TUDelft

Surrogate Reloaded: Fast Testing for Deep
Reinforcement Learning with Bayesian Neural Networks

Rodrigo Montero Gonzalez'
Supervisor(s): Dr. Annibale Panichella!, Antony Bartlett!
'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Rodrigo Montero Gonzalez
Final project course: CSE3000 Research Project
Thesis committee: Dr. Annibale Panichella, Antony Bartlett, Dr. Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Surrogate Reloaded: Fast Testing for Deep Reinforcement Learning with
Bayesian Neural Networks

Abstract

Deep Reinforcement Learning (DRL) is a powerful framework for training au-
tonomous agents in complex environments. However, testing these agents is still pro-
hibitively expensive due to the need for extensive simulations and the rarity of failure
events, such as collisions or timeouts, where the agent fails to complete its task safely
or correctly. Existing surrogate models, such as Multi-Layer Perceptrons (MLPs), are
a promising improvement by predicting failures without requiring full simulation runs.
However, prior research has focused almost exclusively on MLPs, leaving it unclear
whether other, more expressive machine learning models could improve performance.
In this paper, we investigate whether Bayesian Neural Networks (BNNs), which incor-
porate probabilistic reasoning into neural architectures, can be more effective surrogates
for failure prediction in DRL environments. We developed, trained, and evaluated a
BNN surrogate and compared it against a pre-trained MLP baseline, using the High-
wayEnv car parking environment as our test case. Our evaluation focused on comparing
the predictive accuracy, precision, recall, F1-score, and Area Under the Receiver Op-
erating Characteristic Curve (AUC-ROC) using training data, as well as assessing the
models’ effectiveness in the DRL parking environment. The results show that the BNN
surrogate outperforms the MLP baseline in terms of practical utility for failure discov-
ery. These findings suggest that BNNs can be a more effective surrogate model for
prioritising failure scenarios in DRL testing.

1 Introduction

Reinforcement Learning (RL) has achieved remarkable success across various domains, in-
cluding strategic game playing (e.g., AlphaGo), robotic control, and autonomous driving
[1, 2]. These systems learn complex behaviours through trial-and-error interactions with
simulated environments. The introduction of Deep Reinforcement Learning (DRL) extended
RL by leveraging deep neural networks to operate in high-dimensional, continuous spaces,
thereby expanding its applicability to more complex tasks [3]. As a result, DRL has en-
abled further progress in areas such as healthcare, personalisation systems, and autonomous
control [4, [5]. A particularly relevant example is from Audi, which demonstrated that a
DRL agent could successfully park a scaled-down vehicle using sensor feedback and learned
policies [6].

While training such agents has been attempted extensively, the testing phase remains
a major bottleneck because the current practice involves running the agents on a set of
randomly generated configurations. These configurations are different environment setups
or initial conditions that influence the agent’s behaviour. This practice is typically compu-
tationally expensive and inefficient because it involves thousands of simulation runs to find
rare but critical failure cases [7].

To mitigate this challenge, researchers have proposed using surrogate models, which are
machine learning models trained to predict whether a given environment configuration will
result in failure, without the need to execute the full simulation. Prior work, such as that
of Biagiola et al. [3], demonstrated that Multi-Layer Perceptrons (MLPs) can approximate
failures in DRL environments, enabling significant reductions in testing time. However, this

line of research has so far focused almost exclusively on MLPs, leaving open the question of
whether other surrogate models could improve failure prediction.

Our approach builds upon the Indago tool proposed by Biagiola et al. [3]. It is a
search-based testing framework that integrates a surrogate model into a Genetic Algorithm
(GA). The GA is used to evolve environment configurations over several generations, with
the surrogate estimating the failure likelihood and guiding the search toward areas that it
deems more likely to fail. The surrogate serves as a proxy during agent execution, allowing
the GA in Indago to explore high-risk configurations without full DRL rollouts [3].

Indago was initially used with an MLP as the surrogate model. In our work, we replace
the MLP with a Bayesian Neural Network (BNN), a probabilistic model that represents
weights as distributions rather than fixed values. This enables the surrogate to handle data
imbalance better and generalise more effectively across uncertain inputs [§].

The following main research question guides the study:

RQ1: How do Bayesian Neural Networks compare to Multi-Layer Perceptrons
as surrogate models for failure prediction in Deep Reinforcement Learning?

This study is further decomposed into two sub-questions:

RQ1.1: How do their predictive performances compare, particularly under class
imbalance?

RQ1.2: How effectively can BNNs guide Genetic Algorithm-based test generation
toward discovering new failure scenarios?

Our findings show that BNNs can be more accurate and precise, but they show no
significant improvement in metrics such as F1-score and AUC-ROC. On the other hand, our
findings also show that, across 50 experiments in the Indago tool, the BNN-guided search
discovered 27.8% more failure cases compared to the MLP baseline, along with significantly
greater diversity in the types of failures uncovered.

This work makes the following contributions:

e We evaluate the ability of BNNs to classify failures based on environment configura-
tions in a DRL testing scenario.

e We assess the effectiveness of BNNs as surrogate models for guiding a GA toward
high-risk environment configurations.

e We empirically compare BNNs and MLPs in both predictive accuracy and their effec-
tiveness in guiding failure discovery within a DRL testing pipeline.

