Construction configurator

Increasing the design space of integrated construction configurators

I U D e I ft MSc Thesis by B. M. Smeekes
27-05-2024

BKBouwkunde
Faculty of Architecture and the Built Environment

Construction configurator

Increasing the design space of integrated construction configurators

Key words: construction, configurator, integrated, design space, database, structural,
BIM

Author

Brent Smeekes | 4607643
Master thesis research
Delft | 2024

MSc in Architecture, Urbanism and Building Sciences
Building Technology track

Mentors
Dr. Stijn Brancart | Chair of Structural Design & Mechanics
Ir. Hans Hoogenboom | Chair of Design Informatics

Board of examiners delegate
Ir. Leontine de Wit | Architect

]
TUDelft

Delft University of Technology
Faculty of Architecture and the Built Environment

Abstract

A configurator is a platform which serves the goal of mass customization. It contains a set of
common components from which a stream of derivative products can be efficiently developed
and launched. Configurators in the construction industry have the potential to help integrate the
design-to-production supply chain. Integration is required because there is a rising complexity in
design and construction projects due to an increased number of parties involved in each venture.
Configurators achieve integration by ensuring that a design is within the production capacity.

(Cao et al, 2021) identified three distinct typologies of existing construction configurators:
planning, design, and production configurators. These typologies primarily indicate the stage of
the construction phase in which the configurator is used. An integrated configurator includes all
typologies/phases. The application of configurators in construction is limited and immature, this
is especially the case for integrated construction configurators.

The application of configurators in construction is limited because current configurators lack
scalability, many configurators may only be fit for one generation of products from one company.
This issue originates from insufficient cross-organizational collaboration and integration with
supply chains. Additionally, academia indicates a need for research on increasing the design
space of modular buildings. For this reason, the research question of this thesis is;: How can the
design space of integrated construction configurators be enlarged?

The approach for developing an integrated construction configurator which increases the design
space is inspired by games with building systems such as Valheim. It consists of a grid, modularity
on building component level, and configuration rules which dictate how components are placed
on the grid. However, a major limitation of these games is the lack of proper analytical tools to
validate configurations for physical construction. A configurator was developed which overcomes
this limitation by implementation of a structural analysis.

The configuration process of this configurator consists of 3 parts: the grid, the components, and
the analysis. The grid defines the design space in which components can be placed, components
from a building product database ensure product manufacturability, and analyses ensure that
the assembly of components is possible. In each iteration of the configuration process, the
configuration is controlled by editing the grid and placing or removing components on the grid.
Then, the configuration is evaluated by means of analysis, results from the analysis are the basis
for edits to the configuration in the next iteration cycle.

The main benefits of this type of configurator compared to BIM are that by integrating the
manufacturing and assembly constraints in the design process, early design decisions are
evaluated on manufacturability. This can avoid design issues that require reorganisation efforts
and put pressure on the supply chain. Consequently, the configurator reduces the time and cost
for the design and production phases, allowing users of the configurator to develop buildings
faster and cheaper.

Table of contents

Abstract
Table of contents

1. Existing configurators

1.1 Context on configurators

1.1.1 Mass customization

1.1.2. A definition of configurators

1.2 Potential of configurators in the construction industry
1.2.1 Opportunities for configurators

1.2.2 Comparison with BIM

1.3 Categorisation of configurators

1.3.1 Levels of mass customization

1.3.2 Typologies of existing construction configurators
1.3.3 Integrated configurator

1.4 Existing construction configurators
1.4.1 Construction configurator review

1.4.2 Beyabu configurator

1.4.3 PRISM configurator

1.4.4 MyProjectFrog configurator

1.4.5 Uuthuuske configurator

1.5 Problem statement

1.5.1 Integration

1.5.2 Modularity on component level

1.5.3 Problem statement summary

1.6 Objectives

1.7 Approach & methodology

2. Current project’s configurator
2.1 Inspiration and theoretical framework for configurators
2.1.1 Inspiration from game industry

2.1.2 Theoretical framework for configurators
2.2 Configuration process

2.2.1 The proposed configurator

2.2.2 Development in a game engine

2.2.3 Unreal Engine

2.2.4 The configuration process

2.2.5 Grid

2.2.6 Components

2.2.7 Analysis

2.3 Software development process

2.3.1 Blueprint interaction

2.3.2 Grid

2.3.3 Building process

2.3.4 Structural analysis: load paths

2.3.5 Structural analysis: column resizing
2.3.6 Structural analysis: bending

2.3.7 Structural analysis: beam resizing

3. Future development
3.1 Implementing the building product database
3.1.1 Building product database’s revelance

D W

OCWOWOONNNOOOOO OO O

17
17
17
18
19
19
19
20
20
21
22
22
24
24
25
26
28
31
33
38

40
40
40

Table of contents

3.1.2 Difference from existing BIM databases

3.1.3 Creating entries in the database

3.1.4 Configuration process

3.1.5 Dynamic components responding to analysis
3.1.6 Stock-constrained optimization

3.2 Benefits of the proposed configurator

3.2.1 Main benefits of the proposed configurator

3.2.2 Additional benefits of the proposed configurator
3.2.3 Comparison to BIM

3.2.4 The configurator’s aspirations

4. Discussion

5. Conclusion

5.1 Conclusions

5.1.1 Research question:
5.1.2 Sub-question:

5.2 Recommendations

6. Reflection
6.1 Topic

6.2 Approach
6.3 Results

7. References
8. Figures
9. Appendix.

40
40
42
43
43
44
44
45
45
46

47

48
48
48
49
49

50
50
50
52

54
56
58

1. Existing configurators

1.1 Context on configurators

1.1.1 Mass customization
In the late 1980s, the manufacturing industry
shifted from mass production to mass
customization in response to the growing
demand for product variety (Kotha & Pine,
1994). Mass customization is a manufacturing
paradigm which has the ability to enable design
flexibility and therefore produce products
which match the customer’s preference more
closely (Barman & Canizares, 2015). It does
this while maintaining the main advantages of
mass production, the economies of scale. This
means that mass-customized products are
produced at the same price, quality, and time
as mass-produced products (Cao et al., 2021).
Mass customization requires some
degree of standardization and is compatible
with prefabrication strategies (Bianconi et
al., 2019). ‘Effective implementation of mass
customization would enable design flexibility
that aligns with both customers’ preference
and manufacturers’ capabilities’ (Cao et al,
2021).

1.1.2. A definition of configurators

A configurator is a platform which serves the
goal of mass customization. Configurators
contain ‘a set of common components,
modules, or parts (e.g. the kit-of-parts) from
which a stream of derivative products can be
efficiently developed and launched’ (Meyer &
Lehnerd, 1997), see figure 1.1.

The kit-of-parts of a configurator
are configured based on processes, these
are the rules and taxonomies that guide the
placement of parts. The processes are relying
on a knowledge base, these are the datasets
necessary for economic evaluation of the
configuration (Louth et al,, 2024).

This economic evaluation can come
in the form of a Bill-of-Materials (BOM),
which in essence is translating the customer
specifications into product documentation.
Since the kit-of-parts are modelled digitally
to represent the actual components in
production, it provides access to the rules and
constraints originating from production (Cao
et al., 2021). These rules and constraints make
sure that designs made with the kit-of-parts
are within production capacity.

Three main characteristics are inherent
in configurators (Cao et al., 2021):

e reusability due to kit-of-parts,

¢ intelligence driven by embedded expert
knowledge,

¢ high automation realized by off-the-
shelf technologies, such as Application
Programming Interface (API).

1.2 Potential of configurators in the
construction industry

1.2.1 Opportunities for configurators

Industrialized construction is gaining more
share in the construction market (Cao
et al, 2021). Moreover, ‘the Architecture,
Engineering, and Construction (AEC)
industry encounters a rising complexity in
the design and construction of projects due
to the increased number of parties involved
in each major venture’ (Abanda et al., 2017).
Consequently, past research suggests the
importance of a close collaboration between
designers and manufacturers, such as a
Design for Manufacturing and Assembly
(DFMA) design team (Yuan et al.,, 2018). More
specifically, research suggests the need to
develop prefabricated construction building
information models containing the production

~

Figure 1.1: Industrialised construction building components tree (Louth et al., 2024)

Existing configurators

details (Hamid et al., 2018).

Designers do not have sufficient
knowledge on production to understand the
rules and constraints that come with building
components and assemblies. This results in
design issues which put pressure on the supply
chain and requires reorganization efforts and
expert resources from the design company
(Cao et al., 2021).

Configurators offer an opportunity
to help integrate the design-to-production
supply chain but require more efforts from
manufacturers to develop kit-of-parts and
configurators. Configurators ensure that a
design is within the production capacity, this
reduces estimated cost deviation caused by
redesign. The reuse of the library of kit-of-
parts in future projects will lead to continuous
improvements of project quality and return of
investment made initially inside a single project
(Tetik et al., 2019). Other benefits of applying
configurators in industrialized construction
are shown in figure 1.2.

1.2.2 Comparison with BIM

Current BIM software can support
collaboration among different stakeholders
including planners, architects, engineers, and
contractors. However, the complexity of BIM’s
technical workflow limits the possibility of
engaging with clients, end-users, and other
non-engineering professionals in the decision-
making processes due to the so-called “black-
box effect”, which refers to a system without
transparency (Potseluyko et al., 2022).

Moreover, few studies give attention
to the possibilities of developing a product
platform based on BIM contents (Piroozfar et
al., 2019). Instead, ‘most of the projects are
built from scratch in the BIM environment’
(Cao et al., 2021).

The benefit of a configurator based
on BIM contents is that the contents can be
used for analyses such as a Bill-of-Material
(BOM) analysis. ‘Such a shift can enable
configuration lifecycle management built on
BIM, and thus extend the application of BIM
across all lifecycle phases of a product’ (Cao
et al,, 2021). Decoupling the configurator from
the dataset of BIM contents guarantees that
the kit-of-parts is edited in one place. The
kit-of-parts are modelled in BIM software
and the configuration of the kit-of-parts
happens in the configurator. This decoupling

Benefits of Configurators

Product Increases flexibility (Thuesen and Hvam, 2011;
Jensen et al., 2014; Bonev, Wordsch and Hvam,

2015; Smiding, E., Gerth, R., Jensen, 2016)

Ensures product manufacturing and assembly of
solutions is possible (Bonev, Wordsch and
Hvam, 2015; Said, Chalasani and Logan, 2017,
Jansson, Viklund and Olofsson, 2018; Yuan,
Sun and Wang, 2018)

Minimizes the need for manual involvement
(Frank et al., 2014; Jansson, Viklund and
Olofsson, 2018; Lee and Ham, 2018)

People

Smooths the learning curve (Jansson, Viklund
and Olofsson, 2018)

Process Reduces time and cost for design and production
(Thuesen and Hvam, 2011; Frank er al., 2014;
Bonev, Wor6sch and Hvam, 2015; Smiding, E.,
Gerth, R., Jensen, 2016; Said, Chalasani and
Logan, 2017; Jansson, Viklund and Olofsson,

2018)

Enhances coordination efficiency (Malmgren,
Jensen and Olofsson, 2011; Xu ef al., 2018;
Yuan, Sun and Wang, 2018)

Develops construction documents efficiently
(Jensen, Olofsson and Johnsson, 2012; Smiding,
E., Gerth, R., Jensen, 2016; Jansson, Viklund
and Olofsson, 2018)

Preserves and reuses knowledge for the next
product (Frank ef al., 2014; Jensen et al., 2014)

Increases reliability of schedule (Wu ef al.,
2010; Larsson et al., 2015)

Figure 12: Benefits of configurators applied in
industrialized construction (Cao & Hall, 2019)

is important because it means that the kit-of-
parts model and information is controlled by
the manufacturer of that part.

1.3 Categorisation of configurators

1.3.1 Levels of mass customization

One way of categorizing configurators is by
their level of mass customization. The level
of mass customization indicates the level
of freedom that the configurator enables
for the product design. It also relates to the
degree of which the customers’ needs are
incorporated into the product development.
This means that a product with a low level of
mass customisation doesn’t give the customer
a lot of options to customise the product to
their desire.

Existing configurators

Hvam and Forza similarly classify
product development to four levels of mass
customisation based on the Consumer Order
Decoupling Point (CODP) (Forza & Salvador,
2006) (Hvam et al.,, 2008). The CODP is ‘the
point in the supply chain at which consumer
orders are converted into production orders or
schedules’ (Cao et al., 2021). The four different
CODP scenarios are:

e Engineer to order,
manufacturing rules.

* Modify to order, edit design parameters.

e Configure to order, select scalable modules
and module interfaces.

* Selectvariant, select off-the-shelf products.

define design and

1.3.2 Typologies of existing construction

configurators
(Cao et al, 2021) identified three distinct

typologies of existing construction
configurators, see figure 1.3. These typologies
are based mainly on when the configurator
is used in a project. But the typologies also
include information on who the main users are,
how the configuration is performed, what the
targeted products are, and what the expected
output is of the configurator. The typologies
are:
¢ Planning configurator, the targeted product
for this stage could be a conceptual building
model created by architectural firms for
early planning. The configurator helps real
estate developers by allowing customers
to interactively design their desired house
by offering available selections. Moreover,
intelligent algorithms can identify more
feasible or advantageous plans using

embedded configuration rules.

Clients, Planners, Architects

-
s, p

Architects, Engineers

. N AR
({ \
))

(-~

p-
L('

!

=

Engineers, Manufacturers :

‘> Detailed Models > Permit Drawings > Scheduling & BOMs > :

(/‘\‘\ A
¥ {”'\11

Figure 1.3: Configurator typologies (Cao et al., 2021)

Existing configurators

 Design configurator, this is the most
common typology for configurators in the
market. The targeted product could be a
detailed building model configured with
predefined modules, such as timber panels.
The generated output can be converted to
BIM models to serve as a starting point for
designers and engineers.

* Production configurator, this typology is
mostly used by engineers and fabricators.
The targeted products can be buildings
planned, produced, and assembled by
a vertically integrated firm. These types
of configurators have the potential
benefit of integrating manufacturing and
assembly constraints in the design phase
by adopting design for manufacturing and
assembly principles. The outputs include
BIM models, G-codes for NC (numeric
control) machines, permit drawings, and
bill of materials.

1.3.3 Integrated configurator

The last configurator typology is an integrated
configurator, where the planning, design, and
production is all included in the configurator.
This type of configurator evaluates (early)
design choices on manufacturability. Other
benefits include the reuse of process and
technical solutions, and that the formation
of a stable supply chain can be facilitated
(Cao et al, 2021). Integrated configurators
enable stakeholders to maintain a common
environment to control the project data.

