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Abstract

With a fast increasing use of composite materials in aerostructures, industry demands design tools capable of
reducing experimental tests while providing reliable data. Multiscale simulations enable modeling and anal-
ysis of fracture processes at the microscale, thus delivering higher accuracy and fundamental information
about crack processes which phenomenological models cannot capture.

In this thesis, the fracture processes developing in composite laminates are studied. Moreover, special fo-
cus is given to the influence of anisotropy in fracture simulations of microstructural domains and thus, their
feasibility. To achieve this, the in-house multiscale framework by Turteltaub et al. [94] has been extended
to account for multi-ply laminates. The framework features a pre-processing and post-processing which are
performed in Python. Moreover, Abaqus is used to conduct the finite element analyses. A key characteris-
tic of the framework is its intrinsic implementation, in which zero-thickness cohesive elements are inserted
between all the solid elements of the domain. This approach enables to naturally model crack initiation and
propagation in random directions, as well as crack coalescence and branching.

In the context of the in-house developed multiscale framework, several advances have been achieved to-
wards obtaining Hill-Mandel compliant effective traction separation laws (ETSLs). A critical review of the
previous homogenization relations was performed, and two alternative energy-consistent homogenization
methods have been proposed: traction-based and opening-based homogenization. These alternative ho-
mogenization methods are key to comply with the Hill-Mandel condition and thus retain energy and power
equilibrium between scales. Additionally, a new relation has been proposed for the calculation of geometri-
cally accurate effective openings.

Furthermore, the framework’s computational implementation has been renewed and several new fea-
tures are presented raising the accuracy and control over the integrated quantities. For instance, crack-path
integration has been corrected by properly re-orienting the crack elements’ normal vectors. Consistency in
the shear and mixed mode results has been achieved. Additionally, a crack recognition algorithm has been
set, which allows to separate the fracture energy contributions when multiple main cracks propagate, and
thus produce separate ETSLs for each crack autonomously.

Finally, the new methods were verified, and a convergence study was performed to study the influence
of the mesh grid and the domain size. Moreover, it was found that periodic boundary conditions have an in-
fluence on the crack propagation upon localization, thus restricting the applicability of the multiscale frame-
work.
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1
Introduction

The massive introduction of composite materials in aerospace structures during the last decade has increased
the demand for design tools able to partly replace the expensive structural tests required by certification au-
thorities. In this context, advanced simulation methods provide a powerful approach to reduce experimental
testing costs and shorten design cycle times [13, 59].

By implementing fundamental modeling, multiscale simulations capture fracture processes at the micro-
scopic level (µm). This is crucial for composite materials in which fracture entails highly complex nonlinear
processes developing at the micro level. Furthermore, thorough understanding of fracture processes is essen-
tial to realize the full potential of advanced materials in structural applications. For instance, micro-structural
modeling enables researchers and engineers to virtually tailor composite materials, paving the road for mi-
crostructural modification [74]. The success of these approaches will result in more accurate simulations,
more efficient designs and subsequently, reduction of costs, material and weight savings, and environmental
benefits.

In this context, an in-house multiscale simulation framework [94] has been developed to predict fracture
initiation and propagation in composite materials. The framework presents a novel approach to extract ef-
fective traction-separation laws (ETSLs) based on Hill-Mandel compliant post-processing for both bulk and
fracture regions. However, there is a need to expand the capabilities of the framework and to improve its pre-
dicting performance, particularly when dealing with complex loading modes and multi-crack propagation
[39]. With this aim, a new computational implementation is required to allow for flexible multi-phase mesh
generation and finite element analysis (FEA) results post-processing.

This project aims to extend the current theory and computational implementation with three main objec-
tives. First, to extend the framework to simulate fracture in multi-directional composite laminates, account-
ing for combined failure mechanisms. Second, to refine the theory presented in [94] in order to solve known
implementation problems and improve the fracture predictions. Third, to study the impact of anisotropy
in the obtention of effective quantities using the developed framework. Hence, the project objective can be
defined as follows:

The research objective of this project is to contribute to the development of accurate fracture prediction
methods, focusing on the study of the influence of anisotropy on the fracture behavior of micro-structural
composite models. This objective is achieved by extending and applying a multiscale framework to simulate
fracture initiation and propagation in idealized multi-directional laminates, and by solving known theoretical
and computational hurdles reported by previous researchers.

The document is structured as follows: in chapter §2 a literature review is provided. The methodology
is explained in chapter §3. Then, the numerical implementation is addressed in chapters §4 and §5. The
verification of the results is presented in chapter §6. A review on the application of newly found material
properties is studied in chapter §7. Finally, conclusions and recommendations are given in §8.
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2
Literature Review

This literature review aims to provide a foundation to define research questions and give a clear overview
of the state of the art in the field. The subject of this proposal encompasses several fields within structural
mechanics, making it highly multidisciplinary. Thus, fundamental fracture mechanics, failure criteria, ad-
vanced finite element modelling implementations for fracture simulation, and the most up-to-date research
in multiscale simulations is covered.

2.1. Fundamentals of Fracture Mechanics

Fracture mechanics is the branch of engineering science that studies failure in solids due to crack initiation
and propagation and is nowadays one of the key topics in engineering. Since the invention of the first tools,
fracture has been a problem for humankind. However, it gained special importance during the Industrial
Revolution due to the massive introduction of steel products and structures. Back then, the poor under-
standing of fracture phenomena lead to unexpected failures at sub-critical operation stresses, and engineers
were forced to use large safety factors. Thus, small cracks were set aside as inevitable annoyances in struc-
tures. However, this changed during the World War II as the spectacular fractures of the Liberty ships due to
cold embrittlement brought great attention to the study of fracture.

In parallel, the fast development of aviation and the occurrence of tragic accidents also demanded an ur-
gent need for fracture understanding and new design tools. As a consequence, since the 50s there has been an
incredible progress in this branch of engineering sciences. The work lead by Irwin (based on the pioneering
works of Griffith and Westergaard) and many others contributed to the development of the methods we use
today. Nevertheless, the increasing introduction of composites into the aerospace industry demands further
research. Overall, the failure mechanics of composite materials pose a a great challenge and their complex
fracture patterns and microscopic failure behavior demand a new set of methods able to predict failure onset
and propagation.

2.1.1. Linear Elastic Fracture Mechanics (LEFM)

Linear Elastic Fracture Mechanics (LEFM) describes crack propagation in bodies based on the assumption
that the solid shows linear elastic deformation. Thus, LEFM is only applicable in those cases in which plastic
deformations are small compared with the crack size, or in other words, under small-scale Yielding (SSY).
However, several extensions from LEFM have been developed to deal with non-linear material behaviors
under certain circumstances. One of the most noticeable characteristics of LEFM is the prediction of an
inverse square-root singularity at crack tip [86]. As a consequence, stress values in the proximity of crack tips
approach infinity providing unrealistic results.

Griffith criteria
The work of Griffith [34] represents the beginning of fracture mechanics as an engineering science. Motivated
by the discrepancy between the theoretical and the real strength of solids, Griffith postulated the existence

3
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of microscopic flaws in solids, and argued that failure was the product of their growth and propagation. By
applying the principle of minimum potential energy to the fracture of solids, Griffith formulated that the
cracks would propagate if the internal energy release dΠ

d A during crack growth overcame the required energy

to create new crack surfaces dWs
d A .

dΠ

d A
+ dWs

d A
≤ 0 (2.1)

Years before, Inglis [43] had already described the stress concentration due to elliptical holes in elastic
plates under tension (2.2). However, infinite stresses are predicted for sharp cracks (b = 0), no matter how
small the applied load. In reality, the discrete nature of atomic distances and the appearance of plasticity
hinder this behavior. In order to circumvent the limitations of Inglis solution, Griffith determined the energy
release of a crack in an elastic plate which, combined with his minimum potential energy formulation yield
the Griffith fracture criteria for plane stress and plane strain (2.3).

σpeak =σ
(
1+2

a

b

)
(2.2)

σcr,planestress =
√

2Eγ

πa
; σcr,planestrain =

√
2Eγ

π
(
1−ν2

)
a

(2.3)

The Griffith criterion is accurate when predicting the strength of brittle materials. However, large inaccu-
racies raise when applied to ductile materials since the plastic work encompassed by the new crack surfaces
creation is neglected. In order to correct this issue, Orowan [75] and Irwin [44] introduced the plastic work
involved in the creation of crack surfaces γp , so that γ= γs +γp .

Energy Release Rate
On the basis of Griffith’s work, Irwin [45] introduced the energy release rate G , defined as the available energy
per increment of crack surface d A. Analogously to Griffith’s theory, a crack would propagate if the energy
release rate surpasses the crack resistance R, defined as the energy required for an increment of crack length.
Thus, crack extension takes place when G ≥ R. The critical value of G at which fracture occurs is defined as
fracture toughness Gc .

G =−dΠ

d A
(2.4)

Stress Intensity Factor Approach
Alternatively, Westergaard developed stress field solutions for cracked infinite plates under external forces
[103]. On the grounds of his work, Irwin [46] introduced the stress intensity factors (SIF) for the three fracture
modes K I ,K I I ,K I I I . The fracture modes can be seen in Figure 2.1. The general form of the stress field is
shown in eq. (2.5), where fi j represents a dimensionless θ function describing the stress field with respect to
the orientation. The stress singularity 1/

p
r can be observed.

σi j = Kp
2πr

fi j (θ) (2.5)

Figure 2.1: Fracture modes a) Mode I: opening, b) Mode II: in-plane shear, c) Mode III: out-of-plane shear [86]
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The stress intensity factor K is used as failure criteria. When the SIF reaches the critical value Kc , the
crack propagates. Moreover, Kc is also known as fracture toughness. One of the main benefits of using stress
intensity factors in engineering applications is the possibility of obtaining the stress field of arbitrary load
conditions by superposition of basic solutions [86].

Furthermore, the stress field in an elastic cracked body may be divided into two differentiated compo-
nents: the singularity and non-singular terms. While in the vicinity of the crack edge the stress field is mainly
described by the singularity, in the regions far from the crack tip, the stresses are governed by the edge bound-
ary conditions [3] (see Figure 2.2). When using SIFs, only the singularity component of the stress is captured.
Thus, SIFs can only be accurately used in the region close to the crack tip. This region is named K-dominance
zone or fracture process zone.

Figure 2.2: Crack front displaying the singularity dominated zone or K-dominated zone, the stress curve predicted by KI and the actual
stress field σ∞. Extracted from [3].

G-K Relation
Both the energy release rate G and the stress intensity factor K are related by eq. (2.6), or in the case of mixed
modes by eq. (2.7), assuming selfsimilar crack growth [3]. E ′ represents the modified Young’s modulus in case
of plane strain conditions.

G = K 2
I

E ′ (2.6)

G = K 2
I

E ′ +
K 2

I I

E ′ + K 2
I I I

2µ
(2.7)

Irwin plastic zone correction
Previously, it has been mentioned the importance of the crack tip stress singularity within LEFM, which pre-
dicts infinite stresses at the tip of the crack growth. However, in reality, crack tip radii are finite and thus the
stresses are finite as well. Moreover, experimental practice shows a variety of mechanisms such as plasticity
or crazing providing stress relaxation [3].

In order to account for this phenomenon, Irwin developed a method to estimate the size of the plastic
zone based on the stress redistribution of those areas where the yield stress is exceeded. This method allows
applying LEFM with a small correction in materials displaying small-scale yielding. Equation (2.8) describes
Irwin’s redistribution, where rp is the size of the plastic zone and σY S is the yield stress.

σY S rp =
ry∫

0

σy y dr =
ry∫

0

K Ip
2πr

dr → rp = 1

π

(
K I

σY S

)2

(2.8)
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Figure 2.3: Irwin plastic zone correction diagram. Extracted from [3]

As the stresses in the plastic zone are lower than in the elastic model, Irwin proposed to compensate for
this phenomenon with an effective crack length ae f f = a + ry

2.1.2. Elastic Plastic Fracture Mechanics (EPFM)

Linear Elastic Fracture Mechanics are applicable when the crack tip plasticity is small in comparison to the
crack size. An additional requirement is that the cracked entity must still comply with the elastic deformation
precepts. For those cases in which these conditions are not applicable, the problem shall be addressed via an
elastic-plastic analysis [47].

Figure 2.4: Range of applicability of LEFM and EPFM in function of the level of ductility and plastic deformation. Extracted from [47].

Several methods have been developed in order to predict fracture behavior under these conditions. While
adaptations of LEFM theory exist for small plastic zones (e.g. Irwin effective crack length), Elastic-Plastic
Fracture Mechanics (EPFM) covers cases with a broader extent of the plastic damage. Among EPFM methods
they can be found Crack Tip Opening Displacement (CTOD), the J contour integral, K-resistance curves or
Cohesive Zone Modelling.

Crack Tip Opening Displacement
Crack Tip Opening Displacement (CTOD) was introduced by Wells as a fracture parameter related to the frac-
ture toughness [101]. Wells realized that due to plasticity, the crack tip blunts. This bluntness can be char-
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acterized by the CTOD (see figure 2.5). Thus, it is possible to correlate CTOD with the stress intensity factors
while considering plasticity. While several definitions have been proposed [3], Wells suggested calculating
the CTOD at the limit of SSY. CTOD (δ) is generally expressed in terms of the energy release rate G .

Figure 2.5: CTOD diagram. δ represent the crack tip opening displacement. Extracted from [3]

δ= 4

π

G

σY S
(2.9)

J Integral
The J-integral was introduced by Rice [80] as a replacement for G . It represents energy release of the material
as the crack grows. However, unlike G , the J-integral considers a part of the deformation energy absorbed
by the elasto-plastic material as non-recoverable. This work is associated with irreversible plastic deforma-
tion. Moreover, the J parameter can also be used to describe the stresses and strains in the crack front (HRR
singularity solutions). Similarly to LEFM, resistance R-curves can be drawn for elasto-plastic fracture from
J-integral calculations.

2.2. Fracture of composite materials

Failure of composites is a highly complex phenomenon involving several mechanisms at the micro-scale and
mesoscale. What it would seem a crack at the macro scale is, in reality, the consequence of several pro-
cesses at different scales. Moreover, the inherent heterogeneous of composite materials and its associated
anisotropy makes failure analysis of these materials extremely complex. In fiber reinforced polymer compos-
ites (CFRP), the mechanisms of failure are dependent on the loading mode exerted and the characteristics of
the constituents of the composite, as seen in Figure 2.6. Next, the different failure modes of CFRP are covered.

Figure 2.6: Failure mechanisms in unidirectional composite plies under different loading modes [67].
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2.2.1. Longitudinal tensile failure XT

In the case of fiber reinforced composites under longitudinal load, the failure is mainly controlled by the
brittle fracture of the fibers [67]. However, failure does not occur simultaneously. Instead, firstly isolated fiber
cracks occur at weak spots leading to the development of non-uniform stress fields in the vicinity of these
breaks (figure 2.7). Moreover, there is an increase in the normal and interfacial shear stresses of the adjacent
fibers. As a result of these local stress concentrations, other failure features follow: transverse matrix cracking
(in composites with brittle matrix and strong interfaces), fiber-matrix debonding (in composites with weak
interfaces and/or high fiber failure stain) and conical shear fractures in the matrix (in the case of composites
with ductile matrix) [14]. Moreover, as the load is increased, the density of these single fiber failures raises
until the failures start interacting with each other and eventually coalesce producing general fiber break,
fiber pull-out and thus catastrophic failure [14, 61].

Figure 2.7: Left: Stress distribution in a UD composite laminate under longitudinal tension [14]. Right: SEM FRP composite tensile
failure features.

2.2.2. Longitudinal compression failure XC

Compressive failure of laminates under longitudinal compression occurs due to the collapse of the fibers
under microbuckling or kinking [14]. Depending on the fiber volume fraction of the laminate, the out-of-
phase/extensional mode (low fiber volume fraction V f ) or the in-phase/shear mode (high V f ) of micro-
buckling occurs. Kinking is associated with an initial misalignment of the fibers. It induces local stresses
that rotate the fibers, increasing even more the stress and resulting in the fracture of the material. For high
V f laminates with highly aligned fibers, pure compressive failure occurs, governed by the shear failure of the
fibers.

Figure 2.8: Left: kinking process. Right: SEM CFRP compression failure under kinking [50].
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2.2.3. Transverse tensile failure YT

Transverse tensile strength is governed by the matrix and interface failure. This loading state creates stress
concentrations in the matrix and the interface [14]. The most critical ones appear at the fiber-matrix inter-
face, leading to interfacial debonding. As the load increases, the density of interfacial debonding locations
increases, eventually coalescing into a crack perpendicular to the tensile axis.

Figure 2.9: Transverse tensile failure. Diagram [66] and SEM image [91].

2.2.4. Transverse compression failure YC

Transverse compression failure is governed by the shear failure of the matrix and interface decohesion. This
leads to the creation of a shear band due to the plastic deformation of the matrix. This band generally has an
orientation in the range of 50−56° with respect to the loading direction [33].

Figure 2.10: SEM image of AS4-epoxy under transverse compression [33].

2.2.5. In-plane shear failure S

In-plane shear loading leads to high shear stress concentrations at fiber-matrix interface. This can provoke
shear failure of the matrix or fiber-matrix interface debonding [14].

2.2.6. Failure modes interaction

Moreover, there are interactions between the different failure modes. Shear and compression are reported to
have a strong interaction on the strength of the composite ply [6, 100].
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2.3. Cohesive Zone Models

Introduced by Barenblatt [5] and Dugdale [20], Cohesive Zone Models (CZM) describe non-linear progres-
sive fracture processes while avoiding the stress singularity predicted by LEFM. By assuming the failure zone
locates into a narrow strip ahead of the crack (see figure 2.11), the interaction between crack faces is ideal-
ized by establishing a cohesive law, also referred as traction separation law (TSL) . The TSL characterizes the
relationship between the opening displacement δ and the cohesive traction t [49]. These laws are generally
constructed using experimental data or micromechanical models [21] and can be used for both the initiation
and the propagation of damage [7], thus avoiding the use of complex nucleation criteria.

A generic TSL is represented in relation (2.10), where σmax is the peak cohesive traction, and δc a char-
acteristic length. Furthermore, δc is often replaced by specific characteristic lengths for the normal δn and
tangential directions δt . In addition, the history variable D is commonly used to account for the irreversibility
of the damage. Moreover, the required work to separate the faces is the area below the TSL curve, described
by (2.11), where δf is the complete failure opening.

σ=σmax f (δ/δc ) (2.10)

Gc =
∫ δf

0
σ (δ) dδ (2.11)

Figure 2.11: Cohesive Zone Modeling idealization, FE implementation, and cohesive law. Extracted from [12]

.

The effectiveness of CZM is dictated by the quality and representative of its TSL. Since the softening curve
is considered a material property, several models have been proposed with different adjusting parameters.
Park and Paulino [77] distinguish between potential and nonpotential TSLs. While non-potential are easier
to develop and are obtained through a phenomenological approach, potential-based TSLs are derived from a
potential function governing the fracture process and the tractions and constitutive relations follow naturally
from the derivatives of the potential function. Bi-linear TSLs are frequently used [7, 11, 48, 57, 85], however
many other TSLs have been established to address the unequal failure behavior of different materials (see
figure 2.12) [77]. Overall, two large groups of TSLs can be distinguished: displacement-based and potential-
based.

Within displacement-based TSLs, Tvergaard and Hutchinson [95] introduced a trapezoidal TSL together
with a potential-based model to study elasto-plastic materials. Ortiz and Pandolfi [76] introduced a free en-
ergy density dependant traction force. Moreover, after comparing bi-linear (linear softening) and exponential
(Smith-Ferrante envelope) TSLs, it was concluded that bi-linear TSLs are preferable due to time-step inte-
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Figure 2.12: Traction separation law examples. a) Cubic b) Trapezoidal c) Smoothed trapezoidal d) Exponential e) Bi-linear f) Bi-linear
softening. Adapted from [77]

gration considerations during explicit analysis. The model by Geubelle and Baylor [28] presents a bi-linear
cohesive model but incorporates and internal damage variable d governing the reloading and failure.

Potential-based TSLs were developed to cope with some of the weaknesses of 1D non-potential TSLs. For
instance, potential-based TSLs are able to provide positive stiffness during the softening phase under tan-
gential deformation or different fracture energies for each fracture mode [77]. These methods use a potential
function dependent on the normal and tangential displacements (δn ,δt ). Needleman [69] proposed a poly-
nomial potential function dependent on the interfacial separation components δn ,δt . A known drawback is
the incorrect prediction of tangential tractions when large shear loads are applied [77]. Several models based
on the universal binding energy between atoms have also been developed: the exponential-periodic model,
the generalized exponential-periodic model, and the exponential-exponential model. Details can be found
in [77].

Moreover, it is important to differentiate between intrinsic and extrinsic models. While this classifica-
tion has major implications for FEM implementation, it also has an influence on the shape of the TSLs. While
intrinsic laws embody the constitutive model of the material and the failure process in the same curve, ex-
trinsic laws require of an external activation component, generally a critical value. Thus, the cohesive law, in
this case, is only active once the failure has started.

The relative simplicity of CZMs with respect to other methods has fostered its implementation within
FEM and its use in diverse fields. One of the main applications is the simulation of damage at interfaces
(generally adhesive) between two solids. A thorough review of applications can be consulted in [77].

2.4. Multiscale methods

In this section, multiscale theory and applications are introduced. First, the field of multiscale methods is
introduced in §2.4.1. Next, the different types of multiscale methods are addressed in §2.4.2, together with
a detailed exposition of state of the art research and industrial applications. Moreover, Representative Vol-
ume Elements are explained in §2.4.3 and homogenization methods are unraveled in §2.4.4, together with a
mathematical excerpt of the first-order computational homogenization scheme. Finally, the computational
modeling of the composites’ internal phases is discussed in §2.4.5.
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2.4.1. Why multiscale?

In engineering practice, the use of different scales for the analysis of engineering products is globally ac-
cepted. In the case of the aerospace industry, due to its strict certification requirements, this reality is even
more obvious. When analyzing a composite structure it is common to perform a series of uncoupled stress
analysis at different length scales i.e. structural level, joint level, and microstructure level, each feeding the
next one [24, 59]. This is known as top-down or global-local multiscale approach. While this practice has
enabled great developments over the last years, there is a need for a new class of methods able to provide
high-fidelity physics-based predictions of composites behavior [24].

Formally, multiscale modeling focuses on providing properties or solutions for each relevant scale (micro,
meso, macro) by making use of information provided from other larger or smaller scales [27]. Thus, these
methods allow bridging the macroscale analysis with the microscale at which the mechanisms governing the
body occur. This allows substituting phenomenological models by constitutive laws derived at the scale at
which the physics laws governing the material are better understood [23]. This is especially interesting for
composite materials, whose damage mechanisms are not accurately modeled in macroscopic simulations.
Moreover, multiscale simulations for composites also open the door to gain knowledge about the impact of
composition, orientation and damage evolution of the constituents at the microstructural level have on the
macroscopic behavior [74]. Another popular application is the study of damage progression with microscopic
resolution.

