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Abstract

Continuous integration pipelines execute auto-
mated tests on every commit, consuming substan-
tial energy. Batch testing, which groups multiple
commits into a single test run, has been shown to
reduce test executions in simulation studies, but no
prior work has measured whether these reductions
translate into actual energy savings.

This study measures CPU package energy con-
sumption of CI builds under a baseline run-all ap-
proach and two batching strategies (BatchStop4
and linear-4 lwd) across eight open-source Java
projects. BatchStop4 achieves energy savings be-
tween 57% and 88% (mean: 80.3%), while linear-
4 Iwd achieves savings between 59% and 94%
(mean: 85.2%). Energy savings correlate almost
perfectly with time savings (r >0.99), and base-
line failure rate strongly predicts achievable sav-
ings, while CPU utilisation shows no significant re-
lationship. These findings provide empirical evi-
dence that batch testing effectively reduces the en-
vironmental footprint of continuous integration.

1 Introduction

Continuous Integration (CI) is now a standard part of mod-
ern software development workflows: every commit triggers
automated builds and tests that provide rapid feedback to de-
velopers. While this practice improves software quality and
developer productivity, it also results in large volumes of test
executions that consume non trivial computational resources
and energy. Recent work has started to quantify the environ-
mental impact of testing, showing that automated tests can
contribute a significant share of a project’s overall energy
footprint [1]. At the same time, CI providers and organiza-
tions are under pressure to reduce both operational costs and
environmental impact. Data centers, which underpin CI/CD
infrastructure, account for approximately 1% of global elec-
tricity use [2], while the ICT sector overall is responsible for
2% of global carbon emissions [3]. This has driven recent re-
search into carbon-aware CI/CD services that align workflow
execution with low-carbon energy availability [4]. This cre-
ates a growing need for CI strategies that are not only fast and
reliable, but also energy efficient.

One promising direction to reduce CI costs is batch testing,
where multiple commits are grouped into a single build and
test run. Instead of executing the full test suite on every com-
mit, the CI system accumulates commits into batches and
only invokes the test suite once per batch. Prior work has
demonstrated that batching strategies can reduce the number
of test executions by approximately 50% on average across
projects [5], with simple fixed-batch approaches achieving
48% reductions [5] and dynamic batching algorithms offer-
ing comparable savings while adapting to project characteris-
tics [6]. These studies evaluate batch testing algorithms ana-

lytically on historical CI data, simulating test execution sav-
ings without measuring actual resource or energy consump-
tion [5][6]. Conversely, research on the energy impact of soft-
ware testing measures real CI executions but focuses exclu-
sively on standard run-all configurations [1]. This gap means
that the energy implications of batch testing strategies remain
unquantified, despite their demonstrated potential to reduce
test executions.

Bridging this gap is important because simulated reductions
in test executions or build time do not automatically trans-
late into proportional energy savings when the same strate-
gies are deployed on real hardware. The energy usage of a
build is influenced by hardware utilisation, idle and waiting
periods, and the mix of CPU, memory, disk and network ac-
tivity. A shorter build that keeps the CPU near peak utilisation
can consume similar or more energy than a longer build that
spends much of its time waiting for I/O.

This research addresses that gap by measuring the energy
consumption of CI builds under different batch testing
strategies and by relating observed energy profiles to project
and test suite characteristics. The main research question of
this work is:

How do different batch testing approaches affect energy
profiles?

To answer this question, the study focuses on the following
subquestions:

* To what extent do batch testing strategies reduce total
energy per build compared to baseline?

* How do test suite CPU utilisation and baseline failure
rate influence the energy savings of batch testing?

The project tests slightly modified versions of BatchStop4 [5]
and linear-4 lwd [6], one static and one dynamic batch testing
algorithm. Energy usage is recorded with EnergiBridge [7],
an open source tool that records power usage during each CI
build and produces per build energy measurements. For a set
of open source projects, the study replays sequences of com-
mits and runs a baseline configuration that always executes
the full test suite on every commit, alongside the two algo-
rithms. For each build, the study logs energy, build duration,
hardware resource usage and test outcomes.