2 Background and Motivation

2.1 Reinforcement Learning and Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a powerful learning paradigm in which agents learn
optimal behaviours by interacting with an environment to maximise cumulative rewards
[9]. It extends traditional Reinforcement Learning (RL) by integrating deep neural net-
works, which serve as powerful function approximators to model complex policies and value
functions. This feature allows DRL agents to operate effectively in high-dimensional or

continuous state and action spaces where classical RL methods struggle. These capabilities
have enabled successes in domains such as robotics, gaming, and autonomous vehicles [9] 2].

However, while training DRL agents has received extensive attention, the testing phase
remains a significant challenge. In practice, testing a trained DRL policy involves executing
it in thousands of simulated configurations to detect failure scenarios, which is computation-
ally expensive [7]. As the agent becomes more competent, failures become increasingly rare;
yet, these rare failures are precisely the most important to identify and address before de-
ployment. Testing must therefore be both efficient and targeted toward high-risk scenarios,
motivating the use of surrogate models [3].

2.2 Surrogate Modelling for Failure Prediction

A surrogate model approximates simulation outcomes by learning a mapping from environ-
ment configuration to failure likelihood. In DRL testing, this enables fast failure prediction
without full simulation, reducing computational cost and enabling targeted search.

Previous work has explored the use of Multi-Layer Perceptrons (MLPs) as surrogate
models in DRL testing pipelines. For example, the Indago tool by Biagiola et al. trained
MLPs on interaction data to guide a Genetic Algorithm (GA) toward likely failure con-
figurations [3]. However, MLPs exhibit a key limitation: they struggle with severe class
imbalance, where failure cases constitute only a small fraction of the dataset. This often
leads to models biased toward predicting the majority (non-failure) class [10]. To address
this, we propose replacing MLPs with Bayesian Neural Networks (BNNs), which are more
robust in data-scarce and imbalanced settings.

2.3 Bayesian Neural Networks

Bayesian Neural Networks extend standard neural networks by treating weights as proba-
bility distributions rather than point estimates, which can be visuallised in This
allows them to model uncertainty in the network parameters, introducing a form of regu-
larisation that improves robustness in sparse or imbalanced data settings [I1, 12]. In the
context of DRL surrogate modelling, these properties help reduce overfitting to the dominant
(non-failure) class and enable better generalisation to rare failure cases.

Modern libraries such as BLiTZ (Blitz) [I4] make scalable BNNs accessible in Py-
Torch [I5], using variational inference to approximate the intractable posterior over network
weights. Variational inference works by introducing a tractable distribution g(w) over the

Standard Neural Network Bayesian Neural Network

Figure 1: Adapted image [13] that shows the comparison between a standard Neural Network
(left) and a Bayesian Neural Network (right).

weights w, and training the model to make g(w) as close as possible to the true posterior
p(w | D), where D denotes the training data. In practice, this corresponds to minimising a
loss derived from the Evidence Lower Bound (ELBO), which balances the likelihood of the
data with a regularisation term, as shown in Equation :

Lenn = —Eqw) logp(D [w)] + KL (g(w) || p(w)) (1)
—_————

Negative log-likelihood KL divergence regularisation

The first term, the negative log-likelihood, penalises the model when its predictions devi-
ate from the observed labels. For binary classification tasks, this corresponds to the binary
cross-entropy loss. The second term is the Kullback-Leibler (KL) divergence, which acts as a
regulariser by penalising deviation of the variational distribution g(w) from the prior distri-
bution p(w). This helps prevent overfitting and promotes generalisation in underrepresented
regions of the input space.

We implement this objective in Blitz using variational Bayesian linear layers. These layers
sample weights from ¢(w) during forward passes. Combined with standard components like
LogSoftmax [I5] at the output, the resulting BNNs can be trained via stochastic gradient
descent in a loop nearly identical to that of a standard PyTorch model. This makes BNN
surrogates easy to integrate into the Indago tool with minimal code modifications, offering
a practical and scalable choice for surrogate modelling in DRL testing pipelines.

2.4 Genetic Algorithms in Failure Discovery

Genetic Algorithms are a class of evolutionary optimisation techniques inspired by natural
selection [9]. They operate by maintaining a population of candidate solutions (in our case,
environment configurations) which evolve over successive generations based on principles of
selection, crossover, and mutation. GAs are particularly suited to black-box optimisation
problems where the search space is large, high-dimensional, or poorly understood, making
them a compelling choice for DRL testing where analytical gradients are unavailable.

In the context of this project, we employ a GA as a search-based failure discovery mech-
anism. Instead of randomly sampling configurations to test the robustness of a DRL agent,
the GA uses a surrogate model to assign each candidate a fitness score, defined as the
predicted likelihood of failure. This prediction-driven evolution allows the algorithm to it-
eratively prioritise high-risk configurations, improving sample efficiency and reducing the
number of full simulation calls required. Previous work such as Indago [3] has shown that
combining surrogate-based fitness evaluation with evolutionary search can significantly ac-
celerate the discovery of edge cases in safety-critical environments. Our work extends this
idea by evaluating Bayesian surrogates as the predictive backbone of the GA loop.

2.5 Testing for Deep Reinforcement Learning Agents

Biagiola et al. [3] proposed a surrogate modelling approach for DRL testing, where an MLP
is trained to classify failure outcomes given environment configurations. Their Indago frame-
work combines this surrogate with a search-based failure discovery mechanism using a GA,
reducing the need for random sampling by iteratively evolving high-risk configurations based
on predicted failure likelihood, rather than sampling blindly from the entire configuration
space.