Figure 2.13: Multiscale bottom-top framework for the application of fundamental modeling into the development of composite struc-
tures. Obtained from [57].

2.4.2. Classes of multiscale methods

Multiscale methods can be classified into three categories depending on the way the different scales are cou-
pled: hierarchical, concurrent and semi-concurrent [105]. A diagram with all three types and their underlying
concept is presented in figure 2.14. In the next sections, each category is explained and applications from the
literature are reviewed.
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Figure 2.14: Types of multiscale methods. a) Hierarchical b) Semiconcurrent c) Concurrent. Obtained from [83]

Hierarchical methods
Hierarchical methods make use of a fine-scale model in order to derive constitutive laws. This is done by
evaluating the response of a Representative Volume Element (RVE) to different inputs. Then, the created
constitutive law is applied in the coarse-macro scale. Hierarchical schemes are considered computationally
more efficient than semi-concurrent and concurrent methods [89]. However, in the case of problems showing
localization (e.g. crack propagation), several authors claim RVE cannot be used due to the loss in statistical
homogeneity of the material [31, 57, 105].

Applications of hierarchical methods in composite fracture mechanics are numerous. With the objective
of performing high fidelity virtual tests for the screening of composite materials, LLorca and coworkers de-
vised a bottom-up hierarchical multiscale approach [57, 59, 67]. UD plies are simulated at the microscale to
characterize their properties and failure initiation locus. Above the fracture initiation point, cracks and/or
shear bands are created across the RVE as result of damage localization and the actual behavior is argued to
depend on the actual orientation of the crack or shear band [67]. With a similar micromodel, Vaughan and
McCarthy [98] studied the impact of intra-ply properties and thermal residual stresses in the shear deforma-
tion of a carbon-epoxy composite.

Alfaro et al. [2] performed microscale uniaxial tensile simulations to study the failure of glass-epoxy com-
posites like the ones used in GLARE. Through homogenization, a mesoscopic TSL response was derived from
the microscale analysis. Among other topics, the influence of the volume fraction and imperfections on the
failure behavior of the material was analyzed.

Concurrent methods
In the case of concurrent methods, the fine scale is embedded into the coarse level, coupling both scales at
the interface, where the information is exchanged and compatibility and momentum balance are controlled
[105]. It is common to make use of an overlapping region "handshake domain", where there is a scale transi-
tion from the coarse to the fine model. However, it must be remarked that the coupling between the fine and
coarse regions poses difficulties. There are numerical problems associated to the transition between length
scales, such as ill-conditioned equilibrium equations and spurious reflections of the interface [104, 105]. Sev-
eral coupling methods have been developed to reduce these problems [90, 104]. Moreover, due to their com-
putational cost, concurrent models are generally restricted to situations where the refined region is small in
comparison to the global domain [105].

Concurrent schemes are quite popular in atomistic simulations. Abraham et al. [1] developed macro-
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scopic atomistic ab initio dynamics (MAAD), a methodology to simulate fracture combining ab initio quan-
tum analysis, molecular dynamics (MD) and FEM. Other atomistic-continuum coupling methods have been
developed [81], such as the quasicontinuum (QC) method [88] or the Bridging Domain Method [104]. In the
field of fracture, Loehnert and Belytschko [58] proposed a concurrent multiscale model for macro- and mi-
crocracks simulations using XFEM and developed coupling formulations. Schemes combining XFEM with
molecular dynamics have also been used to study fracture propagation [90].

In the field of composite materials, concurrent multiscale simulations have become popular to investigate
processes showing localization such as fracture, in which due to the path dependency and the crack size,
hierarchical and semi-concurrent schemes are considered invalid by some authors [30]. González and LLorca
[32] simulated the fracture behavior of a notched specimen made of SiC fiber reinforced Ti matrix. In a later
paper, a notched E-glass/epoxy UD laminate was simulated for fracture prediction under a virtual three-
point bend test to investigate fracture toughness properties [8]. Braided composites have been simulated
concurrently by Šmilauer et al. [84] to investigate the fracture energy of braided composites under a three-
point bending test.

Figure 2.15: Concurrent "embedded cell" model to calculate the fracture toughness of a composite specimen. Extracted from [8].

Semi-concurrent methods
Semi-concurrent methods simultaneously simulate/calculate the coarse and fine scales without a direct cou-
pling between both scales. This is performed by simulating both regions separately. The main advantage is
the flexibility of using specific methods/software for each region and also to avoid the numerical problems
of concurrent methods [89]. However, they are computationally expensive and, like hierarchical methods,
several sources argue that they are not suitable to model localized problems.

Figure 2.16: Schematic operation of the FE2 method. Extracted from [22]

One of the most popular examples of semi-concurrent methods in computational mechanics is the FE2

method developed by Feyel and Chaboche [22]. FE2 uses a multiscale approach to substitute phenomeno-
logical models by micropscopic-level constitutive equations. The method is performed in three steps. First,
the macroscopic strains are localized into the microscopic scale, by imposing periodic displacement bound-
ary conditions to the cell. Secondly, a FEM analysis of microscopic cell is performed. Finally, the calculated
stresses are homogenized and transferred to the macroscopic level. An analogous procedure is adopted by
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Kouznetsova et al. [52] to model large deformations in heterogeneous materials. Later, this model was ex-
tended by the use of a higher order method able to transfer the deformation gradient into the microscopic
model to increase accuracy [26, 53, 54]. The use of cohesive models for thin layers fracture prediction has
been studied relating the cohesive law with failure phenomena occurring at the microscopic level [62]. Ver-
hoosel et al. [99] and Nguyen et al. [71] obtained traction-separation laws for fracture in quasi-brittle solids
using a FE2 setting. The FE2 method has also been used to model concrete failure [73].

2.4.3. Representative Volume Element

The notion of Representative Volume Element (RVE) is essential in multiscale analysis. Overall, RVEs are
smaller instances of the structure used to analyze its behavior with reduced computational effort. RVEs are
generally as small as possible, but sufficiently large to be representative of the physical behavior. RVEs shall be
big enough to embody the statistical description of the microstructure and to guarantee the independence of
its properties with respect to size and location [56]. Several formal definitions have been proposed [31]. Two
definitions for RVEs were given by Drugan and Willis [19]: 1) the smallest volume statistically representative
of the microstructure 2) is the smallest volume of the heterogeneous material whose behavior accurately
represents the actual macroscopic behavior. Proper application of RVEs relies in separation of scales: the
microstructure scale `µ shall be smaller than the RVE size `m , and much smaller than the characteristic size
at the macroscale `M [25].

`µ < `m ¿ `M (2.12)

Due to its impact on the simulation time, the determination of the critical RVE size is important. Gen-
erally, the critical dimension is found numerically for each different heterogeneous material. Convergence
to the exact result shall be obtained by increasing the size of the RVE [31, 51]. Note that tools such as co-
hesive elements can induce an artificial compliance which impedes convergence when increasing the RVE
size or refining the mesh. Moreover, if second-order homogenization is used (see 2.4.4), an additional up-
per bound to the RVE size is required, which cannot exceed the macroscopic length characterizing the linear
variations of the strain field [26]. In the case of composite structures, critical sizes in the order of 30 fibers
have been reported to provide good predictions (few percentage error) [33, 38]. In [87, 93] a RVE length to
fiber radius L/R = 50 is proposed. However, each material has a different critical RVE size dependant on its
own constituents properties.

The construction of statistically representive RVEs for composite materials is generally performed by ran-
domization of the fibers position within the volume (e.g. [2, 31, 57, 98, 99]). In addition. due to the application
of periodic boundary conditions, special care is taken in producing a geometrically periodic pattern. This is,
when a fiber is cut at boundary it shall appear at the opposite side (no wall effect). This can be observed in
figure 2.17a. Several algorithms have been devised for this purpose (e.g. Nearest Neighbour Algorithm [97],
VIPER [42]).

(a) (b)

Figure 2.17: (a) RVE with periodic boundary conditions. Extracted from [9]. (b) First order homogenization scheme. Extracted from [53].
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2.4.4. Homogenization

For non-linear processes, homogenization processes are generally used to perform the scale transition and
provide useful data from the RVE (microscale) to the macro-level. In this section, the main focus is in com-
putational homogenization. A historical review on homogenization methods can be found at [25].

Overall, microstructural computational homogenization has two main advantages with respect to classic
homogenization [33]. Firstly, it allows to accurately model the geometry and the phases. For example in the
case of composites the fibers’ spatial distribution, size, and shape can be modeled, and voids and inclusions
can be taken into account too. This leads to more accurate results. Moreover, the resolution of the boundary
value problem at the microscale provides detailed data about the stress and strain distributions inside the
RVE. This information can be used to study the damage and failure mechanisms for different loading cases
and configurations without conducting extensive laboratory experimentation.

First-order computational homogenization
The most extended scheme is first-order homogenization. In this method, the material vector in current
configuration of the micro-scale problem ∆xm , is related to its counterpart in the reference configuration
∆Xm by a first order Taylor expansion (see equation (2.13)). In (2.13), FM is the macroscale deformation
gradient tensor and wm the microfluctuation field. Moreover, a general view of the first-order computational
homogenization by [53] can be seen in figure 2.17, where PM represents the macroscopic stress tensor.

∆xm = FM∆Xm +wm (2.13)

Overall, the multiscale framework can be derived from kinematic homogenization and the Hill-Mandel
principle [18, 25]. Kinematic homogenization obtains the macroscopic strain tensor FM by averaging Fm over
the RVE volume. However, in order for the problem to be kinematically admissible, the fluctuations wm in
the RVE’s underformed boundary Γ0m have to be prescribed such that

∫
Γ0m

wm ⊗nm dΓ0m = 0, where nm rep-
resent the normal vector of the undeformed boundary.

The Hill-Mandel principle safeguards energy conservation through scale transitions, and is the keystone
of hierarchical multiscale simulations. Basically, it dictates that the RVE-volume average of the work incre-
ment at the micro-scale must equal the local work increment at the macroscale. This can be seen in equation
(2.14). If the Hill-Mandel principle holds, the macroscopic stress can be obtained from the volume average of
the microscopic stress tensor.

1

V0m

∫
V0m

Pm ·δFm dV0m = PM ·δFM (2.14)

The application of kinematic homogenization and the Hill-Mandel principle imposes two conditions that
the RVE boundary conditions must comply with. These conditions are noted in equation (2.15).∫

Γ0m

pmδwm dΓ0m = 0 ;
∫
Γ0m

wm ⊗nm dΓ0m = 0 (2.15)

Generally, periodic boundary conditions (PBCs) are enforced when working with RVE. These boundary
conditions have been reported to provide better estimations of the properties (e.g. effective moduli) [25], to
converge faster and to eliminate border effects. When enforcing periodic boundary conditions, a geometri-
cally periodic RVE (such as in figure 2.17a) is used and the microscale fluctuation field is set as periodic at the
boundaries of the RVE, such that w+

m = w−
m .

While PBCs are the most popular, alternative boundary conditions have been proposed [25, 78]:

• Taylor-Voigt: no fluctuations in the RVE are allowed. wm = 0, for ∀Xm ∈V0m

• Uniform displacement: no fluctuations at the RVE boundary are allowed. wm = 0, for ∀Xm ∈ Γ0m



2.4. Multiscale methods 17

• Minimal kinematic boundary condition.
∫
Γ0m

wm ⊗nm dΓ0m = 0

Although periodic boundary conditions are considered superior, there are discrepancies about if their
use within a concurrent scheme is adequate for the simulation of fracture processes [30, 67, 94]. Thus, the
suitability of their use will be assessed in this project.

Alternative homogenization schemes
While the first-order homogenization scheme is popular and its implementation and operation are well un-
derstood, it presents limitations when simulating certain problems [26]. Thus, several additions to the first-
order homogenization scheme have been proposed [25] such as higher order computational homogeniza-
tion, continuous-discontinuous homogenization-localization, multiscale interfaces-cohesive cracks and many
others.

Second-order computational homogenization is similar to the first-order but the correlation of the cur-
rent configuration to the reference configuration is performed using a second order Taylor expansion, where
3GM is the gradient of the deformation gradient tensor FM (see equation (2.16). This scheme has some ad-
vantages over first-order homogenization [26]. For example, it allows modeling geometrical size effects by
introducing a length scale. Moreover, it allows to deal with large deformation gradients and to capture the
bending failure mode. However, first-order homogenization is still recommended for applications with a
clear separation of scales and small gradients [53].

∆xm = FM∆Xm + 1

2
∆Xm

3GM∆Xm +wm (2.16)

Continuous-discontinuous homogenization is mainly oriented to incorporate localized properties of the
microscale (such as fracture or damage) in the macroscale without homogenization. Also interesting is the
use of multiscale simulations at adhesive/cohesive interfaces [62, 72, 99]. This approach uses microscopic
inter-facial RVEs to extract the TSL parameters controlling the macroscopic cohesive zones.

2.4.5. Composite constituents modeling in RVEs

When used for composite multiscale simulations, RVEs are a representation of the microstructure of the ma-
terial. Thus, all phases are present in the analysis: matrix, fibers and sometimes inclusions and voids. While
at the microscale phenomenological models are not required anymore, it is necessary to use constitutive
models for the fibers, the matrix and the interface between them. Several methods have been proposed to
model the phases of the material. A summary of the approaches found in the literature is shown below.

Fibers
Fibers are generally modeled as linear elastic transversely isotropic solids (in the case of glass fibers, fully
isotropic) [67, 98]. In [98], a domain similar to the one in figure 2.17a is modeled, but fiber failure is assumed
to be exclusively transverse and thus is not implemented in its 2D model. In 3D models, tensile failure is
modeled by inserting several interface elements (serving as fracture planes) in the longitudinal direction of
the fiber [67]. The resistance of these interfaces is extracted from fiber strength experimental data. Moreover,
in 3D models, compression loading can be studied with undulation models in order to capture the kinking
phenomena. In the model used by [79, 96], cohesive elements are inserted between all bulk elements, includ-
ing fibers. Different TSLs and cohesive properties are used for each of the phases.

Matrix
Several authors model the matrix as an isotropic elasto-plastic solid. Under tension, epoxy matrices are
known to fail in a brittle manner. However, in compression and shear they show substantial plastic deforma-
tion [107]. The elasto-plastic model determines the yield envelope of the matrix using a modified Drucker-
Prager yield criteria, based on the models developed by [60] and [55]. The post-yielding behavior is modeled
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differently for tension and compression. Under tensile stress, the damage is accounted using a linear soft-
ening law. In compression, a different law is used to account for the plastic deformation before failure. How
these models are implemented in FE is not clear. However, Abaqus includes these models for the simulation
of concrete under the denomination "damaged plasticity model for concrete and other quasi-brittle materi-
als" [15]. Other authors [63, 85, 98] make use of the Mohr-Coulomb yield criteria with Menétrey and William
flow potential function. In [108], the Mohr-Coulomb criteria is used to set the failure value for shear stress.
Although there are computational issues regarding the use of these models, they can be alleviated by the use
of the crack band model or viscoplastic regularization [15].

Figure 2.18: Elasto-plastic matrix modeling. a) Epoxy matrix yield envelope under plane stress. b) Post-yield stress-strain curve under
compression. c) Post-yield stress-strain curve under tension. d) Microscope image of the composite failure under compression. e) RVE
simulation of the composite failure under compression. Adapted from [67].

An alternative way to model the matrix fracture relies on the insertion of zero-thickness cohesive ele-
ments in all the interfaces between the matrix solid elements (see figure 2.19) [2, 70, 79, 96]. This approach is
based on the work by Xu and Needleman [106]. Since the fracture paths are limited to the interfaces between
elements, triangular unstructured meshes are generally used to increase the possible crack propagation di-
rections. In this way, the mesh bias associated with the implementation of cohesive elements within FEM [16]
is reduced and the artificially induced fracture energy is minimized (although not completely eliminated).

Fiber-matrix Interface
The fiber-matrix interface is modeled using cohesive laws in most of the reviewed literature dealing with
multiscale simulations of composites. However, obtaining experimentally-based cohesive parameters is very
challenging. Thus, certain cohesive parameters (e.g., mode I interface fracture energy G I c ) are assumed [68].

Figure 2.19: Matrix and interface modeling using cohesive elements. Extracted from [2].
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Methodology

This chapter unfolds the key points of this thesis and the theory upon which is based. First an overview of
the thesis methodology is covered in section §3.1. This is followed by a description of the microstructure
volume element in section §3.2 and its microstructural formulation in §3.3. Then, the transition relations
together with the Hill Mandel principles are covered in §3.4. Effective quantities and their homogenization
are discussed in §3.5.

3.1. Overview

This thesis features a framework based on a consistent kinematical analysis which translates micro-cracked
domains into one or two effective macro-cracks while complying with the Hill-Mandel condition of energy
conservation for both the bulk and crack regions. By homogenizing micro-domain quantities, the effective
strength, the fracture energy, and other parameters are obtained for composite materials based on the con-
stituent material’s properties and their arrangement. Numerically discontinuous algorithms featuring crack
identification and segregation of their energy contributions are used to achieve this. The framework applies
periodic boundary conditions and can handle arbitrary loading conditions and geometries.

Building upon the multiscale framework by Turteltaub et al. [94], this thesis deepens the understanding of
crack homogenization in highly isotropic domains and paves the way of multi-crack Effective Traction Sep-
aration Laws (ETSLs) in multiple-ply domains by setting accurate, numerically consistent new micro-scale
homogenization relations. These relations are verified and compared with previous methods. Experimental
validation is not performed, as this proof of concept cannot yet provide quantitatively comparable results.

One of the main objectives of the framework is the generation of Effective Traction Separation Laws (ET-
SLs). These laws derive from the homogenization of the stresses inside a microstructural RVE. ETSLs can be
used in macroscopic Cohesive Zone Models (CZMs) to increase the accuracy of coarse models. Moreover, ET-
SLs can also serve to draw comparisons about the fracture behaviour under different geometric and material
configurations.

However, the use of the multiscale framework by Turteltaub et al. [94] to study the fracture behaviour
of multi-ply CFRP composite laminates (e.g. [0/90/0]) is subjected to the unlocking of several ongoing and
newly identified critical technical issues (e.g. SVD information loss, α factor homogenization, artificial com-
pliance handling, effect of high anisotropy in the simulations, multi-crack identification, enforcing realistic
material properties and convergence problems). The identification, assessment, and resolution of this prob-
lems represent as well a core part of this thesis.

3.2. Microstructure Volume Element

The Microstructure Volume Element (MVE) represents the foundation of the framework, as it embodies all
the features of the CFRP microstructure (e.g., fibers, matrix, interfaces, imperfections) to be analyzed. When
using MVE, we refer to any geometric domain featuring the microstructure of the material. The term RVE

19
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a b c

Figure 3.1: CFRP laminate microscope images (a and b) [92] and idealization c.

refers to those MVEs whose ETSLs have shown convergence. The definition of an RVE is discussed in 2.4.3.
The convergence studies for determining the minimum RVE size are carried in section §6.4.

The MVEs hereby used simplify the chosen multi-ply laminate (e.g., [0/90], [0/90/0]) to 2D geometries
(see figure 3.1). This requires a great idealization of the [90] phase, in which the fibers are sectioned in half
along their longitude. While using a 2D simplified model for this case may not be optimal to study the entire
complexity of the fracture process, this approach portrays a proof of concept, and its limitations are acknowl-
edged. Nevertheless, this project represents a logical step towards the larger goal of developing a 3D-capable
industry-ready application able to feed FEM simulations with accurate fracture parameters based on funda-
mental modeling at a fraction of the current cost.

The MVEs used in this project model the fibers in the [0] and [90] plies, the matrix holding them together,
and the interface between both. Voids, inclusions and imperfections are not modeled.

3.3. Microstructural formulation

Before diving into the scale transition and homogenization equations, it is necessary to properly define the
microstructural domain and its constitutive relations. The microstructural domain can be seen in figure 3.2.
The domain is labeled asΩ and its boundary as ∂Ω. Each individual edge of the domain is denoted byΩi , with
i ∈ [1,4] pointing at the bottom, right, top and left edges respectively. The normals to these edges are referred
as ni , i ∈ [1,4]. Moreover, the global cartesian system is defined by e1 and e2, representing the horizontal and
vertical directions respectively.

The crack domain is denoted by Γ. In the case of several independent cracks being present, these are
represented by Γi . The crack’s normal is denoted as m. Each crack surface has its normal pointing outwards
of the domain. Thus m = m+ for the + side, and vice-versa 1. Moreover, the normals are equals but opposite
in direction m+ = −m−. Figure 3.2 also displays the periodicity of the cracks, which seemingly continue
over the edges of the domain due to the application of periodic boundary conditions. While other boundary
conditions can be applied [25, 78] (see section 2.4.4), in this derivation periodic boundary conditions (PBCs)
are applied from the start for simplicity.

The boundary value problem (BVP) governing the MVE is described hereafter. The complete and detailed
derivation can be found in [94]. Similarly to other works [39, 96, 102], the fracture process is simulated as a
quasi-static process in absence of body forces. This is represented in (3.1), with σ being the stress tensor, x
the reference coordinates, and t time. Moreover, the continuity of tractions along crack sides is denoted in
(3.2).

divσ (x, t ) = 0 x ∈Ω\Γ (3.1)

t+
(
x+, t

)=−t− (x−, t ) x ∈ Γ (3.2)

1More details on the convention of the normals can be found at §4.3.2
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Figure 3.2: Microstructural volume element. Nomenclature, domains and dimensions.

As mentioned before, PBCs are enforced on the domain both for displacements u and tractions t (see
equations (3.3a) and (3.3b), with ε̄ being the macroscopic strain tensor). Moreover, the present framework
includes specific conditions for those crack regions crossing through the domain (periodic) boundaries. This
is denoted in (3.3c) and (3.3d).

u (x+ l1e1, t )−u (x, t ) = l1ε̄ (t )e1

t (x+ l1e1, t ) =−t (x, t )
x ∈ ∂Ω3\Γ (3.3a)

u (x+ l2e2, t )−u (x, t ) = l2ε̄ (t )e2

t (x+ l2e2, t ) =−t (x, t )
x ∈ ∂Ω4\Γ (3.3b)

u± (
x±+ l1e1, t

)−u± (
x±, t

)= l1ε̄ (t )e1

t±
(
x±+ l1e1, t

)=−t±
(
x±, t

) x ∈ ∂Ω3 ∩Γ (3.3c)

u± (
x±+ l2e2, t

)−u± (
x±, t

)= l2ε̄ (t )e1

t±
(
x±+ l2e2, t

)=−t±
(
x±, t

) x ∈ ∂Ω4 ∩Γ (3.3d)

The micro-scale strain field is considered as (3.4) for all points excluding those in the crack surface. It is
important to remark that currently the displacement loading is calculated using small strains.