2 Background and Related Work

This section reviews prior work on batch testing in continu-
ous integration and on measuring energy consumption in soft-
ware testing, establishing the research gap that motivates our
empirical study



2.1 Continuous Integration and Batch Testing

Continuous Integration (CI) is a software development prac-
tice where developers frequently integrate code changes into
a shared repository, with each integration verified by auto-
mated builds and tests [5]. In a standard run-all CI workflow,
every commit triggers a complete build and execution of the
entire test suite. This provides rapid feedback to develop-
ers, helping identify faults quickly, but leads to the maximum
number of test executions. For projects with frequent com-
mits or expensive test infrastructure, this approach becomes
costly in terms of both computational resources and time.

Batch testing addresses this cost by grouping multiple com-
mits together and testing them as a single unit. If a batch
passes, all commits in the batch are considered passing with
only one test execution, saving substantial resources. For ex-
ample, if eight commits are batched together and the batch
passes, seven test executions are saved. However, when a
batch fails, it is not known which commit caused the failure,
requiring additional executions to find the source.

Two main approaches exist for finding failing commits in
batches. Static batching uses a fixed batch size and applies
bisection when a batch fails: the batch is split in half, each
half is tested separately, and the process repeats until individ-
ual failing commits are identified [5]. The BatchStop4 algo-
rithm improves on pure bisection by stopping the bisection
process when the batch size reaches four and testing remain-
ing commits individually, as bisection becomes inefficient at
small batch sizes. Dynamic batching algorithms adjust batch
sizes based on observed failure rates [6]. When failures are
frequent, batch sizes shrink to provide faster feedback; when
the codebase is stable, batch sizes grow to maximize execu-
tion savings. Prior work has shown that both approaches can
reduce test executions by around 50% on average [5][6], mak-
ing batch testing a promising strategy for reducing CI costs.

2.2 Energy Measurement in Software Testing

While batch testing demonstrably reduces the number of test
executions, the relationship between execution count and ac-
tual energy consumption is not straightforward. Energy mea-
surement in software systems has traditionally relied on exe-
cution time as a proxy, assuming that shorter execution times
correspond to lower energy consumption. However, this as-
sumption breaks down in practice because energy consump-
tion depends on hardware utilization patterns, not just dura-
tion.

Modern processors support hardware-based energy measure-
ment through Running Average Power Limit (RAPL) inter-
faces, which expose energy counters via model-specific reg-
isters (MSRs). Tools such as EnergiBridge leverage these
interfaces to measure the actual energy consumed by CPU
packages during program execution [1]. These measurements
capture the cumulative energy draw over time, accounting for
variations in CPU utilization, frequency scaling, and power

states.

3 Research Design

This section describes the empirical study design used to
measure the energy consumption of batch testing strategies
in CI. Furthermore, I go over the study setup and research
questions, subject systems, experimental environment, en-
ergy measurement instrumentation, analysis methods, and the
approach used to adapt batching algorithms to public reposi-
tory histories.

3.1 Study Design and Research Questions

This study addresses the following research questions:

RQ1: To what extent do batch testing strategies reduce total
energy per build compared to baseline?

RQ2: How do test suite CPU utilisation and baseline failure
rate influence the energy savings of batch testing?

To answer these questions, this study presents an empirical
evaluation of batch testing strategies that executes real con-
tinuous integration (CI) builds on open source Java projects
and measures their energy usage on a dedicated machine.
For each project, the experiment replays a fixed sequence of
160 commits from the main development branch and runs the
CI pipeline under three configurations: a baseline configura-
tion that executes the full test suite on every commit, a static
batching strategy (BatchStop4), and a dynamic batching strat-
egy (linear-4 lwd). All builds are executed on bare metal on
the same host in order to avoid interference from virtualisa-
tion or multi-tenant scheduling.

The unit of analysis in this study is a single commit and its
associated CI build. For each project and each configuration,
the experiment walks through the 160 selected commits in
chronological order from oldest to newest and triggers one
CI build per commit slice, or one build per batch in the case
of batching strategies. The baseline configuration invokes the
full test suite on every commit. The BatchStop4 configura-
tion groups commits into fixed-size batches of 8 commits,
and bisects on failure until the batch size reaches 4, then goes
commit by commit. The linear-4 lwd batching configuration
adjusts batch sizes based on the observed failure rate, while
falling back to BatchStop4 behaviour when a batch fails.