Beyond this, surrogate models have been applied to other reinforcement learning tasks,
such as selecting representative DRL trajectories that prioritise behavioural diversity and
certainty [I6], and replicating DRL behaviour in Atari environments [I7]. However, their

role in failure prediction, especially in simulation-heavy DRL environments, remains under-
explored.

In parallel, research in uncertainty estimation has received increasing attention. Kendall
and Gal [8] highlighted the role of epistemic uncertainty in improving model reliability,
particularly in safety-critical tasks. Malinin and Gales [I0] demonstrated that uncertainty-
aware models are better calibrated, especially in imbalanced classification tasks. BNNs,
in particular, have been studied for their ability to capture epistemic uncertainty through
variational inference [II], but to our knowledge, they have not yet been applied to sur-
rogate failure prediction in DRL. This work builds on these ideas by evaluating BNNs as
replacements for MLPs within the Indago framework.

3 Approach

The goal of this project is to reduce the computational cost of testing Deep Reinforcement
Learning (DRL) agents by building a surrogate model that can predict whether a given
environment configuration is likely to result in a failure (collision) without executing the
full simulation. This section presents our proposed solution for improving the efficiency
and effectiveness of DRL agent testing using surrogate modelling, which we evaluate in
comparison to an MLP-based surrogate.

3.1 Case Study: Parking Environment

As a concrete case study for evaluating our surrogate model, we focus on the Parking
environment from the HighwayEnv simulator [I8]. In this scenario, a DRL agent controls a
car known as the ego vehicle, a term commonly used to refer to the autonomous vehicle being
controlled in a simulation. The agent must navigate the car to a designated lane and park it
without colliding with other vehicles. Actions include continuous throttle and steering, and
each episode terminates upon success or failure. For the purposes of this study, a failure
is defined as an episode that ends in either a collision or a timeout, indicating that the
agent was unable to complete the parking task successfully. illustrates a possible
configuration. Subfigure (A) shows the simulated layout with ego and parked vehicles, while
(B) presents the JSON-style configuration used as input to the surrogate.
Each test case is encoded as a feature vector comprising:

{
| | ‘l| ’ "env_configuration": {
"goal_lane": 20,
"head_ego": 0.0,
"pvehicles": {
3, 5, 6, 8, 13

head ago

-10 W, ego_x N

"pos_ego": (0.0, 0.0)
T T W T Il\l

A B

Figure 2: Figure adapted from Biagiola et al. [3], showing an example configuration in the
Parking environment. (A) Simulation state with ego vehicle, parked cars, and goal lane.
(B) JSON-style configuration used as surrogate model input.

e The ego vehicle’s initial (x, y) position

e Its heading angle head_ego

e The target parking lane goal_lane (1-20)

e A binary occupancy vector pvehicles over 20 lanes

These input features are flattened into a fixed-length vector suitable for model input. The
pvehicles field, which indicates which of the 20 parking lanes are occupied, is represented
using one-hot encoding, a binary format where each lane is assigned a bit set to 1 if occupied
and 0 if free. This is followed by the goal lane index, the heading angle of the ego vehicle,
and its (x, y) position.

3.2 Data Collection and Preprocessing

The dataset used in this work was originally generated by Biagiola et al. [3] as part of their
DRL agent training experiments in the Parking environment. It consists of 8,790 data points
collected from agent-environment interactions during learning with a DRL agent trained
using Hindsight Experience Replay (HER) [I9]. Each data point includes the environment
configuration introduced in[subsection 3.1} along with the actions taken by the agent and the
outcome (success or failure). In our surrogate model training, we use only the environment
configuration as input features, since this is the only information available prior to simulation
in the DRL environment. The binary success/failure outcome is used as the target label.

We also consider the temporal nature of data collection: earlier data points were gen-
erated when the agent was less trained, whereas later ones reflect a more competent agent.
For this reason, we primarily use the latter portion of the dataset, specified by the train-
ing progress filter parameter. This filter excludes an initial percentage of data points, as
early-stage trajectories reflect unrealistic agent behaviour unlikely to occur once the policy
is fully trained. This parameter was set to 50, as done by Biagiola et al. [3].

3.3 Surrogate Modeling Workflow

Our surrogate modelling workflow consists of five sequential steps: data preprocessing, model
development, hyperparameter tuning, search-based failure prioritisation, and evaluation.

We begin by preprocessing the dataset as described in and split it into
training and test sets using an 80/20 ratio, a division that has been empirically shown to
offer strong generalisation performance [20].

Next, we develop the surrogate model using a Bayesian Neural Network (BNN) imple-
mented with the BLiTZ library [I4]. The network is built in PyTorch using a sequence
of Bayesian linear layers (BayesianLinear), which replace standard deterministic Linear
layers. These layers treat each weight and bias as a Gaussian distribution parameterised
by a mean and standard deviation, which were initialised with a prior of A'(0, 1), enabling
the model to learn a distribution over weights rather than point estimates. During each
forward pass, weights are sampled from these learned distributions, resulting in stochastic
predictions. The final layer of the BNN is a LogSoftmax output, and training is performed
by minimising the ELBO loss as described in Section

The rest of the BNN architecture follows a standard feedforward design with tunable
parameters, including the number of hidden layers and hidden layer size. We use ReLU
activations between layers and train all models using the Adam optimiser. Classification is
framed as a binary task where the BNN outputs log-probabilities for success and failure. At

inference time, we exponentiate the log-probabilities to obtain predicted class probabilities
and apply a fixed threshold of 0.5 to assign binary labels.

