number of nodes between the concerned 
node and the foundation. Nodes which are 
close to the foundation are at the start of the 
list, and nodes far from the foundation are 
at the end of the list. Loads are passed from 
the concerned node to the next node in that 
node’s load path. This happens in the reversed 
order from the sorted nodes list, nodes furthest 
from the foundation first, and closest to the 
foundation last. The order matters because 
loads are passed cumulatively, if a node passes 
its loads before knowing what its imposed 
load is, it passes an incorrect value to the next 
node. In the case that the node has multiple 
load paths leading to foundations, the passed 
load is divided by the number of load paths. 
The result is an imposed load on each of the 
nodes, based on the dead loads and live loads 
of all the nodes that came before it.

Validation
Figure 2.31 shows the imposed loads of each 
node resulting from the structural analysis 
overlayed on top of the configuration. Each 
floor has a dead load of 13.75 and a live load 
of 48, these add up to 61.75 to be passed to 
the next node as imposed load. A beam only 
has a dead load, of 2.75. A column also only 
has a dead load, of 2.75. The red load path has 
1 floor, 2 beams, and 2 columns transferring 
loads to foundation FO_1-2.0-1.0. This means 
the total imposed load on FO_1-2.0-1.0 should 

be: 61.75 + (2 * 2.75) + (2 * 2.75) = 72.75. Thus, 
the total imposed loads that get transferred 
to the foundation is correct. However, there is 
an issue with the load transfer from the floor 
to the beams. All of the loads resulting from 
the floor gets transferred to just one beam. 
The reason is that the Dijkstra shortest path 
algorithm gives each node one next node to 
transfer their loads to. In the case that there 
are two load paths that both have the shortest 
path leading to the foundation, also just one 
load path, with just one next node is chosen. 
This is what is happening in the load transfer 
from the red floor to the beams. Floor FL_1-
2.1-2.1 is connected to two load paths. Because 
the load paths are created in two different 
instances of the Dijkstra algorithm, the same 
issue does not occur. The floor shares its loads 
between the node paths as it should. 

Figure 2.31: A configuration’s load paths and nodes’ imposed loads
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2.3.5 Structural analysis: column resizing
The next step is sending a message that 
starts the resizing algorithm for columns. The 
blueprint for columns receives this message. 
Then it gets the columns width and depth and 
multiples them to find the column’s profile 
surface area. The column’s dead-, live-, and 
imposed load are added together. This total 
load is divided by the column’s surface area 
to find the stress occurring in the column as 
a result of compression. From the database 
of building components, material properties 
are retrieved, in this case the compressive 
strength. In the configurator the characteristic 
strength properties of combined glulam 
(GL28c) are used for the calculations. In this 
case, the compressive strength perpendicular 
to the grain of GL28c, which is 2,7 N/mm2. 
The column’s compression stress is divided 
by the material’s compressive strength. If the 
resulting factor is smaller than 1, the column 
can handle more compression stress before 
yielding. If the factor is greater than 1, the 
column yields and needs to be stronger to 
handle the compression stress. This factor 
is clamped so that values lower than 0,5 will 
be rounded up to 0,5, and values higher than 
1,5 will be rounded down to 1,5. The clamping 
is done to prevent extreme scaling that is 
unrealistic. Next, the clamped factor is used 
to scale the column’s width and depth. This is 
a rough estimation, because if the column is 
scaled, it’s own weight or dead load changes. 
That means that columns that are too strong 
should be scaled down even more, and 
columns that are too weak should be scaled 
up even more.

Figure 2.32: A configuration’s load paths and nodes’ 
imposed loads



Current project’s configurator

32

50x50 mm, with a surface area of 2500 mm2. 
That means the stress is now 26.9 N/mm2. The 
factor should now be 1, but instead is 26.9 / 
2.75 = 9.78. This means the column is too weak 
now, so it scaled down too much. The reason 
is that the scaling factor is applied to both the 
width and depth of the column, but instead 
should be applied to the surface area of the 
column. Which means the scaling factor for 
the width and depth should be sqrt(0.1) = 0.32 
instead of 0.1. Resulting in dimensions 158x158 
mm, surface area of 24964 mm2, stress of 2.7 
N/mm2, thus a factor of 1. This is the correct 
method.

Validation
Each column starts with dimensions of 
500x500 mm, that equals to 250000 mm2  
of surface area. As shown in figure 2.33, the 
red column CO_2.0.0-1 has an imposed load 
of 64.5 kN, and dead load of 2.75 kN. The 
total load is 67.25 kN. This means the stress 
is equal to (67.25 * 103) / 250000 = 0.27 N/
mm2. The compressive strength perpendicular 
to the grain of GL28c is 2,7 N/mm2. That 
means the scaling factor is 0.27 / 2.7 = 0.1, 
figure 2.34 shows the columns rescaled using 
this method. Thus, the width and depth of 
the column is reduced to the dimensions of 

Figure 2.33: A configuration’s load paths and nodes’ imposed loads

Figure 2.34: A configuration with rescaled columns and beams after running the structural analysis
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2.3.6 Structural analysis: bending

Figure 2.35: Flowchart of configurator’s structural analysis, process of testing beams on bending



Current project’s configurator

34

last beam’s live, dead, and imposed load is 
added to the split nodes’ total bending load. 
The total bending load is the total load on the 
beams in this load path. The last beam’s loads 
cover this total load because loads of beams 
before it are passed to the last beam. After 
adding to the split nodes’ total bending load, 
the span length is added to the split nodes’ 
total span length. 
	 However, this total bending load and 
span length is only half of the load that is part 
of this span, because another foundation’s 
network is involved in the span. So, when the 
algorithm is run again for the other foundation’s 
network, the split nodes’ total bending load 
and span length will be completed by adding 
to them with the load and span length values 
relevant for this foundation’s network. The split 
nodes now contain the correct total bending 
load and span length, the other nodes do not. 
So, another breadth first search algorithm is 
performed for each split node. The algorithm 
starts at a split node and moves down through 
the load path to the foundation. Each node 
visited during this graph traversal gets their 
total bending load and span length set to that 
of the split node the load path starts at. 