For each build, the experiment records the build exit code,
wall-clock duration, test outcome, hardware utilisation met-
rics, and CPU package energy usage measured by EnergiB-
ridge. Energy measurements are collected at 100 millisecond
intervals over the duration of each build, starting when the
build command is invoked. The failure status of a commit or
batch is determined from the exit code of the Maven or Gra-
dle command. To reduce the impact of transient effects such
as dependency downloads and just-in-time compilation, each



project and configuration is preceded by a warm-up build that
is not included in the analysis. Between successive builds, a
fixed idle period of 10 seconds is enforced to allow the system
to return to a stable state.

To account for measurement noise and potential flakiness,
each project—configuration combination is executed three
times. For every project, the failure rate observed under
the baseline configuration is compared across repeats. If the
baseline failure rates differ between repeats, the project is
classified as flaky and excluded from further analysis, since
in that case it is not possible to attribute differences between
batching strategies to the batching behaviour rather than to
unstable tests. This filtering excluded 10 projects from the
original candidate set. All other runs are retained, and their
per-build measurements form the dataset used in the subse-
quent analysis.

3.2 [Energy measurement setup

Energy consumption is measured with EnergiBridge version
0.0.7 [7]. In this study, the measurement scope is limited
to CPU package energy. Other components such as DRAM,
GPU, IO and storage devices are not included.

For each build, a dedicated EnergiBridge process is started
immediately before the build command is issued and stopped
as soon as the build completes. EnergiBridge samples the
MSR counters at a fixed interval of 100 ms and writes the
raw samples for that build into a plain-text log file, with one
log file per build. Each sample record contains a timestamp,
the instantaneous power estimate for the CPU package, and
basic system utilisation information.

These raw per-build logs are not used directly in the analysis.
Instead, a Python script post-processes them into a structured
execution log, exec_log.csv. For each build, the script in-
tegrates the power samples over time to obtain the total en-
ergy consumption in joules, computes the wall-clock time of
the build from the first and last samples, and derives the av-
erage CPU utilisation during the build interval. The resulting
execution-level dataset contains one row per build, with fields
such as:

* repo: the project under test,

e strategy: the batch testing strategy or the baseline
configuration,

* tested_commit_sha: the head commit of the (possibly
batched) commit slice,

e wall_time_seconds: the end-to-end build duration in
seconds,

e cpu_package_energy_joules: the total CPU package
energy consumed by the build, expressed in joules,

* avg_cpu_usage._percent: the average CPU utilisation
of the processor during the build, expressed as a percent-
age.

This exec_log.csv file serves as the main input for subse-
quent aggregation into a higher-level summary dataset, which
is then used for the statistical analysis of energy usage and
performance across projects and batching strategies.

3.3 Subject systems and CI configuration

The experiment is conducted on eight open source
Java projects obtained from public GitHub reposito-
ries. Seven of these projects are Apache Commons li-
braries (commons-1lang, commons-compress, commons-io,
commons-jxpath, commons-logging, commons-scxml,
and commons-text), built with Maven. The eighth project
is Apache Lucene, built with Gradle. These projects are se-
lected because they are actively maintained, provide non triv-
ial test suites, and collectively cover a range of test failure
rates and CPU utilisation profiles. For each project, the mas-
ter branch is used and the experiment replays the 160 most
recent commits at the time of the study. The same 160 com-
mit slices are used for all configurations in order to enable
a direct comparison between batch testing strategies and the
baseline.

For the Maven based projects, each CI build is invoked with
the command mvn clean test, which performs a clean
build followed by the full test suite. For Lucene, builds are
invoked with ./gradlew cleanTest test, which clears
previous test results and then runs all tests. In both cases,
the default project specific build and test configurations are
used without modification. Build tool level behaviours such
as compiler and dependency caching are left at their defaults,
but all build caches are cleared once at the start of each ex-
periment to ensure that the first warm up build populates them
consistently.

For each project and configuration, the experiment replays
the selected commits in chronological order from oldest to
newest. A lightweight Python driver script checks out the
appropriate commit between builds and triggers the Maven
or Gradle command while simultaneously starting the energy
measurement tool. The exit code of the build command is
used to classify each commit slice or batch as passing or
failing. In addition to energy and duration, the experiment
records average CPU utilisation per build, which is later used
as an empirical proxy for how computationally heavy it is.
The failure rate observed under the baseline configuration
serves as the reference failure rate for each project and is used
to characterise differences in how projects respond to batch-
ing.