1.4 Existing construction
configurators

1.4.1 Construction configurator review

Figure 1.5 shows 15 configurators, they include
both commercially deployed configurators
and configurators developed for academic
purposes. According to (Louth et al,, 2024)
‘configurators have seen a rise in web-enabled
apps as exploration for property search and
acquisition, residential test fitting, site planning
and land utilisation as early-stage planning

toolkits’, the most notable commercially
deployed web-based configurators being
HiStruct, AGACAD, Creatomus, and
MyProjectFrog.

Research from (Cao et al, 2021

‘7

~

D
d |

A~ S, k7
C
@ .

1.Raw materials

~
AR

2.Suppliers

508

3.Manufacturing

4. Distribution

5.Point of
Sale

6.Customer

Figure 1.4: Supply chain integration

Existing configurators

points out that the most popular typology is
typology 2, design configurators. Typology 3,
production configurators, seems to be the least
common. For the CODP scenarios configure
to order is the most common and engineer to
order is the least common. Thus, configurators
with complex production requirements and
information available on production are
especially rare.

There are a few configurators that span
across multiple typologies and therefore can
be called integrated configurators. However,
none of these configurators manage to
integrate all typologies. Most of the integrated
configurators integrate across the planning
and design process. These configurators
include commercial configurators Testfit,
PRISM, Hypar, and academic configurators
Beyabu by (Louth et al, 2024), and the

A modular apartment configurator by (Cao et
2 al,, 2021). Only the commercially deployed
= b configurators MyProjectFrog, and Uuthuuske
g ° configurator by The New Makers integrate
i g across the design and production process.
[ST} +
= o

]
o
B
o
= AGACAD

HiStruct
o
E SpaceMaker Tekla Configurator
S Archistar
&
<
S Hypar
S yp

PRISM
= MyProjectFrog
s=}
S
S Uuthuuske
5
= Modular Apartment Configurator EPWPO
§
Testfit Automated Formwork

o Creatomus
=
8
e
S

> = Beyabu
=12
Q)
= &

(]
=
2
°

Typology 1: Planning Typology 2: Design Typology 3: Production

early in process

late in process

Figure 1.5: Categorisation of existing construction configurators in CODP and typologies

10

Existing configurators

1.4.2 Beyabu configurator

The Beyabu configurator was developed at
Zaha Hadid Architects (Louth et al., 2024). The
configurator produces a planned community
arrangement for a charter city development.
Prospective home buyers and investors get to
make decisions collaboratively on where their
unit should be placed and the typology of their
unit. After multiple configuration sessions,
the configuration options of each user were
submitted to generate a unified system grid
to position within. Then the users make their
first placements and decide on unit details,
together a multi-family residential design is
developed.

ik Qo Srack Down Contaur Grid Uil iz BrenSprce
y 9 Selecsie Lnine: 248
L0700 sdeieMaindow: 8
7 ot hesa : E= &
4 - Facie e 341 |
rariaze P
wasa praee
MarSalsabls: 838 OpanSpace:3t& HeiSolesbe:52% Omen Sancs: 405

Figure 1.6: Beyabu configurator’s visualisation of a
configuration (Louth et al, 2024)

[OpanSpace

Along Conrour Grid

Diown Contour Grid

‘Selesble Uitz - =)
Calashis Walarbront s 109

" L Feet Ares : 32
Farads drea - e

£ 10N
arn 23605
o Salasio: D 1

Saleable Unis aze
SaebiWaefor: 107

ot area t 1482
Facada oz 1225

Opun Spaze: 38 &

Figure 1.7: Beyabu configurator’s variations in a system grid (Louth et al., 2024)

e d |

Figure 1.8: Beyabu configurator’s gameboard grid. (Louth et al., 2024)

n

Existing configurators

1.4.3 PRISM configurator

PRISM is an open-source app which is
developed to deal with London’s housing
crisis by accelerating the design process for
‘Precision Manufactured Housing’. It works by
choosing a site, then adjusting parameters
that define what type of building the program
generates. The user is given real-time analytical
feedback and is alerted to potential planning
issues, guiding the user to make appropriate
decisions.

Analytics

Areas by Type (m?) - Project

Distribution by Type (m?) - Project
min max

50 50

Summary - Project

Figure 1.10: PRISM’s analytics dashboard

1.4.4 MyProjectFrog configurator
MyProjectFrog is a commercial configurator
for timber panelised structures. It is built upon
a library of panel products coupled with rules
from local building regulations (Cao et al,
2021). This configurator is able to provide both
design and fabrication deliverables.

il A | AT R T

Figure 1.9: PRISM'’s analytics dashboard

O miapbox @

Select panel types from toolbox
and place them in panel slots

. nf !

Figure 1.11: MyProjectFrog’s configurator (Cao et al., 2021)

-t

12

Existing configurators

1.4.5 Uuthuuske configurator

Uuthuuske is a product developed by The New
Makers which offers a solution for residential
housing by making use of temporarily available
locations. The product consists of modular
building blocks that can be linked to create a
range of floor planlayouts, these configurations
can be explored in their configurator.

Figure 1.12: Uuthuuske’s modules Figure 1.13: Uuthuuske’s configuration options

@’ Fabfield Builder UUTHUUSKE configurator builder explore models account about

WareHOuSE

Construction segments

@

ce

/7

D Winsow

c 6

Dizusbla Windzm Ene Facace

"wx 2 90 0 %

Circular kiteher

& [Ordernown | rODCBE =500

Figure 1.14: PRISM’s analytics dashboard :
3

Existing configurators

1.5 Problem statement
Why isn’t the application of configurators
in construction common practice?

1.5.1 Integration
The applicationof configuratorsinconstruction
is limited and immature (Cao & Hall, 2019). More
research is required to see if the benefits of
configurators apply to construction (Cao et al.,
2021). Especially more research on integrated
construction configurators is required, as the
research by (Cao & Hall, 2019) indicates that
many configurators may only be fit for one
generation of products from one company due
to the lack of scalability. There are a limited
number of configurators with ‘an integrated
approach supporting design-to-production’
(Cao et al.,, 2021), despite stakeholders in the
construction industry seeking for such an
integrated configurator (Cao & Hall, 2019).
Integration and successful application
of configurators depends on cross-
organizational collaboration (Myrodia et al.,
2018) and supply chains (Cao et al, 2021).
(Potseluyko et al., 2022) indicate that for
many architectural and construction practices
in the UK, collaboration with clients happens
through email as primary communication
medium. Configurators offer the opportunity
for active real-time collaboration between
multiple stakeholders, for example through
participatory decision-making. Research by
(Louth et al, 2024) offers a precedence as
they developed a multi-user platform for
the configuration and customization of a

multifamily residential design, see figure 1.15.

Lack of integration of supply chains
causes many construction companies to be
unwilling to apply configurators in projects.
The reasons are uncertainties and potential
disturbance to their original project delivery
processes and technical environments (Cao &
Hall, 2019). Although, these barriers seem to be
disappearing due to important advancements
in digital technologies and configuration
platforms (Goulding & Rahimian, 2019).

An advancement which may help with
the integration of supply chains lies in the
management of the kit-of-parts database.
A flexible data structure for editing and
exchanging kit-of-parts is required as a
common environment (Cao et al, 202D.
This would allow for the coordination of
the parts during creation. This is especially
important if the kit-of-parts are procedurally
generated as opposed to being static
geometry. Additionally, automatic database-
to-configurator synchronisation of the Kkit-
of-parts would be beneficial, because the
‘manual maintenance and coordination of
the configuration kit components are not a
scalable protocol’ (Louth et al.,, 2024)

1.5.2 Modularity on component level

‘The configurator content could present a
local marketplace of digital assets licensed to
differentregional or local suppliers and artisans
who could commercialise their products in
the platform’ (Louth et al., 2024). This means
a transition from configurators with modules

View Wind Envelope
Oualily = Fxpasiac Exposue

Figure 1.15: Unit position analysis of a multi-user platform (Louth et al., 2024)

14

Existing configurators

which are room sized or larger, to modules
which are building component or sub-
assembly sized, see figure 1.16. Transitioning to
smaller modules increases the design space of
modular buildings. Which according to (Cao et
al., 2021) is a topic which needs more research
on, as there are currently few research studies
regarding ‘the flexible spatial arrangement of
components to achieve design variations’.

‘Previous studies have suggested that
modularization strategies can be used to
group components for offsite fabrication to
ensure the ease of assembly and flexibility of
building maintenance’ (Peltokorpi et al., 2018).
Another opportunity lies in the consideration
of reusability when developing a kit-of-parts,
but research on this topic is scarce (Cao et al.,,
2021).

Modularity on component level may
also lead to a reduction in material use and
lifecycle management complexity compared
to concepts with room-sized modules. This
is due to additional structural requirements
to self-support room-sized modules during
transportation and handling, and due to
additional implications for modular design
(Benjamin et al., 2022).

In contrast, modularity on component
level offers the opportunity to fully automate
the iterative process to find the optimal types
and sizes of structural elements. (Benjamin et
al., 2022) calls for such a structural analysis
which is adapted to the singular characteristics
for every structural system to test modular
structures.

1.5.3 Problem statement summary

In summary, the application of configurators
in construction is limited because current
configurators lack scalability. This
issue originates from insufficient cross-
organizational collaboration and integration
with supply chains. Academia indicates a need
for research on the management of the kit-of-
parts database, increasing the design space of
modular buildings, the reusability of the kit-of-
parts, and an approach to structural analysis
for modular structures.

Figure 1.16: Transitioning from room-sized modules to
building component sized modules

1.6 Objectives

Solving the lack of scalability in configurators
requires an integrated construction
configurator. Both the integration and the
enlargement of the design space can be
solved by using building components and
assemblies as the kit-of-parts. For this reason,
the objective of thisresearchis to discover how
an integrated construction configurator which
enlarges the design space should function,
and to develop (part of) the integrated
construction configurator. This objective leads
to the following main research question and
sub-question:

Research question:
How can the design space of integrated
construction configurators be enlarged?

Sub-question:
What are the benefits of this type of integrated
construction configurator compared to

prevalent BIM software?
15

Existing configurators

1.7 Approach & methodology

Literary research on existing configurators

First, literary research is conducted on current
construction configurators and research
on construction configurators. This literary
research is utilized to understand what a
construction configurator is, how it compares
to BIM, how they can be categorized, which
ones are currently available, and what is
missing in current construction configurators.

Software proposal and development for
current project’s configurator

Secondly, the literary research and inspiration
from the game industry is used to propose a
new construction configurator with features
and improvements over current construction
configurators.

Then, the theory and plan for the
proposed construction configurator will get
tested by translating it into code and software.
For this step, Unreal Engine will be used to
serve as the backbone for the software, it is
the 3D environment in which the software
development happens. Within Unreal Engine,
code specific to the project will get written.

Proposing future developments

Lastly, the developed configurator will be
contextualised by envisioning a more fully
developed form. This includes examining
how the configurator’s building product
database and configuration process should
function. Moreover, the potential benefits
of the configurator are discussed and the
configurator is compared with prevalent BIM
software.

16

2. Current project’s configurator

2.1 Inspiration and theoretical
framework for configurators

2.1.1 Inspiration from game industry

The inspiration for this project came from
video games, specifically those with building
systems like Minecraft, Fortnite, The Sims,
and Valheim. These games make building
structures easy and enjoyable, a stark contrast
to the complexity found in CAD/BIM software
used by architects. This disparity raises the
guestion: why hasn’t the construction industry
adopted similar principles from these games
to simplify the design process?

Research from Potseluyko et al.,, 2022,
concluded that a game-like platform combined
with BIM could provide simplified data delivery
to a client. Another research project by Louth
et al, 2024, utilises gamification principles
to improve the user’s problem-solving skills
in a cooperative setting. Gamification is the
process of turning a function-focused design
into a human-focused design (Louth et al.,
2024). This happens by ‘employing concepts
of behavioural science to engage human
emotions through human psychology to
motivate and incentivise users’ (Louth et al.,
2024). Figure 2.3 shows the strategy that

Louth et al. used to implement gamification
principles in their configurator through the
Octalysis framework.

Sidney Opera House built in M//;écraft by

Figure 2.1:
player

Figure 2.2: Player-made wooden structure in VValheim

CR1:

1.Prosperity for Local Economy and Ecology
2. Contribution tto Technologucal Progress and Innovation

CD2: Meaning

1.Completion of Configuration
2. Progress Bar

CD4:
Report: Photos and Profile Ownership
of RBU
Scarcity
CDé:

1.Fixed Number of Early Adopter Pioneers
2.Fixed Number of Site Positions Available

Accomplishment

Avoidance

cD3:
1. Personalised Unit Configuration
2. Early Adopters Choose Rules and

Empowerment Design Elements

CD5:
Neighbour RBU Buyer Label and Con-
figuration Info

Social Influences

Unpredictability CcD7:

1. Choice Cost Calculator
2. Freedom to Explore FFP Interiors Walkthrough

CD8:
Number of Persons Viewing the Position

Gamification Analysis of Beyabu Configurator using the Octalysis Frame-

work

Figure 2.3: Configurator gamification analysis using octalysis framework (Louth et al, 2024)

17

Current project’s configurator

2.1.2 Theoretical framework for

configurators

Video games provide several key lessons for

construction configurators. These games

typically use a uniform grid system, which
ensures building components snap and
connect properly, reducing errors.

Each game features different building
components or modules, varying in size,
geometry, and materials. Despite these
differences, all games utilize a database of
diverse building components, which can
include linear, planar, and volumetric elements,
see figure 2.4.

The process of placing these
components on the grid, known as the
configuration process, varies among games.
A crucial aspect of the configuration process
is the User Interface (UIl), which dictates
how building components are selected from
the database and placed. Video games have
highly developed configuration processes,
with significant effort invested in making the
interaction with the software engaging and
enjoyable.

Configuration rules determine where
and how many building components are
allowed to be placed. (Cao et al, 2021
proposes four types of configuration rules:

e Composition rules, they define which
building components are mandatory or
optional in the product architecture.

e Compatibility rules, they define which
building components cannot exist
simultaneously in the product.

e Dependency rules, they define which
building components must belong together
in a product.

e Cardinality rules, they define the required
or limited number of building components
under certain circumstances.

Games primarily use composition and
cardinality rules, while compatibility and
dependency rules are less common.