To address the severe class imbalance, where failure cases represent only 2% of the data,
we apply several mitigation strategies. Oversampling duplicates failure samples to increase
their relative frequency in the training batches, while undersampling randomly discards non-
failure samples to rebalance the dataset; both are controlled via a tunable ratio parameter.
Class-weighted loss penalises misclassifications of the minority class more heavily, allowing
the model to learn a more balanced decision boundary. Additionally, we use targeted data
augmentation that perturbs failure configurations slightly to generate synthetic samples
near the failure regions, increasing diversity while maintaining physical plausibility. We
did not use other techniques like SMOTE [21], as it creates synthetic minority examples
by interpolating between existing failure cases. However, in our structured input space,
even if two configurations result in failure, their interpolated midpoint does not necessarily
represent a failure scenario.

Following initial development, we fine-tuned the BNN architecture and training setup
via grid search, systematically exploring combinations of hyperparameters such as hidden
layers, layer sizes, and imbalance-handling strategies (oversampling, undersampling, data
augmentation, class-weighted loss). Each configuration was first ranked using validation
AUC-ROC, a threshold-independent metric suited for imbalanced datasets as it captures
class separability across all thresholds [22]. A classification threshold is the cutoff used to
decide whether a predicted probability (e.g., 0.7) is considered a positive or negative class.
AUC-ROC evaluates model performance across all such thresholds rather than relying on
one fixed cutoff. Final evaluation was performed on a held-out test set using accuracy,
precision, recall, Fl-score, and AUC-ROC. Accuracy reflects overall correctness, precision
measures the proportion of predicted failures that were correct, recall indicates how many
actual failures were detected, and Fl-score balances both [22]. Precision, recall, and F1-
score were computed using a 0.5 classification threshold, consistent with the original setup
in prior work [3].

The next step is integrating the model into a failure search loop powered by a Ge-
netic Algorithm (GA). In this phase, the surrogate model replaces the DRL agent and is
used to compute the fitness value of each candidate configuration, defined as the predicted
probability of failure. These fitness scores are then used to guide the GA’s evolutionary
process, allowing it to prioritise and evolve high-risk configurations without executing full
DRL simulations. The pseudocode of the GA procedure is shown in

Finally, we evaluate the model’s performance within this GA setting, measuring the
average number of failures discovered and analysing the diversity of the failures found, and
compare our results against the Multi-Layer Perceptron (MLP) baseline from Biagiola et
al. [3].

4 Study Design

4.1 Research Questions
The following main research question guides the study:

RQ1: How do Bayesian Neural Networks compare to Multi-Layer Perceptrons
as surrogate models for failure prediction in Deep Reinforcement Learning?

This study is further decomposed into two sub-questions:

RQ1.1: What is the performance of BNN compared to the MLP in classifying
failing environments?

RQL1.2: How effectively can BNNs, compared to the MLP, guide Genetic Algorithm-
based test generation toward discovering new failure scenarios?

4.2 Evaluation Criteria
4.2.1 Baseline Model

Our baseline is the Multi-Layer Perceptron (MLP) surrogate model originally used by Bia-
giola et al. [3] in the Indago framework. It consists of a feedforward architecture with two
hidden layers and ReLU activations, trained using binary cross-entropy loss. Rather than
retraining this model, we obtained the original trained checkpoint (.pkl file) directly from
the authors, ensuring consistency with prior work.

4.2.2 Methodology

To evaluate classification performance, we trained BNN models to predict whether a given
Parking environment configuration would result in a failure. We conducted a grid search
over 144 BNN configurations, derived from a factorial combination of the following hyper-
parameters:

e Number of hidden layers (1-4)
e Hidden layer size (32, 64, 128)

Oversampling/Undersampling ratio (0.0, 0.5, 1.0)
e Use of undersampling or oversampling (boolean)
e Use of data augmentation (boolean)

e Use of class-weighted loss (boolean)

This search space was constrained by computational budget, given the cost of training
BNNs and the need to average results across multiple seeds. While not exhaustive, the
144 configurations span a representative range of settings for architecture and imbalance
handling. Each configuration was trained using five random seeds and evaluated on a fixed
test set. Performance was assessed using accuracy, precision, recall, Fl-score, and AUC-
ROC. Early stopping was applied based on validation loss. All reported metrics represent
the mean across seeds.

To complement the comparison of classification metrics between the BNN and MLP,
we conducted a statistical significance analysis using the Mann-Whitney U test, a non-
parametric test used to assess whether one distribution tends to produce higher values than
another without assuming normality [23]. We also report the one-sided Vargha-Delaney Ays
effect size, which quantifies the probability that a randomly chosen value from one distri-
bution exceeds one from another [24]. This analysis was applied to determine whether the
BNN achieved significantly higher values in key metrics, supporting more robust conclusions
about relative model performance.

To evaluate the practical utility of BNN surrogates in a DRL testing pipeline, we inte-
grated each model into a Genetic Algorithm (GA) designed to generate and evolve candidate

environment configurations. We selected the top 10 BNN configurations from the gridsearch
based on validation AUC-ROC and ran each of them in the GA pipeline across three inde-
pendent experiments of 50 episodes. This experimental budget was chosen to strike a balance
between computational feasibility and the ability to observe consistent trends. Effectiveness
was measured by the average number of failures discovered, as defined in

Subsequently, the BNN surrogate with the highest average number of failures was se-
lected for further evaluation. This model was executed in 50 experiments using the GA,
each running for 50 generations, which enabled a more stable estimate of performance and
downstream robustness.