3.4 Experimental environment

All experiments are executed on a dedicated desktop machine
to avoid interference from other workloads and from virtual-
isation layers. The host is equipped with an AMD Ryzen 7
9800X3D processor with 8 physical cores and 16 hardware
threads, all of which are available to the operating system
and may be used by the builds. The system has 48 GB of



DDRS5 memory (Patriot Viper Xtreme 5, 5600 MHz) and uses
a Samsung 850 EVO 500 GB solid state drive as the operating
system and build volume.

The operating system is Kubuntu 22.04.3 LTS with Linux ker-
nel version 6.14.0-36-generic. The machine runs a fresh in-
stallation of the operating system, with only the build tools
and dependencies required for the subject systems installed
in addition to the default packages. The machine is not used
for any other tasks while the experiments are running, and no
user facing applications are launched during data collection.
Standard power management and CPU frequency scaling set-
tings are left at their distribution defaults, so that the results
reflect a realistic developer workstation configuration rather
than a laboratory tuned system.

All automatic software update services and scheduled main-
tenance tasks are disabled for the duration of the experiments.
The energy measurement tool, build tools and measurement
script are the only long lived user processes. A replica-
tion package containing the measurement script, configura-
tion files and instructions for reproducing the environment
have been published [8].

3.5 Adapting batching to dependent commits in
GitHub histories

Commit batching is typically described under an indepen-
dence assumption: commits are treated as distinct changes
that can be accumulated into a batch before any test feedback
is available. Public GitHub repositories violate this assump-
tion in two ways. First, commits in the master branch are
dependent in the sense that a newer commit already contains
all earlier commits in the sequence. Second, the published
commit history reflects development decisions that may have
been influenced by CI feedback that would have been delayed
under true batching.

To account for commit dependence, I adapt the batching algo-
rithms as follows. A batch is evaluated by checking out and
executing only the head (most recent) commit of that batch. If
the head commit passes, all commits in the batch are treated
as passing. If the head commit fails, the batch is split and
the same head-only evaluation rule is applied recursively to
the sub-batches, using the culprit-finding logic of the active
strategy.

This adaptation enables real build execution on public his-
tories, but it introduces two limitations. First, failing inter-
mediate commits may be masked by subsequent fixing com-
mits, which can lead to underestimation of failure rates com-
pared to a setting with independent commits. Second, the
feedback-delay aspect of batching cannot be realistically sim-
ulated, because the evaluated commit sequence already exists
with knowledge of historical outcomes, whereas in an online
batching setting the outcomes would only be known after the
entire batch has executed.

3.6 Analysis methods

The execution log produced by the experiment contains one
row per executed build, including baseline per-commit builds
and the builds triggered by batching (batch-head executions,
bisection sub-batches, and commit-by-commit fallback exe-
cutions).

Aggregation. Analysis is performed at two levels:

* Per-build level: used to compute descriptive quantities
such as build duration, CPU package energy, and aver-
age system CPU utilization for each executed build.

* Per-repository level: used to compare overall energy
and time consumption between strategies. For each
repository r, strategy s, and repeat k, total energy and
total time are computed by summing over all executed
builds in that run:
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In the equations above, B(r, s, k) is the set of executed builds
observed for repository 7 under strategy s in repeat k, E; is
the CPU package energy of build ¢ in joules, and T; is the
wall-clock duration of build ¢ in seconds. Energy is also re-
ported in watt-hours (Wh) using:

~ 3600’

where Ewyy is energy in watt-hours and Ej is energy in
joules.
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Relative comparisons to baseline. For each repository, rel-
ative energy and time savings are computed by comparing a
strategy against the baseline totals of the same repository and
repeat. Energy savings Sg and time savings St (in percent)
are defined as:

Ersk
Sp(r,s, k) = 100 - (1 - k) , 3)
Er,baseline,k
Ty
Sp(r, s, k) =100 - (1 - k) . 4)
Tr,baseline,k

Here, E; pascline,k and T haseline,k denote the baseline totals
for repository r in repeat k.

Repeats and stability. Each repository—configuration pair
is executed three times. Repositories whose baseline failure
rate differs across repeats are excluded as flaky (as described
earlier in Section 3.1).