The building systems in these games
encompass all fundamental features of a
configurator: a kit-of-parts product structure
andaconfigurationruleengine. Whilethegoal of
these games is not to create physical products,
they effectively function as configurators
within the digital realm. Unique features such
as grids, modular components, and engaging

linear planar volumetric

Figure 2.4: Linear, planar, and volumetric elements

Figure 2.5: Composition rules

R ~
N _ .
S N
™ Sy

Figure 2.6: Compatibility rules

A e
v X

Figure 2.7: Dependency rules
pd :

2 walls

/v

2 walls
Figure 2.8: Cardinality rules

X

18

Current project’s configurator

configuration processes demonstrate potential
for creating an integrated configurator with an
expanded design space. These engaging and
user-friendly configuration processes could
enhance cross-organizational collaboration.

However, a major limitation of these
games is the lack of proper analytical tools
to validate configurations for physical
construction. This gap needs to be addressed
to adapt these game-inspired principles for
use in the construction industry.

2.2 Configuration process

2.2.1 The proposed configurator

As part of this project a configurator is
developed that adapts a common building
system in games to be able to develop designs
which are validated for physical construction.
The developed configurator takes the essential
parts of the games’ building system, the grid,
and modular components. These features allow
for the creation of configurations of building
components (buildings). The configurator
is extended with a structural analysis which
validates the configurations made in the
configurator.

This configurator sets itself apart from
existing configurators by adopting modularity
on building component level. Existing
configurators mostly use larger modules and
parametric systems for configuration. In this
configurator, planar components such as
floors and walls, and linear components such
as beams and columns, are placed in a grid to
create configurations. By reducing the module
size, there is a greater degree of variation that
can be achieved by configuring the modules.
In other words, the design space is enlarged.

The second objective of the project
has to do with integrating the supply chains
involved in the construction process. This
goal can be achieved by having building
components as modules which refer to building
products from manufacturers. The creation
of such a database of building products and
linking the database with the configurator is
out of the scope for this project, but more on
this topic in chapter 3.

2.2.2 Development in a game engine

The configurator was developed using
Unreal Engine 5.3, a 3D computer graphics
game engine by Epic Games. Game engines,
including Unreal Engine, offer a comprehensive
software development environment for
creating games, providing essential tools for
graphics, sound, and physics. Perhaps the
most important tool is real-time computer
graphics or real-time rendering. It focuses on
producing and analysing images in real-time,
meaning without delay. The game engine
provides the developer with a 3D environment
which the game engine’s renderer visualises
on your computer screen. Then, it is up to the
developer to decide what should exist, what
should happen, and how to interact with this
3D environment.

Unreal Engine was chosen as tool
to develop the configurator because it is
a software development environment for
creating games. Configurators are software,
and this project’s proposed configurator is
in many ways similar to games. Additionally,
a game engine facilitates the development of
user interaction, unlike other 3D graphics or
CAD software like Rhino which only support
parametric design. Having control over the
interaction with the software allows the
software to support the enlargement of the
design space through a flexible and direct
configuration process.

Figure 2.9: Unreal Engine 5’s interface

19

Current project’s configurator

2.2.3 Unreal Engine

Within Unreal Engine, a project encapsulates
all information for a piece of software or a
game through project files. These files include
objects that exist in the 3D environment, such
as 3D models and materials, as well as files that
define the software’s logic and interactions.
In Unreal Engine, these logical files are
called Blueprints, see figure 2.10. A Blueprint
contains information about a specific part of
the project. Communication between these
Blueprints allows the Blueprints to interact
with each other. Blueprint interaction is the
most important mechanism for software
development in Unreal Engine.

& On Component Begin Overla

Figure 2.10: Unreal Engine 5°s blueprints.

2.2.4 The configuration process

The configuration process is made up from
three parts: the grid, the components, and the
analysis. It is an iterative process in which each
iteration usually starts with the grid and ends
with the analysis.

grid

analysis components

Figure 2.11: Configuration process’ iteration cycle

—>

Edit grid
parameters

No

<—Yes Satisfied?

Evaluate

Building
product
database

No

Select
component

type

Move to
desired
location in
grid

S—)

A

Spawn
component in
grid's slot

Configuration

Same
component
required?

configuration with Yes
structural analysis

Figure 2.12: Flowchart of configuration process

completed?

20

Current project’s configurator

2.2.5 Grid

The grid in this configurator has its own
Blueprint. Fundamental to the grid is a 3D
grid of vertices based on input parameters for
the number and spacing of vertices in the X, Y,
and Z directions. These input parameters can
be adjusted to fit the project’s requirements.

Grid Dimensions

400,0

400,0

400,0

Figure 2.13: Configurator’s grid parameters

These vertices are used to create slots,
where components can be placed, see figure
2.15. The slots come in the form of planar and
linear elements, faces and edges. Four vertices
make up one face. Face slots are created for the
foundations, floors, and walls. Next, edges are
created. Only two vertices are required to form
one edge. Edge slots are created for columns
and beams. The grid is visualised by the use
of sprites, 2D images that are displayed in the
3D environment. These sprites visualise the
vertices and lines connecting the vertices.

Figure 2.15: Configurator’s grid slots

21

Current project’s configurator

BP_Beam BP_Column

Figure 2.16: Configurator’s building components

2.2.6 Components

The configurator utilizes five types of
components: foundation, floor, wall, column,
and beam, see figure 2.16. These components
are stored in a database, and users can
select the desired component type using the
keyboard’s number keys. Once the correct
component is selected, users can navigate the
grid, and the component snaps to relevant
slots within the grid. A left click places the
component at the selected location. By
placing these components, a configuration for
a structure or building is created.

Figure 2.17: Placement of a component when slot is
missed

Figure 2.18: Placement of a component snapping to a slot

BP_Floor

q

e

BP_Foundation BP_Wall

| il

Figure 2.20.: Configuration made in the configurator

2.2.7 Analysis

The structural analysis validates configurations
by finding how the forces of each component
flow through the entire configuration. This
information is used to determine the maximum
stress occurring at each component.

This begins with the configurator
understanding how components are
connected. When components are placed
adjacent to each other, they may be considered
as neighbours if they share vertices. Each
component type has specific connection

conditions. Forexample, a floor component can
22

Current project’s configurator

Figure 2.21: A simple flow network with directed weighted
edges

only connect to beam components, and they
need to share two vertices. A network graph is
created where each building component is a
node, and the connections between them are
edges, see figure 2.21 and 2.22.

This network information is used
to determine the shortest path from the
foundation to each component. This process
is repeated for each foundation, resulting
in a list of paths for each component, with
distances associated with each path. Then, the
foundation is selected that gives the shortest
path, see figure 2.23.

The shortest path determines the route
of force travel, as per statics in structural
mechanics, which states that loads should
follow the shortest route to the foundations in
statically determinate structures.

The next step involves passing the
dead load and live load of one component to
the next component in the path. Information
about the path and loads is then used to
calculate the stress resulting from axial forces
and bending. Which in turn determines the
required dimensions for each component of
a given material. The components are then
scaled up or down to the required dimensions.

Repeat

Information from the analysis can be used
to reconsider the current configuration.
Adjust the grid parameters, remove placed
components, and place components to form a
new configuration.

R
v

=

o
@.......
@
T []
@

fo e 00000

Figure 2.22: Configurator’s network graph showing
component connections

Figure 223: Configurator’s Dijkstra shortest path
algorithm comparing paths to foundations

(

Figure 2.24. Configurator’s structural analysis

23

Current project’s configurator

User Character

Change number of grid vertices
Change spacing of grid vertices
Launch build mode

Change building component type
Spawn building component

Run structural analysis

Build

Structural Analysis

Launch build mode

Change building component type
Slot ID

Spawn building component

Modes list

Edges list

Number of grid vertices (X, ¥, Z)
Spacing of grid vertices (X, Y, £)

Run structural analysis

Create vertices

Create slots

Building Component

Static mesh

Slot ID

Loads

Load path

Component type

Resize mesh

Fy

Foundation

Floor

Wall

Beam

Column

Figure 2.25: UML diagram of configurator’s simplified blueprint interaction

2.3 Software development process

2.3.1 Blueprint interaction

This subchapter on the software development
process is going to explain how the
configurator was developed. The subchapter is
divided into subsections for the configurator’s
most important blueprints: the grid, the build
component, and the structural analysis. See
figure 2.25 for a UML diagram which explains

how these blueprints interact with each
other. The user character is the blueprint
that the user controls, through this blueprint
the user initiate processes in the grid, build
component, and structural analysis. Through
the build component, the user can choose
the component type and place the building
component on the grid. When a component
is placed, it exchanges information with the
grid. Next, the user can run the structural

24

Current project’s configurator

analysis, which takes information from the
building component to make calculations on
and changes to the building component.

2.3.2 Grid

Initially, the configurator worked without
a grid. However, the decision was made to
implement a grid to make the placement of
building components more accurate. The
grid was developed to be parametric so that
it is flexible and can be adjusted to fit the
requirements of the building that is to be
developed inside the configurator. The grid is
implemented in such a way that component
placement snaps to the edges and faces of the
grid, the grid slots. This implementation was
chosen because it resembles the way that the
structures of buildings are being designed in
current practice. In current practice, structural
components such as columns and beams are
aligned to the grid lines and intersections of
grid lines. Additionally, in the configurator, the
grid slots are created from vertices so that
neighbouring grid slots can be recognised
based on the vertices, more on this in the
section in the building process.

The gridisinitialised before the software
is executed. The algorithm showcased in figure
2.26 is ran every time an input parameter
is adjusted. As mentioned in the previous
subchapter, a 3D matrix of vertices is made
based on input parameters. From the vertices,
grid slots are made for the grid’s faces and
edges. The correct vertices are selected
by choosing specific indices based on the
parameter for the number of vertices in the X,
Y and Z direction. For the foundation faces for
example, sets of 4 indices on the bottom layer
of the grid are chosen. The sets of indices are
used to get sets of vertices. At the average
coordinates of the set of vertices, a grid slot
is spawned. The grid slot is associated with
the vertices and vice versa. Next, the indices
are used to make a slot ID for the grid slot.
Finally, a box collision is made for the grid slot.
This box collision is an invisible box which is
meant to collide with the line trace. This allows
for component placement, more on this in the
next paragraph.

Start

Input number o
vertices (X, Y, 2

vl—,

Create a 3D matrix of
vertices

Input spacing of
vertices (X, Y, Z

h 4

Create foundation
face grid slots

h 4

Create floor face gnid
slots

h 4

Create wall face (YZ)
grid slots

h 4

Create wall face (XZ)
grid slots

h 4

Create column edge
grid slots

h 4

Create beam edge
(X) grid slots

h 4

Create beam edge
('Y} grid slots

With each grid slot

e SR SRR IS PO

Gefindices based on
number of vertices (X,

Y. 7]

h 4

Get vertices based on
indices

h 4

Get average location
of vertices

h 4

Spawn grid slot at
location

h 4

Associate grid slot
and vertices

h 4

Make slot ID

h 4

Make box collision for
line trace

Figure 2.26: Flowchart of configurator’s grid’s
process

creation

25

Current project’s configurator

Launch build mode

If build
mode is on

Enter build cycle

Change building
component type

Spawn building
component

Change build ghost
mesh

Database of
building
components

—————

f build ghos
is green

Mo Do nothing

Spawn Emamg

component at grid
slot

h

Select appropriate
line trace channel

h

. Repeat build cycle
Send out line trace

h

Set spawn location to
where the line hits

If line hits
grid slot

location of grid slot

i
!
Set spawn location to i
i
i

h

Spawn green build |' ““““““““

ghost

Figure 2.27: Flowchart of configurator’s building process.

2.3.3 Building process

The building process concerns itself with
component placement on the grid. The
configurator’s building process is based
on building processes found in the games
that served as inspiration. The reason being
that those games are easy and intuitive to
use, and easy to develop in Unreal Engine.
The building process is set up in such
a way that the user is allowed to place
components in the grid wherever they

h 4
Building component
inherits grid slot's
vertices

v
Check Tor shared
vertices with placed
building components

connection
onditions are
met

Connect the building
components

¥
MMake an edge
between the

components

v

Add the edge to the
edges list

v
Add building
compaonent to the
nodes list

A

want, there are as few configuration rules
as possible. The configurator allows users
to make unconventional configurations that
are usually undesired, because sometimes
unconventional configurations may actually
be the best performing configurations.
Instead of predefining how the user should
configure components, the configurator gives
feedback on the configuration and allows
users to discover for themselves what kind
of configurations they think are appropriate.

26

Current project’s configurator

Additionally, by snapping components to the
grid slots neighbouring components can be
found. ldentifying neighbouring components
and checking connection conditions allows
us to create a component connectivity graph.
Information on component connection is
required to be able to perform a structural
analysis.

Process explanation

The building process starts when the ‘build
mode’ is launched. The build mode is launched
by a keyboard button press by the user. If the
build mode is off, the software enters build
mode, if it is already on, the software exits
build mode. Once in build mode, the build
cycle is entered. It starts with selecting the
appropriate line trace channel, this is based
on the selected building component type.
Because the line trace should only collide with
the box collisions of grid slots that belong to
the selected building component type. This
determines in which grid slots a building
component can be placed. Next, the line trace
is sent out. A line is sent out straight forward,
wherever the line ends or hits something, the
spawn location is set. This is where the build
ghost will appear. If the line hits a box collision
of the grid slot, the spawn location is set to that
of the grid slot. This allows the components to
snap to that location. A green build ghost is
spawned. If the line doesn’t hit a grid slot, a
red build ghost is spawned. This build cycle
is continuously repeated so that the location
and colour of the build ghost keeps getting
updated. The build cycle ends when the build
mode is exited.

User can choose to change the building
component type, options for component types
exist in a database of building components.
Changing the building component type affects
the selected line trace channel, the build ghost
mesh, and the building component that can
be spawned.

The command for spawning a building
component is executed when the user left
clicks. If the build mode is on and the build
ghost is green, a building component is
spawned at the targeted grid slot. The building
component inherits the vertices from the grid
slot it occupies. Then, the building components
that are already placed are checked to see
if they have any shared vertices with the
building component that was just spawned.

If they have shared vertices, the neighbouring
building components are checked to see if the
connection conditions are met.

The connection conditions determine
which building components can be connected
to which, and how many shared vertices are
required to connect them. If the connection
conditions are met, the components are
considered as structurally connected.

In the case of floor type building
components, two vertices are required to
connect the floor to a beam. One beam is
insufficient for supporting a floor, but currently
the software doesn’t require two beams to
structurally support a floor. Moreover, in the
case of a unidirectional spanning floor, all
vertices of the floor need to be supported
by beams, and the beams should lay cross
directional to the span direction. The lack of
these structural considerations for floors is a
current limitation.