To complement the failure discovery results, we evaluated the diversity of the failures
uncovered by the GA. This analysis considers between two dimensions: input diversity,
which measures variation in the initial environment configurations (e.g., ego position, goal
lane), and output diversity, which captures the variation in the types of failures produced.
For each dimension, we report two metrics: coverage, which quantifies the proportion of the
configuration or failure space explored, and entropy, which measures how evenly failures
are distributed across that space [3]. Together, these metrics assess whether the GA explores
a wide and meaningful range of scenarios or tends to converge on a limited subset of failures.

The BNN’s performance in this extended evaluation was compared against a fixed MLP
baseline, enabling an empirical comparison of their respective capabilities as surrogate mod-
els within a search-based DRL testing framework. To determine the statistical significance of
observed performance differences, we adopted the same methodology as Biagiola et al. L3],
applying the Mann-Whitney U test for significance testing and the Vargha-Delaney Ajs
effect size to quantify the magnitude of the difference between methods.

5 Results

5.1 RQ1.1: Classification Performance

presents the top 10 configurations, reporting performance on the test set with 95%
confidence intervals averaged over five random seeds.

While selecting the single best-performing model might seem optimal, prior work (e.g.,
Bergstra and Bengio) highlights the variability and uncertainty inherent in hyperparameter
tuning [25]. When multiple configurations yield similarly high validation scores, it is common
practice to analyse a top-k subset (in our case, top-10) to ensure robustness to noise and
overfitting on the validation set. This also allows us to evaluate consistency across multiple
seeds and better capture the model’s general performance trend.

The boxplot analysis in reveals distinct performance trade-offs between the
BNN and MLP models. BNNs tend to achieve higher precision and slightly better F1-scores,
with greater variability across runs and configurations. In contrast, the MLP outperforms
the BNN in recall and shows slightly better AUC-ROC scores, with notably more stable
performance.

While the highest-ranked BNN based on validation AUC-ROC achieved strong recall,
it underperformed the MLP baseline on several test metrics, including F1-score and AUC-
ROC. In contrast, the seventh-best BNN configuration demonstrated more robust test per-
formance, outperforming the MLP in accuracy, Fl-score, and AUC-ROC. Given the fact
that this configuration also achieved the best performance in the failure discovery task, we
selected it for direct comparison with the MLP baseline. The full list of hyperparameters
used in this configuration is provided in [Appendix AllTable 2| summarises the results.

Table 1: Top 10 BNN configurations obtained in the grid search ranked by validation AUC-
ROC (averaged over five seeds), using a fixed learning rate (0.01) and a fixed data split (0.1).
Results include 95% confidence intervals. The selected configuration is shaded, and values
exceeding the MLP baseline (Accuracy: 0.784, F1: 0.178, AUC-ROC: 0.697) are highlighted
in bold.

Layers Hidden Under Oversample Augment Weight Loss Accuracy F1 Test AUC-ROC
1 64 True 0.0 False True 0.704 + 0.123 0.159 + 0.017 0.692 £ 0.009
1 64 False 0.0 False True 0.704 + 0.123 0.159 £ 0.017 0.692 £+ 0.009
1 32 False 0.0 False True 0.661 + 0.060 0.153 + 0.012 0.693 + 0.004
1 32 True 0.0 False True 0.661 £+ 0.060 0.153 £ 0.012 0.693 £ 0.004
1 128 False 0.5 True True 0.866 + 0.074 0.220 £ 0.029 0.709 + 0.011
1 32 False 0.5 True True 0.840 + 0.054 0.191 + 0.035 0.701 + 0.011
1 64 False 0.5 True True 0.877 £ 0.014 0.191 + 0.034 0.703 + 0.011
2 32 True 0.0 False True 0.681 + 0.298 0.160 + 0.037 0.661 £ 0.046
2 32 False 0.0 False True 0.681 + 0.298 0.160 + 0.037 0.661 £ 0.046
1 32 False 0.0 True True 0.848 £ 0.037 0.157 £ 0.016 0.682 + 0.010

Precision Recall Fl-score AUC-ROC

o 10 © o
_ 0250 072
025 ° B
0.70
08 0225
020 0.68

0.200

°
- |
015 L —
0.64
0150
o4 0.62
010
0.60
02
005 JE 0100 058
BNN MLP

precision

recall
°
S
f measure
o
el
auc_roc

BNN MLP BNN MLP BNN M
model_type model_type model_type model_type

Figure 3: Distribution of precision, recall, F1l-score, and AUC-ROC for the top BNN con-
figurations on the left (our model) and ten MLP runs on the right (the baseline).

The BNN showed statistically significant improvements in accuracy (p = 0.004, Ay =
1.00) and precision (p = 0.005, A;, = 1.00). For Fl-score, the BNN outperformed the
MLP with a borderline effect (p = 0.069, 12112 = 0.80). However, in terms of recall, the MLP
performed better, though the difference was not statistically significant (p = 1.000, Ay =
0.00). AUC-ROC scores were comparable (p = 0.500, Ay = 0.52). These findings reiterate
the conclusions drawn from and suggest that while BNNs can significantly improve
some metrics, their gains may come at the cost of recall. Nonetheless, the improvement in
precision aligns with the priorities identified in prior work for efficient failure discovery [3].