ε= 1

2

(∇u+∇uT )
x ∈Ω\Γ (3.4)

The constitutive behavior of the composite constituents is governed by the elastic relation (3.5), with C
being the stiffness. Moreover, the crack surfaces’ constitutive relation is dictated by a cohesive law (3.6). Thus,
the tractions t are governed by the cohesive relation fcoh being dependent on the crack surface opening [[u]],
the damage variable κ (also noted as D) and the normal vector m = m+.

σ=Cε x ∈Ω\Γ (3.5)

t = fcoh ([[u]] ,κ,m) x ∈ Γ (3.6)

The crack opening [[u]] is considered as in (3.7). Furthermore, the crack openings are also subjected to the
application of the periodic boundary conditions. This yields in relation (3.8).

[[u]] = u−−u+ x ∈ Γ (3.7)
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[[u (x, t )]] = [[u (x+ l1e1, t )]] x ∈ ∂Ω3 ∩Γ
[[u (x, t )]] = [[u (x+ l2e2, t )]] x ∈ ∂Ω4 ∩Γ (3.8)

3.4. Micro/macro scale coupling

The scale transition is one of the most critical steps. In the present work, the coupling is performed by ho-
mogenization of microscale quantities into the macroscopic quantities. The keystone of this process is the
Hill-Mandel condition, which dictates that the power and energy dissipated across scales shall be equivalent.

3.4.1. Homogenization of stresses and strains

Thus, the volumetric average 〈ε〉Ω of the microscopic strain field ε is defined as (3.9). By applying the diver-
gence theorem, 〈ε〉Ω and be subdivided in the component integrated around the domain external boundaries
∂Ω, and the component integrated in the crack path Γ. Moreover, by applying the periodic boundary condi-
tions on the integral over the MVE boundary, it is possible to identify the applied strain ε̄ (3.10). The integral
in the crack path can be simplified into a fracture strain εf, defined as (3.11).

〈ε〉Ω := 1

|Ω|
∫
Ω
εd v = 1

|Ω|
∫
Ω

[∇u]sym d v = 1

|Ω|
∫
∂Ω

[u⊗n]sym d s − 1

|Ω|
∫
Γ

[[[u]]⊗n]sym d s (3.9)

1

|Ω|
∫
∂Ω

[u⊗n]sym d s = [ε̄e1 ⊗e1]sym + [ε̄e2 ⊗e2]sym = ε̄ (3.10)

εf = 1

|Ω|
∫
Γ

[[[u]]⊗n]sym d s (3.11)

By rewritting the previous relations, the applied strain can be defined as (3.12).

ε̄= 〈ε〉Ω+εf (3.12)

Furthermore, the macroscopic stress is obtained by stress homogenization as shown in (3.13). For the
squared/rectangular MVE geometry, and with the application of periodic boundary conditions, the macro-
scopic stress simplifies to (3.14). The averaged edge tractions t̄i are defined as (3.15).

〈σ〉Ω := 1

|Ω|
∫
Ω
σd v = 1

|Ω|
∫
∂Ω

t⊗xd s (3.13)

〈σ〉Ω = t̄1 ⊗e1 + t̄2 ⊗e2 (3.14)

t̄i = 1

|∂Ωi |
∫
∂Ωi

td s (3.15)

3.4.2. Power relations

The externally applied power P ext done on the MVE by the displacement conditions is described by the line
integral over the MVE edges (3.16). The time here considered is the simulation time. Moreover, the power
performed by the bulk P b is defined in (3.17). The hereby stated powers are expressed per unit area and unit
depth.

P ext := 1

|Ω|
∫
∂Ω

t · u̇d s (3.16)

P b := 1

|Ω|
∫
Ω
σ · ε̇d v (3.17)

Moreover, by applying (3.18), the bulk power can be developed into (3.19). By comparing (3.19) and (3.16),
it is possible to define a fracture power (3.20). Moreover, the externally applied power can linked to the bulk
and fracture power (3.21).
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div
(
σT u̇

)= divσ · u̇ +σ ·∇u̇ =σ · ε̇ (3.18)

P b := 1

|Ω|
∫
Ω

div
(
σT u̇

)
d v = 1

|Ω|
∫
∂Ω

t · u̇d s − 1

|Ω|
∫
Γ

t · [[u̇]]d s (3.19)

P f = 1

|Ω|
∫
Γ

t · [[u̇]]d s (3.20)

P ext = P b +P f (3.21)

The macroscopic power is defined as the product of the homogenized stress and the applied strain rate (3.22).

P M = 〈σ〉Ω · ˙̄ε (3.22)

3.4.3. Hill-Mandel condition

The Hill-Mandel principle safeguards power and energy conservation through scale transitions. This is done
by considering that the RVE-volume average of the rate of work at the micro-scale must equal the local rate
of work at the macroscale. This is expressed in equation (3.23).

P M = P ext (3.23)

By using the previously derived homogenization scheme, and applying periodic boundary conditions, it
can be shown that the Hill Mandel is satisfied (3.25). In the expression (3.25), the displacement at the edges u
is substituted by its equivalent in terms of the applied strain rate ˙̄ε, its position coordinates x and the micro-
scale fluctuation δw. By ruling out the contribution of the microfluctuations around the boundaries due to
the periodic boundary conditions, it is possible to obtain the Hill-Mandel condition with the bulk and crack
contributions (3.26) and (3.24).

〈σ〉Ω · ˙̄ε= 1

|Ω|
∫
∂Ω

t · u̇d s (3.24)

1

|Ω|
∫
∂Ω

t · u̇d s = 1

|Ω|
∫
∂Ω

t · (˙̄ε ·x+δẇ
)

d s =
(

1

|Ω|
∫
∂Ω

t⊗xd s

)
︸ ︷︷ ︸

〈σ〉Ω

·˙̄ε+ 1

|Ω|
∫
∂Ω

t ·δẇd s︸ ︷︷ ︸
0 due to PBC

(3.25)

〈σ〉Ω · ˙̄ε= 1

|Ω|
∫
Ω
σ · ε̇d v + 1

|Ω|
∫
Γ

t · [[u̇]]d s (3.26)

In the past, by considering the applied strain as the mutual contribution of the bulk and fracture strains,
the macroscopic power was unfolded into (3.27). Similarly, the microscale power was subdivided into bulk
and crack contributions. Moreover, two Hill Mandel sub-relations for the bulk and the crack regions (see
equation (3.29)) were hypothesized provided the condition in (3.30). As it will be seen later on, results in
§5.5.1) show that the condition in the right side of (3.29) does not hold with generality, especially in cases
with anisotropy, at least when the quantities are homogenized as they are in this framework.

P M = 〈σ〉Ω · ˙̄ε= 〈σ〉Ω · 〈ε̇〉Ω+〈σ〉Ω · ε̇f (3.27)

〈σ〉Ω · 〈ε̇〉Ω+〈σ〉Ω · ε̇f = 1

|Ω|
∫
Ω
σ · ε̇d v + 1

|Ω|
∫
Γ

t · [[u̇]]d s (3.28)

〈σ〉Ω · 〈ε̇〉Ω ?= 1
|Ω|

∫
Ωσ · ε̇d v

〈σ〉Ω · ε̇f ?= 1
|Ω|

∫
Γ t · [[u̇]]d s

(3.29)

1

|Ω|
∫
Γ

(〈σ〉Ωm− t) · [[u̇]]d s = 0 (3.30)
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With the power used by the crack, it is possible to define the macroscopic (or effective) quantities that will
be used to generate the ETSLs. The macroscopic cohesive TSL is governed by three parameters: the effective
crack opening [[u]]f, the effective normal of the crack mf and the applied strain ε̄. Therefore, the effective
traction can be expressed as a function of the previous parameters (3.31). For our effective properties to be
Hill-Mandel compliant, they would need to satisfy (3.32). The definition of the effective quantities is given in
the next section.

tf = fcoh

(
[[u̇]]f ,mf, ε̄

)
(3.31)

Γf

|Ω| tf · [[u̇]]f = 1

|Ω|
∫

t · [[u̇]]d s (3.32)

3.5. Effective quantities

In the previous section, the Hill Mandel has been satisfied for the global domain, and the Hill-Mandel sub-
condition for the crack domain has been set as (3.32). Unfortunately, determining the effective quantities in
the crack domain is a more complex process.

3.5.1. Old effective quantities

In previous works, the homogenization had been done via effective quantities defined as the average of trac-
tions (3.33), and the scaled average of displacements (3.36). However, during this thesis, this has been iden-
tified to be a source of errors, especially in the case of anisotropic models. The product of averages leads to
the combination of the high tractions on non-opened fibers with the large displacements in the almost non-
loaded matrix. Overall, and particularly in highly anisotropic domains, it is not possible to consider that the
sum of products (integral) equals the product of sums (product of effective quantities). This effect was pre-
viously camouflaged due to the cracking of only one phase, or two with similar material properties (matrix,
interface).

Additionally, the use of the previously developed α relation (3.33) is dropped. Enforcing the Hill Mandel
condition based on a weighted average of tf

Γ and tf
Ω should not be used for two reasons. Firstly, it does not

guarantee full complying with the Hill Mandel relation. Secondly, because by proper oriented integration of
the tractions along the crack, the values of tf

Γ and tf
Ω are equal for single fully periodic cracks, and very similar

in the case of multiple cracks; thus α is not playing a role. This correlation between tf
Γ and tf

Ω can be seen in
the results presented in §5.5.2.

tf,old =αtf
Γ+ (1−α)tf

Ω (3.33)

tf
Γ = 〈t〉Γ =

1

|Γ|
∫
Γ

t d s (3.34)

tf,
Ω
= 〈σ〉Ωmf = 1

|Ω|
∫
Ω
σ d v

∫
Γ

m d s (3.35)

[[u̇]]f,old := |Γ|
|Γ| f

∫
Γ

[[u̇]] d s (3.36)

3.5.2. New effective quantities

Thus, a new series of effective quantities are presented. Since up-to-now it has not been possible to devise
energy-consistent effective values based on averages for both [[u̇]]f and tf, a new approach is taken. Taking
one of the effective quantities as correct, the other effective quantity is recalculated. Using this approach, the
effective quantities are Hill-Mandel compliant by definition. Thus, two pairs of effective quantities can be
obtained:

[
tf,calc, [[u̇]]f

]
and

[
tf, [[u̇]]f,calc

]
. In the next paragraphs, these quantities are defined.
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Effective traction
The effective traction is defined as the average of the tractions along the main crack (3.37). The tractions over
the secondary cracks and branches are not integrated.

tf = tf
Γ =

1

|Γ|
∫
Γmain

t d s (3.37)

Alternatively, secondary effective tractions are defined as (3.38) and (3.39). These tractions are later used
in the implementation for checks, and also as the effective traction when the characteristics of the analysis
lead to an ill-calculated tf

Γ.

tf
Ω = 〈σ〉Ωmf (3.38)

tf
∂Ω = 〈σ〉∂Ωmf (3.39)

Effective opening rate
The effective opening and the effective opening rate have been reformulated. Averaging and scaling, as used
in [17], does not provide an accurate representation of the actual opening of the RVE. Instead, projections are
used (3.42), where [[u]]elem is the opening of each element, and Γproj the projection of the element length over

the effective crack. This projection is calculated as in (3.41), where l̂elem and l̂CG are the tangent vectors of the
element and the effective (macro) crack group, respectively.

The use of projections allows leveling the contributions of the non-parallel crack segments, particularly
the perpendicular ones. For example, in figure 3.3a the old formula (3.40) would account for the displace-
ments marked in red (tangential sliding) while still keeping Γf as in 3.3c. This would result in an overesti-
mation of the actual opening. An additional advantage of using projections is that it is possible to add the
opening contributions of secondary cracks and branches in a general way, such as the ones displayed in fig-
ure 3.3b. A comparison between effective opening displacements is given in §5.3.

The effective opening rate [[u̇]]f is obtained by differentiation of [[u]]f

[[u]]f,old = Γ

Γf

∫
Γ [[u]] d s

Γ
(3.40)

Γproj =
∣∣Γelem l̂CG

∣∣ (3.41)

[[u]]f =
∑

[[u]]elemΓproj

Γf
(3.42)
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Figure 3.3: Cracked micro-scale domains and effective macro-crack.
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Effective traction calculated (tf,calc)
The recalculated traction is obtained from the Hill Mandel condition for the crack domain (3.43). By multi-
plying both sides in the right by tf, it is possible to solve for tf,calc (3.45).

1

Γf

∫
t · [[u̇]]d s = tf,calc · [[u̇]]f (3.43)

1

Γf

∫
t · [[u̇]]d s tf = tf,calc · [[u̇]]f · tf (3.44)

tf,calc =
1
Γf

∫
t · [[u̇]]d s tf

[[u̇]]f · tf
(3.45)

Effective displacement rate calculated ([[u̇]]f,calc)
A similar procedure is used to calculate effective opening rate (3.47). In this case both sides are multiplied in
the left by [[u̇]]f.

1

Γf

∫
t · [[u̇]]d s = tf · [[u̇]]f,calc (3.46)

[[u̇]]f,calc =
[[u̇]]f 1

Γf

∫
t · [[u̇]]d s

[[u̇]]f · tf
(3.47)

The calculated opening [[u]]f,calc is obtained via integration of [[u̇]]f,calc

3.5.3. Choice of new effective quantities

The choice of calculating the traction
[
tf,calc, [[u]]f

]
(3.45) or the displacement

[
tf, [[u]]f,calc

]
(3.47) has a big im-

pact on the traction separation law obtained. While both pairs of parameters yield in Hill-Mandel compliant
ETSLs, their shape is different and their interpretation as well. Details on this matter are given in §5.1.



4
Numerical Implementation:

Pre-processing and Post-processing.

This chapter covers the pre-processing and post-processing stages of the numerical implementation. First, an
overview of the whole process and its main characteristics is given in section §4.1. Then the pre-processing
stage is introduced in section §4.2 and the post-processing in §4.3. Moreover, details on the storage, data
transfer, and automatization of the process are given in §4.4. The generation of plots and ETSLs and their
interpretation are covered in chapter §5.

4.1. Overview

The numerical implementation of the methodology described in chapter §3 is rather complex and involves
several steps. A simplified flow diagram of the implementation is presented in figure 4.1. The computa-
tional implementation is structured in three main phases: pre-processing, which generates the analysis; the
processing, handled by Abaqus; and the post-processing, where the methodology relations are applied, and
valuable relations and plots are produced.

Figure 4.1: Flow diagram of the computational implementation.

The implementation adopts an off-the-shelf approach, where existing solid and cohesive elements in
Abaqus are used to simulate the failure and post-failure behavior of the material. Then, advanced post-
processing algorithms extract and calculate the relevant quantities. A randomized mesh of solid triangu-
lar elements is used to model the domain. In the mesh, cohesive elements are inserted in between all the
contact faces of the triangles to model the potential crack paths, allowing crack growth in quasi-arbitrary di-
rections. This enables to circumvent several limitations associated with XFEM, such as crack branching and
coalescence. However, the present method shows also several limitations, such as mesh dependency, severe
analysis convergence problems, numerical instabilities and loss of contact between crack surfaces, among
others.

As part of this thesis, a new implementation has been written to model and process multi-ply composite
laminates and perfect the control over the crack domains and their effective displacements, tractions, and
powers. Building on the previous works by van Hoorn [96], Westbroek [102] and Hirsch [39], all modules have
been rewritten to enable multi-ply object-oriented geometry generation, crack identification and grouping,
enhanced multi-crack post-processing, automatic workflow management, and plotting of the outputs. The
new implementation increases the efficiency and accuracy of the method, corrects previous errors and, in
general, provides a more natural and transparent way to generate, interpret, troubleshoot and present the
results.

27
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4.2. Pre-processing

The pre-processing comprises all the steps from the definition of the simulation parameters, the generation
of the MVE geometry, its meshing and the creation of the Abaqus input file (see diagram 4.2). In the next
chapters, the details of each step are explained. Moreover, a table summarizing all the test and database
inputs can be consulted in Appendix A.

Python 3 gmsh Python 3

Generate RVE 

fiber locations

Generate 

geometry 

(.geo file)

Insert 

cohesive 

elements

Generate 

Abaqus input 

(.inp file)

Generate 

mesh

(.msh file)

Figure 4.2: Flow diagram of the pre-processing.

4.2.1. Geometry generation

The process starts with the inputs definition and the generation of the geometry. In the study, several ge-
ometries are studied, however, the most used geometry is a [0,90,0] laminate1. While in the past separate
codes had been written to generate cross-sectional [102] and longitudinal phases [39], the nature and differ-
ences among the codes made them extremely cumbersome to combine and extend. Thus, an entirely new
geometry generation module has been implemented. Overall, the system is capable of generating [0°] and
[90°] composite multilayer RVEs, with and without periodicity, with fiber volume fractions from 0% up to
approximately 56%, constrained by algorithm limitations.

The new pre-processing module has an object-oriented architecture and defines the RVE at 3 levels: basic
features (fibers - in the future voids, inclusions, and so forth could be added), phases (made of basic features)
and RVE (made of phases). Each object contains essential information about itself (ID, position, dimensions,
periodicity) and methods to, for instance, generate its mesh or draw itself, making debugging and further
developments (e.g., the addition of new phases, 3D extension, and so forth) much more manageable. The
three main entities of the module (RVE, C-Phase and T-Phase) are now covered.

Figure 4.3: Generated geometries for a [0,90,0] laminates with domain size of 100x100 µm, fiber volume fraction V f = 0.5, and fiber
diameters 10 µm (left) and 5.2 µm (right).

1The [0,90,0] laminate geometries here presented can be considered a [0,90] laminate due to the periodicity. The [0,90,0] notation is
preferred.
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RVE
The RVE-object is the top entity and embodies information about the dimensions, the boundary conditions
and contains the phases that form the simulation domain. The RVE-object has three functions: first, to
assemble and generate the phases consistently. Second, to apply the domain boundary conditions to the
phases, and the internal boundary conditions to the interfaces between phases. Third, it has the main mesh
generation method, which calls the mesh generation method of each element present in the phases.

Cross section phase [0°] (C-Phase)
The cross section phase [0°] generator is based on the algorithm used in [102] and is of Complete Spatial
Random (CSR) type. Fibers are randomly positioned within a grid of points. Each time a fiber is placed in
one of the randomly selected grid points, those points within the area delimited by the circumference with
center at x, y and radius rfibre + lexclusive are deleted. If the generation process finishes without allocating all
fibers within the domain (i.e., there are no more grid points available for allocation), the process is restarted.
Moreover, grid points can also be deleted due to boundary conditions (e.g., wall boundary conditions). If
periodicity is enforced, clones of the positioned fiber are created in the opposite sides of the domain.

Although this algorithm is relatively easy to implement, it shows deficiencies when scaling up the prob-
lem. The time of generation increases substantially for larger domains and volume fractions above 56%, and
the algorithm is not able to find a fiber arrangement with the desired fiber volume fraction in a reasonable
time. Other more elaborated algorithms are available in the literature (NNA, shaking methods, etc.) tackling
this issue.

Figure 4.4: C-Phase geometry. Fibers are uncut to showcase periodicity. The characters inside the fibers stand for their identifier.

Transveral phase [90°] (T-Phase)
The generation algorithm for the transversal phase is more straightforward, as it allocates n f parallel fibers
equally spaced over the thickness of the ply. The number of fibers is adapted to satisfy the desired volume
fraction (4.1). Alternatively, the number of fibers can be fixed and their diameter changed to satisfy the pre-
scribed V f .

Several remarks must be made concerning the simplifications of this phase. Firstly, the analysis is con-
ducted in 2D, and thus the transversal phase is idealized. This poses a limitation towards the representative-
ness and validity of the analysis within the T-Phase, as the microstructure is greatly simplified. Secondly, no
random fiber allocation is considered, since the aim of this phase is not to provide true representative (lim-
ited by the aforementioned reasons), but to explore and develop the theory when dealing with anisotropy
inside the microstructural domain. Furthermore, the fibers are modeled perfectly parallel to each other, and
to the top and bottom domain edges. Finally, the imperfections of the fibers are not modeled, and neither are
matrix voids nor other inclusions.

n f = round

(
V f ·h

d f

)
(4.1)
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Figure 4.5: T-Phase geometry.

4.2.2. Mesh generation

The mesh is created using using Gmsh [29]. A non-structured triangular mesh is created using Delaunay tri-
angulation. The Delaunay algorithm yields a random distribution of triangles. This randomness is important
to reduce the influence of the mesh on the result, achieved by performing repetitions of the test with different
meshes. Moreover, a triangular mesh provides more routes for the crack to propagate than quadrilaterals. Al-
though other random algorithms are available, the Delaunay generation algorithm is selected as it is deemed
to be the robust and efficient [29].

Furthermore, new methods have been implemented to provide a structured and flexible approach to gen-
erate the mesh of the RVE microstructure. The module now makes use of the kernel OpenCASCADE and its
boolean capacities to generate the mesh. Using boolean operators has great advantages, as the geometry can
be described using simple entities (Circle and Rectangle, see figure 4.6a), which are later cut by the external
RVE rectangular domain (figure 4.6b) and meshed (figure 4.6c). This avoids the cumbersome process of calcu-
lating all intersections between the fibers and the domain and defining the geometry on a per-segment basis.
Additionally, this new approach allows each fiber/feature object within the Python environment to generate
its Gmsh geometry code independently. This object-oriented environment is helpful when generating ge-
ometries with multiple kinds of elements (differently shaped fibers, and in the future voids, inclusions, and
so forth). Additionally, this new implementation closes the gap with any future 3D extension, as 3D boolean
operations can also be performed.
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Figure 4.6: Meshing process using OpenCASCADE boolean operators.

While the use of higher geometry entities such as Circle and Rectangle together with boolean intersec-
tions provide advantages, it has the drawback of not having direct control over the naming of the domain’s
contour segments. Thus, to enforce periodicity in the RVE edges, it is required to identify and couple the
opposite boundary segment pairs. This has been achieved by writing a subroutine in Gmsh code which
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automatically detects and couples the boundary edges based on the coordinates of their endpoints. This
subroutine is presented and commented on appendix C.

Prior to the mesh generation in Gmsh, the python RVE-object generates the .geo file containing the ge-
ometry of the MVE and the mesh instructions for Gmsh. Additionally, the following parameters were used
during the generation of the mesh. The number of mesh smoothing steps set to 10, the minimum and max-
imum characteristic length are set to half the grid size and the grid size, respectively. The coherence mesh
option is enabled. A brief exposition of the .geo file structure and these parameters is given in appendix B

4.2.3. Abaqus elements

Within Abaqus, the bulk material is modeled using CPE3 elements, a 3-node, linear, plane strain element. The
crack interfaces are modeled using COH2D4 elements, a 4-node two-dimensional cohesive element, with the
default thickness set to zero. Figure 4.7 shows the node ordering and the integration points (marked with a
cross) for both elements. Special attention must be paid to the counterclockwise node ordering convention,
critical during the definition of the element, and explained in the next section.