Structurally connected components
have a reference to each other. An edge is
created between the building components
which resembles the connection between
them. The edge stores data on what building
components are part of this connection, and
what the centre-to-centre distance is between
the components. The edge is stored in the
edges list, and the building component is
stored as a node in the nodes list. The edges
and nodes in both lists make up a graph. This
graph is a network which shows how all of the
building components are connected to each
other. The last step is setting the building
component label. The building component
uses the slot-ID from the grid slot it occupies
and a type-label which refers to the building
component type, to create a unique label for
the building component, or node.

27

Current project’s configurator

2.3.4 Structural analysis: load paths
Different methods of structural analysis were
considered for the configurator, Finite Element
Analysis, Boundary Element Analysis, and
staticsofstructuralmechanics.Finally,amethod
relying on statics of structural mechanics
was chosen because both the Finite Element
Analysis and Boundary Element Analysis
methods were deemed as computationally
too expensive. These methods divide the
configuration and components up in voxels
and determine stresses at each voxel. This
information is relevant if you want to optimize
the design of components, but in this case
the components do not need to be altered.
The only information that is necessary is the
maximum stress occurring in a component,
so that the strength of that component can
be tested against the maximum stress to see
if the component yields or not. Calculating
just one stress instead of many stresses
per component saves time and computer
processing expenditure.

Process explanation

The user can run the structural analysis by
pressing a keyboard button. The first step
of the structural analysis is retrieving all the
foundation type nodes in the nodes list. For
each of the foundations, the Dijkstra shortest
path algorithm is run. This finds the shortest
path from each of the nodes to the foundation.
These paths are saved to the nodes. Then, the
Dijkstra algorithm is run again for the next
foundation. The result is for each node, paths
from that node to each of the foundations.
These paths are compared to find the path(s)
with the shortest distance from the node to
the foundation. These path(s) are saved as
the load path(s) of the node. A new graph
emerges from the nodes and their load paths
as edges. The edges in this graph are directed,
showing how the loads are transferred to the
foundation.

Run structural
analysis

v

(~ Gef the Toundafion

nodes from the nodes
list

For each foundation
un the dijkstra

shortest path
algorithm

For each node

Save the resulting
path to the node

For each node

Compare the paths of
each foundation

For each node
el the shores

path(s) as the load
ath(s

A4
ort the nodes s
based on number of
nodes to foundation

Pass load to next
node in load path

If there
are multiple
oad paths

Ve Divide load by
= 7| number of load paths

No

Pass complete load
to next node
b

If node is
a column

h 4

Yes

Send resize mesh
message

Figure 228: Flowchart of configurator’s structural
analysis, process of creating load paths.

28

Current project’s configurator

Validation

Figure 230 shows an example of a
configuration. Figure 2.29 shows the nodes of
that configuration, distances to foundations
with number of nodes to that foundation,
and the next node(s) in the load path. The
dimensions of the grid in this example is
400x400x400 cm. That means the node-to-
node distances are multitudes of 200 cm and
282.84 cm for diagonal parts of the load path.
In figure 2.29, the first node is CO_1.0.0-1, it is
the most left column in figure 2.30. The print
statement tells us that the distance from FO_2-
3.2-3.0 is 2082.84 cm. This can be validated
by manually checking the shortest path to
FO_2-3.2-3.0. This path moves through nodes:
CO_1.0.0-1, BE_10-11, FL_1-2.0-11, BE_2.0-
11, BE_21-21, CO_2.2.0-1, FO_2-3.2-3.0. The
node-to-node distances are: 400, 200, 200,
400, 400, 482.84. By adding these distances,
the total distance is found to be: 2082.84. That
means the shortest path algorithm calculated
this distance correctly. The print statement
shows the distance from CO_1.0.0-1 to FO_1-
2.0-1.0 to be 482.84. The shortest path moves
directly from CO_1.0.0-1 to FO_1-2.0-1.0, with
the node-to-node distance of 482.84. So, the
shortest path is also correctly calculated in
this case. The last path is between CO_1.0.0-
1 to FO_O0-1.2-3.0, the print statement shows
a distance of 1682.84. This shortest path
moves between nodes: CO_1.0.0-1, BE_1.0-
11, BE_11-21, CO_1.2.0-1, FO_0-1.2-3.0. The
node-to-node distances are: 400, 400, 400,

- ‘b‘ . ‘ :
e ‘“

-‘---

| \
\

482.84. Adding them up leads to a distance
of 1682.84, so the algorithm calculates the
distance correctly once more. Out of all the
foundations, FO_1-2.0-1.0 has the shortest
path, which means the next node should
move towards the foundation. In this case, the
next node is the foundation FO_1-2.0-1.0. This
means the algorithm is working correctly.

from FO_2-:
from FO

from FO_2
from FO
from :
= FO_0-1.2-2

from
from
= FO_0-1.2-:

from FO
from

Figure 2.29: Print statement of configuration’s nodes,
distances to foundations with number of nodes to that
foundation, and the next node(s) in the load path

\

-1
Sa

LA . &

Figure 2.30: A conf/'gurat/dn and load paths made in the configurator

Current project’s configurator

Process explanation

Next, the nodes list is sorted based on the
number of nodes between the concerned
node and the foundation. Nodes which are
close to the foundation are at the start of the
list, and nodes far from the foundation are
at the end of the list. Loads are passed from
the concerned node to the next node in that
node’s load path. This happens in the reversed
order from the sorted nodes list, nodes furthest
from the foundation first, and closest to the
foundation last. The order matters because
loads are passed cumulatively, if a node passes
its loads before knowing what its imposed
load is, it passes an incorrect value to the next
node. In the case that the node has multiple
load paths leading to foundations, the passed
load is divided by the number of load paths.
The result is an imposed load on each of the
nodes, based on the dead loads and live loads
of all the nodes that came before it.

Validation

Figure 2.31 shows the imposed loads of each
node resulting from the structural analysis
overlayed on top of the configuration. Each
floor has a dead load of 13.75 and a live load
of 48, these add up to 61.75 to be passed to
the next node as imposed load. A beam only
has a dead load, of 2.75. A column also only
has a dead load, of 2.75. The red load path has
1 floor, 2 beams, and 2 columns transferring
loads to foundation FO_1-2.0-1.0. This means
the total imposed load on FO_1-2.0-1.0 should

be: 61.75 + (2 * 2.75) + (2 * 2.75) = 72.75. Thus,
the total imposed loads that get transferred
to the foundation is correct. However, there is
an issue with the load transfer from the floor
to the beams. All of the loads resulting from
the floor gets transferred to just one beam.
The reason is that the Dijkstra shortest path
algorithm gives each node one next node to
transfer their loads to. In the case that there
are two load paths that both have the shortest
path leading to the foundation, also just one
load path, with just one next node is chosen.
This is what is happening in the load transfer
from the red floor to the beams. Floor FL_1-
2.1-2.1is connected to two load paths. Because
the load paths are created in two different
instances of the Dijkstra algorithm, the same
issue does not occur. The floor shares its loads
between the node paths as it should.

Figure 2.31: A configuration’s load paths and nodes’ imposed loads

30

Current project’s configurator

2.3.5 Structural analysis: column resizing
The next step is sending a message that
starts the resizing algorithm for columns. The
blueprint for columns receives this message.
Then it gets the columns width and depth and
multiples them to find the column’s profile
surface area. The column’s dead-, live-, and
imposed load are added together. This total
load is divided by the column’s surface area
to find the stress occurring in the column as
a result of compression. From the database
of building components, material properties
are retrieved, in this case the compressive
strength. In the configurator the characteristic
strength properties of combined glulam
(GL28c) are used for the calculations. In this
case, the compressive strength perpendicular
to the grain of GL28c, which is 2,7 N/mm?2.
The column’s compression stress is divided
by the material’s compressive strength. If the
resulting factor is smaller than 1, the column
can handle more compression stress before
yielding. If the factor is greater than 1, the
column vyields and needs to be stronger to
handle the compression stress. This factor
is clamped so that values lower than 0,5 will
be rounded up to 0,5, and values higher than
1,5 will be rounded down to 1,5. The clamping
is done to prevent extreme scaling that is
unrealistic. Next, the clamped factor is used
to scale the column’s width and depth. This is
a rough estimation, because if the column is
scaled, it’s own weight or dead load changes.
That means that columns that are too strong
should be scaled down even more, and
columns that are too weak should be scaled
up even more.

—

Heceive resize mesh
message

—_—

h 4

Get column's width
and depth

R

h 4

E—
Calculate column's
surface area

—_—

¥
Add column's dead.)
live, and imposed

load J

Database of
building
components

v
Divide column's Tofal)
load by surface area
to find max stress

¥

Divide max stress by
compressive strength

I

Get material’s
compressive strength

¥
Clamp value to be in
between 0,5 and 1,5

h 4
Cale ne column's

width and depth with
the resuliing value

Figure 2.32: A configuration’s load paths and nodes’
imposed loads

31

Current project’s configurator

Validation

Each column starts with dimensions of
500x500 mm, that equals to 250000 mm?
of surface area. As shown in figure 2.33, the
red column CO_2.0.0-1 has an imposed load
of 64.5 kN, and dead load of 2.75 kN. The
total load is 67.25 kN. This means the stress
is equal to (67.25 * 10%) / 250000 = 0.27 N/
mm?. The compressive strength perpendicular
to the grain of GL28c is 2,7 N/mm?2 That
means the scaling factor is 0.27 / 2.7 = 0.,
figure 2.34 shows the columns rescaled using
this method. Thus, the width and depth of
the column is reduced to the dimensions of

[]
.
PY
o
@
[

50x50 mm, with a surface area of 2500 mm?Z.
That means the stress is now 26.9 N/mm?2. The
factor should now be 1, but instead is 26.9 /
2.75 =9.78. This means the column is too weak
now, so it scaled down too much. The reason
is that the scaling factor is applied to both the
width and depth of the column, but instead
should be applied to the surface area of the
column. Which means the scaling factor for
the width and depth should be sqrt(0.1) = 0.32
instead of O.1. Resulting in dimensions 158x158
mm, surface area of 24964 mm?, stress of 2.7
N/mm?2, thus a factor of 1. This is the correct
method.

ee 0 eco000e0 o @0 eeo 00668 0.0

Figure 2.34: A configuration with rescaled columns and beams after running the structural analysis

Current project’s configurator

2.3.6 Structural analysis: bending

- Create a load path
For each foundatiol X
network list

2ve load pams o

opposite direction to
the nodes

Run a breadth first
search algorithm

For each visited node

If node
has multiple
oad paths

Set current node as
split node

Set distance as span
length

If split
node found

isit nodes in current
node's load path to
foundation

For each visited node

Set spanning to be

For each foundation

et curren
No foundation's load path
network

Get current node's

connected nodes

For each connected node

If load path
network contains
gonnected node

Nao

el current node an

connected node as
split nodes

k4
et current node an
connected node’s
shared vertex

v
alculate 20 distance
(X)) from vertex to
current foundation

frue

If wisited
node is beam

Set visited node as

last beam

h 4
ast beam's live,
dead, and imposed
load
h 4
oad 1o spii
nodes' total bending
load
¥

span lengih fo
split nodes' total span
length

Add split nodes to

split nodes list

If all
foundations Mo—
traversed

Yes,
For each split node

Run a breadth first
search algorithm

For each visited beam node

ef the visifed node’s
total bending load to

that of the split node

h 4
ef the visifed nodes

fotal span length to

\that of the split node)

For each node

If node is
a beam

N04>{ Do nothing

Send resize mesh
message

Figure 2.35: Flowchart of configurator’s structural analysis, process of testing beams on bending

33

Current project’s configurator

After resizing the columns, the structural
analysis continues with the calculations on
bending. The first step is creating a load path
network list for each foundation. The load path
network contains all the load path edges that
leadtoonespecificfoundation. Next,load paths
that lead away from the foundation are saved
to the nodes. This step allows the algorithm to
be able to perform a graph traversal starting at
the foundation, and ending at the outer nodes.
That is exactly what the next step does, it uses
a breadth first search algorithm for the graph
traversal. This algorithm starts by visiting
the foundation node, then it traverses to the
neighbours leading away from the foundation
and visits those nodes, next it traverses and
visits their neighbours. The traversal continues
until it reaches a node which has no load paths
leading away from the foundation, this node
marks the boundary of the network. It is an
outer node which transfers its loads to the
concerned foundation.

When visiting nodes during the graph
traversal, operations are performed on the
visited node to find out if the foundation’s
network is connected to another foundation’s
network. The nodes which connect these
networks are named split nodes, because it is
the point where the load paths split and go
different directions, each to their foundation.
Thus, the goal is to find out if the visited
node is a split node. If the visited node has
multiple load paths (leading to a foundation),
it is set as a split node. The 2D distance in the
XY plane is calculated from the centre of the
split node to the foundation of the network
currently being traversed. This distance is set
as the span length. If the visited node does
not have multiple load paths, each of the
nodes connected to the visited node will be
checked to see if they are part of the current
foundation’s network. If a connected node is
not part of the current foundation’s network, a
split is happening in between the visited node,
and this connected node. Both of the nodes
are then set as split nodes, and the 2D distance
in the XY plane is calculated from the nodes’
shared vertex to the current foundation. This
distance is then set as the span length.

If the visited node is found to be a split
node, their load path will be followed to the
foundation. Each node in this load path is set to
be spanning. The beam node which is closest
to the foundation is set as the last beam. The

last beam’s live, dead, and imposed load is
added to the split nodes’ total bending load.
The total bending load is the total load on the
beams in this load path. The last beam’s loads
cover this total load because loads of beams
before it are passed to the last beam. After
adding to the split nodes’ total bending load,
the span length is added to the split nodes’
total span length.

However, this total bending load and
span length is only half of the load that is part
of this span, because another foundation’s
network is involved in the span. So, when the
algorithmisrunagain for the other foundation’s
network, the split nodes’ total bending load
and span length will be completed by adding
to them with the load and span length values
relevant for this foundation’s network. The split
nodes now contain the correct total bending
load and span length, the other nodes do not.
So, another breadth first search algorithm is
performed for each split node. The algorithm
starts at a split node and moves down through
the load path to the foundation. Each node
visited during this graph traversal gets their
total bending load and span length set to that
of the split node the load path starts at.

34

Current project’s configurator

Figure 2.36: Breadlth first search graph traversal
Traversal of red load path starts by visiting the foundation.

o~

Figure 2.37: Bre_adth f/(st searc;h graph t_raversa/ _ o
The foundation’s first neighbouring node is visited.

Figure 2.38: Breadth first search graph traversal
The foundation’s second neighbouring node is visited.