After resizing the columns, the structural 
analysis continues with the calculations on 
bending. The first step is creating a load path 
network list for each foundation. The load path 
network contains all the load path edges that 
lead to one specific foundation. Next, load paths 
that lead away from the foundation are saved 
to the nodes. This step allows the algorithm to 
be able to perform a graph traversal starting at 
the foundation, and ending at the outer nodes. 
That is exactly what the next step does, it uses 
a breadth first search algorithm for the graph 
traversal. This algorithm starts by visiting 
the foundation node, then it traverses to the 
neighbours leading away from the foundation 
and visits those nodes, next it traverses and 
visits their neighbours. The traversal continues 
until it reaches a node which has no load paths 
leading away from the foundation, this node 
marks the boundary of the network. It is an 
outer node which transfers its loads to the 
concerned foundation. 
	 When visiting nodes during the graph 
traversal, operations are performed on the 
visited node to find out if the foundation’s 
network is connected to another foundation’s 
network. The nodes which connect these 
networks are named split nodes, because it is 
the point where the load paths split and go 
different directions, each to their foundation. 
Thus, the goal is to find out if the visited 
node is a split node. If the visited node has 
multiple load paths (leading to a foundation), 
it is set as a split node. The 2D distance in the 
XY plane is calculated from the centre of the 
split node to the foundation of the network 
currently being traversed. This distance is set 
as the span length. If the visited node does 
not have multiple load paths, each of the 
nodes connected to the visited node will be 
checked to see if they are part of the current 
foundation’s network. If a connected node is 
not part of the current foundation’s network, a 
split is happening in between the visited node, 
and this connected node. Both of the nodes 
are then set as split nodes, and the 2D distance 
in the XY plane is calculated from the nodes’ 
shared vertex to the current foundation. This 
distance is then set as the span length. 
If the visited node is found to be a split 
node, their load path will be followed to the 
foundation. Each node in this load path is set to 
be spanning. The beam node which is closest 
to the foundation is set as the last beam. The 
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Traversal of red load path starts by visiting the foundation.

The foundation’s first neighbouring node is visited.

The foundation’s second neighbouring node is visited.

Figure 2.36: Breadth first search graph traversal

Figure 2.37: Breadth first search graph traversal

Figure 2.38: Breadth first search graph traversal
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The first columns neighbour is visited. This node is identified as a split node, the split happens in 
between BE_1.0-1.1 and BE_1.1-2.1. For the nodes part of this split, the span length is set as the XY 
distance from the split to the foundation. The bending load is set as the total load acting on the 
last beam BE_1.0-1.1.

The second columns neighbour is visited. This node is also identified as a split node. For the 
nodes part of this split, the span length and bending load is set.

Figure 2.39: Breadth first search graph traversal

Figure 2.40: Breadth first search graph traversal
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The first beams neighbour is visited. All nodes that are part of the load path network of the red 
foundation have been visited.

The breadth first search traversal is applied to the green foundation’s network. The split node at 
BE_2.1-2.1 is found, span length and bending load is added to the nodes part of this split. Another 
split node is found at FL_1-2.1-2.1, this node has two load paths. 

The breadth first search traversal is applied to the blue foundation’s network. The split node at 
BE_1.1-2.1 is found, span length and bending load is added to the nodes part of this split.

Figure 2.41: Breadth first search graph traversal

Figure 2.42: Breadth first search graph traversal

Figure 2.43: Breadth first search graph traversal
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2.3.7 Structural analysis: beam resizing
If the visited node is a beam, a message is 
sent to start the algorithm that resizes beams. 
When the blueprint for beams receives this 
message, the first step is getting the beam’s 
width and height. This is used to calculate the 
beam’s section moment of inertia. Next, the 
total bending load is retrieved for the span of 
which the beam is a part of. This span’s total 
length is also retrieved. Both the bending load 
and span length are used to calculate the 
span’s maximum moment. Then, the distance 
from the beam’s neutral axis to the height of 
interest is determined. In this case, we are 
interested in finding the maximum stress, 
which occurs at the top and bottom of the 
beam’s profile, at y=h/2. The span’s maximum 
moment, height of interest, and the beam’s 
section moment of inertia are used to calculate 
maximum stress occurring in the beam as a 
result of bending (My/I). From the database of 
building components, material properties are 
retrieved, in this case the bending strength. 
In the configurator the characteristic strength 
properties of combined glulam (GL28c) are 
used for the calculations. In this case, the 
bending strength parallel to the grain of 
GL28c, which is 28 N/mm2. The maximum 
occurring bending stress is divided by the 
material’s bending strength. Resulting factors 
greater than 1 are too weak, factors smaller 
than 1 can handle higher stresses. This factor 
is clamped so that values lower than 0,5 will 
be rounded up to 0,5, and values higher than 
1,5 will be rounded down to 1,5. The clamping 
is done to prevent extreme scaling that is 
unrealistic. Next, the clamped factor is used 
to scale the beam’s width and height. Same 
as with the resizing of the columns, the effect 
of scaling dimensions on the dead load of the 
component is not take into consideration. 

Figure 2.44: Flowchart of configurator’s structural 
analysis, process of resizing beams



Current project’s configurator

39

this profile has a section moment of inertia of: 
1.25 * 105 mm4. The resulting bending stress is: 
5821.57 N/mm2. So, the factor is 5821.57 / 28 = 
207.91. This means that the 35x35 mm profile is 
way too slender. The problem is similar to that 
of the column resizing. The factor does not 
apply to the width and height of the beam’s 
profile, it applies to the maximum allowable 
stress. The maximum allowable stress is 28 N/
mm2, this means that: 28 = (4.16 * 107 * (a / 
2) / (a4 / 12). With some algebra it is found 
that: a = 207.31 mm. Thus, the scaling factor 
should be 207.31 / 500 = 0.41. When we test 
these dimensions of 207x207 mm, its section 
moment of inertia is 1.53 * 108 mm4. The beam’s 
maximum bending stress is 28 N/mm4. So, this 
method is correct.