1 2

3

1

1 2

34

1 2

CPE3 COH2D4

Figure 4.7: Abaqus CPE3 and COH2D4 node ordering (•) and integration points (marked with ×) [15]

4.2.4. Embedding of cohesive elements

Once Gmsh generates the mesh, the .inp file generator script inserts cohesive elements between all the el-
ements’ faces. The cohesive element embedding process starts by importing the mesh file and finding the
shared faces between the triangular elements. The nodes are then duplicated in such a way each of the trian-
gular elements has its individual nodes. The node identifiers are kept and saved together in an array with the
shared faces, now composed of 4 nodes.

The next step is the generation of the cohesive elements in all the faces between the elements. For each
common face, a cohesive element is inserted. It is critical to respect the Abaqus counterclockwise node
numbering convention. This is enforced by altering the node sequence of the cohesive element according
to condition (4.2), where a is the vector from the element centre C A to N1 (see figure 4.8) and b the vector
from the element centre C A to the cohesive centre F . Moreover, by definition N1,COPY and N2,COPY are the
duplicates of N1 and N2 respectively.

Cohesive Element Nodes List =
{ {

N1, N2, N2,COPY, N1,COPY
}

if (a×b)z < 0{
N2, N1, N1,COPY, N2,COPY

}
if (a×b)z > 0

(4.2)

4.2.5. Boundary Conditions

The implementation of the periodic boundary conditions was introduced in the framework by van Hoorn
[96]. The same scheme, with small variations, has been used in the current work.

The mathematical description of the PBCs is given in §3.3, equations (3.3a) to (3.3d). However, Abaqus
multi-point constraints only allows that a linear combination of nodal variables are equal to zero [15]. This
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Figure 4.8: Embedding of cohesive elements into the mesh.

can be circumvented by rewriting the periodic boundary condition equations as in equation (4.3), where the
non-homogeneous terms (ε̄11w , ε̄21w , ε̄21h, ε̄22h) are accounted for through dummy node displacements
(uDLR

1 , uDLR
2 , uDBT

1 , uDBT
2 ). For each periodic node pair, two equations are imposed, one for each direction.

uR
1 −uL

1 = ε̄11w
uR

2 −uL
2 = ε̄21w

uT
1 −uB

1 = ε̄21h
uT

2 −uB
2 = ε̄22h

→
uR

1 −uL
1 − ε̄11w = 0

uR
2 −uL

2 − ε̄21w = 0
uT

1 −uB
1 − ε̄21h = 0

uT
2 −uB

2 − ε̄22h = 0

→
uR

1 −uL
1 −uDLR

1 = 0
uR

2 −uL
2 −uDLR

2 = 0
uT

1 −uB
1 −uDBT

1 = 0
uT

2 −uB
2 −uDBT

2 = 0

(4.3)

In figure 4.9, the displacements imposed to the dummies DBT and DLR are shown. These displacements
increase monotonically over the simulation time. Moreover, corner C1 is pinned. Although the displacements
of nodes C2, C3 and C4 are displayed, no specific boundary conditions are imposed. Their displacements fall
naturally from the application of PBCs and dummy displacements.

A vital remark made in [96] on the implementation of the PBCs is the correct selection of node pairs after
the duplication of nodes. Only those nodes belonging to elements with at least one face at the edge shall be
coupled. The correct coupling of nodes is shown in figure 4.10, wherein the left, top and bottom edges of the
mesh are drawn, and the red lines display the periodic couplings.

Figure 4.10: Assignment of PBCs at the domain edges. Obtained from [96].
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Figure 4.9: MVE boundary conditions and displacements of the dummy and corner nodes.

4.2.6. Loading Modes

Most of the tests performed are uniaxial loading (UA) simulations under different angles θ. However, biaxial
tension (BA), pure shear (PS) and mixed loading cases have also been studied. The selected loading modes
are introduced through the strain tensor ε̄ and can be seen in table 4.1. The magnitude of the strain tensor is
chosen such that it is large enough to produce a full periodic crack.

Table 4.1: Loading strain tensors

Uniaxial Biaxial Pure Shear Mixed

εUA, 0◦ =
(
λ 0
0 0

)
εBA =

(
λ 0
0 λ

)
εPS, 0◦ =

(
0 λ

λ 0

)
εMixed =

(
λ λ

λ λ

)
εUA, θ = T (θ) εUA, 0◦ T (θ) T εPS, 45◦ =

(
λ 0
0 −λ

)

T (θ) =
(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)
(4.4)

4.2.7. Cohesive Material Model

Intrinsic Traction Separation Laws (TSLs), introduced in §2.3, are used to model the constitutive response of
the crack within the fiber, matrix and interface material.

The damage initiation, indicating the start of material degradation, is modeled using the Maximum Nom-
inal Stress (MAXS) damage initiation criteria, where t o

n , t o
s and t o

t are the maximum values of the nominal
stress for purely normal to the interface direction, and purely normal to the two tangential directions2 [15].
〈tn〉, ts and tt are the tractions in the normal and two tangential directions respectively, and the Macaulay
bracket 〈 〉 indicates that pure compressive stress does not contribute towards damage initiation.

2Being the model 2D plane strain, there would not be necessity for the second tangential direction, however it has been implemented in
the database/pre-processing to ease future 3D extension.
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Figure 4.11: Bilinear intrinsic TSL.

max

{ 〈tn〉
t o

n
,

ts

t o
s

,
tt

t o
t

}
= 1 (4.5)

Damage evolution, describing the degradation progress of the material stiffness, is modeled using a lin-
ear damage evolution law based on energy. The traction response is degraded due to the damage variable
D ∈ [0,1], as indicated in (4.6). In the normal direction, the compression stiffness is not degraded. Moreover,
the damage evolution is modeled as mode independent.

tn =
{

(1−D)ECOHδn for ECOHδn ≥ 0
ECOHδn otherwise (no damage in compression)

ts = (1−D)ECOHδs

(4.6)

The damage variable D is governed by equation (4.7) by Camanho and Davila [7], where δo is the opening
at the damage initiation, δ f the displacement at complete failure and δmax the maximum achieved opening
in the history of the cohesive element. Moreover, δ f can be calculated from the fracture energy G f and the
maximum traction t o by (4.8).

D = δ f (δmax −δo)

δmax
(
δ f −δo

) (4.7)

δ f = 2G f

t o (4.8)

While damage and evolution can be modeled with other relations which may be considered more physi-
cally sound (eg. QUADS, BK-law mode mix), in this thesis the emphasis is put on the development of a robust
post-processing and homogenization. Using the same material modeling as in the past [39, 96, 102] eases
comparing results. While some work has been done in updating the material properties (see 7), it is left as a
recommendation to explore in-depth other material and damage modeling possibilities.

One particular consequence of the use of intrinsic TSLs is artificial compliance. This issue, covered in the
literature review §2.4.3 can be minimized by the use of very high cohesive stiffness (ECOH ≥ 108 MPa), which
has no physical basis and required by the intrinsic, off-the-shelf approach. This value can be even higher if
different material properties are used (see chapter §7). The use of such high ECOH values drives the damage
variable D very fast to values close to one. However, D should not be interpreted as a direct indicator of the
level of damage, this is, D = 0.99 indicates a 99% degradation of the initial ECOH but, due to the very high
(ECOH = 108 MPa), even D = 0.99 results in large tractions in the cohesive element.
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4.2.8. Materials

The materials chosen for the study are HexTow IM7 carbon fibers and HexPly 8552 epoxy matrix. This com-
bination, used in [39] and similar to the one used in [17, 94], is chosen as it is a common combination in
aerospace. Thus, material and experimental data are readily available in the literature. The material parame-
ters used are obtained from the theses of Hirsch [39], and de Jong [17]; and the paper by Turteltaub et al. [94].
Please note that matrix void nucleation and plasticity are not modeled.

Table 4.2: IM7 fiber properties. Obtained from [39], [17], [94]

ρ (g/cm3) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 G12 (GPa) G13 (GPa) G23 (GPa)

1.78 275 20 20 0.2 0.2 0.333 27.5 27.5 7.5

� (µm) tul t (MPa) G f (J/m2) d f (mm) Ecoh (GPa)

10 5000 7500 1.5×10−3 1×108

Table 4.3: HexPly 8552 properties. Obtained from [39]

ρ (g/cm3) E (GPa) ν tul t (MPa) G f (J/m2) d f (mm) Ecoh (GPa)

1.3 4000 0.35 80 200 5×10−3 1×108

Table 4.4: Interface IM7/8552 properties. Obtained from [39].

tul t (MPa) G f (J/m2) d f (mm) Ecoh (GPa)

85 200 5×10−3 1×108

In a late stage of this thesis, it was detected several of the inherited parameters lacked strong experimenta-
tion support. Moreover, several parameters such as the fracture strain energy release rate of the fibers G f ,fiber

deviated from the values reported in the literature. Therefore, in an attempt to raise the confidence level of
the micromechanical parameters, a new literature review on material properties was conducted. A detailed
view of the new material parameters can be found in chapter §7.

4.2.9. Abaqus Numerical Artifacts

Several elements must be taken into consideration while performing the numerical simulations. The sud-
den change in stiffness after the bilinear law peak and the subsequent softening creates serious convergence
problems. These issues are alleviated using automatic stabilization and viscous regularization.

Automatic Stabilization
Automatic stabilization is allowed to help Abaqus converge. The ratio of viscous stabilization energy to strain
energy is kept at 5%. In the analyses outputs, its contribution is shown in ALLSD.

Viscous regularization
Overall, it is a challenge to reach a converged result without the use of numerical artifacts while performing
complex simulations involving a great number of cohesive elements. The stiffness degradation, together with
the sudden failure of multiple cohesive elements leads to convergence difficulties, in the form of a negative
tangent stiffness matrix. Viscous regularization alleviates this issue by introducing an artificial contribution
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into the tangent stiffness matrix, thus making it positive. The regularization is performed by introducing the
viscous stiffness degradation dv , which is ruled by (4.9) [15], with η as the viscous parameter. The viscous
regularization contribution is reflected in the output ALLCD.

ḋv = 1

η
(d −dv ) (4.9)

The value of parameter η is selected on the basis of a parametric study and literature research. After perform-
ing several tests in order to compare the contribution of η and compare it to commonly used values, η was
set as:

η= 1e −5 (4.10)

From an implementation point of view, it is important to remark this parameter must be implemented
through *SECTION CONTROLS instead of *DAMAGE STABILIZATION as traction-separation laws are used.

When using these numerical artifacts, it is required to check the viscous energy contribution to determine
the validity of the results. Within this study, results are considered to convey quantitative information within
the 0 to 5% ratio of viscous energy to total energy. However, simulation convergence is still desired after
that point to run the crack identification algorithm. During the last stages of the analysis, which feature
viscous energy ratios over 20% in most cases, the crack branches coalesce thus forming the main cracks. The
formation of clear cracks helps the correct functioning of the crack identification/classification/integration
algorithms developed as part of this thesis.

4.2.10. Abaqus Input File

After generating the mesh, the final step before the test processing is to create the input file (.inp file). The
input file contains all the information required for the Abaqus analysis: geometry, elements, sets, boundary
conditions, material properties, load steps, and so forth. The input file is hard-coded automatically, and the
whole process is performed outside of the Abaqus Graphical User Interface (GUI) application to avoid the
use of the limited Abaqus CAE licenses (and the potential waiting time if all are in use). Once the input file
is written, it is submitted to the solver to perform the FEA analysis. A detailed explanation of the structure of
the input file is given in appendix D.
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4.3. Post-processing

The post-processing encompasses all the operations from the end of the finite element analysis to obtaining
the ETSLs. This involves the extraction of the analysis results, their post-processing and plotting. The new
post-processing has several differences with respect to previous versions by Westbroek [102] and Hirsch [39],
adding two extra steps into the work-flow (see figure 4.12) and heavily modifying the rest.

Over the next pages, the procedures associated to the data extraction and homogenization of the bulk
elements (§4.3.1), crack identification and grouping (§4.3.2, §4.3.3), data processing of the cohesive elements
(§4.3.4, §4.3.5) and TSLs generation (§5.7) are covered.

new steps

Figure 4.12: Flow diagram of the post-processing

4.3.1. Bulk data extraction and homogenization

As explained in the methodology (chapter §3) and in the overview of the current chapter, one of the key
aspects of the current framework is the segregation of the bulk and crack properties. In this section, the
procedures used to extract and homogenize the bulk microscopic quantities are explained.

The element stress tensor σelem can be defined by reshaping the Abaqus stress array S.

σelem =
(
S11 S12
S12 S22

)
(4.11)

The extraction of the element strain tensor εelem has to be performed carefully, since Abaqus always re-
ports the shear strain E12 as engineering strain γ12 = 2 ε12. This detail had been overlooked in previous works,
creating power and energy inconsistencies in simulations displaying large amounts of shear.

εelem =
(
E11 E12

2
E12

2 E22

)
(4.12)

Moreover, the volume v of the element is extracted through the EVOL output field (4.13). The total domain
volume |Ω| is calculated as (4.14)

velem = EVOLelem (4.13)

|Ω| = ∑
elem ∈Ω

velem (4.14)

The stress and strain quantities can be homogenized in the bulk domain as (4.15) and (4.16) respectively.
These relations correspond to equations (3.13) and (3.9).

σM
Ω =

∑
elem ∈Ω

σelemvelem

|Ω| (4.15)

εM
Ω =

∑
elem ∈Ω

εelemvelem

|Ω| (4.16)
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As shown in equation (3.13), the macroscopic stress tensor can also be obtained from the boundary
tractions using the divergence theorem. This is implemented as in equation (4.17), where TFDUMMY_LR and
TFDUMMY_BT are the traction forces at the dummy nodes, w the MVE width, h the MVE height and e1, e2 the
global coordinate basis vectors.

σM
∂Ω = TFDUMMY_LR

w
⊗e1+ TFDUMMY_BT

h
⊗e2 (4.17)

The micro-level integrated bulk power is calculated as the sum of each bulk element power contribution
(4.18).

PB = 1

|Ω|
∑

elem ∈Ω
σelem · ε̇elemvelem (4.18)

4.3.2. Consistent reorientation of cohesive elements for data extraction

The insertion of the cohesive element in Abaqus works randomly. While the consistency of the nodal coun-
terclockwise convention is enforced during the creation of the cohesive elements (see section §4.2.4), the
orientation of the normals remains random (see figure 4.13, left). This raises a challenge since during the
extraction of data from the cohesive elements it is crucial to maintain control over their normal vectors m
definition.

Previous methods to perform this control were the use of Singular Value Decomposition (SVD) [94], and
the projection of normals by Hirsch [39]. However, both of these methods present deficiencies. In this section,
the characteristics of the methods mentioned above are covered, together with the new ones created to tackle
the problem: the reorientation by relative displacement, and the algorithm-based reorientation.

Figure 4.13: Left: element normal vectors m across the cohesive crack. Right: element normal vectors m across the cohesive crack after
applying the reorientation algorithm. (REF38).

Singular Value Decomposition (SVD) method
The use of Singular Value Decomposition tackles the inherent randomness of the normals by defining a quan-
tity invariant with respect to the orientation for each element |Γ| 〈[[u]]F ⊗m〉Γ. This quantity is integrated
along the crack path. In a later stage, the effective normal and the effective opening are obtained by perform-
ing a SVD decomposition of the orientation-invariant tensor product.

However, the use of this approximation results in a loss of information and precision, which worsens
under high anisotropy. In his thesis, Hirsch [39] thoroughly explains the potential information loss processes,
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namely during the integration of the invariant tensor product 〈[[u]]F ⊗m〉Γ and due to the use of only a part of
the SVD decomposition. Moreover, the latter one makes SVD unsuitable for the homogenization of domains
displaying two main cracks.

Method of projection of normals
The method of projection of normals by Hirsch [39], reformulated by de Jong [17], represents the first attempt
to reorientate the elements’ normals in a consistent manner with the opening vector of the crack. The opera-
tive principle of the method is as follows: the normals of the cohesive elements m are projected on the vector
e1 = (1,0) and divided by the module of the product to obtain a sign depending on their relative orientations.
A second projection over e2 = (0,1) can be introduced for those cases where the first projection yields zero.
The oriented quantities are marked by ( ∗), and shown below.

[[u]]∗ = m ·e1

|m ·e1| [[u]] (4.19)

m∗ = m ·e1

|m ·e1|
m (4.20)

t∗ = m ·e1

|m ·e1|
t (4.21)

However, within this thesis it was found that the applicability of the projection of normals is restricted to
simple vertical cracks such as the ones featured by uniaxial loading. Thus, the method fails when applying the
method to arbitrary-path cracks. This is shown in figure 4.14, where for each orientation the consistent and
inconsistent orientations are drawn. The diagram shows how the method misses a flip, and how it incorrectly
performs another one.

A consequence of this phenomena is, for example, the wrong calculation of tΓ. The incorrect orientation
of the crack normals leads to the canceling out of the integrated terms, and a lower tΓ value. Moreover, this
leads to a divergence between the crack integrated traction tΓ and the projected traction tΩ.
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Figure 4.14: Crack normals reorientation using projection of normals.
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Normal reorientation by relative displacement
The proposed method consistently reorientates the normals of the cohesive elements at the crack interface
by comparing the displacements of each of the crack faces.

Within a cohesive crack, it is possible to establish for each cohesive element two faces F12 and F34, each
connecting the cohesive element nodes 1 and 2, and 3 and 4, respectively (see figure 4.15, where the two
possible nodal orderings are present). The average displacement of the crack faces in the cohesive element
can be calculated at timestep ti as in (4.22).

uF12 (ti ) = 1
2 (uN1 (ti )+uN2 (ti ))

uF34 (ti ) = 1
2 (uN3 (ti )+uN4 (ti ))

(4.22)

1
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Figure 4.15: Crack normals reorientation using relative displacements. Definition of displacement vectors and static and moving faces.

Moreover, a static and a moving face can be defined in the crack interface. The moving face features
a larger absolute displacement than the static face. Moreover, by convention the crack interface normals
shall point from the static domain outwards. This effectively implies that the face F12 shall be the static
face, and the F34 the moving one. If this assignment is inverted (figure 4.15, case B), the cohesive element
is considered not to be oriented correctly and its normal, tangent and opening vectors are flipped. The flip
condition is expressed in equation 4.23. Moreover, if the crack is closed, this is |uF12| = |uF34| the flip condition
is indeterminate. This limitation can be tackled by executing the reorientation algorithm over the load history.

f (ti ) =


1
−1
ind

|uF12| > |uF34|
|uF12| < |uF34|
|uF12| = |uF34|

(4.23)

The result is a correct normal reorientation, as seen in figure 4.16, which surpasses the limitations of
previous methods (see figure 4.14).

Algorithm-based crack identification and reorientation
While the method of reorientation by relative displacement provides an accurate fix for the integration of
crack quantities, additional problems arise when having to deal with multiple independent cracks in the do-
main. In these cases, it is required to detect and isolate the contributions of each crack group. This capability
requires the implementation of a more sophisticated algorithm.

The developed solution performs identification of crack segments, classification into crack groups and
consistent reorientation of their cohesive elements. Moreover, it extracts independent TSLs for each of the
cracks in case of multi-crack propagation. These split TSLs enable to differentiate the fracture dissipated
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Figure 4.16: Crack normals reorientation using relative displacements. Flip process for generalized cracks.

energy between the cracks and the compliance. An overview of the operation of the code can be seen in
figure 4.18.

Examples of the output can be seen for biaxial, shear and mixed loading modes in figures 4.19 to 4.21. In
these last figures, the thick lines represent the main opened crack, while the thin lines represent secondary
damaged surfaces. Moreover, the circles indicate junctions of three or more individual segments. The fig-
ures in the left column showcase the segment identification, this is, the continuous crack path in between
junctions. The figures in the right column show the segments already grouped. It must be noted that the
pre-reorientation normals in all these cases look similar to the previously presented figure 4.13.

This algorithm accounts for the two new added steps in the process, requiring a preliminary .odb extrac-
tion to record the nodal and element information needed by multicrack.py to detect the cracks and be able
to group the elements in crack groups. The new steps highlighted in figure 4.12 are expanded in figure 4.17,
where the main processes and the inputs and outputs are drawn.
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Figure 4.17: Flow diagram of the crack identification and reorientation algorithm.
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Figure 4.19: Multi-crack algorithm application in biaxial loading test (#42)

Figure 4.20: Multi-crack algorithm application in pure shear loading test (#43)

Figure 4.21: Multi-crack algorithm application in mixed loading test (#49)
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4.3.3. Crack groups and threshold of damage

The crack identification algorithm described in the previous section results in two or three main groups de-
pending on the characteristics of the fracture pattern. These groups are key during the homogenization pro-
cess, as they separate the damage and enable to assess the fracture energy of each crack. In this section, a
review of these cracks groups is done, and a discussion about the threshold of damage is given.

• Crack Group 0 (CG0): contains all the cohesive elements below the threshold of damage for the multi-
crack identification. Apart from the non-damaged elements, this group also includes those elements
lightly damaged, which cause artificial compliance. Moreover, CG0 includes two subdivisions (CG0-
1 and CG0-2) to associate the compliance damage to the corresponding crack process (see section
§4.3.6). This group is also referred as compliance or auxiliary.

• Crack Groups 1 and 2 (CG1 and CG2): comprise the cohesive elements forming the cracks. Two groups
are set, as a maximum of two main cracks propagate in different directions in the simulated domains.
For example, in figure 4.22 the Crack Group 1 (CG1) is marked in orange and the Crack Group 2 (CG2)
in green.

Secondary cracks

Main cracks

Figure 4.22: Multi-crack algorithm crack group identification.

The threshold of damage sdeg_cut_off is set to discriminate between those damaged elements form-
ing the crack and damaged elements accounting for the artificial compliance. Previous sections (§4.2.7)
addressed that the Abaqus damage variable SDEG did not offer a clear indication of the degree of damage
present in the material. Thus, the cutoff is defined in function of the maximum traction attainable at the
damage state.

The choice of the threshold of damage is subjective, but still motivated by several factors. The threshold
should be such that the main crack is included, but also secondary cracks. These secondary cracks, which
dissipate energy during their fracture process, may not fully propagate and close due to their residual stiff-
ness after the main crack opening. These secondary cracks can only be accounted for by setting the threshold
to a lower level of damage. Nevertheless, lowering the threshold raises the complexity of multi-crack identifi-
cation: more segments have to be processed, and the grouping becomes more complicated.