Current project’s configurator

Figure 2.39: Breadlth first search graph traversal
The first columns neighbour is visited. This node is identified as a split node, the split happens in

between BE_1.0-1.1 and BE_1.1-2.1. For the nodes part of this split, the span length is set as the XY
distance from the split to the foundation. The bending load is set as the total load acting on the
last beam BE_1.0-1.1.

Figure 2.40: Breadth first searqh graph trfa\/er;a_/ _ _) - _
The second columns neighbour is visited. This node is also identified as a split node. For the

nodes part of this split, the span length and bending load is set.

36

Current project’s configurator

Figure 2.41: Breadth first search graph traversal
The first beams neighbour is visited. All nodes that are part of the load path network of the red
foundation have been visited.

Figure 2.42: Breadth first search graph traversal

The breadth first search traversal is applied to the green foundation’s network. The split node at
BE_2.1-2.1is found, span length and bending load is added to the nodes part of this split. Another
split node is found at FL_1-2.1-2.1, this node has two load paths.

d = 283 43682

Figure 2.43: Breadth first search graph traversal
The breadth first search traversal is applied to the blue foundation’s network. The split node at
BE_1.1-2.1is found, span length and bending load is added to the nodes part of this split.

37

Current project’s configurator

2.3.7 Structural analysis: beam resizing

If the visited node is a beam, a message is
sent to start the algorithm that resizes beams.
When the blueprint for beams receives this
message, the first step is getting the beam’s
width and height. This is used to calculate the
beam’s section moment of inertia. Next, the
total bending load is retrieved for the span of
which the beam is a part of. This span’s total
length is also retrieved. Both the bending load
and span length are used to calculate the
span’s maximum moment. Then, the distance
from the beam’s neutral axis to the height of
interest is determined. In this case, we are
interested in finding the maximum stress,
which occurs at the top and bottom of the
beam’s profile, at y=h/2. The span’s maximum
moment, height of interest, and the beam’s
section moment of inertia are used to calculate
maximum stress occurring in the beam as a
result of bending (My/l). From the database of
building components, material properties are
retrieved, in this case the bending strength.
In the configurator the characteristic strength
properties of combined glulam (GL28c) are
used for the calculations. In this case, the
bending strength parallel to the grain of
GL28c, which is 28 N/mm?2 The maximum
occurring bending stress is divided by the
material’s bending strength. Resulting factors
greater than 1 are too weak, factors smaller
than 1 can handle higher stresses. This factor
is clamped so that values lower than 0,5 will
be rounded up to 0,5, and values higher than
1,5 will be rounded down to 1,5. The clamping
is done to prevent extreme scaling that is
unrealistic. Next, the clamped factor is used
to scale the beam’s width and height. Same
as with the resizing of the columns, the effect
of scaling dimensions on the dead load of the
component is not take into consideration.

Receive resize mesh
message

h A

Get beam's width and
height

¥
Calculate beam's

section moment of
inertia (bh"3/12)

h 4
Gel beam's tota
bending load and
total span length

h
Calculaie 1he beam's
span moment

(WL *2/8)

h 4

Calculate the height
of interest (W2

Database of
building
components

¥
Calculate the beam’s

max stress (My/l)

Get material's
bending strength

Divide max stress by
bending strength

¥

Clamp value to be in
between 0.5and 1,5

e

A
cale the beam’s

width and height with
the resulting value

Figure 2.44: Flowchart of configurator’s structural
analysis, process of resizing beams

38

Current project’s configurator

Validation

Each beam starts with profile dimensions of
500x500 mm, that equals to a section moment
of inertia of: (500 * 5003) /12 = 5.21 * 10° mm?*.
The red beam BE_1.0-11 has a total bending
load of: 2.75 + 33.63 = 36.38 kN, see figure 2.45.
Its total span lengthis: 282.84 + 632.46 = 915.3
cm. The total span length and total bending
load give us a bending moment of: (36380
*915) / 8 = 41609.6 Nm, or 4.16 * 107 Nmm.
The height of interest is: 500 / 2 = 250 mm.
The beam’s max bending stress is: (4.16 * 107 *
250) / (5.21 * 10%) = 2.00 N/mm?2. The bending
strength parallel to the grain of GL28c is 28
N/mm?2. That means the scaling factor is: 2 /
28 = 0.07. So, the algorithm downscales the
width and height of the beams to 35x35mm,

S

this profile has a section moment of inertia of:
1.25 *10° mm4. The resulting bending stress is:
5821.57 N/mm?. So, the factor is 5821.57 / 28 =
207.91. This means that the 35x35 mm profile is
way too slender. The problem is similar to that
of the column resizing. The factor does not
apply to the width and height of the beam’s
profile, it applies to the maximum allowable
stress. The maximum allowable stress is 28 N/
mm?, this means that: 28 = (416 * 107 * (a /
2) / (a* / 12). With some algebra it is found
that: a = 207.31 mm. Thus, the scaling factor
should be 207.31 / 500 = 0.41. When we test
these dimensions of 207x207 mm, its section
moment of inertia is 1.53 * 108 mm*. The beam’s
maximum bending stress is 28 N/mm*. So, this
method is correct.

Figure 2.46: A configuration with rescaled columns and beams after running the structural analysis

39

3. Future development

The research objective is to create an
integrated configurator with an extended
design space. The developed configurator
from the previous chapter has some of the
core features implemented but requires
refining and additional development before
the research objective is fully achieved. This
chapter explores potential advancements in
order to realise this, detailing where future
developments could lead.

3.1 Implementing the building
product database

3.1.1 Building product database’s
revelance

The developed configurator has the
infrastructure that allows the implementation
of a building product database. It uses building
component types to build with. Taking the
configurator to the next level by building
with digital assets of real building products
allows the configurator to integrate across
construction phases. Utilisation of building
products can ensure product manufacturability
when the digital assets include manufacturing
constraints. Decoupling the database of
building products from the BIM software
ensures that manufacturing stays possible
because only the manufacturer of that product
can edit the BIM family. Ensured product
manufacturability limits design issues which
require reorganisation efforts. Additionally, the
reuse of building product models saves time
compared to building projects from scratch
as is currently common practice. Both aspects
ultimately save time and consequently money.

3.1.2 Difference from existing BIM
databases

The building product database provides
a common environment where a diverse
range of building products from different
manufacturers are presented. The building
products come in the form of BIM families.
Many manufacturers already have BIM families
available. The added value of the database
to the user of the BIM software is that they
have one place where many building products
can be viewed and compared. It will become
easier to implement appropriate building
products and their BIM families in projects.

For the manufacturers it means their products
get more exposure and a good chance to be
included in the design of new buildings, which
may boost their sales. These BIM families
range from structural elements, facades, and
roofs, to mechanical, electrical and plumbing
systems. Everything that can exist in a building
can be found in the database. BIM databases
are currently underutilized, but there are
some existing databases. Some of which even
have a plugin for BIM software which allows
integration within the software. What sets
this database apart from existing databases
is the interactability between the database
and the configurator. Building products are
recommended on the specific use case within
the project’s design. The way this happens
will be detailed in the configuration process
section.

3.1.3 Creating entries in the database
The buildings products in the database are
organised into building component types

such as those in the developed configurator:
foundations, floors, walls, columns, and
beams. Each building product has data on
connection compatibility, if two building
products are compatible with the same type
of connection then they are also compatible
with each other. Another type of data is about
the products geometric properties. For the
geometric properties an important distinction

materials that are used

is between staticand dynamic geometry. Static
geometry does not have the ability to change,
its dimensions are set and unmodifiable. In
contrast, dynamic components have the ability
to adjust their shape and/or size according to
grid or configuration conditions. The size of the
grid slot will determine what building products
can fit in that grid slot. Dynamic components
will fit in a grid slot more often than static
components, but static components may be
cheaper and more economical to produce.
BIM families already have the potential to be
dynamic and include module size variations.
BIM families provide module size variations
through parameters on the height, width, and
length of the component.

Another point of data is on the
in the building
product. Additionally, each building product
has physical properties, of which the mass is
an important one. Another type of physical
properties refer to the structural performanie

Future development

Milieueffectcategorie Equivalent Methode
eenheid
Klimaatsverandering — GWP 100 j. CO, eq CML2-baseline
Aantasting ozonlaag — ODP CFK-11eq CML2-baseline @
T
Humane toxiciteit — http 14-DCBeq CML2-baseline ﬁ
Zoetwater aquatische ecotoxiciteit — 1.4-DCBeq CML2-baseline 5
Emissies FAETP 3
Terrestrische ecotoxiciteit — TETP 1.4-DCBeq CML2-baseline g
Fotochemische oxydantvorming — POCP C,H, eq CML2-baseline =
Verzuring — AP S0, eq CML2-baseline T
Vermesting — EP PO, eq CML2-baseline 2
Uitoutti Uitputting abiotische grondstoffen — ADP Sb eq CML2-baseline z
g:cm::le.ltlgf'fen Uitputting fossiele energiedragers Sh eq CML2-baseline
Uitputting biotische grondstoffen — BDP mbp TWIN
Landgebruik Landgebruik PDF*m2yr Eco-indicator '99
Hinder t.g.v. stank oTVm3 CML2-baseline,
inverse OTV i
Hinder t.g.v. geluid door wegtransport DALY Maller-Wenk %
Hinder Hinder t.g.v. geluid door mbp TWIN
productieprocessen
Hinder t.g.v. licht mbp TWIN
Hinder t.g.v. kans op calamiteiten mbp TWIN
Figure 3.1: NIBE environmental impact categories
of the product. These are characteristic values Milieueffect Milieukosten Bron
of maximum stresses for compression, tension, global warming (GWP100) €0,05/ kg CO2 eq. ce
H H ozone layer depletion (ODP) €30/ kg CFC-11 eq. CE
bending, torsion, and shear thfat are aIIow_ed humant‘[’)xidwp . €O‘Og/5kgl,diDqul —
to occur in the product. Physical properties aquatic tox. fresh water €0,03/kg 1A DB eq, O
provide the data necessary for analysis. terrestrial toxicit €0,06/ kg 1,4-DB eq. TNO
Other data refers to the environmental BhetachEmEabhGanon 4/ kgtetiieg, &
. - . acidification €4 /kgS02eq. CE
impact of the building product. NIBE is an eutrophication €9/kg POA3 eq. E
organization which concerns itself with exhaus biotic €0,042202 / mbp NIBE
assessing the environmental impact of building exhaus abiotic €0,16/ kg Sheq. NO
. . exhaus Energy €0,16 / kg Sb eq. TNO
products, their method and data types will be e B ahils €0.20482 / PDF*m2yr NIBE
taken as inspiration. Life cycle assessment is malodorous air €0,0000000233 / OTV m3 NIBE
the method NIBE chooses for environmental ﬁ&;“e“r";‘fuid E;ﬁ;ﬁgg{g‘ﬁbp ::EE
assessment. A LCA can be defined as the ER A Tl €0,024005 / mbp NIBE
“collection and assessment of all inputs and hinder calamiteit €0,024005 / mbp NIBE

outputs and possible environmental effects
of a product system throughout its life cycle.”
NIBE assesses environmental impact in four
different categories: emissions, resource
depletion, land use, and nuisance, see figure
3.1.

NIBE takes the data from all four
environmental impact categories and
calculates a shadow cost for them, see figure
3.2. These are the (prevention) costs required
to reach the environmental goal for a given
environmental effect set by government and
international organizations. Adding all the
shadow costs gives the building product one

Figure 3.2: NIBE shadow costs

value thatreflects the cost of the environmental
impact.

The results from the LCA, but especially
the total shadow costs allow the user to
compare available building products on their
environmental impact. The environmental
impact assessment should be carried out by
a single organisation such as NIBE. It should
not be the responsibility of the manufacturer
because there would be a conflict of
interest, with manufacturers benefitting
from advantageous assessments on their

products. It also shouldn’t be carried out by
41

Future development

Browser Organization ~ — m} X

Category

Smart Browser Manage

Additional

w0

=)

1B QA 4y

|

ﬁ
B e,
[wersion C;)
&
O Family Name 5 M_Conduit Elb... M_Conduit Jun... M_Conduit Jun... M_Conduit Jun... Brick - UK Stan... Doors_Sliding_... MD MTech Dou...
[
=
O Family Type E : :
+F
[Falder —|—
[] Unit System ND MTech Pati.. Slim 2 Panel w... Window Doar-.. M_Door-Exteri... M_Doar-Exteri... M_Door-Exteri... M_Door-Exteri...
[OmniClass Title i ﬁ ﬁ —T= :| |:
o il L1 B] R [
[] =2#Slope : Instance ——
M_Door-Exteri... M_Door-Garag... M_Door-Garag... M_Door-Interi... M_Door-Interi... M_Door-Interi... M_Door-Interi...
[] #Slope : Instance
e
Family Type: | 200 % 2000mm v 3 3
[] 1:Instance ¥ P b@@hﬂ,
@ Parameters
L 1/2:Instence MName Group Parameter Value Formula Parameter Type Units
1 1/3 Transom : Instance Shared Swing Angle Construction 90.00° Angle Decimal degrees
Analytic Construction Analytical Properties Wooden Other
O 2o Symbol Ansicht CTLS : Instance Shai
Assembly Code Identity Data C1020300 Text
2D Symbol Grundriss CTLS ¢ Inst St
U ymbelsrunanss neiance Bottom Rail Dimensions 2300 Length Millimeters
[] 2D Symbol Schnitt CTLS : Instance Shar Construction Type Construction Text
[3'andSmaller : Instance Cost Identity Data Currency
Define Thermal Properti: Analytical Properties 1 Other
[3/4:Instance
Description Identity Data Text
[l 0 S Tna Sharad Door Handle Material ~ Materials and Finishes Aluminum Material
Element Parameters @ 3 Fire Rating Identity Data Text
Frame Material Materials and Finishes Cherry Material
Figure 3.3: AGACAD configurator’s BIM family manager
multiple organisations because the method 3.1.4 Configuration process
of assessment needs to be consistent for The configuration process starts with

products to be able to be compared against
each other.