Validation
Each beam starts with profile dimensions of 
500x500 mm, that equals to a section moment 
of inertia of: (500 * 5003) / 12 = 5.21 * 109 mm4. 
The red beam BE_1.0-1.1 has a total bending 
load of: 2.75 + 33.63 = 36.38 kN, see figure 2.45. 
Its total span length is: 282.84 + 632.46 = 915.3 
cm. The total span length and total bending 
load give us a bending moment of: (36380 
* 9.15) / 8 = 41609.6 Nm, or 4.16 * 107 Nmm. 
The height of interest is: 500 / 2 = 250 mm. 
The beam’s max bending stress is: (4.16 * 107 * 
250) / (5.21 * 109) = 2.00 N/mm2. The bending 
strength parallel to the grain of GL28c is 28 
N/mm2. That means the scaling factor is: 2 / 
28 = 0.07. So, the algorithm downscales the 
width and height of the beams to 35x35mm, 

Figure 2.45: Breadth first search graph traversal

Figure 2.46: A configuration with rescaled columns and beams after running the structural analysis
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3. Future development
The research objective is to create an 
integrated configurator with an extended 
design space. The developed configurator 
from the previous chapter has some of the 
core features implemented but requires 
refining and additional development before 
the research objective is fully achieved. This 
chapter explores potential advancements in 
order to realise this, detailing where future 
developments could lead.

3.1 Implementing the building 
product database

3.1.1 Building product database’s 
revelance
The developed configurator has the 
infrastructure that allows the implementation 
of a building product database. It uses building 
component types to build with. Taking the 
configurator to the next level by building 
with digital assets of real building products 
allows the configurator to integrate across 
construction phases. Utilisation of building 
products can ensure product manufacturability 
when the digital assets include manufacturing 
constraints. Decoupling the database of 
building products from the BIM software 
ensures that manufacturing stays possible 
because only the manufacturer of that product 
can edit the BIM family. Ensured product 
manufacturability limits design issues which 
require reorganisation efforts. Additionally, the 
reuse of building product models saves time 
compared to building projects from scratch 
as is currently common practice. Both aspects 
ultimately save time and consequently money. 

3.1.2 Difference from existing BIM 
databases
The building product database provides 
a common environment where a diverse 
range of building products from different 
manufacturers are presented. The building 
products come in the form of BIM families. 
Many manufacturers already have BIM families 
available. The added value of the database 
to the user of the BIM software is that they 
have one place where many building products 
can be viewed and compared. It will become 
easier to implement appropriate building 
products and their BIM families in projects. 

For the manufacturers it means their products 
get more exposure and a good chance to be 
included in the design of new buildings, which 
may boost their sales. These BIM families 
range from structural elements, façades, and 
roofs, to mechanical, electrical and plumbing 
systems. Everything that can exist in a building 
can be found in the database. BIM databases 
are currently underutilized, but there are 
some existing databases. Some of which even 
have a plugin for BIM software which allows 
integration within the software. What sets 
this database apart from existing databases 
is the interactability between the database 
and the configurator. Building products are 
recommended on the specific use case within 
the project’s design. The way this happens 
will be detailed in the configuration process 
section. 

3.1.3 Creating entries in the database
The buildings products in the database are 
organised into building component types 
such as those in the developed configurator: 
foundations, floors, walls, columns, and 
beams. Each building product has data on 
connection compatibility, if two building 
products are compatible with the same type 
of connection then they are also compatible 
with each other. Another type of data is about 
the products geometric properties. For the 
geometric properties an important distinction 
is between static and dynamic geometry. Static 
geometry does not have the ability to change, 
its dimensions are set and unmodifiable. In 
contrast, dynamic components have the ability 
to adjust their shape and/or size according to 
grid or configuration conditions. The size of the 
grid slot will determine what building products 
can fit in that grid slot. Dynamic components 
will fit in a grid slot more often than static 
components, but static components may be 
cheaper and more economical to produce. 
BIM families already have the potential to be 
dynamic and include module size variations. 
BIM families provide module size variations 
through parameters on the height, width, and 
length of the component.
	 Another point of data is on the 
materials that are used in the building 
product. Additionally, each building product 
has physical properties, of which the mass is 
an important one. Another type of physical 
properties refer to the structural performance 
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value that reflects the cost of the environmental 
impact.
	 The results from the LCA, but especially 
the total shadow costs allow the user to 
compare available building products on their 
environmental impact. The environmental 
impact assessment should be carried out by 
a single organisation such as NIBE. It should 
not be the responsibility of the manufacturer 
because there would be a conflict of 
interest, with manufacturers benefitting 
from advantageous assessments on their 
products. It also shouldn’t be carried out by 

of the product. These are characteristic values 
of maximum stresses for compression, tension, 
bending, torsion, and shear that are allowed 
to occur in the product. Physical properties 
provide the data necessary for analysis.
	 Other data refers to the environmental 
impact of the building product. NIBE is an 
organization which concerns itself with 
assessing the environmental impact of building 
products, their method and data types will be 
taken as inspiration. Life cycle assessment is 
the method NIBE chooses for environmental 
assessment. A LCA can be defined as the 
“collection and assessment of all inputs and 
outputs and possible environmental effects 
of a product system throughout its life cycle.” 
NIBE assesses environmental impact in four 
different categories: emissions, resource 
depletion, land use, and nuisance, see figure 
3.1.
	 NIBE takes the data from all four 
environmental impact categories and 
calculates a shadow cost for them, see figure 
3.2. These are the (prevention) costs required 
to reach the environmental goal for a given 
environmental effect set by government and 
international organizations. Adding all the 
shadow costs gives the building product one 

Figure 3.1: NIBE environmental impact categories

Figure 3.2: NIBE shadow costs
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multiple organisations because the method 
of assessment needs to be consistent for 
products to be able to be compared against 
each other. 
	 The last data is the price of the building 
product given by the manufacturer. Entering 
building products into the database first 
requires the selecting of a building component 
type. Next, the modelling of (parametric) 
geometry. The modelling can happen in the 
configurator or any other BIM software that 
support the creation of BIM families. The 
models need to be checked to confirm that 
they are consistent with the other building 
products in the database, with special regard 
to the alignment and implementation of size 
variations. Next steps are selecting connections 
that are compatible with the building product, 
giving materials to the geometries in the 
model, and entering values for the physical 
and environmental impact properties.