In the past, values between 10-20% of the ultimate traction have been used to set the threshold of dam-
age. This relatively low threshold choice simplifies certain operations, as only the main crack is above the
threshold. However, it also disregards the bifurcations and other segments contributing to the process. The
new algorithm enables to raise the threshold to 90%, thus capturing secondary cracks and providing a more
accurate understanding of the process.
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4.3.4. Cohesive data extraction and rotation

Once the crack elements’ normals are under control, it is possible to extract and post-process the cohesive
crack data. In this section, the extraction of cohesive crack data and its transformations are discussed.

The tangent vector l of the element is defined as the product of the flip function and the vector from edge
midpoint M14 to edge midpoint M23 (4.25). The positions of the edge midpoints M14 and M23 are defined
as (4.24). The normalized tangent vector l̂ is defined in equation (4.26), with f being the flip function defined
in (4.23).

xM14 = 1
2 (xN1 +xN4)

xM23 = 1
2 (xN2 +xN3)5

(4.24)

l = f · (xM23 −xM14) (4.25)

l̂ = l

‖l‖ (4.26)
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Figure 4.23: Cohesive element geometry (COH2D4) and vectors

Once the tangent vector is correctly defined, the normal can be easily obtained by creating the local or-
thonormal frame of the element

{
l̂, m̂, ê3

}
with the out of plane unit vector ê3 = [0, 0, 1] (equation 4.27).

m̂ = ê3 × l̂ (4.27)

Alternatively, if using the algorithm-based cracked reorientation (see section §4.3.2), the oriented normals
m̂ are available. Thus, the tangent l̂ is obtained as in (4.28). Additionally, the flip function f would be defined
as (4.29).

l̂ = m̂× ê3 (4.28)

f (ti ) =
{

1 l̂ · (xM23 −xM14) > 0
−1 l̂ · (xM23 −xM14) < 0

(4.29)

For both methods, the opening vector [[u]] of the cohesive element is defined as (4.30), where uF12 and
uF34 represent the displacements of face F12 and face F34.

[[u]] = f · (uF34 −uF12) (4.30)

Moreover, the opening rate, required to calculate the element power contribution (see equation (3.26)),
can be easily calculated by performing numerical differentiation.

[[u̇]] (ti ) = [[u]] (ti )− [[u]] (ti−1)

ti − ti−1
(4.31)
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The element traction vector tlocal is obtained by extracting the S12 and S22 components of the element’s
stress tensor output of Abaqus S (4.32). However, the element traction vector values are defined in the local
element coordinate basis

{
l̂, m̂, ê3

}
and thus needs to be transformed to global coordinates. The traction

vector in global coordinates can be obtained by defining a transformation matrix T (4.33) and performing the
transformation (4.34).

tlocal =
(
S12 S22

)
(4.32)

T =
(

l̂1 m̂1

l̂2 m̂2

)T

(4.33)

tglobal = T tlocal (4.34)

The length of the cohesive element |Γelem| is given by the module of the tangent vector l (4.35)

|Γelem| = |l| (4.35)

4.3.5. Cohesive data homogenization and crack quantities

With the individual element properties set (see section §4.3.4), it is possible to calculate the cohesive effec-
tive macroscopic quantities: the effective crack normal m̂f, the effective crack length

∣∣Γf
∣∣ and other effective

integrated quantities.

Effective normal
The effective normal of each crack group is calculated by the crack identification algorithm (multicrack.py).
For each main crack Γi,main, an effective tangent vector lf can be calculated (4.36). Then, the effective normal
mf can be calculated as (4.37) and normalized (4.38).

lf = ∑
elem ∈ Γi,main

lelem (4.36)

mf = ê3 × lf (4.37)

m̂f = mf∣∣mf
∣∣ (4.38)

Effective crack length
An additional advantage of using the crack-identification algorithm is being able to calculate the effective
length of the crack

∣∣Γf
∣∣ at every timestep, even when not fully propagated. This can be done by taking the

module of the sum of all main segments (4.39). ∣∣∣Γf
∣∣∣= ∣∣∣lf

∣∣∣ (4.39)

Moreover, the crack effective length is also computed with the previous established method (described in
equations (4.40) and (4.41) [94]), which is robust, and serves well for most of the cases. Moreover, the combi-
nation of both methods helps to detect errors in the crack detection.

∣∣∣Γf
min

∣∣∣ := min

(
l1∣∣n2 ·mf

∣∣ ,
l2∣∣n1 ·mf

∣∣
) ∣∣∣Γf

max

∣∣∣ := max

(
l1∣∣n2 ·mf

∣∣ ,
l2∣∣n1 ·mf

∣∣
)

r :=
∣∣Γf

max

∣∣∣∣Γf
min

∣∣ (4.40)

∣∣∣Γf
∣∣∣ :=

{ ∣∣Γf
min

∣∣ if r ≥ rmax∣∣Γf
max

∣∣ if r < rmax
(4.41)
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Integrated quantities
The power dissipated by the crack through the fracture process can be calculated as (4.42) for the different
cracks Γi . This quantity is calculated for each crack group Γi . Moreover, the homogenized effective tractions
tf
Γ, tf,calc, tf

Ω, tf
∂Ω

and displacements [[u]]f, [[u]]f,calc are calculated according to the procedures covered in §3.5.2.∫
Γi

t · [[u̇]] d s = ∑
elem ∈ Γi

telem · [[u̇]]elem |Γelem| (4.42)

4.3.6. Handling of cohesive elements below the threshold of damage

A large number of cohesive elements fall below the damage threshold required to be classified by the multi-
crack identification process. However, these elements have a contribution to the power dissipation during the
crack initiation and the very first stage of the damage propagation. While their contribution is small, it has
to be taken into account that before the main crack opens, every cohesive element within the RVE domain
experience small-opening before damage due to the intrinsic implementation (artificial compliance). This
issue, as explained in section §4.2.7, is minimized by the use of a high cohesive stiffness. When the main
crack finally appears, these elements relax.

A method has been established to adscribe the opening and power dissipation contribution to the main
crack groups (CGi,aux, Γi,aux, where aux stands for auxiliary, and i indicates the crack group). When only one
maincrack propagates, the process is straightforward as all the opening and power dissipation of the compli-
ance cohesive elements (CE) goes to crack group 1 (CG1). However, in the case with two cracks propagating,
the process is slightly more complex. The classification is based on the similarity of the cohesive element
opening vector with the main crack opening vectors. This is determined by decomposing the cohesive ele-
ment opening into the non-orthogonal basis formed by the opening direction vectors of crack groups 1 and
2.

[[u]]CE = h[[û]]CG1 +k[[û]]CG2 (4.43){
h[[û]]CG1[[û]]CG1 +k[[û]]CG2[[û]]CG1 = [[u]]CE[[û]]CG1

h[[û]]CG1[[û]]CG2 +k[[û]]CG2[[û]]CG2 = [[u]]CE[[û]]CG2
(4.44)

By solving the linear system for h and k, it is possible to assess the relative contribution of each basis
vector. The classification of the cohesive element into a crack group is performed attending to this relative
contribution.

CCE ∈ CG1 if |h| ≥ |k|
CCE ∈ CG2 if |h| < |k| (4.45)

It must be noted that the derived TSLs exclude the power generated by the compliance / auxiliary group.
However, the above-classified method is useful to assess the effect of artificial compliance on each of the
cracks.

4.4. Computational implementation details

This section aims to shed some light on newly implemented features and the main changes with respect
to previous implementations. Firstly, the bookkeeping and traceability of the tests has been significantly
improved. A SQL database was set up, which keeps track of all the jobs and their parameters. This had
been previously done in Excel, but it gave many problems when automating the process and having to deal
with concurrent read/write operations. Moreover, the SQL database can be seamlessly integrated within the
Python environment.

Moreover, the workload required to start and process the analyses has been significantly reduced by the
creation and use of an automatic test manager (auto.py). The manager autonomously executes the different
operations require over the whole process (see figure 4.24). Moreover, it checks the number of Abaqus tokens
and starts jobs according to the cluster usage regulations, and other rational usage guidelines.
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Regarding the storage of the results and other data, the previously used Pickle files have been replaced
by JSON files. This has many benefits, starting by being able to read the data directly from the file. More-
over, interoperability is an important consideration, since the JSON standard is widely used among different
software.

Furthermore, access to the Abaqus output database (.odb files) is performed via the Abaqus Scripting
Interface, thus bypassing the Abaqus GUI interface. This has the benefit of not requiring either Abaqus/CAE
licenses nor tokens. The scripting environment works with a customized version of Python2.7, with modules
and utilities to create, process and read Abaqus analysis. By avoiding the use of "from abaqus import *",
the post-processing can be run outside of the Abaqus kernel process.

While the scripting interface is structured and well documented, it has the drawback of not allowing to add
external libraries or update the current ones. Thus, plotting within the environment is not possible. More-
over, the distributed Abaqus Python development environment (PDE) is quite impractical when debugging
and performing code checks. This issue is circumvented by exporting the data in JSON files and alternating
between AbaqusPy and Python3.
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Figure 4.24: Flow diagram of the computational implementation.





5
Plots, Interpretation and Limitations.

This chapter showcases the generated plots and provides insight into their interpretation. Moreover, the re-
sults motivating several of the discussions provided in chapter §3 are presented. The chapter starts by offering
a discussion on the different interpretation of the two effective quantity couples (§5.1). Then, the displace-
ment (§5.3), traction (§5.4), power (§5.5), energy (§5.6) and ETSL (§5.7) curves are described, highlighting
their relevant aspects. The limitations of the implementation are addressed in section §5.8.

As a tool to explain these results, test #38 is chosen. Test #38 features uniaxial loading applied in the
horizontal axis, and presents a relatively simple fracture process and crack geometry. The crack geometry
and the fracture process for #38 are given in figure 5.1. The material properties used for these tests are listed
in section §4.2.8.

t = 0 s t = 0.16 s

t = 0.24 s t = 0.60 s

Fracture Process

Figure 5.1: Test #38 fracture results. Left: crack geometry. Right: fracture process.

5.1. Two effective quantity couples, two different effective materials

The choice of effective quantity couple (
[
tf,calc, [[u]]f

]
or

[
tf, [[u]]f,calc

]
) influences the way damage is modeled

at the macroscale. Thus, neither TSLs, displacement curves or traction curves are expected to coincide for
both effective pairs. However, what is common for both couples is that the power and energy exchanged by
the macroscopic quantities always remain equal to the ones on the microscopic domain.

If we take, for example, the opening-based homogenization couple
[
tf,calc, [[u]]f

]
, we are modeling two

blocks with a cohesive law which fully respects the geometric opening, and adapts the traction. Thus, when

51
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Figure 5.2: Comparison between effective parameter pairs
[

tf,calc, [[u]]f
]

and
[

tf, [[u]]f,calc
]

.

the matrix cracks there would be a moderate opening, but as the energy dissipated by the matrix cracks is low,
the traction will be very small. However, when the fibers break the caculated tractions are large (even over the
theoretical σult), due to the immense energy dissipated.

If we analyze the behavior of the traction-based effective quantities
[
tf, [[u]]f,calc

]
, we can observe that

during the matrix cracking the tractions are already high and the effective opening is minimal, since the
dissipated energy is very small. Moreover, during the fiber cracking, the effective tractions drop as result of the
damage in the material, and the opening is slightly larger than the geometrically accurate one to compensate
for the simplified crack path, smaller than the actual one in the micro-structure. In this way, the Hill-Mandel
condition is kept.

Over the next sections, the impact of the choice of
[
tf,calc, [[u]]f

]
or

[
tf, [[u]]f,calc

]
on the displacements,

tractions and TSLs will be covered. Moreover, it will be shown that, although both curves are valid from a
Hill-Mandel point of view,

[
tf,calc, [[u]]f

]
is more prone to numerical instabilities, and is more sensitive to the

artificial compliance effects.

5.2. Test tags and orientation conventions

In many cases, the test reference is followed by a descriptive tag. This tag contains information about the test
group, loading mode, domain size, grid size and angle of application of the load. Moreover the cracks’ orien-
tation ϕ is given as the difference between the crack normal mf and e1. Similarly, the load angle θ, especially
relevant for the uniaxial cases with a load not applied in the principal directions, defines the rotation of the
applied deformation tensor ε̄ from e1.
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Figure 5.3: Left: test tag description. Right: Crack and load angle convention.
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5.3. Displacement curves

One of the main ingredients to extract TSLs are displacements. However, as seen in §3.5, there are various
approaches to determine the effective displacements. Moreover, the existence of artificial compliance makes
the interpretation more complex.

In figure 5.4, the norms of several of the effective displacement vectors are plotted. It can be seen how the
old effective opening [[u]]f

mc,old is larger than the applied displacement boundary conditions, as explained

in §3.5.2 (scaling vs projection). Using the new projection-based formula [[u]]f
mc yields perfect coincidence

after the opening of the main crack. Moreover, before the opening of the crack, the applied displacement is
equivalent to the sum of the elastic deformation of the body, the opening of the crack [[u]]f

mc, and the opening
of the compliance elements [[u]]f

aux. Furthermore, the [[u]]f
mc between t = 0.025 and t = 0.1 represents the

opening of the matrix. This interval is of great importance to justify the behavior of the ETSL covered later on.

The calculated effective opening [[u]]f,calc, as seen in figure 5.4, does not coincide with the applied dis-
placement. However, this is not intended, as explained in section §5.1, since it depends on the power dissi-
pated and the traction present in the maincrack. On the interval t ∈ [0.04, 0.12], for example, [[u]]f,calc is close
to zero, since very little energy is dissipated, and high tractions are already present in the (future) crack path.
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Figure 5.4: Displacement plot test #38 (). Top: overall view. Bottom: magnification simulation time interval t ∈ [0, 0.17].
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5.4. Traction curves

Tractions, calculated using the equations in §3.5, are hereby plotted against the simulation time. Figure 5.5
shows the tractions evolution for uniaxial loading (left) and mixed mode loading (right).

One of the most relevant aspects present in the plot is the behavior of the calculated traction tf
calc curve.

Due to the way this parameter is calculated, tf
calc focuses more on elements and time periods in which cracks

are dissipating energy. The first traction peak at t = 0.025s is linked to the opening of matrix cracks. This is
followed by lower effective tractions until t = 0.09s, driven by little energy dissipated and moderate openings
([[u]]f > [[u]]f,calc in that interval). From t = 0.09s to t = 0.18s the failure of the longitudinal fibers and the great
amount of dissipated energy raises the calculated traction. As a result, the calculated effective traction tf,calc

can even surpass the ultimate traction that would be expected from classic homogenization formulas. Again,
this is a consequence of the geometry simplification that comes with homogenization (see §5.1).
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Figure 5.5: Left: Traction plot test #38 (UA1). Right: Traction plot test #49 (mixed loading).

Moreover, in section §4.3.2, it was noted that a defect in the orientation of the normals could make tf
Γ

and tf
Ω curves diverge. This can be seen in the TSLs from [17] given in figure 5.6. The uniaxial case (vertical

crack with no normal vectors reorientation problems) 5.6a shows a perfect match. However, when applying
45° shear loading (irregular crack path in 45°, faulty normal vectors), the tractions lead to the aforementioned
divergence. Using the new algorithms, it is possible to obtain a match between tf

Γ and tf
Ω in shear and mixed

modes (figure 5.5R). Small discrepancies can occur as the algorithm troubles to process simulations suffering
from compression and loss of contact. This problem is explained later on in section §5.8.

(a) Uniaxial loading in horizontal direction (b) 45° pure shear loading

Figure 5.6: TSLs for UA1 and PS45 loading modes in a [90] RVE. Obtained from [17].
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5.5. Power curves

Power curves are, together with the ETSLs, the primary output of the thesis, as they convey crucial informa-
tion about the crack progress and the compliance to the Hill-Mandel condition. The curves presented in this
section are normalized results by the domain surface area |Ω|.

Figure 5.7 depicts the power contributions of the bulk and crack, and the power calculated from the ef-
fective quantities. The black lines represent the total power. PALLIE is the time derivative of the Abaqus total
strain energy history output1. Moreover, the total power is also calculated as the sum of the microscale bulk
and crack powers (Ptotal), and as the product of the macroscopic homogenized stress and strain (P M

total). The

compliance of the global Hill-Mandel condition can be observed as Ptotal = P M
total.

Maincrack

Bulk

Total

Compliance

Maincrack + Compliance

Figure 5.7: Power plot test #38.

Moreover, it can also be seen how the power calculated from the crack effective quantities P f
Γ1

matches
the crack power curve obtained by integration of the power contributions of the crack’s elements PΓ1 . Thus,
the Hill Mandel condition for the crack domain (3.32) is satisfied too.

Careful observation of figure 5.7 provide insight on the behavior of the simulation. It can be seen how
at the start of the simulation power is done on the bulk, which stores elastic strain energy. Around point
t = 0.1s, the bulk power goes to zero, reaching its maximum stored elastic strain energy. Instead, the cohesive
elements suffer from artificial compliance, which reflects on the compliance power increasing. Finally, at the
point t = 0.18s the crack forms (thus the peak in PΓ1 ), and power is released from the bulk elements and the
non-cracked cohesive elements.

5.5.1. Discussion: comparison of the new/old Hill-Mandel decomposition

In section §3.4.3, the non-conformity of the previous Hill-Mandel decomposition was presented. The results
supporting this argumentation are shown in figure 5.8, where it can be seen how the power exchanged by
the old homogenized quantities (discontinuous lines, calculated using equation (3.29)), diverges from the
integrated power quantities (continuous lines) and the new effective quantities (markers).

Moreover, the impact of anisotropy can be seen when compared with figure 5.9. While figure 5.8 repre-
sents the power of the [90,0,90] geometry described in §4.2.1, figure 5.9 represents the previous cross sec-
tional phase [90] analysed in previous works. Cracking in this domain has a more homogeneous behavior

1ALLIE = ALLSE + ALLPD + ALLCD + ALLAE + ALLQB + ALLEE + ALLDMD
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since fracture originates and propagates exclusively through the matrix and interfaces. Moreover, the mate-
rial properties used for the matrix and the interfaces were very similar in previous studies. The sum of all this
effects make the product of averages 〈σ〉Ω · 〈ε̇〉f,mc to be more similar to the actual integrated power PΓ1,mc

.

Di�erence between integrated 

maincrack power and power 

from old HM decomposition

Figure 5.8: Power plot test #38. Comparison with old Hill-Mandel decomposition.

Figure 5.9: Power plot test #1062. Comparison with old Hill-Mandel decomposition.

5.5.2. Discussion: comparison of the new/old effective quantities

The old effective quantities shown in §3.5.1 were also revised as simulations showed disagreement between
the effective power and the integrated one. These differences can be seen in figure 5.10, where the old ef-
fective power P f,old

Γ1
, calculated with tf

Γ1
(3.34), is plotted. This offset (A) is consistent for all loading cases

involving rupture of the fibers. The lower power levels of the old and non-calculated curves are explained
by the reduction of the effective traction due to the already cracked matrix. This leads to an effective power
smaller than the one generated by the breaking of the fibers, featuring very high tensile stresses and displace-
ment rates.
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In simulations displaying fracture propagation through a single type of material, this offset reduces (e.g.,
figure 5.11, featuring axial loading in the vertical direction, with a crack propagating exclusively through the
matrix). In previous studies, the offset was approximately in between the two cases presented as fracture
propagated through the matrix and the interface. The use of new effective properties with no recalculation
also results in an offset (B).

A
B

A: Difference old effective quantities / 

     integrated quantities

B: Difference new effective 

     non calculated quantities / 

     integrated quantities

Figure 5.10: Power plot test #38. Comparison with old effective quantities.

O�set

Figure 5.11: Power plot test #39. Comparison with old effective quantities.
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5.6. Energy curves

The integration of the previously presented power curves results in the energy curves presented in figure 5.12.
Additional curves are plotted, such as ALLDMD (energy dissipated by cohesive damage), ALLCD (approximate
amount of energy associated with viscous regularization) and ALLSD (energy dissipated by automatic stabi-
lization - especially critical in contact cases). The curves are normalized with respect to the domain surface
|Ω|.

It can be observed how the final energy dissipated by all cohesive elements EΓ1,tot is higher than EALLDMD.
This is due to the viscous energy generated by the viscous regularization EALLCD. This component cannot
be directly decoupled from the main crack energy EΓ1 , and thus results obtained over the 5% viscosity limit
should be treated carefully. Additionally, the difference between the crack energy EΓ1 and the old effective

energy E f,old
Γ1

can be clearly appreciated. Similarly to the previous section, this difference becomes negligible
when the crack entirely propagates through the same phase (e.g., figure 5.14).

Moreover, energy control plots are produced to study the evolution of the different energy components
and the viscous dissipation percentage (see figures 5.13 and 5.15).
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Figure 5.12: Energy plot test #38
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Figure 5.13: Energy control plots test #38
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Figure 5.14: Energy plot test #39
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Figure 5.15: Energy control plots test #39

5.7. ETSLs

Finally, using the effective tractions and displacements previously presented, and having the power and en-
ergy balances on check, it is possible to generate the Effective Traction Separation Laws (ETSLs). As it was
previously mentioned, depending on the choice of the effective quantities (i.e.,

[
tf,calc, [[u]]f

]
or

[
tf, [[u]]f,calc

]
)

the resultant ETSL will be different. This can be observed in figure 5.16.

On the one hand, the set
[
tf, [[u]]f,calc

]
approximately2 respects the peak stress of the material predicted

by classic relations. On the other hand
[
tf,calc, [[u]]f

]
shows traction values which are far above what would be

expected. However, when displacement boundary conditions are imposed and a consistent effective opening
is desired, these traction levels would be the only guarantee of satisfying Hill-Mandel.

It is also interesting to observe the behavior of the other effective quantity pairs, which have reasonable
shape but fail to dissipate the energy of the crack. Although in figure 5.16 the general shape of

[
tf, [[u̇]]f

]
and[

tf,old, [[u̇]]f,old
]

are similar to the one of
[
tf, [[u̇]]f,calc

]
, this is not always the case (e.g., figure 5.17).

2Numerical problems associated with the cohesive elements cause a deviation, see §5.9
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Figure 5.16: ETSL test #38. Uniaxial loading.
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Figure 5.17: ETSL test #49. Mixed loading case.

5.8. Limitations

While this computational implementation represents a great advance regarding control, precision, and con-
sistency, several limitations must be considered.

5.8.1. Crack surfaces loss of contact and overlapping

In shear and compression simulations, the cohesive elements often loose contact between their crack faces.
Although cohesive elements are programmed to retain their compression resistance, large tangential dis-
placements loosen the cohesive faces contact relation. This issue, acknowledged by Abaqus as a software
limitation [15], results in interpenetration between the crack faces (see figure 5.18).

Solving this problem may require the creation of an internal Abaqus subroutine able to define on the
fly the crack surfaces and add contact relations. Moreover, the subroutine could also be used to implement
friction forces between crack surfaces (currently neglected). This action is added as a recommendation.