The last data is the price of the building
product given by the manufacturer. Entering
building products into the database first
requires the selecting of a building component
type. Next, the modelling of (parametric)
geometry. The modelling can happen in the
configurator or any other BIM software that
support the creation of BIM families. The
models need to be checked to confirm that
they are consistent with the other building
products in the database, with special regard
to the alignment and implementation of size
variations. Next stepsare selecting connections
that are compatible with the building product,
giving materials to the geometries in the
model, and entering values for the physical
and environmental impact properties.

modelling the grid, see figure 3.4. The next
step is the placement of generic building
components in grid slots, see figure 3.5. These
components have a building component type,
but not a building product assigned to them.
This means a generic component knows for
example that it is a column, but not what type
of column it is. Generic components hold
some generic property values that resemble
the average of the building products of that
component type. Properties such as weight
are required to perform a structural analysis.
The structural analysis gives, for each generic
component, information on the maximum
stresses occurring as a result of structural
forces (compression, tension, bending,
torsion, shear), see figure 3.6. These maximum
occurring stresses can be tested against the
maximum stresses the building products can
withstand, their strength. Building products
withastrengthtoolow will get filtered out of the

42

Future development

options for replacing the generic component.
The user can choose a replacement from the
remaining building products, see figure 3.7.
This process is repeated for each of the placed
generic components. After replacing the
generic components, the structural analysis
is run to check if the chosen components are
sufficient for the new configuration. This is
necessary because by replacing components,
the weights of the new components change
the maximum stresses occurring in each
component. Components that are too weak
are highlighted in the configurator; these
components need to be replaced once more.
The risk is that this process of replacing and
analysing has to be repeated many times
before arriving at a sufficient configuration.
To combat this, components may be chosen
that are a bit stronger than is expected to be
necessary. This will reduce the chance that the
components need to be replaced.

3.1.5 Dynamic components responding
to analysis

Implementation of dynamic components
that can respond to analysis does not require
iteration in the product selection process.
Rather,the dynamic componentsautomatically
change their geometry according to the
requirements resulting from the structural
analysis. The resizing of columns and beams
in the developed configurator is an example of
dynamic components that respond to analysis.
For planar elements such as floors, the width
and depth respond to the grid slot it occupies,
that leaves the thickness to respond to the
structural analysis. For linear elements such as
beams, the length is decided by the grid slot it
occupies, and the profile of the linear element
responds to the structural analysis.

3.1.6 Stock-constrained optimization

Another approach to speed up the building
product selection process is by automating
this process using an optimisation algorithm.
The optimisation will ensure that the building
products are chosen with strengths that
most closely match the requirements of
the structural conditions to reduce material
usage. This kind of problem is called a stock-
constrained optimisation. An example of
such an optimisation is that of Warmuth et
al. in 2020, they did research on the stock-

Figure 3.4: Grid modelling

Figure 3.6: Structural analysis

Figure 3.7. Replacing generic component with building
product from database
43

Future development

constrained design of truss systems. In
this case the members that form the truss
are part of the stock, and the result of the
optimisation is a building product, the truss.
The configurator and building product
database offer the opportunity to perform a
stock-constrained optimization with a stock
of building products, the result being the
structural design of a building. Application
of such an optimisation has the potential to
reduce the material usage in the structure of
a building. Moreover, it offers a gateway into
the use of reused building components in the
design of new buildings.

3.2 Benefits of the proposed
configurator

In this subchapter, benefits of the proposed
configurator will be examined. Additionally,
the configurator will be compared to BIM as
this is the prevalent software type used in
the construction industry, and in order for
the configurator to be commercially viable, it
needs to be able to compete with BIM.

3.2.1 Main benefits of the proposed
configurator

Because manufacturing and assembly
constraints are integrated in the early design
phase, early design choices are evaluated on
manufacturability. The configurator’s building
product database holds manufacturing
constraints and ensures that manufacturing
is possible, and the structural analysis holds
assembly constraints and ensures that the
assembly of those building products is
possible. In response to the structural analysis,
the configurator guides the user in building
product selection or updates dynamic
components automatically. The guidance from
embedded expert knowledge makes it easier
to make the correct decisions, and automation
minimizes the need for manual involvement
altogether. Consequently, design issues are
avoided that require reorganisation efforts
and put pressure on the supply chain.

For example, a designer orders 10
floor systems from a manufacturer, but later
figures out that these floor systems are too
weak for the design. So, the designer contacts
the manufacturer to change the order to 10

building product
database

parametric grid

¥

h 4

v

configuration process

A

[structural analysis]

¥

constraints

_¢

‘ manufacturing ‘

assembly constraints

1

{ambedded

knowledg e]

h 4

[eualuale early design choices on man u‘ac:ural:uilitg,r]

h 4

avoid design issues

enhances
coordination

efficiency

¢_1

_¢

estimated cost
deviation reduced

increases the
reliability of schedule

_¢

¢_1

the fime for design
and production is
reduced

and production is

¥
[the cost for design]

reduced

Figure 3.8: Characteristics of the developed configurator

and resulting beneftis

stronger floor systems. The manufacturer has
already started production on the initial order.
Changing the order now delays the initially
discussed delivery date, moreover these
stronger floor systems cost more, and the
manufacturer wants compensation for the late

44

Future development

notice of change of order. The delay of arrival
of the floor systems may also have an impact
further along the supply chain, such as in the
building process.

Thus, these design issues result in
increased time and cost for design and
production. Avoiding these design issues
enhances the coordination efficiency between

designer and manufacturer, and increases the
reliability of schedule. Also, because design
issues are avoided and because information
on building products are available in the early
design phase, the estimated cost deviation is
reduced. Consequently, the time and cost for
design and production is reduced.

3.2.2 Additional benefits of the
proposed configurator

The building product database preserves and
reuses knowledge on the building products

for next projects, whereas in BIM projects are

,4 3.Manufacturing 4.Distribution 1

SUPPLY CHAIN

MANAGEMENT

5.Point of

2.Suppliers
. Sale

6.Customer

1.Raw materials

Figure 3.9: The building product supply chain

often built from scratch. This saves time in
the design process. Additionally, the building
product database has the potential to develop
construction documents efficiently, because

the building products hold most information
necessary to create these documents. This
minimizes the need for manual involvement
when creating these documents, consequently
it also saves time in the design process.
Another benefit is that the software

is easy and quick to use. This may save time
while handling the software and leads to the

potential for engaging with clients, end-users,
and other non-engineering professionals in
the decision-making processes. The software
is easy because of its limitations. The grid
discretises the solution space which makes
placement of components quick and precise,
instead of being able to place components
anywhere, components can only be placed
in the slots of the grid. This avoids alignment
issues, where components are sometimes just
placed millimetres fromtheright spot. However,
in conventional BIM, these misalignments
may cause issues with functionalities such
as analysis because the components are not
considered as connected. Additionally, the
building product database gives the user an
overview of ready to use digital assets. In other
words, there are a limited number of building
components that go into a limited number of
slots for those components.

Additionally, the configurator supports
an overarching modularity. Meaning that
instead of supporting one generation of
product from one company, it is able to support
almost every building product. Although the
building products may not be compatible
with each other, the building products are
compatible with the software. The modules
are the building products from the database
and because the grid is parametric, it can be
adjusted to the size or shape of almost any
building product. This enables great potential
for reuse of building components.

Lastly, because embedded expert
knowledge and automation make it easier to
make the correct decisions, they avoid design
issues but also lead to better designs. In this
application of structural design, this means
that the selection of building products more
closely aligns with the requirements set out by
the structural analysis. As a result, material use
is reduced.

3.2.3 Comparison to BIM

Theoretically, almost everything that can be
done in the configurator can also be done in
BIM software like Revit. The main distinction
between BIM and the configurator is that the
configuration process is different, the way in
which the building products are placed and
configured. The configurator’s configuration
process relies on placement on a parametric
grid, in BIM the user has more freedom in
placement. Consequently, the configuratdcfsr

Future development

understands how building products are
connected through the connectivity graph,
whereas in BIM more manual involvement is
required to make the software understand
building product connectivity. This information
on connectivity is utilised in the structural

analysis. For this reason, the process leading
up to and including the structural analysis
is more streamlined for the configurator.
Additionally, it is uncommon for BIM’s design
software to have an integrated structural
analysis. This means that the building needs
to be remodelled in the software for structural
analysis, or exported to that software.
These hurdles make structural analysis in
the early design phase a tedious process in
BIM. Therefore, it is unlikely that the user is
continuously testing the design by means of
structural analysis, so assembly constraints
are not applied to the design choices.

A building product database can
also be implemented in BIM through plugins
for databases of BIM families of building
products. However, it is not common practice
to apply building product families in BIM,
rather projects are built from scratch. For
this reason, manufacturing constraints are
also not applied to design choices. The exact
reason for the lack of BIM family adoption in
BIM is unclear, but it is conceivable that it has
something to do with BIM’s complexity. The
configurator aims to simplify the adoption of
BIM families in projects by better integrating
it into the software, and thereby reducing the
required manual involvement. By reducing the
software’s complexity, non-engineers can also
use the software and engage in the decision-
making process.

Thus, because manufacturing and
possibly also assembly constraints are not
applied to design decisions in BIM, early design
choices are not evaluated on manufacturability.
This means that design issues are not avoided
that require reorganisation efforts and put
pressure on the supply chain. Consequently,
many of the configurator’s benefits do not
apply to BIM software such as Revit.

3.2.4 The configurator’s aspirations

The configurator aims to be easy-to-use
software with the targeted audience being
designers and non-engineers such as
the designer’s clients and end-users. The
configurator focuses on structural design in

W AP EBD @t HE 20U =02

.............. S T T

Figure 3.10. Autodesk’s Robot Structural Analysis tool for
Revit

Figure 3.11: Structural analysis of the configurator

the early design phase, but its scope extends
to other aspects of the design of buildings,
such as climate design. Each aspect influences
another, so the integration of multiple aspects
into the configurator avoids designers having
to switch back and forth between software.
Instead, it allows the configurator to act as a
common environment.

The configurator’s strategy for
becoming easy-to-use is to reduce the
requirement for manual involvement of
the wuser. The configurator achieves this
by embedding expert knowledge into the
software, through the integration of a building
product database and structural analysis. The
main goal of the configurator is to make the
application of building products’ BIM families
and structural analysis common practice so
that early design choices are evaluated on
manufacturability. This avoids design issues
that require reorganisation efforts and put
pressure on the supply chain. Consequently,
the configurator reduces the time and cost for
the design and production phases, allowing
users of the configurator to develop buildings
faster and cheaper.

46

4. Discussion

The previous chapter ended with the benefits
of the proposed configurator over BIM. In
this discussion the research will be placed in
context and the limitations will be discussed.

The designs that can be created in the
configurator are limited by options of building
products in the database. For this reason,
the configurator has a dependency on
manufacturers to fill the database with their
products. To ensure that building products are
compatible with the configurator and can be
compared with each other, they need to be
checked so that they fit the same format. This
includes the way their geometry is modelled
and how their structural and climate impact
properties are determined.

The possible designs are also limited

by the configurator’s grid. Building products
can only exist on the faces and edges of the
grid. Complex grids can allow for complex
designs, but the design of a complex grid may
also complicate the design process. This is in
opposition to the configurator’s goal of being
easy-to-use. Despite complex grids being
possible, a grid similar to the one developed
in the configurator does not support curved
building products and buildings.
The way in which the configurator implements
the building product database and grid makes
a clear distinction between vertical and
horizontal elements, columns and beams. The
grid even distinguishes between the rotation of
horizontal elements. In reality, this distinction
is not always so clear. Because of this
distinction, the configurator will have difficulty
with implementing diagonal elements that are
somewhat in between a column and a beam.

Other limitations have to do with how
the connection conditions are implemented for
placed building components. These conditions
determine how components can transfer
loads to each other. Connections for floor
components currently don’t consider the span
direction of the floor and can be supported by
just one beam, which is usually not possible
in reality. Moreover, the connection conditions
don’t take the compatibility with structural
connections into consideration. It is assumed
that there always exists a structural connection
that can be used to connect two building
components. However, this is not evident.

Moreover, the structural analysis is very
rough andlimited to simple configurations. One

of the reasons is that structural connections
are not considered in the structural analysis.
Instead, it is assumed that all connections
are pin joints and that there are no horizontal
forces. Additionally, the structural analysis can
only check axial compression of columns and
bending in beams, excluding bending resulting
from a cantilever. After checking the stresses
in columns and beams, they are resized.
The resizing currently doesn’t influence
the weight of the resized component. The
analysis should consider this, because it will
influence the required dimensions for that
component and other components in the
configuration. Furthermore, the structural
analysis doesn’t consider how the loading and
bending of one component affects the rest
of the configuration. A method of structural
analysis closer to a Finite Element Analysis
may be more appropriate to consider the
interdependency of building components in a
configuration.

Lastly, it is assumed that the lack
of application of building products’ BIM
families in BIM is due to BIM’s complexity.
As well as that for the same reason there is
a lack of application of structural analyses.
The configurator needs to be put to the
test to see if reducing the required manual
involvement leads to increased application of
building products’ BIM families and structural
analysis in projects. Only after testing, it can
be concluded whether the configurator’s
projected benefits do apply.

47

5. Conclusion

5.1 Conclusions

5.1.1 Research question:
How can the design space of integrated
construction configurators be enlarged?

An integrated construction configurator
integrates across all phases of construction,
planning, design, and production. It evaluates
design choices on manufacturability. An
enlargement of the design space can be
achieved by implementing a smaller module
size. Many existing configurators work with
modules which are room sized. This project
transitions from room sized modules to
building component sized modules. Changing
the modules of the configurator to building
components can also serve the goal of
integration, since it has the opportunity to
evaluate design choices on manufacturability.
When the digital building components are
based on physical building products from
manufacturers that include manufacturing
constraints, the manufacturer can ensure the
manufacturability of the component.

The developed configurator took
an approach that is based on building
components and inspired by games with
building systems. These games have in
common: a 3D grid, a database of building
components, and a configuration rule engine
which allows the building components to be
configured on the grid. The configuration
process is as follows: it starts with designing
the grid. Then, components from the building
component database are placed on the grid to
make a configuration. Next, the configuration
is evaluated by means of analysis, in this case
a structural analysis. The results of the analysis
guide the user in improving the configuration.

The configurator is developed in Unreal
Engine, a software development environment.
In Unreal Engine different parts of the software
are segmented into Blueprints, these are the
scripts of Unreal Engine’s visual programming
language.

The grid is one of those Blueprints. It is
made by a 3D matrix of vertices. The vertices
are used to make slots, a place in the grid
where a component can be placed. There are
linear slots, or edges, which are made with 2
vertices. There are also planar slots, or faces,
which are made with 4 vertices.

There are 5 types of components in
the building component database: beams
and columns which fit in the edge slots, and
foundations, floors, and walls, which fit in the
face slots. In the configurator, when one of
these components is selected, the software
understands which slots this component can
be placed in. All the user needs to do is point
at one of the slots and the component will
snap to that location.

When a configuration is made, the
software recognises which components are
neighbours. Connection conditions determine
whether neighbouring components are seen
as physically and structurally connected.
The components and connections between
components form a network graph.