3.1.4 Configuration process
The configuration process starts with 
modelling the grid, see figure 3.4. The next 
step is the placement of generic building 
components in grid slots, see figure 3.5. These 
components have a building component type, 
but not a building product assigned to them. 
This means a generic component knows for 
example that it is a column, but not what type 
of column it is. Generic components hold 
some generic property values that resemble 
the average of the building products of that 
component type. Properties such as weight 
are required to perform a structural analysis. 
The structural analysis gives, for each generic 
component, information on the maximum 
stresses occurring as a result of structural 
forces (compression, tension, bending, 
torsion, shear), see figure 3.6. These maximum 
occurring stresses can be tested against the 
maximum stresses the building products can 
withstand, their strength. Building products 
with a strength too low will get filtered out of the 

Figure 3.3: AGACAD configurator’s BIM family manager
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options for replacing the generic component. 
The user can choose a replacement from the 
remaining building products, see figure 3.7. 
This process is repeated for each of the placed 
generic components. After replacing the 
generic components, the structural analysis 
is run to check if the chosen components are 
sufficient for the new configuration. This is 
necessary because by replacing components, 
the weights of the new components change 
the maximum stresses occurring in each 
component. Components that are too weak 
are highlighted in the configurator; these 
components need to be replaced once more. 
The risk is that this process of replacing and 
analysing has to be repeated many times 
before arriving at a sufficient configuration. 
To combat this, components may be chosen 
that are a bit stronger than is expected to be 
necessary. This will reduce the chance that the 
components need to be replaced.

3.1.5 Dynamic components responding 
to analysis
Implementation of dynamic components 
that  can respond to analysis does not require 
iteration in the product selection process. 
Rather, the dynamic components automatically 
change their geometry according to the 
requirements resulting from the structural 
analysis. The resizing of columns and beams 
in the developed configurator is an example of 
dynamic components that respond to analysis. 
For planar elements such as floors, the width 
and depth respond to the grid slot it occupies, 
that leaves the thickness to respond to the 
structural analysis. For linear elements such as 
beams, the length is decided by the grid slot it 
occupies, and the profile of the linear element 
responds to the structural analysis. 

3.1.6 Stock-constrained optimization
Another approach to speed up the building 
product selection process is by automating 
this process using an optimisation algorithm. 
The optimisation will ensure that the building 
products are chosen with strengths that 
most closely match the requirements of 
the structural conditions to reduce material 
usage. This kind of problem is called a stock-
constrained optimisation. An example of 
such an optimisation is that of Warmuth et 
al. in 2020, they did research on the stock-

Figure 3.4: Grid modelling

Figure 3.5: Component placement

Figure 3.6: Structural analysis

Figure 3.7: Replacing generic component with building 
product from database
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Figure 3.8: Characteristics of the developed configurator 
and resulting beneftis

constrained design of truss systems. In 
this case the members that form the truss 
are part of the stock, and the result of the 
optimisation is a building product, the truss. 
The configurator and building product 
database offer the opportunity to perform a 
stock-constrained optimization with a stock 
of building products, the result being the 
structural design of a building. Application 
of such an optimisation has the potential to 
reduce the material usage in the structure of 
a building. Moreover, it offers a gateway into 
the use of reused building components in the 
design of new buildings.

3.2 Benefits of the proposed 
configurator

In this subchapter, benefits of the proposed 
configurator will be examined. Additionally, 
the configurator will be compared to BIM as 
this is the prevalent software type used in 
the construction industry, and in order for 
the configurator to be commercially viable, it 
needs to be able to compete with BIM.

3.2.1 Main benefits of the proposed 
configurator
Because manufacturing and assembly 
constraints are integrated in the early design 
phase, early design choices are evaluated on 
manufacturability. The configurator’s building 
product database holds manufacturing 
constraints and ensures that manufacturing 
is possible, and the structural analysis holds 
assembly constraints and ensures that the 
assembly of those building products is 
possible. In response to the structural analysis, 
the configurator guides the user in building 
product selection or updates dynamic 
components automatically. The guidance from 
embedded expert knowledge makes it easier 
to make the correct decisions, and automation 
minimizes the need for manual involvement 
altogether. Consequently, design issues are 
avoided that require reorganisation efforts 
and put pressure on the supply chain. 
	 For example, a designer orders 10 
floor systems from a manufacturer, but later 
figures out that these floor systems are too 
weak for the design. So, the designer contacts 
the manufacturer to change the order to 10 

stronger floor systems. The manufacturer has 
already started production on the initial order. 
Changing the order now delays the initially 
discussed delivery date, moreover these 
stronger floor systems cost more, and the 
manufacturer wants compensation for the late 
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potential for engaging with clients, end-users, 
and other non-engineering professionals in 
the decision-making processes. The software 
is easy because of its limitations. The grid 
discretises the solution space which makes 
placement of components quick and precise, 
instead of being able to place components 
anywhere, components can only be placed 
in the slots of the grid. This avoids alignment 
issues, where components are sometimes just 
placed millimetres from the right spot. However, 
in conventional BIM, these misalignments 
may cause issues with functionalities such 
as analysis because the components are not 
considered as connected. Additionally, the 
building product database gives the user an 
overview of ready to use digital assets. In other 
words, there are a limited number of building 
components that go into a limited number of 
slots for those components. 
	 Additionally, the configurator supports 
an overarching modularity. Meaning that 
instead of supporting one generation of 
product from one company, it is able to support 
almost every building product. Although the 
building products may not be compatible 
with each other, the building products are 
compatible with the software. The modules 
are the building products from the database 
and because the grid is parametric, it can be 
adjusted to the size or shape of almost any 
building product. This enables great potential 
for reuse of building components.
	 Lastly, because embedded expert 
knowledge and automation make it easier to 
make the correct decisions, they avoid design 
issues but also lead to better designs. In this 
application of structural design, this means 
that the selection of building products more 
closely aligns with the requirements set out by 
the structural analysis. As a result, material use 
is reduced.