Project characteristics used for interpretation. Two de-
rived project characteristics are computed and later compared
to relative energy savings:



* Baseline average CPU utilization Chygejine(7), defined
as the mean of the per-build average system CPU utiliza-
tion over baseline builds of repository 7 (averaged across
repeats).

* Baseline failure rate Fi,jine(7), defined as:

Niaitea(r)
Fraseli = —2 5
basel ne(r) ]Vtotal(r) 4)
where Npjiea () is the number of failing baseline builds
and Ny (1) is the total number of baseline builds for
the 160-commit replay of repository 7.

Visualization and descriptive association. Results are
presented using (i) grouped bar charts of absolute and nor-
malized total energy per repository, and (ii) scatter plots com-
paring time savings to energy savings and relating baseline
characteristics (Chaseline and Fhaseline) to relative energy sav-
ings.

4 Results

This section presents the empirical findings on energy con-
sumption under batch testing strategies. The analysis is or-
ganized to directly address the two research questions posed
in Section 3, reporting both relative savings percentages and
absolute energy consumption in watt-hours (Wh) per reposi-
tory.

4.1 RQI1: Energy Impact of Batch Testing

Research Question 1: 7o what extent do batch testing strate-
gies reduce total energy per build compared to baseline?

To quantify energy savings, the notion of ’savings” is defined
explicitly. Energy savings Sg and time savings St (both in
percent) are calculated as:

E,
SE:100-<1—5‘”““‘9>, ST:100-(1—

baseline

Tstralegy )

baseline

Here, FEyaseline 1S the total baseline energy consumption (in
Wh) for a repository, Egqaegy 18 the total energy consumption
(in Wh) under a batching strategy, Thaseline 1S the total baseline
execution time, and Tiaeqy 1S the total execution time under
a batching strategy.

Energy and time savings relative to baseline

Figure 1 compares time savings and energy savings across
repositories for both strategies. The points lie close to a diag-
onal trend, indicating a strong positive relationship between
time reduction and energy reduction: repositories that save
more execution time also tend to save more energy. Pearson

correlation analysis between time savings and energy savings
yields 7 = 0.9999 with p = 1.16 x 10~ 2 for BatchStop4, and
r = 1.0000 with p = 2.77 x 10~ 14 for linear-4 lwd, confirm-
ing a statistically significant linear relationship. This is con-
sistent with the expectation that reducing CI wall-clock du-
ration reduces total energy consumption when average power
draw remains within a comparable range.

Time savings vs energy savings (relative to baseline)
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Figure 1: Time savings versus energy savings relative to baseline.
Each point corresponds to one repository and one strategy. The near-
diagonal clustering indicates that larger time reductions generally
coincide with larger energy reductions.

Relative energy consumption by repository

Figure 2 shows the relative total energy consumption per

repository, expressed as the ratio % (baseline is nor-
malised to 1.0). Both strategies reduce total energy well be-
low baseline across all repositories. The magnitude of the
reduction varies by project, ranging from approximately 57%
to 94% energy savings, indicating that the effectiveness of

batching is project dependent.

Absolute Energy Consumption

To complement normalized values, Table 1 reports absolute
total energy in Wh, highlighting the spread in baseline energy
consumption between repositories. Even when two reposito-
ries achieve similar relative savings, the absolute Wh reduc-
tion can differ substantially due to different baseline magni-
tudes. This distinction matters for practical impact, since im-
proving a high-consumption repository yields larger absolute
savings. Commons-lang is a notable outlier in resource con-
sumption: its test suite runs approximately ten times longer
than other projects in the sample, maintaining over 80% CPU
utilisation throughout execution.



Table 1: Total energy consumption per repository in watt-hours (Wh) for each strategy, with relative savings compared to baseline.

Repository Baseline BatchStop4 Linear-4 LWD BS4 Savings L4 Savings
(Wh) (Wh) (Wh) (%) (%)
commons-lang 3029.00 1150.46 1061.13 62.0 65.0
lucene 375.86 45.92 22.93 87.8 93.9
commons-io 233.87 29.28 14.62 87.5 93.7
commons-compress 105.76 13.39 6.60 87.3 93.8
commons-text 58.67 7.42 3.70 87.4 93.7
commons-scxml 29.89 12.84 12.34 57.0 58.7
commons-jxpath 16.82 2.12 1.06 87.4 93.7
commons-logging 9.10 1.30 0.99 85.7 89.2
" S O PR RS S0 s project characteristic.
: CPU Utilization and Energy Savings
gw Figure 3 relates baseline average CPU utilization to achieved
' energy savings for both strategies. Across repositories, base-
for line CPU utilization varies from approximately 10% to 82%,
however similarly high relative energy savings are observed
" e for both low and high utilization projects, as well as lower
« < &@Q«é’@ R A & energy savings at various utilization rates.