To determine the load path for the
structural analysis, the Dijkstra shortest path
algorithm is implemented to find the shortest
path from each of the components to the
closest foundation. The live loads and dead
loads of each component are passed along
the load path to determine the loads acting on
each component. The loads are used to find
stresses in columns and beams resulting from
axial compression and bending. The stress
in the component is used to determine the
required dimensions for that component.

The developed configurator has the
infrastructure that allows the implementation
of a building product database, but a
database of actual building products has not
been realized. A building product database is
proposed which is based on BIM families and
can serve as a common environment where
a diverse range of building products from
different manufacturers are represented. It
aims to increase the adoption of BIM families
in projects. Adoption of building products’ BIM
families can ensure product manufacturability
by integrating manufacturing constraints
in the early design process. This building
product database sets itself apart from other
BIM databases by integrating and interacting
with the design software. Building products
are recommended based on the dimensions of
a specific location in the grid and conditions
resulting from structural analysis.

Tosumup, thedesignspaceofintegrated
construction configurators can be enlarged by
developing a configurator which implements
modularity on building component level. The

configuration process consists of 3 parts:
48

Conclusion

the grid, the components, and the analysis.
The grid defines the design space in which
components can be placed, components from
a building product database ensure product
manufacturability, and analyses ensure that
the assembly of components is possible.

5.1.2 Sub-question:

What are the benefits of this type of
integrated construction configurator
compared to prevalent BIM software?

BIM’s complexity limits the possibility for non-
engineers to engage in the decision-making
process. The design process of the configurator
is simplified by reducing the need for manual
involvement. This is achieved by integrating
the building product database and structural
analysis into the configurator. The aim is to
increase the application of BIM families and
structural analysis. The building product
database preserves and reuses knowledge
on the building products for next projects.
Whereas in BIM, instead of using ready-to-use
BIM families, projects are usually built from
scratch. Increased application of BIM families
and structural analysis can help integrate
manufacturing and assembly constraints into
the design process. By doing so, early design
choices are evaluated on manufacturability.
This can avoid design issues that require
reorganisation efforts and put pressure on the
supply chain. Consequently, the coordination
efficiency between designer and manufacturer
is enhanced, there is an increased reliability
of schedule, and estimated cost deviation
is reduced. As a result of these benefits, the
configurator reduces the time and cost for the
design and production phases, allowing users
of the configurator to develop buildings faster
and cheaper.

5.2 Recommendations

To be able to accurately assess the potential

of this type of construction configurator

which is based on building component level

modularity, more research and development is

required on:

e The development of a building product
database.

* Implementation of a detailed structural

analysis, in which the stresses in one
component affects the rest of the
configuration (like in FEM).

* Implementation of additional
such as indoor climate analysis.

analyses

Other areas of research that could benefit the

field are:

* Developing a component-based
configurator for collaboration, such as
active real-time collaboration between
multiple stakeholders.

* Developing a component-based
configurator for reuse, by configuring
with used components, or configuring for
reusability, such as design for disassembly.

e Optimising configurations, using criteria
(from analyses) to determine the optimal
configuration. Opportunities lie in
application of reinforcement learning to
guidetheuserincomponent placement,and
stock-constrained optimisation to optimise
building product selection (opportunity to
include reused components).

49

6. Reflection

6.1 Topic

Why did you choose this topic?

Years before | started this master thesis,
during a course called ‘Circular Product
Design’ | had an epiphany. The course had
lectures on how building products could be
reused by implementing material passports,
having databases for used building products,
and doing stock optimisations to efficiently
implement the used building products in a
design. One of these lectures was given by my
main mentor Stijn Brancart. In the period in
which | followed this course, | was playing a
game called Valheim. This game has a building
system which uses a database of building
products which can be configured to develop
structures. | put the two together and realised
that the game was a solution to problems in
the building sector that were put forward in
the lectures of the ‘Circular Product Design’
course. At this point an idea was conceived,
a software supplemented with a database
of building products, in which these building
products can be configured to make actual
buildable structures. | wrote the idea down
and then stopped engaging with it. Until, when
looking at the available topics for the master
thesis, | found the topic ‘Discrete Timber’
at the Structural chair with Stijn Brancart.
Immediately it made me think of this idea |
had, and | was motivated to proceed with this
topic.

What is the relation with the ‘Building
Technology’ master track and ‘Architecture,
Urbanism, and Building Sciences’ programme?
This project is about developing a software
which architects, or anyone for that matter,
can use to design buildings. It is about
innovating, not what we design, but how we
design. It is about reinventing the design
process. ‘Building Technology’ is the discipline
which bridges the gap between the architects,
that design, and the engineers, which make
the design buildable. That is exactly what this
software does. It embeds technical know-
how into the software so that whatever the
architect designs is ensured to be buildable.
This design process for buildings, which the
software facilitates, is of course very much
related to the ‘Architecture, Urbanism, and
Building Sciences’ programme.

6.2 Approach

Why was this approach chosen for the
project?

The approach consists of 3 parts. The first
part is the literature research. The literature
research was performed to understand the
context of configurators. To understand what
a configurator is, where its origins lie, what
configurators are already existing, what the
problems are in those configurators, and what
possible solutions the literature has to offer.
This information is used to define the problem
statement and objectives of the project.
Without it, | wouldn’t know what direction the
project should take.

This brings us to the second part of
the project, the software development. The
information from the literature is used to
propose a new configurator. | decided that the
configurator would need to get developed to
be able to test the proposal. The development
of the configurator was a kind of research
by design. By developing the configurator,
it became clearer how the software can and
should function.

The third part of the projectis concerned
with proposing future developments. Because
software development takes a long time
for this kind of project, | decided that this
proposal was required to give insight into how
the configurator could function were it fully
developed. This part of the project is meant
to bridge the gap between the developed
configurator and the proposed configurator
resulting from the literature research.

Did the approach work out or not?
| think the information from the literature
research gave me a structured way of
thinking about configurators. It made me
understand the building blocks that make up
a configurator. It also helped to validate and
guide the problem statement and objectives
of the project. What it didn’t do was guide me
in the development of the software.

| had to learn how to use Unreal
Engine to develop the configurator. Even for
learning this software there was almost no
documentation. | learned in a fragmented
manner from YouTube videos, forums,
by asking questions at the university and
faculty VR lab’s, and most of all by trial and
error. Despite the difficulty in working with

Unreal Engine | think it was the right choice.
50

Reflection

| don’t think this type of configurator could
have been developed in Rhino, for example.
Additionally, it does make sense to developed
the configurator in the software that some of
the games which served as inspiration were
made with.
Thefeatures|chosetodeveloparelthink
the minimum requirements for the project.
| developed the core software architecture
that allows building components to be placed
on a grid, supplemented by a structural
analysis. | think the structural analysis is also
a fundamental part of the project because
my topic is in the Structural chair. Moreover,
because it highlights one of the strengths of
this configurator, having information on the
assembly of components. | did run into some
issues with time constraints as | would have
liked to have spent more time on the structural
analysis as well as some other features.

How can research by design be implemented
in a scientific manner for software
development?*

The research approach did make it
difficult for me to answer my research question
in a scientific manner. Because by developing
the software | didn’t get any quantifiable
results. | can’t proof that the way that | chose
to develop this configurator is the correct
way. | can only explain how the configurator
works and why | made the decisions that |
did. What made it even more difficult was
that the developed configurator is part of a
larger concept that couldn’t be completely
developed. For this reason, it is hard to
say whether the developed and proposed
configurator is the solution to the problems
brought forward in the problem statement.

The same issue occurred when
proposing future developments. | try to use
my imagination in combination with logical
reasoning to determine if certain features of
the configurator will solve problems from the
problem statement. There are no calculations
which can be done, there is no literature or
precedents to give insights, the only way to
know for sure is to develop the configurator
with these features.

Did the approach consistently result in
new information relevant to the research
question?*

Throughout most of the process | worked on

software development. The new information
that was revealed during this process mostly
had to do with how features should be coded
in Unreal Engine. There wasn’t a lot of new
information on what the software should be
during this process. This information on coding
was too detailed and not really relevant for my
research. However, it did result in a tool that
helps answer my research question.

How did your research method differ from the
methodical line of approach of the graduation
studio?

My research method was very different from
most other students graduating in ‘Building
Technology’. That is because my topic is very
different. Most other students develop a design
or recommendations for design. | developed a
design tool. Topics closest to mine are design
tools in the field of computational design. The
difference is that most of those tools don’t
handle any interaction with the user, they
don’t let the user decide. They take data and
process this data to give a recommendation
or determine the design. For this reason, my
approach was more focused on software
development and less on calculating or
working with data.

Did you encounter moral/ethical issues or
dilemmas during the process? How did you
deal with these?

There exists a moral/ethical issue which has
to do with automation. The configurator has
knowledge embedded into the software which
could mean that less engineers are required
to check the design. Moreover, the design
process is simplified, it is based on games that
children intuitively learn how to use. This also
means that cases could exist where instead
of the architect designing the building, the
end-user would be directly responsible for
designing the building. So, it could cause a
loss of jobs. | do think the benefits outweigh
the drawbacks, so it is worth developing the
software. Such a tool could make buildings
cheaper, more environmentally friendly, and in
general improve designs for buildings.

How do you reflect on the feedback of your
mentors?

The feedback that | got had mostly to do
with controlling the scope and method of

the project, making clearer what the added
51

Reflection

value is of the configurator, and what features
should or shouldn’t be added to the software.
| think the feedback helped guide me in the
direction that | took the research and software
development. It did not help much with the
software development itself though. Unreal
Engine was a software that both my mentors
are unfamiliar with, so | had to figure this out
myself.

How was your mentors’ feedback translated
into your work?

The scope of the project became developing
a configurator that is able to validate a
configuration with a rough structural analysis.
Making clear what the added value is of the
configurator was translated in the report by
on the one hand developing the configurator
and explaining how it works, and on the
other hand by explaining what still needs
to be developed and how it can work. Then
explaining the benefits that the different
features of the configurator provide. Finally, |
didn’t implement the features that my mentors
said were out of scope, but also haven’t
implemented the features that my mentors
would have liked to see. This has to do with
time constraints, and me choosing to focus on
the core of the project first.

What did you learn from your own work?
First of all, | learned to use the most complex
piece of software that | know, Unreal Engine.
Secondly, | learned more about software
development in general. Moreover, | also
learned about design software, about how
small choices on software development can
have a big impact on the design process which
the software provides. Also, | learned about
controlling the scope of a project. Lastly, |
learned a bit about how to get an abstract
idea across, about translating an idea that
only lives in the mind to other people through
text, speech, and imagery.

6.3 Results

How did the preliminary results of the research
and design come to be (product, process,
planning)?

Most of it is a result of software development.
For most of the features | had a rough idea
of how | wanted it to work. Then, | would
start with looking online at ways that others
had implemented this feature, or | would ask

people at our VR labs that had experience
with Unreal Engine. Once | knew how the
feature needed to work, | would write code,
then test, then troubleshoot and make edits
to the code, and repeat until the feature was
developed. The last step is then to explain
and contextualize those features which | had
developed, by writing.

To what extent has the projected innovation
(research objective) been achieved?

My research objective is ‘to discover how an
integrated construction configurator which
enlarges the design space should function,
and to develop (part of) the integrated
construction configurator’. | succeeded in
creating a construction configurator although
it might not beanintegrated one. Anintegrated
construction configurator supports the design
process through all stages, planning, design,
and production. The construction configurator
which | developed can’t really support the
production phase since it does not yet offer the
information required to build the configuration.
The configurator was meant to act as a proof
of concept, showing the potential of this type
of configurator. I'm not sure if the configurator
was developed far enough to make the
benefits of this type of configurator clear.
Also, | don’t think | haven’t exactly figured out
how this type of configurator should function,
but | have provided information on how it can
function. I'm hoping at the very least that my
project inspires some so that more research
will follow.

How do you assess the academic and
societal value, scope, and implication of your
graduation project, including ethical aspects?
My project by itself, the configurator that |
built, won’t have a large impact. If my project
attracts attention to the concept of such a
configurator and if it were fully developed, it
could have a big impact. | believe this type of
configurator has the potential to revolutionize
the way in which we design buildings.
Ultimately making buildings cheaper and
more sustainable, it could help in overcoming
the housing crisis. This happens by having
information on production available early in the
design process, it helps to reuse, standardize,
validate, and iterate more efficiently.

52

Reflection

To what extent are the results applicable in
practice?

The configurator itself could only be useful in
validating a simple structure in the planning
phase, or just quickly exploring design
options. Other applications of the results are
in the domain of the software development of
architectural software. It provides examples
and ideas for developing new software, or
extending existing software with new features.

How do you assess the value of the
transferability of your project results?

For anyone familiar with the development of
software, this project should provide enough
information so that this configurator can
be remade. It also provides ideas for future
development.

53

7. References

Abanda, F. H., Tah, J. H. M., & Cheung, F. K.

T. (2017). BIM in off-site manufacturing
for buildings. Journal of Building
Engineering, 14, 89-102. https://doi.
org/10.1016/j.jobe.2017.10.002

Barman, S., & Canizares, A. E. (2015). A survey
of mass customization in practice.
International Journal of Supply Chain
Management, 4(1), 65-72.

Benjamin, S., Christopher, R., & Carl, H. (2022).
Feature modeling for configurable and
adaptable modular buildings. Advanced
Engineering Informatics, 51. https://doi.
org/10.1016/j.aei.2021.101514

Bianconi, F, Filippucci, M., & Buffi, A. (2019).
Automated design and modeling for
mass-customized housing. A web-
based design space catalog for timber
structures. Automation in Construction,
103, 13-25. https://doi.org/10.1016/].
autcon.2019.03.002

Cao, J., Bucher, D. F,, Hall, D. M., & Lessing,

J. (2021). Cross-phase product
configurator for modular buildings using
kit-of-parts. Automation in Construction,
123. https://doi.org/10.1016/].
autcon.2020.103437

Cao, J., & Hall, D. (2019). AN OVERVIEW
OF CONFIGURATORS FOR
INDUSTRIALIZED CONSTRUCTION:
TYPOLOGIES, CUSTOMER
REQUIREMENTS, AND TECHNICAL
APPROACHES. Proceedings of the
European Conference on Computing
in Construction, 295-303. https://doi.
org/10.35490/ec3.2019.145

Forza, C., & Salvador, F. (2006). Product
Information Management for Mass
Customization: Connecting Customer,
Front-office and Back-office for
Fast and Efficient Customization.
Product Information Management
for Mass Customization: Connecting
Customer, Front-Office and Back-
Office for Fast and Efficient
Customization, 1-221. https://doi.
org/10.1057/9780230800922/COVER

Goulding, J., & Rahimian, F. (2019). Offsite
production and manufacturing for
innovative construction: People, process
and technology. https://books.google.
com/books?hl=nl&lr=&id=1T33DWAAQB
AJ&oi=fnd&pg=PP1&ots=m7aev-JhWx&s
ig=yoPRJN3guTOONnJ8msJzyRkwcByw

Hamid, M., Tolba, O., & El Antably, A.