5.2 RQ1.2: Failure Discovery via Genetic Algorithm

presents the performance of the top 10 BNN configurations in guiding the Genetic
Algorithm (GA) to discover failure cases, sorted by the average number of failures discovered
over three runs.

The best-performing BNN model achieved an average failure discovery of 18.2. This
model was further tested over 50 runs of 50 episodes each. The results are summarised in
[Table 4]

The results in report the performance and diversity metrics for the MLP and
BNN surrogates across 50 runs of the GA. In terms of effectiveness, the BNN-guided GA
identified a greater number of failing environments on average (19.14 vs. 14.98). This

10

Table 2: Comparison of results on the test set between MLP baseline and selected BNN
(7th in validation AUC, 1-layer, 64-hidden, augmented, class-weighted). Bold indicates best
result per metric. Significance tests were applied using one-sided Mann-Whitney U and
Vargha-Delaney Ay,

Metric MLP BNN (Selected) p-value A,

Accuracy 0.784 £+ 0.040 0.877 + 0.014 0.004 1.00

Precision 0.110 + 0.023 0.191 + 0.034 0.005 1.00

Recall 0.477 + 0.043 0.306 £ 0.071 1.000 0.00
F1-Score 0.178 £ 0.031 0.191 £+ 0.034 0.069 0.80
AUC-ROC 0.697 + 0.028 0.703 + 0.011 0.500 0.52

Table 3: Performance of the top 10 BNN configurations in the Genetic Algorithm, ranked
by average number of failures discovered across three runs of 50 episodes.

Layers Hidden Under Oversample Augment Weight Loss | Failures Discovered
1 64 False 0.5 True True 18.2
1 64 False 0.0 False True 16.8
1 32 False 0.0 True True 13.2
1 128 False 0.5 True True 13.0
1 32 True 0.0 False True 11.3
1 32 False 0.0 False True 10.8
1 64 True 0.0 False True 10.0
2 32 False 0.0 False True 9.5
2 32 True 0.0 False True 9.3
1 32 False 0.5 True True 8.3

difference was statistically significant, with a p-value of 1.45 x 10~7 and a Vargha-Delaney
effect size of 0.804, indicating a large effect favouring the BNN.

The diversity of input configurations was comparable between models, as expected, since
both models receive the same environment configuration features as input within the GA.
However, the BNN achieved significantly greater output diversity. In particular, its output
coverage (75.64% vs. 43.36%) and entropy (50.68 vs. 22.06) were both significantly higher,
with p-values of 6.63 x 1071 and 5.04 x 1079, and effect sizes of 0.936 and 0.758 respectively,
both indicating large effects in favour of the BNN.

These results confirm that the BNN surrogate not only discovered more failures but
also a broader and more varied set of failure behaviours. Higher output diversity implies

Table 4: Comparison of diversity and performance metrics between the MLP baseline and
BNN across 50 GA runs where bold means statistically significantly better. Input diversity
is measured by coverage and entropy of input configurations; output diversity is measured
from the coverage and entropy of failure outputs. Statistical significance was determined
using Mann-Whitney U tests with p < 0.05.

Category Metric MLP BNN
Performance Failing Environments 14.98 £+ 3.24 19.14 £ 3.75

L Coverage (%) 50.00 52.00

Tnput Diversity g ooy 0.00 117

. Coverage (%) 43.36 75.64

Output Diversity o opy 22.06 50.68

11

that the BNN-guided GA explored a wider range of distinct failure scenarios, increasing the
likelihood of uncovering rare or unexpected edge cases that a less exploratory model might
miss.

6 Threats to Validity

Construct Validity We define failure as either a collision or a timeout, both of which are
critical and unambiguous events in the Parking environment. Our evaluation uses F1l-score
and AUC-ROC, which are well-suited to binary classification tasks.

Internal Validity Our Multi-Layer Perceptron (MLP) baseline uses the configuration
reported by Biagiola et al. [3], assuming its optimality holds in our adapted setup. All
models use identical train-test data splits and preprocessing to ensure fair comparison. We
averaged results across multiple random seeds and used early stopping to prevent overfitting.
We conducted a grid search over several architectural and imbalance-related hyperparam-
eters, other parameters such as the learning rate, batch size, and optimiser were fixed and
not further tuned, which may limit the performance potential of the BNNs.

External Validity Our model is trained solely on the Parking environment, which may
limit generalisability to other Deep Reinforcement Learning (DRL) tasks. However, the core
methodology of training BNN surrogates on structured environment configurations remains
transferable.

Conclusion Validity We mitigate evaluation randomness by averaging results over
multiple random seeds and report 95% confidence intervals. For RQ1.1 and RQ1.2, we
conduct statistical significance testing using the Mann-Whitney U test and Vargha-Delaney
effect size. However, as our comparisons are limited to a single environment, generalising
these results beyond the studied environment should be done cautiously.

7 Conclusion, Limitations and Future Work

This study set out to compare the effectiveness of Bayesian Neural Networks (BNNs) and
standard Multi-Layer Perceptrons (MLPs) as surrogate models for failure prediction in Deep
Reinforcement Learning (DRL) testing. Prior research relied exclusively on MLP surrogates
and performed minimal hyperparameter tuning, raising the question of whether other ma-
chine learning models could perform better in this task. To this end, we developed and
evaluated a suite of BNN surrogates trained on environment configurations, applying them
to guide a Genetic Algorithm (GA) in prioritised failure discovery.