Figure 2: Relative total energy per repository, normalized by base-
line (Epaseline = 1.0). Lower bars indicate better energy reduction.
Both strategies reduce energy consumption, with linear-4_lwd
typically slightly lower than BatchStop4.

Answer to RQ1

Both batch testing strategies substantially reduce total en-
ergy consumption compared to the baseline run-all approach.
Across the eight evaluated repositories, BatchStop4 achieves
energy savings ranging from 57.0% to 87.8% (mean: 80.3%,
median: 87.3%), while linear-4 lwd achieves savings ranging
from 58.7% to 93.9% (mean: 85.2%, median: 93.7%). The
strong correlation between time and energy savings (Batch-
Stop4: r = 0.9999, p = 1.16 x 107'2; linear-4 Iwd:
r = 1.0000, p = 2.77 x 10~'4) indicates that batching strate-
gies reduce energy consumption primarily by reducing total
execution time. However, the magnitude of savings varies
substantially by project, suggesting that project-specific char-
acteristics influence the effectiveness of batch testing.

4.2 RQ2: Influence of Test Suite CPU utilisation

Research Question 2: How do test suite CPU utilisation and
baseline failure rate influence the energy savings of batch
testing?

To investigate whether CPU utilisation affects the energy ef-
ficiency of batch testing, baseline average CPU utilization is
compared against achieved energy savings. Additionally, the
influence of baseline failure rate is examined as an alternative

Pearson correlation analysis confirms no significant relation-
ship between baseline CPU utilization and energy savings:
BatchStop4 has r = —0.138 with p = 0.745, and linear-4
Iwd has r = —0.137 with p = 0.746. In other words, no
correlation is evident between baseline CPU utilization and
relative energy savings in this dataset.

o Baseline CPU usage vs energy savings (both strategies)
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Figure 3: Baseline average CPU usage Chaseline (in percent)

versus energy savings Sg (in percent) for BatchStop4 and
linear-4_1wd. No clear correlation is visible in this dataset.

In comparison, Figure 4 shows that baseline commit fail-
ure rate is strongly associated with relative energy savings:



repositories with higher baseline failure rates tend to exhibit
lower energy savings. Pearson correlation coefficients are
r = —0.997 with p = 4.93 x 10~8 for BatchStop4 and
r = —0.994 with p = 5.04 x 107 for linear-4 Iwd, indi-
cating a statistically significant negative relationship. This
pattern is clear and consistent across both strategies, suggest-
ing that the frequency of failures is a stronger predictor of
achievable energy reduction than CPU utilization.

Baseline average CPU usage is denoted by Chaseline (in per-
cent), where Chpaseline 1S the mean CPU utilization observed
during baseline executions. Baseline failure rate is denoted
by Fhaseline and defined as:
Nhajled

K baseline Ntotal ) (7)
where Npjeq 1S the number of failing baseline commits and
Niotal 18 the total number of baseline commits evaluated for
the repository.

o5 Baseline failure rate vs energy savings (both strategies)
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Figure 4: Baseline failure rate Fhaseline Versus energy savings Sg for
BatchStop4 and linear-4_lwd. Higher baseline failure rates are
associated with lower savings.

Answer to RQ2

Test suite CPU utilization, does not significantly influence the
energy savings achieved by batch testing strategies (Batch-
Stop4: r = —0.138, p = 0.745; linear-4 lwd: r = —0.137,
p = 0.746). This suggests that the energy benefits of batching
are independent of whether test suites are CPU-intensive or
I/O-bound. In contrast, baseline commit failure rate strongly
predicts energy savings, with a significant negative correla-
tion (BatchStop4: » = —0.997, p = 4.93 X 1078; linear-4
Iwd: » = —0.994, p = 5.04 x 10~7). Projects with higher
failure rates achieve lower energy savings because batching
must frequently bisect or test commits individually to identify
failures, reducing the opportunity for execution savings. This
finding indicates that batch testing is most energy-efficient for
projects with stable codebases and infrequent test failures.