5.9. Lessons learned: Abaqus COH2D4 SDEG deviations due to high viscous regularization 61

Crack surfaces overlapping 

Figure 5.18: Crack surfaces overlap in shear 45° case, test #33.

5.8.2. Viscous dissipation

The implementation of the longitudinal [0°] fiber phase entails a much more violent and unstable fracture
behavior. This forces Abaqus to use viscous regularization and automatic stabilization. While the use of these
numerical artifacts is common practice (both in this kind of simulations and others), the quick rise above the
safety levels (5% viscous dissipation with respect to the total strain energy) voids the quantitative significance
of the results above this limit. The most immediate solution, reducing the viscous regularization parameter,
cannot be taken as it results in an inability to converge the job.

5.8.3. Artificial compliance

Artificial compliance is observable, both in displacement (figure 5.4) and power curves (figure 5.7). Artificial
compliance effectively softens the material, delaying the aperture of the crack. Besides, there is a percentage
of energy dissipated through artificial compliance. For example, for test #38, this quantity represents 18% of
the total energy at the end of the analysis.

5.8.4. Post-processing limitations

While substantial efforts have been performed to raise the robustness of the code, non-completed fracture
simulations displaying opened branches can pose problems to the multi-crack recognition script. This may
compromise the quantities that are integrated through the crack path. Moreover, cases displaying loss of con-
tact and overlapping can also be problematic, as the erratic displacements difficult the crack identification.
Finally, errors can occur in the detection of multiple propagating cracks with sudden changes in direction.
The identification of each crack in complex multi-crack patterns has not been achieved with the desired ro-
bustness and generality. The use of artificial intelligence techniques for this purpose is recommended.

5.9. Lessons learned: Abaqus COH2D4 SDEG deviations due to high vis-
cous regularization

While comparing the TSL of the uniaxial test #38 (figure 5.19) against classical formulas such as (5.1) [14], it
was found that the ETSL peak was higher (≈ 10%) than the calculated one (5.2). This triggered a root-cause
investigation. Possible post-processing effects related with the effective crack length were accounted for by
using factors in equation (5.3), but their contribution was found to be small.

F1t
∼= F f t

(
V f +Vm

Em

E f

)
(5.1)
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Figure 5.19: Old ETSL test #38 with η= 10−3. Uniaxial loading.

F1t
∼= 5000

(
0.25+0.75

4000

275000

)
= 1304 MPa (5.2)

F1t
∼= 5000

(
0.25 ·1.01+0.75

4000

275000
·1.05

)
= 1320 MPa (5.3)

F1t,ETSL = 1450 MPa (5.4)

Thus, the Abaqus simulation output database was thoroughly examined. It was found that the normal
traction outputs S22 of the longitudinal fibers’ cohesive elements were systematically exceeding the maxi-
mum traction t o = 5000 MPa, and thus not obeying the provided material traction separation law.

Therefore, a simplified model was created to remove as much external influences as possible (figure
5.20a). The model featured two CPE3 elements joined by a COH2D4 zero thickness cohesive element. More-
over, a vertical displacement boundary condition is imposed in node 6, and node 1 is pinned. The mate-
rial properties used were the same ones used in the regular models (§4.2.7, §4.2.8), thus G f = 7500 N/mm,
ECOH = 109 MPa, δ0 = 5 ·10−6 mm and δ f = 0.003 mm.
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Figure 5.20: Damage variable deviation investigation plots.

After running the simulation, an "erroneous" increment featuring a cohesive normal traction S22> 5000 MPa
was searched. Once one was found, the displacements and damage variable SDEG were probed at that time-
frame. The normal opening was found to be δ = 9.55 ·10−5mm and the damage variable SDEG = 0.433. The
application of relation (4.6) with the provided values, results in t = 5406 MPa, exactly the same value reported
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by Abaqus. However, the application of equation (4.7) results in a theoretical SDEGcalc = 0.477, which turns
into tcalc = 4992 MPa (TSL compliant).

Several potential causes for this deviation were studied. The time step of the simulation was refined, with
no success. The non-linear convergence criterion was made stricter, with no success. ECOH and G f were
updated to the new properties (see chapter §7), but the deviation persisted. The damage initiation tolerance
was reduced, with no success.

Finally, although the viscous effects were initially discarded due to the low energy contribution (zero) of
ALLCD and ALLSD at the studied frame, a change of the viscosity parameter from η = 10−3 to η = 10−5 solved
the problem. Moreover, η = 10−4 also resulted in an incorrect response (≈ 250 MPa, 5% error), as seen in
figure 5.20b. It is thus concluded that "high" viscous regularization parameter (η > 10−5 with the here used
material properties) can lead to errors in the Abaqus cohesive damage variable calculation and thus the TSL
response.

The application of η= 10−5 to the larger problem resulted in a peak traction of F1t = 1325 MPa, similar to
the estimations in equations (5.2) and (5.3), which can be seen in figure 5.21.
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Figure 5.21: ETSL test #21050 with η= 10−5. Uniaxial loading.





6
Verification

In this section, verification of the theory is performed and convergence studies are presented. First, the Hill-
Mandel condition is verified. Then, three factors are studied. The first one (§6.3) investigates the convergence
behavior when refining the grid size. The second check (§6.2) aims to verify that the results are similar for sev-
eral test repetitions with different fiber distributions, thus not being strongly tied to the randomly generated
geometry. Thirdly, the size of the domain is changed (§6.4), thus convergence is aimed to be found as the RVE
is made larger. While several loading modes are used to test the Hill-Mandel compliance, the presented mesh
and RVE convergence study are performed exclusively with uniaxial loading cases. Finally, the dependence
of the crack propagation on the periodic boundary conditions and the domain size is discussed in §6.9.

6.1. Hill-Mandel verification

This section showcases the validity of the homogenization methods discussed from an inter-scale energy
conservation standpoint. The objective is to guarantee the effective properties exchange the same amount
of power in the micro-domain and the macroscopic one. This is performed by verifying the Hill-Mandel
condition both for the global domain and the crack domain. The section extends the discussion in §5.5,
providing new test cases and loading modes. From the post-processing it is possible to observe the Hill-
Mandel condition is fulfilled in all the results: for uniaxial cases (figures 6.1 and 6.2), for shear (figure 6.3) and
mixed mode (figure 6.4).

In the presented plots, there are several interesting details that can be addressed. For example, in figures
6.1 and 6.2, the two peaks correspond to each of the two longitudinal fibers breaking. Moreover, in figure 6.2
(45° uniaxial tensile case), it is interesting to highlight the peak of P f,old

Γ1
and P f,nocalc

Γ1
at t = 0.14s, caused by

a mix of a large effective opening and high tractions due to crack opening in the matrix without fiber cracks
(which do not occurr until t = 0.18). This deviation is consistent with what was covered in section §3.5.1.
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Figure 6.1: Power plot, test #530, uniaxial tensile loading 0° with respect to e1
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Figure 6.2: Power plot, test #532, uniaxial tensile loading 45° with respect to e1
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Figure 6.3: Power plot, test #43, pure shear 45°
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Figure 6.4: Power plot, test #49, mixed mode
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6.2. Mesh convergence

Several analyses were performed to test convergence when changing the grid size of the mesh. Grid sizes of
0.5, 1, 2 and 3 µm were used. The mesh convergence study is performed for four squared domains with edge
lengths 25 µm, 50 µm, 75 µm and 100 µm. For the larger domains (75 µm and 100 µm), the gridsize 0.5 µm is
excluded due to computational cost. The used meshed domains can be seen in figures 6.5, 6.6, 6.7 and 6.8.

Figure 6.5: Domain size: 25 x 25 µm. Gridsizes: 3, 2, 1, 0.5 µm

Figure 6.6: Domain size: 50 x 50 µm. Gridsizes: 3, 2, 1, 0.5 µm

Figure 6.7: Domain size: 75 x 75 µm. Gridsizes: 3, 2, 1 µm

Figure 6.8: Domain size: 100 x 100 µm. Gridsizes: 3, 2, 1 µm

The mesh convergence study was performed for horizontal uniaxial loading cases. The following figures
compare the effective traction-separation laws (both displacement and traction calculated) for the different
grid sizes, extracted as discussed in section §6.3. Moreover, the crack fracture energy is also plotted.

For the displacement calculated curves, reasonable convergence can be seen in the estimation of the
ETSL peak stress for all RVE sizes. Good ETSL general convergence is obtained for the smaller domains sizes
(25 µm and 50 µm). For the larger domains (25 mum and 50 µm), fair convergence is observed on the first
part of the curve, which deteriorates as it progresses towards the 5% viscosity limit. Convergence above this
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point is deficient, and it worsens as more viscous energy is required. Moreover, it must be remarked that the
results displayed for the 25 µm and 50 µm domains correspond to smaller RVEs with simpler fracture be-
havior and fewer cohesive elements (and thus less viscosity and artificial compliance). Hence, their superior
convergence.

In the case of traction calculated curves, convergence cannot be found. The cohesive elements have
an impact on the artificial compliance and the complexity of the fracture pattern. This heavily influences
the behavior of the traction calculated curves. The branches and additional segments (more numerous in
larger domains) contribute towards the opening of their crack group. Numerical instabilities can also be
appreciated in these curves in the form of sudden sparks (no filtering is used).

The energy curves show good convergence for the 25µm and 50µm domains. Their convergence worsens
as the domain is enlarged.
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Figure 6.9: Mesh convergence plot for domain size 25µm, gridsizes 0.5, 1, 2 and 3 µm.
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Figure 6.10: Mesh convergence plot for domain size 50µm, gridsizes 0.5, 1, 2 and 3 µm.
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Figure 6.11: Mesh convergence plot for domain size 75µm, gridsizes 1, 2 and 3 µm.
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Figure 6.12: Mesh convergence plot for domain size 100µm, gridsizes 1, 2 and 3 µm.
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6.3. Geometry generation statistical convergence

In chapter §4, it was described how the RVE geometry is randomly generated. This has an impact on the re-
sults and in the crack path due to the different mesh discretization. Therefore, tests are required to verify that
the results are similar for different statistical repetitions, thus not being strongly tied to the randomly gener-
ated geometry. Each test is simulated between 4 and 5 times with different fiber distributions and meshes.
While 5 repetitions are acknowledged as insufficient to perform a textbook statistical analysis, the cluster and
processing time limit the possible number of statistical realizations.

The following figures display the results of each test repetition with dots, the average TSL with a contin-
uous line, and the statistical deviation is represented by a shadow. Moreover, the large circle marker rep-
resents the most conservative 5% viscosity limit of all the repetitions, and the cross marker represents the
displacement at the first simulation completion/exit time. In general, the plots show a small standard devi-
ation among the simulations for the calculated displacement curves (traction-based,

[
tf, [[u̇]]f,calc

]
), thus in-

dicating close agreement between statistical repetitions. This is not the case of the traction calculated curves
(displacement based,

[
tf,calc, [[u̇]]f

]
), much more sensitive to the mesh geometry and numerical instabilities.

The small/reasonable deviation among tests in the case of the displacement calculated curves stays simi-
lar for larger RVE domains. In these tests, the statistical deviation remains negligible within the < 5% viscosity
energy domain. However, the traction calculated curves retain and worsen their erratic behavior, and clear
convergence cannot be obtained. Additionally, the values and shape of these curves change as the domain is
enlarged. The convergence in RVE size is covered in §6.4.

When comparing the anisotropic case [0,90,0] against a more isotropic one [0] (figure 6.15), it is possible
to observe that convergence improves for the latter one. Moreover, the traction and displacement calculated
curves almost overlap. This is caused due to the crack propagating only through the matrix and interface,
which have really similar properties.
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Figure 6.13: Geometry generation statistical convergence tests # 21100, 21105, 21110, 21115. Domain size 25 µm, gridsize 1 µm.
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Figure 6.14: Geometry generation statistical convergence tests # 21140, 21145, 21150, 21155. Domain size 75 µm, gridsize 1 µm.
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Figure 6.15: Geometry generation statistical convergence tests # 2069, 2070, 2071. Domain size 75 µm, gridsize 1 µm.
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6.4. RVE convergence

Figure 6.16 presents the RVE size convergence study for the case of uniaxial loading in the horizontal direc-
tion. The traction calculated curves do not converge directly. These curves are affected by the appearance
of artificial compliance and the opening of branches and secondary cracks. Thus, direct convergence cannot
be expected when changing the RVE size. By normalizing by the domain size, it is possible to obtain a closer
match between the curves before the localization of the crack. After fracture, artificial compliance does not
play a role, and therefore this normalization is not required. Detailed information on RVEs’ convergence and
can be found in the paper by Nguyen et al. [71].

The behavior of the displacement calculated curves show agreement on the point of fracture initiation.
Besides, convergence is achieved for sizes lower and equal to 75 µm. However, the 100 µm shows severe
divergence. This is explained by the difficult convergence of these larger and more complex simulations,
which forces Abaqus to use significant (> 5%) viscous damping in the early stages of opening of the crack.
Furthermore, the more complex and different fracture patterns which, combined with the artificial viscosity,
provoke a larger statistical deviation in the curves.

No convergence is found on the energy curves above the 5% viscosity limit. The injected viscous energy
(ALLCD and ALLSD), makes energy convergence not possible. This issue worsens for larger domains, specially
for the 100µm.
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Figure 6.16: RVE convergence plot for UA1 [0,90,0], domain sizes 25, 50, 75 and 100 µm, and gridsize 1 µm.
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It is interesting to observe the contrast between the anisotropic case [0,90,0] (figure 6.16) and the isotropic
one [0] (6.17). The results from the [0] RVE, featuring matrix-interface fracture, look better than the [0,90,0]
from an RVE convergence standpoint. It is important to remark that the 5% viscosity limit appears at a later
point in the curve than in the [0,90,0] case. Moreover, it was observed that in the [0,90,0] case the 10% limit
was located next to the 5% limit, while in the [0] case this limit appeared in the lower end of the TSL. This
shows a much higher use of viscous regularization and automatic stabilization, which are coherent with the
much more violent behavior of the simulation.

Moreover, the lower fracture strengths lead to a minimal effect of the artificial compliance. This, coupled
to the almost simultaneous opening of the full crack path, contribute to making the traction calculated curve
similar to the displacement calculated TSL. Numerical instabilities lead to the sparks in the curves.
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Figure 6.17: RVE convergence plot for UA1 [0], domain sizes 50, 75 and 100 µm, and gridsize 1 µm.
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6.5. Energy comparison

The observation of the different energies and the dissipation percentages provides information about the
fracture energy, the fracture process and the convergence of the analysis. The [0,90,0] cases display a very
high influence of the numerical artifacts after the onset of fracture in the fibers. Figures 6.18 and 6.19 display
the energy curves for two uniaxial tests featuring viscosity η= 10−5, and domain sizes 50 µm and 100 µm re-
spectively. In these cases, the large influence of the automatic stabilization ALLSD is observable after the onset
of fracture. Moreover, it is interesting to compare these energy curves with the older cases featuring a larger
viscosity η = 10−3 (figures 6.20 and 6.21). In the latter ones, it is observable how the viscous regularization
component ALLCD is more prominent.

Furthermore, the influence of the artificial viscosity grows as the domain is enlarged. This can be seen
by comparing the dissipation percentage of test #21120 (figure 6.18) with test #21160 (figure 6.19). The same
behavior applies for the η = 10−3 cases, and can be observed by comparing tests #515 (figure 6.20) and #550
(figure 6.21).

Moreover, the [0] case in figure 6.22 (matrix/interface fracture) displays limited viscous influence (< 10%
over the whole fracture process), mostly in the form of automatic stabilization. The anisotropic cases [0,90,0]
show a much stronger influence of viscosity, with a quick raise over 10%, which aggravates in the cases using
η= 10−5.
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Figure 6.18: Energy plot test #21120 (UA1V with domain size 50 µm, gridsize 1 µm).
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Figure 6.19: Energy plot test #21160 (UA1V with domain size 100 µm, gridsize 1 µm).
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Figure 6.20: Energy plot test #515 (UA1 with domain size 50 µm, gridsize 1 µm).
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Figure 6.21: Energy plot test #550 (UA1 with domain size 100 µm, gridsize 1 µm). Analysis stop at t = 0.29s.
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Figure 6.22: Energy plot test #2067 (MATUA1 with domain size 50 µm, gridsize 1 µm).
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6.6. Multi-crack TSLs for biaxial loading

In section §4.3.2, it was described that the new algorithm could detect individually propagating cracks in
domains displaying multiple differentiated cracks. This detection is possible in biaxial loading modes, where
the two propagating cracks have clear and distinct orientations.

Using the previously shown test #32 featuring biaxial loading (crack recognition in figure 4.19), two power
curves and ETSLs can be extracted. In both plots, it is possible to appreciate how the vertical crack CG2,
which goes through the longitudinal fibers, is the one dissipating the most energy. In comparison, crack CG1
(horizontal crack going through matrix and interface) dissipates a small quantity of power. This difference
among cracks is reflected as well in the ETSLs, where CG2 opens at a much higher traction level. As the
quantity plotted in the y axis corresponds to the norm of the traction vector, it is important to remark that the
orientation of the tractions is very similar to the orientation of the normal vectors of the cracks.
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Figure 6.23: Power plots test #42 (biaxial loading). The diagram on top is magnified to see the power contributions of crack group 1
(CG1), which are very small in comparison with the total power and the crack group 2 (CG2, going through the [90] fibers) power.
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Figure 6.24: ETSLs test #42 (biaxial loading), presenting the individual ETSLs for CG1 (matrix crack) and CG2 (crack through the fibers).



80 6. Verification

6.7. Verification remarks

From the obtained results it is considered that the displacement calculated curves (effective set
[
tf, [[u̇]]f,calc

]
)

would be more reasonable, simple and stable for the macro-scale implementation. These curves are not as
sensitive to the occurring artificial compliance and present less numerical problems. This conclusion may
not be valid for other frameworks not featuring a cohesive intrinsic implementation.

Additionally, several problems hinder the obtention of valid results. From a numerical point of view, con-
vergence is difficult to achieve. It is identified that the large contributions of viscous energy required to con-
duct the analysis prevent convergence over the full scope of the TSL. From a modeling point of view, the
application of PBCs may not be suitable to study crack propagation and fracture energies.

6.8. Multi-angle TSLs for uniaxial loading

By combining the average ETSLs for different angles, it is possible to obtain an anisotropic ETSL for uniaxial
loading. This can be seen in figure 6.25. Linear interpolation has been used between the ETSLs.

It can be appreciated how the maximum tensile stresses decrease as the force orientation approaches
90°. The sudden drop in the 77.5° case is explained by the creation of a crack not going through the fibers
but parallel to them. Tests with loading orientation 67.5° were considered. In these cases, two cracks were
formed: one through the fibers and one parallel to them. However, due to the opening sequence, the cracks
could not be separated automatically into crack groups 1 and 2.

Moreover, a closer analysis of the averaged ETSLs for the 22.5° and 77.5° angles revealed an inconsistency
on the final orientation of the cracks. This issue is covered in section §6.9.

Figure 6.25: Multi-angle TSL. The averaged ETSLs are shown for uniaxial tension under several angles: θ = 0°, 22.5°, 45°,77.5°,90°.
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6.9. Crack orientation dependence on RVE dimensions and PBCs

In previous works [94], periodic boundary conditions have been considered to allow sufficient freedom to en-
able crack nucleation and propagation in arbitrary orientations. While this is applicable for the nucleation, it
may not be so for the propagation. Simulations confirm that the crack nucleation and initial propagation oc-
curs in the arbitrary direction most favored by the geometry and the loading conditions. However, results also
show that PBCs tend to favor orientations that result in periodicity, which are dependent on the dimensions
of the RVE. For instance, in the case of squared domains, 0°, 45° and 90° orientations are promoted.

The presence of longitudinal fibers ([90] phase) under loading modes not aligned with the orthotropic
directions of the material highlight the dependency of the crack orientation with the RVE dimensions due to
the application of PBCs. Simulations showed that fibers do not break twice in different points. Thus, under
specific loads/orientations, "natural" fully periodic cracks may never be obtained.

Tests featuring 22.5° uniaxial tension are used to show the RVE and PBC crack path dependency. In figure
6.26, the UA1 22.5° tests used for the multi-angle TSL are plotted for a domain size of 100 µm. In the four
repetitions of the test, it can be seen how two generate a full periodic crack in the promoted direction (0°),
and how the other two generate a 22.5° not fully periodic crack. In smaller domains, the promoted direction
has even more influence.

Crack propagates 22.5˚. No full periodic crack

Crack propagates in promoted direction (0˚)

Crack propagates in promoted direction (0˚)

Crack propagates 22.5˚. No full periodic crack

Crack deflected

Crack deflected

Figure 6.26: Uniaxial 22.5° tests #551, #556, #561, #566. Four repetitions with different fiber distributions are performed.
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Figure 6.27: Uniaxial 22.5° tests with different RVE aspect ratios.
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The influence of the aspect ratio of the RVE in the crack orientation and length can be seen in figure
6.27, where more UA 22.5° cases are presented. The leftmost column displays RVEs with dimensions specially
tailored to favor the propagation of a 22.5° crack, which the loading conditions favor (UA 22.5°). In the middle
column, however, the RVE dimensions give preference to the 0°, 90° and 26.56° orientations. This is seen in the
crack patterns: test #2101 features a complete vertical 0° crack plus a horizontal 90° incomplete crack. Tests
#2102 and #2103 display cracks in the favored direction. Finally, in the rightmost column, it is possible to
observe a vertical 0° crack (#2098), and incomplete periodic cracks (#2099, #2100) deflected upon the second
fiber crossing. From these results, dependency can be found on the aspect ratio of the RVE.

Moreover, similarly to the visualizations presented in [94], in figure 6.28 the domain (A) has been decom-
posed to show two equivalent crack domains (B, C). In the diagrams, it can be seen how the effective crack
domain fails to represent a full periodic crack. Moreover, in (B) the deflection of the crack when approaching
the top and bottom fibers is evident. This is problematic, as the lack of a proper full periodic crack under
arbitrary loads compromises the argumentation to use PBCs after fracture localization.

These results show that the introduction of micro-fluctuations in the domain borders does not entail per
se that the domain is periodic from a fracture point of view. Although the periodic boundary conditions
introduce stresses in the domain due to their multi-point constraints, they do not introduce a stress field in
the domain that yields in a consistent and natural periodic fracture pattern under arbitrary loading. Instead,
the PBCs alter the orientation of the crack and create artificial periodic crack openings, thus distorting the
averaging of the quantities by effectively enlarging the crack path and thus the weight of the [0] phase.

Figure 6.28: A: Original cracked domain. B and C: equivalent crack domains. D: stacked RVEs.
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The phenomenon was then tested using homogeneous matrix domains (V f = 0%) to isolate the influence
of the longitudinal fibers ([90] phase) and the heterogeneity of the [0] phase. The results, shown in figure 6.29
reflect a clear alignment of the cracks towards the PBC promoted orientations (0°, 90°, 45° for the squared do-
mains). This is visible in tests #20994 (UA1 10°) and #20998 (UA1 40°), where the cracks are attracted towards
the 0° and 45° promoted orientations respectively.