We found that BNNs could achieve higher metrics, such as precision and F1-score, com-
pared to the MLP. Furthermore, the BNN surrogate significantly outperformed the MLP in
a GA-guided failure discovery task, discovering a greater number and greater diversity of
failures. These results suggest that probabilistic surrogates can enhance the practical utility
of DRL testing pipelines.

Limitations Firstly, the evaluation was restricted to a single environment (Parking),
which limits generalisability to other DRL settings. Secondly, our choice of BNN frame-
work (Blitz) offered practical convenience but may underutilise the theoretical strengths of
Bayesian inference.

12

Future Work Future directions include exploring alternative probabilistic models, such
as Deep Ensembles or Pyro-based BNNs, for more expressive uncertainty modelling. The
surrogate training process could also benefit from a larger or more advanced hyperparameter
search, such as Bayesian optimisation. Finally, applying the surrogate modelling pipeline
to additional DRL environments would help assess the generalisability of the proposed ap-
proach.

In summary, our findings provide empirical evidence that BNNs can be a viable alter-
native to MLPs for surrogate-based failure prediction in DRL, at least within the Parking
environment studied. While not a definitive solution, they showed promising improvements
in failure discovery effectiveness and suggest potential benefits for testing approaches in
reinforcement learning.

8 Responsible Research

This project aims to improve the safety and efficiency of testing in DRL environments by
developing a surrogate model for predicting agent failures. While the model is not deployed
in a real-world setting, responsible research practices were followed throughout.

8.1 Ethical Considerations

The surrogate is designed to reduce computational cost by identifying high-risk configu-
rations before simulation. However, surrogate predictions must be interpreted cautiously
in safety-critical contexts. We evaluate model performance against ground-truth outcomes
from full DRL simulations to mitigate this.

All data used in this study were collected from a simulated environment, the Parking
scenario within the HighwayEnv framework, meaning no real-world agents or humans were
involved. All models were trained and tested on consistent data splits with identical prepro-
cessing and evaluation metrics. To ensure robustness, each experiment was repeated over
five random seeds, and performance is reported as mean scores across runs.

8.2 Reproducibility

All experiments were run on a fixed dataset of 8,790 configurations generated in the Park-
ing environment. Preprocessing steps, training protocols, and hyperparameter settings are
explicitly recorded. The experimental pipeline, including data splits, model definitions, and
search configurations, has been followed as documented in

To account for randomness in model training, we followed the same evaluation practice as
Biagiola et al. [3], using random seeding across five runs for each configuration and reporting
the mean and 95% confidence intervals. The five seeds used in this research are as follows:
21, 22, 23, 24, and 25.

The simulation framework (HighwayEnv), surrogate model (PyTorch + Blitz), and re-
quired dependencies are publicly available or installable via standard package managers.
The full source code for reproducing all experiments and figures is available at: https:
//github.com/rodrigo-montero/surrogate-reloaded.

8.3 Use of Al

Large Language Models (LLMs) were used during the research process to assist with non-
substantive tasks. Specifically, they were used to create the initial LaTeX table skeleton for

13

https://github.com/rodrigo-montero/surrogate-reloaded
https://github.com/rodrigo-montero/surrogate-reloaded

to support the search and summarisation of relevant academic literature, and to
help format the equation presented in in LaTeX. Additionally, Grammarly
Premium was used for grammar and clarity checks; this tool may use AI for some of its
suggestions.

8.4 System Setup

Experiments were conducted on a MacBook Pro (Intel CPU, 16GB RAM) without a dedi-
cated GPU. Full grid searches required between 5-24 hours, depending on the configuration
space. The only additional dependency was the blitz-bayesian-pytorch package.

8.5 Acknowledgements

I would like to thank my professor, supervisor, and fellow research peers for their valuable
guidance, feedback, and collaboration throughout this project.

References

[1] David Silver, Aja Huang, Christopher Maddison, Arthur Guez, Laurent Sifre, George
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis
Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529:484-489, 01 2016.

[2] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-
Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a day,
2018.

[3] Matteo Biagiola and Paolo Tonella. Testing of deep reinforcement learning agents
with surrogate models. ACM Transactions on Software Engineering and Methodology,
33(3):1-33, March 2024.

[4] Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, and A. Aldo
Faisal. The artificial intelligence clinician learns optimal treatment strategies for sepsis
in intensive care. Nature Medicine, 24(11):1716-1720, October 2018.

[5] Netflix Technology Blog. Artwork personalization at netflix - netflix techblog. Medium,
June 2018.

[6] Webmaster. Automatic intelligent parking: Audi at nips in barcelona. Automotive
World, December 2016.

[7] Amirhossein Zolfagharian, Manel Abdellatif, Lionel C. Briand, Mojtaba Bagherzadeh,
and Ramesh S. A search-based testing approach for deep reinforcement learning agents.
IEEF Transactions on Software Engineering, 49(7):3715-3735, July 2023.

[8] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision?, 2017.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Second edition, in progress edition, 2014.

14

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

[22]

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks,
2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight
uncertainty in neural networks, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 1050-1059,
New York, New York, USA, 20-22 Jun 2016. PMLR.

Gabriel Costa. A first insight into bayesian neural networks (bnns). Medium, December
2022.

Pi Esposito, Jonas Fill, Daniel Kelshaw, Hannan4252, Ana Tamais, Ana Tamais, An-
ders U. Waldeland, Kobi Felton, Lucas Kruitwagen, Michal Karbownik, piotr-rarus sh,
Sarthak Pati, Kirill, and sansiro77. piFEsposito/blitz-bayesian-deep-learning. 9 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages 8024-8035. Curran Associates, Inc.,
2019.