5 Responsible Research

This study was conducted with attention to both environmen-
tal impact and scientific reproducibility.

5.1 Environmental Considerations

The experiments required substantial computational re-
sources, with baseline runs alone consuming over 3,700 Wh
across all projects and configurations. To minimise the envi-
ronmental impact of this energy-intensive research, all exper-
iments were executed on a machine powered entirely by re-
newable energy. Additionally, the heat generated by the hard-
ware during extended test runs was used to supplement space
heating, to make sure that thermal output was not wasted.

5.2 Reproducibility

To support replication and extension of this work, the scripts
used to run the experiments were made publicly available [8].
The study uses EnergiBridge, an open-source energy mea-
surement tool, and standard build tools (Maven, Gradle). The
experimental hardware and software environment are fully
described in Section 3.4.

5.3 Ethical Considerations

This study involved no human participants and required no
ethical approval. No external funding was received; this work
was conducted as part of the CSE3000 Research Project at TU
Delft.

5.4 AI Use Disclosure

Generative Al tools were used to implement parts of the ex-
periment automation script [8], the prompts used are included
in Appendix A. The batching algorithm logic is human writ-
ten; generative Al code was used for automating git, iterating
through commits, parsing EnergiBridge output, compiling the
results into CSV and preparing the script for publishing in
a replication package. All generated code was thoroughly
checked and tested before use in live experiments. The text in
the paper is human written; no Al tools were used to generate
text or find sources.

6 Discussion

This section interprets the empirical findings, relates them
to prior work, discusses practical implications, and acknowl-
edges limitations of the study.



6.1 Comparison to Prior Work

Relating these results to prior batching studies is difficult
due to methodological differences. Unlike traditional batch-
ing simulations that assume independent commits [5][6], this
study evaluates batches by testing only the head commit.
When the head passes, all commits in the batch are marked
as passing, which means failing intermediate commits can be
masked by succeeding fixes. This likely inflates savings esti-
mates for low failure rate projects compared to scenarios with
truly independent commits.

The results match these expectations. For projects with zero
baseline failures (such as Lucene and commons-jxpath), this
study observes 87-94% energy savings, substantially higher
than the 60-70% execution savings reported by Beheshtian et
al. [5] for their lowest failure rate projects (7-10%). This gap
likely reflects the dependent commit methodology: when the
head commit passes, intermediate failures are masked, inflat-
ing savings estimates. Meanwhile, commons-scxml, with a
36% failure rate, achieves only 57-59% savings. Prior work
suggested that batching becomes ineffective above 40% fail-
ure rate [5], and this result shows diminishing but still mean-
ingful returns as that threshold approaches.

A fundamental limitation of any experiment ran on historical
commits is that batching cannot be evaluated in a way that
reflects real deployment. In practice, batch sizes and feed-
back timing influence developer behaviour: the same project
with and without batching would produce different commit
sequences and different failure rates overall. This feedback
loop cannot be captured when replaying an existing commit
history.

6.2 CPU Utilisation and Energy Savings

The lack of correlation between baseline CPU utilisation
and energy savings is particularly visible when comparing
projects with identical failure rates but different CPU utili-
sation. Lucene and commons-jxpath both have zero test fail-
ures, but their average CPU usage differs substantially (82%
versus 33%). Despite this, both achieve nearly identical rel-
ative savings (87.8% and 87.4% for batchstop4, 93.9% and
93.7% for linear-4 lwd respectively). This suggests that the
relative benefit of batching does not depend on whether a test
suite is CPU-intensive, at least when measuring CPU package
energy.

However, this finding may partly reflect a measurement lim-
itation. EnergiBridge captures only CPU package and does
not account for DRAM, storage, or network energy consump-
tion. Test suites with lower CPU utilisation may consume
more energy in these unmeasured components. Future work
with broader measurements could clarify whether batching
benefits differ for I/O heavy versus computation-heavy work-
loads.