The tests #20995 (UA1 20°), #20996 (UA1 26.56°), #20997 (UA1 30°) produce a more complex crack pattern,
but follow the same principle. In the cases #20996 and #20997, more complex pattern origins, but the multi-
plication of the periodic domain, shown in figure 6.30, clearly shows that the crack aligns with the 45° and 0°
orientations, finally forming a 45° periodic crack.
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Figure 6.29: Uniaxial test with variable angle loading for a homogeneous matrix domain.
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Figure 6.30: Test #20996 (UA1 26.56°). Periodic fractured domain.

The crack propagation dependence on the periodic boundary conditions (PBCs) and the domain aspect
ratio has several implications on the current and past work. Overall, results indicate that PBCs, as imple-
mented here, influence and constrain the crack propagation orientations. Their application results in cracks
propagating in a set of promoted orientations, which vary in function of the domain aspect ratio. As far as
simulations show, and under the current implementation, PBCs should not be used upon damage localiza-
tion under arbitrary loads and domain geometries, as natural cracks are not obtained in general cases.

The problem lies not in the creation of parallel cracks, but on the loss of loading after the localization of
the first fracture plane. This hinders the creation of a full periodic crack in the natural orientation. This ob-
servation is consistent with the remark about PBCs in [67]. The simulation of a periodic domain under PBCs
as here implemented will not deliver such a crack for cases involving multiple fracture planes and arbitrary
domain sizes.

Overall, the absence of a full periodic crack compromises the applicability of the post-processing method-
ology. It is important to remark that the post-processing methodology is considered to remain entirely valid.
However, the post-processing methodology relies on the input of a fully periodic crack, this is an essential
condition for its applicability. The complete set of effects of this evidence in the theory has not been fully
explored, as the crack orientation dependence was studied at the end of the project. Yet, this issue would
invalidate the analysis in those cases in which the crack normal is not 90°, 45° or 0° (in squared RVEs). Fur-
thermore, the current modeling of the fibers does not include a statistical description of its defects. If this was
to be modeled, the PBCs could affect the crack propagation through the matrix by introducing artificial crack
paths connecting the periodic boundary crossings, even in the 0° case.

Most of the given examples in this thesis correspond to uniaxial tension in which the crack orientation
coincides with the orientation promoted by the PBCs. These results are not expected to be highly influenced
by this phenomenon. Again, the post-processing methodology is considered still entirely valid, although the
implementation built for feeding it with fully periodic cracks is considered compromised. Still, many of the
developed methods covered in the methodology and the numerical implementation can be useful in other
situations and applied with other kinds of BCs enforced.





7
New Material Properties

As part of the study, an extensive effort has been made to gather and use material properties which are rep-
resentative of the material. With this objective, several material properties have been extensively searched in
the literature. While some information in this regard was available from the previous studies, several of the
properties used in previous research had a relative nature, this is, had been selected to provide a qualitative
behavior. Moreover, other material properties, like the fiber fracture energy were two orders of magnitude
higher than values reported in the literature. While these choices simplify the development and interpreta-
tion of results, they hinder the validation process by providing results which cannot be contrasted with any
experiments.

The materials chosen for the study are HexTow IM7 carbon fibers and HexPly 8552 epoxy matrix. This
combination is chosen as it is a common combination and common material and experimental data are
readily available in the literature. It must be remarked that all the material properties here gathered are ob-
tained from material specifications or journal articles. No experimental material characterization has been
performed as part of this research, and such exercise is not envisioned within the scope of this thesis.

7.1. New material parameters

7.1.1. Carbon Fibers: HexTow IM7

The material properties for the IM7 carbon fibers are summarized in table 7.1. The elastic properties are
taken from [10, 37]. Fracture properties were much more difficult to obtain, as the fracture toughness and the
strain energy release of single carbon fibers are extremely difficult to measure. Since the strain energy release
rate of a single IM7 fiber could not be found, this property is evaluated based on the literature.

Herráez et al. [35] investigates fracture toughness in different structural fibers my means of the focused
ion beam (FIB) technique, obtaining K I c = 2.12 MPa m1/2 and G I c = 52 J/m2 for AS4 carbon fibers. The strain
energy release rate is obtained via a numerical J-integral along the crack contour in a FEM model. These
fracture toughness values are in the same order to the ones presented by Naito [65] (K I c = 1.82 MPa m1/2 for
IMS60 carbon fibers, K I c = 1.91 MPa m1/2 for T1000GB carbon fibers). Moreover, Naito [65] suggests a linear
relationship between the tensile modulus E1 and the fracture toughness K I c . Based on this, a K I c = 1.8 is
selected for the IM7 fibers. By using the relation by Sih et al. [82] (7.1)1, the strain energy release rate can be
calculated for an orthotropic solid. This results in a strain energy release rate for IM7 fibers G f = 24.4 J/m2,
as showed in table 7.1. This value is more than two orders of magnitude lower than the previously used value
G f = 7500 J/m2.

G I (orthotropic) = K 2
I

√( a11a22

2

)(√
a11

a22
+ 2a12 +a66

2a22

)
(7.1)

a11 = 1−ν12ν21

E1
a22 = 1−ν21ν12

E2
a12 =−ν21 (1−ν23)

E1
a66 = 1

G12
(7.2)

1Relation as written in [35, 40]. It is suspected that the material indexes used in [65] are switched and result in a large overestimation.
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Table 7.1: IM7 fiber properties. Material properties obtained from [10, 37]. Fracture properties obtained from [37] and calculated based
on the data and methods in [35, 65].

ρ (g/cm3) E1 (GPa) E2 (GPa) E3 (GPa) ν12 ν13 ν23 G12 (GPa) G13 (GPa) G23 (GPa)

1.78 276 19 19 0.2 0.2 0.35 27.6 27.6 27.6

� (µm) tul t (MPa) G f (J/m2) d f (mm) Ecoh (GPa)

5.2 5150 24.4 1.679×10−6 1×106

7.1.2. Matrix: HexPly 8552 Epoxy Resin

The HexPly 8552 Epoxy Resin material properties are obtained from the manufacturer specifications [36].
However, the fracture strain energy release rate presented in the specification raises doubts: no information
is available about the testing method used, and the value is six times higher than others found in the literature
[68]. Moreover, this parameter is only given in the US version of the specification, and cannot be found in the
EU/metric version. A review of the literature shows a large range (40 to 400 J/m2) of values for this parameter
for different epoxy resins [4, 41, 68]. Thus, it is chosen to take G f = 100 J/m2 as presented in [64, 68].

Table 7.2: HexPly 8552 properties. Obtained from [36]

ρ (g/cm3) E (GPa) ν tul t (MPa) G f (J/m2) d f (mm) Ecoh (GPa)

1.3 4670 0.35 121 100 5.61×10−3 1×106

7.1.3. Interface: IM7/8552

Since experimentally obtained properties could not be found for IM7/8552, AS4/8552 properties are used.
Fracture in the interface is modelled using the Benzeggagh-Kenane (BK) criterion. Thus, fracture energies
are different for normal and shear loading, but both contribute towards the damage evolution. The material
properties are obtained from [68].

Table 7.3: Interface AS4/8552 properties. Obtained from [68].

tn (MPa) ts (MPa) Ecoh,n (GPa) Ecoh,s (GPa) G f ,n (J/m2) G f ,s (J/m2) ηBK

42 64 100 100 2 100 1.2

7.2. Parametric study to determine ECOH and η

In order to establish the cohesive stiffness (ECOH) and the artificial regularization parameter (η) for the new set
of material properties, a parametric study was conducted (see table 7.4). As part of the study, the convergence,
the number of iterations and the presence of numerical errors were evaluated.

Several values were tested to determine suitable values for the cohesive stiffness. Very high values (ECOH >
1011) resulted in errors in Abaqus (excesive distortion), coupled with an inability to carry the analysis on the
larger domains. Besides, low values (ECOH < 109) resulted as well in premature analysis stoppage. It was
found that for the new material properties, the previous cohesive stiffness ECOH = 108 was insufficient for the
[0] fiber phase, since all the fracture energy was contained within the elastic region. In figure 7.1, the fracture
energy stored before failure is highlighted in green, and can be calculated as (7.3). In order for the TSL to be
consistent, G f , undamaged shall be lower than the total fracture energy G f , which in the case of the fiber phase
can be expressed as (7.4). However, after solving (7.3) for condition (7.4), it is obtained that the cohesive
stiffness ECOH shall be over 5.435 ·108 MPa. Thus, the previously used cohesive stiffness ECOH,old = 108 MPa
is unsuitable for the new material parameters.
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G f , undamaged < 0.0244 (7.4)

ECOH > 5.435 ·108 (7.5)

Moreover, the parametric study also concluded that insufficient viscous regularization resulted in a higher
number of increments required to complete the analysis, or in more extreme cases (η< 10−6), in an inability to
converge. An excess of viscous regularization (η> 10−4) implied unrealistic results, thus having to be avoided
as well.

Table 7.4: Parametric study to establish ECOH and η values for the new material parameters. Number of increments between parenthesis.
Red = analysis failed. Green = analysis converged. Yellow = analysis converged with problems.

# Test Status Description Size Visc (η) ECOH

1035 Failed UA1NM 0.025 0.001 3 0 EC2 NewECOHR3 0.025 1.00E-05 1.00E+08

1036 Failed UA1NM 0.025 0.001 3 0 EC2 NewECOHR3 visc4 0.025 1.00E-04 1.00E+08

1041 Failed UA1NM 0.025 0.001 0 0 EC2 E9 v-4 0.025 1.00E-04 1.00E+09

1042 Failed UA1NM 0.025 0.001 0 0 EC2 E9 v-5 0.025 1.00E-05 1.00E+09

1043 Failed UA1NM 0.025 0.001 0 0 EC2 E9 v-5 0.025 1.00E-06 1.00E+09

1039 Good (1780) UA1NM 0.025 0.001 0 0 EC2 E10 v-4 0.025 1.00E-04 1.00E+10

1028 Good (1806) UA1NM 0.025 0.001 3 0 EC2 NewECOHR2 0.025 1.00E-05 1.00E+10

1045 Failed UA1NM 0.025 0.001 0 0 EC2 E10 v-5 NoAutoSta 0.025 1.00E-05 1.00E+10

1040 Good (3458) UA1NM 0.025 0.001 0 0 EC2 E10 v-6 0.025 1.00E-06 1.00E+10

1044 Failed UA1NM 0.025 0.001 0 0 EC2 E10 v-7 0.025 1.00E-07 1.00E+10

1047 Good (2.5 days) UA1NM 0.075 0.001 0 0 EC2 E10 v-4 0.075 1.00E-04 1.00E+10

1046 Good (2.5 days) UA1NM 0.075 0.001 0 0 EC2 E10 v-5 0.075 1.00E-05 1.00E+10

1027 Good (9188) UA1NM 0.025 0.001 3 0 EC2 NewECOHR1 0.025 1.00E-05 1.00E+11

1034 Good (7244) UA1NM 0.025 0.001 3 0 EC2 NewECOHR1 visc4 0.025 1.00E-04 1.00E+11

1037 Failed - Distortion (21885) UA1NM 0.075 0.001 0 0 EC2 NewECOHR1 visc4 0.075 1.00E-04 1.00E+11

1020 Failed UA1NM 0.025 0.001 3 0 EC2 NewECOH visc-10 0.025 1.00E-10 1.00E+12

1026 Failed UA1NM 0.025 0.001 3 0 EC2 NewECOH visc-6 0.025 1.00E-06 1.00E+12

1019 Good - Distortion at end UA1NM 0.025 0.001 3 0 EC2 NewECOH 0.025 1.00E-05 1.00E+12

1025 Good (9236) UA1NM 0.025 0.001 3 0 EC2 NewECOH visc-4 0.025 1.00E-04 1.00E+12

1021 Failed - Too much viscosity UA1NM 0.025 0.001 3 0 EC2 NewECOH visc-2 0.025 1.00E-02 1.00E+12

S
M

A
L
L
 E

C
O

H
 

In
v
a
lid

 M
a
te

ria
l 

T
S

L

H
IG

H
 E

C
O

H
 

N
u
m

e
ric

a
l 

P
ro

b
le

m
s



90 7. New Material Properties

7.3. Discussion of the simulation results

From the parametric study, it was concluded that ECOH = 1010 and η ∈ [10−4,10−5] rendered themselves as
valid parameters (test references #1028, #1039, #1046 and #1047). Moreover, the new weaker interface prop-
erties promoted the natural appearance of delaminations, visible in figure 7.3.

The simulations, however, presented multiple difficulties. Firstly, it must be remarked that the label
"good" in table 7.4 does not indicate full analysis completion, but completion until a point after the frac-
ture process has occurred (crack initiated and opened). For instance, most of the carried "good" simulations
did not go over 40% of the analysis time. Secondly, the new fiber fracture energy G f = 0.024, two orders of
magnitude smaller than the previously used value [39], entailed a much more violent failure behavior. Be-
sides, this violence involved an immediate enormous contribution of ALLSD (automatic stabilization) over
2000% of the total energy ALLIE. Thirdly, the simulations had large computational cost (≈2.5 days, 4 cores)
when compared to the same domain size but using the previous material properties (≈8 hours, 4 cores).

All these reasons, coupled with the fact these new material properties were gathered in the latter stages of
the research, lead to demonstrate the new post-processing algorithms and capabilities using the by the time
already carried simulations using the previous material properties. Nevertheless, these results constitute a
wake-up call which may serve as starting point for an evaluation of the applicability of the present multiscale
strategy, or the reformulation of its current implementation for the simulation of very brittle materials.

A
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D

900%

Figure 7.2: Abaqus energies and viscous dissipation for test #1046. Markers displayed for line identification.

Figure 7.3: Test #1046 fracture pattern and crack recognition. The new material properties showcase delaminations and fiber/matrix
debonding.



8
Conclusions and Recommendations

8.1. Conclusions

The use of multiscale simulations provides a natural and seamless way to study composites while avoiding
phenomenological approaches and reducing experimental testing. By modeling fracture physics at their rel-
evant scale, valuable understanding of how cracks initiate and propagate can be obtained. This knowledge,
in the long term, will become essential for the design of damage tolerant aerostructures, and critical to re-
alize the full potential of composite materials, leading to major weight and cost savings, and environmental
benefits for society.

This thesis presents an extension of the multiscale framework by Turteltaub et al. [94] for its application in
the study of fracture involving combined failure mechanisms in anisotropic microstructural domains, and for
the determination of effective traction-separation laws (ETSLs). The method generates effective macroscopic
quantities by homogenizing microscopic volume elements experimenting fracture, while complying with the
Hill-Mandel condition, thus keeping energy and power equilibrium between scales.

The microstructural geometries are generated in Python and later meshed using Gmsh. A new subrou-
tine was written in Gmsh to efficiently apply the PBCs without the need of calculating all the intersections
between the fibers and the domain edges. With the mesh ready, cohesive elements are embedded in between
all the elements to simulate the potential crack surfaces, allowing arbitrary crack nucleation and propaga-
tion through the domain. Additionally, this scheme also models the coalescence and branching of the cracks.
Subsequently, FEM analyses are performed using Abaqus (standard), and the post-processing is executed us-
ing Python and the Abaqus scripting interface. Products are ETSLs, fracture patterns, and power and energy
dissipation plots.

A revision of the methodology and its implementation was performed. New post-processing algorithms
have been developed that supersede the Singular Value Decomposition (SVD) method and the method of
projection of normals. The proposed algorithms detect and group the crack segments, and consistently re-
orientate their normal vectors. Multiple crack identification has been achieved, thus allowing ETSLs genera-
tion for each crack. Additionally, a new relation is proposed for the calculation of the effective opening of the
crack, which results in a geometrically accurate opening value.

Moreover, the development of new homogenization algorithms allowed a critical assessment of the pre-
vious relations. It was found that previous effective parameters, based solely on averaging and scaling of
the crack quantities, do not precisely comply with Hill-Mandel in general cases. The non-compliance ag-
gravates in the case of anisotropic domains. Thus, two different ways to generate ETSLs while satisfying the
Hill Mandel condition have been proposed and compared: traction-based and opening-based homogeniza-
tion. Results show that in isotropic-like domains (involving fracture in only the matrix and the interface) both
approaches yield similar values. However, in anisotropic domains (involving fiber fracture) both ETSLs calcu-
lation approaches diverge. Based on the observations, fixing the tractions and calculating the displacements
using the Hill-Mandel energy balance (traction-based homogenization), is deemed as the most reasonable
way to obtain ETSLs for the macro scales.

A verification and convergence study was carried. The proposed homogenization methods were success-
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fully verified for Hill-Mandel compliance under uniaxial, shear, biaxial and mixed loading cases. Further-
more, a mesh and RVE size convergence study was performed for the uniaxial loading case. Results show a
limited convergence of the [0,90,0] models in uniaxial tension as a result of the massive quantities of viscous
artificial energy used by Abaqus. This problem aggravates as the domain size is enlarged. Moreover, compar-
isons show a worse convergence behavior of the highly anisotropic [0,90,0] domains with respect to models
uniquely displaying matrix/interface fracture (e.g. [0] domains).

Finally, the study of the fracture patterns under different angles and conditions raised doubts about the
application of periodic boundary conditions in the framework. Simulation results pointed to the periodic
boundary conditions influencing the orientation of the crack paths, driving them to the promoted directions
by the domain geometry. This compromises the multiscale framework since the post-processing methodol-
ogy requires fully periodic cracks which cannot be delivered using the current implementation.

8.2. Recommendations

Several milestones have been achieved during this thesis; however several issues remain open and shall be
addressed in the future. Thus, the following recommendations are issued:

R1: Reconsider the applicability of periodic boundary conditions in the current multiscale framework: the
first and most important activity shall study more in depth the influence of periodic boundary condi-
tions on the results, and explore possible alternatives to the present situation described in section §6.9.
This may include changing the boundary conditions, modifying the post-processing, or revising the
framework, choosing for another kind of scheme (e.g., concurrent).

R2: Correct the overlapping of crack surfaces: currently contact is lost when a large tangential displacement
occurs between the cohesive elements’ faces. This should be fixed by defining a contact relation in the
whole crack front. Moreover, friction between the crack surfaces could be added at this point.

R3: Reduce the required viscous dissipation: when fibers break, the injected amount of viscous energy by
the automatic stabilization and the viscous regularization is huge. If the results are intended to be
quantitatively valid, the contribution of this energy should be reduced below 5%. This is especially
critical if the "new" material properties presented in chapter §7 are to be used.

R4: Improve the crack identification algorithm: the newly built crack identification algorithm still needs to
be perfected to recognize very complex crack patterns. The use of machine learning methods or more
advanced algorithms may be interesting to improve the crack recognition.

R5: Explore other damage initiation and evolution models: currently, simple damage initiation and evo-
lution models are chosen. Other models should be explored and compared (e.g., QUADS for damage
initiation, and BK for mode-dependent damage evolution).

Further research topics that would be interesting to address would be:

R6: Validation activities: so far, validation with experiments has not been performed yet. Such a compar-
ison would be useful to raise the confidence level of the framework and refine the material properties
and models.

R7: Investigate and model fiber pullout correctly. So far, fiber pullout occurs in certain simulations, trig-
gered by mesh considerations and not by a statistical modeling of the fibers’ imperfections. Thus,
proper modeling of the fibers defects together with a larger number of fibers would allow modeling
fiber pullout correctly.

R8: Extend the framework to 3D. This would allow a more realistic modeling of the transversal phase. More-
over, the composite failure sequence and mechanisms could be captured with more accuracy. However,
this is highly dependent on the unlocking of R1 and the definition of proper boundary conditions for
the three-dimensional domain.
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A
Analysis inputs

The analysis input entries required and stored in the main database are here described.

Entry Description Entry Description

ref Unique reference number nu13_f Fiber Poisson's ratio 13

status Status along the processing flow nu23_f Fiber Poisson's ratio 23

description Description of the test G12_f Fiber Shear modulus

id_group ID of the test group it belongs G13_f Fiber Shear modulus

grid_size Mesh grid size G23_f Fiber Shear modulus

R Statistic repetition number rho_m Matrix density

angle Angle of rotation of the strain tensor nu_m Matrix Poisson's ratio

viscreg Viscous regularization parameter E_m Matrix modulus of elasticity

lastframe Output: last converged frame time dam_init_cf
Fiber damage initiation criteria   (Default: 

MAXS) 

mesh_path Relative path of the .msh file dam_evol_cf
Fiber damage evolution crtieratia 

(Default: ENERGY)

RVE_phases
Phases of the RVE                                  

(e.g [C], [C,T,C], [C,T,C,T,C])
t_ult_cf Fiber  ultimate traction

RVE_w Width of the RVE G_f_cf Fiber fracture energy

RVE_h
Height of each of the RVE phases - Array 

[h1, h2, h3]
d_f_cf Fiber failure opening

RVE_V_f Fiber volume fraction of the RVE E_coh_cf Fiber cohesive element fracture energy

RVE_f_diameter Diameter of the fibers dam_init_cm
Matrix damage initiation criteria (Default: 

MAXS) 

RVE_V_f_real_out
Output: real volume fraction after 

geometry generation
dam_evol_cm

Matrix damage evolution crtieratia 

(Default: ENERGY)

RVE_bc
RVE geometry boundary conditions (by 

default all periodic ['P', 'P', 'P', 'P'])
t_ult_cm Matrix  ultimate traction

INP_bc
Boundary conditions for the analysis (by 

default all periodic ['P', 'P', 'P', 'P'])
G_f_cm Matrix fracture energy

e11
Input macroscopic strain tensor 11 

component
d_f_cm Matrix failure opening

e22
Input macroscopic strain tensor 22 

component
E_coh_cm Matrix cohesive element fracture energy

e12
Input macroscopic strain tensor 12 

component
dam_init_ci

Interface damage initiation criteria 

(Default: MAXS) 

e21
Input macroscopic strain tensor 21 

component
dam_evol_ci

Interface damage evolution crtieratia 

(Default: ENERGY)

rho_f Fiber density t_ult_ci Interface  ultimate traction

E1_f
Fiber Longitudinal (1) modulus of 

elasticity
G_f_ci Interface fracture energy

E2_f Fiber Transverse (2) modulus of elasticity d_f_ci Interface failure opening

E3_f Fiber Transverse (3) modulus of elasticity E_coh_ci
Interface cohesive element fracture 

energy

nu12_f Fiber Poisson's ratio 12 author Test submission author

Reference Mesh Abaqus .INP Material properties
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B
Gmsh .geo file structure

The structure and sintaxis of the Gmsh geometry input file .geo is hereby described.