3.2.3 Comparison to BIM
Theoretically, almost everything that can be 
done in the configurator can also be done in 
BIM software like Revit. The main distinction 
between BIM and the configurator is that the 
configuration process is different, the way in 
which the building products are placed and 
configured. The configurator’s configuration 
process relies on placement on a parametric 
grid, in BIM the user has more freedom in 
placement. Consequently, the configurator 

notice of change of order. The delay of arrival 
of the floor systems may also have an impact 
further along the supply chain, such as in the 
building process. 
	 Thus, these design issues result in 
increased time and cost for design and 
production. Avoiding these design issues 
enhances the coordination efficiency between 
designer and manufacturer, and increases the 
reliability of schedule. Also, because design 
issues are avoided and because information 
on building products are available in the early 
design phase, the estimated cost deviation is 
reduced. Consequently, the time and cost for 
design and production is reduced. 

3.2.2 Additional benefits of the 
proposed configurator
The building product database preserves and 
reuses knowledge on the building products 
for next projects, whereas in BIM projects are 

often built from scratch. This saves time in 
the design process. Additionally, the building 
product database has the potential to develop 
construction documents efficiently, because 
the building products hold most information 
necessary to create these documents. This 
minimizes the need for manual involvement 
when creating these documents, consequently 
it also saves time in the design process.
	 Another benefit is that the software 
is easy and quick to use. This may save time 
while handling the software and leads to the 

Figure 3.9: The building product supply chain
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Figure 3.10: Autodesk’s Robot Structural Analysis tool for 
Revit

Figure 3.11: Structural analysis of the configurator

the early design phase, but its scope extends 
to other aspects of the design of buildings, 
such as climate design. Each aspect influences 
another, so the integration of multiple aspects 
into the configurator avoids designers having 
to switch back and forth between software. 
Instead, it allows the configurator to act as a 
common environment.
	 The configurator’s strategy for 
becoming easy-to-use is to reduce the 
requirement for manual involvement of 
the user. The configurator achieves this 
by embedding expert knowledge into the 
software, through the integration of a building 
product database and structural analysis. The 
main goal of the configurator is to make the 
application of building products’ BIM families 
and structural analysis common practice so 
that early design choices are evaluated on 
manufacturability. This avoids design issues 
that require reorganisation efforts and put 
pressure on the supply chain. Consequently, 
the configurator reduces the time and cost for 
the design and production phases, allowing 
users of the configurator to develop buildings 
faster and cheaper. 

understands how building products are 
connected through the connectivity graph, 
whereas in BIM more manual involvement is 
required to make the software understand 
building product connectivity. This information 
on connectivity is utilised in the structural 
analysis. For this reason, the process leading 
up to and including the structural analysis 
is more streamlined for the configurator. 
Additionally, it is uncommon for BIM’s design 
software to have an integrated structural 
analysis. This means that the building needs 
to be remodelled in the software for structural 
analysis, or exported to that software. 
These hurdles make structural analysis in 
the early design phase a tedious process in 
BIM. Therefore, it is unlikely that the user is 
continuously testing the design by means of 
structural analysis, so assembly constraints 
are not applied to the design choices. 
	 A building product database can 
also be implemented in BIM through plugins 
for databases of BIM families of building 
products. However, it is not common practice 
to apply building product families in BIM, 
rather projects are built from scratch. For 
this reason, manufacturing constraints are 
also not applied to design choices. The exact 
reason for the lack of BIM family adoption in 
BIM is unclear, but it is conceivable that it has 
something to do with BIM’s complexity. The 
configurator aims to simplify the adoption of 
BIM families in projects by better integrating 
it into the software, and thereby reducing the 
required manual involvement. By reducing the 
software’s complexity, non-engineers can also 
use the software and engage in the decision-
making process.
	 Thus, because manufacturing and 
possibly also assembly constraints are not 
applied to design decisions in BIM, early design 
choices are not evaluated on manufacturability. 
This means that design issues are not avoided 
that require reorganisation efforts and put 
pressure on the supply chain. Consequently, 
many of the configurator’s benefits do not 
apply to BIM software such as Revit. 

3.2.4 The configurator’s aspirations
The configurator aims to be easy-to-use 
software with the targeted audience being 
designers and non-engineers such as 
the designer’s clients and end-users. The 
configurator focuses on structural design in 
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The previous chapter ended with the benefits 
of the proposed configurator over BIM. In 
this discussion the research will be placed in 
context and the limitations will be discussed.

The designs that can be created in the 
configurator are limited by options of building 
products in the database. For this reason, 
the configurator has a dependency on 
manufacturers to fill the database with their 
products. To ensure that building products are 
compatible with the configurator and can be 
compared with each other, they need to be 
checked so that they fit the same format. This 
includes the way their geometry is modelled 
and how their structural and climate impact 
properties are determined.
	 The possible designs are also limited 
by the configurator’s grid. Building products 
can only exist on the faces and edges of the 
grid. Complex grids can allow for complex 
designs, but the design of a complex grid may 
also complicate the design process. This is in 
opposition to the configurator’s goal of being 
easy-to-use. Despite complex grids being 
possible, a grid similar to the one developed 
in the configurator does not support curved 
building products and buildings.
The way in which the configurator implements 
the building product database and grid makes 
a clear distinction between vertical and 
horizontal elements, columns and beams. The 
grid even distinguishes between the rotation of 
horizontal elements. In reality, this distinction 
is not always so clear. Because of this 
distinction, the configurator will have difficulty 
with implementing diagonal elements that are 
somewhat in between a column and a beam.
	 Other limitations have to do with how 
the connection conditions are implemented for 
placed building components. These conditions 
determine how components can transfer 
loads to each other. Connections for floor 
components currently don’t consider the span 
direction of the floor and can be supported by 
just one beam, which is usually not possible 
in reality. Moreover, the connection conditions 
don’t take the compatibility with structural 
connections into consideration. It is assumed 
that there always exists a structural connection 
that can be used to connect two building 
components. However, this is not evident.
	 Moreover, the structural analysis is very 
rough and limited to simple configurations. One 