(2018). BIM semantics for digital
fabrication: A knowledge-based
approach. Automation in Construction,
91, 62-82. https://doi.org/10.1016/j.
autcon.2018.02.031

Hvam, L., Mortensen, N. H., & Riis, J. (2008).
Product customization. Product
Customization, 1-283. https://doi.
org/10.1007/978-3-540-71449-1

Kotha, S., & Pine, B. J. (1994). Mass
Customization: The New Frontier in
Business Competition. The Academy of
Management Review, 19(3), 588. https://
doi.org/10.2307/258941

Lee, C., & Ham, S. (2018). Automated
system for form layout to increase
the proportion of standard forms and
improve work efficiency. Automation in
Construction, 87, 273-286. https://doi.
org/10.1016/J. AUTCON.2017.12.028

Louth, H. D., Fragachan, C., Bhooshan, V.,

& Bhooshan, S. (2024). Configurator:
A Platform for Multifamily Residential
Design and Customisation. In Lecture
Notes in Mechanical Engineering:
Vol. Part F1562 (pp. 769-805).
Springer Science and Business Media
Deutschland GmbH. https://doi.
org/10.1007/978-3-031-36922-3_40

Meyer, M. H., & Lehnerd, A. P. (1997). The
power of product platforms. The Free
Press, December 1990, 288. https:/
books.google.com/books/about/
The_Power_of_ Product_Platforms.
htmI?id=PKJuQjSaHpOC

Myrodia, A., Randrup, T., & Hvam, L. (2018).
Configuration Lifecycle Management -
An Assessment of the Benefits Based
on Maturity (pp. 119-124). University
of Hamburg. https://orbit.dtu.dk/en/
publications/configuration-lifecycle-
management-an-assessment-of-the-
benefits-

Peltokorpi, A., Olivieri, H., Granja, A. D., &
Seppanen, O. (2018). Categorizing
modularization strategies to achieve
various objectives of building
investments. Construction Management
and Economics, 36(1), 32-48. https://doi.
org/10.1080/01446193.2017.1353119

Piroozfar, P, Farr, E. R. P, Hvam, L., Robinson,
D., & Shafiee, S. (2019). Configuration

platform for customisation of design,
54

References

manufacturing and assembly processes
of building facade systems: A building
information modelling perspective.
Automation in Construction, 106,
102914. https://doi.org/10.1016/].
autcon.2019.102914

Potseluyko, L., Pour Rahimian, F., Dawood,
N., Elghaish, F., & Hajirasouli, A. (2022).
Game-like interactive environment
using BIM-based virtual reality for the
timber frame self-build housing sector.
Automation in Construction, 142. https://
doi.org/10.1016/j.autcon.2022.104496

Said, H. M., Chalasani, T., & Logan, S. (2017).
Exterior prefabricated panelized walls
platform optimization. Automation
in Construction, 76, 1-13. https://doi.
org/10.1016/J. AUTCON.2017.01.002

Tetik, M., Peltokorpi, A., Seppanen, O., &
Holmstrém, J. (2019). Direct digital
construction: Technology-based
operations management practice for
continuous improvement of construction
industry performance. Automation in
Construction, 107, 102910. https://doi.
org/10.1016/j.autcon.2019.102910

Warmuth, J., Brutting, J., & Fivet, C.

(2020). Computational tool for stock-
constrained design of structures.

Yuan, Z., Sun, C., & Wang, Y. (2018). Design
for Manufacture and Assembly-oriented
parametric design of prefabricated
buildings. Automation in Construction,
88, 13-22. https://doi.org/10.1016/].
autcon.2017.12.021

55

8. Figures

Figure1.1: Industrialised construction building components

tree (Louth et al, 2024)

1.2: Benefits of configurators applied in
industrialized construction (Cao & Hall, 2019)
Figure 1.3 Configurator typologies (Cao et al., 2021)
Figure 1.4: Supply chain integration, source: httos.//www.

celum.comy/en/blog/content-supply-chain/

Figure 1.5: Categorisation of existing construction
configurators in CODP and typologies (own ill.)

Figure 1.6: Beyabu configurator’s visualisation of a
configuration (Louth et al., 2024)

Figure 1.7: Beyabu configurator’s variations in a system
grid (Louth et al., 2024)

Figure 1.8 Beyabu configurator’s gameboard grid. (Louth
et al, 2024)

Figure 1.9: PRISM’s analytics dashboard, source: https.//
WWW.Prism-app.io/

Figure 1.10: PRISM’s analytics dashboard, source: https.//
WWW.Prism-app.io/

Figure 1.11: MyProjectFrog’s configurator (Cao et al, 2021)

Figure 1.12: Uuthuuske’s modules, source: https.//www.
uuthuuske.nl/

Figure 1.13: Uuthuuske’s configuration options, source:
https,//www.uuthuuske.nl/

Figure 1.14: PRISM’s analytics dashboard, source: https.//
WWW.Prism-app.io/

Figure 1.15: Unit position analysis of a multi-user platform
(Louth et al., 2024)

Figure 1.16: Transitioning from room-sized modules to
building component sized modules (own ill.)
Figure 2.1: Sidney Opera House built in Minecraft by
player, source: https.//www.abc.net.au/news/
science/2020-06-13/minecraft-australia-build-

the-earth/12344720

Figure 2.2: Player-made wooden structure in Valheim,
source: https.//steamcommunity.com/sharedfiles/
filedetails/?id=2427167421

Figure 2.3: Configurator gamification analysis using
octalysis framework (Louth et al, 2024)

Figure 2.4: Linear, planar, and volumetric elements (own
i)

Figure 2.5: Composition rules (own ill.)

Figure 2.6: Compatibility rules (own ill.)

Figure 2.7: Dependency rules (own ill.)

Figure 2.8: Cardinality rules (own ill.)

Figure 2.9: Unreal Engine 5°s interface, source: https.//
www.pugetsystems.com/labs/articles/unreal-
engine-5-what-s-new-and-is-it-ready-to-
use-2180/

Figure 2.10: Unreal Engine 5’s blueprints, source:
https.//docs.unrealengine.com/4.27/en-
US/ProgrammingAndScripting/Blueprints/
QuickStart/

Figure 2.11: Configuration process’ iteration cycle (own
i)

Figure 2.12: Flowchart of configuration process (own ill.)

Figure 2.13: Configurator’s grid parameters (own ill.)

Figure 2.14: Configurator’s grid (own ill.)

Figure 2.15: Configurator’s grid slots (own ill.)

Figure 2.16. Configurator’s building components (own ill.)

Figure 2.17: Placement of a component when slot is
missed (own ill.)

Figure 2.18: Placement of a component snapping to a slot
(own ill.)

Figure 2.19: Spawning of a component at slot location
(own ill.)

Figure

Figure 2.20: Configuration made in the configurator (own
i)

Figure 2.21: A simple flow network with directed weighted
edges, source: https.//www.researchgate.net/
figure/A-simple-flow-network-with-directed-
welghted-edges-Here-the-source-is-node-A-and-
the figl 220723124

Figure 2.22: Configurator’s network graph showing
component connections (own ill.)

Figure 223: Configurator’s Dijkstra shortest path
algorithm comparing paths to foundations (own
i)

Figure 2.24: Configurator’s structural analysis (own ill.)

Figure 2.25: UML diagram of configurator’s simplified
blueprint interaction (own ill.)

Figure 2.26: Flowchart of configurator’s grid’s creation
process (own ill.)

Figure 2.27: Flowchart of configurator’s building process
(own ill.)

Figure 228: Flowchart of configurator’s structural
analysis, process of creating load paths (own ill.)

Figure 2.29: Print statement of configuration’s nodes,
distances to foundations with number of nodes to
that foundation, and the next node(s) in the load
path (own ill.)

Figure 2.30: A configuration and load paths made in the
configurator (own ill.)

Figure 2.31: A configuration’s load paths and nodes’
imposed loads (own ill.)

Figure 2.32: A configuration’s load paths and nodes’
imposed loads (own ill.)

Figure 2.33: A configuration’s load paths and nodes’
imposed loads (own ill.)

Figure 2.34: A configuration with rescaled columns and
beams after running the structural analysis (own
i)

Figure 2.35: Flowchart of configurator’s structural
analysis, process of testing beams on bending
(own ill.)

Figure 2.36: Breadth first search graph traversal (own ill.)

Figure 2.37: Breadth first search graph traversal (own ill.)

Figure 2.38: Breadth first search graph traversal (own ill.)

Figure 2.39: Breadth first search graph traversal (own ill.)

Figure 2.40: Breadth first search graph traversal (own ill.)

Figure 2.41: Breadth first search graph traversal (own ill.)

Figure 2.42: Breadth first search graph traversal (own ill.)

Figure 2.43: Breadth first search graph traversal (own ill.)

Figure 2.44: Flowchart of configurator’s structural
analysis, process of resizing beams (own ill.)

Figure 2.45: Breadth first search graph traversal (own ill.)

Figure 2.46: A configuration with rescaled columns and
beams after running the structural analysis (own
i)

Figure 3.1: NIBE environmental impact categories, source:
https.//www.nibe.info/nl/methode

Figure 3.2: NIBE shadow costs, source: https,//www.nibe.

info/nl/methode
Figure 3.3: AGACAD configurator’s BIM family
manager, source: https.//agacad.com/blog/

managing-revit-family-libraries-smart-browser-
webinar-20200505

Figure 3.4. Grid modelling (own ill.)

Figure 3.5: Component placement (own ill.)

Figure 3.6: Structural analysis (own ill.)

Figure 3.7 Replacing generic component with building
product from database (own ill.) 6

Figures

Figure 3.8: Characteristics of the developed configurator
and resulting beneftis (own ill.)

Figure 3.9: The building product supply chain, source:
https,//www.celum.com/en/blog/content-supply-
chain/

Figure 3.10: Autodesk’s Robot Structural Analysis tool
for Revit, source: https.//www.autodesk.com/
products/robot-structural-analysis/overview

Figure 3.11: Structural analysis of the configurator (own
i)

57

9. Appendix. Complete Software Development Flowchart

AC_BuildComponent AC_StructuralAnalysis: Load Path AC_sStructuralAnalysis: Bending BP_Column BP_Beam
2 ! — _——
Start Input number of Launch build mode Change building Spawn building Run structural For each foundatio Create a load path RBeceive resize mesh Recsive resize mash
vertices (X, Y, Z component type component analysis netwoark list If visited message message
node is beam /MO '

——F et TRe Toundaion) ~Save Toad paths o EE— IR a—
Create a 3D matrix of Input spacing of) Change build ghost o I:I?as frir'?Ltere ?ulj?dr;s apiziitza dirgitiosncio Vos Get column's width Get beam's width and
vertices vertices (X, Y, Z If build ! ! f build ghos ' and depth height

ves»| Stop build cycle l l d N Do nothin lst the nodes
mode is on P ¥ ! ! IS green . g . I
R, With each grid slat, i i For each foundation For each foundation™ Set visited node as
» 1 et indices based on | | un the dijkstra et _— ¥
- ! !) : Calculate Deam's
C;eaiféfign;j:;nn number of vertices (X, Mo i i Yes shortest path F;L;I;EEFSIZ?S:ST Calcurlfate column's section moment of
= Y. Z) | i algorithm v surface area o 13712
_____________ I Database of E pawn building At beam's live. —_— T —neria (on"872)
Enter build cycle *--{ component at grid For each node For each visited nods dead, and imposed
" y slot load 4 ¥
Create floor face grid Get vertices based on Save the resulting dd column's dead, =L Deam s ot
slots indices path to the node If node =T curren live, and imposed bending load and
— uilding Sémponen has multiple Mo—foundation's load path o i load total span length
ﬁsée;: Ziﬁgﬁﬁ: inherits grid slot's For each node Qad patns network nodes' total bending
" vertices load v v
Create wall face (YZ) Get average location Compare the paths of Yes In|:n|:1 i;gu'-' ”";2 ES a[r)EE; a gg:ner‘;loemei?m s
grid s of vertices " each foundation Get current node's v io find max stress (WLAZE
v

A

Create wall face (XZ)
grid

KNl NN

If line hits If all

: length

grid slot ¥ g Mo foundations Mo— ¥ Y
Create beam edge Make slat 1D Connect the building Pass load to next traversed wi;?heandeﬂcg Iilr:r-.:nSh Divide max stress by Get material's
(X) grid slots components node in load path el current nods an ih i P | bending strength bending strength
Vas connected node as e g resulting value S S —
. split nodes For each split node
! Set spawn location to —m—k—"ﬂ— —Mo gsfpm d — Yy
Create beam edge Make box collision for location of grid slot b?ahi:gneth?ae fade foun L 4 Run a breadth first Clamp value to be in
¥) grid siots ine trace e e arelfrmﬁtri‘; . , Divide load by @@ search algorithm between 0,5 and 1,5
- —LeMPensnits G connected node’s S
_________________________________ il oad paths number of load paths Yes shared verex For each visited beam node
; '| ________________ Y @@ ¥
Spawn green build Add the edge fo the Visit nodes in current ef the visifed nodes ~ Scale the beam's
ghost P Mo node's load path fo R RsB I total bending load to width and height with
g foundation (XY from vertex to hat of the split node. the resulfing value
Pass complete load For each visited nods current foundation
v to next node v
Add building ; ef The visifed node's
component to the |« set spa{:ﬂ;ﬂg tobe total span length to
nodes list b that of the split node
For each node
v If node is ,
Set building & column

Spawn grid slot at
tion

L]
SE IO

h
Send out line trace

Set spawn location to
where the line hits

. ¥)
Create column edge Associate grid slot gnaftions arg Sort ihe nodes list gonnected node Clamp value to be in Calculate the beam's building
rid slots and vertices met pased on numoer of 5 T components
g nodes to foundation between 0.5 and 1,5 max stress (My/l)

eck for shared
vertices with placed
building components

cannection

compaonent label

For each node

el the shones

path(s) as the load
ath(s

Send resize mesh

message

Set current node as
split node

Set distance as span

connected nodes

Far each connected node

If load path
network contains

span Tengih fo
split nodes' total span
length

Add split nodes to

split nodes list

If node is
a beam

ND‘){ Do nothing

Send resize mesh
message

h

Divide max stress by
compressive strength C

ompressive strength

A

h 4

h

Calculate the height
of interest (h/2)

Database of