6.3 Practical Implications

The strong negative correlation between baseline failure rate
and energy savings has a clear practical implication: batch
testing delivers the largest energy benefits for projects with
stable test suites. Teams considering batching should first ad-
dress sources of test instability, as frequent failures force bi-
section or individual testing that lowers the efficiency gains.
For projects already achieving low failure rates, even simple
static batching strategies can reduce CI energy consumption
by over 85%. However, even with higher failure rates, there
are significant savings. Prior work using simulations sug-
gested that the break even point for static batching algorithms
is around 40-45% failure rate[5]. This study did not include
any projects above this threshold, but commons-scxml, with a
36% failure rate, still achieved 57-59% energy savings. This
suggests that batching remains worthwhile even for moder-
ately unstable projects, though future work should evaluate
projects closer to and beyond the theoretical break-even point
to determine where energy savings become negligible or neg-
ative.

6.4 Threats to Validity

Several factors limit the generalisability of these findings.
The sample of eight Java projects, while spanning differ-
ent sizes and failure rates, may not represent other lan-
guages, build systems, or CI configurations. The use of a
single desktop machine avoids virtualisation overhead but
does not reflect cloud CI environments where resource shar-
ing and scheduling introduce additional variability. Finally,
restricting energy measurement to CPU packages means that
projects with significant I/O or memory activity may have
unmeasured energy costs that differ between batching strate-
gies.

7 Conclusion and Future Work

This study presents the first empirical measurement of en-
ergy consumption under batch testing strategies in continu-
ous integration. By executing real CI builds on eight open-
source Java projects and measuring CPU package energy with
EnergiBridge, the results show that both static and dynamic
batching strategies substantially reduce energy consumption
compared to the standard run-all approach.

BatchStop4 achieves energy savings between 57% and 88%
(mean: 80.3%), while Linear-4 LWD achieves savings be-
tween 59% and 94% (mean: 85.2%). The near-perfect corre-
lation between time savings and energy savings (r >0.99) in-
dicates that batching reduces energy primarily by reducing to-
tal execution time. Baseline failure rate emerges as the domi-
nant predictor of achievable savings: projects with stable test
suites benefit most, while higher failure rates lower efficiency
gains through repeated bisection. CPU utilisation, by con-
trast, shows no significant relationship with energy savings in
this dataset.



These findings have practical implications for teams looking
to reduce the environmental footprint of their CI pipelines.
Even simple static batching can yield substantial energy re-
ductions for projects with low failure rates, while dynamic
strategies offer modest additional benefits.

7.1 Future Work

Several directions remain for future research. First, this
study measures only CPU package energy; incorporating
DRAM, storage, and network energy consumption could re-
veal whether batching benefits differ for I/O-heavy versus
compute-heavy test suites. Second, the sample of eight Java
projects limits generalisability; future work should evaluate
batching across different languages, build systems, and CI
configurations. Third, all experiments ran on a single desk-
top machine; cloud CI environments introduce resource shar-
ing and scheduling variability that may affect energy profiles
differently. Finally, historical commit history cannot capture
how batching influences developer behaviour; a longitudinal
study of batching deployed in active projects would provide
insight into real-world energy impacts.

A Appendix: Generative AI prompts

The prompts used for code generation during the implemen-
tation of the scripts used to run the experiments for this study
are listed below

* ”Included in the projects files are python scripts with
logic for two batch testing algorithms. Your task is to
implement functionality to tie these together, in addi-
tion to a baseline algorithm which runs all commits by
default, into an experiment script to be used as a com-
mand line tool to automate runs of these algorithms and
compare their results. The script must call EnergiBridge,
which can be called system wide through the syntax pro-
vided in energibridge_documentation.md. A sample en-
ergibridge results file is provided, named energibridge-
sample.txt. The script must iterate through commits
from the head of the branch in the repositories cloned
into folders under /projects. The script must invoke en-
ergibridge before each build run and save its output un-
der /results/eb. Those outputs must be parsed after a suc-
cessful run, and converted into CSV format under /re-
sults/raw, which must list every build ran as a separate
row, and /results/summary, which must list every algo-
rithm run for each project as a separate row. The results
CSV formatting specifications are defined in outputfor-
mat.md.”

* “Prepare the experimental scripts for use in a replica-
tion package. Replace all absolute paths with relative
paths, clear the configuration files of project specific en-
tries and replace them with placeholders explaining the
syntax. Do not touch any of the run logic.”
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