of the reasons is that structural connections 
are not considered in the structural analysis. 
Instead, it is assumed that all connections 
are pin joints and that there are no horizontal 
forces. Additionally, the structural analysis can 
only check axial compression of columns and 
bending in beams, excluding bending resulting 
from a cantilever. After checking the stresses 
in columns and beams, they are resized. 
The resizing currently doesn’t influence 
the weight of the resized component. The 
analysis should  consider this, because it will 
influence the required dimensions for that 
component and other components in the 
configuration. Furthermore, the structural 
analysis doesn’t consider how the loading and 
bending of one component affects the rest 
of the configuration. A method of structural 
analysis closer to a Finite Element Analysis 
may be more appropriate to consider the 
interdependency of building components in a 
configuration.
	 Lastly, it is assumed that the lack 
of  application of building products’ BIM 
families in BIM is due to BIM’s complexity. 
As well as that for the same reason there is 
a lack of application of structural analyses. 
The configurator needs to be put to the 
test to see if reducing the required manual 
involvement leads to increased application of 
building products’ BIM families and structural 
analysis in projects. Only after testing, it can 
be concluded whether the configurator’s 
projected benefits do apply.

4. Discussion
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5.1 Conclusions

5.1.1 Research question: 
How can the design space of integrated 
construction configurators be enlarged?

An integrated construction configurator 
integrates across all phases of construction, 
planning, design, and production. It evaluates 
design choices on manufacturability. An 
enlargement of the design space can be 
achieved by implementing a smaller module 
size. Many existing configurators work with 
modules which are room sized. This project 
transitions from room sized modules to 
building component sized modules. Changing 
the modules of the configurator to building 
components can also serve the goal of 
integration, since it has the opportunity to 
evaluate design choices on manufacturability. 
When the digital building components are 
based on physical building products from 
manufacturers that include manufacturing 
constraints, the manufacturer can ensure the 
manufacturability of the component.
	 The developed configurator took 
an approach that is based on building 
components and inspired by games with 
building systems. These games have in 
common: a 3D grid, a database of building 
components, and a configuration rule engine 
which allows the building components to be 
configured on the grid. The configuration 
process is as follows: it starts with designing 
the grid. Then, components from the building 
component database are placed on the grid to 
make a configuration. Next, the configuration 
is evaluated by means of analysis, in this case 
a structural analysis. The results of the analysis 
guide the user in improving the configuration.
	 The configurator is developed in Unreal 
Engine, a software development environment. 
In Unreal Engine different parts of the software 
are segmented into Blueprints, these are the 
scripts of Unreal Engine’s visual programming 
language. 
	 The grid is one of those Blueprints. It is 
made by a 3D matrix of vertices. The vertices 
are used to make slots, a place in the grid 
where a component can be placed. There are 
linear slots, or edges, which are made with 2 
vertices. There are also planar slots, or faces, 
which are made with 4 vertices. 

	 There are 5 types of components in 
the building component database: beams 
and columns which fit in the edge slots, and 
foundations, floors, and walls, which fit in the 
face slots. In the configurator, when one of 
these components is selected, the software 
understands which slots this component can 
be placed in. All the user needs to do is point 
at one of the slots and the component will 
snap to that location. 
	 When a configuration is made, the 
software recognises which components are 
neighbours. Connection conditions determine 
whether neighbouring components are seen 
as physically and structurally connected. 
The components and connections between 
components form a network graph. 
	 To determine the load path for the 
structural analysis, the Dijkstra shortest path 
algorithm is implemented to find the shortest 
path from each of the components to the 
closest foundation. The live loads and dead 
loads of each component are passed along 
the load path to determine the loads acting on 
each component. The loads are used to find 
stresses in columns and beams resulting from 
axial compression and bending. The stress 
in the component is used to determine the 
required dimensions for that component.
	 The developed configurator has the 
infrastructure that allows the implementation 
of a building product database, but a 
database of actual building products has not 
been realized. A building product database is 
proposed which is based on BIM families and 
can serve as a common environment where 
a diverse range of building products from 
different manufacturers are represented. It 
aims to increase the adoption of BIM families 
in projects. Adoption of building products’ BIM 
families can ensure product manufacturability 
by integrating manufacturing constraints 
in the early design process. This building 
product database sets itself apart from other 
BIM databases by integrating and interacting 
with the design software. Building products 
are recommended based on the dimensions of 
a specific location in the grid and conditions 
resulting from structural analysis.
	 To sum up, the design space of integrated 
construction configurators can be enlarged by 
developing a configurator which implements 
modularity on building component level. The 
configuration process consists of 3 parts: 
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analysis, in which the stresses in one 
component affects the rest of the 
configuration (like in FEM).

•	 Implementation of additional analyses 
such as indoor climate analysis.

Other areas of research that could benefit the 
field are:
•	 Developing a component-based 

configurator for collaboration, such as 
active real-time collaboration between 
multiple stakeholders.

•	 Developing a component-based 
configurator for reuse, by configuring 
with used components, or configuring for 
reusability, such as design for disassembly.

•	 Optimising configurations, using criteria 
(from analyses) to determine the optimal 
configuration. Opportunities lie in 
application of reinforcement learning to 
guide the user in component placement, and 
stock-constrained optimisation to optimise 
building product selection (opportunity to 
include reused components).

the grid, the components, and the analysis. 
The grid defines the design space in which 
components can be placed, components from 
a building product database ensure product 
manufacturability, and analyses ensure that 
the assembly of components is possible. 