Philipp Altmann, Celine Davignon, Maximilian Zorn, Fabian Ritz, Claudia Linnhoff-
Popien, and Thomas Gabor. Surrogate fitness metrics for interpretable reinforcement
learning, 2025.

Alexander Sieusahai and Matthew Guzdial. Explaining deep reinforcement learning
agents in the atari domain through a surrogate model, 2021.

Edouard Leurent. An environment for autonomous driving decision-making. GitHub
repository, 2019. https://github.com/eleurent/highway-env.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay, 2018.

Abbas Gholamy, Vladik Kreinovich, and Olga Kosheleva. Why 70/30 or 80,20 relation
between training and testing sets: A pedagogical explanation. Technical Report UTEP-
CS-18-09, 2018.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321—
357, June 2002.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. volume 06, 06 2006.

15

https://github.com/eleurent/highway-env

[23] Henry B. Mann and Douglas R. Whitney. On a test of whether one of two random
variables is stochastically larger than the other. Annals of Mathematical Statistics,
18:50-60, 1947.

[24] Andras Vargha and Harold Delaney. A critique and improvement of the "cl" com-
mon language effect size statistics of mcgraw and wong. Journal of Educational and
Behavioral Statistics - J EDUC BEHAV STAT, 25, 06 2000.

[25] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281-305, December 2012.

A Final Bayesian Neural Network Hyperparameters

To ensure reproducibility, details the full set of hyperparameters used in the final
BNN model configuration, selected after grid search and robustness analysis.

Table 5: Final hyperparameter values used in the best-performing BNN surrogate model.

Category Value

Number of hidden layers 1

Hidden layer size 64

Activation function LogSoftmax
Optimizer Adam

Learning rate 0.001

Batch size 128

Early stopping Based on validation loss
Patience 10

Test split 0.2

Validation split 0.1

Epochs 40

Training Progress Filter 50

DRL algorithm her

Oversampling ratio 0.5
Undersampling False
Class-weighted loss True

Data augmentation True

Bayesian framework Blitz for PyTorch
Distribution Priors Gaussian (Blitz default)
Seeds used [21, 22, 23, 24, 25]

16

B Genetic Algorithm Pseudocode

The pseudocode in Algorithm outlines the Genetic Algorithm used to discover failing
environment configurations. The primary modification introduced in this work is the choice
of the classifier f, which serves as the fitness function during the search. The rest of the
parameters are kept the same to ensure consistency with prior research.

Algorithm 1: Genetic algorithm for the generation of environment configurations

Input: f, classifier;

PS, population size;

cr, crossover rate;

Ey, set of environment configurations in which the DRL agent failed during training
Output: é, environment configuration to execute the agent on

1 Generate the initial population of environment configurations and compute the corresponding fitness

2 population <— GENERATEPoPULATION(PS, Ef)
s CompuTEFITNESS(population, f)
a currentlteration <+ 0

5 Main loop that changes the population guided by the classifier f until the timeout expires

6 repeat
7 Build the new population by extracting a certain percentage of the best environment configurations
8 newPop < EvuitisMm(population)
9 Fill the rest of the population by evolving the environment configurations
10 while |newPop| < PS do
11 Select the best environment configurations according to their fitness
12 pei < SELECTION(population)
13 pea <+ SELECTION(population)
14 Copy the environment configurations (offspring) to avoid changing the original ones (parents)
15 oe1 + Copry(pe1)
16 oez +— Copry(per)
17 Crossover two environment configurations with a certain probability cr, ensuring their validity
18 if GETRANDOMFLOAT() < cr then
19 L oe1,0ea + CROSSOVER(oe1, 0e2)
20 Mutate the offsprings ensuring their validity
21 oe1 < MuTaTEENVCONFIG(0€])
22 oeg < MuTtaTEENVCONFIG(0€2)
23 /Add the best environment configurations to the population according to their fitness
24 | AppBESTINDIVIDUALS(new Pop, pei, pea, oe1, oez)
25 Compute the fitness of environment configurations in the new population
26 population < newPop
27 CowmpuTEF1TNESS(population, f)
28 Replace the worst environment configurations in the population to avoid stagnation
29 RESEEDPOPULATION (population, currentlteration, Ey)
30 currentlteration <— currentlteration + 1

31 until - timeout();

32 Extract the environment configuration with the best fitness

33 € < GETINDIVIDUALWITHBESTFITNESS(population, f)
34 return é

17

	Introduction
	Background and Motivation
	Reinforcement Learning and Deep Reinforcement Learning
	Surrogate Modelling for Failure Prediction
	Bayesian Neural Networks
	Genetic Algorithms in Failure Discovery
	Testing for Deep Reinforcement Learning Agents

	Approach
	Case Study: Parking Environment
	Data Collection and Preprocessing
	Surrogate Modeling Workflow

	Study Design
	Research Questions
	Evaluation Criteria
	Baseline Model
	Methodology

	Results
	RQ1.1: Classification Performance
	RQ1.2: Failure Discovery via Genetic Algorithm

	Threats to Validity
	Conclusion, Limitations and Future Work
	Responsible Research
	Ethical Considerations
	Reproducibility
	Use of AI
	System Setup
	Acknowledgements

	Final Bayesian Neural Network Hyperparameters
	Genetic Algorithm Pseudocode