1 SetFactory("OpenCASCADE");
2

3 // RVE DIMENSIONS - Set gridsize, width and height
4 gridsize = 0.001;
5 w = 0.05;
6 h = 0.05;
7

8 // PBC ENFORCE OPTIONS - Enable/Disable PBC in the Bottom/Top and Left/Right borders
9 enforce_PBC_BottomTop = 1;

10 enforce_PBC_LeftRight = 1;
11

12 // PHYSICAL GROUPS - Define groups to classify the geometric features
13 CFiberGroup = {};
14 TFiberGroup = {};
15

16 // GEOMETRICAL ENTITIES - The fibers and other features are drawn here
17 // Circle Type - Creates the [0] fiber geometry and adds it to the CFiber group.
18 // idx_l: line index, idx_ll: line loop index, idx_fg: fiber geometry index
19 idx_l = newl ; Circle(idx_l) = {x_coord, y_coord, z_coord, radius, 0, 2*Pi};
20 idx_ll = newll ; Line Loop(idx_ll) = {idx_l};
21 idx_fg = newreg; Plane Surface(idx_fg) = {idx_ll};
22 CFiberGroup += {idx_fg};
23 ...
24

25 // Rectangle Type - Creates the [90] fiber geometry and adds it to the TFiber group.
26 idx_fg = newreg; Rectangle(idx_fg) = {x_coord, y_coord, z_coord, width, height, 0};
27 TFiberGroup += {idx_fg};
28 ...
29

30 // SUBROUTINE - See appendix C [...]
31

32 // MESH COMMANDS AND SAVE OPTIONS
33 Mesh.Algorithm=5;
34 Mesh.Smoothing=10;
35 Mesh.CharacteristicLengthMin=gridsize/2;
36 Mesh.CharacteristicLengthMax=gridsize;
37 Mesh 2;
38 Coherence Mesh;
39 SetOrder 1;
40

41 Save "38.msh";
42 Save "mesh.eps";
43 Exit;
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Gmsh PBC subroutine

The subroutine in charge of performing the boolean operations, the contour detection and the creation of
PBC relations within the .geo file is hereby described.

1 // COMMON CODE ============================================================================
2 // RVE MESH GENERATOR FOR PERIODIC BOUNDARY CONDITIONS ====================================
3 // AUTHOR: RUBEN SUAREZ MILLAN
4 // TU DELFT 2018. REFERENCE ACCORDINGLY.
5

6 // RVE RECTANGLE - OUTER CONTOUR
7 // Define corner nodes p_i, edge lines l_i, and the RVE surface
8

9 p1 = newp ; Point(p1) = {0, 0, 0, 1.0};
10 p2 = newp ; Point(p2) = {w, 0, 0, 1.0};
11 p3 = newp ; Point(p3) = {w, h, 0, 1.0};
12 p4 = newp ; Point(p4) = {0, h, 0, 1.0};
13

14 l1 = newl ; Line(l1) = {p1, p2};
15 l2 = newl ; Line(l2) = {p2, p3};
16 l3 = newl ; Line(l3) = {p3, p4};
17 l4 = newl ; Line(l4) = {p4, p1};
18

19 ll1 = newll ; Line Loop(ll1) = {l4, l1, l2, l3};
20 RVESurface = newreg ; Plane Surface(RVESurface) = {ll1};
21

22 // CFIBERS GROUP >>
23 // Intersects the CFibersGroup with the RVESurface to eliminate the fiber portions outside the

domain dimensions. Extract the boundaries of the resulting domain.,→
24

25 s_c_fibers = BooleanIntersection{ Surface{CFiberGroup()}; Delete; }{ Surface{RVESurface}; };
26 s_c_fibers_b = Unique[Abs[Boundary{ Surface{s_c_fibers()};}]];
27 Printf("C-Fiber boundaries: ",s_c_fibers_b());
28

29 Physical Surface ("CFIBERS" , 111 ) = { s_c_fibers() };
30

31 // TFIBERS GROUP >>
32 // Intersects the TFibersGroup with the RVESurface to eliminate the fiber portions outside the

domain dimensions. Extract the boundaries of the resulting domain.,→
33

34 s_t_fibers = BooleanIntersection{ Surface{TFiberGroup()}; Delete; }{ Surface{RVESurface}; };
35 s_t_fibers_b = Unique[Abs[Boundary{ Surface{s_t_fibers()};}]];
36 Printf("T-Fiber boundaries: ",s_t_fibers_b());
37

38 Physical Surface ("TFIBERS" , 222 ) = { s_t_fibers() };
39

40 // MATRIX GROUP >>
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41 // Extracts the portion of the domain belonging to the matrix by a) selecting the whole domain if
there are no fibers. b) Taking the difference between the RVESurface and the fibers surfaces.,→

42

43 If ((#s_c_fibers_b() == 0) && (#s_t_fibers_b() == 0))
44 s_matrix() = RVESurface;
45

46 ElseIf ((#s_c_fibers_b() != 0) (#s_t_fibers_b() != 0))
47 s_matrix() = BooleanDifference{ Surface{RVESurface}; Delete;}{ Surface{s_c_fibers()};

Surface{s_t_fibers()}; } ;,→
48

49 EndIf
50

51 s_matrix_b() = Unique[Abs[Boundary{ Surface{s_matrix()};}]];
52 Printf("Matrix boundaries: ",s_matrix_b());
53

54 Physical Surface ("MATRIX" , 999) = {s_matrix()};
55

56 // OUTER CONTOUR >>
57 // Takes the outer contour of the RVE Rectangle after the intersection operations. The contour is

obtained by identifying common edges between the fibers and matrix group, and substracting this
common edges from all the edges.

,→
,→

58

59 If ((#s_c_fibers_b() == 0) && (#s_t_fibers_b() == 0))
60 contour() = s_matrix_b();
61 Printf("Common edges: no common edges as only matrix is present");
62 Printf("Contour: ",contour());
63

64 ElseIf ((#s_c_fibers_b() != 0) (#s_t_fibers_b() != 0))
65 common_edges() = Unique[BooleanIntersection{Line{s_c_fibers_b()};

Line{s_t_fibers_b()};}{Line{s_matrix_b()};}];,→
66 all_edges() = Unique[BooleanUnion{Line{s_c_fibers_b()};

Line{s_t_fibers_b()};}{Line{s_matrix_b()};}];,→
67 contour() = BooleanDifference{ Line{all_edges()}; }{ Line{common_edges()}; };
68 Printf("Common edges: ",common_edges());
69 Printf("Contour: ",contour());
70

71 EndIf
72

73 // PERIODIC BOUNDARIES LIST INITIALIZATION
74 // Initialize the lists to store the boundary domains
75

76 PBC_L = {};
77 PBC_B = {};
78

79 PBC_T = {};
80 PBC_R = {};
81

82 // GEOMETRICAL TOLERANCE - Sometimes requires to be adjusted
83 // geo_tolerance = 1e-10
84

85 // IDENTIFY AND CLASSIFY THE OUTER BOUNDARIES L,R,B,T
86 // Loops over the contour lines and classifies them into Left Right Bottom and Top edges based on

their endpoints having a common coordinate equal to the edge's axis.,→
87

88 For i In {0:#contour()-1}
89

90 line_i_boundary = Boundary{ Line{ contour(i) }; };
91

92 Point_0 = Point{line_i_boundary(0)};
93 Point_1 = Point{line_i_boundary(1)};
94
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95 // VERTICAL SEGMENTS
96

97 If ((Abs[Point_0[0]] < geo_tolerance) && (Abs[Point_1[0]] < geo_tolerance))
98 PBC_L += {contour(i)};
99

100 ElseIf ((Abs[Point_0[1]] < geo_tolerance) && (Abs[Point_1[1]] < geo_tolerance))
101 PBC_B += {contour(i)};
102

103 // HORIZONTAL SEGMENTS
104

105 ElseIf ((Abs[Point_0[0]] > w - geo_tolerance) && (Abs[Point_1[0]] > w - geo_tolerance))
106 PBC_R += {contour(i)};
107

108 ElseIf ((Abs[Point_0[1]] > h - geo_tolerance) && (Abs[Point_1[1]] > h -
geo_tolerance)),→

109 PBC_T += {contour(i)};
110

111 EndIf
112

113 EndFor
114

115 Printf("PBC_B",PBC_B());
116 Printf("PBC_L",PBC_L());
117

118 // ENFORCE PERIODIC BOUNDARY CONDITIONS IN THE MESH
119 // Runs two for loops, one for each contour list of the each of the opposed edges. If the contour_i

and contour_j have equivalent coordinates, creates a Periodic Line relation, which creates a
periodic mesh over that contour pair.

,→
,→

120

121 If (enforce_PBC_BottomTop == 1)
122 For i In {0:#PBC_B()-1}
123 For j In {0:#PBC_T()-1}
124

125 B_i = Boundary{ Line{ PBC_B(i) }; };
126 T_i = Boundary{ Line{ PBC_T(j) }; };
127

128 Point_B0 = Point{B_i(0)};
129 Point_B1 = Point{B_i(1)};
130

131 Point_T0 = Point{T_i(0)};
132 Point_T1 = Point{T_i(1)};
133

134 If ((Abs[Point_B0[0] - Point_T0[0]] < geo_tolerance) && (Abs[Point_B1[0] -
Point_T1[0]] < geo_tolerance)),→

135 Periodic Line {PBC_T(j)} = {PBC_B(i)};
136

137 ElseIf ((Abs[Point_B0[0] - Point_T1[0]] < geo_tolerance) &&
(Abs[Point_B1[0] - Point_T0[0]] < geo_tolerance)),→

138 Periodic Line {PBC_T(j)} = {-PBC_B(i)};
139

140 EndIf
141

142 EndFor
143 EndFor
144 EndIf
145

146 If (enforce_PBC_LeftRight == 1)
147 For i In {0:#PBC_L()-1}
148 For j In {0:#PBC_R()-1}
149

150 L_i = Boundary{ Line{ PBC_L(i) }; };
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151 R_i = Boundary{ Line{ PBC_R(j) }; };
152

153 Point_L0 = Point{L_i(0)};
154 Point_L1 = Point{L_i(1)};
155

156 Point_R0 = Point{R_i(0)};
157 Point_R1 = Point{R_i(1)};
158

159 If ((Abs[Point_L0[1] - Point_R0[1]] < geo_tolerance) && (Abs[Point_L1[1] -
Point_R1[1]] < geo_tolerance)),→

160 Periodic Line {PBC_R(j)} = {PBC_L(i)};
161

162 ElseIf ((Abs[Point_L0[1] - Point_R1[1]] < geo_tolerance) &&
(Abs[Point_L1[1] - Point_R0[1]] < geo_tolerance)),→

163 Periodic Line {PBC_R(j)} = {-PBC_L(i)};
164

165 EndIf
166

167 EndFor
168 EndFor
169 EndIf



D
Abaqus input .inp file structure

A description of the .inp file is here given. The file starts by defining the job name in the heading and certain
options related with the reporting of the analysis. After the heading, the RVE part is generated by defining
its nodes, elements, sets, orientations and section assignments. The definition of the nodes and elements is
based on the processing of the mesh file .msh. The notation (...) indicates there are multiple entries with
the same structure (e.g. line 5 indicates that are n node entries with the same structure as line 4).

1 *Heading
2 ** Job name: job_name Model name: model_name
3 ** Generated by: Multiscale gen_inp.py for Abaqus/CAE 6.14-2
4 *Preprint, echo=NO, model=NO, history=NO, contact=NO
5 **
6 ** PARTS
7 *Part, name= RVE
8 *Node
9 node index, x coordinate, y coordinate

10 ...
11 *Element, type=CPE3
12 element ID, node 1 index, node 2 index, node 3 index
13 ...
14 *Element, type=COH2D4
15 element index, node 1 index, node 2 index, node 3 index, node 4 index
16 ...

Element sets are defined for the cross sectional fibers CFIBERS, the longitudinal fibers TFIBERS, the matrix
and the interfaces between these phases. These element sets are used later to create the sections.

17 *Elset, elset=CFIBERS
18 element index
19 ...
20 *Elset, elset=TFIBERS
21 ...
22 *Elset, elset=MATRIX
23 ...
24 *Elset, elset=BULK_ELEMENTS
25 ...
26 *Elset, elset=COHESIVE_CFIBERS_CFIBERS
27 ...
28 *Elset, elset=COHESIVE_CFIBERS_MATRIX
29 ...
30 *Elset, elset=COHESIVE_TFIBERS_TFIBERS
31 ...
32 *Elset, elset=COHESIVE_TFIBERS_MATRIX
33 ...
34 *Elset, elset=COHESIVE_MATRIX_MATRIX
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35 ...
36 *Elset, elset=COH_ELEMENTS
37 ...

Moreover, orientations are enforced to ensure consistency. In this case, no rotations are applied, as for sim-
plicity two materials are defined for CFIBER and TFIBER. In principle, this can also be done using one material
and applying a rotation.

38 *ORIENTATION, NAME=TFIBERS, DEFINITION=COORDINATES
39 1., 0., 0., 0., 1., 0.
40 3, 0
41 *ORIENTATION, NAME=CFIBERS, DEFINITION=COORDINATES
42 1., 0., 0., 0., 1., 0.
43 3, 0
44 *ORIENTATION, NAME=MATRIX, DEFINITION=COORDINATES
45 1., 0., 0., 0., 1., 0.
46 3, 0

Section assignments link the element sets with the materials, controls and orientations. Solid and cohesive
sections are created. Moreover, the materials and controls (not yet defined) are already assigned. This ends
the geometry of the RVE.

47 **
48 ** SECTION ASSIGNMENTS
49 **
50 **Section: CFIBERS
51 *Solid Section, elset=CFIBERS, controls=EC-2, material=CFIBERS, ORIENTATION = CFIBERS
52 ,
53 **Section: TFIBERS
54 *Solid Section, elset=TFIBERS, controls=EC-2, material=TFIBERS, ORIENTATION = TFIBERS
55 ,
56 **Section: MATRIX
57 *Solid Section, elset=MATRIX, controls=EC-2, material=MATRIX, ORIENTATION = MATRIX
58 ,
59 **Cohesive Section: COHESIVE_CFIBERS_CFIBERS
60 *Cohesive Section, elset=COHESIVE_CFIBERS_CFIBERS, controls=EC-2,

material=COHESIVE_CFIBERS_CFIBERS, response=TRACTION SEPARATION,→
61 ,
62 **Cohesive Section: COHESIVE_CFIBERS_MATRIX
63 *Cohesive Section, elset=COHESIVE_CFIBERS_MATRIX, controls=EC-2, material=COHESIVE_CFIBERS_MATRIX,

response=TRACTION SEPARATION,→
64 ,
65 **Cohesive Section: COHESIVE_TFIBERS_TFIBERS
66 *Cohesive Section, elset=COHESIVE_TFIBERS_TFIBERS, controls=EC-2,

material=COHESIVE_TFIBERS_TFIBERS, response=TRACTION SEPARATION,→
67 ,
68 **Cohesive Section: COHESIVE_TFIBERS_MATRIX
69 *Cohesive Section, elset=COHESIVE_TFIBERS_MATRIX, controls=EC-2, material=COHESIVE_TFIBERS_MATRIX,

response=TRACTION SEPARATION,→
70 ,
71 **Cohesive Section: COHESIVE_MATRIX_MATRIX
72 *Cohesive Section, elset=COHESIVE_MATRIX_MATRIX, controls=EC-2, material=COHESIVE_MATRIX_MATRIX,

response=TRACTION SEPARATION,→
73 ,
74 **
75 *End Part

The dummy nodes discussed in previous sections §4.2.5 are now created as new parts. For convenience, the
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dummies’ position is at 1.2 times the width and height of the RVE, not having this choice any influence on the
simulation.

76 *Part, name=DUMMY_LR
77 *Node
78 index DLR, 1.2*w_RVE , 0,
79 *End Part
80 *Part, name=DUMMY_TB
81 *Node
82 index DTB, 0, 1.2*h_RVE,
83 *End Part

With all parts defined, the assembly is performed. The three previously defined parts (RVE, DUMMY_LR,
DUMMY_TB) are added as instances.

84 ** ASSEMBLY
85 *Assembly, name=Assembly
86 **
87 *Instance, name=RVE, part=RVE
88 *End Instance
89 **
90 *Instance, name=DUMMY_LR-1, part=DUMMY_LR
91 *End Instance
92 **
93 *Instance, name=DUMMY_TB-1, part=DUMMY_TB
94 *End Instance
95 **

Moreover, node sets are defined for dummy nodes, the corner nodes (NODE_CORNER_i), and also for those
nodes connected by periodic boundary conditions (LEFT_NODE_i, RIGHT_NODE_i, BOTTOM_NODE_i, TOP_NODE_i).

96 *Nset, nset=DUMMY_LR, instance = DUMMY_LR-1
97 index DLR
98 *Nset, nset=DUMMY_TB, instance = DUMMY_TB-1
99 index DBT

100 *Nset, nset=ALL_NODES, instance = RVE
101 node index
102 ...
103 *Nset, nset=NODE_CORNER_i, instance = RVE
104 corner node i index
105 ...
106 *Nset, nset=LEFT_NODE_i, instance = RVE
107 left node i index
108 ...
109 *Nset, nset=RIGHT_NODE_i, instance = RVE
110 right node i index
111 ...
112 *Nset, nset=BOTTOM_NODE_i, instance = RVE
113 bottom node i index
114 ...
115 *Nset, nset=TOP_NODE_i, instance = RVE
116 top node i index
117 ...

The periodic boundary conditions are applied as described in §4.2.5 for the top-bottom and the left-right
couplings. Two equations are applied per PBC, one per coordinate. This ends the assembly.
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118 ** Top-Botttom PBC equations
119 *Equation
120 3
121 TOP_NODE_i,1,1, BOTTOM_NODE_j,1,-1, DUMMY_TB,1,-1
122 *Equation
123 3
124 TOP_NODE_i,2,1, BOTTOM_NODE_j,2,-1, DUMMY_TB,2,-1
125 ...
126 ** Left-Right PBC equations
127 *Equation
128 3
129 RIGHT_NODE_i,1,1, LEFT_NODE_j,1,-1, DUMMY_LR,1,-1
130 3
131 RIGHT_NODE_i,2,1, LEFT_NODE_j,2,-1, DUMMY_LR,2,-1
132 ...
133 *End Assembly

Next, the element controls and material properties are added. The defined EC-2 control does not remove the
fully damaged cohesive elements and applies the viscous regularization parameter.

134 ** ELEMENT CONTROLS
135 **
136 *Section Controls, name=EC-2, ELEMENT DELETION=NO, VISCOSITY=viscous_regularization_parameter
137 1., 1., 1.

The material properties are now defined. In accordance to the models and properties described in section
§4.2.8, the materials are defined as follows.

138 *Material, name=MATRIX
139 *Density
140 1.31e-06
141 *Elastic
142 4000, 0.35

143 *Material, name=COHESIVE_CFIBERS_CFIBERS
144 *Damage Initiation, criterion=MAXS
145 5000.0, 5000.0, 5000.0
146 *Damage Evolution, type=ENERGY
147 7.5
148 *Elastic, type=TRACTION
149 1000000000, 1000000000, 1000000000

150 *Material, name=COHESIVE_TFIBERS_TFIBERS
151 *Damage Initiation, criterion=MAXS
152 5000.0, 5000.0, 5000.0
153 *Damage Evolution, type=ENERGY
154 7.5
155 *Elastic, type=TRACTION
156 1000000000, 1000000000, 1000000000

157 *Material, name=COHESIVE_MATRIX_MATRIX
158 *Damage Initiation, criterion=MAXS
159 80, 80, 80
160 *Damage Evolution, type=ENERGY
161 0.2
162 *Elastic, type=TRACTION
163 100000000, 100000000, 100000000
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164 *Material, name=COHESIVE_CFIBERS_MATRIX
165 *Damage Initiation, criterion=MAXS
166 85, 85, 85
167 *Damage Evolution, type=ENERGY
168 0.2
169 *Elastic, type=TRACTION
170 100000000, 100000000, 100000000

171 *Material, name=COHESIVE_TFIBERS_MATRIX
172 *Damage Initiation, criterion=MAXS
173 85, 85, 85
174 *Damage Evolution, type=ENERGY
175 0.2
176 *Elastic, type=TRACTION
177 100000000, 100000000, 100000000

The boundary conditions for the left corner node are enforced as defined in §4.2.5.

178 ** BOUNDARY CONDITIONS
179 ** Name: BC_NODE_C1B Type: Displacement/Rotation
180 *BOUNDARY
181 NODE_C1B, 2
182 ** Name: BC_NODE_C1L Type: Displacement/Rotation
183 *BOUNDARY
184 NODE_C1L, 1

The loading step and displacement conditions are enforced to the dummy nodes. Moreover, the maximum
number of cutbacks for an increment (by default set in Abaqus to 5) is changed to 50. This enables to continue
the analysis in situations with high discontinuities.

185 ** STEP: LOAD_STEP
186 *Step, name=LOAD_STEP, nlgeom=YES, inc=5000
187 *Static, stabilize, allsdtol=0.05, continue=YES
188 0.001, 1, 1e-13, 0.01, 1
189 **
190 ** LOAD CONDITIONS
191 ** Name: PBC_DUMMY_TB Type: Displacement/Rotation
192 *BOUNDARY, TYPE=DISPLACEMENT
193 DUMMY_TB , 1 , 1 , 0.0
194 DUMMY_TB , 2 , 2 , 0.0
195 ** Name: PBC_DUMMY_LR Type: Displacement/Rotation
196 *BOUNDARY, TYPE=DISPLACEMENT
197 DUMMY_LR , 1 , 1 , 0.015000000000000027
198 DUMMY_LR , 2 , 2 , 0.0
199 **
200 ** CONTROLS
201 *Controls, ANALYSIS=DISCONTINUOUS
202 *Controls, parameters=time incrementation
203 , , , , , , , 50, , ,

Finally, the desired field and history outputs are specified, together with their frequency. This finished the
input file.

204 ** OUTPUT REQUESTS
205 *Restart, write, frequency=0
206 **
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207 ** FIELD OUTPUT: F-Output-1
208 *Output, field, time interval=0.001, time marks=NO
209 *Node Output, GLOBAL=YES
210 U, VF, TF, COORD
211 *Element Output, directions=YES
212 E, LE, EE, ER, S, MISES, EVOL, STATUS, SDEG
213 *Contact Output
214 CSDMG, CSMAXSCRT, CSMAXUCRT
215 **
216 ** HISTORY OUTPUT: H-Output-1
217 *Output, history, time interval=0.001, time marks=NO
218 *Node Output, nset=NODE_i
219 U, TF, VF
220 *Energy Output
221 ETOTAL, ALLIE, ALLSD, ALLCD, ALLSE, ALLWK, ALLDMD, ALLVD
222 *Contact Output
223 CSDMG, CSMAXSCRT, CSMAXUCRT
224 **
225 *End Step
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