5.1.2 Sub-question:
What are the benefits of this type of 
integrated construction configurator 
compared to prevalent BIM software?

BIM’s complexity limits the possibility for non-
engineers to engage in the decision-making 
process. The design process of the configurator 
is simplified by reducing the need for manual 
involvement. This is achieved by integrating 
the building product database and structural 
analysis into the configurator. The aim is to 
increase the application of BIM families and 
structural analysis. The building product 
database preserves and reuses knowledge 
on the building products for next projects. 
Whereas in BIM, instead of using ready-to-use 
BIM families, projects are usually built from 
scratch. Increased application of BIM families 
and structural analysis can help integrate 
manufacturing and assembly constraints into 
the design process. By doing so, early design 
choices are evaluated on manufacturability. 
This can avoid design issues that require 
reorganisation efforts and put pressure on the 
supply chain. Consequently, the coordination 
efficiency between designer and manufacturer 
is enhanced, there is an increased reliability 
of schedule, and estimated cost deviation 
is reduced. As a result of these benefits, the 
configurator reduces the time and cost for the 
design and production phases, allowing users 
of the configurator to develop buildings faster 
and cheaper.

5.2 Recommendations

To be able to accurately assess the potential 
of this type of construction configurator 
which is based on building component level 
modularity, more research and development is 
required on:
•	 The development of a building product 

database.
•	 Implementation of a detailed structural 
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6.1 Topic
Why did you choose this topic?
Years before I started this master thesis, 
during a course called ‘Circular Product 
Design’ I had an epiphany. The course had 
lectures on how building products could be 
reused by implementing material passports, 
having databases for used building products, 
and doing stock optimisations to efficiently 
implement the used building products in a 
design. One of these lectures was given by my 
main mentor Stijn Brancart. In the period in 
which I followed this course, I was playing a 
game called Valheim. This game has a building 
system which uses a database of building 
products which can be configured to develop 
structures. I put the two together and realised 
that the game was a solution to problems in 
the building sector that were put forward in 
the lectures of the ‘Circular Product Design’ 
course. At this point an idea was conceived, 
a software supplemented with a database 
of building products, in which these building 
products can be configured to make actual 
buildable structures. I wrote the idea down 
and then stopped engaging with it. Until, when 
looking at the available topics for the master 
thesis, I found the topic ‘Discrete Timber’ 
at the Structural chair with Stijn Brancart. 
Immediately it made me think of this idea I 
had, and I was motivated to proceed with this 
topic.

What is the relation with the ‘Building 
Technology’ master track and ‘Architecture, 
Urbanism, and Building Sciences’ programme?
This project is about developing a software 
which architects, or anyone for that matter, 
can use to design buildings. It is about 
innovating, not what we design, but how we 
design. It is about reinventing the design 
process. ‘Building Technology’ is the discipline 
which bridges the gap between the architects, 
that design, and the engineers, which make 
the design buildable. That is exactly what this 
software does. It embeds technical know-
how into the software so that whatever the 
architect designs is ensured to be buildable. 
This design process for buildings, which the 
software facilitates, is of course very much 
related to the ‘Architecture, Urbanism, and 
Building Sciences’ programme.

6.2 Approach
Why was this approach chosen for the 
project?
The approach consists of 3 parts. The first 
part is the literature research. The literature 
research was performed to understand the 
context of configurators. To understand what 
a configurator is, where its origins lie, what 
configurators are already existing, what the 
problems are in those configurators, and what 
possible solutions the literature has to offer. 
This information is used to define the problem 
statement and objectives of the project. 
Without it, I wouldn’t know what direction the 
project should take.
	 This brings us to the second part of 
the project, the software development. The 
information from the literature is used to 
propose a new configurator. I decided that the 
configurator would need to get developed to 
be able to test the proposal.  The development 
of the configurator was a kind of research 
by design. By developing the configurator, 
it became clearer how the software can and 
should function.
	 The third part of the project is concerned 
with proposing future developments. Because 
software development takes a long time 
for this kind of project, I decided that this 
proposal was required to give insight into how 
the configurator could function were it fully 
developed. This part of the project is meant 
to bridge the gap between the developed 
configurator and the proposed configurator 
resulting from the literature research. 

Did the approach work out or not?
I think the information from the literature 
research gave me a structured way of 
thinking about configurators. It made me 
understand the building blocks that make up 
a configurator. It also helped to validate and 
guide the problem statement and objectives 
of the project. What it didn’t do was guide me 
in the development of the software.
	 I had to learn how to use Unreal 
Engine to develop the configurator. Even for 
learning this software there was almost no 
documentation. I learned in a fragmented 
manner from YouTube videos, forums, 
by asking questions at the university and 
faculty VR lab’s, and most of all by trial and 
error. Despite the difficulty in working with 
Unreal Engine I think it was the right choice. 
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software development. The new information 
that was revealed during this process mostly 
had to do with how features should be coded 
in Unreal Engine. There wasn’t a lot of new 
information on what the software should be 
during this process. This information on coding 
was too detailed and not really relevant for my 
research. However, it did result in a tool that 
helps answer my research question. 

How did your research method differ from the 
methodical line of approach of the graduation 
studio?
My research method was very different from 
most other students graduating in ‘Building 
Technology’. That is because my topic is very 
different. Most other students develop a design 
or recommendations for design. I developed a 
design tool. Topics closest to mine are design 
tools in the field of computational design. The 
difference is that most of those tools don’t 
handle any interaction with the user, they 
don’t let the user decide. They take data and 
process this data to give a recommendation 
or determine the design. For this reason, my 
approach was more focused on software 
development and less on calculating or 
working with data.

Did you encounter moral/ethical issues or 
dilemmas during the process? How did you 
deal with these?
There exists a moral/ethical issue which has 
to do with automation. The configurator has 
knowledge embedded into the software which 
could mean that less engineers are required 
to check the design. Moreover, the design 
process is simplified, it is based on games that 
children intuitively learn how to use. This also 
means that cases could exist where instead 
of the architect designing the building, the 
end-user would be directly responsible for 
designing the building. So, it could cause a 
loss of jobs. I do think the benefits outweigh 
the drawbacks, so it is worth developing the 
software. Such a tool could make buildings 
cheaper, more environmentally friendly, and in 
general improve designs for buildings.

How do you reflect on the feedback of your 
mentors?
The feedback that I got had mostly to do 
with controlling the scope and method of 
the project, making clearer what the added 

I don’t think this type of configurator could 
have been developed in Rhino, for example. 
Additionally, it does make sense to developed 
the configurator in the software that some of 
the games which served as inspiration were 
made with.
	 The features I chose to develop are I think 
the minimum requirements for the project. 
I developed the core software architecture 
that allows building components to be placed 
on a grid, supplemented by a structural 
analysis. I think the structural analysis is also 
a fundamental part of the project because 
my topic is in the Structural chair. Moreover, 
because it highlights one of the strengths of 
this configurator, having information on the 
assembly of components. I did run into some 
issues with time constraints as I would have 
liked to have spent more time on the structural 
analysis as well as some other features.

How can research by design be implemented 
in a scientific manner for software 
development?*
	 The research approach did make it 
difficult for me to answer my research question 
in a scientific manner. Because by developing 
the software I didn’t get any quantifiable 
results. I can’t proof that the way that I chose 
to develop this configurator is the correct 
way. I can only explain how the configurator 
works and why I made the decisions that I 
did. What made it even more difficult was 
that the developed configurator is part of a 
larger concept that couldn’t be completely 
developed. For this reason, it is hard to 
say whether the developed and proposed 
configurator is the solution to the problems 
brought forward in the problem statement.
	 The same issue occurred when 
proposing future developments. I try to use 
my imagination in combination with logical 
reasoning to determine if certain features of 
the configurator will solve problems from the 
problem statement. There are no calculations 
which can be done, there is no literature or 
precedents to give insights, the only way to 
know for sure is to develop the configurator 
with these features.

Did the approach consistently result in 
new information relevant to the research 
question?*
Throughout most of the process I worked on 
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people at our VR labs that had experience 
with Unreal Engine. Once I knew how the 
feature needed to work, I would write code, 
then test, then troubleshoot and make edits 
to the code, and repeat until the feature was 
developed. The last step is then to explain 
and contextualize those features which I had 
developed, by writing.

To what extent has the projected innovation 
(research objective) been achieved?
My research objective is ‘to discover how an 
integrated construction configurator which 
enlarges the design space should function, 
and to develop (part of) the integrated 
construction configurator’. I succeeded in 
creating a construction configurator although 
it might not be an integrated one. An integrated 
construction configurator supports the design 
process through all stages, planning, design, 
and production. The construction configurator 
which I developed can’t really support the 
production phase since it does not yet offer the 
information required to build the configuration. 
The configurator was meant to act as a proof 
of concept, showing the potential of this type 
of configurator. I’m not sure if the configurator 
was developed far enough to make the 
benefits of this type of configurator clear. 
Also, I don’t think I haven’t exactly figured out 
how this type of configurator should function, 
but I have provided information on how it can 
function. I’m hoping at the very least that my 
project inspires some so that more research 
will follow. 

How do you assess the academic and 
societal value, scope, and implication of your 
graduation project, including ethical aspects?
My project by itself, the configurator that I 
built, won’t have a large impact. If my project 
attracts attention to the concept of such a 
configurator and if it were fully developed, it 
could have a big impact. I believe this type of 
configurator has the potential to revolutionize 
the way in which we design buildings. 
Ultimately making buildings cheaper and 
more sustainable, it could help in overcoming 
the housing crisis. This happens by having 
information on production available early in the 
design process, it helps to reuse, standardize, 
validate, and iterate more efficiently.

value is of the configurator, and what features 
should or shouldn’t be added to the software. 
I think the feedback helped guide me in the 
direction that I took the research and software 
development. It did not help much with the 
software development itself though. Unreal 
Engine was a software that both my mentors 
are unfamiliar with, so I had to figure this out 
myself. 

How was your mentors’ feedback translated 
into your work?
The scope of the project became developing 
a configurator that is able to validate a 
configuration with a rough structural analysis. 
Making clear what the added value is of the 
configurator was translated in the report by 
on the one hand developing the configurator 
and explaining how it works, and on the 
other hand by explaining what still needs 
to be developed and how it can work. Then 
explaining the benefits that the different 
features of the configurator provide. Finally, I 
didn’t implement the features that my mentors 
said were out of scope, but also haven’t 
implemented the features that my mentors 
would have liked to see. This has to do with 
time constraints, and me choosing to focus on 
the core of the project first.

What did you learn from your own work?
First of all, I learned to use the most complex 
piece of software that I know, Unreal Engine. 
Secondly, I learned more about software 
development in general. Moreover, I also 
learned about design software, about how 
small choices on software development can 
have a big impact on the design process which 
the software provides. Also, I learned about 
controlling the scope of a project. Lastly, I 
learned a bit about how to get an abstract 
idea across, about translating an idea that 
only lives in the mind to other people through 
text, speech, and imagery. 

6.3 Results
How did the preliminary results of the research 
and design come to be (product, process, 
planning)?
Most of it is a result of software development. 
For most of the features I had a rough idea 
of how I wanted it to work. Then, I would 
start with looking online at ways that others 
had implemented this feature, or I would ask 
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To what extent are the results applicable in 
practice?
The configurator itself could only be useful in 
validating a simple structure in the planning 
phase, or just quickly exploring design 
options. Other applications of the results are 
in the domain of the software development of 
architectural software. It provides examples 
and ideas for developing new software, or 
extending existing software with new features.

How do you assess the value of the 
transferability of your project results?
For anyone familiar with the development of 
software, this project should provide enough 
information so that this configurator can 
be remade. It also provides ideas for future 
development.
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9. Appendix. Complete Software Development Flowchart


